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Preface to the Second Edition

Welcome to the second edition! Since the publication of the first edition, the
research area of protein structural informatics has continued to grow in volume and
significance. A search of PubMed for ‘protein structural bioinformatics’ shows
around 1000 papers in 2009 when the first edition was published, doubling to over
2000 in 2015. In the same period, the Protein Data Bank has similarly almost
doubled, breaching 100,000 entries in 2014. Nevertheless, the gap between the
protein sequences and structures continues to grow, as new technologies allow
cheap and facile sequencing of previously intractable organisms and even of entire
environments. Protein structural bioinformatics offers a computational route to
bridge this gap by predicting structures for uncharacterised families. Those struc-
tures can then be analysed by a wide variety of further bioinformatics algorithms to
shed light on their function. These two interlinking research areas are the topic of
this book.

This second edition contains three chapters addressing areas not covered in the
first edition. Each is contributed by world-leading experts in the field. The
remaining chapters are all revised, many dramatically, to reflect seven years of
fast-moving bioinformatics research with one chapter being entirely replaced. As
previously, there are two sections covering first methods to generate or infer
structure and secondly structure-based function annotation. Naturally, such a
division is never clear-cut as prediction of a structure may simultaneously inform
about its likely functions. For example, annotation of an intrinsically disordered
region would immediately suggest, in eukaryotes at least, a role in protein-protein
interaction since such stretches frequently harbour linear motifs bound by recog-
nition modules on partner proteins.

The first new chapter, Chap. 2, covers arguably the most exciting development
in protein bioinformatics of recent years, namely the new-found ability to accu-
rately predict contacting residue pairs through covariance analysis of large multiple
sequence alignments. These contact predictions have a wide and still expanding
range of applications. Most obviously, the data allow for protein structure predic-
tion in conjunction either with protein distance geometry methods or, more effec-
tively, by synergistic incorporation into fragment assembly ab initio modelling
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methods. The contact predictions also inform on the likely harmfulness of single
amino acid polymorphisms (SAPs) and allow for better prediction of
protein-protein interactions. Prediction of protein-protein complex structures, both
between globular domains and between a domain and a short linear motif, is the
subject of the new Chap. 8. A full accounting of protein-protein interactions in cells
is crucial for the future prospects of integrative systems-level methods, while
structural knowledge of interfaces again contributes to prediction of the conse-
quences of SAPs. The third new arrival, Chap. 7, covers predictions of amyloid
structure in proteins. Such structure is of huge biomedical interest, underlying
diseases such as Parkinson’s and Alzheimer’s, but is equally intriguing for the
normal physiological roles of ‘functional amyloids’. Finally, the new Chap. 10 text
covers the fascinating variety of means by which structural bioinformatics can mark
up a structure, experimental or modelled, for likely functional pockets and patches
on the protein surface.

The methods covered in this book comprise a comprehensive toolkit to address
future challenges in protein structure, function and evolution. Recent papers open
up new viewpoints on protein evolution (Alva et al. 2015; Edwards and Deane
2015) and on the amenability of different folds to functional innovation
(Toth-Petroczy and Tawfik 2014), treat the biophysical consequences of protein
ageing (de Graff et al. 2016) and even reveal oversights in our accounting of
molecular interactions (Newberry and Raines 2016). Clearly, exciting times lie
ahead for protein bioinformaticians!

Liverpool, UK Daniel J. Rigden
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Chapter 1
Ab Initio Protein Structure Prediction

Jooyoung Lee, Peter L. Freddolino and Yang Zhang

Abstract Predicting a protein’s structure from its amino acid sequence remains an
unsolved problem after several decades of efforts. If the query protein has a
homolog of known structure, the task is relatively easy and high-resolution models
can often be built by copying and refining the framework of the solved structure.
However, a template-based modeling procedure does not help answer the questions
of how and why a protein adopts its specific structure. In particular, if structural
homologs do not exist, or exist but cannot be identified, models have to be con-
structed from scratch. This procedure, called ab initio modeling, is essential for a
complete solution to the protein structure prediction problem; it can also help us
understand the physicochemical principle of how proteins fold in nature. Currently,
the accuracy of ab initio modeling is low and the success is generally limited to
small proteins (<120 residues). With the help of co-evolution based contact map
predictions, success in folding larger-size proteins was recently witnessed in blind
testing experiments. In this chapter, we give a review on the field of ab initio
structure modeling. Our focus will be on three key components of the modeling
algorithms: energy function design, conformational search, and model selection.
Progress and advances of several representative algorithms will be discussed.
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1.1 Introduction

With the success of an expanding array of genome sequencing projects, the number
of known protein sequences has been increasing exponentially. However, the
sequences on their own cannot tell what each protein does in cell. Although protein
structure information is essential for understanding the function, the speed of
protein structure determination lags far behind the increase of sequences, due to the
technical difficulties and laborious nature of structural biology experiments. By the
end of 2015, about 90 million protein sequences were deposited in the UniProtKB
database (Bairoch et al. 2005) (http://www.uniprot.org/). However, the corre-
sponding number of protein structures in the Protein Data Bank (PDB) (Berman
et al. 2000) (http://www.rcsb.org) is only about 100,000. The gap is rapidly
widening as indicated in Fig. 1.1, where the ratio of sequences over structure
increased from less than 1 magnitude to around 3 magnitudes in the last two
decades. Thus, developing efficient computer-based algorithms that can generate
high-resolution 3D structure predictions becomes probably the only avenue to fill
up the gap.

Depending on whether similar proteins have been experimentally solved, protein
structure prediction methods can be grouped into two categories. First, if proteins of
a similar structure are identified from the PDB library, the target model can be
constructed by copying and refining framework of the solved proteins (templates).
The procedure is called “template-based modeling (TBM)” (Sali and Blundell 1993;
Karplus et al. 1998; Jones 1999; Skolnick et al. 2004; Soding 2005; Wu and Zhang
2008a; b; Yang et al. 2011), and will be discussed in the subsequent chapters.
Although high-resolution models can often be generated by TBM, the procedure
cannot help us understand the physicochemical principle of protein folding.

If protein templates are not available, we have to build the 3D models from
scratch. This procedure has been given different names, e.g. ab initio modeling
(Klepeis et al. 2005; Liwo et al. 2005; Wu et al. 2007; Taylor et al. 2008; Xu and

Fig. 1.1 The numbers of
available protein sequences
and solved protein structures
are shown for the last
20 years. The ratio of
sequences over structures
increases from less than 10 in
1995 to three orders of
magnitude in 2015. Data are
taken from UniProtKB
(Bairoch et al. 2005) and PDB
(Berman et al. 2000)
databases
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Zhang 2012); de novo modeling (Bradley et al. 2005a, b), physics-based modeling
(Oldziej et al. 2005), or free modeling (Jauch et al. 2007; Kinch et al. 2015). In this
chapter, the term ab initio modeling is uniformly used to avoid confusion. Unlike
the template-based modeling, a successful ab initio modeling procedure could help
address the basic questions on how and why a protein adopts the specific structure
out of many possibilities.

Typically, ab initio modeling conducts a conformational search under the
guidance of a designed energy function. This procedure usually generates a number
of possible conformations (also called structure decoys), and final models are
selected from them. Therefore, a successful ab initio modeling depends on three
factors: (1) an accurate energy function with which the native structure of a protein
corresponds to the most thermodynamically stable state, compared to all possible
decoy structures; (2) an efficient search method which can quickly identify the
low-energy states through conformational search; (3) a strategy that can select
near-native models from a pool of decoy structures.

This chapter gives a review on the most recent progress in ab initio protein
structure prediction. This review is neither sufficiently complete to include all
available ab initio methods nor sufficiently in depth to provide all
backgrounds/motivations behind them. For a quantitative comparison of the
state-of-the-art ab initio modeling methods, readers are suggested to read the
assessment articles on template-free modeling in the recent CASP experiments
(Kinch et al. 2011; Tai et al. 2014; Kinch et al. 2015). The rest of the chapter is
organized as follows. First, the three major issues of ab initio modeling, i.e. energy
function design, conformational search engine and model selection scheme, will be
described in detail. New and promising ideas to improve the efficiency and effec-
tiveness of the prediction are then discussed. Finally, current progress and chal-
lenges of ab initio modeling are summarized.

1.2 Energy Functions

In this section, we discuss energy functions used for ab initio modeling. It should be
noted that in many cases energy functions and the search procedures are intricately
coupled to each other, and as soon as they are decoupled, the modeling procedure
often loses its power and/or validity. We classify the energy functions into two
groups: (a) physics-based energy functions and (b) knowledge-based energy
functions, depending on whether they make use of statistics from the existing
protein 3D structures in the PDB. A few promising methods from each group are
selected to discuss according to their uniqueness and modeling accuracy. A list of
ab initio modeling methods is provided in Table 1.1 along with their properties
about energy functions, conformational search algorithms, model selection methods
and typical running times.
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1.2.1 Physics-Based Energy Functions

In a strictly-defined physics-based ab initio method, interactions between atoms
should be based on quantum mechanics and the Coulomb potential with only a few
fundamental parameters such as the electron charge and the Planck constant; all
atoms should be described by their atom types where only the number of electrons
is relevant (Hagler et al. 1974; Weiner et al. 1984). However, there have not been
serious attempts to start from quantum mechanics to predict structures of (even
small) proteins, simply because the computational resources required for such
calculations are far beyond what is available now. Without quantum mechanical
treatments, a practical starting point for ab initio protein modeling is to use a force
field treating atoms as point particles interacting through a defined potential form,
with the parameters governing inter-atomic interactions obtained through the
comparisons of the force field with a combination of experimental and quantum
mechanical data (Hagler et al. 1974; Weiner et al. 1984). Well-known examples of
such all-atom physics-based force fields include AMBER (Weiner et al. 1984;
Cornell et al. 1995; Duan and Kollman 1998), CHARMM (Brooks et al.
1983; Neria et al. 1996; MacKerell et al. 1998), OPLS (Jorgensen and Tirado-Rives
1988; Jorgensen et al. 1996), and GROMOS96 (van Gunsteren et al. 1996). These
potentials contain terms associated with bond lengths, angles, torsion angles, van
der Waals, and electrostatics interactions. The major difference between them lies in
the selection of atom types and the interaction parameters.

Coupling Physics-Based Potentials With Molecular Dynamics Simulations For
the study of protein folding, these classical force fields were often coupled with
molecular dynamics (MD) simulations. The obvious appeal of such an approach is
that the prediction of protein folding via MD simulations provides not only
information on the folded structure, but also the folding process itself, which must
be fully simulated en route. However, the results, from the viewpoint of protein
structure prediction, have until quite recently been disappointing. (See Chap. 12 for
the use of MD in elucidation of protein function from known structures).

The first milestone in MD-based ab initio protein folding was probably the 1997
work of Duan and Kollman, who simulated the villin headpiece subdomain (a 36
amino acid protein) in explicit solvent for 6 months on parallel supercomputers.
Although the authors did not fold the protein with high resolution, the best of their
final models was within 4.5 Å RMS deviation of the native state (Duan and
Kollman 1998). With Folding@Home, a worldwide-distributed computer system,
this small protein was later folded by Pande and coworkers (Zagrovic et al. 2002) to
1.7 Å with a total simulation time of 300 ls or approximately 1000 CPU years. The
years since then have seen an increasing number of successful ab initio folding
simulations using molecular dynamics (Chowdhury et al. 2003; Ensign et al. 2007;
Lei et al. 2007; Freddolino and Schulten 2009), although all have required heroic
amounts of computing time either through supercomputing centers or distributed
community projects. During the same period, ab initio folding simulations also
revealed secondary structure biases in several physics-based force fields that
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hampered their general applicability to different folds (Best et al. 2008; Freddolino
et al. 2008, Best and Hummer 2009; Freddolino and Schulten 2009;
Lindorff-Larsen et al. 2012).

A flurry of force field development efforts spurred by these shortcomings have
resulted in a new generation of parameter sets that are able to reliably fold a wide
variety of protein structures (Lindorff-Larsen et al. 2010; Mittal and Best 2010;
Piana et al. 2011; Lindorff-Larsen et al. 2012), leaving simulation timescales as the
main barrier for MD ab initio folding simulations. Even this barrier has begun to
crumble in the face of recent advances in computing hardware. The special purpose
Anton machine, designed by Shaw and co-workers specifically for extreme-
performance molecular dynamics simulations, has allowed complete, reversible
folding simulations of proteins up to *100 residues long in explicit solvent
(Lindorff-Larsen et al. 2011; Piana et al. 2012, Piana et al. 2013a, b; Piana et al.
2014). Following a separate path, the use of GPU acceleration in most major
molecular dynamics packages has enabled ab initio folding simulations on com-
modity hardware to reach performances of 1 microsecond per GPU-day for small
proteins with implicit solvent (Nguyen et al. 2014), and allowed successful folding
of 16 out of 17 test proteins (10–100 residues). Despite these remarkable efforts, the
all-atom physics-based MD simulation is far from being routinely used for structure
prediction of typical-size proteins (*100–300 residues), and it is instead primarily
used to provide additional information on folding pathways or equilibriums.

Application to Atomic-Level Structure Refinement Another protein structure
niche where physics-based MD simulation can contribute is structure refinement.
Starting from low-resolution protein models, the goal is to draw the structure closer
to the native by refining the local side-chain and peptide-backbone packing. When
the starting models are not very far away from the native, the intended confor-
mational change is relatively small and the simulation time would be much shorter
than that required in ab initio folding. One of the early MD-based protein structure
refinements was for the GCN4 leucine zipper (33-residue dimer) (Nilges and
Brunger 1991; Vieth et al. 1994), where a low-resolution coiled-coil dimer structure
(2–3 Å RMS deviation from native) was first assembled by Monte Carlo
(MC) simulation before the subsequent MD refinement. With the help of helical
dihedral-angle restraints, Skolnick and coworkers (Vieth et al. 1994) were able to
generate a refined structure of GCN4 with below 1 Å backbone RMSD using
CHARMM (Brooks et al. 1983) with the TIP3P water model (Jorgensen et al.
1983).

Later, using AMBER 5.0 (Case et al. 1997) and the TIP3P water model
(Jorgensen et al. 1983; Lee et al. 2001) attempted to refine 360 low-resolution
models generated by ROSETTA (Simons et al. 1997) for 12 small proteins
(<75 residues); but they concluded that no systematic structure improvement was
achieved (Lee et al. 2001). Fan and Mark (Fan and Mark 2004) tried to refine 60
ROSETTA models for 11 small proteins (<85 residues) using GROMACS 3.0
(Lindahl et al. 2001) with explicit water (Berendsen et al. 1981) and they reported
that 11/60 models were improved by 10% in RMSD, but 18/60 got worse in RMSD
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after refinement. Similarly, Chen and Brooks (Chen and Brooks 2007) used
CHARMM22 (MacKerell et al. 1998) to refine five CASP6 CM targets (70–144
residues). In four cases, refinements with up to 1 Å RMSD reduction were
achieved. In this work, an implicit solvent model based on the generalized Born
(GB) approximation (Im et al. 2003) was used, which significantly speeded up the
computation. In addition, the spatial restraints extracted from the initial models
were used to guide the refinement procedure (Chen and Brooks 2007).

More recently, Zhang et al. (2011) proposed to use analogous fragments from
known structures to bias the physics-based force field and improve structure
refinement. In this work, the initial structure model was split into segments of 2–4
secondary structure elements, which are structurally matched through the PDB
library by TM-align (Zhang and Skolnick 2005a, b) to identify analogous frag-
ments. The distance map from the analogous fragments is then used as restraints to
reshape the MD energy funnel. The protocol was tested on 181 benchmarking and
26 CASP targets. It was found that structure models of correct folds with TM-score
>0.5 can be often pulled closer to native with higher GDT-HA score, but
improvement for the models of incorrect folds (TM-score <0.5) were much less
pronounced. The previous experiments have shown that the physics-based force
field can often recognize the native but lacks middle-range correlation to the RMSD
in the high RMSD region (Bradley et al. 2005a, b; Jagielska et al. 2008), which
leads to a golfcourse like energy landscapes with a deep basin around the native that
cannot help for refining low-resolution models. The data by Zhang et al. seemed to
indicate that template-based fragmental distance maps reshaped the MD energy
landscape from golfcourse-like to funnel-like in the successfully refined targets with
an approximate radius of TM-score *0.5. Similarly, Feig and coworkers used the
Ca maps collected from initial structure models to guide the MD based structure
refinement simulations (Mirjalili and Feig 2013). In the recent CASP experiment
(Feig and Mirjalili 2015), the approach showed a small but consistent improvement
on the structural models, with average RMSD improvement by 0.13 Å for the first
submitted models and 0.52 Å for the best in top five models.

Molecular Mechanics Approaches A noteworthy observation was made by
Summa and Levitt (2007) who exploited various molecular mechanics
(MM) potentials (AMBER99 (Wang et al. 2000; Sorin and Pande 2005), OPLS-AA
(Kaminski et al. 2001), GROMOS96 (van Gunsteren et al. 1996), and ENCAD
(Levitt et al. 1995)) to refine 75 proteins by in vacuo energy minimization. They
found that a knowledge-based atomic contact potential outperformed the MM
potentials by moving almost all test proteins closer to their native states, while the
MM potentials, except for AMBER99, essentially drove decoys further away from
their native structures. The vacuum simulation without solvation may be partly the
reason for the failure of the MM potentials. This observation demonstrates the
possibility of combining knowledge-based potentials with physics-based force
fields for more successful protein structure refinement.

While the physics-based potential driven by MD simulations was not particularly
successful in structure prediction due to the immense computational cost of MD
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simulations on the timescales of folding processes, fast search methods (such as
Monte Carlo simulations and genetic algorithms) combined with similar
physics-based potentials have been shown to be promising in both structure pre-
diction and structure refinement. One example is the effort by Scheraga and
coworkers (Liwo et al. 1999; Liwo et al. 2005; Oldziej et al. 2005) who have been
developing a physics-based protein structure prediction method solely based on the
thermodynamic hypothesis. The method combines the coarse grained potential
UNRES with a global optimization algorithm called conformational space
annealing (Oldziej et al. 2005). In UNRES, each residue is described by two
interacting off-lattice united atoms, Ca and the side-chain center. This effectively
reduces the number of atoms by 10, enabling one to handle polypeptide chains of
larger than 100 residues. The resulting prediction time for small proteins can be
then reduced to 2–10 h. The UNRES energy function (Liwo et al. 1993) consists of
pair-wise interactions between all interacting parties and additional terms such as
local energy and correlation energy. The low energy UNRES models are then
converted into all-atom representations based on ECEPP/3 (Nemethy et al. 1992).
Although many of the parameters of the energy function are calculated by
quantum-mechanical methods, some of them are derived from the distributions and
correlation functions calculated from the PDB library. For this reason, one might
question classifying it as a truly physics-based approach. Nevertheless, this method
is one of the most faithful ab initio methods available (in terms of the application of
a thorough global optimization to a physics-based energy function) and has been
systematically applied to many CASP targets since 1998. The most notable pre-
diction success by this approach was for T061 from CASP3, for which a model of
4.2 Å RMSD for a 95-residue a-helical protein was generated with an accuracy gap
between it and the models of others. It was shown in a clear-cut fashion that the
ab initio method can sometime provide better models for the targets where the
template-based methods fail. In CASP6, a structure genomics target of TM0487
(T0230, 102 residues) was folded to 7.3 Å by this approach. However, it seems that
the scarcity and the best-but-still-low accuracy of such models by a pure ab initio
modeling failed to draw much attention from the protein science community, where
accurate protein models are in great demand.

Another example of the physics-based modeling approaches is the multi-stage
hierarchical algorithm ASTRO-FOLD, proposed by Floudas and coworkers
(Klepeis and Floudas 2003; Klepeis et al. 2005). First, secondary structure elements
(a-helices and b-strands) are predicted by calculating a free energy function of
overlapping oligopeptides (typically pentapeptides) and all possible contacts
between 2 hydrophobic residues. The free energy terms used include entropic,
cavity formation, polarization, and ionization contributions for each oligopeptide.
After transforming the calculated secondary structure propensity into the upper and
lower bounds of backbone dihedral angles and the distant restraints between Ca
atoms, the final tertiary structure of the full length protein is modeled by globally
minimizing the energy using the ECEPP/3 all-atom force field. This approach was
successfully applied to an a-helical protein of 102 residues in a double-blind
fashion (but not in an open community-wide way for relative performance
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comparison to other methods). The RMSD of the predicted model was 4.94 Å away
from the experimental structure. The global optimization method used in this
approach is a combination of a branch and bound (aBB), conformational space
annealing, and MD simulations (Klepeis and Floudas 2003; Klepeis et al. 2005).
The relative performance of this method on larger number of proteins is yet to be
examined.

Taylor and coworkers (Taylor et al. 2008) proposed a novel approach which
constructs protein structural models by enumerating possible topologies in a
coarse-grained form, given the secondary structure assignments and the physical
connection constraints of the secondary structure elements. The top scoring con-
formations, based on the structural compactness and element exposure, are then
selected for further refinement (Jonassen et al. 2006). The authors successfully
folded a set of five ab sandwich proteins with length up to 150 residues with the
first model having 4–6 Å RMS deviation from the known experimental structure.
Again, although appealing in methodology, the performance of the approach in
open blind experiments and on proteins of various fold-types is yet to be seen.

1.2.2 Knowledge-Based Energy Function Combined
with Fragments

The term knowledge-based potential refers to a set of empirical energy terms
derived from the statistics and regularities of the solved structures in deposited
PDB. Such potentials can be divided into two types as described by Skolnick
(Skolnick 2006). The first covers generic and sequence-independent terms such as
the hydrogen bonding and the local backbone stiffness of a polypeptide chain
(Zhang et al. 2003). The second contains amino-acid or protein-sequence dependent
terms, e.g. pair-wise residue contact potential (Skolnick et al. 1997), distance
dependent atomic contact potential (Samudrala and Moult 1998; Lu and Skolnick
2001; Zhou and Zhou 2002; Shen and Sali2006; Zhang and Zhang 2010), and
secondary structure propensities (Zhang et al. 2003, Zhang and Skolnick 2005a, b;
Zhang et al. 2006).

Although most knowledge-based force fields contain secondary structure
propensities, it may be that local protein structures are rather difficult to reproduce
in the reduced modeling. That is, in nature a variety of protein sequences prefer
either helical or extended structures depending on the subtle differences in their
local and global sequence environment, yet we have not yet developed force fields
that can reproduce this subtlety properly. One way to circumvent this problem is to
use secondary structure fragments, obtained from sequence or profile alignments,
directly into 3D model assembly. One additional advantage of the fragment-based
approach is that the use of excised secondary structure fragment can significantly
reduce the entropy of the conformational search.
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Here, we introduce several representative methods utilizing knowledge-based
energy functions, which have proven to be the most successful in ab initio protein
structure prediction methods in recent community competitions (Simons et al. 1997;
Zhang and Skolnick 2004a, b; Xu and Zhang 2012).

ROSETTA One of the best-known ideas for ab initio, pioneered by Bowie and
Eisenberg, involves generating protein models by assembling small fragments
(mainly 9-mers) taken from the PDB library (Bowie and Eisenberg 1994). Based on
a similar idea, Baker and coworkers developed ROSETTA (Simons et al. 1997),
which has been very successful for the free modeling (FM) targets in the CASP
experiments, and which has greatly boosted the popularity of the fragment
assembly approach in the field. In recent versions of ROSETTA (Bradley et al.
2005a, b; Das et al. 2007; Ovchinnikov et al. 2015), the authors first generated
models in a reduced form with conformations specified with heavy backbone and
Cb atoms. In the second phase, a set of selected low-resolution models were subject
to all-atom refinement procedure using an all-atom physics-based energy function,
which includes van der Waals interactions, pair-wise solvation free energy, and an
orientation-dependent hydrogen-bonding potential. The flowchart of the two-phase
modeling is shown in Fig. 1.2 and details on the energy functions can be found in
references (Bradley et al. 2005a, b; Das et al. 2007). For the conformational search,
multiple rounds of Monte Carlo minimization (Li and Scheraga 1987) are carried
out. One of the notable examples for this two-step protocol is the blind prediction of
a FM target (T0281 from CASP6, 70 residues), whose Ca RMSD from its crystal
structure is 1.6 Å (Bradley et al. 2005a, b), where a very extensive sampling was
carried out using the distributed computing network of Rosetta@home allowing
about 500,000 CPU hours for each target domain. Despite the significant success,
the computational cost of the procedure is rather expensive for routine use.

Partially because of the notable success of the ROSETTA algorithm, as well as
the limited availability of its energy functions to others, several groups initiated
developments of their own energy functions following the idea of ROSETTA.
Derivatives of ROSETTA include Simfold (Fujitsuka et al. 2006) and Profesy (Lee
et al. 2004); their energy terms include van der Waals interactions, backbone
dihedral angle potentials, hydrophobic interactions, backbone hydrogen-bonding
potential, rotamer potential, pair-wise contact energies, beta-strand pairing, and a
term controlling the protein radius of gyration. However, their predictions seems to
be only partially successful in comparison to ROSETTA (Lee et al. 2004; Fujitsuka
et al. 2006).

TASSER/I-TASSER Another successful free modeling approach, TASSER by
Zhang and Skolnick (Zhang and Skolnick 2004a, b), constructs 3D models based
on a purely knowledge-based approach. The target sequence is first threaded
through a set of representative protein structures to search for possible folds.
Contiguous fragments (>5 residues) are then excised from the threaded aligned
regions and used to reassemble full-length models, while unaligned regions are built
by a lattice-based ab initio modeling (Zhang et al. 2003). The protein conformation
in TASSER is represented by a trace of Ca atoms and side-chain centers of mass,

12 J. Lee et al.



and the reassembly process is conducted by parallel-hyperbolic Monte Carlo sim-
ulations (Zhang et al. 2002). The energy terms of TASSER include information
about predicted secondary structure propensities, backbone hydrogen bonds, a
variety of short- and long-range correlations and hydrophobic energy based on the
structural statistics from the PDB library. Weights of knowledge-based energy
terms are optimized using a large-scale structure decoy set (Zhang et al. 2003)
which coordinates the complicated correlations between various interaction terms.

Several derivatives of the TASSER approach have also found independent
success. One is Chunk-TASSER (Zhou and Skolnick 2007), which first splits the
target sequences into subunits (or “chunks”), each containing 3 consecutive regular
secondary structure elements (helix and strand). These chunks are then folded
separately. Finally, the spatial restraints are extracted from the chunk models and
used for the subsequent TASSER simulations.

Fig. 1.2 Flowchart of the
ROSETTA protocol (Simons
et al. 1997). Fragments are
first created from unrelated
protein structures in the PDB,
which are used to assemble
full-length models by
simulated annealing
simulations guided by a
knowledge-based force field.
In the second phase, selected
models are refined at atomic
level using a physics-based
potential
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Another notable development is I-TASSER by Zhang and coworkers (Wu et al.
2007; Roy et al. 2010, Yang et al. 2015a, b), which refines TASSER cluster
centroids by iterative fragment assembly simulations. The spatial restraints are
extracted from the first round TASSER models and the template structures searched
by TM-align (Zhang and Skolnick 2005a, b) from the PDB library, which are
exploited in the second round simulations (Zhang and Skolnick 2013). The purpose
is to remove the steric clashes from the first round models and refine the topology.
Although the procedure uses structural fragments and spatial restraints from
threading templates, it often constructs models of correct topology even when
topologies of constituting templates are incorrect. From CASP7 to the latest
CASP11 experiments, I-TASSER was consecutively ranked as one of the best
methods for automated protein structure prediction (Battey et al. 2007; Cozzetto
et al. 2009; Mariani et al. 2011; Montelione 2012; Kinch et al. 2015). As an
independent test, Helles carried out a comparative study on 18 ab initio prediction
algorithms and concluded that I-TASSER is about the best method in terms of the
modeling accuracy and CPU cost per target (Helles 2008). Figure 1.3a shows an
example of successful ab initio structure modeling by I-TASSER that constructed a
correct model for the FM target T0604, which has a TM-score = 0.701 and
RMSD = 2.66 Å from the X-ray structure.

Recently, many efforts have been made to improve the I-TASSER force field by
the integration of sequence-based contact prediction (Wu and Zhang 2008a, b),
short- and medium-range contact maps derived from segmental threading (Wu and
Zhang 2010) and structure alignments (Zhang et al. 2011); these components have
been proven particularly important for modeling distant-homology proteins in the
CASP experiments (Zhang 2009; Xu et al. 2011; Zhang 2014; Zhang et al. 2015).
The flowchart of current I-TASSER protocol is depicted in Fig. 1.4.

QUARK QUARK is a recently developed ab initio structural prediction method
built on continuous fragment assembly using both knowledge and physics based
energy terms (Xu and Zhang 2012). The flowchart of QUARK is shown in Fig. 1.5,
which starts from position-specific fragment structure generation. At each residue
position, 4000 (=200 � 20) structural fragments are generated, with lengths
ranging from 1 to 20 residues, based on gapless threading of the fragment sequence
through a non-redundant set of 6023 high-resolution PDB structures. The scoring
function of the gapless threading consists of profile-profile, secondary structure,
torsion angle and solvent accessibility matches (Wu et al. 2008a, b). Two types of
information are derived from the fragments to assist next step of structure folding
simulations. First, a torsion angle (u, W) distribution is collected from the 10-mer
fragments at each residue position. Second, a residue-residue contact map is derived
from the distance profiles between fragments. Here, a distance (dij) is recorded for
each pair of fragments at two positions (i and j) if these two fragments come from
the same PDB structure. A histogram is then generated for dij counting distances for
all such fragment pairs. If the histogram of dij has a non-trivial peak below 9 Å, a
contact between residue i and j will be predicted (Xu and Zhang 2013).
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In the next step, replica-exchange Monte Carlo (REMC) simulations are per-
formed to assemble the fragments into full-length models under a composite
physics- and knowledge-based potential, containing hydrogen bonding, van der
Waals, solvation, Coulomb, backbone-torsion, bond-length and bond-angle, atomic
distance, and strand pairing. The conformational changes are driven by 11 local and
global movements shown in the top-right panel of Fig. 1.5. While the first feature,
the torsion-angle distribution as collected from the fragments, is used to constrain
local torsion movement selection, the second feature, the contact map derived from
the fragment distance profiles, is used as a restraint to guide the simulations. The
final models are selected by SPICKER (Zhang and Skolnick 2004a, b), which
clusters all the decoys generated in the REMC simulations and ranks models by the
size of the clusters.

Since its development, QUARK has been consistently ranked as one of the best
methods in CASP for ab initio structure prediction (Kinch et al. 2011; Tai et al. 2014;

Fig. 1.3 Three examples of successful free modeling (FM) in recent CASP experiments.
a T0604_1 is the first domain of the VP0956 protein from Vibrio parahaemolyticus in CASP9 that
has 79 residues. The first model by the I-TASSER server has a TM-score = 0.692 and
Ca-RMSD = 2.66 Å to the native. The success of this target was partially due to the
sequence-based contact map prediction (Xu et al. 2011). b T0806 is the YaaA protein from
E. coli K-12 in CASP11 that has 258 residues. The Rosetta human group (Ovchinnikov et al.
2015) constructed a correct model, using a co-evolution based contact prediction derived from
>1100 homologous sequences, which has a TM-score = 0.775 and Ca-RMSD = 3.58 Å to the
experimental structure. c T0837 is a hypothetical protein (YPO2654) from Yersinia pestis CO92
with 128 residues. The QUARK server generated a correct model with a TM-score = 0.736 and
Ca-RMSD = 2.94 Å to the native, the success of which was attributed to the distance-profile
based contact map prediction (Zhang et al. 2015). According to the assessors (Kinch et al. 2011;
Kinch et al. 2015), there were no proteins in the PDB with a similar fold to any of these three
targets at the time the predictions were made
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Kinch et al. 2015). Figure 1.3c shows an example of the QUARK server modeling
on T0837 in CASP11, where the distance profiles provided correct contacts for
some of the critical medium-range contacts, which resulted in the first predicted
models with a TM-score = 0.736 and RMSD = 2.94 Å to the experimental X-ray
structure.

Coupling of Contact Prediction And Ab Initio Structure Prediction
Sequence-based contact predictions have recently been investigated for improving
ab initio modeling (Wu and Zhang 2008a, b; Wu et al. 2011; Marks et al. 2012;
Kosciolek and Jones 2014). Unlike template-based protein structure prediction
where high accuracy contacts can be derived from homologous structural templates,
the CASP experiments for hard free-modeling (FM) protein targets show that purely
sequence-based contact predictions can be more helpful than those collected from
the best template-based models because the latter often have low quality for FM
(Ezkurdia et al. 2009).

Fig. 1.4 Flowchart of I-TASSER protein structure modeling (Yang et al. 2015a, b). Multiple
threading programs are used to identify templates and super-secondary structure fragments.
Segments excised from the continuously aligned regions are used to reassemble the full-length
models with the threading-unaligned regions built by lattice-based ab initio simulations. In the next
step, templates structurally similar to the first-round models are identified from the PDB by
structure alignments, with spatial restraints extracted from the templates to assist the second-round
refinement simulations. In recent developments, sequence-based contact predictions and segmental
threading were developed for improving results for distant homology modeling
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Some improvement of final models, with an average TM-score increase by 4.6%,
was previously observed by Wu et al. after integrating nine SVM-based contact
predictors (3 distance cutoffs multiplying 3 different contact atoms) into the
I-TASSER force field (Wu et al. 2011). A handful of targets were converted from
“nonfoldable” to “foldable” by several critical contacts when incorporated with the
state-of-the-art structure assembly simulation methods. Similarly, Marks et al.
(2011) showed that by integrating co-evolution based contact predictions with
distance geometry programs, correct folds with RMSD values of 2.7–4.8 Å were
generated for 15 test proteins with lengths between 50 and 260 residues. Later,
Jones and coworker combined PSICOV (Jones et al. 2012), a co-evolution based
contact predictor, with the fragment assembly program (Fragfold) and demonstrated
the ability to fold 80% of cases with a TM-score above 0.5, when tested on a set of
150 proteins up to 266 amino acids in length (Kosciolek and Jones 2014).

One of the issues in applying co-evolution based contact predictions to ab initio
structure prediction is that the accuracy of contact predictions depends on the
number of homologous sequences that can be retrieved from the sequence data-
bases, whereas hard FM targets often have few closely homologous sequences.
Most recently, Baker and coworkers (Ovchinnikov et al. 2015) demonstrated an
exciting achievement in the blind CASP11 experiment, where 4.6 L homologous
sequences (with L being the protein length) were detected for a 256-residue FM
target. The combination of the contact map with Rosetta simulations resulted in a

Fig. 1.5 Flowchart of QUARK protein structure modeling (Xu and Zhang 2012). Multiple
fragments with continuously distributed lengths are identified at each position from unrelated
protein structures. Contact maps are then collected from distance profiles of the structural
fragments, which are used to assist the fragment assembly simulations. Decoys are generated by
replica-exchange Monte Carlo simulations under the guide of a composite physics and
knowledge-based force field, with the final model selected by structure clustering
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first predicted model with the correct fold, with a TM-score = 0.775 and
RMSD = 3.58 Å to the experimental structure (Fig. 1.3b). This probably represents
the largest target that has been successfully folded in the CASP experiments,
demonstrating the power of coupling contact map prediction and knowledge-based
structure modeling.

1.3 Conformational Search Methods

Successful ab initio modeling of protein structures depends on the availability of a
powerful conformation search method which can efficiently find the global mini-
mum energy structure for a given energy function with a complicated energy
landscape. Historically, Monte Carlo and molecular dynamics are two popular
simulation methods to explore the conformational space of macromolecules such as
proteins. For complicated systems like proteins, canonical MD/MC methods usu-
ally require a huge amount of computational resources for a complete exploration of
the conformational space. The record for direct application of MD to obtain the
protein native structure is not so impressive. One explanation for the failure could
be that the simulation time required to fold a small protein takes as long as mil-
liseconds, 1012 times longer than the usual incremental time step of femtoseconds
(10−15 s). The technical difficulty of MC simulations mainly comes from that the
energy landscape of protein conformational space is typically quite rugged con-
taining many energy barriers, which may easily trap the Metropolis-based MC
simulation procedures (Metropolis et al. 1953).

In this section we discuss recent development in conformational search methods
to overcome these problems. We intend to illustrate the key ideas of conformational
search methods used in various ab initio and related protein-modeling procedures.
Unlike various energy functions used in ab initio modeling, the search methods
should be, in principle, transferable between protein modeling methods, as well as
other problems in science and technology. Currently, there exists no single
omni-powerful search method that outperforms the others for all cases, and the
investigation and systematic benchmarking on the performance of various search
methods has yet to be carried out.

1.3.1 Monte Carlo Simulations

Simulated annealing (SA) (Kirkpatrick et al. 1983) is probably the most popular
conformational search method. SA is general in that it is easy and straightforward to
apply to any kind of optimization problem. In SA, one typically applies the
Metropolis MC algorithm to generate a series of conformational states following the
canonical Boltzmann energy distribution for a given temperature. SA initially
executes high temperature MC simulation, followed by a series of simulations
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subject to a temperature-lowering schedule, hence the name simulated annealing.
As much as SA is simple, its conformational search efficiency is not so impressive
compared to other more sophisticated methods discussed below.

When the energy landscape of the system under investigation is rugged (due to
numerous energy barriers), MC simulations are prone to get stuck in meta-stable
states that will distort the distribution of sampled states by breaking the ergodicity
of sampling. To avoid this malfunction, many simulation techniques have been
developed, and one of the successful approaches is based on the generalized
ensemble approach in contrast to the usual canonical ensemble. This kind of
method was initially called by different names including multi-canonical ensemble
(Berg and Neuhaus 1992) and entropic ensemble (Lee 1993). The underlying idea is
to expedite the transition between states separated by energy barriers by modifying
the transition probability so that the final energy distribution of sampling becomes
more or less flat rather than bell-shaped. A popular method similar in this spirit is
the replica exchange MC method (REM) (Swendsen and Wang 1986) where a set
of many canonical MC simulations with temperatures distributed in a selected range
are simultaneously carried out. From time to time one attempts to exchange
structures (or equivalently temperatures) from neighboring simulations to sample
states in a wide range of energy spectrum as the means to overcome energy barriers.
Parallel hyperbolic sampling (PHS) (Zhang et al. 2002) further extends the REM by
dynamically deforming energy using an inverse hyperbolic sine function to lower
the energy barrier.

Monte Carlo with minimization (MCM), proposed by Li and Scheraga (1987),
was successfully applied for the conformational search by several structure pre-
diction programs (Simons et al. 1997). In MCM, one performs MC moves between
local energy minima after local energy minimization of each perturbed protein
structure. For a given local energy minimum structure A, a trial structure B is
generated by random perturbation of A and is subsequently subject to local energy
minimization. The usual Metropolis algorithm is used to determine the acceptance
of B over A by calculating the energy difference between the two.

1.3.2 Molecular Dynamics

MD simulation (discussed in detail in Chap. 12) propagates physically realistic
trajectories by applying Newton’s equations of motion iteratively to allow atom
movement, and is thus the most faithful method depicting atomistically what is
occurring in proteins. The method is therefore often used for the study of protein
folding pathways (Duan and Kollman 1998; Freddolino et al. 2010). The massive
computational cost of long simulations is a major challenge with this method, since
the incremental time scale is usually in the order of femtoseconds (10−15 s) while
the fastest folding time of small proteins are on timescales of several microseconds
(for folding model systems) or in the millisecond range (more typically). From the
standpoint of search efficiency, molecular dynamics simulations are guaranteed to

1 Ab Initio Protein Structure Prediction 19

http://dx.doi.org/10.1007/978-94-024-1069-3_12


propagate some motion after each energy/force evaluation, but the steps that are
taken are very small; in contrast, as described in the preceding section, Monte Carlo
simulations may make larger steps, but not all steps will be accepted after energy
evaluation. The relative sampling efficiency of the methods is thus dependent on the
acceptance rate of Monte Carlo moves; with modern move sets (see, e.g., Fig. 1.5)
Monte Carlo sampling of protein conformational space tends to be much more
efficient. Thus, the application of molecular dynamics simulations using atomistic
models is reserved for cases where the topic of interest is the folding process, rather
than the folded structure per se. One unusual strength of MD sampling compared
with Monte Carlo is that MD can accommodate the presence of explicit water much
more readily, which might prove useful in the rare cases where implicit solvent
models are directly responsible for failed structure predictions (Zhou 2003).

In addition, molecular dynamics simulations have been successfully applied in
protein structure prediction using a variety of coarse-grained models, in which the
computational complexity is substantially reduced and the folding accelerated due
to the simulation of a smaller system with a less rugged energetic landscape, but of
course with reduced resolution (Tozzini 2005; Hills and Brooks 2009). In addition,
when a low-resolution model is available, MD simulations are often carried out for
structure refinement since the conformational changes are assumed to be small
(Zhang et al. 2011; Mirjalili and Feig 2013). Sampling in molecular dynamics
simulations of protein folding may be enhanced using similar methods to those in
Monte Carlo simulations, e.g. through the use of replica exchange simulations
(Sugita and Okamoto 1999), but at the price of complicating the interpretation of
folding kinetics and pathways. One particularly promising enhanced sampling
method for future protein folding simulations and structure prediction is accelerated
molecular dynamics (aMD) (Hamelberg et al. 2004), which applies a bias to lower
the relative height of barriers on the potential energy surface. In a recent applica-
tion, aMD allowed the prediction of the folded structures and folding free energy
landscapes of a set of four commonly used model proteins with 10–100 fold less
computational effort than unbiased simulations (Miao et al. 2015), providing pro-
mise for future applications to study folding pathways and equilibriums.

1.3.3 Genetic Algorithm

A genetic algorithm (GA) is a heuristic approach to the optimization problems
based on a natural selection process mimicking the biological evolution. GA is
designed to repeatedly modify a population of individual solutions. At each step,
the algorithm randomly selects individuals from the current population, which are
used as parents to produce the children for the next generation. Over successive
generations, the population “evolves” toward the optimal solutions (Mitchell 1996).

Conformational space annealing (CSA) (Lee et al. 1998) is one of the most
successful genetic algorithms developed for protein conformational search. By
utilizing a local energy minimizer as in MCM and the concept of annealing in
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conformational space, it searches the whole conformational space of local minima
in its early stages and then narrows the search to smaller regions with low energy as
the distance cutoff is reduced. Here the distance cutoff is defined as the similarity
between two conformations, and it controls the diversity of the conformational
population. The distance cutoff plays the role of temperature in the usual SA, and
initially its value is set to a large number in order to force conformational diversity.
The value is gradually reduced as the search progresses. CSA has been successfully
applied to various global optimization problems including protein structure pre-
diction separately combined with ab initio modeling in UNRES (Oldziej et al.
2005) and ASTRO-FOLD (Klepeis and Floudas 2003; Klepeis et al. 2005), and
with fragment assembly in Profesy (Lee et al. 2004).

1.3.4 Mathematical Optimization

The conformational searching approach by Floudas and coworkers, a branch and
bound (aBB) (Klepeis and Floudas 2003; Klepeis et al. 2005), is unique in the
sense that the method is mathematically rigorous, while all the others discussed here
are stochastic and heuristic methods. The search space is successively cut into two
halves while the lower and upper bounds of the global minimum (LB and UB) for
each branched phase space are estimated. The estimate for the UB is simply the best
currently obtained local minimum energy, and the estimate for the LB comes from
the modified energy function augmented by a quadratic term of the dissecting
variables with the coefficient a (hence the name aBB). With a sufficiently large
value of a, the modified energy contains only one energy minimum, whose value
serves as the lower bound. While performing successive dissection of the phase
space accompanied by estimates of LB and UB for each dissected phase space,
phase spaces with LB higher than the global UB can be eliminated from the search.
The procedure continues until one identifies the global minimum by locating a
dissected phase space where LB becomes identical to the global UB. Once the
solution is found, the result is mathematically rigorous, but large proteins with
many degrees of freedom are yet to be addressed by this method.

1.4 Model Selection

Ab initio modeling methods typically generate many non-native structure confor-
mations (also called decoys) during the simulation. How to select appropriate
models structurally close to the native state is an important issue. The development
of algorithms for selection of protein models has been emerged as a new field called
Model Quality Assessment Programs (MQAP) (Fischer 2006). In general, modeling
selection approaches can be classified into two types, the energy based and the free
energy based. In the energy-based methods, one designs a variety of specific
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potentials and identifies the lowest-energy state as the final prediction. In the
free-energy based approaches, the free energy of a given conformation R can be
written as

FðRÞ ¼ �kBT ln ZðRÞ ¼ �kBT ln
Z

X2R
e
�EðRÞ
kBT dX ð1Þ

where Z(R) is the restricted partition function which is proportional to the number of
occurrences of the structures in the neighborhood of R during the simulation. This
can be estimated by a clustering procedure at a given RMSD cutoff (Zhang and
Skolnick 2004a, b).

For the energy-based model selection methods, we will discuss three
energy/scoring functions: (1) physics-based energy function; (2) knowledge-based
energy function; (3) scoring function describing the compatibility between the
target sequence and model structures. In MQAP, there is another popular method
which takes the consensus conformation from the predictions generated by different
algorithms (Wallner and Elofsson 2007), also known as the meta-server approach
(Ginalski et al. 2003; Wu et al. 2007). The essence of this method is similar to the
clustering approach since both assume the most frequently occurring states to be the
near-native structures. This approach has been mainly used for selecting models
generated by threading-servers (Ginalski et al. 2003; Wu et al. 2007); but it has
recently become popular for full-length model selection in the CASP experiments
(Larsson et al. 2009; Kryshtafovych et al. 2015).

1.4.1 Physics-Based Energy Function

For the development of all-atom physics-based energy functions, Lazaridis and
Karplus (1999a, b) exploited CHARMM19 (Neria et al. 1996) and EEF1 (Lazaridis
and Karplus (1999a, b)) solvation potential to discriminate the native structure from
decoys that are generated by threading on other protein structures. They found the
energy of the native state is lower than those of decoys in most cases. Later, Petrey
and Honig (Petrey and Honig 2000) used CHARMM and a continuum treatment of
the solvent, Brooks and coworkers (Dominy and Brooks 2002; Feig and Brooks
2002) used CHARMM plus GB solvation, Felts et al. (2002) used OPLS plus GB,
Lee and Duan (Lee et al. 2004) used AMBER plus GB, and Hsieh and Luo (2004)
used AMBER plus Poisson-Boltzmann solvation potential on a number of structure
decoy sets (including the Park-Levitt decoy set (Park and Levitt 1996), Baker decoy
set (Tsai et al. 2003), Skolnick decoy set (Kihara et al. 2001; Skolnick et al. 2003),
I-TASSER decoy set (Wu et al. 2007; Zhang and Zhang 2010), and CASP decoys
set (Moult et al. 2001)). All these authors obtained similar results: the native
structures have lower energy than decoys in their potentials. The claimed success of
model discrimination of the physics-based potentials seems contradicted by other
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less successful physics-based structure prediction results. Wroblewska and
Skolnick (Wroblewska and Skolnick 2007) showed that the AMBER plus GB
potential can only discriminate the native structure from roughly minimized
TASSER decoys (Zhang and Skolnick 2004a, b). After a 2-ns MD simulation on
the decoys, none of the native structures were lower in energy than the lowest
energy decoy, and the energy-RMSD correlation was close to zero. This result
partially explains the discrepancy between the widely reported decoy discrimination
ability of physics-based potentials and the less successful folding/refinement results.

Another related issue is that many of the decoy selection approaches are focused
on the discrimination of the native structures from the decoy pools. However, such
ability is of no practical usefulness in real cases of structure prediction because no
structure prediction simulation could generate decoys exactly matching the native
structure. Furthermore, the native structure has usually a nearly perfect local sec-
ondary structure packing, in addition to the fitness of global topology arrangement,
whereas the computer generated decoys often have various flaws in the local
structure packing and steric clashes. This makes it much more challenging to
recognize the near-native structure decoys that are structurally closest to the native,
compared to the task of discriminating the native structure from a set of
computer-generated, flawed structure decoys (Deng et al. 2016).

1.4.2 Knowledge-Based Energy Function

Sippl proposed a pair-wise residue-distance based potential (Sippl 1990) using the
statistics of known PDB structures in 1990 (its newest version is PROSA II (Sippl
1993; Wiederstein and Sippl 2007)). Since then, a variety of knowledge-based
potentials have been developed, which include atomic interaction potential, sol-
vation potential, hydrogen bond potential, torsion angle potential, etc. In the
coarse-grained potentials, each residue is represented either by a single atom or by a
few atoms, e.g., Ca-based potentials (Melo et al. 2002), Cb-based potentials
(Hendlich et al. 1990), side-chain-center-based potentials (Bryant and Lawrence
1993; Kocher et al. 1994; Thomas and Dill 1996; Skolnick et al. 1997; Zhang and
Kim 2000; Zhang and Skolnick 2004a, b), side-chain and Ca-based potentials
(Berrera et al. 2003).

One of the most widely-used knowledge-based potentials is a residue-specific,
all-atom, distance-dependent potential, which was first formulated by Samudrala
and Moult (RAPDF) (Samudrala and Moult 1998); it counts the distances between
167 amino acid specific pseudo-atoms. Following this, several atomic potentials
with various reference states have been proposed, including those by Lu and
Skolnick (KBP) (Lu and Skolnick 2001), Zhou and Zhou (DFIRE) (Zhou et al.
2002), Wang et al. (self-RAPDF) (Wang et al. 2004), Tostto (victor/FRST) (Tosatto
2005), Shen and Sali (DOPE) (Shen and Sali 2006), Zhang and Zhang
(RW) (Zhang and Zhang 2010), and Zhou and Skolinck (GOAP) (Zhou and
Skolnick 2011). All these potentials claimed that native structures could be
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distinguished from decoy structures in their tests. Deng et al. (2012) recently
conducted a comparative investigation on all these potentials. To eliminate biases
from the datasets and computing environments, they re-derived the potentials from
a unified PDB structure dataset but based on the same original reference states. It
was found that the performance varies with the tested decoy datasets and no
potential could clearly outperform the others for all decoy sets.

The task of selecting the near-native models out of many decoys remains a
challenge for these potentials (Skolnick 2006). Based on the CAFASP4-MQAP
experiment in 2004 (Fischer 2006), the best-performing energy functions were
Victor/FRST (Tosatto 2005) which incorporates an all-atom pair-wise interaction
potential, solvation potential and hydrogen bond potential, and MODCHECK
(Pettitt et al. 2005) which includes Cb atom interaction potential and solvation
potential. From CASP7-MQAP in 2006, the consensus-based method, Pcons
developed by Elofsson group, showed the best performance (Wallner and Elofsson
2007). In the most recent CASP experiments, the consensus-based model selection
scheme has kept ranking higher than any of the physics or knowledge-based scoring
functions (Kryshtafovych et al. 2011; Kryshtafovych et al. 2014; Kryshtafovych
et al. 2015). Several of the advanced structure modeling approaches in the CASP
experiment have exploited a combined consensus and statistics scoring system to
select models in the recent CASP (Cao et al. 2015; Yang et al. Yang et al. 2015a, b;
Zhang et al. 2015).

1.4.3 Sequence-Structure Compatibility Function

In the third type of MQAPs, selection of the best models is not purely based on
energy functions. Instead, they are selected based on the compatibility of target
sequences to model structures. The earliest and still successful example is that by
Luthy et al. (1992), who used threading scores to evaluate structures. Colovos and
Yeates (1993) later used a quadratic error function to describe the non-covalently
bonded interactions among atom pairs CC, CN, CO, NN, NO and OO, showing that
near-native structures have fewer errors than other decoys. Verify3D (Eisenberg
et al. 1997) improves the method of Luthy et al. (Luthy et al. 1992) by considering
local threading scores in a 21-residue window. Jones developed GenThreader
(Jones 1999) and used neural networks to classify native and non-native structures.
The inputs of GenThreader include pairwise contact energy, solvation energy,
alignment score, alignment length, and sequence and structure lengths. Similarly,
based on neural networks, Wallner and Ellofsson built ProQ (Wallner and Elofsson
2003) for quality prediction of decoy structures. The inputs of ProQ include con-
tacts, solvent accessible area, protein shape, secondary structure, structural align-
ment score between decoys and templates, and the fraction of protein regions to be
modeled from templates. Later, McGuffin developed a consensus MQAP
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(McGuffin 2007) called ModFold that includes ProQ (Wallner and Elofsson 2003),
MODCHECK (Pettitt et al. 2005) and ModSSEA. The author showed that ModFold
outperforms its component MQAP programs.

1.4.4 Clustering of Decoy Structures

For the purpose of identifying the lowest free-energy state, structure clustering
techniques were adopted by many ab initio modeling approaches. In the work by
Shortle et al. (1998), for all 12 cases tested, the cluster-center conformation of the
largest cluster was closer to native structures than the majority of decoys.
Cluster-center structures were ranked as the top 1–5% closest to their native
structures.

Zhang and Skolnick developed an iterative structure clustering method, called
SPICKER (Zhang and Skolnick 2004a, b). Based on 1489 representative bench-
mark proteins each with up to 280,000 structure decoys, the best of the top 5
models was ranked in the top 1.4% of all decoys. For 78% of the 1489 proteins, the
RMSD difference between the best of the top 5 models and the most native-like
decoy structure was less than 1 Å.

In ROSETTA ab initio modeling (Bradley et al. 2005a, b), structure decoys are
clustered to select low-resolution models and these models are further refined by
all-atom simulations to obtain final models. In the case of TASSER/I-TASSER
(Zhang and Skolnick 2004a, b; Yang et al. 2015a, b) and QUARK (Xu and Zhang
2012), thousands of decoy models from MC simulations are clustered by SPICKER
(Zhang and Skolnick 2004a, b) to generate cluster centroids as final models. In the
approach by Scheraga and coworkers (Oldziej et al. 2005), decoys are clustered and
the lowest-energy structures among the clustered structures are selected.

1.5 Remarks and Discussions

Successful ab initio modeling from amino acid sequence alone is considered the
“Holy Grail” of protein structure prediction (Zhang 2008), since this will mark an
eventual and complete solution to the problem. In addition to the generation of 3D
structures, ab initio modeling can also help us understand the underlying principles
of how proteins fold in nature; this could not be done by the template-based
modeling approaches which build 3D models by copying and refining the frame-
work of other solved structures.

An ideal approach to ab initio modeling would be to treat atoms in a protein as
interacting particles according to an accurate physics-based potential, and fold the
protein by solving Newton’s equations of motion in each step of movements.
A number of molecular dynamics simulations were carried out along this line of
approach by using the classic CHARMM and AMBER force fields. Although the
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MD based simulation is very important for the study of protein folding, the success
in the viewpoint of structure prediction is quite limited. One reason is the pro-
hibitive computing demand for a normal size protein. On the other hand,
knowledge-based (or hybrid knowledge- and physics-based) approaches making
use of Monte Carlo sampling schemes appear to be progressing rapidly, producing
many examples of successful low-to-medium accuracy models often with correct
topology for small and medium size proteins. Although very rare, successful higher
resolution models (<2–3 Å in Ca-RMSD) have been witnessed in blind experi-
ments (Bradley et al. 2005a, b; Xu et al. 2011; Zhang et al. 2015).

The current state-of-the-art ab initio protein structure prediction methods often
utilize as much information as possible from known structures, in several different
ways. First, the use of local structure fragments directly excised from the PDB
structures helps reduce the degrees of freedom and the entropy of the conforma-
tional search and yet keep the fidelity of the native protein structures. Second, the
knowledge-based potential derived from the statistics of a large number of solved
structures can appropriately grasp the subtle balance of the complicated correlations
between different sources of energy terms (Summa and Levitt 2007). With the
carefully parameterized knowledge-based potential terms aided by various advan-
ces in the conformational search methods, the accuracy of ab initio modeling for
proteins up to 100–150 residues has been significantly improved in the last decade.
With the help of co-evolution based contact map predictions, an exciting examples
has been recently reported on a free-modeling target (T0806) up to 258 residues in
the most recent CASP experiment (Ovchinnikov et al. 2015). However, such per-
formance is only possible when sufficient number of homologous sequences can be
obtained to ensure the accuracy of contact predictions: this situation is rare for
ab initio modeling target proteins that have no homologues in the PDB.

For further improvement, parallel developments of accurate potential energy
functions and efficient optimization methods are both necessary. That is, separate
examination/development of potential energy functions is important; meanwhile,
systematic benchmarking of various conformational search methods should be
performed, so that the advantages as well as the limitations of available search
methods can be explored separately. Currently, the ab initio modeling methods
solely based on the physicochemical principles of interaction are still far behind, in
terms of their modeling speed and accuracy, compared with the methods utilizing
bioinformatics and knowledge-based information. However, the physics-based
atomic potentials have recently demonstrated their potential in refining the detailed
packing of side-chain atoms and peptide backbones (Zhang et al. 2011; Mirjalili
and Feig 2013). Development of composite methods using both knowledge-based
and physics-based energy terms should represent a promising approach to the
problem of ab initio modeling.

It is important to acknowledge that with the progress in structure genomics and
structural biology, the number of experimental structures in the PDB has been
rapidly increasing, significantly extending the scope of the template-based pro-
tein structure predictions. Nevertheless, the traditional comparative modeling
approaches can only yield model predictions with the accuracy of the templates,
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whereas the efficiency of template structure refinements is highly correlated with
our ability in ab initio protein folding, because structure refinements often involve
reconstruction of part of the side-chain and local backbone structures, and sometime
the global topology for the low-resolution templates. Meanwhile, for most tem-
plates available in the PDB, a considerable portion of the sequence is either dis-
ordered or unaligned in the query-template alignments; the structures of these
portions must be constructed using ab initio modeling. Finally, a very important
bottleneck drawback in template-based modeling is that the alignment accuracy
dramatically decreases with the sequence identity between query and template
becomes low (e.g. <30%). Most recently, it has been demonstrated that the struc-
tural models built by free modeling can be used to help identify analogous tem-
plates that are of low sequence similarity but high structural similarity to the native,
by matching the low-resolution ab initio models to experimentally solved structures
in the PDB and thereby improve the success rate of distant-homologous structure
predictions (Zhang 2014). Thus, the development of efficient ab initio folding
algorithms will remain a major theme in the field and should have important
impacts on all aspects of protein structure prediction.
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Chapter 2
Protein Structures, Interactions
and Function from Evolutionary
Couplings

Thomas A. Hopf and Debora S. Marks

Abstract The sequences of biomolecules such as proteins and RNA genes contain
information about their three-dimensional states and functions. For over 40 years
biologists have used the evolutionary conservation of this information to detect
homology and predict important subsets of residues. Recent work has substantially
extended this view of conservation by including the detection of evolutionary
couplings, interactions, between residues, resulting in a paradigm shift in our ability
to compute three-dimensional structures from sequences alone. In addition to
three-dimensional structure of single proteins and RNA, this statistical analysis
of evolutionary constraints can identify functional residues involved in ligand
binding, biomolecule-interactions, alternative ensembles of conformations, “invis-
ible” tertiary states of disordered proteins and allows quantitative prediction of
effects of mutations. In this chapter we present an overview of the statistical
inference methodologies, a survey of the resulting applications and challenges
facing the field.
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2.1 Introduction

Three-dimensional structure information is missing for a large fraction of known
proteins and protein interactions, as experimental structure determination remains
low-throughput whilst sequence databases grow exponentially. For instance, only
about 50% of Pfam families have a solved structure for any of the family members
(Finn et al. 2016) while structural coverage outside of conserved domains is even
lower (Perdigao et al. 2015). Similarly, 60–80% of the approx. 10,000 and 40,000
heteromultimeric interactions in E. coli and human, respectively, have not yet been
characterized structurally (Rajagopala et al. 2014; Mosca et al. 2014). The sustained
effort to discover computational methods that have the potential to bypass the need
for one-by-one experimental approaches is therefore motivated by this large
experimental bottleneck. Comparative modelling transfers the coordinates from a
solved protein to a target with similar sequence, based on the observation that the
3D folds of proteins remain conserved even as their amino acid sequences diverge
(Webb and Sali 2014) (see also Chap. 4). In cases where no sequence-similar
structural template can be identified, de novo fragment assembly methods (Qian
et al. 2007) or even ab initio approaches using molecular force fields
(Lindorff-Larsen et al. 2011) are an alternative for small proteins (<150 residues)
(see also Chap 1). The applicability of these methods is however limited by the
enormous size of conformational space that has to be searched as well as the
accuracy of the available empirical force fields.

A conceptually different way of approaching the protein structure prediction
problem is to mine the information contained in sequences. The evolutionary con-
straint to maintain residue interactions required for stable and functional proteins
causes the coevolution of contacting amino acids. The idea therefore seems simple—
find covarying positions in aligned protein sequences to identify residue pairs that
correspond to physical contacts in the 3D structure, by analogy to the successful use
of this approach in determining RNA secondary structure (Gutell et al. 1992). If
correct, and if sufficient, these covarying residues could be transformed into distance
constraints to construct 3D models, in a similar way to distances used in NMR
structure determination.

However local covariation models applied to protein sequences did not con-
sistently detect residues close in 3D (Shindyalov et al. 1994; Neher 1994; Gobel
et al. 1994) despite some successful applications that showed enrichment of
interacting residues (Skerker et al. (2008), Pazos et al. (1997)) or identification of
contacts across proteins using additional biological information (Skerker et al.
2008). The apparent inability of these early covariance models to systematically
identify contacting residues was attributed to a number of different reasons,
including a loss of signal due to phylogenetic dependencies, the limited availability
of sequence data and even the idea that we should not expect that truly coevolved
residues are (mostly) close (Lapedes et al. 2012, 1997). Rather surprisingly, it
turned out that changing the underlying model used to compute the couplings was
the key innovation needed. This is because raw covariation frequencies or mutual
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information between pairs of positions are dominated by ‘indirect’ transitive cor-
relations, i.e. non-causal correlations between residues positions can be induced by
a chaining of causal correlations between intervening residues positions. In a
heterogeneous network, such as residues in a protein, these non-causal correlations
can appear stronger than causal direct correlations, a well-understood feature of the
Ising model in statistical physics where true correlations produce apparent
long-range correlation at a distance (Giraud et al. 1999). The solution to this is to
use a class of global probability models known as Potts model (a maximum entropy
model) in statistical physics (Giraud et al. 1999; Lapedes et al. 1997; Ben-Naim and
Lapedes 1999; Lapedes et al. 2012) and Markov Random Fields (an undirected
graphical model) in computer science (Koller and Friedman 2009). Using these
models the dependencies of types of amino acids in pairs of positions are computed
simultaneously and consistently, rather than analysing pairs of positions indepen-
dently of each other.

Application of these global statistical models was the key innovation in the
identification of evolutionary couplings between pairs of positions in multiple
sequence alignments that corresponded to contacting residues (Hopf et al. 2012;
Marks et al. 2011, 2012; Morcos et al. 2011; Jones et al. 2012; Balakrishnan et al.
2011; Ekeberg et al. 2013; Lapedes et al. 2012; Michel et al. 2014). A retrospective
analysis showed that even sequence data from 1999 PFAM family alignments was
sufficient to infer large number of accurate residue contacts with the maximum
entropy model for a few protein families (Marks et al. 2011). A pioneering
Bayesian approach (Burger and van Nimwegen 2010, 2008) had some success but
predictions were not as accurate with respect to residue proximity (Marks et al.
2011) and the use of belief propagation for parameter inference (Weigt et al. 2009)
was computationally intractable for all but the smallest proteins. Although the
methods required a sufficient number of sequences that diverged under functional
selection, global statistical probability approaches such as those in Tables 2.1 and
2.2 provided a chance to obtain detailed structural and functional information for
unsolved proteins of biological interest that was unprecedented.

Predicted contacts derived from evolutionary couplings have allowed the de
novo prediction of protein 3D structures even for large molecules beyond the scope
of previous approaches (Hopf et al. 2012; Marks et al. 2011, 2012; Hopf et al.
2015b; Ovchinnikov et al. 2014, 2015; Michel et al. 2014; Kosciolek and Jones
2014; Sulkowska et al. 2012) their complexes (Ovchinnikov et al. 2014; Hopf et al.
2014), multimeric contacts (Hopf et al. 2012; dos Santos et al. 2015), alternative
conformations (Hopf et al. 2012; Toth-Petroczy et al. 2016; Morcos et al. 2013),
and even the ability to predict structured states of apparently-disordered proteins
(Toth-Petroczy et al. 2016). Many of these reports show, at least anecdotally, that
evolutionary couplings models are able to identify functionally constrained residues
over and above single column conservation and, most recently, the model has been
used to make quantitative prediction of mutational changes in proteins (Hopf et al.
2017; Mann et al. 2014; Figliuzzi et al. 2016). In this chapter, we briefly describe
the theoretical approach that underlies the methods, survey the most impactful

2 Protein Structures, Interactions and Function from Evolutionary … 39



T
ab

le
2.
1

W
eb
se
rv
er
s
fo
r
ev
ol
ut
io
na
ry

co
up

lin
gs

(E
C
s)

m
et
ho

ds

M
et
ho

d
na
m
e

U
R
L

O
ut
pu

ts
In
fe
re
nc
e
m
et
ho

d
G
en
er
at
es

al
ig
nm

en
t

R
ef
s.

E
V
fo
ld

ev
fo
ld
.o
rg

A
lig

nm
en
ts
,
E
C
pa
ir
s,
3D

st
ru
ct
ur
es
,

fu
nc
tio

na
l
re
si
du

es
PL

M
Y
es

M
ar
ks

et
al
.
(2
01

1)
,

T
ot
h-
Pe
tr
oc
zy

et
al
.
(2
01

6)

E
V
co
m
pl
ex

ev
co
m
pl
ex
.o
rg

Pr
ot
ei
n
co
m
pl
ex

al
ig
nm

en
ts
,
C
om

pl
ex

E
C

pa
ir
s

PL
M

Y
es

H
op

f
et

al
.
(2
01

4)

G
R
E
M
L
IN

gr
em

lin
.b
ak
er
la
b.

or
g

A
lig

nm
en
ts
,
E
C
pa
ir
s
(i
nc
l.
co
m
pl
ex
es
),

pr
ec
om

pu
te
d
E
C
s
an
d
3D

st
ru
ct
ur
es

PL
M

Y
es

K
am

is
et
ty

et
al
.
(2
01

3)
,

O
vc
hi
nn

ik
ov

et
al
.
(2
01

4)

D
C
A

dc
a.
ri
ce
.e
du

E
C
pa
ir
s

M
ea
n-
fi
el
d

N
o

M
or
co
s
et

al
.
(2
01

1)

M
et
aP
SI
C
O
V

bi
oi
nf
.c
s.
uc
l.a
c.

uk
/M

et
aP
SI
C
O
V

E
C
pa
ir
s

Sp
ar
se

in
v.

co
v.
,P

L
M
,

m
ac
hi
ne

le
ar
ni
ng

Y
es

Jo
ne
s
et

al
.
(2
01

2)
,
(2
01

5)

Pc
on

sC
c2
.p
co
ns
.n
et

E
C
pa
ir
s

Sp
ar
se

in
v.

co
v.
,P

L
M
,

m
ac
hi
ne

le
ar
ni
ng

Y
es

M
ic
he
l
et

al
.
(2
01

4)

40 T.A. Hopf and D.S. Marks



T
ab

le
2.
2

St
an
da
lo
ne

ev
ol
ut
io
na
ry

co
up

lin
gs

in
fe
re
nc
e
so
ft
w
ar
e

M
et
ho

d
na
m
e

In
fe
re
nc
e
al
go

ri
th
m

U
R
L

Sp
ec
ia
l
fe
at
ur
es

R
es
tr
ic
tio

ns
R
ef
.

pl
m
c

PL
M

gi
th
ub

.c
om

/
de
bb

ie
m
ar
ks
la
b/
pl
m
c

A
rb
itr
ar
y
se
qu

en
ce
s
(i
nc
l.

R
N
A
),
pr
ob

ab
ili
st
ic

tr
ea
tm

en
t

of
ga
ps

–
(W

ei
nr
eb

et
al
.2

01
6;

T
ot
h-
Pe
tr
oc
zy

et
al
.
20

16
)

C
C
M
pr
ed

PL
M

gi
th
ub

.c
om

/s
oe
di
ng

la
b/

C
C
M
pr
ed

C
an

be
us
ed

on
G
PU

s
–

(S
ee
m
ay
er

et
al
.
20

14
)

pl
m
D
C
A

PL
M

pl
m
dc
a.
cs
c.
kt
h.
se

–
M
at
la
b

re
qu

ir
ed

(E
ke
be
rg

et
al
.
20

13
)

G
R
E
M
L
IN

PL
M

gr
em

lin
.b
ak
er
la
b.
or
g

–
M
at
la
b

re
qu

ir
ed

(B
al
ak
ri
sh
na
n
et
al
.2

01
1;

K
am

is
et
ty

et
al
.2
01

3;
O
vc
hi
nn

ik
ov

et
al
.2
01

4)

D
C
A

M
ea
n-
fi
el
d

dc
a.
ri
ce
.e
du

–
M
at
la
b

re
qu

ir
ed

(M
or
co
s
et

al
.
20

11
)

PS
IC
O
V

Sp
ar
se

in
ve
rs
e

co
va
ri
an
ce

bi
oi
nf
ad
m
in
.c
s.
uc
l.a
c.

uk
/d
ow

nl
oa
ds
/P
SI
C
O
V

–
–

(J
on

es
et

al
.
20

12
)

Fr
ee
C
on

ta
ct

M
ea
n-
fi
el
d,

sp
ar
se

in
ve
rs
e
co
va
ri
an
ce

ro
st
la
b.
or
g/
ow

ik
i/i
nd

ex
.

ph
p/
Fr
ee
C
on

ta
ct

Im
pl
em

en
ta
tio

n
of

bo
th

D
C
A

an
d
PS

IC
O
V

al
go

ri
th
m
s

–
(K

aj
an

et
al
.
20

14
)

M
et
aP
SI
C
O
V

Sp
ar
se

in
ve
rs
e

co
va
ri
an
ce
,
PL

M
,

m
ac
hi
ne

le
ar
ni
ng

bi
oi
nf
ad
m
in
.c
s.
uc
l.a
c.

uk
/d
ow

nl
oa
ds
/

M
et
aP
SI
C
O
V

M
et
a-
pr
ed
ic
to
r

–
(J
on

es
et

al
.
20

12
;
20

15
)

Pc
on

sC
Sp

ar
se

in
ve
rs
e

co
va
ri
an
ce
,
PL

M
,

m
ac
hi
ne

le
ar
ni
ng

c2
.p
co
ns
.n
et

M
et
a-
pr
ed
ic
to
r

–
(M

ic
he
l
et

al
.
20

14
)

2 Protein Structures, Interactions and Function from Evolutionary … 41



applications and finally suggest challenges for the future, some of which might be
solved by the time you read this!

2.2 Evolutionary Couplings from Sequence Alignments

The basis of coevolution-based structure and function prediction methods is the
quantification of evolutionary couplings between all amino acid types in all pairs of
sites derived from a multiple sequence alignment of the protein family (Fig. 2.1).
These evolutionary couplings open up a wide variety of applications (Fig. 2.2).

2.2.1 The Global Model

To avoid indirect correlations of residues pairs (as described above), global
methods infer a probabilistic description of the sequence alignment that explains the
observed correlations using underlying causative couplings between positions.
These couplings are inferred by maximising the likelihood of observing the
sequences in the alignment under the maximum entropy/Markov random field
probability model.

Pairwise couplings are computed between amino acids to limit the number of
model parameters to O(N2), but models of higher order (e.g. triples) are in principle
possible given large enough protein families.

Under the pairwise graphical model the probability of any amino acid sequence
r = (r1, …, rn) of length N is defined as

Fig. 2.1 Residue interactions leave a coevolutionary record in protein sequences. The
evolutionary constraint to maintain residue interactions, e.g. required for stable protein structures
or complex formation with other molecules, creates a record of amino acid covariation in protein
family sequence alignments. Mining this sequence record for residue pairs with strong
evolutionary couplings using global statistical models opens a window to protein structure and
function prediction (adapted from Hopf 2016, 2015b)
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PðrÞ ¼ 1
Z
exp

XN
i¼1

hiðriÞþ
XN�1

i¼1

XN
j¼iþ 1

Jijðri; rjÞ
 !

The model has two types of parameters that describe the constraint on acceptable
amino acid configurations ri and rj at sites i and j: bias terms hi (single-site
conservation) and pair couplings Jij (co-conservation between pairs of sites i, j).
Each variable ri can assume one of the 20 amino acids as a value (most existing
approaches treat gaps in the alignment as an additional 21st character, unless
modelled as missing data). The partition function Z is defined as

Z ¼
X
r

exp
XN
i¼1

hiðriÞþ
XN�1

i¼1

XN
j¼iþ 1

Jijðri; rjÞ
 !

It sums over all possible 21N sequences r = (r1, …, rN) of length N and ensures
that P(r) is a valid probability distribution. Due to the exponential number of
summations, calculating Z is intractable for our application domain and we use a
method that approximates Z using a factorization (see below).

To identify evolutionary constraints from an alignment, the inverse problem of
inferring the model parameters from sequences has to be solved. Once the
parameters are inferred, the pair couplings Jij can be used to quantify the strength of
evolutionary coupling between pairs of sites i and j.

Fig. 2.2 Applications of evolutionary couplings to predict protein structure and function.
Evolutionary couplings allow to predict diverse aspects of protein structure and function that are
defined by evolutionarily constrained interactions between residues, including the structures of
monomers and complexes and changes in conformation. The approach can also be readily applied
to other types of biomolecules, such as RNA, and used to quantify the phenotypic consequences of
mutations with explicit modeling of epistatic interactions to the rest of the sequence (adapted from
Marks et al. 2012)
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Parameter inference. All the widely used current methods use an approximation
to maximum likelihood estimation, which finds the set of parameters that maxi-
mizes the probability of observing the data. For the pairwise probability model
defined above and a sequence alignment R with sequences r, the likelihood
function Lðh; JÞ of the model parameters h and J is given by

Lðh; JÞ ¼PðRjh; JÞ ¼
Y
r2R

Pðrjh; JÞ

¼
Y
r2R

1
Zðh; JÞ exp

XN
i¼1

hiðriÞþ
XN�1

i¼1

XN
j¼iþ 1

Jijðri; rjÞ
 !

However, since straightforward calculation of the likelihood function is pro-
hibited by the intractability of Z(h,J), several approaches have been taken to
approximate parameter inference. These include gradient ascent with Monte Carlo
sampling (Lapedes et al. 2012), message passing (Weigt et al. 2009) and mean-field
(Marks et al. 2011; Morcos et al. 2011; Michel et al. 2014; Jones et al. 2012; Stein
et al. 2015), but most current applications use pseudo-likelihood approximations to
the full likelihood (Besag 1975; Balakrishnan et al. 2011; Ekeberg et al. 2013;
Kamisetty et al. 2013; Michel et al. 2014; Hopf et al. 2015a, b; 2014; Toth-Petroczy
et al. 2016; Weinreb et al. 2016; Ovchinnikov et al. 2014, 2015).

When adopting the pseudo-likelihood maximization (PLM) approach, the full
likelihood for each sequence r = (r1, …, rn) is approximated by a product of
conditional likelihoods for each site i, i.e.

Pðr1; . . .; rN jh; JÞ �
YN
i¼1

Pðrijrnri; h; JÞ

The conditioning of the probability to observe a selected amino acid ri in site
i on the rest of the sequence (r \ ri) leads to the cancellation of the global partition
function Z(h,J). Instead, the pseudo-likelihood normalizes locally over all possible
21 amino acid configurations at each site i. This factorization of the full likelihood
function reduces the computational complexity of the parameter inference from
O(21N) to O(|R|N2). The set of parameters minimizing the pseudo-likelihood is
identified using standard iterative optimization algorithms.

Regularization. In addition, all published methods use some form of regular-
ization to avoid overfitting to the data, as there are orders of magnitude more
parameters in the model than there are effectively-independent samples (Number of
parameters = N (N-1)/2 (q-1)2 + N(q-1) for protein length N and q = 21 amino acid
states). For example, the model has approximately 2*106 parameters for a protein of
length N = 100 whereas most protein families only contain 102 to 105 effective (i.e.
redundancy-reduced) sequences. This gap increases quadratically as the protein
length N increases. The EVcouplings method and others (Kamisetty et al. 2013)
typically employ parameter type-specific l2-regularization (equivalent to a Gaussian
prior) while the mean-field methods uses pseudocounts (Marks et al. 2011; Morcos

44 T.A. Hopf and D.S. Marks



et al. 2011) and sparse inverse covariance method uses l1 (Jones et al. 2012).
Finally, since the phylogenetic relationships between sequences mean that they are
not independent and identically distributed, most methods for computing evolu-
tionary couplings methods address the issue by sequence reweighting schemes
(Weigt et al. 2009; Marks et al. 2011; Morcos et al. 2011; Ekeberg et al. 2013) and
we expect this approach to be improved in the future to account more quantitatively
for phylogenetic tree structure.

Positional constraints from evolutionary couplings
After inference, the coupling parameter matrices Jij contain the family-specific

constraints on all 20 � 20 amino acid pair configurations ri and rj for each possible
combination of positions i and j. The last remaining step in the calculation of
positional constraints from the evolutionary couplings between pairs of sites is to
summarize the 202 numbers in each Jij matrix into a single number that quantifies
the total coupling for pair (i, j). The preferred method for this summary statistic is
the Frobenius norm.

Of each coupling matrix Jij (after first centring the means of rows and columns
around zero, J 0ij)

J0ijðk; lÞ ¼ Jijðk; lÞ � Jijð�; lÞ � Jijðk; �Þ þ Jijð�; �Þ

where � means average across these entries,

FNði; jÞ ¼ Jij
�� ��

2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

X
l

J0ijðk; lÞ2
r

which sums across all 212 amino acid combinations k, l.
Since the Jij parameters summarized in the FN matrix are confounded by factors

such as finite sampling and phylogenetic relationships between samples, the
empirically derived average product correction (APC) is applied to the FN matrix
to remove background coupling that arises due to noise (Dunn et al. 2008; Jones
et al. 2012; Ekeberg et al. 2013). The correction assumes that, on average, each site
should only have couplings to a limited subset of all sites. For each site pair (i, j),
the APC therefore approximates the noise (background coupling of both sites) with
the product of the row and column averages of the FN score matrix (∙) and subtracts
these from the raw pair scores FN(i, j):

ECði; jÞ ¼ FNði; jÞ � FNði; �ÞFNð�; jÞ
FNð�; �Þ

The final result after applying the correction is the symmetric N x N evolutionary
coupling score matrix (N = length of protein). Each entry EC(i, j) estimates the
strength of evolutionary coupling between a pair of sites (i, j): larger positive values
indicate strong evolutionary co-constraints; values around zero indicate that the
model could not detect any coupling. The most significant evolutionary couplings
can then be selected based on the shape of the score distribution by estimating the

2 Protein Structures, Interactions and Function from Evolutionary … 45



degree to which each pair score is an outlier (Hopf et al. 2014; Ovchinnikov et al.
2014; Toth-Petroczy et al. 2016).

2.3 Three-Dimensional Protein Structures
from Evolutionary Couplings

Starting from evolutionary couplings inferred from sequence alignments of protein
families, one could then test if the couplings provide sufficient information to
predict the 3D structure of proteins (Fig. 2.3a). The first publication on proteins
folded with evolutionary couplings was using the EVfold method in 2011, and
included a diverse set of proteins from 15 families (Marks et al. 2011). The
resulting computed 3D structures were typically within 3–5 Å Ca-RMSD from the
known experimental structures of these proteins. To our knowledge, this was the
first time longer proteins, including some with more than 200 residues, had been
folded without comparative modelling, fragments or known long-range contacts to
anywhere near this degree of accuracy. Initially, the approach for computing cou-
plings from the sequence alignment was based on a mean field approximation to
find the parameters of the maximum entropy model, which was later updated to the
more accurate PLM method described above. 3D structures were generated from
evolutionary couplings using standard NMR distance geometry and simulated
annealing software that use only little compute time, as the number of generated
candidate models was only approx. 200–400 per protein. Simple geometric rules
were then used to rank the prediction candidates and choose the most favoured
models.

Many other groups have since used this or similar approaches to predict accurate
long-range contacts from sequences, benchmarking against known contacts in
observed 3D structures; such accurate predictions are typically available for thou-
sands of families (Hopf et al. 2012; Michel et al. 2014; Kosciolek and Jones 2014;
Ovchinnikov et al. 2015; Toth-Petroczy et al. 2016). The available methods choose
different ways of thresholding the number of predicted couplings they display in
contact maps and number of couplings used for structure prediction, but overall
their strategies and outputs are very similar. Many of the observed differences are
just as likely due to different input alignments as they are to do with the algorithms
for inferring the couplings. The webservers of EVfold, PSICOV and GREMLIN
provide downloads of coupling files that can be used to define restraints for the
folding software of your choice. Of the available methods, to date only EVfold will
fold on demand for particular sequences of interest, though other methods offer
precomputed structures for a limited set of protein families (see Table 2.1 for an
overview of available webservers and Table 2.2 for standalone evolutionary cou-
plings software).

To assess the utility of evolutionary couplings for structure prediction, it is
important to distinguish between predicting residue contacts and folding the pro-
tein. It is possible to have quite accurate residue contact predictions when

46 T.A. Hopf and D.S. Marks



comparing evolutionary couplings to experimental structures, and still one may not
be able to successfully fold the protein. For instance, predicted contacts may be
clustered in one area of the protein, or only local along the chain and therefore
missing key long-range contacts that define the overall topology of the molecule,
such as contacts connecting the N- and C-termini. Only folding is therefore a
definitive test if the computed evolutionary couplings contain sufficient information
about the 3D structure of the protein.

While evolutionary couplings give valuable information about the 3D confor-
mation of proteins, they also provide information over and above structure, such as
functional residues that are particularly enriched for couplings with other residues
(Fig. 2.2). Examples for strong coupling in functional sites include the active site of

Fig. 2.3 Protein 3D structure predicted from evolutionary sequences. a The 3D structure of a
protein can be predicted from a multiple sequence alignment of the protein family by calculating
evolutionary couplings between pairs of sites using a global probability model of the sequences.
Assuming that residue pairs with strong couplings are close in 3D, the structure can then be
computed by restraining the distances of these pairs in an extended polypeptide (adapted from
Hopf 2016, 2015b; Marks et al. 2012) b Evolutionary couplings (black dots) for the human
adiponectin receptor 1 (ADR1) largely correspond to residue contacts in the experimental 3D
structure (light brown dots, precisions of 0.49 (5Å distance cutoff) and 0.77 (8Å cutoff), PDB
3wxv). c Models generated by EC-based 3D structure prediction (dark orange cartoon, best
model) show good agreement with the experimental structure of ADR1 (pale orange cartoon, 2.4
Å Ca-RMSD over 192 residues, PDB 3wxv)
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trypsin, or the ligand binding pocket of the GPCR rhodopsin, where Lys-296 binds
the retinal cofactor and has several strong couplings to other residues (Marks et al.
2011; Hopf et al. 2012). While it may be possible to identify some of these residues
by single-site conservation alone, others may appear less conserved, and couplings
offer the advantage of identifying the relevant interaction partners.

2.3.1 Transmembrane Proteins

Transmembrane proteins are of special biological interest as they mediate infor-
mation transfer and molecule exchange across the cellular membranes in all forms
of life, but are especially challenging to investigate experimentally when compared
to globular proteins (see also Chap. 5). Given the resulting lack of experimental
structures for the majority of membrane proteins, the most natural leverage of the
evolutionary couplings approach was to predict their 3D structures, especially for
large multipass proteins of high biomedical interest.

The first work to do so predicted evolutionary couplings and 3D structure for
over 40 large membrane proteins, 25 of which were from families that had members
with known structures and 18 of which were de novo predictions for families
without any structure (Hopf et al. 2012). The blindly predicted structures on the test
set of 25 proteins could be compared to known 3D coordinates and resulted in 3–
6Å Ca-RMSD over at least 80% of the membrane domain. In similar work, the
prediction of a test set of 28 proteins resulted in TM scores of at least 0.5 for most
proteins (Jones et al. 2012). More recently, we updated various components of the
EVfold prediction pipeline, including sequence alignment generation and inference
of evolutionary couplings using PLM. Together with the increased number of
sequences since the original publication in 2012, this leads to significant increases
in prediction accuracy compared to the original method (average TM score increase
of 0.08 on set of 25 proteins, highest TM score 0.82). We expect prediction
accuracy to continue improving in the future as more sequences become available
and better methods for folding are implemented.

For several examples from our set of de novo predictions, experimental struc-
tures have been published since. In general, our predictions show reasonable
agreement with the experiment and have identified the correct overall 3D topology
(TM score � 0.5) (Hopf 2016). Amongst these examples, the experimental struc-
tures confirmed that we correctly predicted the structural similarity of the unsolved
complex 1 subunit 1 (MT-ND1) to the other subunits of the complex despite no
detectable homology on the sequence level (Baradaran et al. 2013). We also cor-
rectly predicted the fold of the human adiponectin receptor 1 (Fig. 2.3) (TM score
0.69 from model in 2012, TM score = 0.79 in 2016), and successfully identified the
cluster of activate site residues on the cytoplasmic side of the membrane (Tanabe
et al. 2015). Both cases highlight the predictive power of evolutionary couplings to
study the structure and function of proteins with limited experimental data.
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2.3.2 Protein Interactions and Complexes

The coevolution of interacting residues is not only necessary to maintain the 3D
structures of individual proteins, but also to maintain protein interactions and
complexes. Based on this premise, others and we developed a general method for
computing evolutionary couplings between proteins. The largest scale results
identified interacting residues for over 50 protein interactions and the resulting 3D
structure for a subset (Hopf et al. 2014; Ovchinnikov et al. 2014) (Fig. 2.4a,
Tables 2.1 and 2.2) and many others have now computed a more limited number of
interactions that often concentrate on disentangling paralog pairs of histidine kinase
and response regulators (Cheng et al. 2016; Boyd et al. 2016; Feinauer et al. 2016;
Bitbol et al. 2016; Gueudre et al. 2016).

For those methods with general applicability, the approaches are very similar.
First, one must pair the sequences of putatively interacting proteins within each
species to create a concatenated sequence alignment of the complex. Second, one
computes both the couplings within (intra-protein evolutionary couplings) and
between (inter-protein evolutionary couplings) the subunits simultaneously. This
way, both the individual proteins can be predicted as well as the complex, using the
inter-protein couplings as restraints in a docking protocol. Both EVcomplex and
GREMLIN compute the couplings using pseudo-likelihood maximization, and
differ only in their alignments, ranking and docking protocols.

However, the scope of both methods is currently limited by the generation of
correctly paired sequence alignments that have sufficient sequence diversity.
Correctly pairing the sequences when there are paralogs in a species depends on
being able to identify the correct interacting proteins. Both EVcomplex and
GREMLIN use the observation that interacting proteins are often encoded on the
same operon. We have estimated that this excludes 80% of interacting proteins from
EC-based prediction, even in E. coli. More recent approaches are being developed
that aim to solve this issue, but their general applicability outside of a couple of
systems still has to be demonstrated.

A second more pernicious assumption of this approach is that that the interac-
tions, as well as the proteins themselves are conserved across evolution. While this
may be a reasonable assumption for the components of ATP synthase, how con-
served interactions are may be unknown for a large number of protein pairs. We
expect to see significant algorithmic developments in this area so that the models
can be used to ask the question rather than assume the answer.

Nevertheless, evolutionary couplings from sequence variation allow to predict
protein interactions at residue level resolution not possible before (Fig. 2.4b),
including the 3D structures of complexes that had not been solved experimentally at
the time but whose subsequent characterisation confirmed the accuracy of the
approach (e.g. DinJ-YafQ toxin-antitoxin interaction) (Hopf et al. 2014).

Both EVcomplex and GREMLIN also show that one can predict whether or not
two proteins in a subunit interact physically, given sufficient sequence diversity and
confidence in the matched alignment. In the case of the ATP synthase complex, we
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correctly identified 24 of 28 interactions with only 2 false positives and two
interactions that are experimentally ambiguous. Similarly, GREMLIN correctly
identified 12/23 interacting protein pairs in the ribosomal 50S subunit. The missing
predictions (false negatives) may arise because the models are wrong, or, just as
plausibly, the interactions could be weaker and a consequence of constraints
between other subunits in the complex. Finally, recent work has also highlighted
that evolutionary couplings can be applied to accurately predict the 3D structure of

Fig. 2.4 Protein interactions at residue level detail from evolutionary couplings. a Evolutionary
couplings across interacting proteins can be calculated by generating a concatenated sequence
alignment, where putatively interacting sequences within each species are matched with each
other. Assuming coevolution due to structural proximity, the 3D structure of the complex can then
be predicted from the monomer structures by docking with distance restraints on the strongly
coupled pairs. b Left Evolutionary couplings (coloured dots) in the ABC transmembrane
transporter MetIN correspond to structurally proximal residue pairs (dark/medium/light grey dots
at 5/8/12Å distance cutoffs, PDB 3tui) both in the monomer structures (intra-protein ECs, triangle
contact maps) as well as between the interacting subunits (inter-protein ECs, square contact map).
The inter-protein ECs define the structural interaction between both subunits (red lines between
orange and brown cartoons). Right Docking of the monomer structures (orange/brown cartoons)
using significant inter-protein ECs leads to an accurate model of the complex (grey cartoon, 1.5Å
interface-RMSD, PDB 3tui). (Figure adapted from Hopf 2016, 2014)
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RNA as well as protein-RNA interactions, in ribosomal complexes and RNaseP,
from sequences alone (Weinreb et al. 2016).

2.3.3 Conformational Plasticity and Disordered Proteins

Many, if not most proteins may be structurally flexible, with conformational
plasticity ranging from simple hinge movements or open-closed conformational
switching to ordered stable structures that occur only upon binding or in the
appropriate environment. Indeed, it may be the case that even protein segments that
are considered highly flexible, such as histone tails, may take on a defined 3D
structure in some functional states. Around half of human proteins contain sub-
stantially sized regions whose amino acid sequence is considered to indicate
structural ‘disorder’, sometimes called ‘intrinsic disorder’(van der Lee et al. 2014;
Oates et al. 2013) (see also Chap. 6). These regions can range from 30 amino acid
long insertions to longer regions of many hundreds of amino acids that are often
present on transcription and translation factors.

Early work on evolutionary couplings showed that these methods will capture
contacts from alternative 3D conformation, as demonstrated by the identification of
couplings corresponding to open and closed conformations of the
glycerol-3-phosphate transporter GlpT (Hopf et al. 2012) and the L-leucine binding
protein (Morcos et al. 2013). More recently, this has been explored systematically
with another 38 proteins known to have alternative conformations and differential
contacts, demonstrating not only fold rearrangement but also, sometimes, secondary
structure switching (Toth-Petroczy et al. 2016).

This recent work has extended the exploration of conformational states to pro-
teins considered disordered. Since a small number of disordered proteins are known
to become ordered in specific environments and have been captured experimentally,
this gave the opportunity to investigate whether evolutionary couplings methods
can detect these 3D states. After a number of methodological improvements,
including iterative testing for alignment robustness, evolutionary couplings were
computed to determine the potential of these proteins forming long-range contacts
and secondary structure. In 40 of the 45 cases contacts were successfully predicted
for known “order upon binding’, including the well-known cyclin inhibitor p27
when it binds the Cyclin A-Cdk2 complex. Importantly, the method also found very
little evidence of structural constraints for proteins such as the C-terminal tail of
Histone H1 that had multiple lines of evidence for lack of structure (Toth-Petroczy
et al. 2016). Hence, the true positive predictions for proteins with ordered con-
formations do not seem to be at the expense of false positives in proteins without
ordered conformations.

To explore the structural potential of apparently disordered regions for which
there is currently no experimental information on a proteome-wide scale,
Toth-Petroczy et al. systematically surveyed all regions in the human proteome of
more than 100 amino acids in length where alignments could be constructed (about
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25% of all regions). This analysis resulted in predictions for *1000 protein
regions, of which 40% showed signal for some long-range structure and another
40% secondary structure. The predicted contact maps revealed that some of these
disordered domains resembled zinc finger and RNA-binding domains, which could
not be identified from their primary sequence (the data from this analysis is
available from http://marks.hms.harvard.edu/disorder).

2.4 Predicting the Effect of Mutations

A major challenge in biology is being able to predict the functional effects of
mutations on phenotype or fitness. New work has shown that the global statistical
models of sequences can also be used to predict the effects of mutations by
quantifying the change of probabilities between the mutated protein and the wild
type sequence (DE = log P(mutant) /P(wild type)) (Hopf et al. 2017; Figliuzzi et al.
2016; Mann et al. 2014). This quantity DE, called the statistical energy difference of
a mutant, is computed by summing the changes in couplings and site amino acid
preferences between all pairs of positions, to give a total score that describes the
effect of any single or higher-order mutation. For instance, as illustrated in the
cartoon protein in Fig. 2.5a, the substitution W3L leads to a change in 4 couplings
and one single site bias term. Through the evaluation of couplings to other sites, the
computation explicitly models the context dependence (or epistasis) of mutations.
These interactions are typically neglected by approaches using single-site conser-
vation to quantify the effects of mutations. It is important to note that this approach
uses precisely the same statistical model (e.g. PLM or DCA) as one uses to compute
residue contacts from the sequence alignment, but does not depend on computing
the structure. This allows to infer epistatic mutational landscapes for any protein
with enough sequence information (Figs. 2.5b, c).

To test the applicability of our implementation of the method, EVmutation, the
predicted effects of mutations have been compared against thousands of variants
assayed in high-throughput multiplexed mutational scans that have emerged over
the last few years, providing a large pool of ground truth for evaluation (Deng et al.
2012; Jacquier et al. 2013; Stiffler et al. 2015; Melamed et al. 2013; 2015;
Rockah-Shmuel et al. 2015; Starita et al. 2015; Roscoe and Bolon 2014; Starita
et al. 2013; Li et al. 2016; Melnikov et al. 2014). Whilst the exact interpretation of
DE effects is not clear a priori, one would expect them to be related to the ‘fitness’
of the protein sequence. For instance, DE of all single mutations to a bacterial DNA
methylase correlated well with an experimental scan testing their effect on bacterial
fitness (Spearman’s rank correlation q = 0.69) (Rockah-Shmuel et al. 2015).
Similarly, EVmutation effects showed significant correlations across a wide range
of 34 experimental datasets for 21 proteins and a tRNA molecule (Hopf et al. 2017).
The approach generalizes to any type of biological sequence, and could also be used
to predict effects for protein-RNA complexes. Using epistatic interactions with
other sites particularly contributed to improved prediction accuracy in functional
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sites, such as ligand binding and protein interaction interfaces, when compared to a
model that only uses single-site conservation. When tested on human disease
variants, DE separated them from neutral variants with similar or higher accuracy
than state-of-the-art methods for variant effect classification without, however,
being specifically trained on known variants for this problem (Hopf et al. 2017).
This suggests that established machine learning methods could benefit from the
inclusion of evolutionary statistical energies instead of positional sequence
conservation.

Fig. 2.5 Prediction of mutation effects using an epistatic model of evolutionary sequences. a The
global probability model of a protein family can be used to predict the effects of mutations by
comparing the probabilities of the wild-type and mutant sequences. The calculation sums the
differences in all couplings to mutated positions as well as the change in the single-site amino acid
preference terms of the changed sites. Thereby, epistatic interactions with the sequence
background are incorporated in the calculation (adapted from (Hopf 2016)) b Computed DE
mutational landscape of the human disease gene HRAS (x-axis: position in HRAS sequence,
y-axis: amino acid substitutions, white boxes: positions with known disease mutations). c Residues
(small spheres) around the active site of RASH (GTP ligand analog, yellow sticks), including
positions with known disease mutations (large spheres), are predicted as sensitive to mutation
(colour scale as in (a) from blue/damaging to white/neutral)
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2.5 Summary and Future Challenges

Over the last 5 years, approaches based on evolutionary couplings from sequence
alignments have already shown their power in predicting structural constraints and
3D structures for proteins, RNA, their interactions, the potential structured states of
disordered regions, as well as the effects of mutations on protein function. Readers
would do well to use this chapter as a basis, but since the field will change rapidly
in the next few years, they should be encouraged to search for more recent work
than the snapshot presented here.

We expect to see an increase in hybrid approaches that combine evolutionary
couplings with experimental methods to accelerate structure determination in such
fields as cryoEM, NMR, crystallography or mass spectrometry. First promising
work that demonstrates the power of this type of approach has already been pub-
lished (Tang et al. 2015). Where refined 3D models are desired, there is a still a
clear need for improving the structure prediction protocols, although some advances
have been made here recently.

Notwithstanding the impressive impact these methods have already had, there
are many challenges to be solved, not least with the probability model itself. First,
an implicit assumption in the underlying model is that all sequences have been tried
by evolution and the ones that we see now are the only possible functional ones,
leading to many issues associated with inferring models from undersampled data.
Whilst regularization during inference and heuristics for post hoc corrections
address this problem somewhat, we expect advances in this area would be bene-
ficial for more accurate models.

A second challenge for the emerging field is to develop improved criteria for
assessing the quality of alignments, and the choice of alignment depth that is
critically dependent on the research question being asked. If we did not know what
the 3D structure of GPCRs looked like, then any family alignment however large
and non-specific may be useful; on the other hand, if we want to explore the
different ligand-binding pockets of the subfamilies we would need alignments that
reflected that specificity. Similarly, for complexes and protein interactions the
challenge is to assess the likelihood of interaction with the ambiguity that the
interaction may not be conserved in all alignable sequences.

A third challenge is to blindly disambiguate evolutionary couplings that arise
due to different aspects of protein function, including the blind assignment of
couplings to different conformational states, or the distinction between intra- and
inter-protein interactions in homomultimeric complexes in the absence of an
experimental structure of the monomer.

All of these challenges are exciting questions for future research, and will help to
further increase the usefulness of evolutionary couplings as a tool in exploring
diverse aspects of protein structure and function.
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Chapter 3
Fold Recognition

Lawrence A. Kelley

Abstract Fold recognition is concerned with the prediction of protein
three-dimensional structure from amino acid sequence by the detection of extremely
remote homologous or analogous relationships to known structures. As such it lies
midway between ab initio protein folding and close homology modelling. This
chapter surveys both the history of the field and the current state-of-the art, focussing
on approaches recently shown to be successful in international blind trials.

Keywords CASP � Threading � Pair-potential � PSI-Blast � Profile � Hidden
Markov model � Contact map

3.1 Introduction

The amino acid sequence of a protein determines its structure, which in turn
determines its biological function and mechanism of action. Protein folding is the
bridge between the instructions for living things and the living thing itself. This key
paradigm in biochemistry accounts for nearly one in four Nobel Prizes in Chemistry
since 1956 (Seringhaus and Gerstein 2007) In 2005 Science named the protein
folding problem one of the 125 biggest unsolved problems in science (Science
Editorial, 1st July 2005) and in 2013 the Nobel prize for Chemistry was awarded to
Karplus, Levitt and Warshel for their work on computational simulation of proteins.

When the previous 2008 version of this chapter was written there were
5.8 million protein sequences experimentally determined by genome sequencing.
There are now 50 million. This number has been exponentially growing for over
two decades and this growth is set to continue. The new meta-genomics projects
involving shotgun-sequencing random samples of seawater around the globe every
200 miles are finding 1.3 million new genes and as many as 50,000 new species in
each barrel of seawater. In 2008, sequencing machines could sequence 100 million
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base pairs in 24 h. They can now process 1 million base pairs a second and the price
of sequencing a human genome has dropped to $1000.

In 2008, 50,000 protein three-dimensional structures had been solved. In 2015,
this number is 100,000. So despite the progress of the high-throughput structural
genomics initiatives and the large arrays of NMR and crystallography robots
working to determine protein structure, we have observed a doubling time of
8 years in structure determination, while the number of sequences has doubled 3
times in the same period.

3.1.1 The Importance of Blind Trials:
The CASP Competition

Over the past 30 years a bewildering variety of techniques have been developed to
attack the problem of protein structure prediction in general and fold recognition in
particular. As in any scientific endeavour, it is critical that any new technique is
fully tested “experimentally”. It is for this reason that the Critical Assessment of
Structure Prediction or “CASP” meeting was devised (http://predictioncenter.llnl.
gov/; (Moult et al. 2014). The purpose of the CASP meeting or competition (held
every two years) is to mimic the real-world situation of being presented with an
amino acid sequence for which we do not know the structure. However, there is a
critical difference - the organisers of the meeting do know the structure. These
proteins have had their structures newly solved by experimentalists, but this data
has not yet been released to the scientific community. As a result, the assessors of
the CASP meeting are in the rare position of knowing the 3-dimensional structures
of a set of proteins unknown to the predictors.

CASP acts as a true blind experimental assessment of the viability of techniques
for structure prediction in the real world. Therefore, the CASP competition has been
my guide in deciding what methodologies to describe in this chapter. This is not to
say that other methodologies may not indeed be powerful predictors, which for
whatever reason did not perform well at CASP. There are literally hundreds of
different techniques that have been developed over the years, and to avoid bur-
dening the reader, I have chosen to use the results of CASP as a filter. For a review
of the most recent CASP11 meeting see the CASP11 supplement (Moult et al.
2014).

3.1.2 Ab Initio Structure Prediction Versus
Homology Modelling

If we are to have any hope of structurally characterising any significant fraction of
the proteins in nature, barring the discovery of some revolutionary experimental
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technique, then we will require a method to predict structure from sequence
computationally. After Anfinsen showed in 1961 that ribonuclease could be
refolded after denaturation while preserving enzyme activity, we have been
beguiled by the idea that all the information required by a protein to adopt its final
conformation is encoded in its sequence. As a result ‘pure’ methods using only the
sequence itself as input and the laws of physics (or approximations to them) have
been pursued for decades and are showing some progress. These are covered in
Chap. 1 of this book.

However, in general, these methods are either computationally intractable or
demonstrate poor performance on everything but the smallest proteins (<100–150
amino acids). Although a physics-based approach may seem like the only true
solution to the folding problem, the practical importance of protein structure pre-
diction has meant we have to accept our current limitations and move, if only
temporarily, to a more pragmatic solution now. This has led the search for a protein
structure prediction technique away from physics and towards a more data-mining
approach.

It has long been clear that similar protein sequences fold to similar structures.
Thus, given a novel protein sequence whose structure we require, henceforth
known as the ‘target’ we simply have to check if any other similar sequence with a
known structure has already been solved. If the sequences are highly similar then
this detection process is quite straightforward using basic alignment techniques.
Using a simple measure of the similarity of amino acid types, such as the BLOSUM
scoring matrix coupled with a dynamic programming algorithm such as
Smith-Waterman one can rapidly and optimally (according to the scoring function)
align two sequences.

Given an alignment between a sequence and a known structure, henceforth
known as the ‘template’, one can then build a crude model by simply copying the
corresponding three-dimensional coordinates of the template and re-labelling the
amino acids in accordance with the equivalent residues from the alignment
(Fig. 3.1). The model can be further refined using a slew of techniques described in
the comparative modelling chapter of this book (Chap. 4). The advantages of this
approach are clear; it is computationally quick, and the accuracy of the resulting
model will be very high given a high sequence similarity between target and
template. This immediately points to the method’s limitations. If no similar
sequence has yet had its structure solved, we can make no progress at all.

So, we have two lines of attack in the search for a solution to the protein
structure prediction problem. One approach, based on general physics principles,
aims at providing a well-understood, universal technique to predict structure from
sequence, with the added benefit of enabling protein design, a study of dynamics
and much more. However, it is extremely difficult and will probably remain
computationally intractable for years to come. At the other extreme, we have a
straightforward but highly limited heuristic technique, homology modelling, which
can give high accuracy models, but only in a very limited number of cases. It is
against this backdrop that the term ‘fold recognition’ was coined, to act as a bridge
between these two extremes.
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It should be noted that recent breakthroughs have opened a third path to the
structure prediction problem: contact prediction. Its full implications for practical
protein structure prediction from sequence alone are still…unfolding… and it is yet
to be seen what its full impact will be on the field. Contact prediction is covered
fully in Chap. 2, but I will return to the topic briefly towards the end of this chapter.

3.1.3 The Limits of Fold Space

Several key observations about the nature of proteins are in order. According to
protein structure classification schemes such as CATH (Sillitoe et al. 2015), the

Fig. 3.1 Cartoon representation of simple model building by target-template alignment. The
sequence of the known structure (‘Known sequence’) is shown aligned to the target sequence.
Dashes represent insertions and deletions. Red letters indicate residue substitutions. Residue type
are coloured according to biophysical properties. Thin wavy lines connect equivalent positions in
the query and template
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approximately 100,000 experimentally determined protein structures in the protein
data bank (Berman et al. 2000), can be grouped into about 1200 unique structural
folds (unique topologies). As more and more structures are solved experimentally,
the number of new folds discovered increases very slowly. In fact, according to data
from the RCSB, there have been almost no new folds discovered since the last
edition of this book in 2008, despite a doubling of the size of the PDB in that time
(Fig. 3.2).

These findings have led to the broad acceptance of the view that there are a finite
and relatively small number of folds found in nature (Marsden et al. 2006).
There are hundreds if not thousands of examples in the structure database
demonstrating that highly similar structures may have radically different sequences.
So although it is true that highly similar sequences adopt highly similar structures,
so too do highly dissimilar sequences sometimes adopt similar structures.

Thus, it appears that any sequence we choose from the database of sequenced
genomes has a high probability of adopting a structure we have already seen. The
big question is how to determine which of the 100,000 structures is the right
template and how to align our sequence to that structure. Fold recognition is
concerned with the search for scoring functions that can reliably detect the
compatibility of a sequence with a known structure and align them accurately
when simple sequence similarity cannot be seen.

Despite the size of sequence space, i.e. the space of all possible protein
sequences, the space of protein structures appears considerably smaller. Whether
this is related to thermodynamics, the kinetics of folding or to evolutionary selection
is difficult to say and beyond the scope of this chapter. However, Magner and

Fig. 3.2 Graph showing the number of experimentally-determined protein structures included in
the CATH database together with the number of topologies as a function of year. It can be seen
that although the number of structures added to CATH is increasing rapidly, the number of new
folds has remained static since about 2009
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coworkers (Magner et al. 2015) have recently proposed an explanation that suggests
thermodynamic stability may be the primary driver for this observation. Regardless
of the cause, the restricted nature of fold space is a highly fortuitous fact that has
been of great benefit in the field of protein structure prediction.

3.2 Pushing Sequence Similarity to the Limits:
The Power of Evolutionary Information

The early days of searching a database of sequences for potential homologues was
dominated by BLAST and other similar approaches. These were based on use of a
generic scoring function such as the BLOSUM or PAM matrices which provide a
probability of a mutational transition between one amino acid type and another
based on a set of confidently aligned blocks of similar protein sequences. These
scoring functions were simple 20 � 20 lookup tables that gave a score for a match
between any pair of amino acid types in an alignment. Thus, in general, good scores
would be awarded for aligning a hydrophobic residue to another hydrophobic
residue (leucine aligned to valine for example) and poor scores were awarded for
matching dissimilar residues (glutamate and tryptophan for example). Combining
this scoring function with a standard dynamic programming algorithm permitted
modest performance in detecting homologous relationships. If one were to search a
database of sequences with known structures, and subsequently build a model based
on the returned alignment then one would have one of the simplest protein structure
prediction techniques.

The obvious shortcoming of this approach is the limited ability of the simple
20 � 20 scoring functions to detect anything but close (>30% sequence identity)
homology. Given that we know sequences can diverge well below this threshold of
sequence identity whilst maintaining highly similar structures, it was clear that there
would be many homologous relationships being missed with this approach, which,
if detectable, would permit a substantial increase in our ability to predict structure.

As the sequence databases were rapidly growing in size due to worldwide efforts
at genome sequencing, technological developments geared towards using this
information efficiently were underway. A simple approach by Park et al. (1997)
illustrated how two homologous sequences, which have diverged beyond the point
where their homology can be recognised by a simple direct comparison, can be
related through a third sequence that is suitably intermediate between the two.
Known as ‘intermediate sequence search’, this ‘hopping’ through sequence space
showed clear promise, and a more refined approach was developed in Position
Specific Iterated BLAST [PSI-Blast; (Altschul et al. 1997)]. Instead of using a fixed
20 � 20 scoring matrix for every protein, and for every position in a protein, one
could use a matrix that scores each position in a protein differently. One could
construct an n � 20 scoring matrix where n is the length of the protein. This matrix
captures the specific propensities of each position in a specific protein sequence to
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mutate to one of the 20 possible amino acids. For this reason such a matrix is often
called a position specific scoring matrix (PSSM) or sometimes just a profile.

After an initial standard BLAST scan to collect relatively close homologues, the
(pseudo) multiple sequence alignment of these homologues to the target sequence
permits one to calculate statistics based on the observed mutations at each position
in the target sequence. These statistics form the basis of a new scoring matrix,
which can be used for a subsequent round of searching. This process of collecting
homologues, building a new scoring function and searching again with this new
scoring function can be iterated many (usually between 5 and 10) times, hence the
name Position Specific Iterated Blast (PSI-Blast). Coupling this powerful iterative
approach with the growing sequence database permitted a substantial improvement
in the detection of extremely remote homology. Until very recently, PSI-Blast lay at
the core of almost every modern successful structure prediction algorithm.
PSI-Blast and BLAST have over 50,000 citations each in the literature making them
two of the highest cited scientific papers of all time [combined they are rank 4 of all
time (Van Noorden et al. 2014)].

The key to the success of the PSI-Blast approach lies in a realisation that every
position in a protein sequence will be under different evolutionary pressures. For
example, a glycine in one position may be highly conserved as it is required for a
particularly tight turn of the protein chain to maintain its topology. Any mutation in
this glycine may be lethal as the protein would fail to fold correctly. A different
glycine elsewhere in the sequence may be in a highly variable loop region under
minimal selection pressure. Thus when aligning a target sequence against this
structure, the first glycine must be present, but the second one may vary. It is this
position-specific mutational propensity that permits far more sensitive remote
homology detection.

A typical use for PSI-Blast-generated profiles is where the profile for a target
sequence is scanned against a database of sequences from the PDB, or conversely, a
target sequence is scanned against a library of template profiles. More generally, a
profile of a protein can be considered an ‘evolutionary fingerprint’. This fingerprint
captures the evolutionary history of every residue in the protein. These individual
histories indirectly reflect the structural environment of a residue and its structural
or function role in the protein. It was therefore not long before researchers went
beyond matching sequences to fingerprints and tried to match fingerprints to fin-
gerprints, so-called profile-profile matching.

Thus instead of using profiles for only the target sequence or template sequence
in isolation, they are used for both and compared to one another (Fig. 3.3). Each
position in a sequence can be considered as a vector of probabilities. In the case of
simple profiles, one has a 20 dimensional probability vector (1 dimension per amino
acid type). A position in the target sequence is similar to a position in a template
structure if they are under similar evolutionary pressures, which would be reflected
in them having similar probability vectors. Many different techniques have been
devised to compare such vectors (the simplest being a dot product), almost all of
which surpass the simpler sequence-profile scoring approaches (Soding 2005;
Bennett-Lovsey et al. 2008; Rychlewski et al. 2000).
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Fig. 3.3 Schematic representation of the progress of sequence-based fold recognition techniques
over time. The leftmost part of each figure represents the target sequence. The grey box to the right
of each figure indicates a database of templates of known structure. The arrows indicate a
comparison between the query and a particular template. The pie chart in each section indicates, in
red, the approximate proportion of a typical genome that can be confidently modelled by the
approach. a Simple comparison of an amino acid sequence against a database of sequences. b Here
the target is represented by a profile of multiple sequences, a PSSM or a hidden Markov model (the
coloured grid). Each row of the grid represents a different homologous sequence, each column
represents a different position in the sequence. c The inverse of b where now a target sequence is
searched against a library of profiles. d Profile-profile comparison. e profile-profile comparison
plus predicted structural features. Wavy lines indicate alpha-helices and lozenges indicate
beta-strands
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3.2.1 The Rise of Hidden Markov Models

While profiles were demonstrating strong performance in remote homology
recognition, researchers realised that there already existed a well-established, sta-
tistically more sound and more powerful approach to capturing the ‘evolutionary
fingerprint’: hidden Markov models (HMMs). HMMs had been used for some time
in a range a fields, most notably speech recognition. Their application to proteins
would create a new standard for state-of-the-art fold recognition.

Profile hidden Markov models (HMMs) have several advantages over standard
profiles. Profile HMMs have a formal probabilistic basis and have a consistent
theory behind gap and insertion scores, in contrast to standard profile methods that
use heuristic methods. HMMs apply a statistical method to estimate the true fre-
quency of a residue at a given position in the alignment from its observed frequency
while standard profiles use the observed frequency itself to assign the score for that
residue. This means that a profile HMM derived from only 10 to 20 aligned
sequences can be of equivalent quality to a standard profile created from 40 to 50
aligned sequences. The details of the inner workings of HMMs are not appropriate
for inclusion in this chapter, and there exist many clear introductions to the method
elsewhere.

HMMs had been used for some years in the context of sequence-HMM or
HMM-sequence matching. But the work of Soding (Soding 2005) and others
successfully applied the idea of profile-profile matching to HMMs in the program
HHsearch. HHsearch became one of the leading methods in CASP and was eagerly
incorporated into many of the leading predictive systems as we shall later discover.

Thus, to capture a statistically well-behaved ‘evolutionary fingerprint’ of a
protein, one needs to take a target sequence and search the large and ever-increasing
sequence database to gather a diverse yet confident array of aligned homologues.
From this alignment one constructs a hidden Markov model. This process is
repeated for all known structures to create a database of structure-based HMMs.
Finally one searches the target HMM against this database using HMM-HMM
matching.

It is clear from this description that the raw information that drives the power of
this approach comes from the homologous sequences used to derive the HMM. As
discussed earlier, this was typically done using PSI-Blast: iteratively search a large
sequence database with a fast heuristic approach (BLAST) and build and refine a
standard profile at each stage of the iteration. Yet we know that HMMs are more
powerful than profiles and that HMM-HMM matching is more powerful still. So if
the HMM-HMM approach could be iteratively used during the initial gathering of
homologous sequences, the resulting HMM of a sequence will be a superior
‘evolutionary fingerprint’. But here a problem arises—computational burden.

Searching a large sequence database (50 million + entries) can only be done in a
reasonable time using a range of heuristics like those applied in BLAST.
Constructing an HMM for a sequence requires iterative searches of this large
database. If one required an HMM for every entry in the database one requires
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50 million iterative searches to create the database. Finally HMM-HMM matching
is far more computationally intensive than BLAST, so matching an HMM against a
database of 50 million HMMs would take a CPU year. These apparent limitations
were largely overcome in the program HHblits (Remmert et al. 2012).

HHblits reduces the unmanageable scale of the problem using two approaches:
(1) Clustering of the huge sequence database into a representative set that is an
order of magnitude smaller (*3 million). (2) Effectively reducing profile-profile
comparison to sequence-to-profile comparison by discretizing the vectors of 20
amino acid probabilities in each HMM column into an alphabet of 219 letters. Each
letter represents a typical profile column. The result of these clever heuristics is an
approach that is faster than PSI-Blast, has 50–100% higher sensitivity, and gen-
erates more accurate alignments.

This brings us to the current summit of purely sequence-based remote homology
recognition: (1) Use a target protein sequence to search and gather homologues from
the immense sequence database using iterative HMM-HMM matching (HHblits).
(2) Use the resulting target HMM to perform another round of HMM-HMM
matching against a database of HMMs of known structures. The resulting high
scoring targetHMM-templateHMM alignments can then be used for model building.
This approach now permits the high confidence structural annotation of approxi-
mately half of the human genome (Lewis et al. 2013).

It would be unwise for me to predict that we have reached the limits of extracting
all the possible information from pure sequence signal but the current signs are at
least that we have reached a plateau (Chubb et al. 2010); how long this remains we
will have to wait and see. But even if we have reached the limits of sequence, a vast
amount of untapped information remains in the 100,000 experimentally determined
3D protein structures. We shall now see how researchers have successfully har-
nessed that information to push structure prediction well into the ‘twilight zone’ of
homology.

3.2.2 Using Predicted Structural Features

One of the earliest attempts at extending homology recognition beyond sequence
information was developed by Bowie et al. (1991). The idea is based on the fact that
certain structural features of a protein sequence can be predicted in the absence of
an explicit template. Most notably, the secondary structure, i.e. the locations of
alpha-helices and beta-strands, can now be predicted with an accuracy approaching
80% using programs such as PSIPRED (Jones 1999). Given that structure is more
conserved than sequence, a pair of remotely homologous proteins will contain
similar patterns of secondary structure elements even in the absence of any obvious
sequence similarity. In addition, the solvent exposure of a residue can be predicted
with relatively high accuracy (e.g. Kim and Park (2004)), as can the presence of
tight beta-hairpin turns (e.g. Kumar et al. (2005)). It is worth noting that leading
methods to predict these structural features rely on the evolutionary profiles
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discussed above and often on machine learning approaches (e.g. neural networks or
support vector machines) trained on such profiles.

These predicted structural features provide us with further information that can
be used together with sequence matching. When aligning two amino acids from the
target and template one can calculate a compatibility score based on a sequence
term such as HMM-HMM similarity plus terms involving secondary structure
matching and solvent exposure:

Sij ¼ Seqij þ SSij þ Solvij

where Sij is the overall score for matching residue i in the target sequence with
residue j in the template sequence, Seqij is the score from sequence similarity
(BLOSUM or HMM-HMM comparison) for matching i and j, SSij is the score for
matching the predicted secondary structure type at residue i with the known sec-
ondary structure at residue j, and Solvij is the score for matching the burial state
predicted for residue i with the known burial state at residue j. Simple versions of
such scoring functions award a fixed value to identical states (helix matched to helix
for example) and penalise all other combinations. Often the functions will be more
elaborate and be based on empirical observation of the frequency with which the
different states tend to be aligned in known homologues, or be weighted by the
confidence of the predicted state from the prediction program (e.g. PSIPRED). This
is analogous to the progression from a simple identity-based sequence matching
matrix towards the more sensitive BLOSUM-style matrix.

Nearly all successful approaches combine secondary structure prediction (and to
a lesser extent solvent accessibility) in some form with pure sequence methods and
this has repeatedly demonstrated a systematic improvement in fold recognition.
Features such as secondary structure and solvent exposure are relatively easy to
predict because they are largely determined by features local to the residue in
question; a hydrophobic stretch of residues are likely to be buried; a stretch of
residues with helical dihedral angle preferences are likely to be a helix. Thus in
some sense, these predicted features are a result of sequence context. In new work
by Meier and Soding (2015b), a more generic context-dependent score is integrated
into their HMM-HMM matching program HHsearch that attempts to capture
conserved patterns in 13-residue windows of sequence. This method is agnostic
about what the conserved patterns ‘mean’ physically. Some patterns may be cor-
related to secondary structure but many might not be. This is a data-driven/mining
approach. If a contextual pattern is conserved in protein A and in protein B, then A
and B may share similar structure in the region of that pattern. The method results
in an accuracy improvement in otherwise difficult, remote alignments. The use of
context is also being investigated using a more complex approach called condi-
tional random fields (CRFs), of which more later.

But the main source of complexity of protein folding is its non-local nature.
Residues far apart in sequence can come close together in space. It is this
non-locality that contributes significantly to the intractable nature of folding by
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computation. Capturing this aspect of the problem requires a different set of tools
and new sources of data as we shall now discover.

3.2.3 Harnessing 3D Structure to Enhance Recognition

What are we to make of the observation that many highly dissimilar protein
sequences adopt highly similar three-dimensional structures? We have a large body
of evidence that suggests that the naturally occurring (native) state of a protein lies
in a broad and deep energy well. The protein folds to its (usually, but not always,
unique) structure driven by energetically favourable geometry, residue-residue and
residue-solvent interactions.

If one were able to understand what geometric, spatial and solvent interactions
stabilise a given structure, then one could both detect compatible sequences given a
structure and design sequences that fit that structure. This is the concept of
threading. Given a sequence whose structure we wish to predict, one aligns or
‘drapes’ this sequence over each of the known structures in our database. In each
case one calculates a score to represent how favourable our sequence is with each
structure. A structure with a highly favourable score will be our prediction. But
what are these favourable interactions and how do we calculate their magnitude?
Fortunately, thanks to the diligent work of many experimentalists around the world,
we have a database of native protein structures; a database of favourable
interactions.

By careful statistical analysis of the distribution of the different amino acid types
throughout known protein structures, powerful sequence-structure relationships can
be inferred, and used to tackle prediction problems. These empirically-derived or
‘knowledge-based’ force fields are widely used across the entire spectrum of
computational protein structure analysis and their key role in ab initio modelling
means many of the details may be found in Chap. 1. Nevertheless, a brief summary
will be useful.

3.2.4 Knowledge-Based Potentials

To empirically derive rules relating protein sequence to three-dimensional structure
requires (1) a large number of examples of sequences and their corresponding
structures and (2) a structural feature of proteins one wishes to analyse. A simple
illustration of the technique is the generation of a solvation potential. Understanding
this simple example will open the way to understanding how almost any structural
feature can be encoded and subsequently used to enhance predictive success.

Any globular protein in its folded native state has some residues buried in the
(largely hydrophobic) interior and some residues (largely hydrophilic) on the sur-
face exposed to the surrounding solvent. It is straightforward to calculate to what
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extent a given residue r is exposed or buried in a protein of known structure. One
method, albeit crude, is simply to measure how many other residues are within a
certain distance of the residue r (more sophisticated methods are usually used;
(Richmond 1984; Kabsch and Sander 1983). So it is possible to compile a list of
every residue in every known protein structure together with its associated level of
solvent accessibility (in terms of neighbours). With these data it is now possible to
use a variety of statistical techniques to attempt to discover any relationship
between amino acid type and its propensity to be on the interior or exterior of the
protein. The most common methods used are based on statistical mechanics or
Bayesian statistics.

First proposed by Tanaka and Scheraga (1976) and later refined by Sippl (1990)
and (Miyazawa and Jernigan 1996), we will describe here the method based on
Boltzmann statistics. The Bayesian approach is not altogether dissimilar and can be
found elsewhere.

First one assumes that protein structures in the database constitute a kind of
ensemble and that the levels of solvent exposure of a residue type within proteins
distribute themselves according to a Boltzmann distribution. Second, one can cal-
culate the potential of mean force responsible for the observed statistics via the
Boltzmann equation. The ‘energy’ associated with a given property p is:

E pð Þ ¼ � log
nobsðpÞ
nexpðpÞ

� �

where nobs(p) is the observed value of p and nexp(p) is the ‘expected’ value of p in a
reference state that assumes there are no specific interactions or preferences.

Implementing this usually means discretizing distances and producing a look-up
table of force-field values rather than the continuous differentiable functions used in
molecular mechanics. From a threading perspective, this look-up table permits one
to assign an ‘energy’ to aligning a target amino acid to a structural position in the
template. Each amino acid in the template will have some degree of
exposure/burial. Depending on the amino acid type in question, one can reference
the look-up table for a value for having, say, a valine that is 30% exposed.

This ‘energy’ essentially consists of an addition term in the scoring matrix within
a standard dynamic programming algorithm. Thus, in addition to maximising the
sequence similarity at each position, the structural (in this case solvent) term also
contributes to whether a particular pair of amino acids are aligned during the
dynamic programming.

There are many sources of variation in the detail of how such potentials are
calculated. For example, a force-field may simply be based on the distances
between alpha carbons of the backbone which may suffice for relatively crude
recognition of the gross topology of a structure. One could add more atom-based
interaction sites, possibly to better account for hydrogen-bonding. The framework
of the Boltzmann relation is not limited to distances. One may add in angular
dependence, or the packing angle between beta-strands. A force-field may have
different contributions from residues separated by different distances along the
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sequence: i.e. one may use different functions for residues close in sequence (i,
i + 3) and those further apart (i, i + n; n > 10) as mentioned above.

One of the most common uses of this approach is to examine residue-residue
contacts distant in sequence. Often termed a ‘pair-potential’, the idea is to use
statistics from the PDB to determine the likelihood of observing amino acid type A
in close proximity to amino acid type B. Using such a potential allows one to thread
a sequence onto a structure and assess numerically the degree to which the observed
pairwise interactions of residues is ‘favourable’.

Clearly the power of a threading approach is essentially encapsulated in the
power of the energy function. As a result much past and current research focuses on
the development of ever more elaborate, and hopefully more powerful, empirical
potentials.

3.2.5 Summary

In this section we have covered the central principles of fold recognition. The most
naïve approach is to directly compare a target sequence with a template sequence
using a generic scoring function to measure residue similarity such as BLOSUM.
Instead we see how we can represent a sequence by a range of information at three
different levels of description: primary, secondary and tertiary. Primary information
comes from sequence: large multiple sequence alignments, capturing mutational
preferences expressed as a profile or HMM. Secondary information comes from
predicted structural features that are context-dependent but still somewhat locally
determined and which may be predicted from local context: secondary structure,
solvent exposure. Tertiary information comes from analysis of known 3D structures
and incorporates information about contact preferences in 3D space, perhaps
residue-solvent, or residue-residue interactions that may be distant in sequence.

So both a target and a template can be represented at each position by these three
rich sources of information. One may then try to match this information between
target and template optimally, typically by dynamic programming, to produce an
alignment from which a model may be generated. Given this background, we shall
now turn to how these techniques are successfully combined in real-world systems.

3.3 CASP: The Great Filter

As stated in the introduction, CASP provides a much needed filter for selecting
which of the vast range of algorithms in the literature should be described in a
chapter like this. At the most recent CASP11 meeting (now in its 20th year) there
are a handful of leading approaches and one method that has clearly and repeatedly
taken the top position in fold recognition. Aside: CASP does not actually use the
term fold recognition but instead divides their prediction problems into 3 categories:
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template-based modelling (TBM), hard template-based modelling (TBM-hard) and
free modelling (FM). For our purposes TBM-hard is the closest to what we would
call fold recognition.

3.3.1 The Leaders

The recent top groups at CASP11 are representative of the leading methods for the
last 4-6 years but of course don’t constitute an exhaustive list. I have also chosen to
limit my assessment to fully automated approaches as they are both of highest
relevance to end-users and are relatively free from unknown variables, such as ad
hoc choices made by researchers during the competition. They are Zhang-server
[I-TASSER (Yang et al. 2015)], Robetta (Chivian et al. 2005), HHpred (Soding
et al. 2005), MULTICOM (Cao et al. 2014), RaptorX (Kallberg et al. 2014) and
Phyre (Kelley et al. 2015). Of these, the Zhang-server is the undisputed leader.

One complexity in assessing these systems in terms of their fold recognition
ability is that their final accuracy in CASP is a result of many additional factors
beyond template identification and alignment. All of these systems perform many
complex post-processing steps after template identification that typically increase
accuracy substantially. These post-processing steps will be discussed in Sect. 3.4.
Another complexity in assessment is the trend for modern successful methods to
integrate techniques from the fields of homology modelling, fold recognition and
ab initio/template-free modelling into a single system that handles the full range of
modelling problems. This can make teasing out the components relevant only to
fold recognition, the middle ground of modelling difficulty, problematic. But for
now, let’s look at how their core fold recognition engines work under the
hood/bonnet.

The methods listed can be divided into two general classes: single algorithm and
consensus methods. I shall first discuss single algorithms that either succeed on
their own or are incorporated into larger consensus systems.

3.3.2 Individual Algorithms

HHsearch (HHpred server) (Soding et al. 2005) is a standalone powerful algorithm
ranking highly over several CASP competitions. As discussed earlier it combines
HMM-HMM and secondary structure matching. In addition it forms one of the
modules in four of the six leading techniques: Zhang-server, MULTICOM, Robetta
and Phyre.

Sparks (Zhou and Zhou 2004) is a method that does not rank highly by itself, but
clearly adds value to consensus methods as it is used in both Robetta and
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Zhang-server. Sparks uses standard profile-profile and secondary structure align-
ment plus two knowledge-based potentials: torsion angles and solvent accessibility.
We have already seen how solvent potentials can be derived and it should come as
no surprise that torsion angle potentials are derived in an almost identical fashion;
protein backbone torsion (phi/psi) angles are first discretized into bins. One then
applies the Boltzmann formalism to a large set of observed torsion angles for each
residue type in solved structures to create a form of log-odds energy look-up table
for each amino acid type and each torsion angle bin.

RaptorX (Kallberg et al. 2014) uses profile-profile, secondary structure and
solvent accessibility. But unusually, it uses a rather new approach to alignment
called conditional random fields (CRF). Most protein threading methods use a
scoring function linearly combining sequence and structure features (see equation in
Sect. 3.2.2) to measure the quality of a sequence-template alignment so that a
dynamic programming algorithm can be used to optimize the scoring function.

However, there are two problems with this central idea: Firstly there are well
known correlations between scoring terms, for example secondary structure states
and solvent accessibility states. Secondly, the relative importance of different fea-
tures will vary depending on the level of sequence similarity in a region or the
richness of a profile in a region. A standard linear combination of scoring terms
cannot fully exploit such interdependency among features and thus, limits align-
ment accuracy.

Hence it could be argued that for a truly optimal alignment one would require a
function that varies from position to position along a protein, varying the contri-
bution of different sequence and structural factors in the alignment. So just as we
have historically moved from position-agnostic (BLOSUM) to position-specific
(profiles/HMMs) scoring, the CRF moves from a position-agnostic algorithm to a
position-specific algorithm: different weights for the components of the scoring at
each position dependent on the data available. Determining the optimal contribution
of these terms at each position is the purpose of a conditional random field and there
exist algorithms to estimate the parameters for such models. In the case of RaptorX,
the authors applied the technique of regression trees. The details of this approach
are beyond the scope of this chapter. Further information is available in (Peng and
Xu 2010).

Finally there is the Phyre server (Kelley et al. 2015). Phyre uses HHsearch as its
core fold recognition technique. The models generated are then combined using a
novel post-processing method that combines multiple models with virtual synthesis
as described in Sect. 3.4.

N.B. It should be noted that I have omitted the LEE group (developer of the nns
server at CASP11) from my list of high performing groups. This is simply because
their core methodology is not yet published. However in their abstracts they indi-
cate that they too use CRFs along lines similar to the RaptorX approach.
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3.3.3 Consensus Methods

Consensus methods have been successful for many years in CASP. The reasons for
this are twofold: (1) Every method has its strengths and weaknesses so different
methods may succeed when others fail. (2) Spurious individual results tend to be
overpowered by the majority: akin to the power of crowds. When designing such
systems there tend to be two philosophies: (1) minimise the overlap between
methods (maximise their mutual orthogonality) or (2) throw everything into the mix
and let the crowd sort it out.

The Robetta group appears to have chosen route (1) In their server they incor-
porate the three individually strong methods above into their server: HHsearch,
Sparks and RaptorX. Robetta uses an iterative recognition procedure whereby
models produced by the above three methods are clustered. Remaining regions of
the input target sequence that are not covered by templates are excised and re-enter
the process for another round. This is done to detect domain boundaries in the
protein and repeated until no further regions can be modelled with templates. The
templates found by these methods are then processed by the advanced Rosetta suite
of modelling tools from the Baker lab of which more in the post-processing section.

MULTICOM and Zhang-server on the other hand, appear to have taken route
(2) The MULTICOM server (Cao et al. 2014) uses at least 9 different profile
alignment programs (PSI-Blast, HMMER, CS-BLAST, COMPASS, PRC, SAM,
HHSearch, MUSTER, RaptorX) to generate models that enter a pool for later
processing. The different algorithms are run on different fold databases generated by
different criteria. This results in a large pool of potential models and the different
databases used contribute to the relative independence of the results from one
another. The power of this approach largely stems from the size and variation of the
pool coupled with the way these potential models are selected and combined. I will
briefly discuss this in the post-processing section near the end.

And finally we come to the Zhang-server (also known as the I-TASSER server,
open to the public), which has held the top spot at CASP for at least 6 years. The
Zhang-server can be roughly divided into two major components: (1) Template
detection and (2) Model assembly. The template detection component of the
Zhang-server is called LOMETS (Wu and Zhang 2007). The LOMETS system uses
the HHsearch and Sparks methods previously described. In addition it uses 7 other
available methods (FFAS-3D, pGenThreader, PRC, PROSPECT2, SP3 and
MUSTER and PPAS). Of these, the PPAS method has 7 variants itself, all of which
are used within LOMETS. So in total, this amounts to 15 different
profile-profile/threading methods. I will not go into the minutiae of these 15
components. Suffice it to say they are all some variant of the
[profile-profile + secondary structure + optional potential] paradigm that we have
seen throughout.
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3.4 Post-processing

For many of the leading systems, recognising a template and generating an align-
ment is just the beginning of an elaborate and complex process of model building
and refinement. Both single and consensus methods produce ranked lists of can-
didate templates. These will be associated with various imperfect confidence scores
and may cover different regions of a target protein. In earlier CASP experiments, it
was typical to simply build a model based on the single highest scoring alignment
from a single ranked list from a single method. This simple approach has been
superseded.

Today, a range of techniques, as diverse as those used for fold recognition itself,
are applied to the problem of optimally choosing and recombining candidate
models. Broadly these methods fall into the categories of (1) clustering (2) model
quality assessment, and (3) multiple-template modelling. The additional problem of
modelling regions for which a template cannot be found, so-called template-free or
ab initio modelling, is often inextricably bound up in with these techniques.
However, this is a problem in its own right and is discussed in detail in Chap. 1.

These three approaches can be used multiple times and at different stages of a
structure prediction protocol. We will see examples of their use in the leading
CASP methods in Sects. 3.4.2. First we will discuss the principles underlying them.

3.4.1 Choosing and Combining Candidate Models

A typical prediction pipeline begins with producing a set of candidate models for
different regions of a target protein, using the techniques described above. Often
this initial set comes from different core fold recognition algorithms and from
different high scoring templates for each algorithm. These models will later be
combined using multi-template modelling into a single final result. To maximise the
accuracy of this combined model, the quality of the input models should be as high
as possible. Thus some method is desirable that can filter out candidate models from
the initial pool that are either particularly non-native-like or that disagree sub-
stantially with the consensus.

Similarly, the subsequent process of multi-template modelling, as we shall see
later, often involves producing tens, hundreds or thousands of candidate solutions.
Once again it is desirable to have some method to select form this pool the model
most likely to be closest to the true structure.

Many methods are capable of producing high quality models that are otherwise
hidden in a sea of low-quality models. Hence the ability to choose the best model(s)
from a pool is of critical importance at multiple stages in structure prediction. We
will start with probably one of the intuitively simplest and still powerful methods
for performing this model selection: clustering.
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3.4.1.1 Clustering

In an analogous way to how consensus fold recognition techniques can improve
accuracy, clustering models allows the detection of models or regions of models
where there is agreement across templates and alignments (confident regions) and
where there is significant disagreement (non-confident regions). An intuitive
explanation for why this is effective comes from a consideration of the size of
conformational space. There are an enormous number of possible conformations for
a protein. Hence the likelihood that two relatively independent methods generate
similar structures by chance is extremely low. Thus, when a region of similar
structure is observed in a pool of models generated by either a range of techniques
or a range of templates, there is good cause to be confident in the structure of that
region.

One of the simplest methods for predicting model accuracy via clustering is also
one of the most powerful: 3D-Jury (Ginalski et al. 2003). 3D-Jury takes as input a
pool of models of the same sequence (with possible insertions and deletions). These
models are superposed in a sequence-dependent (as opposed to structure-
dependent) manner. A standard method for superposition is the MaxSub method
(Siew et al. 2000). This algorithm aims to find the maximum subset of atoms in two
models that are superposable within some distance threshold, typically 3.5 Å. The
size of this subset is the MaxSub score between a pair of models. Given a pool of
models, an all-versus-all MaxSub calculation is performed to determine the simi-
larity of every model to one another. The model with the highest similarity to all
other models is the 3D-Jury (‘best’) model. There are variants to this approach to
cope with very large pools (thousands or tens of thousands) and to generate mul-
tiple top solutions (hierarchical clustering followed by centroid detection), but all
share a common principle: recurring features are more likely to be correct than
rarely observed features. Hence models with the largest numbers of recurring
features across the pool are likely to be closest to the native structure.

Following the success of clustering, further research efforts focussed on the more
general problem of model selection, creating a sub-field of model quality
assessment.

3.4.1.2 Model Quality Assessment Programs (MQAPs)

Before explaining the general principle of MQAPs, an aside is appropriate:
The protein structure prediction problem is about generating a structure for a

sequence and we have seen how difficult that is because of our lack of fundamental
understanding of the mechanisms of folding. Although MQAPs may appear at first
to be a technical addendum to a structure prediction protocol, they are much more
than that. MQAPs are the protein structure prediction problem in another guise.
Hypothetically, if one had a perfect method for assigning quality to a protein model,
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then the structure prediction problem would be largely solved. All that would be
required would be to generate models blindly and keep the ones with the best
quality score. Although model generation is not trivial, having a system that could
tell you how right or wrong a model was would solve the chief problem.
Unsurprisingly, just like folding, model quality assessment is a notoriously difficult
problem and many techniques have been employed to tackle it.

The sub-field of ‘model quality assessment’ is itself assessed at CASP as a
separate category of problem (Kryshtafovych et al. 2014) and is a subject in its own
right and so only a brief treatment of the subject will be given here. There are two
broad categories of MQAP: single-model and multi-model. Single-model MQAP
systems look only at the 3D coordinates and amino acid types of an individual
model and produce a confidence score. ‘Multi-model’ systems look at a pool of
models generated for the same sequence often from multiple templates and align-
ment algorithms. Multi-model systems typically outperform single-model systems
as they have access to a distribution of models. We have seen already regarding
clustering how this distribution contains valuable information on which regions are
likely to be correct or incorrect in the model. This is the principle reason
multi-model MQAPs surpass single-model methods. This in turn explains the rel-
ative success of methods that use a range of fold recognition algorithms
(I-TASSER, MULTICOM) to generate a pool of candidate models. This pool
contains rich information beyond that which a single alignment technique can
produce and this information can be teased out by clustering or multi-model
MQAPs.

The underlying methodology of an MQAP usually falls into one of two cate-
gories: (1) empirical potential-based or (2) empirical potentials + sequence/struc-
ture features + machine learning. Earlier we have seen how empirical potentials can
be used to assign a ‘score’ to a model. A wide range of empirical potentials have
been derived for this problem each with their own strengths and weaknesses. It
should come as no surprise then that often a consensus of such energy functions is
used in practice. Commonly used potentials include DOPE (Shen and Sali 2006)
and DFIRE (Zhang et al. 2004). For category (2), a wide range of structural ‘fea-
tures’ are calculated from a model or set of models. Features may include: solvent
accessibility, residue type, packing angles, torsion angles, secondary structure
types, frequency of observation across models etc. In addition, features may be
position-specific (i.e. per-residue) or global features of the model (e.g. globularity
or percentage of exposed hydrophobics). These features are combined with
empirical energy scores to train a machine learning system (often a support vector
machine or neural network) to discriminate between good and bad models. The
trained machine learning model is then used to assign a score to a given model or
pool of models. Examples of widely used MQAPs include: Modfold (McGuffin
2009), Pcons (Larsson et al. 2011), ProQ2 (Wallner et al. 2003) and QMEAN
(Benkert et al. 2009).
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3.4.1.3 Combining Models Optimally—Multiple Template Modelling

Clustering and model selection by MQAPs can reduce a large pool of candidates
into a manageable subset containing an enriched level of high quality models. But
how best to combine the information from these models to create a final prediction
that is both protein-like and reflects the conformational distribution of the input
models?

Multiple template modelling has been around for many years beginning in the
area of comparative or close-homology modelling. Here a set of highly similar,
typically high sequence similarity templates are superposed and this superposition
used to guide the model building. This was first established as a technique in
programs such as Comparer (Sutcliffe et al. 1987) and Modeller (Sali and Blundell
1993) and is described in detail in Chap. 4. The guiding principle here is similar to
that of clustering. A pool of candidate solutions (input models) describes a prob-
ability distribution for the potential positions of atoms in space. The challenge is to
use information from that distribution to generate a self-consistent 3D model that
simultaneously adheres as closely as possible to that distribution whilst also
adhering to basic principles of protein structure. We will see in 3.4.2 how the de
facto standard tool Modeller is still widely employed, but so are unique methods
such as that of Phyre, I-TASSER and Robetta.

It is at the stage of combining multiple models that the problem of template-free
modelling begins to impinge on the problem of fold recognition. Fold recognition
lies in the intermediately difficult regime of structure prediction between homology
modelling and template-free prediction. In the fold recognition regime there will
thus often be regions, sometimes of substantial length, that need to be modelled in
the absence of a template. This problem is usually tackled within the
multiple-template modelling component of the prediction pipeline. As a result,
although template-free modelling is given a thorough treatment in Chap. 1, it will
be unavoidable to touch upon it in the next section. Now let us turn to how all three
techniques, clustering, MQAPs and multiple-template modelling are applied in
practice in various combinations in the leading systems.

3.4.2 Post-processing in Practice

This section delves into some of the gory details of approaches used by the leading
groups. As such it is not for the faint of heart but persevering with it I hope will be
rewarding and at least give a somewhat accurate flavour of the lengths (or depths) to
which this field has striven for the sake of model accuracy.

In Phyre, multiple models are chosen so as to simultaneously maximise the
confidence in the models chosen and the coverage of the target protein. Confidence
values in this case are taken directly from HHsearch without the use of an explicit
MQAP. The resultant subset of high confidence, high coverage models provides a
set of confidence-weighted distance constraints. These distances are treated like
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linear elastic springs in the Phyre module called Poing (Jefferys et al. 2010). Poing
is a simplified, fast folding simulator that reduces the protein representation to a
‘beads-on-a-string’ model where a residue is described by two spheres: a virtual
alpha-carbon and a virtual sidechain. The protein is ‘synthesised’ one residue at a
time from a virtual ‘ribosome’ (a large heavy sphere) in the context of springs
representing the distance constraints taken from the input models. This synthesis
model is not expected to reflect reality but instead is a useful computational tech-
nique to prevent the system from becoming tangled as the distance constraints are
slowly introduced. The aim of this approach is to generate a protein-like model that
reflects as closely as possible the distances observed in the input models whilst
preventing clashes and non-native like local conformations. Unconstrained,
template-free regions are encouraged to adopt their predicted secondary structure
and to be buried if hydrophobic using a solvent bombardment model. More details
are available in (Jefferys et al. 2010).

RaptorX (Kallberg et al. 2014) uses Modeller to construct models for high
ranking target-template alignments and re-ranks these models using a neural net-
work MQAP to predict model quality. The MQAP takes as input the contexts of
two sequence residues and yields their distance probability distribution. The context
of one residue includes sequence profile, predicted secondary structure and amino
acid chemical properties in a local window centered at the residue of interest.

In HHpred (Soding et al. 2005), a similar approach to trying to maximise target
coverage with a minimum number of confident templates is used. However, in this
case the first template chosen is selected by a regression neural network (an MQAP)
that predicts the model quality based on four input features from the HHsearch
results: HHsearch raw score, secondary structure score, template resolution, and
length-normalized sum of posterior probabilities over all aligned residues.
Subsequent models are chosen that have high confidence from HHsearch and that
cover extra regions of the target whilst trying to minimise the total number of
templates used.

These chosen templates are then input to a modified Modeller protocol. Modeller
by default treats all input constraints from models as of equal merit. In HHpred, this
is modified so that distance constraints reflect position specific alignment confi-
dence. Hence lower quality constraints from weak HMM-HMM alignments are
treated as weaker within Modeller, placing greater strength on constraints from
confident templates (Meier and Soding 2015a).

The MULTICOM suite of tools and servers constitute a large array of individual
methods. A key feature is the heavy use of MQAPs. In MULTICOM, a large pool
of candidate models is available from many core alignment algorithms. Models
generated are assessed by up to 14 different MQAPs (ModFOLDclust, ProQ2,
Pcons, and many more) Each method produces a ranking of models and a con-
sensus of this ranking is used as a final selection criteria. In cases of particularly
difficult targets where templates were undetectable, this pool is supplemented by
hundreds of template-free models generated by Rosetta (Rohl et al. 2004) Model
combination is again done using Modeller but in its default setting. Here it seems

80 L.A. Kelley



the large input pool from many fold recognition techniques plus careful selection of
models using MQAPs is a key to performance.

In Robetta, the central technique for creating a final model is a combination of a
highly refined empirical energy function and a conformational sampling technique
that uses both template-based models and an approach called fragment assembly.
Fragment assembly forms the core of the Baker group’s approach to template-free
modelling and will be briefly described here. A more complete description is
available in Chap. 1. Robetta is named after the Baker group’s suite of tools called
Rosetta and stands loosely for ‘Robot Rosetta’ to indicate how it is an automated
server in CASP.

To perform fragment assembly, a protein sequence is first divided into short
(typically 3- and 9-residue) overlapping fragments of sequence. These fragments
are modelled using similar approaches to those for fold recognition, creating for
each fragment, a pool of candidate local conformations. In a free modelling context
where no templates are available, these fragment pools are used as a source of
potential conformations: the aim being to combine these fragments in such a way as
to build a protein model with high score according to a wide range of empirical
potentials/energy functions. The principle operating here is that most or all viable
local conformations of proteins are available in the current PDB. Again this is an
empirical approach: using the known structures to indirectly tell us what confor-
mations are acceptable. By sampling fragments at different positions along the
target chain and inserting them into the nascent model, the model in its entirety
explores conformational space. However it does this only by visiting ‘allowed’
local regions because of the use of native structural fragments. This thus drastically
reduces the search space required for exploration.

In the fold recognition regime, where one or more candidate templates are
available, a mixed approach is used. The template-based models are clustered, and
distance restraints from these templates are calculated. These models are then
fragmented at secondary structure boundaries, generating large fragments. These
larger chunks supplement the small 9-residue fragments and form two pools of
likely conformations. During modelling these different pools are sampled with
small template-free fragments applied to those regions not covered by a template; to
‘fill in the gaps’ using a free modelling approach where fold recognition fails.
Fragments are selected or rejected during modelling using a combination of the
sophisticated Rosetta empirical energy function and distance-based restraints from
templates.

This process is repeated often thousands of times and final models are selected
by clustering the best scoring 100 models from each topologically distinct align-
ment cluster, and then averaging the models within each cluster. Finally, these
averaged structures are refined using another Rosetta protocol tuned to make minor
adjustments to ensure local protein-like geometry whilst preserving overall topol-
ogy. This three-step approach of clustering, averaging and refinement was pio-
neered by I-TASSER as described below.

In Zhang_server (I-TASSER), the result of its many fold recognition algorithms
is a set of models ranked by confidence. Each model is segregated at gap points into
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contiguous template-based (sub-)models. These are the large ‘fragments’. The
conformation of these regions is fixed. However they are allowed to rotate and
translate freely, as rigid bodies, in the I-TASSER simulation. The regions without
such fragments are modelled on a lattice to reduce search space. Ab initio modelled
residues connect the larger, more confident template based ‘chunks’. The simulation
allows these uncertain regions to move within the lattice, which in turn alters the
packing of the larger more confident chunks. Throughout, the varying model is
assessed by a battery of energy functions: the aim being to be able to pack these
chunks of confident structure together in such a way as to resemble known protein
structures.

A large number of these simulations are performed and the resulting models
clustered by their program Spicker (Zhang and Skolnick 2004). The clusters with
the most members are expected to be closest to the native. For these selected
clusters an averaged structure is produced. This average is searched structurally
against the Protein Data Bank of known structures to find similar native structures.
Restraints from these known structures are pooled with those from the average as
well as the original set of input models and all of this information sent back into the
simulation for another round. The output is clustered again, representatives selected
and then refined using a fragment-based technique called Modrefiner (Xu and
Zhang 2011). The models output are finally ranked by several MQAPs [DOPE
(Shen and Sali 2006), Rwplus (Zhang and Zhang 2010), GOAP (Zhou and Skolnick
2011)], a consensus of which is used to make a final selection. If you the reader
have made it this far, then congratulations are in order!

This system, which remember is also the undisputed leader in the field for some
years, illustrates a number of successful principles. We see extensive use of con-
sensus as a predictor of structure—15 different recognition algorithms used to find
and align templates. Not only that, but we see a delicate balance of simulation,
clustering, and selection, and how entire modules of the protocol are iterated. All of
this is geared towards finding a consensus in noisy data: Use all the tools available
to make a set of structural guesses, combine those guesses, cluster them, select
subsets, assess them, combine again etc. (Fig. 3.4). It is in this area I have termed
‘post-processing’ on which much of the development in leading methods has been
focussed. In light of the complexity of approaches such as I-TASSER and Robetta,
I personally hope we will, through better understanding of why these approaches
succeed, be able to streamline and simplify this stage of modelling in the future; if
for no other reason than to spare the sanity of future researchers.

3.4.3 Use of Contacts

In Sect. 3.1.2 I mentioned a recent breakthrough in our ability to predict which
residues are in contact from sequence information alone. I deliberately didn’t
include their use in the above pipelines for fear of making an already complicated
description completely incomprehensible. However, in the last 2 years we have
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Fig. 3.4 General flow of structure prediction for a typical CASP predictor. Initial models are
produced, sometimes using a range of methods and often integrating 3 levels of information from
primary, secondary and tertiary sources, as described in Sects. 3.3 and 3.4. This large model pool
is often refined using clustering and/or model quality assessment programs (MQAPs). Finally this
refined pool of models are often used as input to multiple template modelling programs such as
Modeller
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begun to see the first attempts to slot in this new and potentially valuable source of
information into existing prediction pipelines.

In I-TASSER, for ‘hard’ or ‘very hard’ targets (their internal classification)
predicted contacts from several programs are used to supplement distance con-
straints from templates. In Robetta, the group’s own GREMLIN (Kamisetty et al.
2013) program is used to predict contacts, the clusters are re-ranked using this
information, and the spatial restraints are supplemented with the predicted contacts.
In Phyre, predicted contacts are also used to augment the constraint springs in the
sub-module Poing.

It was expected by some at the last CASP11, this author included, that this new
information would lead to a dramatic improvement in prediction accuracy.
However, with the exception of one notable case in the free modelling section of
CASP, it was far from clear whether this contact information had any significant
impact. The reasons for this are interesting.

To predict contacts with a useful level of accuracy requires a substantial number
of sequence homologues: typically >500 as a minimum and >1000 ideally. In
addition, these homologues must demonstrate significant diversity—1000 virtually
identical homologues provide little useful information. This large number is
required to garner a sufficient statistical signal of mutational correlation between
positions.

However, a large number of sequence homologues for a target indicates a protein
that is widespread across organisms. This in turn indicates a protein that is likely to
both (a) have a powerful sequence profile or HMM and (b) a protein likely to have
had at least one of its homologues already structurally determined experimentally as
it is likely to be well studied due to its presence in many organisms. In short,
proteins with large number of homologues in the sequence database are likely to
already be relatively easy to model by existing template-based approaches. Thus, in
such cases the addition of a relatively noisy signal from predicted contacts is
unlikely to have any significant impact on the final predicted, already high, model
accuracy.

The hardest modelling targets in fold recognition tend to be those for which no
template can be confidently detected. This is often caused by poorly characterised
profiles or HMMs, in turn caused by few sequence homologues. These also of
course are the proteins for which contact prediction fails. In this light, the current
modest impact of contact prediction on structure prediction is not altogether sur-
prising. However, new approaches that attempt to use contact information in a
different manner show promise. One avenue is described below.

3.4.3.1 From Sequence to Profiles to Contact Maps

Recent work in our own lab has investigated whether predicted contacts can be used
in an approach directly analogous to classic fold recognition. Instead of comparing
a protein HMM to a library of HMMs of known structure, we substitute HMMs for
predicted and known contact maps. This involves developing techniques that can

84 L.A. Kelley



accurately align a (often noisy) predicted contact map with a template contact
map. The technical challenges of overcoming prediction noise in the contact map
and aligning two-dimensional (contact maps) rather than 1-dimensional (sequences)
objects are non-trivial. However, methods have been developed [e.g. Al-eigen (Di
Lena et al. 2010)] based on the noise-tolerant approach of eigendecomposition
which show promise.

We are at an early stage of development, but if successful, this new approach
could open a doorway to structure prediction where sequence similarity or even
remote homology is unimportant. Powerful approaches such as HHsearch can
tackle roughly 50% of a typical genome. A sizeable proportion of the remaining
50% is likely to consist of proteins of known folds but with sequence similarity so
remote that templates cannot be detected.

The contact map approach we are pursuing, called PhyrePower, is completely
agnostic regarding sequence similarity. It operates solely in the space of
contacts/structure. Preliminary results suggest that in almost 50% of cases, this
method can detect appropriate templates completely missed by state-of-the-art
sequence approaches such as HHsearch. Even when there are few homologous
sequences and thus a poor contact prediction, the new method is able to correctly
detect templates, although challenges of alignment accuracy remain. We will have
to wait and see how this area develops.

3.5 Tools for Fold Recognition on the Web

All of the foregoing discussion is centred on methods that perform well in
CASP. This has been helpful to focus attention on the developments in the field and
how the boundaries of accuracy are being consistently pushed. However, it is
critical to understand that for most biologists and most modelling tasks, the dif-
ferences in accuracy reflected in CASP between the very best methods and the
majority of methods are completely unimportant. Almost all of the methods in the
top half of CASP assessed servers will produce excellent models, except in the
hardest cases, whose minor differences are largely inconsequential for what many
biologists want a model for. In the hardest cases, the top CASP methods may
produce a useable model. But in such cases the confidence estimates are usually
very low. In CASP, confidence estimates are largely ignored. In the real world, they
matter enormously in determining whether a researcher trusts a prediction enough
to pursue a subsequent experiment that may consume substantial time, money and
effort. Although the top CASP methods can sometimes produce superior models
where other methods fail, typically they can’t tell you when this is so.

Biologists need tools that are largely in step with state-of-the-art, but more
crucially, they need tools that are easy to use, understand, navigate, and that return
results in a reasonable timeframe. In addition these tools need to be kept up-to-date
with the ever-increasing databases of structure and sequence, and be maintained as
a viable service. Very often we find servers in CASP that perform well only to
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discover that as web services, they are transient and disappear as soon as CASP is
over or funding has run out. In this light I have chosen a handful of publicly
available, maintained, easy to use servers (Table 3.1).

We have seen how consensus in all its forms drives much of the success of the
techniques described. This applies to users as well. In general, from a biologist/user
perspective, it is unwise to place all one’s trust in a single tool/server. For any
modelling problem where there is any significant doubt about the result, it is safest
to employ a range of leading methods and assess their mutual agreement before
drawing conclusions.

3.6 The Future

In this chapter we have seen how a diverse set of ideas has been used to tackle the
problem of protein structure prediction in the absence of clear sequence similarity.
Enormous research efforts have gone into detecting homology between divergent
proteins whose common ancestor has vanished millions of years previous. We only
have available to us those proteins that exist now. Yet the variety we observe in the
proteins of today’s organisms gives us insight into the past. We have access only to
the leaves on the tree of life. But by analysing sets of nearby leaves we can create a
statistical model of what existed closer to the trunk. By taking two apparently
unrelated leaves from the tree, we can show they are connected by a common
branch. This is HMM-HMM matching.

As genomic sequencing continues, our picture of the current leaves on the tree of
life becomes ever more detailed. As this detail increases, we improve in our ability
to move up the tree and discover the connections between different branches.
Current methods such as HHsearch are able to detect homology to known structures
for about 50% of a typical proteome. This fraction will continue to rise for a number
of reasons.

As sequencing continues, the profiles or HMMs we can construct for a protein
will improve in accuracy and thus recognition power. As we refine our techniques
to capture contextual links both close and far in a sequence, we improve our

Table 3.1 Selected Fold Recognition (FR) servers

Server name Web address Consensus/single FR/ab initio

HHpred toolkit.tuebingen.mpg.de/hhpred Single FR

I-TASSER zhanglab.ccmb.med.umich.edu/I-TASSER Consensus FR + ab initio

PCONS pcons.net Consensus FR

pGenThreader bioinf.cs.ucl.ac.uk/psipred Single FR

Phyre2 www.imperial.ac.uk/phyre2 Single FR + ab initio

RaptorX raptorx.uchicago.edu Single FR

Robetta robetta.bakerlab.org Consensus FR + ab initio
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‘evolutionary fingerprint’ of a protein. HMMs and simpler profiles capture infor-
mation for each position in a protein sequence. But there appears to be important
contextual information as well. A single residue position does not exist in isolation.
Secondary structure for example, is determined by sequence context and we have
seen how widespread the use of secondary structure matching is in leading meth-
ods. Tools are now being developed that harness this contextual information
explicitly and it shall be interesting to see how this approach develops.

Beyond local context, positions distant in sequence can leave traces on one
another in the form of correlations in mutations aka evolutionary covariance. And
this in turn reveals signals indicating contacts in 3D space. The work in this area has
exploded in recent years and holds out much hope for a leap in structure prediction
accuracy.

Although growing far more slowly than sequence data, structure data also
continues to increase. As more proteins are structurally solved by experiment, our
database of ‘answers’ grows and our likelihood of finding a known homologous
structure improves as a result.

Finally we see the amount of effort that has been placed on selecting and
combining models, using the power of consensus and variation to refine our picture
of the probability distribution for a protein model. Navigating through this distri-
bution to construct a model that best reflects what we know from templates and
empirically derived energies is an active area.

However, there may be a limit to how far this general approach will succeed. We
are discovering a large number of proteins exhibit a considerable degree of intrinsic
disorder (see Chap. 6). Such proteins cannot be meaningfully structurally modelled
by any of the approaches described in this chapter. In addition, many proteins are
rare and occur only in a relatively small number of organisms. For such cases our
knowledge of the mutational preferences in the protein are limited by few
homologous sequences. Here neither profiles/HMMs nor contact prediction is of
much value. The proportion of proteins in a typical genome that fall into this
category of protein ‘dark matter’ is uncertain, but work in this area is beginning to
shed some light (Perdigao et al. 2015). But it is clear that the approaches described
in this chapter will never be able to produce accurate models for all proteins nor be
able to design new protein folds. For that we require a deeper understanding of
folding and a method that does not rely on copying structure based on homology.

The desire to ‘solve’ the protein folding problem is alive and well as one of the
holy grails of molecular biology. To understand protein folding is to understand
how the ‘software’ of DNA becomes the ‘hardware’ of functional proteins. It is to
understand, at a fundamental level, the nature of living things. However, there may
be no elegant solution to the protein folding problem. Nature does not necessarily
find an elegant solution; simply one that works. Reluctantly, we may have to be
satisfied with a complex predictive framework. Nevertheless the hope for a simple,
computationally tractable and hitherto undiscovered explanation for protein folding
remains strong.
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Chapter 4
Comparative Protein Structure Modelling

András Fiser

Abstract A prerequisite to understand cell functioning on the system level is the
knowledge of three-dimensional protein structures that mediate biochemical inter-
actions. The explosion in the number of available gene sequences set the stage for
the next step in genome scale projects, to obtain three dimensional structures for
each protein. To achieve this ambitious goal, the costly and slow structure deter-
mination experiments are boosted with theoretical approaches. The current state and
recent advances in structure modelling approaches are reviewed here, with special
emphasis on comparative structure modelling techniques.

Keywords Comparative protein structure modelling � Homology modelling �
Template-based modelling � Loop modelling

4.1 Introduction

4.1.1 Structure Determines Function

Functional characterization of proteins is one of the most frequent problems in
biology. While sequences provide valuable information, their high plasticity makes
it frequently impossible to identify functionally relevant residues (Todd et al. 2002).
For example in case of enzymes, a similar function can be assumed between two
proteins if their sequence identity is above 40%, but if the sequence identity drops
in between 30 and 40% only the first three Enzyme Commission (EC) numbers can
be predicted reliably, and only at 90% accuracy level. Below 30% sequence
identity, structural information is necessary to essential for functional annotation.
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Meanwhile it is estimated that 75% of homologous enzymes share less than 30%
identical positions (Todd et al. 2001). Another quantitative study on sequence and
function divergence was based on the Gene Ontology classification of function in
6828 protein families (Sangar et al. 2007). It was confirmed that among homolo-
gous proteins, the proportion of divergent functions decreases dramatically if a
threshold of sequence identity is 50% or higher. However, even for proteins with
more than 50% sequence identity, transfer of annotation between homologs leads to
an erroneous attribution with a totally dissimilar function in 6% of cases. Where the
function of a protein is specific binding to another, the sequence similarity is even
less informative guide to function. For instance, the systematic functional clustering
of all cell surface-expressed Immunoglobulin SuperFamily proteins (IgSF) revealed
examples where proteins with unrelated binding specificity shared more similarity
than the ones with identical binding specificity (Yap et al. 2014). The ectodomains
of CD80 and the functionally related CD86 ligands (both are cognate ligands of
CTLA4 receptor) share only 27% sequence identity, whereas CD80 shares greater
than 27% sequence identity with other, functionally unrelated IgSF proteins such as
IgSF DCC subclass member 4 (IGDC4) and neural cell adhesion molecule L1
(L1CAM) (Hlavin and Lemmon 1991).

Functional characterization of a protein is often facilitated by its three-
dimensional (3D) structure. The insight that one may gain from a 3D model ranges
from such low level functional descriptions as confirming the fold (Wu et al. 2000)
and inferring a general functional role (Fajardo and Fiser 2013), to such high
resolution descriptions that allow understanding ligand specificities (Xu et al. 1996)
and designing inhibitors in the context of structure based drug discovery (Evers
et al. 2003; Becker et al. 2006; Norin and Sundstrom 2001; Wlodawer 2002;
Schwede et al. 2009). Finally, structures aid progress towards a higher level
understanding of proteomes through analysis of macromolecular assemblies
(Stein et al. 2011).

4.1.2 Sequences, Structures, Structural Genomics

Genome scale sequencing projects have already produced around 60 million unique
sequences to date (February, 2015) (Apweiler et al. 2004), substantially boosted by
metagenomic data, that originally were obtained from Craig Venter’s Global Ocean
Survey (Rusch et al. 2007; Yooseph et al. 2007; Venter et al. 2004) but are now
widely collected from a number of sources. The non-redundant sequence database
has increased a staggering 100 fold between 2000 and 2015 (Khafizov et al. 2014)
and is doubling every *18 months (Levitt 2009; Khafizov et al. 2014). Meanwhile
only *120,000 of these proteins have their three-dimensional structures solved
experimentally using X-ray crystallography or Nuclear Magnetic Resonance
(NMR) spectroscopy (Berman et al. 2007). Because of the inherently
time-consuming and complicated nature of structure determination techniques, and
the less predictable outcomes of these experiments the fraction of known 3D
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models is expected to further shrink from the current level of less than 0.25%.
Statistics available from large scale efforts of Structural Genomics (SG) centres
show that the average success rate of obtaining a structure for a target sequence is
only 3–5% (Service 2005), which suggest that even with unlimited resources the
structural annotation of all sequences is not feasible with current technologies.

Over the past decade, all structural biology efforts, including structural genomics
(Nair et al. 2009), have led to an overall increase in the structural coverage of
existing proteins from *30 to 40% at the residue level, despite the huge growth of
the underlying sequence database. However, when redundancy is removed by
clustering the entries at 50% sequence identity, the structural coverage exhibits only
a modest increase, from 13.3% in 2001 to *18% by 2013. With existing tech-
nologies and strategies, we project (Khafizov et al. 2014) that it would take 15 years
to reach a level of *55% coverage, the level shown to provide considerable utility
for defining large-scale functional characterization of organism-specific properties
[e.g., the full metabolic network in T. maritima (Zhang et al. 2009)]. However,
these efforts are now predicted to take twice as long due to the current winding
down of US-based SG efforts after 15 years of operation: SG centres contributed
50–60% of novel coverage despite accounting for less than 10% of all structure
depositions (Khafizov et al. 2014).

The prospects for increasing structural coverage are tied to the applicability of
homology modeling, which provides more than 99.5% of the currently observed
*40% structural coverage of protein sequences (Khafizov et al. 2014).
Conservation of protein structure is much higher than that of sequence (Chothia and
Lesk 1986; Illergard et al. 2009), which results in a comparatively small number of
distinct structural families (Grant et al. 2004). The size distribution of protein fold
families is very uneven and the most frequently occurring folds (e.g.,
Immunoglobulin, TIM barrel, Rossmann fold) have likely already been identified
(Andreeva et al. 2008; Zhang and Skolnick 2005). In a typical genome the 10 most
populous superfolds cover a third of the protein sequences (Cuff et al. 2011).
Therefore, homology modelling can provide structural models for thousands of
proteins in a typical genome using only a few dozen popular folds as templates, and
it is currently the vastly predominant source of three-dimensional models (Pieper
et al. 2006; Kopp and Schwede 2006). However, the usefulness of homology
modelling is expected to exponentially decrease in the future as smaller and smaller
protein families or “singletons” need to be modelled. These latter proteins either
require a targeted experimental exploration, which is often cost prohibitive, or must
be modelled by ab initio or “template-free” style approaches (see Chap. 1).
However, these approaches are currently suitable to model only relatively small
proteins and have a limited success rate (Kryshtafovych et al. 2014; Tai et al. 2014).
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4.1.3 Approaches to Protein Structure Prediction

The study of principles that dictate the three-dimensional structure of natural pro-
teins can be approached either through the laws of physics or the theory of evo-
lution. Each of these approaches provides foundation for a class of protein structure
prediction methods (Fiser et al. 2002).

The first approach, ab initio or template-free modelling methods, discussed in
Chap. 1, predicts the structure from sequence alone (Pillardy et al. 2001). The
ab initio methods assume that the native structure corresponds to the global free
energy minimum accessible during the lifespan of the protein, and attempt to find
this minimum by an exploration of many conceivable protein conformations (Sali
et al. 1994; Dill and Chan 1997; Bonneau and Baker 2001).

The second class of methods, called template-based modelling, includes both
those threading techniques that return a full three dimensional description for the
target (Xu et al. 2007)—see also Chap. 3—and comparative modelling (Fiser
2004). This class relies on detectable similarity spanning most of the modelled
sequence and at least one known structure. Comparative modelling refers to those
template-based modelling cases when not only the fold is determined from a
possible set of available templates, but a full atom model is built (Marti-Renom
et al. 2000). When the structure of at least one protein in the family has been
determined by experimentation, the other members of the family can be modelled
based on their alignment to the known structure. Comparative modelling approach
to protein structure prediction is possible because a small change in the protein
sequence usually results in a small change in its 3D structure (Chothia and Lesk
1986). It is also facilitated by the fact that 3D structure of proteins from the same
family is more conserved than their amino-acid sequences (Lesk and Chothia
1980). Therefore, if similarity between two proteins is detectable at the sequence
level, structural similarity can usually be assumed. The increasing applicability of
comparative or template-based modelling is due to the observation that the number
of different folds that proteins adopt is rather limited (Andreeva et al. 2008; Chothia
et al. 2003; Greene et al. 2007).

Both of these approaches to structure prediction have their advantages and limi-
tations. In principle, ab initio approach can be applied to model any sequence.
However, due to the complexity and our limited understanding of the protein folding
problem, ab initio methods usually result in relatively low resolution models. Despite
significant progress in ab initio protein structure prediction (Das et al. 2007), it
remains applicable to a limited number of sequences of approximately 100 residues.
Benchmarks at recent Critical Assessment of Techniques for Structure Prediction
(CASP) experiments indicate that ab initio techniques still cannot get the overall fold
correct for the majority of targets (Kryshtafovych et al. 2014; Tai et al. 2014). Our
increasing understanding about the accuracy and performance of currently available
force fields and sampling techniques should be acknowledged as being due, in sub-
stantial part, to the stunning improvement in computational capacity (Piana et al.
2012, 2014; Shaw et al. 2010). To further exploit this resource several “largest ever”
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studies took off recently that expected to provide further critical insights into the
folding process. These involve among others the Rosetta@home (http://boinc.
bakerlab.org/rosetta/), Folding@home (http://folding.stanford.edu/) and the IBM
supported Blue Gene projects. In the Rosetta@home and Folding@home projects the
process of protein folding or modelling is studied by running simulations on volun-
tarily contributing private computers, connecting up to a million CPUs worldwide.
IBM established a similar scientific target by building Blue Gene, a computer farm of
processors with an estimated 20,000 teraflops peak performance (Sequoia). Currently
various flavours of Blue Gene computers occupy a total of 4 of the top 10 positions in
the TOP500 supercomputer list (http://www.research.ibm.com/bluegene/ and http://
www.top500.org/).

In contrast to ab initio techniques comparative protein structure modelling
usually provides models that are comparable to low resolution X-ray crystallog-
raphy or medium resolution NMR solution structures. However, its applicability is
limited to those sequences that can be confidently mapped to known structures.
Currently, the probability of finding related proteins of known structure for a
sequence picked randomly from a genome ranges approximately from 30 to 80%,
depending on the genome. Approximately 70% of all known sequences have at
least one domain that is detectably related to at least one protein of known structure
(Pieper et al. 2006). This fraction is more than two order of magnitude larger than
the number of experimentally determined protein structures deposited in the Protein
Data Bank (Berman et al. 2007). The applicability of comparative modelling is
steadily increasing because the increasing number of experimentally determined
novel structures.

As we will see, in practice, template based modelling always includes infor-
mation that is independent from the template, in form of various force restraints
from general statistical observations or molecular mechanical force fields. As a
consequence of improving force fields and search algorithms the most successful
approaches are more and more often explore template independent conformational
space (Zhang 2007; Das et al. 2007). Similarly, the most successful ab initio
approaches, in fact, are using fragments of known structures to build up models
(Rohl et al. 2004b; Yang et al. 2015; Lee et al. 2011; Zhou and Skolnick 2007) and
as such they should rather be referred as template-free approaches and distinguished
from methods that employ first principles only. While it makes sense to discuss the
two fundamental principles behind the techniques employed in structure modelling
separately, the current trends are pointing to approaches that extensively combine
both. While truly ab initio approaches can shed light on the dynamics of the actual
folding process, in practice, effective structure modelling almost always involves a
certain flavour of template-based modelling.

While template based modeling techniques assumed to be close to their peak
performance (errors in template based models built on 40% or higher sequence
identity templates are comparable to errors observed in experimental models),
template-free modeling methods certainly have room for considerable improvement
(Tai et al. 2014). One trivial way to do that is to obtain additional spatial restrains
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that can aid template-free approaches either at the sampling or at the scoring
evaluation step. These additional restraints can be obtained either computationally
or experimentally. An effective computational way to add restraints is to predict
possible three dimensional contacts from sequence variations. This can be done
efficiently for target sequences for which a large number (i.e. hundreds) of similar
sequences (orthologs and paralogs) are available. In this case the extensive
sequence profile allows to detect co-evolving residues, which often from spatial
contacts in the corresponding structure (Marks et al. 2011; Morcos et al. 2011)
(a detailed overview of these techniques is provided in Chap. 2). Another possible
source to obtain additional spatial restraints is to use fast, semi-high throughput
experiments that can yield indirect spatial restraints. Several such hybrid methods
have been developed recently that primarily utilize NMR experiments, and using
restraints through chemical shift, dipolar coupling or limited NOE information
(Menon et al. 2013; Rohl and Baker 2002; Lange et al. 2012; Bowers et al. 2000).

The benefit of using additional restraints from either limited experimentation or
from co-evolutionary conservation data is that that accuracy of template free
modelling approaches can sometimes dramatically improve and become competi-
tive with those of template-based techniques.

4.2 Steps in Comparative Protein Structure Modelling

Comparative or homology (template-based) protein structure modelling builds a
three-dimensional model for a protein of unknown structure (the target) based on
one or more related proteins of known structure (the templates) (Greer 1981;
Blundell et al. 1987; Marti-Renom et al. 2000; Fiser 2004; Ginalski 2006; Petrey
and Honig 2005). The necessary conditions for getting a useful model are (i) de-
tectable similarity between the target sequence and the sequence of the template
structure and (ii) availability of a correct alignment between them.

All current comparative modelling methods consist of five sequential steps. The
first step is to search for proteins with known 3D structures that are related to the
target sequence. The second step is to pick those structures that will be used as
templates. The third step is to align their sequences with the target sequence. The
fourth step is to build the model for the target sequence given its alignment with the
template structures. The last step is to evaluate the model, using a variety of criteria.

There are several computer programs and web servers that automate the com-
parative modelling process (Table 4.1). While the web servers are convenient and
useful (Battey et al. 2007; Fernandez-Fuentes et al. 2007a; Rai et al. 2006; Zhang
2007), the best results are still obtained by non-automated, expert use of the various
modelling tools (Kopp et al. 2007). Complex decisions for selecting the structurally
and biologically most relevant templates, optimally combining multiple template
information, refining alignments in non trivial cases, selecting segments for loop
modelling, including cofactors and ligands in the model or specifying external
restraints require an expert knowledge that is difficult to fully automate (Fiser and
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Table 4.1 Names and WWW addresses of some online tools useful for various aspects of
comparative modeling

Fold recognition by database searches

PSI- and DELTA-BLAST www.ncbi.nlm.nih.gov/BLAST/

FastA/SSEARCH www.ebi.ac.uk/fasta33

FFAS03 ffas.sanfordburnham.org

HHblits toolkit.tuebingen.mpg.de/hhblits

Fold recognition by threading

PHYRE2 www.sbg.bio.ic.ac.uk/*phyre2/

RaptorX raptorx.uchicago.edu/

LOOPP clsb.ices.utexas.edu/loopp/web/

MUSTER zhanglab.ccmb.med.umich.edu/MUSTER/

SAM-T06 www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html

pGenTHREADER bioinf.cs.ucl.ac.uk/psipred

Sparks sparks-lab.org

FUGUE mizuguchilab.org/fugue/

LOMETS zhanglab.ccmb.med.umich.edu/LOMETS/

Sequence alignment tools

Smith-Waterman jaligner.sourceforge.net/

ClustalW www.clustal.org/clustal2/

MUSCLE www.drive5.com/muscle/

T-COFFEE tcoffee.vital-it.ch

PROMALS prodata.swmed.edu/promals/promals.php

PROBCONS probcons.stanford.edu

SALIGN salilab.org/salign

Comparative modeling, loop and side chain modeling

MMM www.fiserlab.org/servers/MMM

M4T www.fiserlab.org/servers/M4T

MODELLER www.salilab.org/modeller/

MODWEB modbase.compbio.ucsf.edu/modweb/

I-TASSER zhanglab.ccmb.med.umich.edu/I-TASSER/

HHPRED toolkit.tuebingen.mpg.de/hhpred

3D-JIGSAW bmm.crick.ac.uk/*3djigsaw/

CPH-MODELS www.cbs.dtu.dk/services/CPHmodels/

IntFOLD www.reading.ac.uk/bioinf/IntFOLD/

SWISSMODEL swissmodel.expasy.org/workspace

FAMS www.pharm.kitasato-u.ac.jp/fams

PRISM honig.c2b2.columbia.edu/prism

RAPPER mordred.bioc.cam.ac.uk/* rapper

ESYPRED3D www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/

PCONS pcons.net
(continued)
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Sali 2003a) although more and more efforts on automation point to this direction
(Fernandez-Fuentes et al. 2007b; Contreras-Moreira et al. 2003).

4.2.1 Searching for Structures Related
to the Target Sequence

Comparative modelling usually starts by searching the Protein Data Bank
(PDB) (Berman et al. 2007) of known protein structures using the target sequence
as the query. This search is generally done by comparing the target sequence with
the sequence of each of the structures in the database.

There are two main classes of protein comparison methods that are useful in fold
identification. The first class compares the sequences of the target with each of the
database templates independently. This can be done by using pairwise sequence-
sequence comparison (Apostolico and Giancarlo 1998). The performance of these
methods in sequence searching (Pearson 2000; Sauder et al. 2000) and fold
assignments (Brenner et al. 1998) has been evaluated exhaustively. The most
popular programs in the class include FASTA (Pearson 2000) and BLAST
(Schaffer et al. 2001). To improve the sensitivity of the sequence based searches
evolutionary information can be incorporated in form of multiple sequence align-
ment (Rychlewski et al. 2000; Krogh et al. 1994; Henikoff et al. 2000;
Marti-Renom et al. 2004; Altschul et al. 1997). These approaches begin by finding

Table 4.1 (continued)

Loop modeling

ARCHPRED fiserlab.org/servers/archpred

MODLOOP salilab.org/modloop

FALC-LOOP falc-loop.seoklab.org/

FREAD opig.stats.ox.ac.uk/webapps/fread/php/

SUPERLOOPER bioinf-applied.charite.de/superlooper/

Side chain modeling

SCWRL4 dunbrack.fccc.edu/scwrl4/

IRECS irecs.bioinf.mpi-inf.mpg.de/index.php

Model evaluation

PROCHECK www.ebi.ac.uk/thornton-srv/software/PROCHECK/

Prosa-web prosa.services.came.sbg.ac.at/prosa.php

WHATCHECK swift.cmbi.ru.nl/gv/whatcheck

VERIFY3D services.mbi.ucla.edu/Verify_3D/

ANOLEA melolab.org/anolea/

PROQ www.sbc.su.se/*bjornw/ProQ/ProQ.cgi

ModEVAL modbase.compbio.ucsf.edu/evaluation/

Qmean swissmodel.expasy.org/qmean/cgi/index.cgi
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all sequences in a sequence database that are clearly related to the target and easily
aligned with it. The multiple alignment of these sequences is the target sequence
profile, which implicitly carries additional information about the location and
pattern of evolutionary conserved positions of the protein. The most well known
program in this class is PSI-BLAST (Altschul et al. 1997) which implements a
heuristic search algorithm for short motifs and its newer generation version,
delta-BLAST that in addition uses domain specific information (Boratyn et al.
2012). A further step to increase the sensitivity of this approach is to pre-calculate
sequence profiles for all the known structures and then use pairwise dynamic
programming algorithm to compare the two profiles. This has been implemented,
among other programs, in COACH (Edgar and Sjolander 2004) and in FFAS03
(Jaroszewski et al. 1998, 2005). The construction of profile-based Hidden Markov
Models (HMM) is another sensitive way to locate universally conserved motifs
among sequences (Karplus et al. 1998). A substantial improvement in HMM
approaches was achieved by incorporating information about predicted secondary
structural elements (Karchin et al. 2003; Karplus et al. 2005). Another development
in this group of methods is the phylogenetic tree-driven HMM, which selects a
different subset of sequences for profile HMM analysis at each node in the evo-
lutionary tree (Edgar and Sjolander 2003). Important development was the HHblits
sequence search method (Remmert et al. 2012) to compile sequence profiles by
quick and sensitive search of large databases, which profiles then can be used to
perform HMM-HMM alignments against a precompiled database of profiles of
known structures to identify remotely related templates for homology modelling
(Soding 2005). Locating sequence intermediates that are homologous to both
sequences may also enhance the template searches (Sauder et al. 2000; John and
Sali 2004; Rubinstein et al. 2013). These more sensitive fold identification tech-
niques are especially useful for finding significant structural relationships when
sequence identity between the target and the template drops below 25%. More
accurate sequence profiles and structural alignments can be constructed with
consistency-based approaches such as T-Coffee (Moretti et al. 2007) PROMAL
(and PROMAL3D for structures) (Pei et al. 2008; Pei and Grishin 2007), ProbCons
(Do et al. 2005) etc. For reviews of multiple sequence alignments see (Notredame
2007; Edgar and Batzoglou 2006).

The second class of methods relies on pairwise comparison of a protein sequence
and a protein structure; the target sequence is matched against a library of 3D
profiles or threaded through a library of 3D folds. These methods are also called
fold assignment, threading or 3D template matching (Bowie et al. 1991; Jones et al.
1992; Finkelstein and Reva 1991). These methods, discussed in detail in Chap. 2,
are especially useful when sequence profiles are not possible to construct because
there are not enough known sequences that are clearly related to the target or
potential templates.

Template search methods “outperform” the needs of comparative modelling in
the sense that they are able to locate sequences that are so remotely related as to
render construction of a reliable comparative model impossible. The reason for this
is that sequence relationships are often established on short conserved segments,
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while a successful comparative modelling exercise requires an overall correct
alignment for the entire modelled part of the protein. This is an important dis-
tinction between fold recognition and comparative modelling: while both are
template based and deliver a 3D description of the target as a result, fold recognition
aims at identifying the general 3D shape of the target sequence or at least the class
of shapes where it belongs to, while comparative modelling aims at generating an
all atom model for the entire target sequence.

4.2.2 Selecting Templates

Once a list of potential templates is obtained using searching methods, it is nec-
essary to select one or more templates that are appropriate for the particular
modelling problem. Several factors need to be taken into account when selecting a
template.

Considerations in Template Selection
The simplest template selection rule is to select the structure with the highest
sequence similarity to the modelled sequence. The family of proteins that includes
the target and the templates can frequently be organized into sub-families. The
construction of a multiple alignment and a phylogenetic tree (Felsenstein 1981) can
help in selecting the template from the subfamily that is closest to the target
sequence. The similarity between the “environment” of the template and the
environment in which the target needs to be modelled should also be considered.
The term “environment” is used here in a broad sense, including everything that is
not the protein itself (e.g., solvent, pH, ligands, quaternary interactions). If possible,
a template bound to the same or similar ligands as the modelled sequence should
generally be used. The quality of the experimentally determined structure is another
important factor in template selection. Resolution and R-factor of a crystal structure
and the number of restraints per residue for an NMR structure are indicative of their
accuracy. For instance, if two templates have comparable sequence similarity to the
target, the one determined at the highest resolution should generally be used. The
criteria for selecting templates also depend on the purpose of a comparative model.
For example, if a protein-ligand model is to be constructed, the choice of the
template that contains a similar ligand is probably more important than the reso-
lution of the template.

Advantage of Using Multiple Templates
It is not necessary to select only one template. In fact, the optimal use of several
templates increases the model accuracy (Venclovas and Margelevicius 2005;
Sanchez and Sali 1997; Fernandez-Fuentes et al. 2007a, b); however, not all
modelling programs are designed to accept more than one template. The benefit of
combining multiple template structures can be twofold. First, multiple template
structures may be aligned with different domains of the target, with little overlap
between them, in which case, the modelling procedure can construct a
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homology-based model of the whole target sequence. Second, the template struc-
tures may be aligned with the same part of the target and build the model on the
locally best template.

An elaborate way to select suitable templates is to generate and evaluate models
for each candidate template structure and/or their combinations. The optimized
all-atom models can then be evaluated by an energy or scoring function, such as the
Z-score of PROSA (Sippl 1995) or VERIFY3D (Eisenberg et al. 1997). These
scoring methods are often sufficiently accurate to allow selection of the most
accurate of the generated models (Wu et al. 2000). This trial-and-error approach can
be viewed as limited threading (i.e., the target sequence is threaded through similar
template structures). However these approaches are good only at selecting various
templates on a global level.

A recently developed method M4T (Multiple Mapping Method with Multiple
Templates) selects and combines multiple template structures through an iterative
clustering approach that takes into account the “unique” contribution of each
template, their sequence similarity among themselves and to the target sequence,
and their experimental resolution (Fernandez-Fuentes et al. 2007a, b). The resulting
models systematically outperformed models that were based on the single best
template.

Another important observation from this study was that below 40% sequence
identity, models built using multiple templates are more accurate than those built
using a single template only and this trend is accentuated as one moves into more
remote target-template pair cases. Meanwhile the advantage of using multiple
templates gradually disappears above 40% target-template sequence identity cases
(Fig. 4.1). This suggests that in this range the average differences between the
template and target structures are smaller than the average differences among

Fig. 4.1 Comparing
accuracy (y-axis) of models
built for the same set of 765
protein target sequences using
either one template (best
E-value hit only; blue bars),
or multiple templates (green
bars). The percentage of
sequence identity (x-axis) is
calculated between the hit
with the highest E-value and
the query sequence. Error
bars indicate standard errors
of the mean
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alternative template structures that are all highly similar to the target (Fernandez-
Fuentes et al. 2007b).

4.2.3 Sequence to Structure Alignment

To build a model, all comparative modelling programs depend on a list of assumed
structural equivalences between the target and template residues. This list is defined
by the alignment of the target and template sequences. Many template search
methods will produce such an alignment and these sometimes can directly be used
as the input for modelling. Often, however, especially in the difficult cases, this
initial alignment is not the optimal target-template alignment e.g., at less than 30%
sequence identity (where sequence identity is defined as the number of identical
positions in the alignment normalized by the length of the target sequence). Search
methods tend to be tuned for detection of remote relationships, which is often
realized based on a local motif and not for a full length, optimal alignment.
Therefore, once the templates are selected, an alignment method should be used to
align them with the target sequence. The alignment is relatively simple to obtain
when the target-template sequence identity is above 40%. If the target-template
sequence identity is lower than 40%, the alignment accuracy becomes the most
important factor affecting the quality of the resulting model. A misalignment by
only one residue position will result in an error of approximately 4 Å in the model.

Taking Advantage of Structural Information in Alignments
Alignments in comparative modelling represent a unique class, because on one side
of the alignment there is always a 3D structure, the template. Therefore alignments
can be improved by including structural information from the template. For
example, gaps should be avoided in secondary structure elements, in buried regions,
or between two residues that are far in space. Some alignment methods take such
criteria into account (Jennings et al. 2001; Shi et al. 2001; Blake and Cohen 2001).

When multiple template structures are available, a good strategy is to superpose
them with each other first, to obtain a multiple structure-based alignment high-
lighting structurally conserved residues (Petrey et al. 2003; Reddy et al. 2001;
Al-Lazikani et al. 2001). In the next step, the target sequence is aligned with this
multiple structure-based alignment. The benefits of using of multiple structures and
multiple sequences derive from the evolutionary and structural information about
the templates as well as evolutionary information about the target sequence, and
often produces a better alignment for modelling than the pairwise sequence
alignment methods (Sauder et al. 2000; Rychlewski et al. 2000).

Multiple Mapping Method (MMM) directly relies on information from the 3D
structure (Rai and Fiser 2006; Rai et al. 2006). MMM minimizes alignment errors
by selecting and optimally splicing differently aligned fragments from a set of
alternative input alignments. This selection is guided by a scoring function that
determines the preference of each alternatively aligned fragment of the target
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sequence in the structural environment of the template. The scoring function has
four terms, which are used to assess the compatibility of alternative variable seg-
ments in the protein environment: (a) environment specific substitution matrices
from FUGUE (Shi et al. 2001); (b) residue substitution matrix, Blosum (Henikoff
and Henikoff 1992) (c) A 3D-1D substitution matrix, H3P2, that scores the matches
of predicted secondary structure of the target sequence to the observed secondary
structures and accessibility types of the template residues (Luthy et al. 1991); (d) a
statistically derived residue-residue contact energy term (Rykunov and Fiser 2007).
MMM essentially performs a limited and inverse threading of short fragments: in
this exercise the actual question is not the identification of a right fold, but iden-
tification of the correct alignment mapping, among many alternatives, for sequence
segments that are threaded on the same fold. These local mappings are evaluated in
the context of the rest of the model, where alignments provide a consistent solution
and framework for the evaluation.

4.2.4 Model Building

When discussing the model building step within comparative protein structure
modelling it is useful to distinguish two parts: template dependent and template
independent modelling. This distinction is necessary because certain parts of the
target must be built without the aid of any template. These parts correspond to gaps
in the template sequence within the target-template alignment. Modelling of these
regions is commonly referred to as loop modelling problem. It is evident, that these
loops are responsible for the most characteristic differences between the template
and target, and therefore are chiefly responsible for structural and consequently
functional differences. In contrast to these loops, the rest of the target, and in
particular the conserved core of the fold of the target, is built using information
from the template structure. First, we will review a few major approaches of this
latter part, the template dependent modelling. This is also the logical first step
during the building of a model, since the template dependent modelling step pro-
vides a structure for most of the target protein, which then serves as a starting
structural framework for any subsequent loop modelling exercise.

4.2.4.1 Template Dependent Modelling

Modelling by Assembly of Rigid Bodies
The first and still widely used approach in comparative modelling is to assemble a
model from a framework of small number of rigid bodies obtained from the aligned
template protein structures (Greer 1990; Blundell et al. 1987; Browne et al. 1969).
The approach is based on the natural dissection of the protein structure into con-
served core regions, variable loops that connect them, and side chains that decorate
the backbone (Topham et al. 1993). A widely used program in this class is
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COMPOSER (Sutcliffe et al. 1987). The accuracy of a model can be somewhat
increased when more than one template structure is used to construct the framework
and when the templates are averaged into the framework using weights corre-
sponding to their sequence similarities to the target sequence (Srinivasan and
Blundell 1993).

Modelling by Segment Matching or Coordinate Reconstruction
The basis of modelling by coordinate reconstruction is the finding that most
hexapeptide segments of protein structure can be clustered into only 100 struc-
turally different classes (Unger et al. 1989). Thus, comparative models can be
constructed by using a subset of atomic positions from template structures as
“guiding” positions, and by identifying and assembling short, all-atom segments
that fit these guiding positions. The guiding positions usually correspond to the Ca
atoms of the segments that are conserved in the alignment between the template
structure and the target sequence. The all-atom segments that fit the guiding
positions can be obtained either by scanning all the known protein structures,
including those that are not related to the sequence being modelled (Claessens et al.
1989; Holm and Sander 1991), or by a conformational search restrained by an
energy function (van Gelder et al. 1994; Bruccoleri and Karplus 1990). For
example, a general method for modelling by segment matching (SEGMOD) (Levitt
1992) is guided by the positions of some atoms (usually Ca atoms) to find the
matching segments in a representative database of all known protein structures.
This method can construct both main chain and side chain atoms, and can also
model gaps. Even some side chain modelling methods (Chinea et al. 1995) and the
class of loop construction methods based on finding suitable fragments in the
database of known structures (Jones and Thirup 1986) can be seen as segment
matching or coordinate reconstruction methods.

Modelling by Satisfaction of Spatial Restraints
The methods in this class begin by generating many constraints or restraints on the
structure of the target sequence, using its alignment to related protein structures as a
guide. The procedure is conceptually similar to that used in determination of protein
structures from NMR-derived restraints. The restraints are generally obtained by
assuming that the corresponding distances between aligned residues in the template
and the target structures are similar. These homology-derived restraints are usually
supplemented by stereochemical restraints on bond lengths, bond angles, dihedral
angles, and non-bonded atom-atom contacts that are obtained from a molecular
mechanics force field (Brooks et al. 2009). The model is then derived by minimizing
the violations of all the restraints. This can be achieved either by distance geometry
or real-space optimization. For example, an elegant distance geometry approach
constructs all-atom models from lower and upper bounds on distances and dihedral
angles (Havel and Snow 1991). Although further efforts were made to apply distance
geometry for comparative modelling, e.g. (Aszodi and Taylor 1996), more suc-
cessful but also more conservative, real space modelling approaches dominate the
field, perhaps because evolution also proved to be surprisingly conservative in
preserving structural features in various proteins (Kihara and Skolnick 2003).
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Comparative modelling by satisfaction of spatial restraints is implemented in the
computer program MODELLER (Fiser and Sali 2003a; Sali and Blundell 1993),
currently the most popular protein modelling program. In the first step of model
building, distance and dihedral angle restraints on the target sequence are derived
from its alignment with template 3D structures. The form of these restraints was
obtained from a statistical analysis of the relationships between similar protein
structures. By scanning the database of alignments, tables quantifying various
correlations were obtained, such as the correlations between two equivalent Ca-Ca
distances, or between equivalent main chain dihedral angles from two related
proteins (Sali and Blundell 1993). These relationships are expressed as conditional
probability density functions (pdf’s) and can be used directly as spatial restraints.
For example, probabilities for different values of the main chain dihedral angles are
calculated from the type of residue considered, from the main chain conformation
of an equivalent template residue, and from sequence similarity between the two
proteins. An important feature of the method is that the forms of spatial restraints
were obtained empirically, from a database of protein structure alignments, without
any user imposed subjective assumption. Finally, the model is obtained by opti-
mizing the objective function in Cartesian space. The optimization is carried out by
the use of the variable target function method (Braun and Go 1985) employing
methods of conjugate gradients and molecular dynamics with simulated annealing
(Clore et al. 1986).

A similar comprehensive package is NEST that can build a homology model
based on single sequence-template alignment or from multiple templates. It can also
consider different structures for different parts of the target (Petrey et al. 2003).

Benchmarks of comparative modelling programs have shown similar perfor-
mance of major approaches but with Modeller usually outperforming the rest
(Builder, Nest, SegMod, Swiss-Model, 3D-jigsaw) (Dalton and Jackson 2007;
Wallner and Elofsson 2005a)

Combining Alignments, Combining Structures
It is frequently difficult to select the best templates or calculate a good alignment.
One way of improving a comparative model in such cases is to proceed with an
iteration of template selection, alignment, and model building, guided by model
assessment. This iteration can be repeated until no improvement in the model is
detected (Guenther et al. 1997; Fiser and Sali 2003a). More recently these anecdotal
and manual approaches were automated (Petrey et al. 2003). For instance, an
automated method was introduced that optimizes both the alignment and the model
implied by it (John and Sali 2003). This task is achieved by a genetic algorithm
protocol that starts with a set of initial alignments and then iterates through
re-alignment, model building and model assessment to optimize a model assess-
ment score. During this iterative process new alignments are constructed by
application of a number of operators, such as alignment mutations and cross-overs;
comparative models corresponding to these alignments are built and assessed by a
variety of criteria, partly depending on an atomic statistical potential. In another
approach, a genetic algorithm was applied to automatically combine templates and
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alignments. A relatively simple structure dependent scoring function was used to
evaluate the sampled combinations. Despite some limitations, the procedure is
shown to be robust to alignment errors, while simplifying the task of selecting
templates (Contreras-Moreira et al. 2003).

Other attempts to optimize target-template alignments include the Robetta server,
where alignments are generated by dynamic programming using a scoring function
that combines information on many protein features, including a novel measure of
how obligate a sequence region is to the protein fold. By systematically varying the
weights on the different features that contribute to the alignment score, very large
ensembles of diverse alignments are generated. A variety of approaches to select the
best models from the ensemble, including consensus of the alignments, a
hydrophobic burial measure, low- and high-resolution energy functions, and com-
binations of these evaluation methods were explored (Chivian and Baker 2006).

Those meta-server approaches that do not simply score and rank alternative
models obtained from a variety of methods but further combine them could also be
perceived as approaches that explore the alignment and conformational space for a
given target sequence (Kolinski and Bujnicki 2005).

Another alternative for combined servers is provided by M4T. The M4T program
automatically identifies the best templates and explores and optimally splices alter-
native alignments according to its internal scoring function that focuses on the features
of the structural environment of each template (Fernandez-Fuentes et al. 2007b).

Meta-servers
Meta-server approaches have been developed to take advantage of the variety of
other existing programs. Meta-servers collect models from alternative methods and
either use them for inputs to make new models or look for consensus solutions
within them. For instance FAMS-ACE (Terashi et al. 2007) takes inputs from other
servers as starting points for refinement and remodelling after which Verify3D
(Eisenberg et al. 1997) is used to select the most accurate solution. Other consensus
approaches include PCONS, a neural network approach that identifies a consensus
model by combining information on reliability scores and structural similarity of
models obtained from other techniques (Wallner et al. 2007). 3D-JURY operates
along the same idea, its selection is mainly based on the consensus of model
structure similarity (Ginalski et al. 2003).

4.2.4.2 Template Independent Modelling: Modelling Loops, Insertions

In comparative modelling, target sequences often have inserted residues relative to
the template structures or have regions that are structurally different from the cor-
responding regions in the templates. Thus, no structural information about these
inserted segments can be extracted from the template structures. These regions
frequently correspond to surface loops. Loops often play an important role in
defining the functional specificity of a given protein framework, forming the
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functional sites such as antibody complementary determining regions (Rudolph et al.
2006), ligand binding sites (for ATP (Saraste et al. 1990), calcium (Grabarek 2006),
and NAD(P) (Lesk 1995), for example), DNA binding sites (Tainer et al. 1995) or
enzyme active sites [e.g. Ser-Thr kinases (Johnson et al. 1998) or Asp proteases
(Wlodawer et al. 1989)]. The accuracy of loop modelling is a major factor deter-
mining the usefulness of comparative models in applications such as ligand docking
or functional annotation (Fig. 4.2). Loop modelling can be seen as a mini protein
folding problem because the correct conformation of a given segment of a
polypeptide chain has to be calculated mainly from the sequence of the segment
itself. However, loops are generally too short to provide sufficient information about
their local fold—unless a very substantial part of the fragments match sequentially
and a known conformation—and on the other hand, the environment of each loop is
uniquely defined by the solvent and the protein that cradles it. In a few rare cases it
was shown that even identical decapeptides in different proteins do not always have
the same conformation (Mezei 1998; Fernandez-Fuentes and Fiser 2006).

There are two main classes of loop modelling methods: (i) the database search
approaches, where a segment that fits on the anchor core regions is found in a
database of all known protein structures (Jones and Thirup 1986; Chothia and Lesk
1987) and (ii) the conformational search approaches (Shenkin et al. 1987; Moult
and James 1986). There are also methods that combine these two approaches
(Deane and Blundell 2001; van Vlijmen and Karplus 1997; de Bakker et al. 2003).

Fragment Based Approach to Loop Modelling
The database or fragment search approach to loop modelling is accurate and effi-
cient when a database of specific loops is created to address the modelling of the
same class of loops, such as b-hairpins (Sibanda et al. 1989), or loops on a specific
fold, such as the hypervariable regions in the immunoglobulin fold (Chothia et al.
1989). Earlier it was predicted that it is unlikely that structure databanks will ever
reach a point when fragment based approaches become efficient to model loops
(Fidelis et al. 1994), which resulted in a boost in the development of conformational
search approaches from around 2000. However, many details of the fold universe
has been explored during the last decade due to the large number of new folds

Fig. 4.2 Examples of loops (rendered in yellow) that are responsible for functional specificity
within protein superfamilies. From left to right: Flavodoxin, Immunoglobulin, Neuraminidase
from, respectively, the a + b barrel, Ig and antiparallel b-barrel protein fold families
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solved experimentally, which had a profound effect on the extent of known
structural fragments. Recent analyses showed that loop fragments are not only well
represented in current structure databanks but shorter segments are possibly com-
pletely explored already (Du et al. 2003). It was reported that sequence segments up
to 10 residues had a related (i.e. at least 50% identical segment) in PDB with a
known conformation, and despite the six fold increase in sequence databank size
and the doubling of PDB since 2002 there was not a single unique loop confor-
mation entered in the PDB or sequence segment observed that shares less than 50%
sequence identity to a PDB fragment, which indicates that newly sequenced pro-
teins keep recycling the same set of already known short structural segments. All
sequence segments up to 10–12 residues have at least one corresponding structural
segment that shares at least 50% identity thus ensuring structural similarity, except
a very few notable exceptions mentioned above (Fernandez-Fuentes and Fiser
2006). Consequently more recent efforts have tried to classify loop conformations
into more general categories, thus extending the applicability of the database search
approach for more cases (Fernandez-Fuentes et al. 2006a; Michalsky et al. 2003).
A recent work described the advantage of using HMM sequence profiles in clas-
sifying and predicting loops (Espadaler et al. 2004). An another recently published
loop prediction approach first predicts conformation for a query loop sequence and
then structurally aligns the predicted structural fragments to a set of non-redundant
loop structural templates. These sequence-template loop alignments are then
quantitatively evaluated with an artificial neural network model trained on a set of
predictions with known outcomes (Peng and Yang 2007).

ArchPred, perhaps the most accurate database loop modelling approach is briefly
described here (Fernandez-Fuentes et al. 2006a, b). ArchPred exploits a hierarchical
and multidimensional database that has been set up to classify about 300,000 loop
fragments and loop flanking secondary structures. Besides the length of the loops
and types of bracing secondary structures the database is organized along four
internal coordinates, a distance and three types of angles characterizing the
geometry of stem regions (Oliva et al. 1997). Candidate fragments are selected from
this library by matching the length, the types of bracing secondary structures of the
query and satisfying the geometrical restraints of the stems and subsequently
inserted in the query protein framework where their fit is assessed by the root mean
squared deviation (RMSD) of stem regions and by the number of rigid body clashes
with the environment. In the final step, remaining candidate loops are ranked by a
Z-score that combines information on sequence similarity and fit of predicted and
observed //w main chain dihedral angle propensities. Confidence Z-score cut-offs
were determined for each loop length that identify those predicted fragments that
outperform a competitive ab initio method. A web server implements the method,
regularly updates the fragment library and performs predictions. Predicted segments
are returned or, optionally, these can be completed with side chain reconstruction
and subsequently annealed in the environment of the query protein by conjugate
gradient minimization.
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In summary, the recent reports about the more favourable coverage of loop
conformations in the PDB suggest that database approaches are now limited by
their ability to recognize suitable fragments, and not by the lack of these segments
(i.e. sampling), as earlier thought.

Ab Initio Modelling of Loops
To overcome the limitations of the database search methods, conformational search
methods were developed. There are many such methods, exploiting different pro-
tein representations, objective function terms, and optimization or enumeration
algorithms. The search strategies include the minimum perturbation method (Fine
et al. 1986), molecular dynamics simulations (Bruccoleri and Karplus 1987),
genetic algorithms (Ring and Cohen 1993), Monte Carlo and simulated annealing
(Collura et al. 1993; Abagyan and Totrov 1994), multiple-copy simultaneous search
(Zheng et al. 1993), self-consistent field optimization (Koehl and Delarue 1995),
and an enumeration based on the graph theory (Samudrala and Moult 1998). Loop
prediction by optimization is applicable to both simultaneous modelling of several
loops and to those loops interacting with ligands, neither of which is straightfor-
ward for the database search approaches, where fragments are collected from
unrelated structures with different environments.

The MODLOOP module in MODELLER implements the optimization-based
approach (Fiser and Sali 2003b; Fiser et al. 2000). Loop optimization in
MODLOOP relies on conjugate gradients and molecular dynamics with simulated
annealing. The pseudo energy function is a sum of many terms, including some
terms from the CHARMM-22 molecular mechanics force field (Brooks et al. 2009)
and spatial restraints based on distributions of distances (Sippl 1990; Melo and
Feytmans 1997) and dihedral angles in known protein structures. To simulate
comparative modelling problems, the loop modelling procedure was optimized and
evaluated on a large number of loops of known structure both in native and in only
approximately correct environments. The performance of the approach later was
further improved by using CHARMM molecular mechanic forcefield with
Generalized Born (GB) solvation potential to rank final conformations (Fiser et al.
2002). Incorporation of solvation terms in the scoring function was a central theme
in several other subsequent studies (Das and Meirovitch 2003; Forrest and Woolf
2003; DePristo et al. 2003; de Bakker et al. 2003). Improved loop prediction
accuracy resulted from the incorporation of an entropy like term to the scoring
function, the “colony energy”, derived from geometrical comparisons and cluster-
ing of sampled loop conformations (Xiang et al. 2002; Fogolari and Tosatto 2005).
The continuous improvement of scoring functions delivers improving loop mod-
elling methods. Two recent loop modelling procedures have been introduced that
are utilizing the effective statistical pair potential that is encoded in DFIRE (Soto
et al. 2008; Zhang et al. 2004). Very long loops are predicted either using the
Rosetta approach, essentially performing a mini folding exercise for the loop
segments (Rohl et al. 2004a) or, more recently, by the InsEnds method that use
pivot movements of torsion angles to capture the conformation of very long loops
or long terminal segments (Adhikari et al. 2012). In the Prime program large
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numbers of loops are generated by using a dihedral angle-based building procedure
followed by iterative cycles of clustering, side-chain optimization, and complete
energy minimization of selected loop structures using a full atom molecular
mechanic force field (OPLS) with implicit solvation model (Jacobson et al. 2004).
Modeling loops in proteins remains an active topic in the field (Tang et al. 2014).

4.2.4.3 Refining Models

Comparative models are constructed with the best possible set of restraints avail-
able, which is a usually a combination of various template structure dependent
distance and angle restraints combined with molecular mechanic force field terms
and restraints imposed by a variety of statistical potential functions. Because of the
large number of available restraints the problem is overdefined. The model building
step is relatively straightforward and primarily focuses on resolving the conflicting
restraints. In case of MODELLER this is achieved by a combination of conjugate
gradient minimization and molecular dynamics simulation, and concludes a model
typically just within a few minutes. Because of the dominance of template
dependent restraints it is often difficult to generate a model that is more similar on
the backbone accuracy level to the target protein than to the actual template (if one
assumes no alignment errors). It is a difficult task to further refine models because
of the fact that the most accurate restraints and forcefield terms were already used in
model building. It essentially poses the same task as an ab initio modelling problem,
since any novel refinement should take place in a template independent style.
Various studies and a recent survey suggested that most refinements decrease the
accuracy of models (Summa and Levitt 2007), although promising newer studies
suggest that knowledge-based potential of mean force was able to systematically
improve model by a modest 1% GDT_TS (Rodrigues et al. 2012; Chopra et al.
2010). Very recently molecular mechanic energy function was able to improve the
initial model but by a small margin. At a recent CASP meeting it was reported that a
restrained molecular mechanics optimization that employs model averaging has
resulted in a systematic improvement in model quality, albeit only a very small one
(an average of *0.06 Å RMSD improvement) (Mirjalili et al. 2014).

Other promising refinement approaches try to intelligently restrict the confor-
mational search space around the high quality initial model. This can be achieved
by simply defining a certain maximum deviation that is allowed for the backbone
movements during sampling (Kolinski et al. 2001). A more recent promising
approach identifies Evolutionary and Vibrational Armonics subspace, a reduced
sampling subspace that consists of a combination of evolutionarily favored direc-
tions, defined by the principal components of the structural variation within a
homologous family, plus topologically favored directions, derived from the low
frequency normal modes of the vibrational dynamics, up to 50 dimensions. This
subspace is accurate enough so that the cores of most proteins can be represented
within 1 Å accuracy, and reduced enough so that effective optimization
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approaches, such as the Replica Exchange Monte Carlo simulation can be applied
(Han et al. 2008; Qian et al. 2004).

4.2.4.4 Hybrid Modelling of Proteins and Complexes
with Experimental Restraints

Some comparative modelling techniques are able to incorporate constraints or
restraints derived from a number of different sources other than the homologous
template structure. For example, restraints could be provided by rules for secondary
structure packing (Cohen et al. 1989), analyses of hydrophobicity (Aszodi and
Taylor 1994) and correlated mutations (Taylor and Hatrick 1994; Marks et al.
2011), empirical potentials of mean force (Sippl 1995), nuclear magnetic resonance
experiments (Sutcliffe et al. 1992), or from experiments on chemical cross-linking,
spin and photoaffinity labelling (Orr et al. 1998), hydrogen/deuterium exchange
coupled with mass spectrometry (Xiao et al. 2006), hydroxyl radical footprinting
(Kiselar et al. 2003), fluorescence spectroscopy, image reconstruction in electron
microscopy (Topf et al. 2008), site-directed mutagenesis (Boissel et al. 1993) etc. In
this way, a comparative model, especially in the difficult cases, could be improved
by making it consistent with available experimental data and with more general
knowledge about protein structure.

In the past, comparative modelling relied mostly on template information and
statistically-derived restraints from known protein structures and sequences. But it
is expected that with the advances of large scale genetic and proteomics techniques
more and more experimentally derived restraints will be available for automatic
incorporation in the modelling process.

A particularly active topic within “hybrid modeling”, i.e. to employ limited,
easily obtainable indirect experimental information to improve modeling, is
focusing on NMR restraints. This is because during the last decade Structural
Genomics centres successfully automated many steps of protein production, but the
successful crystallization of proteins remains a major bottleneck. According to
large-scale statistics, about 63% of purified proteins will result in crystals but only
10% will be of diffracting quality that is suitable for X-ray crystallography. This
means that, considering only the four high throughput SG centres, about 5000
purified proteins per centre are produced that will never get solved. Structural
Genomics delivers about 10% of all structures solved so, even according to a
conservative estimate, tens of thousands of purified proteins are produced each year
for the purpose of structure solution but will not end up in a structural model. These
proteins are accessible from the PSI Materials Repository (Cormier et al. 2011) and
are suitable for NMR studies unless their structure exceeds about 200 residues,
where the resonance assignment of NMR spectra becomes difficult. Like crystal-
lography, NMR studies can also be time consuming and ultimately unsuccessful
unless all chemical shifts and NOESY peak lists are assigned. However, there are a
number of NMR data types (often insufficient to produce structural models on their
own) that can be collected within days in a semi-automated manner. This sparse
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NMR data can subsequently be combined with computational modeling to deliver
molecular models.

Technological advances facilitate the collection and analysis of a variety of
experimental data in a high-throughput fashion. These include the use of automated
programs that can speed up assignment of resonances in NMR spectra (Raman et al.
2010a), or the use of robotics for protein production (Graslund et al. 2008) and
labeling (Crublet et al. 2014). This is in contrast to conventional NMR structure
determination, which requires a nearly complete assignment of chemical shifts and
cross peaks in a NOESY spectrum, calling for an iterative, manual approach.

Following this trend, a growing number of methods incorporate a variety of
easily obtainable NMR data as restraints to guide protein structure modelling or
simulation. Many of these methods focus on backbone NMR chemical shift
(CS) assignments. Obtaining CS is a necessary first step in the classical NMR
structure determination process. Backbone CS data are the easier to obtain in
comparison to assigning side chain resonances or determining large numbers of
interproton distances (NOEs). Residual dipolar coupling data is another possible
source of structural restraints for molecular modelling (Rohl and Baker 2002),
although this type of data is available for far fewer proteins.

A number of programs use NMR CS data to predict secondary structure con-
formations (Hung and Samudrala 2003; Shen et al. 2009a; Wishart and Sykes
1994). Within the framework of developing the TALOS program, it was shown that
CS data can guide the selection of tripeptide segments with similar conformations
and provide preferences/restraints for mainchain dihedral angles (Cornilescu et al.
1999; Shen et al. 2009a). Recently, TALOS was extended to specifically address
CS-based dihedral angle predictions in loop segments (Shen and Bax 2012). The
Rosetta ab initio fragment assembly program (Bonneau et al. 2002) was combined
with chemical shift data and sparse NOE restraints (*1 per residue) to steer the
selection and filtering of three and nine residue fragments, besides taking into
account sequence similarity measures of these fragments (Bowers et al. 2000). The
method explored a range of structures between 52 and 152 residues and delivered
models as good as 1.5 Å RMSD from the experimental solution, although the
results became weaker with larger proteins. In a similar approach by Rose et al.
(Gong et al. 2007), experimentally determined CS and sequence patterns were used
to search the protein database for consecutively overlapping six residue long
backbone fragments, which then were “stitched” together using Monte Carlo
simulation. In more recent applications, CS-Rosetta was shown to be successful in
delivering high quality models (below 2.5 Å RMSD from the experimental solution
structure) when using CS data in combination with sequence information (Shen
et al. 2008, 2009b). Once CS restraints were added to the scoring function the
selection of low energy models consistently improved.

The applicability of CS-Rosetta was recently extended for larger molecules
(>12 kDa) through the incorporation of NMR residual dipolar coupling data
(Raman et al. 2010b). The combined approach uses sequence information of short
three and nine residue segments, NMR CS and residual dipolar coupling data
together were shown to produce homology modelling quality models (with
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GDT_TS (Zemla 2003) values above 41%, but with an average in the high 70% for
the superposable parts of the proteins) for molecules up to 266 residues. Similar
ideas are implemented in the CHESHIRE method, which first predicts secondary
structures of three and nine residue fragments using CS data and then combines
these fragments into larger ones by matching sequence information, secondary
structures and CS patterns (Cavalli et al. 2007). In an elegant approach from the
same group, NMR CS data were converted into forces in molecular dynamics
simulations and were successfully used to fold short polypeptide chains or to refine
partially unfolded structures (Robustelli et al. 2009, 2010). An important advance
for that work was the development of CamShift method (Kohlhoff et al. 2009) that
quickly predicts CS values from structures, approximating CS with a polynomial
function of interatomic distances. This results in a readily differentiable function
with respect to the coordinates of atomic positions and therefore is suitable to use as
restraints in molecular dynamics simulations. Using these CS imposed restraints, it
was possible to properly fold 11 out of 12 partially unfolded test proteins, while
without the CS restraints and using only the molecular dynamics force field, only
one protein folded properly. The RMSD of unfolded models for the parts of the
protein with a translational symmetry were within 3.2–7 Å RMSD away from the
solution structures and were refined to below 2.2 Å RMSD after the simulation.
Besides CamShift several other approaches are available that calculate theoretical
CS values for a given structure, such as SHIFTX2 (Han et al. 2011), SPARTA+
(Shen and Bax 2010) and PROSHIFT (Meiler 2003). GENMR (Berjanskii et al.
2009) is a very fast modelling implementation that combines homology models
with CS and/or NOE data. The component of GENMR that relies on structure
calculation using CS and sequence information without NOE data is CS23D
(Wishart et al. 2008). CS23D incorporates various other methods, such as thread-
ing, homology modeling or small fragment assembly using the Rosetta program.

Recently, the limits of applicability of a previously-developed fragment-based
loop modeling approach was explored (Fernandez-Fuentes et al. 2006a, b) revealing
that the protein structure universe seems to have saturated on the level of
super-secondary motifs (Fernandez-Fuentes and Fiser 2006). It was observed that
the library of Smotifs with similar internal geometries have saturated and new folds
discovered during the last decade did not require the emergence of new Smotifs, but
new folds appear to be novel combination of existing Smotifs (Fernandez-Fuentes
et al. 2010). This observation presents a hypothesis according to which, it should be
possible to build any new or yet to be discovered structure by combining existing
Smotifs from already known structures. The library of Smotifs is a backbone-only,
geometrically-defined fragment library, which means that for practical modeling
applications, a relation needs to be made between the target protein and specific
fragments in the library. A method SmotifCS was developed (Menon et al. 2013),
that use of NMR CS data to select Smotifs. Even without any input about sequence
information, when tested on a set of 102 different fold topologies the method
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returned a homology model quality solution for about a 90% of cases and at least a
topologically correct fold for almost all of them (Menon et al. 2013).

In addition to deliver more accurate models by hybrid modeling, the idea of
using limited experimental restraints should particularly facilitate the modelling of
protein complexes and assemblies (Alber et al. 2008).

A systematic approach to tackle the modelling of large protein complexes with the
aid of experimental restraints was developed for the modelling of the nuclear pore
complex, the largest known protein complex in the cell that consist of 456 proteins
(Alber et al. 2008). The approach integrated a wealth of experimental information.
For instance, quantitative immunoblotting determined the stoichiometry, while
hydrodynamics experiments provided insight about the approximate shape and
excluded volume of each nucleoporins; immuno—EM helped in coarse localization
of nucleoporins; affinity purification determined the composition of complexes;
cryo-EM and bioinformatics analysis uncovered locations of transmembrane seg-
ments and overlay experiments gave information on direct binary interactions. All
these data inputs were integrated in a hierarchical process that combined comparative
modelling, threading, rigid and flexible docking techniques. The ultimate goal of the
data integration is to convert all available experimental information into spatial
restraints that can guide the generalized modelling procedure. The procedure is
flexible to combine entities of various representations and resolutions (for instance
atoms, atomistic models of proteins, symmetry units or whole assemblies) and
optimization procedures (Alber et al. 2007a, b, 2008). This and similar efforts will
leverage benefits simultaneously from efforts of genome sequencing, functional
genomics, proteomics systems biology and structural biology.

4.2.5 Model Evaluation

After a model is built, it is important to check it for possible errors. The quality of a
model can be approximately predicted from the sequence similarity between the
target and the template. Sequence identity above 30% is a relatively good predictor
of the expected accuracy of a model. If the target-template sequence identity falls
below 30%, the sequence identity becomes significantly less reliable as a measure
of the expected accuracy of a single model. It is in such cases that model evaluation
methods are most informative.

Two types of evaluation can be carried out. “Internal” evaluation of self-
consistency checks whether or not a model satisfies the restraints used to calculate
it, including restraints that originate from the template structure or obtained from
statistical observations. “External” evaluation relies on information that was not
used in the calculation of the model.

Assessment of the stereochemistry of a model (e.g., bonds, bond angles, dihedral
angles, and non-bonded atom-atom distances) with programs such as PROCHECK

114 A. Fiser



(Laskowski et al. 1993) and WHATCHECK (Hooft et al. 1996) is an example of
internal evaluation. Although errors in stereochemistry are rare and less informative
than errors detected by methods for external evaluation, a cluster of stereochemical
errors may indicate that the corresponding region also contains other larger errors
(e.g., alignment errors).

As a minimum, external evaluations test whether or not a correct template was
used. Luckily a wrong template can be detected easily with the currently available
scoring functions. A more challenging task for the scoring functions is the pre-
diction of unreliable regions in the model. One way to approach this problem is to
calculate a “pseudo energy” profile of a model, such as that produced by PROSA
(Sippl 1993) or Verify3D (Eisenberg et al. 1997). The profile reports the energy for
each position in the model (Fig. 4.3). Peaks in the profile frequently correspond to
errors in the model. There are several pitfalls in the use of energy profiles for local
error detection. For example, a region can be identified as unreliable only because it
interacts with an incorrectly modelled region (Fiser et al. 2000). The development
of accurate model assessment scoring methods remain very active (Rykunov and
Fiser 2010; Rykunov et al. 2009; Zhou and Skolnick 2011). Other recent approa-
ches usually combine a variety of inputs to assess the models, either as a whole
(Eramian et al. 2006) or locally (Fasnacht et al. 2007). In benchmarks the best
quality assessor techniques use a simple consensus approach where reliability of a
model is assessed by the agreement among alternative models that are sometimes
obtained from a variety of methods (Wallner and Elofsson 2005b, 2007). Model
assessment is an important but difficult area, due to a circular argument: scoring

Fig. 4.3 Residue energy, using a pairwise statistical potential, is plotted as a function of
sequential residue positions for two alternative models of the same protein. Negative (blue color)
and positive (red color) energies indicate energetically favorable and unfavorable residue
environments, respectively. The energy profiles correspond to the models shown on the right with
the inaccurate model placed above the more accurate model. Corresponding parts in the models
and energy profiles use the same colour coding scheme while a colourless trace represents the
actual experimental structure
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function terms of an effective model assessment approach should be used in the first
place to produce accurate models.

4.3 Performance of Comparative Modelling

4.3.1 Accuracy of Methods

An informative way to test protein structure modelling methods, including com-
parative modelling, is provided by the bi-annual meetings on Critical Assessment of
Techniques for Protein Structure Prediction (CASP) (Moult 2005). Protein mod-
ellers are challenged to model sequences with unknown 3D structure and to submit
their models to the organizers before the meeting. At the same time, the 3D
structures of the prediction targets are being determined by X-ray crystallography or
NMR methods. They only become available after the models are calculated and
submitted. Thus, a bona fide evaluation of protein structure modelling methods is
possible, although in these exercises it is not trivial to separate the contributions
from programs and human expert knowledge.

Alternatively a large scale, continuous, and automated prediction benchmarking
experiment was implemented in the program EVA—Evaluation of Automatic protein
structure prediction (Eyrich et al. 2001). Every week EVA submitted pre-released
PDB sequences to participating modelling servers, collected the results and provided
detailed statistics on secondary structure prediction, fold recognition, comparative
modelling, and prediction on 3D contacts. The LiveBench program had implemented
its evaluations in a similar spirit (Bujnicki et al. 2001). After these initial attempts,
currently there are two operational continuous evaluation servers that benchmark
publicly accessible methods, CASPRoll (http://predictioncenter.org/casproll/) and
CAMEO (Continuous Automated Model Evaluation) (Haas et al. 2013).

A rigorous statistical evaluation (Marti-Renom et al. 2002) of a blind prediction
experiment illustrated that the accuracies of the various model-building methods,
using segment matching, rigid body assembly, satisfaction of spatial restraints or
any combinations of these are relatively similar when used optimally (Wallner and
Elofsson 2005a; Dalton and Jackson 2007). This also reflects on the fact that such
major factors as template selection and alignment accuracy have a large impact on
the overall model accuracy, and that the core of protein structures is highly con-
served. From a practical point of view models should be evaluated by their use-
fulness regarding the functional insight they provide. A unique functional role must
be connected with unique structural features, which is more often found in variable
loop regions than in the conserved core. However, functional site descriptions are
not only manually defined but, in an increasing fraction of cases, are missing or
incomplete. This particularly applies to the outputs from Structural Genomics
projects, which often focus specifically and deliberately on proteins of unknown
function. Therefore, while large-scale benchmarking of modelling methods through
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the evaluation of the accuracy of functional annotations based on the resulting
models is desirable, it is not yet straightforward to carry out in practice
(Chakravarty et al. 2005; Chakravarty and Sanchez 2004).

4.3.2 Errors in Comparative Models

The overall accuracy of comparative models spans a wide range. At the low end of
the spectrum are the low resolution models whose only essentially correct feature is
their fold. At the high end of the spectrum are the models with an accuracy com-
parable to medium resolution crystallographic structures (Baker and Sali 2001).
Even low resolution models are often useful to address biological questions,
because function can many times be predicted from only coarse structural features
of a model, as later chapters of this book illustrate.

The errors in comparative models can be divided into five categories: (1) Errors
in side chain packing. (2) Distortions or shifts of a region that is aligned correctly
with the template structures. (3) Distortions or shifts of a region that does not have
an equivalent segment in any of the template structures. (4) Distortions or shifts of a
region that is aligned incorrectly with the template structures. (5) A misfolded
structure resulting from using an incorrect template. Significant methodological
improvements are needed to address each of these errors.

Errors 3–5 are relatively infrequent when sequences with more than 40% identity
to the templates are modelled. For example, in such a case, approximately 90% of
the main chain atoms are likely to be modelled with an RMS error of about 1 Å
(Sanchez and Sali 1998). In this range of sequence similarity, the alignment is
mostly straightforward to construct, there are not many gaps, and the structural
differences between the proteins are usually limited to loops and side chains. When
sequence identity is between 30 and 40%, the structural differences become larger,
and the gaps in the alignment are more frequent and longer, misalignments and
insertions in the target sequence become the major problems. As a result, the main
chain RMS error rises to about 1.5 Å for about 80% of residues. The rest of the
residues are modelled with large errors because the methods generally fail to model
structural distortions and rigid body shifts, and are unable to recover from
misalignments. When sequence identity drops below 30%, the main problem
becomes the identification of related templates and their alignment with the
sequence to be modelled. In general, it can be expected that about 20% of residues
will be misaligned, and consequently incorrectly modelled with an error larger than
3 Å, at this level of sequence similarity. These misalignments are a serious
impediment for comparative modelling because it appears that most structurally
related protein pairs share less than 30% sequence identity (Rost 1999).

To put the errors in comparative models into perspective, we list the differences
among structures of the same protein that have been determined experimentally.
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A 1 Å accuracy of main chain atom positions corresponds to X-ray structures
defined at a low-resolution of about 2.5 Å and with an R-factor of about 25%
(Ohlendorf 1994), as well as to medium-resolution NMR structures determined
from 10 inter-proton distance restraints per residue (Fig. 4.4). Similarly, differences
between the highly refined X-ray and NMR structures of the same protein also tend
to be about 1 Å (Clore et al. 1993). Changes in the environment (e.g., oligomeric
state, crystal packing, solvent, ligands) can also have a significant effect on the
structure (Faber and Matthews 1990). Overall, comparative modelling based on
templates with more than 40% identity is almost as good as medium resolution
experimental structures, simply because the proteins at this level of similarity are
likely to be as similar to each other as are the structures for the same protein
determined by different experimental techniques under different conditions.
However, the caveat in comparative protein modelling is that some regions, mainly
loops and sidechains, may have larger errors.

The performance of comparative modelling may sometimes appear overstated,
because what is usually discussed in the literature are the mean values of backbone
deviations. However, individual errors in certain residues essential for the protein

Fig. 4.4 Illustrating accuracies of structural models obtained from various experimental and
computational sources for the same, Der P 2 allergen protein. a Superposition of 10 alternative
NMR solution structures (PDB code 1A9V) for Der P 2; Average RMSD = 0.97 Å.
b Superposition of X-ray crystallographic structures of two isoforms of Der P 2 protein (2F08
(2.20 Å resolution) and 1KTJ (2.15 Å resolution) sharing 87% sequence identity).
RMSD = 1.33 Å; c Superposition of NMR and X-ray solutions of Der P 2 protein (1A9V and
1KTJ). RMSD = 2.2 Å; d Superposition of the comparative model built for 1NEP protein using
1KTJ as a template and the X-ray solution structure of 1NEP. 1NEP and 1KTJ share 28%
sequence identity representing a typical difficult comparative modeling scenario. RMSD = 1.66 Å.
All RMSD values refer to Ca superpositions
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function, even in the context of an overall backbone RMSD of less than 1 Å, can
still be large enough to prevent reliable conclusions to be drawn regarding mech-
anism, protein function or drug design.

4.4 Applications of Comparative Modelling

4.4.1 Modelling of Individual Proteins

Comparative modelling is often an efficient way to obtain useful information about
the proteins of interest. For example, comparative models can be helpful in
designing genetic experiments, such as designing mutants to test hypotheses about
the function of a protein (Vernal et al. 2002; Wu et al. 1999; Shin et al. 2012),
identifying active and binding sites (Sheng et al. 1996). Models are useful for
studying protein-protein, protein-nucleic acid (Pujato et al. 2014) and protein-ligand
interactions, designing inhibitors, e.g. searching, designing and improving ligands
for a given binding site (Ring et al. 1993), modelling substrate specificity (Xu et al.
1996), predicting antigenic epitopes (Sali et al. 1993; Abboud et al. 2009), simu-
lating protein-protein docking (Vakser 1995). Models can reveal physico-chemical
features that are not possible to predict from sequence information only, for
instance, inferring function from calculated electrostatic potential around the pro-
tein (Sali et al. 1993; Fiser and Vertessy 2000) and in general, rationalizing known
experimental observations (Fiser et al. 2003). Models are also very useful to
enhance structure solutions by facilitating molecular replacement in X-ray structure
determination (Schwarzenbacher et al. 2008), refining models based on NMR
constraints (Barrientos et al. 2001), confirming a remote structural relationship
(Guenther et al. 1997; Wu et al. 1999). Comparative modeling is extensively used
in applied research, in the context of structure-based drug discovery (Norin and
Sundstrom 2001; Wlodawer 2002; Schwede et al. 2009; Evers et al. 2003) or
designing proteins as drugs. For instance, of the 21 antibodies currently on the
market, it is estimated (Schwede et al. 2009) that 11 were the result of computa-
tional design of humanized constructs via homology modelling [e.g. Zenapax
(Carter et al. 1992), Herceptin (Lippow et al. 2007; Presta et al. 1997) and Avastin
(Queen et al. 1989)].

4.4.2 Comparative Modelling and the Protein
Structure Initiative

The full impact of the genome projects will only be realized once we assign and
understand the functions of the new encoded proteins. This understanding will be
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facilitated by structural information for all or almost all proteins. Much of the
structural information will be provided by Structural Genomics (Burley et al. 2008;
Chance et al. 2002), a large-scale determination of protein structures by X-ray
crystallography and nuclear magnetic resonance spectroscopy, combined efficiently
with accurate, automated and large-scale comparative protein structure modelling
techniques. Given the performance of the current modelling techniques, it seems
reasonable to require models based on at least 30% sequence identity (Vitkup et al.
2001), corresponding to one experimentally determined structure per sequence
family, rather than fold family.

To enable large-scale comparative modelling needed for structural genomics, the
steps of comparative modelling are being assembled into a completely automated
pipelines such as SWISS-model repository (Biasini et al. 2014) or MODBASE
(Pieper et al. 2014), which contain more than 3 and 30 million models, respectively.
Statistics of these databases show that domains in approximately 70% of the known
protein sequences can be modelled, at least partially. This is due substantially of the
almost 7000 structures that were deposited by the structural genomics centres,
which focus on new folds or novel structure. These depositions contributed 73% of
all novel structural features in the PDB (Burley et al. 2008).

While the current number of at least partially modelled proteins may look
impressive, usually only one domain per protein is modelled. On average, in
contrast, proteins have two or three domains. For example, the average length of a
yeast ORF is 472 amino acids, while the average size of domains in CATH, a
database of structural domains, is 175 amino acids. The average model size in
MODBASE, a database of comparative models, is only slightly longer at 192
residues. Furthermore, in two thirds of the modelling cases the template shares less
than 30% sequence identity to the closest template.

4.5 Summary

Comparative modelling has already proven to be a useful tool in many biological
applications and its importance among structure prediction methods is expected to
be further accentuated because of the many experimental structures emerging from
Protein Structure Initiative projects and the continuous improvements in
methodologies.

The average sequence identity between structurally related proteins in general is
just around 8–9%, and most of them share less than 15% identity (Rost 1997).
Comparative modelling is largely restricted to that subset of sequences that share a
recognizable sequence similarity to a protein with a known structure; therefore it is
safe to assume that this approach is still only scratching the surface of possibilities
in terms of recognizing and utilizing useful structural information. Indeed, recent
results suggest that there is a fairly limited number of structural building blocks that
make up all known protein folds and that the library of these building blocks has
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already saturated around year 2000 (Fernandez-Fuentes et al. 2010). Now it is
largely up to the ability of current computational methods to relate any known
sequences to one of the known folds or at least associate its building blocks with
one of the known structural motifs. Fold recognition methods discussed in Chap. 2
will have an important role in extending the possibilities for comparative modelling
towards ever remote homologues and even structural analogues. Hybrid methods,
where limited, indirect experimental data supplements weak sequence signal will
also have an increasing role in structure modeling, when trying to relate local
structural motifs to known ones.

Improved and new methods to refining comparative models by adding accurate
loops and side chains, refining internal packing of secondary structural elements,
setting up scoring functions that can measure model quality, optimally combining
fragments from known folds and detecting errors in the 3D models are critical
issues. Even a small improvement in these techniques will have a large impact
because most of the protein structural relationships are too remote to utilize them in
comparative modelling. On the other hand, while improvements in these topics may
not have a significant impact on the overall accuracy of already existing protein
models, their importance in achieving functionally more reliable 3D models i.e.
models that can confidently be used for functional annotation, can not be empha-
sized enough.

The above advances in comparative protein structure modelling techniques are
necessary prerequisites to develop new “structural proteomics” modelling methods
with the aim of combining the basic building blocks of fold models into physio-
logically more relevant quaternary structures and assemblies. This will create
possibilities for modelling interactions among the many known protein structures.
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Chapter 5
Advances in Computational Methods
for Transmembrane Protein Structure
Prediction

Tim Nugent, David Jones and Sikander Hayat

Abstract Transmembrane (TM) proteins fulfill many crucial cellular functions
such as substrate transport, biogenesis and signalling, and make up a significant
fraction of any given proteome. Estimates suggest that up to 30% of all human
genes may encode a-helical TM proteins, while b-barrel TM proteins, which are
found in the outer-membrane of gram-negative bacteria, mitochondria and
chloroplast, are encoded by 2–3% of genes. However, relatively few high resolution
TM protein structures are known, making it all the more important to extract as
much structural information as possible from amino acid sequences. In this chapter,
we review the existing methods for the identification, topology prediction and
three-dimensional modelling of TM proteins, including a discussion of the recent
advances in identifying residue-residue contacts from large multiple sequence
alignments that have enabled impressive gains to be made in the field of TM protein
structure prediction.
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5.1 Introduction

Transmembrane (TM) proteins are involved in a wide range of essential biological
processes including cell signalling, transport of membrane-impermeable molecules,
cell-cell communication, cell recognition, cell adhesion and biogenesis of the
bacterial outer membrane. Many are also prime drug targets, with approximately
60% of all drugs currently on the market targeting membrane proteins (Hopkins and
Groom 2002). Despite recent progress in TM protein structure determination, the
experimental difficulties associated with obtaining crystals that diffract to high
resolution mean that TM protein are severely under-represented in structural
databases, making up only 1% of known structures in the PDB (White 2004) of
which only about 500 are unique. TM proteins, which have both hydrophobic and
hydrophilic regions on their surfaces, are much more difficult to isolate than
water-soluble proteins as the native membrane surrounding the protein must be
disrupted and replaced with detergent molecules without causing any denaturation.
Given the biological and pharmacological importance of TM proteins, an under-
standing of their structure and topology—the total number of TM helices, their
boundaries and in/out orientation relative to the membrane—is essential for func-
tional analysis and directing further experimental work. In the absence of vital
structural data, bioinformatics strategies thus turn to sequence-based prediction
methods.

5.2 Membrane Protein Structural Classes

TM proteins can be classified into two basic types: a-helical and b-barrel proteins.
a-helical membrane proteins form the major category of TM proteins and are
present in all type of biological membranes, including bacterial outer membranes.
They consist of one or more a-helices, each of which contains a stretch of
hydrophobic amino acids, embedded in the membrane and linked to subsequent
helices by extra-membranous loop regions. It is thought such proteins may have up
to 20 TM helices allowing a diverse range of differing topologies. Loop regions are
known to contain substructures including re-entrant loops—short a-helices that
enter and exit the membrane on the same side—as well as amphipathic helices that
lie parallel to the membrane plane, and globular domains. b-barrel TM proteins
(TMBs) mainly consist of transmembrane b-strands that form a closed barrel in the
membrane. Analysis of solved b-barrel 3D structures show that these proteins can
consist of 8–26 b-strands arranged in an anti-parallel manner in the bacterial
outer-membrane. Some TMBs also have large plug-domains and outer loops that
can interact with the barrel region to control substrate transport.
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5.2.1 a-Helical Bundles

a-helical TM proteins can be further divided into a number of subtypes based on
their topology. Type I and II membrane proteins consist of a single TM a helix,
type III have multiple membrane-spanning helices while type IV membrane pro-
teins have multiple domains which form an assembly that spans the membrane
multiple times. Type I membrane proteins are attached to the membrane with an
anchor sequence targeting their amino terminus to the endoplasmic reticulum lumen
and the carboxy terminus exposed to the cytoplasmic side. These proteins are
further divided into two subtypes. Type Ia—which constitutes most eukaryotic
membrane proteins—contain cleavable signal sequences, while type Ib do not.
Type II membrane proteins are similar to type I in that they span the membrane only
once but their orientation is reversed; they have their amino terminus on the
cytoplasmic side of the cell and the carboxy terminus on the exterior. Type III
membrane proteins, which include G protein coupled receptors (e.g. PDB code
1gzm) consist of multiple TM helices and are also divided into two subtypes. Type
IIIa have cleavable signal sequence while type IIIb do not, but do have their amino
terminus exposed to the extracellular side of the membrane. Type IV membrane
proteins have multiple domains which form an assembly that spans the membrane
multiple times. Domains may reside on a single polypeptide chain but are often
composed of more than one. Examples include Photosystem I, which comprises
nine unique chains (1jb0).

5.2.2 Transmembrane b-Barrels

TMBs can be divided into two main categories depending on whether the barrel
pore is formed from a single-chain, or via a homo-oligomeric complex, with each
chain contributing 2–4 strands. All known bacterial transmembrane b-barrels
consist of anti-parallel b-strands that traverse the outer-membrane in a regular
manner (Fig. 5.1). Residues on a transmembrane b-strand follow a strict-dyad
repeat such that alternate side-chain face the lipids and barrel pore, respectively.
The lipid-facing residues are mostly hydrophobic, but the pore-facing residues can
be a mixture of both polar and hydrophobic amino acids. Moreover, transmembrane
b-strands generally have fewer residues than transmembrane a-helices and have a
less prominent hydrophobic profile. Residues on adjacent b-strands are hydrogen
bonded to each other such that alternate residues on strand S1 form a N–O and O–N
bond with residues in-register on strand S2, where S1 and S2 are adjacent strands.
Solved 3D structures of bacterial TMBs have 8 to 26 b-strands, while the only
known Eukaryotic TMB structure - mitochondrial voltage dependent anion channel
(VDAC) has 19 strands, where the first and the last strand are parallel to each other.
TMBs have long extra-cellular loops that generally protrude away from the barrel
pore region but can interact with the barrel domain and short inner loops.
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Additionally, a few TMBs have plug domains (Fig. 5.1) that sit inside the barrel
and participate in gating and signaling (Ferguson et al. 2002). It is generally esti-
mated that TMBs account for 2–3% of the genes in bacteria, but there is scope for
improvement in accurately determining the number of yet unknown TMB families.

Multi-chain TMBs mainly fall into one of four known superfamilies—(a) the
pore-forming toxins (PDB codes 3w9t, 3o44, 4h56, 3b07, 7ahl) that are secreted by
pathogenic bacteria such as Staphylococcus aureus, Clostridium perfringens and
Vibrio cholerae, (b) outer membrane efflux proteins (PDB codes 4mt4, 4mt0,
2xmn, 3pik, 1wp1, 1yc9, 1ek9) that are used by bacteria to expel a wide range of
molecules including antibacterial drugs thereby increasing multi-drug resistance,
(c) mycobacterial porins (PDB code 1uun) in Mycobacteria that can be used to
transport drugs through an otherwise low-permeability outer membrane environ-
ment that renders them resistant to many antibiotics, and (d) trimeric autotrans-
porters (PDB codes 2lme, 2gr7) such as the Hia autotransporter of Haemophilus

Fig. 5.1 Top and front views of a diffusion porin (PDB code 3prn) and outer membrane iron
transporter FecA (PDB code 1kmp). Both proteins have long outer-loops. The large plug domain
of FecA (orange) sits in the barrel and facilitates substrate transport and allosteric transitions

138 T. Nugent et al.



influenzae that belongs to the largest family of virulence proteins mediating bac-
terial adhesion, invasion and spread to host cells. Sequence-based analysis methods
to identify protein sequences that belong to those families, and therefore estimate
the number of multi-chain TMB families, are currently lacking. Additionally, better
computational methods for their topology prediction and 3D assembly need to be
developed to increase our understanding of their assembly mechanism and function.

5.3 Databases

There now exist a number of databases that serve as repositories for the sequences
and structures of both a-helical and b-barrel TM proteins (Table 5.1). OPM
(Lomize et al. 2006b, 2011), PDBTM (Tusnady et al. 2004, 2005a; Kozma et al.
2013), CGDB (Chetwynd et al. 2008) and the mpstruc database (http://blanco.
biomol.uci.edu/mpstruc/) all contain TM proteins of known structure determined
using X-ray and electron diffraction, nuclear magnetic resonance and cryo-electron
microscopy. OPM, PDBTM and CGDB additionally contain orientation predictions
of the protein relative to the membrane based on water-lipid transfer energy min-
imisation (Lomize et al. 2006a), hydrophobicity/structural feature analysis
(Tusnady et al. 2005b) and coarse grained molecular dynamic simulations (Sansom
et al. 2008), while MemProtMD (http://sbcb.bioch.ox.ac.uk/memprotmd/) contains
orientations calculated using a knowledge-based statistical potential (Nugent and
Jones 2013). TOPDB (Tusnady et al. 2008; Dobson et al. 2015a) and MPtopo
(Jayasinghe et al. 2001) include topology data that has been experimentally vali-
dated using low-resolution techniques such as gene fusion, antibody and mutage-
nesis studies. Other TM protein databases tend to focus on specific families such as

Table 5.1 Transmembrane protein databases

Method URL Features

OPM http://opm.phar.umich.edu/ Known structures

PDB_TM http://pdbtm.enzim.hu/ Known structures

CGDB http://sbcb.bioch.ox.ac.uk/cgdb/ Coarse grained simulations

MemProtMD http://sbcb.bioch.ox.ac.uk/memprotmd/ Coarse grained simulations

TOPDB http://topdb.enzim.hu/ Experimental validation

Mptopo http://blanco.biomol.uci.edu/mptopo/ Experimental validation

VKCDB http://vkcdb.biology.ualberta.ca/ Potassium channels

KDB http://sbcb.bioch.ox.ac.uk/kdb/ Potassium channels

TCDB http://www.tcdb.org/ Transporters

TMBB-DB http://beta-barrel.tulane.edu/ Predicted TMBs

TMBETA-GENOME http://tmbeta-genome.cbrc.jp/annotation Predicted TMBs

OMPdb http://bioinformatics.biol.uoa.gr/OMPdb Predicted TMB families

HHomp http://toolkit.tuebingen.mpg.de/hhomp TMB remote homology detection
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voltage-gated potassium channels, including VKCDB (Li and Gallin 2004; Gallin
and Boutet 2011) and KDB (http://sbcb.bioch.ox.ac.uk/kdb/), while others such as
the Transporter Classification Database (Saier et al. 2006, 2009, 2014) focus on
particular structural or functional classes.

For TMBs, TMBB-DB (Freeman and Wimley 2012), TMBETA-GENOME
(Gromiha et al. 2007) and OMPdb (Tsirigos et al. 2011) provide an exhaustive list
of putative TMBs predicted using computational methods. In addition, HHomp
(Remmert et al. 2009) provides a list of putative TMBs found by comprehensive,
transitive homology search. As with all bioinformatics databases, care should be
taken to ensure that a given resource is frequently updated. The rate at which new
sequences and structures are deposited in GenBank and the PDB [and occasionally
retracted e.g. (Chang et al. 2006)] results in significant manual annotation for
database administrators, and much evidence suggests that this workload often
exceeds the amount of time an administrator is willing to commit.

5.4 Multiple Sequence Alignments

As with globular proteins, multiple sequence alignments play an important role in
TM protein structure prediction. Homologous sequences identified via database
searches can be used to construct sequence profiles which can significantly enhance
TM topology prediction accuracy (Henricson et al. 2005; Jones 2007), while recent
co-evolution-based approaches (Jones et al. 2012, 2015) are dependent on
high-quality alignments to infer residue-residue contacts which can be used for de
novo modelling (Nugent and Jones 2012).

Conventional pair-wise alignment methods return possible matches based on a
scoring function that relies on amino acid substitutionmatrices such as PAM (Dayhoff
and Schwartz 1978) or BLOSUM (Henikoff and Henikoff 1992). Such matrices are
derived from globular protein alignments, and as amino acid composition,
hydrophobicity and conservation patterns differ between globular and TM proteins
(Jones et al. 1994a), they are in principle unsuitable for TM protein alignment.
A number of TM-specific substitution matrices have therefore been developed, which
take into account such differences. For example, the JTT TM matrix (Jones et al.
1994b) was based on the observation that polar residues in TM proteins are highly
conserved, while hydrophobic residues are more interchangeable. Other matrices
such as SLIM (Muller et al. 2001), were reported to have the highest accuracy for
detecting remote homologues in a manually curated GPCR dataset, while PHAT (Ng
et al. 2000) has been shown to outperform JTT, especially on database searching.

More recently, a number of methods have been developed to improve actual TM
protein alignment. HMAP (Tang et al. 2003) showed that alignment accuracy could
be improved significantly using a profile-profile based approach incorporating
structural information. STAM (Shafrir and Guy 2004) implemented higher penalties
for insertion/deletions in TM segments compared to loop regions, with combinations
of different substitution matrices to produce alignments resulting in more accurate
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homology models. PRALINETM (Pirovano et al. 2008), which integrates
state-of-the-art sequence prediction techniques with membrane-specific substitution
matrices, was shown to outperform standard multiple alignment techniques such as
ClustalW (Thompson et al. 1994) andMUSCLE (Edgar 2004) when tested on the TM
alignment benchmark set within BAliBASE (Bahr et al. 2001). AlignMe (Stamm
et al. 2014, 2013; Khafizov et al. 2010), which uses secondary structure matching
combined with evolutionary information, also demonstrated high quality alignments
when tested on BAliBASE, although it was noted that accuracy was generally lower
when transmembrane topology predictionswere also included, although the inclusion
of this information may still be useful in cases of extremely distantly related proteins
for which sequence information is less informative. PSI-Coffee—a modification of
the T-Coffee method (Chang et al. 2012; Notredame et al. 2000)—employs a
homology extension technique that can be used to reveal and use specific conser-
vation patterns found within transmembrane proteins, such as amphiphilic a-helices,
resulting in significant improvements to the accuracy of alignments. Hill and
co-workers constructed substitution tables for different environments within mem-
brane proteins, demonstrating that, in the 10–25% sequence identity range, align-
ments could be improved by an average of 28 correctly aligned residues compared
with alignmentsmade using default substitution tables, leading to improved structural
models (Hill and Deane 2013; Hill et al. 2011).

For TMBs, Jimenez-Morales and Liang (2011) have estimated the evolutionary
pattern of residue substitutions which can be useful for improved sequence align-
ment of TMBs, while Yan et al. (2011), have shown the utility of secondary
structure element alignment for the identification of putative TMBs. Additionally, a
structure based alignment method for TMBs that uses TMB-specific topology
features has been shown to improve alignment (Wang et al. 2013).

5.5 Transmembrane Protein Topology Prediction

The under-representation of TM proteins in structural databases makes their study
extremely difficult. As a result, tools to analyse TM proteins have historically
focused on sequence-based topology prediction—identifying the total number of
TM helices, their boundaries, and in/out orientation relative to the membrane.
Experimental approaches for determining TM topology include glycosylation
analysis, insertion tags, antibody studies and fusion protein constructs; however,
such studies are time consuming, often conflicting (Mao et al. 2003; Kyttala et al.
2004; Ratajczak et al. 2014), and also risk upsetting the natural topology by altering
the protein sequence. Theoretical prediction methods therefore provide an important
strategy for furthering our understanding of these biological and pharmacological
important proteins.
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5.5.1 Early a-Helical Topology Prediction Approaches

Early topology predictions methods were based on physicochemical observations of
TM proteins. Even before the arrival of the first crystal structures, stretches of
hydrophobic residues long enough to span the lipid bilayer were identified as TM
spanning a-helices. Prediction methods by Kyte and Doolittle (1982) and Engelman
et al. (1986), and later by Wimley and White (1996), relied on experimentally
determined hydropathy indices to create a hydropathy plot for a protein. This
involved taking a sliding window of 19–21 residues and averaging the score with
peaks in the plots (regions of high hydrophobicity) corresponding to the locations
of TM helices. With more sequences came the discovery that aromatic Trp and Tyr
residues tend to cluster near the ends of the transmembrane segments (Wallin et al.
1997), possibly acting as physical buffers to stabilise TM helices within the lipid
bilayer. Later, studies identified the appearance of sequence motifs, such as the
GxxxG motif (Senes et al. 2000), within TM helices and also periodic patterns
implicated in helix-helix packing and 3D structure (Samatey et al. 1995). However,
perhaps the most important realisation was that positively-charged residues tend to
cluster on cytoplasmic loop—the ‘positive-inside’ rule of Gunnar von Heijne (von
Heijne 1992). Combined with hydrophobicity-based prediction of TM helices, this
led to early topology prediction methods such as TopPred (Claros and von Heijne
1994).

5.5.2 Machine Learning Approaches for a-Helical Topology
Prediction

Despite their early success, these methods based on hydrophobicity analysis
combined with the ‘positive-inside’ rule have since been superseded by machine
learning approaches which offer substantially higher prediction accuracy due to
their probabilistic formulation (Table 5.2). Hidden Markov models (HMMs) were
among the first supervised learning algorithms to be applied to TM topology pre-
diction, with both TMHMM (Krogh et al. 2001) and HMMTOP (Tusnady and
Simon 1998) proving highly successful. TMHMM implemented a cyclic model
with seven states for a TM helix, while HMMTOP used HMMs to distinguish
between five structural states [helix core, inside loop, outside loop, helix caps (C
and N) and globular domains]. These states were connected by transition proba-
bilities before dynamic programming was used to match a sequence against a model
with the most probable topology. HMMTOP also allowed constrained predictions
to be made, where specific residues could be fixed to a topological location based
on experimental data, as did other methods such as HMM-TM (Bagos et al. 2006).
Later HMM-based predictors include PRODIV-TMHMM and PolyPhobius, both of
which made use of evolutionary information from homologs resulting in substan-
tially increased performance (Viklund and Elofsson 2004; Kall et al. 2005).
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Neural networks (NNs) were employed by early methods including PHDhtm
(Rost et al. 1996) and MEMSAT3 (Jones 2007). PHDhtm used multiple sequence
alignments to perform a consensus prediction of TM helices by combining two
NNs. The first created a ‘sequence-to-structure’ network, which represented the
structural propensity of the central residue in a window. A ‘structure-to-structure’
network then smoothed these propensities to predict TM helices, before the
‘positive-inside’ rule was applied to produce an overall topology. MEMSAT3 uses
a neural network and dynamic programming in order to predict not only TM
helices, but also to score the topology and to identify possible signal peptides.

Table 5.2 Topology prediction methods for a-helical transmembrane proteins

Method Features URL

TMHMM (Krogh et al.
2001)

HMM http://www.cbs.dtu.dk/
services/TMHMM/

HMMTOP (Tusnady and
Simon 1998)

HMM http://www.enzim.hu/
hmmtop/

HMM-TM (Bagos et al.
2006)

HMM http://bioinformatics.
biol.uoa.gr/HMM-TM/

PRODIV-TMHMM
(Viklund and Elofsson
2004)

HMM + Evolutionary information https://www.pdc.kth.
se/hakanv/prodiv-
tmhmm

Phobius (Kall et al. 2005) HMM + Evolutionary
information + Signal peptide
prediction

http://phobius.sbc.su.
se/

OCTOPUS (Viklund and
Elofsson 2008)

HMM + NN + Evolutionary
information

http://octopus.cbr.su.
se/

SPOCTOPUS (Viklund
and Elofsson 2008)

HMM + NN + Evolutionary
information + Signal peptide
prediction

http://octopus.cbr.su.
se/

PHDhtm (Rost et al. 1996) NN https://www.
predictprotein.org/

MEMSAT3 (Jones 2007) NN + Evolutionary
information + Signal peptide
prediction

http://bioinf.cs.ucl.ac.
uk/psipred/

MEMSAT-SVM (Nugent
and Jones 2009)

SVM + Evolutionary
information + Signal peptide
prediction

http://bioinf.cs.ucl.ac.
uk/psipred/

Philius (Reynolds et al.
2008)

Dynamic Bayesian networks http://noble.gs.
washington.edu/proj/
philius/

WRF-TMH (Hayat and
Khan 2013)

Random forests http://111.68.99.218/
WRF-TMH/

TOPCONS (Tsirigos et al.
2015; Bernsel et al. 2009)

Consensus http://topcons.cbr.su.
se/

CCTOP (Dobson et al.
2015b)

Consensus http://cctop.enzim.ttk.
mta.hu/
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Additional evolutionary information provided by multiple sequence alignments led
to prediction accuracies increasing to as much as 80%. OCTOPUS (Viklund and
Elofsson 2008) used a novel combination of hidden Markov models and artificial
neural networks to further increase performance.

Later, Support Vector Machines (SVMs) gained in popularity and were suc-
cessfully applied to TM protein topology prediction (Yuan et al. 2004; Lo et al.
2006, 2008). Particularly using non-linear kernel functions, SVMs are capable of
learning complex relationships among the amino acids within a given window with
which they are trained, particularly when provided with evolutionary information,
and are also more resilient to the problem of over-training compared to other
machine learning methods. MEMSAT-SVM (Nugent and Jones 2009), an exten-
sion of MEMSAT3, used multiple SVM models to classify sequence into one of
four states [TM helix, inside or outside loop, re-entrant helix, or signal peptide]
before calculating the most likely topologies using dynamic programming, while a
further SVM was used to discriminate between globular and TM proteins. Although
multiclass SVMs do exist, their performance is typically poorer than binary SVMs
since in many cases no single mathematical function exists to separate all classes of
data from one another.

More recently, other machine learning algorithms have been applied to TM helix
and topology prediction including dynamic Bayesian networks (Reynolds et al.
2008), random forests (Hayat and Khan 2013), self-organizing maps (Deng 2006)
and deep learning (Qi et al. 2012). A selection of machine learning-based predictors
can be found in Table 5.2.

5.5.3 Signal Peptides and Re-entrant Helices

One significant challenge faced by topology predictors is the discrimination
between TM helices and other highly hydrophobic structural features. These
include targeting motifs such as signal peptides and signal anchors, amphipathic
helices, and re-entrant helices, membrane penetrating helices that enter and exit the
membrane on the same side, common in many ion channel families (Fig. 5.2). The
similarity between such features and the hydrophobic profile of a TM helix fre-
quently leads to crossover between the different types of predictions. Should these
elements be predicted as TM helices, the ensuing topology prediction is likely to be
severely disrupted. Some prediction methods, such as SignalP (Petersen et al. 2011;
Bendtsen et al. 2004) and TargetP (Emanuelsson et al. 2007), are effective in
identifying signal peptides in TM proteins, and may be used as a pre-filter prior to
analysis using a TM topology predictor. Phobius (Kall et al. 2004) used a HMM to
successfully address the problem of signal peptides in TM protein topology pre-
diction, while PolyPhobius (Kall et al. 2005) further increased accuracy by
including homology information. Other methods such as MEMSAT-SVM,
OCTOPUS and SPOCTOPUS (Viklund et al. 2008) have also attempted to
incorporate identification of re-entrant regions and signal peptides into TM
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topology prediction but there is significant room for improvement. The problem,
particularly regarding re-entrant helices, is the lack of reliable data with which to
train machine-learning based methods.

5.5.4 Consensus Approaches for a-Helical Topology
Prediction

While a number of methods successfully combine multiple machine learning
approaches, for example ENSEMBLE (Martelli et al. 2003) uses a NN and two
HMMs while OCTOPUS uses two sets of four NNs and one HMM, perhaps the best
overall methods are those which adopt a consensus approach by combining the results
of several predictors to yield more reliable results. Early consensus predictors such as
BPROMPT (Taylor et al. 2003) combined the outputs of five different predictors to
produce an overall topology using a Bayesian belief network, while Nilsson et al.
(2002) used a simple majority-vote approach to return the best topology from their
five predictors. The PONGO server (Amico et al. 2006) returns the results of 5 high
scoring methods in a graphical format for direct comparison. More recently, MetaTM
(Klammer et al. 2009) is based on SVM models and combines the results of six TM
topology predictors and two signal peptide predictors. TOPCONS (Tsirigos et al.
2015; Bernsel et al. 2009) combines a number of topology predictions into one
consensus prediction, while also quantifying the reliability of the prediction based on

Fig. 5.2 Potassium channel KcsA (PDB code 1R3J). Each monomer of the homo-tetrameric
complex consists of two TM helices and one re-entrant helix (orange), which surrounds the central
pore and is involved in channel gating
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the level of agreement between the underlying methods, both at the protein level and
at the level of individual TM regions (Fig. 5.3). Results indicate an overall increase in
performance by 4% compared to the currently available best-scoring methods.
CCTOP (Dobson et al. 2015b) makes use of ten different topology prediction
methods, while also incorporating topology information from existing experimental
and computational resources such as the PDBTM, TOPDB and TOPDOM databases,
using a HMM. In most cases, but particularly proteins whose topology is not
straightforward, using a consensus-based method is highly advisable.

5.5.5 Transmembrane b-Barrel Topology Prediction

Topology prediction of TMBs entails the estimation of the number and the location
of TM b-strands. Traditional methods based on a sliding-window hydrophobicity
profile are not sufficiently accurate, most likely due to the shorter size and less
prominent hydrophobic nature of the TM b-strands. This problem is further com-
plicated by the presence of other b-sheet rich regions in full protein sequences such
as the pre-barrel region (seen, for example, in EstA Autotransporter protein; PDB
code 3kvn) and large plug domains that reside inside the barrel (as seen in FecA

Fig. 5.3 Consensus topology prediction by TOPCONS (Tsirigos et al. 2015; Bernsel et al. 2009).
The results from a number of individual predictors are combined to produce the TOPCONS
prediction
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protein; PDB code 1fep). Additionally, the absence of long stretches of
hydrophobic residues makes it harder to distinguish TM b-strands from b-sheets in
globular proteins. One strategy to predict the topology of TMBs relies on first
predicting if the query sequence is a TMB or not (Table 5.3) and then using
dedicated computational methods to predict the topology of sequences that are
predicted to be TMBs. This can potentially improve the accuracy of computational
methods that are based on learning from data points available from known 3D
structures. Boctopus in combination with PSORTb (Imai et al. 2013), which is a
bacterial subcellular localization tool, can be used to identify putative TMBs. The
idea here is that proteins for which topology predictor methods predict at least 8
strands with predicted subcellular localization as ‘outer-membrane’ can be potential
TMBs. BETAWARE (Savojardo et al. 2013a) is a machine learning based tool that
predicts if a protein is TMB using N-to-1 network encoding and then predicts the
topology using a constrained grammar. Other methods employ a combination of
secondary structure features, hydrophobicity, amino acid composition and empirical
scores to identify putative TMBs. In general, TMB topology prediction methods
can be classified as empirical, machine learning and consensus-based. A few of
these methods are discussed below (Table 5.4).

5.5.6 Empirical Approaches for b-Barrel Topology
Prediction

Traditionally, features based on knowledge gained from 3D structures, such as the
hydrophobicity analyses over a sliding window, amino acid distribution, length of

Table 5.3 Computational methods for identifying transmembrane b-barrels

Method Features URL

boctopus + PSORTb (Imai
et al. 2013)

Predicted
topology + Subcellular
localization

http://boctopus.cbr.su.se/

BETAWARE (Savojardo
et al. 2013a)

N-to-1 Extreme Learning
Machine

http://betaware.biocomp.
unibo.it/BetAware

SSEA-OMP (Yan et al. 2011) Secondary structure
element alignment

http://protein.cau.edu.cn/
SSEA-OMP/index.html

TMB-Hunt (Garrow et al.
2005)

K-nearest neighbor http://bioinformatics.leeds.
ac.uk/betaBarrel/

TMBETA-NET (Gromiha
et al. 2005)

Amino acid
composition + NN

http://psfs.cbrc.jp/tmbeta-
net/

BOMP (Berven et al. 2004) C-terminal
pattern + Integral b-score

http://services.cbu.uib.no/
tools/bomp

F-W barrel analyzer (Freeman
and Wimley 2010)

Empirical Score http://www.tulane.edu/
biochem/WW/apps.html
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TM b-strands and outer/inner loops, have been used for the topology prediction of
TMBs (Schirmer and Cowan 1993; Gromiha et al. 1997; Gromiha and
Ponnuswamy 1993; Diederichs et al. 1998). Wimley et al. (2002) combined fea-
tures such as hydrophobicity profile, amino acid composition, known variation in
the length of inner loops and the abundance of proteins facing the lipids of the
barrel pore to formulate a computational score to predict TM stretches and also
identify putative TMBs. The distribution of amino acids on a transmembrane
b-strand along the membrane normal and the occurrence of the dyad-repeat pattern
were employed by Jackups and Liang (2005) to improve the location of predicted
strands and estimate the strand-registration such that the maximum number of
hydrogen-bonds were satisfied between two adjacent b-strands.

5.5.7 Machine Learning Approaches for b-Barrel Topology
Prediction

Machine learning-based methods for the topology prediction of TMBs are typically
trained on a dataset of labeled data points extracted from known 3D structures. Rost
and Sander (1993) showed early on that the use of information obtained from

Table 5.4 Topology prediction methods for transmembrane b-barrels

Method Features URL

BETAWARE (Savojardo et al.
2013a)

Conditional Random
Fields

http://www.biocomp.unibo.it/

boctopus (Hayat and Elofsson
2012a)

HMM + SVM http://boctopus.cbr.su.se/

tobmodel (Hayat and Elofsson
2012b)

HMM + SVM http://tmbmodel.cbr.su.se/

TMBHMM (Singh et al. 2011) HMM http://www.zbi.uni-saarland.de/
en

partiFold (Waldispühl et al. 2008) http://partifold.csail.
mit.edu/

Inter-strand residue interaction
probabilities

PROFtmb (Bigelow and Rost 2006) HMM https://www.predictprotein.org/

transFold (Waldispühl et al.
Waldispühl et al. 2006)

Multi-tape S-attribute
grammars

http://bioinformatics.bc.edu/
clotelab/transFold/

PRED-TMBB (Bagos et al. 2004) HMM http://bioinformatics.biol.uoa.
gr/PRED-TMBB/

tbbpred (Natt et al. 2004) SVM + NN http://www.imtech.res.in/
raghava/tbbpred/

TMBETAPRED-RBF (Ou et al.
2010)

SVM http://rbf.bioinfo.tw/

TMBETA-NET (Gromiha et al.
2005)

NN http://psfs.cbrc.jp/tmbeta-net/
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multiple sequence alignments yields higher prediction accuracy as compared to
using features from a single-sequence alone. SVMs, neural networks and hidden
Markov models have all been used for TMB topology prediction (Table 5.4). The
use of a sequence profile-based HMM for the identification and topology prediction
of TMBs was first introduced by Martelli et al. (2002). PROFtmb (Bigelow and
Rost 2006) and PRED-TMBB (Bagos et al. 2004) used a similar approach, where
an HMM is used to predict strands, inner-loop and outer-loop states using a
sequence profile. The HMM architecture employed in these methods was chosen
such that it resembled a pair of strands (up and down), a self-loop representing long
outer-loops that connect the two strands on the extracellular side and a self-loop of
the inner-membrane side. The number of states representing the b-strand region was
chosen to account for the variation in the length of these elements that form TMBs.

Recently, two-stage predictors such as BOCTOPUS (Hayat and Elofsson 2012a)
and tobmodel (Hayat and Elofsson 2012b) have been implemented. These methods
employ SVMs in the first stage to predict the local preference of each residue to
form an outer-loop, inner-loop or membrane strand region. The output of this stage
is then fed to an HMM that predicts the overall topology. Another approach called
BETAWARE (Savojardo et al. 2013a) consists of two methods, first an N-to-1
Extreme Learning Machine algorithm is used for the identification of TMBs, fol-
lowed by a Grammatical-Restrained Hidden Conditional Random Field approach to
predict the topology. In contrast to other methods, transFold (Waldispühl et al.
2006) does not require a training set but uses a grammar to predict the b-strands and
inter-strand residue contacts. Most of these topology prediction methods can also be
used for distinguishing TMBs from non-TMBs.

5.5.8 Consensus Approaches for b-Barrel Topology
Prediction

To our knowledge, conBBPRED (Bagos et al. 2005) is the only consensus method
available for TMB topology prediction. conBBPRED assigns a per-residue score by
averaging over contributions of each individual predictor followed by a dynamic
programming step to obtain the overall topology. On a dataset of 20 proteins,
conBBPRED increases the accuracy of predicted topologies by 15% (Bagos et al.
2005). With larger datasets and more topology predictors becoming available, it
will be interesting to see if consensus topology prediction methods for TMBs show
improved accuracy over single methods.

5 Advances in Computational Methods … 149



5.6 3D Structure Prediction

As with globular proteins, 3D structure prediction of TM proteins can be dealt with
via two main approaches, homology modelling and de novo modelling, covered in
Chaps. 1 and 4 of this book.

5.6.1 Homology Modelling of a-Helical Transmembrane
Proteins

Homology modelling involves the use of a related template structure in order to
build a 3D model of a target protein. The method is based on the observation that
protein structure is conserved more highly than amino acid sequence, hence even
proteins that have diverged significantly in sequence but still share detectable
similarity may also share common structural properties, and in particular, the
overall fold. When a suitable template is available, predicting TM protein structure
by homology modelling can be highly effective, especially when tools specifically
designed for modelling TM proteins are used. Compared to globular proteins, lower
sequence conservation is required for fold preservation in transmembrane regions,
so it may even be possible to generate useful 3D models with templates that share
as little as 20% sequence identity to the target, although the paucity of high reso-
lution membrane protein structures will still limit the number of families that such
methods are applicable to (Olivella et al. 2013).

A homology modelling protocol can be subdivided into a number of key steps
which can each be performed iteratively to improve the quality of the final model:
template selection, target-template alignment, model construction, and model
quality assessment (Marti-Renom et al. 2000; Sanchez and Sali 1997). Aside from
SWISS-MODEL (Peitsch 1996; Biasini et al. 2014) which has a 7TM/GPCR
interface, few TM protein-specific homology modelling methods exist.
MEDELLER (Kelm et al. 2010) is designed to approach the steps in structure
prediction to take into account the differences between the physical environments of
globular and TM proteins. The method is optimized to build a highly reliable core
structure shared by the template and target proteins by first calculating membrane
insertion using iMembrane (Kelm et al. 2009) which is used to guide
target-template alignment by MP-T (Hill and Deane 2013). The core is gradually
extended using a specialized membrane-specific substitution score, before loops are
completed using the loop modelling protocols FREAD (Choi and Deane 2010) and
Modeller (Marti-Renom et al. 2000). Results show that MEDELLER produces
accurate core models and achieves a core model accuracy of 1.97 Å RMSD versus
2.57 Å for Modeller. The Memoir modeling pipeline now provides a fully auto-
mated web server that applies this protocol to both a-helical and b-barrel TM
proteins (Ebejer et al. 2013).
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Chen and co-workers developed a method specifically to deal with the issue of
building homology models from very distantly related homologues exhibiting
distinct loop and TM helix conformations (Chen et al. 2014). The approach is based
on efficient sampling techniques of alternative TM helix structures, in order to
reconstruct both TM core and loop regions from distant structural homologues,
resulting in high quality models that were top-ranked when stringently validated in
two blind predictions (Kufareva et al. 2011; Michino et al. 2009). Since the method
requires only a single distant homolog, they estimate that around 60% of human
membrane proteins can be reliably modeled using their approach, allowing the
generation of 3D models for a large and diverse fraction of structurally uncharac-
terized TM proteins.

A number of tools also exist to model specific regions of TM proteins. These
include TM loop regions, which have been shown to differ significantly from loop
regions in globular proteins. Kelm and co-workers showed that it is possible to
accurately predict the structure of TM loops using a database of small TM protein
loop fragments (0.8–1.6 Å). Their findings show that while many globular protein
fragments have similar shapes to their TM counterparts, their sequences are often
very different, although they do not appear to differ in their substitution patterns.
Their method is implemented in a modification to FREAD (Kelm et al. 2014).
Modelling of TM kinks has also attracted a lot of attention, as they have been
observed to provide important functional and structural roles in TM proteins
(Yohannan et al. 2004). Tools to model TM kinks include the Monte Carlo method
based algorithm, MC-HELAN, which determines helical axes alongside positions
and angles of helical kinks (Langelaan et al. 2010), HELANAL-Plus (Kumar and
Bansal 2012), a web server for analysis of helix geometry in TM protein structures,
and TMKink, a neural network predictor which identifies over two-thirds of all
bends with high sensitivity and specificity (Meruelo et al. 2011).

5.6.2 Homology Modelling of Transmembrane b-Barrel
Proteins

For transmembrane b-barrel proteins, HHomp (Remmert et al. 2009) can be used to
identify remote homologues with a known 3D structure that can act as template/s
for 3D modelling of these proteins. Standard application of MEDELLER or
MODELLER can then be used to generate all-atom homology models (Kelm et al.
2010; Marti-Renom et al. 2000). The TMBpro method (Randall et al. 2008) uses a
combination of machine-learning to predict the location of b-strands and
inter-strand contacts and then selects templates from TMBs with known 3D
structure by matching the number of b-strands. However, as stated above, a key
limitation of such an approach is that it is only limited to protein sequences for
which a reliable template can be found. Additionally, for transmembrane b-barrels,
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where identification of novel families is still an open issue, such an approach might
miss reliable templates.

5.6.3 De Novo Modelling of a-Helical Transmembrane
Proteins

De novo modelling, or ab initio modelling, involves the construction of a 3D model
in the absence of any tertiary structural data relating to the target protein. As with
homology modelling, most methods address globular proteins although recently a
number of methods have emerged specifically to deal with TM proteins including
FILM (Pellegrini-Calace et al. 2003), RosettaMembrane (Barth et al. 2007, 2009)
and BCL::MP-fold (Weiner et al. 2013) (Table 5.5).

FILM (Folding In Lipid Membranes) is a modification of the globular protein
structure prediction method FRAGFOLD (Jones and McGuffin 2003; Jones 1997).
FRAGFOLD employs simulated annealing in order to perform a conformational
search using high-resolution super-secondary structural fragments to assemble the
tertiary fold, guided by a statistical function that includes pairwise, solvation, steric
and hydrogen bonding energy terms. FILM added a knowledge-based membrane
potential term to the FRAGFOLD energy function, derived from the statistical
analysis of a data set of 640 transmembrane helices whose topologies had been
determined experimentally. The relative frequencies of each amino acid at fixed
distances from the membrane centre were assessed, allowing the membrane
potential term to be calculated by transforming these values using the inverse
Boltzmann equation. Results indicated that it was possible to predict both the
topology and conformation of small proteins at a reasonable level of accuracy,
although attaining the level of compactness observed in larger TM helix bundles
was challenging, since TM helix bundles are usually not optimally compact despite
neighboring helices being closely packed together. Further modification to FILM
allowed progress to be made in the prediction of larger TM helix bundles by
incorporating another term accounting for lipid exposure into the energy function.
This allowed models of seven TM helix bacteriorhodopsin and rhodopsin to be

Table 5.5 3D modelling tools for a-helical transmembrane proteins

Method Features URL

RosettaMembrane (Barth et al. 2009,
2007)

Knowledge-based
potential

https://www.rosettacommons.
org/

Evfold_membrane (Hopf et al. 2012;
Sheridan et al. 2015)

Evolutionary
couplings

http://evfold.org/
transmembrane

FILM3 (Nugent and Jones 2012) Evolutionary
couplings

http://bioinfadmin.cs.ucl.ac.uk/
downloads/FILM3/

BCL::MP-fold (Weiner et al. 2013) Knowledge-based
potential

http://www.meilerlab.org/
index.php/servers
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generated to within 6–7 Å root mean square deviation (rmsd) of the native structure
(Hurwitz et al. 2006).

RosettaMembrane is also a modification of a globular protein structure predic-
tion method—Rosetta (Rohl et al. 2004; Simons et al. 1999), which, like
FRAGFOLD, assembles folds using fragments of known structures using simulated
annealing or parallel tempering—an effective algorithm to overcome the slow
convergence in low-temperature protein simulation. RosettaMembrane added terms
to the Rosetta energy function that described intra-protein and protein-solvent
interactions in the anisotropic membrane environment, treating hydrogen bonds
explicitly and membrane protein/lipid interactions implicitly. The method describes
interactions between protein residues at atomic detail while applying continuum
solvent models to the water, hydrophobic core, and lipid head group regions of the
membrane. Results suggest that the model captures the essential physical properties
that govern the solvation and stability of membrane proteins, allowing the structures
of 12 small TM protein domain (<150 residues) to be predicted successfully to a
resolution of <2.5 Å (129), comparing favourably with predictions obtained on
small water-soluble protein domains. More recently, the method was extended to
incorporate distance constraints into the predictions to direct helix-helix interac-
tions, the constraints being derived from either experimental data or sequence-based
predictions (Fuchs et al. 2009; Lo et al. 2009; Nugent et al. 2011; Nugent and Jones
2010). This allowed larger (90–300 residues) structures with more complicated
topologies to be successfully modelled to within 4 Å rmsd in the best four cases,
with results indicating that only a single constraint was sometimes sufficient to
enrich the population of near-native models.

A recent method BCL::MP-fold (Weiner et al. 2013), a modification of BCL::
Fold (Karakas et al. 2012), generates models within a static membrane object by
evaluating conformations using a knowledge-based energy potential which takes
into account the unique properties of the apolar membrane in the amino acid
environment potential, as well as an increased radius of gyration along the mem-
brane normal. Three additional terms are introduced first to describe the preferential
orientation of secondary structure elements with respect to the membrane, secondly
to penalise connection of two neighboring TM helices that would require passage
through the membrane, and finally to assess the agreement of residue placement in
TM regions with predictions from sequence. Additionally, a symmetry folding
mode allows for the prediction of obligate homo-multimeric TM complexes.
A benchmark test using 40 TM protein 3D structures demonstrated that the method
is able to accurately predict the correct topology in 34 cases, suggesting the
approach can successfully predict protein topology without the need for large
multiple sequence alignments, homologous template structures, or experimental
restraints.
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5.6.4 De Novo Modelling of Transmembrane b-Barrels

The topological arrangement of b-strands in transmembrane b-barrels is regular and
can be exploited to generate 3D models of TMBs based on an idealized geometry
(Naveed et al. 2012; Hayat and Elofsson 2012b). Existing methods based on ide-
alized geometry approximate the diameter of a TMB, calculated based on its
number of strands. Additionally, 3D coordinates of Ca atoms along b-strands and
their placement with respect to the in-register Ca atom can also be determined using
a theoretical description (Chou et al. 1990; Murzin et al. 1994a, b). Tobmodel uses
these regular structural features to generate idealized Ca atoms of TMBs (Hayat and
Elofsson 2012b). Another method, 3d-SpoT, uses an empirical scoring function
derived from frequencies of lipid-facing and pore-facing residues in known TMB
structures to find the optimal strand-registration and then uses a geometric model of
intertwined coils to generate 3D models (Naveed et al. 2012) (Table 5.6).

5.6.5 Covariation-Based Approaches

Up until recently, using knowledge-based potentials derived from the statistical
analysis of known protein structures has been the standard approach for de novo
structure prediction. Over the last five years, the field has seen dramatic progress as
new methods have emerged that are capable of accurately inferring residue-residue
contacts from large multiple sequence alignments (MSAs), allowing 3D structures
to be computed directly from sequence data. Two key factors have led to this
revolution; firstly, the rapid growth in the size of sequence databases, which has
resulted in the number of sequences available for a typical protein family increasing
by orders of magnitude (Sadowski and Taylor 2013), and secondly, the application
of advanced statistical methods to this sequence data that allows the detection of
true correlated mutations between sites in MSAs. The main idea behind correlated

Table 5.6 3D modelling tools for transmembrane b-barrels

Method Features URL

EVfold_bb (Hayat
et al. 2015)

Evolutionary
couplings + Strand-registration
prediction

http://cbio.mskcc.org/
foldingproteins/transmembrane/
betabarrels/

tobmodel (Hayat
and Elofsson
2012b)

Topology + Strand-registration
prediction

http://tmbmodel.cbr.su.se/

3D-SpoT (Naveed
et al. 2012)

Inter-strand pairing + Idealized
barrel

http://tanto.bioe.uic.edu/TMBB-
Explorer/

TMBpro (Randall
et al. 2008)

Machine learning + Templates http://tmbpro.ics.uci.edu/
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mutations is that residues that are proximal in 3D space are more likely to impose
constraints on each other, which should lead to a correlation in their substitution
patterns in the MSA. Mutation of either residue might disrupt the stability of the
contact, which is likely to have an impact on the stability of the overall fold.
Subsequent mutation of one or both residues to a more physicochemically com-
plementary pairing may increase the likelihood of the contact being maintained;
therefore residue pairs that form contacts are often seen to covary. It is this property
that modern contact prediction methods seek to exploit.

A number of different methods have been developed for predicting contacts from
sequence data based on the recognition of these residue covariation patterns. Up until
now, they major obstacle in achieving performance useful for structure prediction has
been in dealing with indirect coupling effects: should a direct contact exist at sites A–
B and A–C, an apparent interaction may appear between B-C even though no direct
contact exists. The approach of Lapedes et al. (1999) dealt with this so-called
chaining problem by applying a maximum entropy approach, but at a high compu-
tational cost. The Direct Coupling Analysis (DCA) method reduced the problem to
one of maximum entropy inference, applying a heuristic message passing approach
to determine the solution of the contact weights (Weigt et al. 2009). This allowed the
approach of Lapedes et al. to be put to practical use, with prediction accuracy
achieving sufficient quality to be useful in structure prediction (Taylor and Sadowski
2011). PSICOV is based on sparse inverse covariance estimation (Jones et al. 2012).
It applies the graphical lasso method (Friedman et al. 2008) to estimate the inverse of
the covariance matrix, which is calculated from theMSA, whilst also constraining the
solution to be sparse. The inverse covariance matrix, also known as the precision
matrix, gives the correlation between any two sites in the MSA, conditional on
observations at all other sites. This global statistical model was able to predict
contacts with an accuracy approaching 80%, even for long-range contacts (those
separated by >23 residues in the sequence), which is sufficient to identify to the
native fold for medium sized (<200 residue) globular proteins, where sufficient
numbers of aligned sequences are available. A more recent method, plmDCA
(Ekeberg et al. 2013) uses a pseudo-likelihood approach applied to the Potts models.
This has been shown to significantly outperform existing DCA-based approaches,
while consensus approaches such as PconsC (Skwark et al. 2013) and MetaPSICOV
further improve performance (Jones et al. 2015).

5.6.6 Evolutionary Covariation-Based Methods for De Novo
Modelling of a-Helical Membrane Proteins

The performance of these methods has led to the development of a number of de novo
structure prediction methods capable of generating accurate models for even large
domains, guided primarily by predicted contacts. Evfold_membrane (Hopf et al.
2012) incorporates predicted transmembrane topology into the EVfold protocol
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(Marks et al. 2011), which uses DCA in combination with the CNS molecular
dynamics software suite to generate 3Dmodels. A webserver to de novo fold proteins
using EVfold protocol with DCA and plmDCA has also been implemented (Sheridan
et al. 2015). It was shown to be capable of generating accurate models within the
top-10 ranked structures for fifteen targets ranging in size from 50 to 260 residues to
within 2.7–4.8 Å rmsd of their native structures over at least two-thirds of the protein
length. The latest version of FILM, FILM3, replaces the statistical potential with a
single scoring function based on predicted contacts and their estimated probabilities
(Nugent and Jones 2012). Using contacts predicted by PSICOV, results indicate that
models with TM-scores >0.5 could be generated for 25 out of 28 membrane protein
targets with complex topologies and an average length over 300 residues (Fig. 5.4).
In the most remarkable case, it was possible to build a model for all 514 residues of
cytochrome c oxidase polypeptide I with a TM-score >0.75. As encouraging as these
results are, data suggests that even with perfect distance constraints, folding methods
are unable to generate models less than 2 Å rmsd of the native structure, suggesting
that protein refinement protocols will play an increasingly important role in gener-
ating higher accuracy models.

Fig. 5.4 Model of CASP 11 free modelling target T0836 (right)—a 5-helix TM protein. Predicted
contacts were generated using MetaPSICOV (Jones et al. 2015) enabling a model to be produced
using the FILM3 protocol (Nugent and Jones 2012) resulting in a TM-score of 0.60 (Kosciolek
and Jones 2015). The native structure is on the left
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5.6.7 Evolutionary Covariation-Based Methods
for Transmembrane b-Barrel Structure Prediction

Transmembrane b-barrels have a uniform b-strand topological pattern, where
alternate strands traverse from the inside to the outside and vice versa, and addi-
tionally, anti-parallel b-strands have a unique hydrogen-bonding pattern. These
structural features can be exploited to enhance the accuracy of predicting residues
pairs in contact between two adjacent b-strands. Further, these can also be used to
estimate the registration (relative position of two strands with respect to each other)
of two adjacent b-strands. This has been shown to be useful for 3D modelling of
TMBs (Hayat and Elofsson 2012b; Naveed et al. 2012; Randall et al. 2008).
Additionally, Hayat et al. (2015) have implemented a simple strand-shift algorithm,
where adjacent strands are shifted up/down relative to each other to ascertain the
position that gives the highest sum of evolutionary couplings (ECs) between paired
residues to identify the correct registration of TM b-strands in TMBs. This hybrid
algorithm that combines empirical knowledge about TM b-strands and evolutionary
covariation analysis-based contact prediction improves the prediction accuracy of
inter-strand residue contacts. These predicted inter-strands constraints can then used
to identify the underlying hydrogen-bonding network and the resulting interactions
are used as distance constraints to de novo fold large TMBs using a tool called
EVfold_bb (Hayat et al. 2015). EVfold_bb method can correctly predict the 3D
structure with an average TM-score of 0.54 for the top-ranking models. EVfold_bb
can also identify the correct inter-strand registration with an accuracy of 44% (in
generated models), which is an improvement over tobmodel (18%), which does not
use ECs to guide optimal strand registration search. Moreover, the generated
models are not restricted to idealized geometries and do not require a template.
Most interestingly, EVfold_bb can also identify and model 3D interactions between
the barrel and the large plug domain in FecA protein (TM-score 0.68). The plug
domain sits in the TM barrel domain and participates in gating and signaling
(Noinaj et al. 2012).

Furthermore, methods specifically meant for improving prediction of b-sheet
contacts in both globular and membrane proteins have also been developed. These
methods can be broadly divided into two groups based on the use of ECs. BetaPro
(Cheng and Baldi 2005) and MLN-2S (Lippi and Frasconi 2009) use neural net-
works and Markov logic networks, respectively, to predict b-sheet contacts.
Maximum entropy-based correlated mutation measures (CMM) (Burkoff et al.
2013), Bcov (Savojardo et al. 2013b), bbcontacts (Andreani and Söding 2015) and
MetaPSICOV (Jones et al. 2015) all use evolutionary covariation. In addition, these
methods employ an additional layer of machine-learning techniques such as deep
learning or HMMs on predicted evolutionary couplings to increase the accuracy of
predicted residue-residue contacts in b-sheets. In future, methods that combine the
general principles of anti-parallel b-stands along with machine-learning based
methods that employ predicted contacts should be able to improve the applicability
of these techniques to TMBs.
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5.7 Future Directions

Substantial progress has been made in the field of membrane protein structure
prediction over recent years. Methods for the detection of remote homologues have
drastically improved, making it possible to generate template-based models for a
larger number of protein families. Advances in techniques for predicting pairwise
residue contacts have made it possible to generate de novo 3D models of large
membrane proteins. However, these techniques are only applicable to protein
families with large multiple sequence alignments. It is anticipated that as more
sequencing data becomes available, 3D models of yet unknown TM protein fam-
ilies will become model-able based on predicted contacts. Future challenges lie in
further improving these contact prediction methods by optimizing multiple
sequence alignments, generation of fragment libraries, statistical inference methods
used and the tools employed to predict 3D models.
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Chapter 6
Bioinformatics Approaches
to the Structure and Function
of Intrinsically Disordered Proteins

Zsuzsanna Dosztányi and Peter Tompa

Abstract Intrinsically disordered proteins and protein regions (IDPs/IDRs) exist
without a well-defined structure. They carry out their function by relying on their
highly flexible conformational states and are mostly involved in signal transduction
and regulation. By a battery of biophysical techniques, the structural disorder of
about 600 proteins has been demonstrated, and functional studies have provided the
basis of classifying their functions into various schemes. Indirect evidence suggests
that the occurrence of disorder is widespread, and several thousand proteins with
significant disorder exist in the human proteome alone. To narrow the wide gap
between known and anticipated IDPs, a range of bioinformatics algorithms have
been developed, which can reliably predict the disordered state from the amino acid
sequence. Attempts have also been made to predict IDP function. However, due to
their fast evolution, and reliance on short motifs for function, capturing sequence
clues for IDP functions is a much more challenging task. In this chapter we give a
brief survey of the IDP field, with particular focus on their functions and bioin-
formatics approaches developed for predicting their structure and function.
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6.1 The Concept of Protein Disorder

The classical paradigm, which equated protein function with a stable 3D structure,
had tremendous success in interpreting the function of enzymes, receptors and
structural proteins. Decades of structure determination efforts and recent structural
genomics programs have yielded over 100,000 well-defined structures deposited in
the Protein Data Bank (PDB, www.pdb.org), strongly reinforcing the traditional
view. The recent recognition that many proteins or regions of proteins lack a
well-defined three-dimensional structure under native, physiological conditions,
however, challenged the universality of this paradigm (Dunker et al. 2001; Tompa
2002; Dyson and Wright 2005). The rapid accumulation of data in support of this
emerging alternative view of proteins in recent years led to the reassessment and
extension of the structure-function paradigm (Wright andDyson 1999; Tompa 2012).

A range of biophysical techniques, primarily X-ray crystallography, NMR,
SAXS and CD, have provided evidence that intrinsically disordered, or unstruc-
tured, proteins (IDPs/IUPs) or regions of proteins (IDRs) assume no well-defined
conformations, but rather a rapidly fluctuating ensemble of alternative structural
states (Tompa 2002, 2005; Dyson and Wright 2005; Uversky et al. 2005). IDPs can
occupy conformational states anywhere between the fully disordered (random coil)
and compact (molten globule) states with characteristic distributions of transient
secondary and tertiary contacts (Uversky et al. 2000; Uversky 2002) similarly to the
denatured states of globular proteins. At variance with globular proteins, IDP
functions directly stem from the unfolded states, and are exploited mostly in reg-
ulating processes of signal transduction and gene transcription (Iakoucheva et al.
2002; Ward et al. 2004; Tompa et al. 2006).

Not only are IDPs able to function despite their lack of stable structures,
structural disorder actually provides functional advantages in regulatory functions,
such as the separation of specificity from binding strength (Wright and Dyson
1999), adaptability to various partners (Tompa 2005), increased rate of interaction
(Pontius 1993) and frequent involvement in post-translational modifications
(Iakoucheva et al. 2004). These advantages enable IDPs to fit into unique functional
niches, and explain the advance of protein disorder in evolution, with a critical
difference in frequency between eukaryotes and prokaryotes (Iakoucheva et al.
2002; Ward et al. 2004; Tompa et al. 2006). The advantages also explain a high
level of disorder in functionally important regulatory proteins, which also play
central roles in disease, such as the prion protein (Lopez Garcia et al. 2000),
BRCA1 (Mark et al. 2005), tau protein (Schweers et al. 1994), p53 (Bell et al.
2002), and a-synuclein (Weinreb et al. 1996). The current most complete collection
of IDPs, the DisProt database (www.disprot.org), contains about 600 disordered
proteins, mostly observed serendipitously as such (Sickmeier et al. 2007). The
application of predictors based on such collection of proteins, however, suggests
that, in the proteomes of metazoa, about 5–15% of proteins are fully disordered, and
30–50% of proteins contain at least one long disordered region (Dunker et al. 2000;
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Ward et al. 2004; Tompa et al. 2006). To narrow this apparently wide gap in
knowledge, a lot of effort is spent on developing bioinformatics algorithms to
predict disorder and function from amino acid sequence. This review focuses on the
principles and recent developments in this area of IDP research.

6.2 Sequence Features of IDPs

6.2.1 The Unusual Amino Acid Composition of IDPs

It has been observed first by Dunker et al. (2001) that the frequency of amino acids
in disordered proteins significantly differs from that of ordered proteins. The dif-
ference does not depend on the method used to establish the structural status of the
protein, as they are always depleted in hydrophobic amino acids, and are enriched
in polar and charged amino acids. The former group (Trp, Cys, Phe, Ile, Tyr, Val,
and Leu) is termed order-promoting, whereas the latter (Ala, Arg, Gly, Gln, Ser,
Pro, Glu, and Lys) are disorder-promoting (Dunker et al. 2001) amino acids.
Similar trends have been found in other studies (Uversky 2002; Tompa 2002), and
it is now generally accepted that the main attribute determining disorder is a low
overall level of hydrophobicity, which precludes the formation of a stable globular
core. This is often accompanied with high net charge, which favors an extended
structural state due to electrostatic repulsion (Uversky et al. 2000).

6.2.2 Low Sequence Complexity and Disorder

Another manifestation of the sequential bias of IDPs is the low sequence com-
plexity of their polypeptide chains. Application of an entropy function to amino
acid sequences of proteins (Wootton 1994; Wootton and Federhen 1996) has shown
that globular proteins appear mostly to be in a high-entropy (complexity) state,
whereas in many other proteins long regions apparently of low complexity can be
observed. As much as 25% of all amino acids in SwissProt are in low-complexity
regions, and 34% of all proteins have at least one such segment (Wootton 1994;
Wootton and Federhen 1996). The exact relationship of low complexity and dis-
order has been addressed in two studies. First, the relation of alphabet size (number
of amino acids) and complexity to the capacity of folding was studied (Romero
et al. 1999). It was found that SwissProt proteins cover the entire possible range of
alphabet size (1–20) and entropy range (K = 0.0–4.5), whereas globular domains
only occupied a limited region (alphabet = 10–20, K = 3.0–4.2). Regions corre-
sponding to lower values (down to alphabet size = 3 and K = 1.5) mostly corre-
spond to structured, fibrous proteins, such as coiled coils, collagens and fibroins. It
was concluded that a minimal alphabet size of 10 and entropy near 2.9 are
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necessary and sufficient to define a sequence that can fold into a globular structure.
By extending these studies to IDPs (Romero et al. 2001), it was shown that the
complexity distribution of disordered proteins is shifted to lower values, but sig-
nificantly overlaps with that of ordered proteins. Overall, disordered and
low-complexity regions correlate and are abundant in proteomes, but
low-complexity and disorder should not be treated as synonyms.

6.2.3 Flavours of Disorder

Despite the pronounced differences between disordered and ordered protein
regions, it is pertinent to mention that IDPs are heterogeneous in terms of their
structural, and functional properties that is also reflected in their sequential prop-
erties. It was suggested that disordered regions characterized by various experi-
mental techniques show different biases in their amino acid compositions (Dunker
et al. 2001). One potential category corresponds to segments collected from the
PDB database as missing residues in the electron density map. These are typically
shorter segments (less than 10 residues long), often corresponding to terminal
residues or flexible loop regions attached to globular domains. These regions show
significant differences in their sequence properties compared to the typically longer
(over 30 residue) segments collected in the DisProt database, that are usually
identified by CD, NMR or hydrodynamic radius measurements which capture the
global properties of these regions. The observed differences among these groups
have important implications from the viewpoint of predictions as well, as disorder
predictors trained on one group of proteins often perform poorly on other groups
(Le Gall et al. 2007).

The specific sequential biases observed in certain disordered proteins can often
be correlated with functional properties. One example for this is the trans-activator
domains of transcription factors. These regions have a strong tendency to be dis-
ordered (Sigler 1988; Minezaki et al. 2006) and are often classified based on their
amino acid composition. Traditionally, transcription factors are distinguished on the
basis of the amino acid preferences of their trans-activator domains, such as acidic,
Pro-rich and Gln-rich (Triezenberg 1995). Although the statistical foundation of
these differences is practically non-existent, this categorization can be justified by
that function within one category of transcription factors is rather insensitive to
amino acid changes as long as the above character of the domain is maintained
(Hope et al. 1988). On the other hand, mutations that change this character impair
trans-activation function (Gill and Ptashne 1987). Thus, some features apparent at
the level of composition are closely related to function. Whereas the insights gained
from these analyses are too limited to establish clear categories, it may be sug-
gestive of important directions of future research.
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6.3 Prediction of Disorder

The underlying and unifying feature is that IDPs have “unusual” amino acid
composition and sequence that distinguishes them from ordered proteins, sug-
gesting that the primary determinant of protein disorder is encoded in the amino
acid sequence proteins. Based on the noted compositional bias, about 50 predictors
of disorder have been developed (reviewed in He et al. 2009; Dosztanyi et al. 2010)
many of them conveniently available as web-servers or program packages (see
Table 6.1). The best predictors approach the accuracy of the best secondary
structure prediction algorithms, and the principles of comparing their performance
have already been laid down.

6.3.1 Charge-Hydropathy Plot

The classical approach to assess the disordered status of a protein is based on the
observation of Uversky that a combination of low mean hydrophobicity and high
net charge distinguishes IDPs from ordered proteins. This principle can be applied
in a simple fashion, by plotting net charge versus net hydrophobicity (Uversky
2002), in a plot termed either the charge-hydropathy (CH) plot or the Uversky plot.
On the plot IDPs tend to be positioned in the high net charge—low net
hydrophobicity region, and are separated from globular proteins by a linear function
of a formula <charge> = 2.743 <hydropathy> − 1.109 (Fig. 6.1), determined at
high precision in a later study (Oldfield et al. 2005). A limitation of the CH plot is
that it only enables a binary classification of proteins, without providing informa-
tion at amino acid resolution. To deal with this situation, Sussman and colleagues
have extended this principle (Prilusky et al. 2005) by applying a sliding window
along a protein sequence to calculate mean hydrophobicity and net charge and
thereby predict the disorder of the middle residue.

6.3.2 Propensity-Based Predictors

The simplest approaches for the prediction of protein disorder are based on amino
acid propensity scales, and assess if a given disorder-related amino acid feature is
enriched or depleted within a pre-defined segment of the protein. Given the specific
compositional bias of disordered proteins, the highest discriminatory power are
expected from propensities that are related to various hydrophobicity scales, such as
flexibility and coordination number (Xie et al. 1998). In a related fashion, GlobPlot
(Linding et al. 2003), applies an amino acid propensity scale, which expresses the
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Table 6.1 Computational resources for IDPs

Name Web URL Description

Databases

DisProt http://www.disprot.
org/

Experimentally verified database of
protein disorder

IDEAL http://www.ideal.
force.cs.is.nagoya-u.
ac.jp/IDEAL/

Intrinsically disordered proteins with
manually curated annotations with a
special focus on functional sites

MobiDB http://mobidb.bio.
unipd.it/

A database of protein disorder and
mobility annotations based on DisProt
and PDB X-ray structures, several
different flavours of disorder predictors

D2P2 http://d2p2.pro/ Database of pre-computed disorder
predictions on a large library of
proteins from completely-sequenced
genomes

PE-DB http://pedb.vib.be/ A database for the deposition of
structural information on IDP- and
denatured protein ensembles based on
NMR and SAXS data

ELM http://elm.eu.org/ Database of eukaryotic linear motifs

Disorder prediction methods

PONDR methods (e.g.
VL_XT, VSL2)

http://www.pondr.
com/cgi-bin/PONDR/
pondr.cgi

Various methods based on machine
learning principles

DISOPRED
(DISOPRED2 and 3)

http://bioinf.cs.ucl.ac.
uk/disopred

Machine learning methods (current
method is based on NN)

IUPred http://iupred.enzim.hu Estimated pairwise interaction energy
per residue

DisEMBL http://dis.embl.de Neural network based prediction of
residues in loops, in loops with high
B-factor and in REMARK 465 lines of
PDB files

GlobPlot http://globplot.embl.
de

Amino acid propensity, preference for
ordered secondary structure

FoldUnfold http://skuld.protres.ru/
*mlobanov/ogu/ogu.
cgi

Amino acid propensity based on
contact numbers

FoldIndex http://bip.weizmann.
ac.il/fldbin/findex

Uses the combination of amino acid
propensity of net charge and
hydrophobicity calculated with a
sliding window

Predictprotein (UCON,
NORSp, MD)

http://ppopen.rostlab.
org/

Various machine learning methods

RONN https://app.strubi.ox.
ac.uk/RONN/

Bio-basis Function Neural Network
that recognizes similarity to known
disordered segments

(continued)
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tendency for a given amino acid to be in a region of coil versus a regular secondary
structure and delineate ordered and disordered regions based on the calculated
measure. A specific amino acid propensity scale was also optimized for discrimi-
nating ordered and disordered segments (Campen et al. 2008).

Table 6.1 (continued)

Name Web URL Description

ESpritz http://biocomp.bio.
unipd.it/espritz/

Bidirectional recursive neural networks
and trained on three different flavours
of disorder

MFDp http://biomine-ws.ece.
ualberta.ca/MFDp2/
index.php

Meta server for prediction of disordered
protein

OnD-CRF http://babel.ucmp.
umu.se/ond-crf/

Conditional random fields based
prediction using features generated
from the amino acids sequence and
from secondary structure prediction

Genesilico-Metadisorder http://genesilico.pl/
metadisorder/

Meta server trained on PDB REMARK
465 lines, CASP7 and Disprot datasets;
incorporates fold recognition method

Prediction of IDP functional modules

ANCHOR http://anchor.enzim.hu Prediction of disordered binding
regions based on estimated energies

DISOPRED3 http://bioinf.cs.ucl.ac.
uk/disopred

Machine learning method for
disordered binding regions

iELM http://i.elm.eu.org/
search/

Prediction of matches to the regular
expression of known linear motifs

MORFPRED http://biomine-ws.ece.
ualberta.ca/
MoRFpred/index.html

Machine learning method that
combines features provide information
about evolutionary profiles, selected
physiochemical properties of amino
acids, and predicted disorder, solvent
accessibility and B-factors

DILIMOT http://dilimot.
russelllab.org/

De novo linear motif discovery based
on enrichment

SLiMSuite http://www.slimsuite.
unsw.edu.au/software.
php

Various tools for linear motif discovery
and searches

Conservation analysis

DisCons http://pedb.vib.be/
discons/

Tool to classify residues based on the
combined conservation scores of the
sequence and of the disorder propensity

The table lists publicly available computational resources for IDPs. It includes databases,
prediction methods for disordered regions and their functional modules, their URL addresses, and
their descriptions. Further details on the predictors are found in the text, and in references (He et al.
2009; Dosztanyi et al. 2010)
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6.3.3 Prediction Based on Simplified Biophysical Models

Some predictors operate based on the idea that IDPs cannot fold because their
amino acids cannot make sufficient inter-residue interactions to overcome the
unfavorable decrease in entropy accompanying folding. There are several predictors
based on this principle, that apply simple statistical principles [FoldUnfold
(Galzitskaya et al. 2006)], based on contact predictions [Ucon (Schlessinger et al.
2007)], or estimate the total inter-residue interaction energy of a chain [IUPred
(Dosztanyi et al. 2005a, b)]. This latter is described in some detail.

To estimate the total pair-wise interaction energy realized by a polypeptide
chain, IUPred uses low-resolution force fields (statistical potentials) derived from
globular proteins. The underlying idea is that the contribution of a residue depends
not only on its type, but also on other amino acids, i.e. its potential partners, in the
sequence. Because a probabilistic treatment of the potential interactions of all
residues with all others is not tractable, the problem is simplified by a quadratic
expression in the amino acid composition. The contribution of an amino acid is
approximated by an energy predictor matrix, which relates the energy contribution
of amino acid i to that of amino acid j. The parameters of the matrix are determined
by least squares fitting to actual globular proteins. By this approach, the average

Fig. 6.1 Charge-hydropathy plot of protein disorder. Net charge versus mean hydrophobicity has
been plotted for intrinsically disordered (full diamond) and ordered (empty circle) proteins. The
two are separated by a straight line <charge> = 2.743 <hydropathy> − 1.109, with arrows
pointing to the lines delimiting the zone with a prediction accuracy of 95% for disordered proteins
and 97% of ordered proteins, at the expense of discarding 50% of all proteins (adapted with
permission from Oldfield 2005. Copyright 2005 American Chemical Society)
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energy level of disordered proteins (−0.07 arbitrary units) is significantly more
unfavorable than that of globular proteins (−0.81 arbitrary units), which suggests
that the approach is informative on the gross structural status of proteins. When
only a pre-defined local sequential neighborhood is considered in the calculations,
the approach provides sequence-specific information on disorder, forming the basis
of IUPred disorder prediction method (Fig. 6.2b).

6.3.4 Machine Learning Algorithms

The prediction of protein disorder is basically a simple binary classification problem
that can be approached using standard machine learning (ML) algorithms.
Compared to the previous simpler approaches, these methods can incorporate
non-trivial amino acid features and deduce hidden sequence properties, which can
lead to superior performance. At the same time, their correct prediction often does

Fig. 6.2 Plots of predicted disorder for p53. Disorder of the tumor suppressor p53 has been
predicted by the a DISOPRED3 (Jones and Cozzetto 2015) and b IUPred (Dosztanyi et al. 2005a)
methods. Residues with scores above 0.5 are predicted disordered, while below 0.5 residues are
predicted ordered. The predictions are basically in agreement with biophysical data that suggest
disorder within the N-terminal and the C-terminal regions, while the central tetramerization
domain is predicted to be more ordered. For DISOPRED3, the orange line indicates predicted
disordered binding regions within the predicted disordered regions plotted with blue. In the
presented case only the very terminal regions are predicted as disordered binding regions, based on
their scores above 0.5
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not rely on known principles, and thus they do not add to our understanding of what
defines disorder. Furthermore, ML approaches are more prone to be biased to our
current limited collection of disordered protein examples.

One of the most commonly applied ML techniques is artificial neural network
(ANN). ANN is a computational model that was inspired by the learning process of
the brain and uses a system of weighted connections. During training, the weights
are optimized in such a way that correct relationship between input data (e.g.
sequence features) and outputs (e.g. order or disorder category) is recognized.
Another commonly applied technique uses the support vector machine
(SVM) algorithm. This method searches for a hyperplane in a feature space that
separates ordered and disordered proteins. The hyperplane may either be linear on
non-linear. It can also take into account unbalanced class frequencies of data, which
is the typical case in the prediction of order and disorder. Other types of machine
learning approaches have also been exploited for the prediction of protein disorder.
These include radial basis function network (Su et al. 2006), biobasis function
neural networks (Yang et al. 2005), recurrent function neural networks (Hecker
et al. 2008), or conditional random fields (Wang and Sauer 2008). The main reason
to use these more advanced ML techniques is to capture some of the hidden, higher
order sequence dependences of protein disorder.

The group of Keith Dunker developed a family of predictors termed PONDR
(predictor of natural disordered regions), including the first method in the field,
VL-XT. The VL-XT method relies on three separate ANNs, one trained specifically
for the N-terminal region, one for the C-terminal regions and another for the middle
regions of variously characterized long disordered regions. As an input it uses local
amino acid composition, flexibility and other sequence features (Li et al. 1999).
This method is still in use today, as it was suggested that it can recognize regions
that are likely to serve as recognition motifs (Iakoucheva et al. 2002). The VL2
method was aimed at directly capturing various flavours of IDPs (Vucetic et al.
2003). The authors clustered 145 IDPs by setting up competition among increasing
numbers of predictors, with the criterion of prediction accuracy used to partition
individual proteins. The resulting three groups appeared to have only weakly dis-
cernible functional associations. Another predictor, VL3 is also based neural net-
works but it was trained on a much larger dataset. The VSL2 method represented a
significant step forward in the field of disorder prediction methods (Peng et al.
2006) as it aimed to give equally good performance for both short and longer
disordered segments using a combination of SVMs trained specifically on short and
long disordered regions. Because short disordered regions are context dependent,
i.e. their lack of structure depends on their structural environment, whereas disorder
of long regions stands on its own, this combined approach resulted in one of the
most powerful algorithms of disorder prediction. A more recent method in this
series of predictors, PONDR-FIT, is a meta-approach. This is a commonly applied
approach that takes the output of several individual prediction methods, and
combines them into a single prediction in order to achieve improved performance
(Xue et al. 2010a).
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Another family of predictors was developed by the group of David Jones. The
original version of DISOPRED relied on a neural network based approach that was
adopted from the prediction of secondary structure elements (Jones and Ward
2003). It incorporated sequence profiles generated by PSI-BLAST as an input at the
expense of increased computational cost. It was found later that using linear SVMs
could achieve better performance, as long as the training sets included only high
resolution data (Ward et al. 2004). For several years, DISORPED2 was one of the
best methods for the prediction of missing residues in X-ray structures. At the same
time, it had a clear tendency to under-predict long disordered regions. The latest
incarnation in this series, DISOPRED3, was developed to tackle this issue (Jones
and Cozzetto 2015). The authors returned to the original neural network based
DISOPRED method, but retrained it on data rich in long disordered regions. They
also developed a nearest neighbour classifier, and together with the SVM based
predictor, the predictions from these components were feed into an additional
module. The final prediction of this new method was shown to be more specific
than its predecessor and produced more accurate predictions across different IDR
lengths and positions along the sequence. DISOPRED3 also predicts disordered
binding regions (see Sect. 6.7.2) (Fig. 6.2).

There are several additional disorder prediction methods (He et al. 2009;
Dosztanyi et al. 2010). Many of them were specifically trained either on long
disordered regions, or missing residues of X-ray structures. More recent methods
are predominantly meta-predictors, which integrate the output of independent tools
(Kozlowski and Bujnicki 2012; Disfani et al. 2012). A list of publicly available
disorder prediction methods is given in Table 6.1.

6.3.5 Related Approaches for the Prediction
of Protein Disorder

As shown by the aforementioned studies, low sequence complexity differs from
disorder, yet prediction of low complexity regions can be considered as a first
reasonable approach to assessing disorder, or at least the lack of globularity. The
entropy function of Shannon, adapted to the case of protein sequences (Wootton
1994; Wootton and Federhen 1996) forms the basis of the SEG program routinely
used to identify sequentially biased fragments of low compositional complexity
measures. This practice has a definite value in delineating non-globular regions of
proteins.

A different approach relies on the prediction of regular secondary structural
elements (a-helix, b-strand). The underlying assumption is that long regions (>70
consecutive amino acids) devoid of predicted regular secondary structure are
structurally disordered (Liu and Rost 2003). Whereas the predictor, NORSp, clearly
offers an orthogonal approach to disorder predictors, it should be noted that there
are well-ordered proteins composed entirely of non-repetitive local structural
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elements [termed loopy proteins (Liu et al. 2002)]. Disordered regions which can
undergo disorder-to-order transition are also often predicted to contain regular
secondary structure elements, which generally correspond to their structure adopted
in the complex, some of them present even in the disordered state as transient local
structural elements (Fuxreiter et al. 2004). Therefore, predicted secondary structure
elements can be compatible with disordered regions.

Another concept that is strongly related to disorder is flexibility. While disorder
is inherent to only a subset of proteins, all proteins possess flexibility and are in
constant motion. This structural flexibility can be characterized by B-values derived
from experimental data for structures determined by X-ray crystallography.
Methods that were specifically trained to recognize flexible residues (i.e., residues
with high normalized B-values) can capture some aspects of disorder and represent
an orthogonal approach for the identification of structural disorder. This can be
exploited in meta-predictors to improve the predictions for experimentally char-
acterized disordered segments (Schlessinger et al. 2009). A more direct relationship
between backbone dynamics and protein disorder was suggested recently based on
backbone S2 order parameters (Cilia et al. 2013). NMR chemical shifts provide
information on local fast dynamics of the backbone up to the microsecond and low
millisecond range and are closely linked to S2 order parameters. Such data are
available for a diverse collection of proteins from fully structured to disordered in
the Biological Magnetic Resonance Data Bank (BMRB, http://www.bmrb.wisc.
edu/). The DynaMine method predicts residue level backbone dynamics from the
amino acid sequence in the form of backbone S2 order parameters (Cilia et al. 2013,
2014). The method was trained using a linear regression algorithm, and it takes an
input sequence fragment of size 51 and provides the prediction for the central
element of the fragment. The predicted values can indicate that a given residue is
likely to be rigid, flexible or has highly context-dependent dynamics. Rigid and
flexible residues showed a strong correlation with order and disorder, further
demonstrating a close connection between disorder and dynamics.

6.3.6 Comparison of Disorder Prediction Methods

Disorder prediction methods have been evaluated in the last six rounds of the
critical assessment of structure prediction algorithms (CASP), a biannual,
community-wide blind experiment that started in 1994 (Melamud and Moult 2003;
Monastyrskyy et al. 2014). CASP motivated several groups to develop their own
methods and established standard evaluation criteria. The most commonly used
measures for evaluation are Matthews correlation coefficient (MCC), balanced
accuracy (ACC) and area under ROC curve (AUC) (Monastyrskyy et al. 2011,
2014). These measures usually ensure a balanced assessment of sensitivity and
specificity. In the CASP10 dataset, the best performing groups achieved AUC
above 0.9, MCC score above 0.5 and ACC score around 0.75 (Monastyrskyy et al.
2014). It should be noted that the CASP target selection procedure is mainly aimed
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at those sequences for which the structure is expected to be released by the end of
3 month prediction stage. This criterion inevitably selects against disordered resi-
dues, especially longer IDRs, which can hinder structure determination efforts.
A different benchmark dataset can also be created using from both PDB and DisProt
entries (Mizianty et al. 2010). While a good, unbiased, estimate of the performance
of disorder prediction methods remains a challenging task, as a fair assessment, one
might state that the predictors mentioned above perform at a level approaching the
best secondary-structure prediction algorithms. To arrive at a dependable assess-
ment of disorder, it is recommended that several predictors based on different
principles should be used.

6.4 Databases of IDPs

There are several resources that collect experimental and computational annotations
on disordered regions in proteins. The Database of Protein Disorder (DisProt)
database was developed to enable IDP research by collecting and organizing
knowledge regarding the experimental characterization and the functional associ-
ations of IDPs (Sickmeier et al. 2007). The latest version of DisProt at the time of
writing (6.02, May 2013) contained 694 proteins with 1539 disordered regions.
The IDEAL database also collects experimentally verified IDPs with an additional
focus on regions that undergo coupled folding and binding upon interaction with
other proteins (Fukuchi et al. 2014). IDEAL contains manually curated annotations
on IDPs in locations, structures, and functional sites such as protein binding regions
and posttranslational modification sites together with references and structural
domain assignments. The latest release (Oct 2014) contained 557 disordered protein
regions and 203 binding regions.

The MobiDB database provides more comprehensive information about disor-
dered segments by combining experimentally verified disorder annotation with
computational predictions (Potenza et al. 2015). The database features three levels
of annotation: manually curated, indirect and predicted. Manually curated data is
extracted from the DisProt database. Indirect data is inferred from PDB structures as
missing residues in X-ray structures and mobile regions in NMR structures.
Currently the predictions from 10 methods are included (three ESpritz flavours, two
IUPred flavours, two DisEMBL flavours, GlobPlot, VSL2b and JRONN) to enable
MobiDB to provide disorder annotations for every protein in absence of more
reliable data. Its most up-to-date version (July 2014) contains intrinsic disorder
annotations for 80,370,243 Uniprot entries. The Database of Disorder Protein
Prediction (D2P2) stores pre-computed disorder predictions made by 9 different
methods for proteins from completely sequenced genomes (Oates et al. 2013).
Complementing disorder predictions, the database contains information on disor-
dered binding regions, PTM sites and domains. Currently (as of Apr 2015), it holds
10,429,761 sequences in 1765 genomes.
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6.5 Structural Features of IDPs

After recognizing the basic properties of IDPs that set them apart from globular
proteins with well-defined structure, the next big challenge is to characterize the
various conformational states of IDPs and to understand how these are related to
function. The common property of IDPs is that they fluctuate rapidly over an
ensemble of conformations in their native unbound state. At a closer look, however,
the conformational states of IDPs show significant heterogeneity. These can be
characterized using various experimental techniques, providing detailed informa-
tion in terms of apparent molecular dimension and shape, presence of transient local
structural elements or transient long-range contacts. Based on various observations,
proteins have been proposed to exist along a continuum of conformational states
that cover the spectrum of tightly folded domains that display either no disorder or
only local disorder in loops and tails, compact molten globules containing extensive
secondary structure, unfolded states that transiently populate local elements of
secondary structure, and highly extended states that resemble statistical coils
(Dyson and Wright 2005). In this model, there are no boundaries between the
described states and native proteins could appear anywhere within this continuous
landscape. In contrast, the protein quartet model distinguishes four types of con-
formational states with increasing amount of compactness and secondary structure
content: random-coil, pre-molten globule, molten globule and folded states
(Uversky 2002). These states correspond to the conformational average that is
formed by an ensemble of individual conformations which can be located anywhere
along the structural continuum.

The dynamic nature of IDPs is best modeled by statistical approaches that
describe the probabilities of individual conformations in the ensemble (van der Lee
et al. 2014). The focus of several recent studies was to generate a pool of con-
formations that satisfy various experimental constraints (Fisher and Stultz 2011;
Mittag and Forman-Kay 2007). As the number of degrees of freedom is much
greater than can be determined with available experimental measurements, the
ensemble descriptions of IDPs are highly underdetermined with several ensembles
fitting the data equally well. In order to reduce this ambiguity, various experi-
mentally measurable constraints are combined into a single amino acid-specific
ensemble description. Measurements typically involve NMR chemical shifts and
residual dipolar couplings that predominantly report on local order, and paramag-
netic relaxation enhancements and SAXS that mainly report on transient intrachain
contacts and sampling of the volume space by the unfolded chain (Jensen et al.
2014). The conformational pool can be generated by a statistical coil generator, or
molecular dynamics simulations. This approach was applied to characterize Tau
and a-synuclein, two intrinsically disordered amyloidogenic polypeptides involved
in human neurodegenerative disease (Schwalbe et al. 2014). The resulting
ensembles could predict independent experimental observations and suggested
local conformational features potentially involved in function and disease. In order
to aid further research in this area, the Protein Ensemble Database was launched
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(Varadi et al. 2014). This database collects the best fit conformational ensembles
together with their experimental constraints and currently contains 16 proteins with
25 ensembles.

The structural characteristics and populations of individual states in the con-
formational ensemble of IDPs are determined by the nature of the amino acids and
their distribution in the sequence. Disordered regions are characterized by distinct
compositional biases and they are in general depleted in canonical hydrophobic
residues and enriched in polar and charged residues (Uversky 2013). These biases
lead to a weakened hydrophobic effect that makes IDPs unable to fold indepen-
dently. However, IDRs can be categorized into three further compositional classes
that reflect the fraction of charged versus polar residues: polar tracts, polyelec-
trolytes and polyampholytes (Mao et al. 2013). In polar tracts polar residues are
dominant at the expense of hydrophobic, charged and proline residues; polyelec-
trolytes have an excess of either positively or negatively charged residues; while
polyampholytes also contain a large number of charged residues but the number of
opposite charges is comparable. The balance between solvent mediated intra-chain
attractions versus repulsions determines the types of conformations that make up
the ensemble that is thermodynamically accessible to an IDP sequence (Das et al.
2015). Accordingly, polar tracts usually form compact globules that are largely
devoid of significant secondary structural elements, while strong polyelectrolytes
form expanded coil-like structures. The molecular dimension of the ensemble of
IDPs is also influenced by the distribution of charged residues. If oppositely
charged residues are segregated in the linear sequence, then the oppositely charged
blocks can form hairpins or globular conformations. Sequences with well-mixed
oppositely charged residues adopt random coil or globular conformations
depending on the total charge. The analysis of curated disordered segments from
the DisProt database suggested that a majority of IDPs have amino acid compo-
sitions that predispose them to form globules or chimeras of globules and coils (Das
et al. 2015). This latter category includes IDPs that can undergo folding upon
binding, while more swollen random coil-like conformations can help to improve
the solubility. These biophysical principles can help to understand how the detailed
properties of the structural ensembles of IDPs are related to their function (van der
Lee et al. 2014).

6.6 Functional Classification of IDPs

Predicting function of IDPs is even more challenging than predicting their structure
for several reasons. First, IDPs evolve very fast, and even though their structural
state as such is often preserved, there is very little information on how much their
functions change. Another reason is that the functional classification of
proteins/genes is usually done at the level of the whole gene, and it is often very
obscure in what way and to what extent disorder of a segment (IDR) contributes to
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these. In addition, in many cases the functions of IDPs cannot be incorporated into
functional classification schemes developed for ordered proteins. The area of
functional classification of IDPs witnesses immense activity, which has so far
resulted in two fundamentally different approaches to classification. Key aspects of
these are reviewed next.

6.6.1 Gene Ontology-Based Functional Classification
of IDPs

In several studies the prevalence of disorder in functional classes of proteins has
been addressed (Iakoucheva et al. 2002; Ward et al. 2004; Tompa et al. 2006; Xie
et al. 2007). These are usually based on the Gene Ontology (GO) scheme
(Ashburner et al. 2000), and have addressed the prevalence of disorder in all three
ontologies, namely molecular function (MF), biological process (BP) and cellular
localization (CL). In practically complete agreement, different works suggest that
the frequency of disorder is higher in eukaryotes than in prokaryotes, and that
disorder is common in regulatory and signaling functions. In terms of MF, the
highest levels of disorder appear in categories such as transcription regulation,
protein kinase, transcription factor, DNA binding, whereas it is lowest in oxi-
doreductase, catalytic, ligase, structural molecule categories. In terms of BP, cat-
egories such as development, protein phosphorylation, regulation of transcription,
and signal transduction have the highest level of disorder, whereas it appears
infrequently in biosynthesis and energy pathways. With respect to localization, it
prevails in nuclear, cytoskeletal and chromosomal proteins, for example, with low
levels in mitochondrial, cytoplasmic and membrane proteins.

When prediction is focused on long disordered regions, thought to be func-
tionally significant (Xie et al. 2007), similar observations have been made. When
SwissProt BP key-words were analyzed, significant positive (e.g. differentiation,
transcription, transcription regulation), and negative (e.g. biosynthesis, transport,
electron transport, glycolysis) correlations with disorder were found (Xie et al.
2007). When MF keywords were analyzed, most positively correlated were
ribonucleoprotein, ribosomal protein, developmental protein, whereas negatively
correlated were oxidoreductase, transferase, lyase, and hydrolase classes. In terms
of 710 functional SwissProt key-words, 238 were in strongly positive, whereas 302
in strongly negative, correlation with disorder; 170 keywords were ambiguous.

Taken together, all the pertinent studies agree that proteins of regulatory func-
tions are positively correlated with disorder, whereas proteins with catalytic func-
tions are negatively associated.
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6.6.2 Classification of IDPs Based on Their Mechanism
of Action

In another system taking the molecular mechanisms of IDPs into consideration, dis-
ordered proteins have been classified into five (Tompa 2002) and later into six cate-
gories (Tompa 2005). Further observations suggested the addition of prion proteins as
an additional category (Pierce et al. 2005). This classification scheme (Table 6.2) can
accommodate all distinct modes of IDP/IDR actions described thus far.

Table 6.2 Classification scheme of IDPs

Protein Partner Function

Entropic chains

Nup2p FG repeat
region

n.a. Gating in NPC

K channel N-terminal
region

n.a. Timing of gate inactivation

Display sites

CREB KID PKA Phosphorylation site

Cyclin B N-terminal
domain

E3 ubiquitin ligase Ubiquitination site

Chaperones

ERD 10/14 (e.g.) Luciferase Prevention of aggregation

hnRNP A1 (e.g.) DNA Strand re-annealing

Effectors

p27Kip1 CycA-Cdk2 Inhibition of cell-cycle

Securin Separase Inhibition of anaphase

Assemblers

RNAP II CTD mRNA maturation
factors

Regulation of mRNA maturation

CREB p300/CBP Initiation of transcription

Scavengers

Casein Calcium phosphate Stabilization of calcium phosphate in milk

Salivary PRPs Tannin Neutralization of plant tannins

Prions

Ure2p Utilization of urea under nitrogen

Sup35p NusA, mRNA Suppression of stop codon, translation
readthrough

Classification of IDPs encompassing seven functional categories based on their molecular modes
of action. Two examples within each category are given, specifying the binding partner (if
applicable) and the actual cellular function of the protein
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6.6.2.1 Entropic Chains

The first functional category, unique to disordered proteins, is that of entropic
chains, the function of which does not involve partner recognition, but directly
results from disorder. Sub-categories within this class are termed entropic springs,
bristles/spacers, linkers, and clocks, and the underlying mechanisms can be best
described as either influencing the localization of attached domains, or generating
force against movements/structural changes (Dunker et al. 2002). The best char-
acterized examples in this category are entropic gating in nuclear pore complex by
disordered regions of NUPs (Elbaum 2006), the entropic spacer/bristle function of
projection domains of microtubule-associated proteins in the cytoskeleton
(Mukhopadhyay and Hoh 2001), and the entropic spring action of the PEVK region
of titin, ensuring passive tension in resting muscle due to its elasticity (Trombitas
et al. 1998).

6.6.2.2 Function by Transient Binding

In the other six categories, IDPs function via molecular recognition, i.e. they bind
other macromolecule(s) or small ligand(s) either transiently or permanently.
Display sites are primarily targeted for post-translational modifications. For
example, enzymatic modifications require flexible and structurally adaptable
regions in proteins, as shown by limited proteolysis, which occurs in linker regions
in globular proteins (Fontana et al. 1997). Phosphorylation (Iakoucheva et al.
2004), ubiquitination (Cox et al. 2002) and deacetylation (Khan and Lewis 2005)
also preferentially occur in locally disordered regions. The general correlation of
disorder with such sites has been demonstrated by predicting disorder in proteins
that contain short recognition elements [also known as linear motifs (Puntervoll
et al. 2003)]. It was found that linear motifs preferentially reside in locally disor-
dered sequential environments within the parent protein (Fuxreiter et al. 2007).

Another category of IDPs functioning by transient binding is chaperones, as
suggested in a statistical analysis on the level of disorder in protein- and RNA
chaperones (Tompa and Csermely 2004). RNA chaperones have a very high pro-
portion of disorder (40% of their residues fall into long disordered regions), and
protein chaperones also tend to be among the most disordered proteins (15% of
their residues are located within long disordered regions). Because disordered
regions are often directly involved in chaperone function, an “entropy transfer”
model of structural disorder in chaperone function could be formulated (Tompa and
Csermely 2004). Implications of this model were verified by observations of fully
disordered chaperone proteins (Kovacs et al. 2008).
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6.6.2.3 Functions by Permanent Binding

In the other four categories IDPs/IDRs function by permanent partner binding.
Proteins termed effectors bind and modify the activity of their partner, primarily an
enzyme (Tompa 2002). Several IDPs characterized in great detail, such as p27Kip1,
the inhibitor of Cdks (Kriwacki et al. 1996; Lacy et al. 2004), securin, the inhibitor
of separase (Waizenegger et al. 2002) and calpastatin, the inhibitor of calpain (Kiss
et al. 2008a, b), belong here. Interestingly, such effectors sometimes have the
potential to both inhibit and activate their partners, as shown for p27Kip1 (Olashaw
et al. 2004), or the C fragment of DHPR II-III loop (Haarmann et al. 2003). These
and other observations have led to the concept of the involvement of structural
disorder in multiple, sometimes opposing, activities of proteins, i.e. moonlighting
(Tompa et al. 2005).

The next category of IDPs functioning by permanent partner binding is that of
assemblers, which either target the activity of attached domains, or assemble
multi-protein complexes (Tompa 2002). A high level of disorder in some scaf-
folding proteins, such as BRCA1 and Ste5 (Mark et al. 2005; Bhattacharyya et al.
2006), an increased level of disorder in hub proteins of the interactome (Dosztanyi
et al. 2006; Haynes et al. 2006; Patil and Nakamura 2006), and the correlation of
the average level of disorder with the number of partners in multi-protein com-
plexes (Hegyi et al. 2007) attest to the generality of this relation.

In the third class within this category, scavengers, there are disordered proteins
which store and/or neutralize small ligand molecules. Milk nutrient casein(s), for
example, also function as calcium phosphate stores in milk, enabling a high total
calcium phosphate concentration (Holt et al. 1996). They might be representative of
all, highly disordered, proteins involved in biomineralization (Kalmar et al. 2012).

The final functional category of IDPs is that of prions, not included in previous
classification schemes (Tompa 2002, 2005). Prions have been traditionally con-
sidered as pathogens, mostly because of their causal association with “mad cow
diseases” (Prusiner 1998). Many papers, however, showed that the autocatalytic
conformational change underlying the prion phenomenon also occurs in the normal
physiological functions of proteins of yeast (Tuite and Koloteva-Levin 2004), or
even higher organisms, such as Drosophila melanogaster (Si et al. 2003a, b; Fowler
et al. 2007). These prion proteins have disordered Q/N-rich prion domains (Pierce
et al. 2005), primarily responsible for the autocatalytic conformational transition
that has functional consequences on neighbouring domains.

6.6.3 Functional Features of IDPs

There are several different but interconnected concepts in this area that emphasize
different structural or sequential aspects with slightly different implications for
function. These include short linear motifs, disordered regions that can undergo
disorder-to-order transition upon binding, and disordered domains.
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6.6.3.1 Short Linear motifs

The analysis of sequences involved in protein-protein interactions has suggested
that in certain proteins the element of recognition is a short motif of discernible
conservation, often denoted as a “consensus” sequence, such as those involved in
modification by kinases or binding by SH3 domains (Neduva et al. 2005; Van Roey
et al. 2014). These functional elements are constructed as a few conserved speci-
ficity determinant residues interspersed within largely variable residues, with a
typical length between 5 and 25 residues and usually located within locally dis-
ordered regions (Fuxreiter et al. 2007). The consensus motif can be captured by a
regular expression. These functional modules are often termed linear motifs (LMs),
also denoted as eukaryotic linear motifs (ELMs), short linear motifs (SLiMs) or
MiniMotifs (Diella et al. 2008; Davey et al. 2012b; Mi et al. 2012). They primarily
bind to globular proteins and form small compact binding surfaces that result in low
affinity interactions. Due to their small size, LMs enable both high functional
diversity and functional density to polypeptide segments that contain them. They
can also evolve rapidly, and emerge convergently in unrelated proteins, conferring
evolutionary plasticity on the interactome (Diella et al. 2008; Davey et al. 2012b).
While LMs play essential roles in the regulation of dynamic cellular processes, they
can also be hijacked by pathogenic viruses and bacteria that evolved to mimic these
linear motifs (Davey et al. 2011).

Linear motifs can be broadly divided into two major classes: modifications sites,
which are recognized and altered by modifying enzymes and binding sites, which
mediate interactions with globular domains (Van Roey et al. 2014). Modification
sites can be further classified into proteolytic cleavage sites (e.g. caspase sites),
structural modification sites (e.g. peptidylprolyl cis-trans isomerase) and
post-translational removal or addition sites (e.g. phosphorylation sites). Binding
motifs include well-known classes of motifs, such as the C-terminal motifs that bind
PDZ domain, or the proline-rich PxxP motifs that interact with SH3 (Src homology
3) domains. The main function of these motifs is to promote complex formation.
Another category of ligand binding sites correspond to docking motifs. These sites
increase the specificity and efficiency of modification events. Docking motifs are
usually distinct from the actual modification sites but are located on the same
protein. Example docking motifs are KEN box and D box degrons that act as
recognition surfaces for ubiquitin ligases and play a role in the degradation of the
given protein. Another important class of ligand binding linear motifs is targeting
motifs. Targeting motifs can direct proteins into specific subcellular localization or
act as traffic proteins that ensure that their cargo is delivered to the right location
(Van Roey et al. 2014).

Linear motifs guide proteins through their life (Tompa et al. 2014). They reg-
ulate and coordinate the processing, localization and degradation of almost all
proteins. Many proteins contain several distinct motifs, including both binding and
modification sites that can form molecular switches (Van Roey et al. 2013).
Common mechanisms involve a PTM inside or in the immediate flanking region of
a binding motif, or adjacent or overlapping binding motifs that can also function
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competitively or cooperatively. The complex interplay between multiple binding
and/or modification sites is crucial for the information processing and creation of
dynamic signaling networks (Van Roey et al. 2012). Many components of these
networks, however, are not yet known. While the ELM database currently cata-
logues around 2000 motif instances, the estimated number of motifs in the human
proteome is around a million (Tompa et al. 2014).

6.6.3.2 Disordered Binding Regions/Molecular Recognition Features

A different type of functional module located within IDPs involved in
protein-protein interactions can be identified by their ability to undergo
disorder-to-order transition upon binding (Vacic et al. 2007; Meszaros et al. 2007).
These functional elements are called disordered binding regions or molecular
recognition features (MoRFs). The PDB database contains several examples of
segments that are disordered in isolation but adopt a well-defined conformation in
complex (Meszaros et al. 2007). The length of these functional binding regions is
typically between 10 and 70 residues, shorter than that of globular domains (Vacic
et al. 2007). Nevertheless, this criterion in itself is not sufficient to identify disor-
dered binding regions; the disorder status in the unbound form has to be verified.
Based on the analysis of examples of disordered regions bound to a globular
proteins, they can be categorized into a-MoRFs, b-MoRFs, i-MoRFs, and mixed
MoRFs depending on the dominant secondary structure element in the complexed
form (Vacic et al. 2007). It was suggested that the unbound form of these MoRFs is
biased towards the conformation they adopt in the complex and this can influence
the kinetic and thermodynamic properties of the binding (Fuxreiter et al. 2004).
However, the structure of the MoRFs in general is heavily shaped by their partner.
An extreme case of this behavior is showcased in the C-terminal region of p53
where a short segment can adopt four different types of conformation depending on
the partner (Hsu et al. 2013). MoRFs can not only show significant binding plas-
ticity, they can also retain significant disorder even in their bound form. Fuzziness
is a concept of disorder in the bound state of IDPs. One manifestation of this
phenomenon is when binding occurs without the acquisition of a single dominant
structure, instead involving multiple states, and thus may be considered as poly-
morphism in the bound state (Tompa and Fuxreiter 2008). This has been observed
in the case of T-cell factor 4 (Tcf4) binding to b-catenin (Graham et al. 2001) and
nuclear localization signal (NLS) to a-importin (Fontes et al. 2000). This type of
fuzziness is another type of mechanism that can help to fine tune functional
properties of IDPs (Tompa and Fuxreiter 2008).

6.6.3.3 Intrinsically Disordered Domains

Functional modules are often identified based on their evolutionary conservation.
Although IDRs in general are less conserved (Brown et al. 2011), structural
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disorder is not completely opposed to conservation, as certain disordered regions
appear to be evolutionarily conserved (Chen et al. 2006a, b). In almost 30% of the
domain families collected in the Pfam database, there are at least 20 consecutive
amino acids predicted to be disordered and with significant conservation (Chen
et al. 2006a, b). Furthermore, 14% of Pfam domains have more than 50% of their
residues predicted disordered. These intrinsically disordered domains (IDDs)
include experimentally verified disordered segments, such as WH2 of actin-binding
proteins and the KID domain of CDK inhibitors (Tompa et al. 2009). IDDs are
involved in a variety of functions, which usually coincide with the general func-
tional preferences of IDPs, such as DNA/RNA binding, ribosome structure, protein
binding (both signalling/regulation and complex formation) (Chen et al. 2006a, b).
One feature that could be specific to IDDs is that some of them can also bind other
IDRs or IDDs by mutually induced folding (Demarest et al. 2002). IDDs can also
co-occur with specific protein domains and particular combinations of domains
have been observed in the cases of receptors and ion-channels, and in proteins
involved in binding and regulation (Pentony and Jones 2010).

The definition of functional features located within IDPs captures different
aspects: the key amino acids in the function in the case of LMs, their ability to
undergo a disorder-to-order transition during molecular recognition in the case
MoRFs, and sequential conservation in the case of IDDs (van der Lee et al. 2014).
Their characteristic length is also different. Despite the differences, these functional
modules also share many common features (Meszaros et al. 2012). While MoRFs
and IDDs are disordered by definition, 80% of LMs are also located in disordered
regions (Fuxreiter et al. 2007). These concepts share functional similarities and
show a tendency to be involved in molecular recognition to promote complex
formation, primarily in various signaling and regulatory functions (van der Lee
et al. 2014). An example for the overlap of the various types of functional modules
is showcased for the fully disordered human p27Kip1 that contains a conserved
PFAM family, an almost 70 residue long region that can undergo a
disorder-to-order transition upon binding to the complex of the phosphorylated
cyclin A-cyclin-dependent kinase 2 (Cdk2) (Russo et al. 1996) and a linear motif
that is shared by several other protein binding to cyclin protein, according to ELM
(Dinkel et al. 2014) (Fig. 6.3).

6.7 Prediction of the Function of IDPs

As suggested by the foregoing considerations, reliable all-round prediction of the
functions of IDPs is still a long way off, and we have only taken the first steps
towards this goal. As discussed in the next section, there are several approaches that
may shed some light on the function of an IDP not yet experimentally character-
ized. Sequence-based prediction of short LMs by a variety of algorithms (Davey
et al. 2006; Neduva et al. 2005), prediction of MoRFs or disordered binding regions
in IDPs/IDRs (Meszaros et al. 2009; Vacic et al. 2007), and combination of
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Fig. 6.3 Various representations of disorder and disordered binding regions of p27Kip1. a The
distribution of the radius of gyration for the ensemble of conformations and selected conformers
for human p27Kip1 obtained using molecular dynamics simulation deposited into the pE-DB
database (Varadi et al. 2014). b The overlap of the different types of functional modules for the
p27Kip1 that contain a conserved PFAM family (Finn et al. 2014) PF02234 (purple box), a
disordered binding region (orange box) and linear motif (red box) according to the ELM database
(Dinkel et al. 2014). c The motif definition and UNIPROT ID and sequence regions of
representative instances for the occurrence for the DOC_CYCLIN_1 motif, including p27Kip1
(CDN1B_HUMAN). d The complex of p27Kip1 kinase inhibitory domain bound to the
phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) (PDB code: 1jsu) (Russo et al. 1996).
P27Kip1 is indicated with orange ribbon and the amino acids matching the linear motif are
represented by red sticks. Cdk2 subunits are shown in a space-filling representation in different
shades of blue

6 Bioinformatics Approaches to the Structure and Function … 189



sequence information with disorder (Iakoucheva et al. 2004; Radivojac et al. 2006)
and taking advantage of functional correlation of the global pattern of disorder
(Lobley et al. 2007) are reasonable approaches to assess the function of an unknown
piece of disordered protein.

6.7.1 Predicting Short Recognition Motifs in IDRs

Currently, the most comprehensive resource for linear motifs is the ELM database
(Dinkel et al. 2014). It contains around 200 motif classes with over 2400 experi-
mentally validated instances with in-depth manual annotation. A similar resource is
the MiniMotif database, although its annotations are not publicly available (Mi
et al. 2012). The known motifs can be used to map functionality onto regions with
unknown functions. This approach relies on the regular expression derived from
known motifs, which is then used to search protein sequences to find new matches.
The main problem in the computational detection of linear motifs is that such
matches can occur with very high false positive rate by pure chance (Meszaros et al.
2012). Therefore, it is difficult to identify functionally relevant instances among the
randomly occurring nonfunctional hits. To overcome this issue additional filters are
usually employed, such as accessibility based on structural models, prediction of
intrinsic protein disorder, evolutionary conservation, annotations based on cellular
localization or protein-protein interaction data (Via et al. 2009). While these filters
can drastically reduce the number of false positive hits, there can be still a signif-
icant number of candidates. To define potential functionality, more precise defini-
tion of the binding motif or further biological insights are needed.

The de novo discovery of linear motifs aims at identifying putative uncharac-
terized motifs in protein sequences. One approach seeks to find short sequence
elements that are overrepresented in a set a sequences that share a common inter-
action partner. From the input sequences, regions unlikely to contain instances of
linear motifs (globular domains, signal peptides, trans-membrane and coiled-coil
regions) are removed. Motifs are then uncovered in the remaining sequences by a
pattern-matching algorithm, and ranked according to measures of
over-representation. This approach was implemented in the DILIMOT method
[DIscovery of LInear MOTifs (Neduva and Russell 2006)], and applied to
high-throughput interaction datasets of yeast, fly, worm and human sequences that
resulted in the re-discovery of many previously known ELM instances, and also the
recognition of novel motifs. Conceptually closely related to DILIMOT is the
SliMDisc (Short Linear Motif Discovery) approach (Davey et al. 2006). This
method takes advantage of evolutionarily related sequences, but upweights putative
motifs that are present in apparently unrelated sequences. Building on the principle
of the SLiMDisc algorithm, SLiMFinder and its more recent version,
QSLiMFinder, rely on an improved statistical model and a reduced motif search
space that can result in an increased sensitivity and specificity for de novo motif
discovery (Davey et al. 2010; Edwards et al. 2007; Palopoli et al. 2015).
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Linear motifs can also be discovered based on their specific pattern of conser-
vation as well. By looking at their sequence alignments, linear motif sites often
appear as islands of conservation among evolutionarily more flexible positions,
reflecting a stronger evolutionary constraint on the functionally important positions
compared to their generally disordered sequential neighborhood. Methods such
SliMPrints or Phylo-HMM have been shown to be able to identify novel linear
motifs (Davey et al. 2012a; Nguyen Ba et al. 2012). Nevertheless, approaches of
this type are able to recover only around 30% of known linear motifs, and fail if the
aligned sequences are either too similar or too diverse.

6.7.2 Prediction of Disordered Binding Regions/MoRFs

MoRFs are short functional motifs involved in partner binding and so their
recognition is of predictive value with respect to the function of the parent protein.
Several machine learning methods have been developed for their prediction. Early
attempts were based on the observations that the location of MoRFs in the sequence
is often indicated by short dips in the disorder prediction profiles (Vacic et al.
2007). MoRFPred uses sequence features that provide information about evolu-
tionary profiles, selected physiochemical properties of amino acids, and predicted
disorder, solvent accessibility and B-factors (Disfani et al. 2012). These features are
combined by an SVM for the predictions and complemented with annotations
generated using sequence alignment. MoRFCHiBi is a fast, novel method that
combines the outcomes of two SVM models for the prediction of MoRFs (Malhis
and Gsponer 2015). The first, SVMS, is designed to extract information from the
general contrast in amino acid compositions between MoRFs, their surrounding
regions (Flanks), and the remainders of the sequences. The second, SVMT, is used
to identify similarities between regions in a query sequence and MoRFs of the
training set. The DISOPRED3 method also has a component that predicts MoRFs
located within their predicted disordered segments (Jones and Cozzetto 2015).
Prediction of disordered binding regions is based on an SVM-based classifier that
uses a 15 amino acid long sliding window, which considers sequence profile data,
the length and location of the input IDR relative to the whole protein sequence, and
the amino acid composition of the window.

In all these approaches, disordered residues not annotated as protein binding
were considered to be part of the negative dataset, without taking into account the
possibility that there could be other, not yet characterized binding regions also
present within the same protein. This assumption is highly conservative and
arguably somewhat unrealistic, given the occurrence of IDRs in protein–protein
interaction network hubs. A completely different philosophy is behind the
ANCHOR method that aims to identify regions in the amino acid sequence that can
undergo a disorder-to-order transition upon binding (Meszaros et al. 2009;
Dosztanyi et al. 2009). It seeks to find segments that cannot form enough favorable
intrachain interactions to fold on their own and are likely to gain stabilizing energy
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by interacting with a globular protein. To evaluate these properties, an energy
estimation method similar to IUPred is used. The balance between the various
energy terms is determined using a linear regression model optimized on a dataset
of known examples. During training, the ratio of the fraction of residues predicted
to be in disordered binding regions relative to the number of residues within general
disordered segments was minimized and it was not assumed that a given protein
contained no other disordered binding region. As a result, ANCHOR has a higher
sensitivity, at the expense of lower specificity, compared to the other methods
(Disfani et al. 2012). An example for the prediction of ANCHOR for the nucleo-
protein from Nipah virus is given in Fig. 6.4.

6.7.3 Combination of Information on Sequence
and Disorder: Phosphorylation Sites and CaM
Binding Motifs

Prediction of short recognition motifs can be improved by incorporating informa-
tion on disorder, as demonstrated in the case of phosphorylation sites and
calmodulin binding sites (CaMBT) in proteins. Dunker and colleagues have
reported (Iakoucheva et al. 2004), by comparing a collection of experimentally
determined phosphorylation sites (at Ser, Thr or Tyr) to potential sites that are
actually not phosphorylated, that the regions around phosphorylation sites are

Fig. 6.4 Prediction of MoRFs/disordered binding regions for the Nucleoprotein from Nipah virus
by the ANCHOR method. The output from the ANCHOR server (Dosztanyi et al. 2009) for the
nucleoprotein from Nipah virus showing the predicted disorder by the IUPred method (red line)
and the location predictions of disordered binding regions by ANCHOR (blue line) that are also
indicated by blue boxes underneath the plot. The predictions are in very good agreement with the
annotation given in the DISPROT database (DP00697), that assigns disorder status to the region
400–532 indicated by a red box below the ANCHOR prediction and MoRFs to four regions: two
a-MoRFs at 408–422 and 473–493, an irregular i-MoRF at 523–532, and a b-MoRF at 444–464
indicated by the shaded areas. These regions are based on experimental results using a
combination of techniques (Habchi et al. 2010)
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significantly enriched in disorder-promoting amino acids, and depleted in
order-promoting amino acids (Dunker et al. 2001). By combining the sets of pos-
itive examples and the corresponding negative examples and considering local
disorder, a predictor of phosphorylation sites could be constructed. DISPHOS
(disorder-enhanced phosphorylation predictor) has an improved accuracy over other
phosphorylation-site predictor algorithms, such as NetPhos (Blom et al. 1999) and
Scansite (Obenauer et al. 2003).

The other thoroughly-studied example is the interaction between calmodulin
(CaM) and its binding targets, which involves significant flexibility on both sides. It
is known that CaM usually wraps around a helical binding peptide/target (CaMBT)
of about 20 amino acids in length (Ikura and Ames 2006). In a comprehensive
analysis it has been pointed out that CaM recognition requires disorder of the
partner (Radivojac et al. 2006). For example, CaM-dependent enzymes are often
stimulated by limited proteolytic digestion (e.g. calcineurin (Manalan and Klee
1983) or cyclic nucleotide phosphodiesterase (Tucker et al. 1981), which suggests
local disorder of the binding site. The inclusion of disorder was used for developing
a predictor of CaMBTs with an improved performance (Radivojac et al. 2006).

6.7.4 Correlation of Disorder Pattern and Function

Jones and colleagues have taken a direct approach to find association between the
global pattern of disorder and the function of a protein (Lobley et al. 2007)
described by standard Gene Ontology (GO) categories. It was first found that both
location- and length-descriptors of disorder correlate with functional categories
associated with signal transduction and transcription regulation. Both molecular
function (MF) and biological process (BP) annotations were used. The location
descriptors displayed several trends associated with GO categories, such as an
elevated level in the middle of the protein in transcription regulator, DNA binding,
and RNA pol II transcription factor functions, in the C-terminus in transcription
factor activator, transcription factor repressor, and transcription factor or in the
N-terminus in potassium channel annotated proteins. Length descriptors showed
even more significant associations with function than position descriptors. For
example, disordered regions of more than 500 continuous residues are
over-represented in transcription-related categories, whereas shorter regions of the
order of 50 residues or fewer are over-represented in proteins performing metal ion
binding, ion channel, and GTPase regulatory functions. The observed associations
could be used to improve prediction of protein function: an SVM predictor applied
to 26 GO categories, prediction of 11 BP categories and 12 MF categories showed
improvements resulting from the addition of disorder features. In all, disorder adds
significantly to the prediction of protein function, with more significant improve-
ments observed in BP than in MF classification.
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6.8 Evolution of IDPs

IDPs, lacking a well-defined structure, generally have fewer evolutionary con-
straints and thus tend to evolve faster than globular proteins. The fast evolution of
IDPs/IDRs has been directly demonstrated in several protein families by comparing
the amino acid replacement rate of disordered and globular regions in protein
families, in which both regions are simultaneously present (Brown et al. 2011).
Nevertheless, disordered residues display a wide range of evolutionary rates. Using
a combination of disorder prediction and multiple sequence alignments, three dif-
ferent scenarios can be discriminated: (i) constrained disorder describes disordered
regions that are also highly conserved, (ii) flexible disorder corresponds to regions
where disorder tendency is conserved but the actual amino acid sequence is not, and
(iii) non-conserved disorder, where not even the property of disorder is conserved
among closely-related species (Bellay et al. 2011). A novel tool was recently
introduced to provide information on the evolutionary context of a disordered
protein segments based on the quantification of sequence- and disorder conserva-
tion (Varadi et al. 2015). The different categories of conservation can be associated
with the differing roles of IDPs. For example, constrained disorder can be the result
of the ability to undergo disorder-to-order transition that, in turn, can impose local
structural constraints. Short linear motifs constitute a special case, where only the
key amino acid positions are conserved. However, LMs can also show increased
evolutionary plasticity and can (re)emerge relatively easily during evolution. PTM
sites often show even less conservation. Taken together with the difficulty of
aligning disordered regions, transfer of functional annotation is much more chal-
lenging compared to globular proteins.

Flexible disorder is common in the case of linkers and entropic chains. This issue
was directly addressed in a study by Daughdrill and colleagues (Daughdrill et al.
2007). They analyzed the evolution and function of the disordered linker region
connecting two globular domains in the 70 kDa subunit of replication protein A,
RPA70 (Olson et al. 2005). Evolutionary rate studies showed large variability
within the linker, with many sites evolving neutrally. Direct measures of backbone
flexibility, such as residual dipolar coupling and the time of Brownian reorientation
showed that the pattern of backbone flexibility is conserved despite large sequence
variations. Several recent mutagenesis studies have pointed to an unconventional
relationship between sequence and function in IDPs. In these studies, sequences of
functional regions were scrambled, but function was found to be rather insensitive
to randomization. The phenomenon is usually termed sequence independence (Ross
et al. 2005; Tompa and Fuxreiter 2008), and has been demonstrated in the case of
the transactivator domain of Gcn4p (Hope et al. 1988) and the chimeric tran-
scription factor EWS fusion protein (Ng et al. 2007).

Prediction methods enable the large-scale analysis of intrinsic disorder in various
proteomes. It was shown that disorder in general increases with increasing com-
plexity of the organisms. On average, 2% of archaeal and 4% of bacterial and 33%
of eukaryotic proteins were predicted to contain at least 30 residue long disordered
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segment (Ward et al. 2004). Structural disorder was also more abundant in viruses
than in prokaryotes (Tokuriki et al. 2009). There was, however, significant variation
within kingdoms (Xue et al. 2010b; Pancsa and Tompa 2012). In addition, different
kingdoms use conserved disordered for different functions. In prokaryotes, disor-
dered regions are usually involved in complex formation, while eukaryotic and viral
proteins take advantage of disordered regions in regulatory and signalling processes
to form transient interactions.

6.9 Conclusions

In general, the prediction of function is more difficult than prediction of structure,
because similar structures may carry out completely different functions. This is
particularly true for IDPs, for which structure corresponds not simply to the lack of
a well-defined 3D fold, but to an ensemble of interconverting conformational states
of various transient, but function-related, short- and long-range structural elements.
A range of bioinformatics predictors reliably predict the disordered state from
amino acid sequence, and can also detect functional elements with reasonable
accuracy. Attempts to predict the function of IDPs from sequence, however, lag far
behind prediction of structure and probably millions of functional modules in IDPs
await functional characterization. Given the functional importance of many IDPs,
one may anticipate significant activity in this area in the near future.
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Chapter 7
Prediction of Protein Aggregation
and Amyloid Formation

Ricardo Graña-Montes, Jordi Pujols-Pujol, Carlota Gómez-Picanyol
and Salvador Ventura

Abstract Protein aggregation accounts for the onset of more than 40 human dis-
orders, including neurodegenerative diseases like Alzheimer’s and Parkinson’s but
also non-neuropathic pathologies like Diabetes type II or some types of cancers. In
all these diseases, the toxic effect is associated with the self-assembly of proteins
into insoluble amyloid fibrils displaying a common regular cross-b structure.
Surprisingly, cells also exploit the amyloid fold for important physiological pro-
cesses, from structure scaffolding to heritable information transmission. In addition,
protein aggregation often occurs during the recombinant production and down-
stream processing of therapeutic proteins, becoming the main bottleneck in the
marketing of these drugs. In this context, approaches aiming to predict the aggre-
gation and amyloid formation propensities of proteins are receiving increasing
interest, both because they can lead us to the development of novel therapeutic
strategies and because they are providing us with a global understanding of the role
of protein aggregation in physiological and pathological processes. Here we illus-
trate how our present understanding of the physico-chemical and structural basis of
protein aggregation has crystalized in the development of algorithms able to fore-
cast the aggregation properties of proteins both from their primary and tertiary
structures. A detailed description of these computational approaches and their
application is provided.
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7.1 Introduction

For many years, the aggregation of proteins and polypeptides remained a neglected
area of protein chemistry, as it was considered a process of a rather stochastic
origin. It was not until the realization, starting in the early 1970s, that the insoluble
deposits associated with different human diseases were primarily enriched in single
specific polypeptides (Westermark 2005) that the analysis of the capability of these
proteins to aggregate was addressed as a specific biophysical phenomenon. In this
way, during the last three decades, the study of protein aggregation has evolved to
become a vivid research topic whose implications span a variety of fields, including
biochemistry, biomedicine, biotechnology, and nanotechnology. Three major areas
may be currently identified where the analysis of protein aggregation reaches a
greater impact—namely, in the study of a group of human pathologies known as
conformational disorders, in the industrial manufacture of proteinaceous products,
and in the development of novel bio-inspired nanomaterials. In first place, the
formation of insoluble protein deposits in different tissues is linked to more than 40
human diseases—many of which are highly debilitating or even fatal—ranging
from different classes of amyloidosis, neurodegenerative and prionic pathologies
(like Alzheimer’s, Parkinson’s or Creutzfeldt-Jakob’s diseases), to Diabetes mel-
litus type 2 or certain types of cancer (Selkoe 2003; Chiti and Dobson 2006;
Invernizzi et al. 2012). Consequently, the analysis of the aggregation reactions of
the proteins involved in this kind of diseases has attracted growing attention with
the aim of developing methods to prevent or treat these devastating disorders. On
the other hand, aggregation is the major bottleneck in the production of commercial
proteins at an industrial level (Cromwell et al. 2006), an area which has gained a
particular momentum in recent years because of the growing interest in the
development of protein-based agents with therapeutic potential (Aggarwal 2009),
and particularly of antibody-based therapies (Perchiacca and Tessier 2012; Lee
et al. 2013). Finally, the characterization of the mechanical properties of
amyloid-like structures (Knowles et al. 2007; Cherny and Gazit 2008; Knowles and
Buehler 2011) has driven the development of a wide variety of applications for this
type of assemblies as nanomaterials (Hauser et al. 2014; Shimanovich et al. 2014).

7.2 The Physico-chemical and Structural
Basis of Protein Aggregation

The polypeptides known to accumulate in the insoluble deposits found in the
majority of conformational disorders are characterized by their ability to display
(either when purified from these deposits or after being synthesized and incubated)
in vitro (a particular supramolecular structure named amyloid fibrils). This type of
structure is distinguished by its compact and non-ramified, fibrous appearance
under Transmission Electron Microscopy or Atomic Force Microscopy (Makin and
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Serpell 2005). In the core of the fibrils, the polypeptide adopts a characteristic
molecular architecture composed of two opposite b-sheets with their strands run-
ning perpendicular to the elongation axis of the fibrils. This arrangement was
derived early from a common X-ray diffraction pattern found for amyloid fibrils
formed by unrelated proteins (Sunde and Blake 1997), and it defines a supersec-
ondary level of structure known as the cross-b conformation.

Despite the existence of a number of proteins, known as functional amyloids, that
adopt amyloid structure in order to carry out their physiological function, (Gebbink
et al. 2005; Fowler et al. 2007; Blanco et al. 2012), this is not the case for the proteins
associated with different conformational disorders (Table 7.1), which experience an
abnormal conformational conversion from their physiological native states to ac-
quire the cross-b supersecondary structure. The latter proteins do not possess any
overall sequential relationship, and they populate a wide diversity of native struc-
tures Fig 7.1 (Uversky and Fink 2004; Chiti and Dobson 2006; Invernizzi et al.
2012) ranging from intrinsically disordered proteins (e.g. the Amyloid b peptides -
Ab- and a-Synuclein—related to the Alzheimer’s and Parkinson’s diseases,
respectively) to polypeptides able to adopt a stable tertiary structure, with either
monomeric (e.g. Lysozyme and Prolactin—associated, with a systemic amyloidosis
and with pituitary prolactinomas, respectively) or multimeric quaternary architec-
tures (e.g. Transthyretin and Superoxide dismutase [Cu-Zn]—implicated in different
amyloidoses and in amyotrophic lateral sclerosis, respectively) (see Fig.7.1). On the
other hand, the conversion from the physiological conformation into amyloid-like
structures is not limited to the discrete set of proteins associated to conformational
diseases, but has been observed or induced for a large number of polypeptides, from
different organisms belonging to all phyla, which do not possess any currently
known relationship to disease (Rochet and Lansbury 2000; Stefani and Dobson
2003; Uversky and Fink 2004). Moreover, different types of proteinaceous aggre-
gates with an apparently amorphous macroscopic appearance are known to share
properties of amyloid-like fibrils (Carrió et al. 2005; de Groot et al. 2009), including
the characteristic X-ray diffraction pattern of the cross-b conformation (Wang et al.
2008, 2010). In fact, the latter observation is closely related with the important issue
of distinguishing between generic protein aggregation and specific formation of
amyloid-like structures, two terms that are often used as if they were interchange-
able. While it cannot be stated that protein aggregation always implies a gain in
b-sheet conformation (as in the case of isoelectric or salt-induced protein precipi-
tation), it is true, however, that such an enrichment is frequently associated with the
formation of thermodynamically stable protein deposits, among which amyloid-like
structure arises from an optimal quaternary arrangement of the cross-b conforma-
tion. In this context, it seems that the ability to attain cross-b structure constitutes a
generic property of virtually every polypeptide—as was early postulated in terms of
acquisition of amyloid-like structure (Dobson 2001, 2003)—simply because
backbone-mediated intermolecular hydrogen-bonding constitutes the strongest
contributor towards the adoption and stabilization of this conformation (Dobson
1999; Knowles et al. 2007; Cheon et al. 2007).
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Table 7.1 Proteins involved in the formation of amyloid or amyloid-like deposits in relationship
with human disorders

Precursor protein UniProt
accession

Disease Conformation*

a-Synuclein P37840 Parkinson’s disease
Dementia with Lewy bodies

Intrinsically
disordered

b2-Microglobulin (wt) P61769 Hemodialysis-related
amyloidosis

all-b

b2-Microglobulin (variants) P61769 Systemic amyloidosis –

c-Crystallin B P07316 Cataract all-b

c-Crystallin C P07315 Cataract all-b

c-Crystallin D P07320 Cataract all-b

Amyloid b precursor
protein (wt)

P05067 Alzheimer’s disease Intrinsically
disordered (residues
672-713)

Amyloid b precursor
protein (variants)

P05067 Alzheimer’s disease
APP-related cerebral amyloid
angiopathy

–

Androgen receptor (with
polyQ expansion)

P10275 X-linked 1 spinal and bulbar
muscular atrophy

–

Apolipoprotein A-I
(variants)

P02647 Systemic amyloidosis Coiled coil

Apolipoprotein A-II
(variants)

P02652 Systemic amyloidosis Coiled coil

Apolipoprotein A-IV P06727 Systemic amyloidosis Coiled coil

Ataxin-1
(with polyQ expansion)

P54253 Spinocerebellar ataxia 1 –

Ataxin-2
(with polyQ expansion)

Q99700 Spinocerebellar ataxia 2 –

Ataxin-3
(with polyQ expansion)

P54252 Spinocerebellar ataxia 3 –

Ataxin-7
(with polyQ expansion)

O15265 Spinocerebellar ataxia 7 –

Atrial natriuretic factor P01160 Isolated atrial amyloidosis Intrinsically
disordered

Atrophin-1
(with polyQ expansion)

P54259 Dentatorubral-pallidoluysian
atrophy

–

Calcitonin P01258 Medullary thyroid carcinoma Intrinsically
disordered

Corneodesmosin Q15517 Localized amyloidosis
(cornified epithelia and hair
follicles)

Intrinsically
disordered
(residues 60-171)

Cystatin-C (variants) P01034 Cystatin-C-related cerebral
amyloid angiopathy

a+b

Fibrinogen a chain
(variants)

P02671 Familial visceral amyloidosis
(systemic)

Coiled coil (residues
46-231)
a+b (residues
670-866)

(continued)
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Table 7.1 (continued)

Precursor protein UniProt
accession

Disease Conformation*

Galectin-7 P47929 Localized cutaneous
amyloidosis

all-b

Gelsolin (variants) P06396 Finnish type amyloidosis
(systemic)

a+b

Huntingtin
(with polyQ expansion)

P42858 Huntington’s disease Intrinsically
disordered

Immunoglobulin heavy
chain

– Systemic and localized
amyloidosis

all-b

Immunoglobulin light chain – Systemic and localized
amyloidosis

all-b

Insulin P01308 Injection-localized
amyloidosis

Nearly all-a,
disulphide-rich

Integral membrane protein
2B (ABri variant)

Q9Y287 Familial British dementia Intrinsically
disordered
(precursor
polypeptide)

Integral membrane protein
2B (ADan variant)

Q9Y287 Familial Danish dementia Intrinsically
disordered
(precursor
polypeptide)

Islet amyloid polypeptide P10997 Type II diabetes mellitus Intrinsically
disordered

Lactotransferrin P02788 Corneal amyloidosis
associated with trichiasis

a/b

Leukocyte cell-derived
chemotaxin-2

O14960 Systemic amyloidosis –

Lysozyme C
(variants)

P61626 Familial visceral amyloidosis
(systemic)

a+b

Major prion protein (wt) P04156 Creutzfeldt-Jakob’s disease
Fatal familial insomnia

Intrinsically
disordered (residues
23-121)
a+b (residues
122-230)

Major prion protein
(variants)

P04156 Creutzfeldt-Jakob’s disease
Fatal familial insomnia
Gerstmann-Straussler’s
disease
Huntington’s disease-like 1
Spongiform encephalopathy
with neuropsychiatric
features

–

Medin Q08431 Aortic medial amyloidosis –

Microtubule-associated
protein Tau

P10636 Frontotemporal dementia
Pick’s disease of brain

Intrinsically
disordered

Odontogenic
ameloblast-associated
protein

A1E959 Calcifying epithelial
odontogenic tumors

–

(continued)
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It had long been speculated that the formation of amyloid-like structures is
thermodynamically driven, since the adoption of an extended cross-b conformation
provides a greater stability relative to a polypeptide’s native state (although this
could not be demonstrated until quite recently) because of the stabilization arising
mainly from the massive enthalpic contribution of the main chain
hydrogen-bonding network inherent to this fold (Baldwin et al. 2011). The gen-
eralization of the idea that different cross-b-enriched aggregated species constitute
generic states which could virtually be populated by any polypeptide chain came to
expand the picture of the conformational energy landscape accessible for a nascent
polypeptide chain (Jahn and Radford 2005, 2008). In this way, after being syn-
thesized, a given protein departing from a hypothetical collection of largely

Table 7.1 (continued)

Precursor protein UniProt
accession

Disease Conformation*

Oncostatin-M-specific
receptor subunit b

Q99650 Primary localized cutaneous
amyloidosis 1

–

Prolactin P01236 Pituitary prolactinomas all-a

Pulmonary
surfactant-associated
protein C

P11686 Pulmonary alveolar
proteinosis

–

Semenogelin-1 P04279 Localized amyloidosis
(vesicular seminalis)

–

Serum amyloid A-1 protein P0DJI8 Systemic amyloidosis
Familial Mediterranean fever
Rheumatoid arthritis

All-a

Superoxide dismutase
[Cu-Zn] (variants)

P00441 Amyotrophic lateral sclerosis
1

All-b

TATA-box-binding protein
(with polyQ expansion)

P20226 Spinocerebellar ataxia 17 –

Transforming growth
factor-b-induced protein
ig-h3 (variants)

Q15582 Avellino type corneal
dystrophy
Groenouw type I corneal
dystrophy
Type I lattice corneal
dystrophy
Type IIIA lattice corneal
dystrophy

a+b (residues 502–
634)

Transthyretin (wt) P02766 Senile systemic amyloidosis All-b

Transthyretin (variants) P02766 Familial amyloidotic
polyneuropathy
Transthyretin-related
amyloid cardiomyopathy
Carpal tunnel syndrome

–

* Conformational properties, if known, of the precursor protein (or specified polypeptide regions)
under native or close-to-native conditions.
Adapted from (Uversky and Fink 2004; Chiti and Dobson 2006; Invernizzi et al. 2012; Sipe et al.
2014)
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Fig. 7.1 Native structures of several amyloidogenic proteins, accounting for the diversity of folds
able to experience conformational transformation into amyloid. Cartoon representations show
structures resolved experimentally, under close-to-native conditions, for a variety of amyloido-
genic proteins associated to human conformational disorders (PDB codes: Atrial natriuretic factor
—1YK0, Huntingtin—3IOR and 3IOT, Apolipoprotein A-IV—3S84, Apolipoprotein A-II—
2OU1, Galectin-7—1BKZ, b2-Microglobulin—2XKS, c-Crystallin D—1HK0, Superoxide dis-
mutase [Cu-Zn]—1PU0, Transthyretin—1TTA, Insulin—1ZNJ, Prolactin—1RW5, Gelsolin—
3FFN, Lysozyme C—1LZ1, apo-Lactotransferrin—1CB6); for Huntingtin, the structures shown
correspond to fusions of its Nter poly-Q-rich region with Maltose-binding periplasmic protein
(UniProt code P0AEX9). The UniProt accession code corresponding to the precursor polypeptide
of each protein is specified, and the fragment of the precursor corresponding either to the mature
protein or to the region involved in the amyloidogenic conversion is shown within brackets; unless
the N- and C-termini are specifically noted, this numbering also corresponds to the polypeptide
represented in the structure. Protein structures are grouped according to the structural class they
belong to (shown in bold), which, in the case of globular proteins, corresponds to the SCOP fold
classification scheme (Murzin et al. 1995); their diverse secondary structure content is highlighted:
a-helical (blue), b-sheet (red), and loops (yellow) -fragments with unavailable structural data are
depicted as dashed lines-. Different conformations arising from several NMR conformers resolved
or from multiple identical chains in the crystallographic asymmetric unit are superimposed, when
present, so as to emphasized the structural flexibility of native states. For proteins with a native
homomeric quaternary or multidomain structure, only the essential fold is highlighted, as
mentioned, and the rest of the structure is coloured grey. Disulfide bonds are represented as sticks
(bright yellow) and complexed metal ions as spheres: copper (brown), zinc (grey), and chloride
(green)
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extended conformations—which can be defined as the unfolded state ensemble—
may either remain populating such unstructured configurations to variable degrees,
thus behaving as an Intrinsically Disordered Protein (IDP; Tompa 2012; Uversky
2013a; see also Chap. 6); it can collapse in order to adopt one or several structured
or folded states (Anfinsen 1973; Dill et al. 2008; Bryan and Orban 2010)—which
can be termed native states if attained under physiological conditions; or may,
alternatively, misfold into different kinds of aggregated states with variable degrees
of enrichment in cross-b conformation (Jahn and Radford 2008). Those folded and
misfolded states can be significantly populated since they constitute deep local
minima of the free energy landscape. Transitions between intrinsically disordered,
folded, and misfolded states may take place upon binding to chemical cofactors or
protein partners, environmental changes, or as the outcome of mutations
(Gershenson et al. 2014; Flock et al. 2014). Even though the adoption of
cross-b-enriched aggregated states would, in principle, be thermodynamically
favoured, at least three factors can be identified that exert a kinetic control over their
population—namely, the physico-chemical properties of the polypeptide chain, the
competition between folding and aggregation, and the protein quality control
machinery the cell has evolved. Protein folding and aggregation are regarded as
competing processes because they are guided, at least at their initial stages, by
similar principles (Kauzmann 1959; Cheon et al. 2007; Auer et al. 2008). However,
while protein folding is directed by the establishment of specific intramolecular
interactions (Lindorff-Larsen et al. 2005), aggregation is dominated by
backbone-directed intermolecular contacts; in such a way that the efficient attain-
ment of a folded native structure largely impairs the establishment of the aberrant
intermolecular interactions that would lead to the formation of aggregated states
(Monsellier and Chiti 2007). Additionally, theoretical studies on protein folding
inspired by polymer statistical mechanics have shown that globular proteins have
evolved to fold rapidly and cooperatively to their native states, because their energy
landscapes are “minimally frustrated” (Wolynes 2008)—which implies that par-
tially folded conformations tend to be short-lived. Furthermore, cells have evolved
an intricate molecular machinery dedicated to preserving protein quality by either
aiding polypeptides to attain their native state, preventing them from establishing
non-functional intermolecular contacts (that could lead to the formation of aggre-
gated species), or rescuing them from misfolded states (Hartl et al. 2011; Kim et al.
2013).

Regarding the physico-chemical properties of the polypeptide chain, which arise
from its particular amino acidic composition, aside from encoding their native state
ensemble (Anfinsen 1973), they also define the main ability of a protein to access
different aggregated states—that is, the primary sequence determines the intrinsic
aggregation propensity of a protein. This is supported by a large body of evidence
based on the experimental analysis of amyloidogenic proteins and peptides (Hilbich
et al. 1992; Esler et al. 1996; Wurth et al. 2002), as well as of model proteins able to
form amyloid-like fibrils (Chiti et al. 2002b), which reveals how changes in the
amino acid sequence may have a deep influence on their tendency to aggregate.
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7.2.1 Intrinsic Determinants of Protein Aggregation

The sequential and mutagenic analysis of amyloidogenic proteins and peptides,
particularly of those behaving as IDPs under native conditions (thus allowing the
disentanglement between the forces promoting aggregation and those favouring
folding into a 3-dimensional structure), has led to the identification of a series of
properties of both single amino acids and amino acidic combinations which are
relevant in determining the ability of a polypeptide to aggregate; consequently
defining the intrinsic determinants of protein aggregation. Among them,
hydrophobicity has been found to constitute a major force driving aggregation, as
evidenced by the effect of substitutions of polar or charged residues by non-polar
amino acids increasing the rate of aggregation, while the inverse changes tend to
decrease the extent of aggregation or even have a disruptive effect (Hilbich et al.
1992; Esler et al. 1996; Wurth et al. 2002; Buell et al. 2009). Nonetheless,
hydrophobicity alone has been judged insufficient to account for the impact of
mutations on the propensity to aggregate (Chiti et al. 2003; Rousseau et al. 2006a).
The tendency of amino acids to adopt a particular secondary structure is another
important determinant of protein aggregation; consistent with the finding that the
core of amyloid-like aggregates is enriched in cross-b conformation, both the
enrichment in residues with a higher propensity to form b-sheet structure (Chiti
et al. 2002a) and the pre-existence of b-strands in the native state (Pallarès et al.
2004) enhance the aggregation propensity of polypeptides. Consequently, amino
acids with a low tendency to adopt b-sheet secondary structure such as Pro (which
induces a bend in the polypeptide backbone), and Gly (due to the entropic cost
associated to its fixation in secondary structure elements) tend to disfavour
aggregation (Wood et al. 1995; Steward et al. 2002; Parrini et al. 2005).
Furthermore, a variety of negative design strategies have been identified in all-b
proteins in order to protect the peripheral strands flanking b-sheets (Richardson and
Richardson 2002), which are at a higher risk of establishing non-functional inter-
molecular contacts for being free to establish hydrogen bonds with neighbouring
molecules. The net charge of a polypeptide also influences the propensity to
aggregate (Chiti et al. 2002a, 2003) since it defines the extent of repulsion between
individual molecules, thus affecting the chances to establish the intermolecular
contacts required for a protein to self-assemble and aggregate.

Although the above-mentioned factors emerge from the physico-chemical
properties of individual amino acids, the linear combination of these properties
along the primary sequence has a strong impact on the tendency of a polypeptide to
aggregate. For example, the combinatorial design of polypeptide secondary struc-
tures has revealed that the alternation of hydrophobic and hydrophilic residues
along the sequence facilitates the assembly into amyloid-like structures (West et al.
1999), likely because this pattern favours the formation of amphiphilic b-sheets.
Quite interestingly, the statistical analysis of natural protein sequences revealed that
this pattern is underrepresented, relative to other amino acid combinations, being
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less frequent than it would be expected by chance (Broome and Hecht 2000).
Similarly, continuous stretches with three or more hydrophobic residues are also
underrepresented in natural protein sequences (Schwartz et al. 2001), which is
consistent with hydrophobicity being a major force driving deleterious aggregation.

7.2.2 Extrinsic Determinants of Protein Aggregation

The intrinsic determinants accounting for protein aggregation are modulated by the
specific environmental conditions, which impact kinetically, thermodynamically,
and structurally the self-assembly process and the properties of the final aggregates,
being an important source of polymorphism (Kodali and Wetzel 2007; Tycko
2014). The pH, the ionic strength, and the temperature of the system are the
extrinsic determinants with greatest impact on the aggregation reaction of a protein
(DuBay et al. 2004). First, pH influences the protonation state of residue side
chains, thus modulating their physico-chemical properties, including the effective
hydrophobicity, and the net charge of both individual amino acids and the whole
protein molecule. Ionic strength acts at the protein net charge level since a higher
ion concentration in solution favours the shielding of charged side chains, conse-
quently reducing the repulsive effect between polypeptide molecules (Morel et al.
2010) and raising their probability to establish undesired intermolecular contacts.
Finally, temperature has a strong influence on the conformational energy landscape
of polypeptides, inducing changes in the relative free energy differences between
local minima and in the kinetic barriers separating them, which might favour the
preferential population of aggregated states. Indeed, temperature, as well as pH,
may alter the network of interactions that sustain the native 3-dimensional structure,
leading to the transient or permanent population of unstructured (either partially or
globally) where aggregated states might result more easily accessible.

7.2.3 Specific Sequence Stretches Drive Aggregation

The specific physico-chemical properties of amino acids and their combination in
linear patterns along the primary structure play a major role in the potential of a
given polypeptide to aggregate and, thus, define the intrinsic determinants of pro-
tein aggregation. However, it has been shown that not all the protein sequence is
equally important for the ability of a protein to aggregate—but, instead, there are
short sequence fragments that promote and guide the formation of amyloid-like
structures (Ventura et al. 2004; Ivanova et al. 2004). This principle defines the
“amyloidogenic stretch” hypothesis, and such fragments are commonly referred to
as “Hot Spots” or aggregation-prone regions (APRs). Consistent with the intrinsic
determinants of protein aggregation, these segments are characterized by an
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enrichment in hydrophobic amino acids—both aliphatic (Val, Leu, Ile) and aro-
matic (Phe, Trp, Tyr) (Rousseau et al. 2006b).

7.2.4 Structural Determinants of Amyloid-like Aggregation

As already discussed, the X-ray diffraction patterns of amyloids, amyloid-like
fibrils, and different kinds of apparently amorphous aggregates share a cross-b
super-secondary level of structure. However, the failure of these different kinds of
protein aggregates to attain a sufficiently regular 3-dimensional assembly (even in
the case of the apparently macroscopically ordered amyloid-like fibrils) hampered
for a long time the description of amyloid structure at atomic detail. Fortunately,
advances in solid state Nuclear Magnetic Resonance (ssNMR) (Petkova et al. 2002;
Ritter et al. 2005) and in the microcrystallization of short amyloidogenic peptides
(Makin et al. 2005; Nelson et al. 2005; Rodriguez et al. 2015) have elucidated the
fine molecular architecture of the amyloid-like fibrils formed by different proteins
and by peptides thereof. Most of the solved structures confirm a cross-b core
composed of two opposite b-sheets running perpendicular to the axis of the fibril;
although fibrils formed by certain amyloidogenic proteins adopt a b-helix structure
instead, where three b-strands are arranged facing each other on every turn (Tycko
2011; Eisenberg and Jucker 2012; Tycko and Wickner 2013). The molecular
complementarity required for the assembly of each pair of facing strands in the
cross-b conformation is particularly highlighted by the crystallographic structures
of amyloidogenic peptides (Sawaya et al. 2007), which reveal how the docking of
facing strands defines a “steric zipper” formed by the inward-pointing side chains.
At the same time, the structures of these peptides reflect the array of posible
arrangements that can be adopted by b-strands to build the cross-b structure. The
atomic detail provided by these experimental structures provide an outstanding
framework to rationalize the role of the determinants of protein aggregation we
have introduced before. In first place, it allows for an understanding of how the
small sequence stretches defining APRs can guide and promote the formation of
amyloid-like structure, since only a small portion of the polypeptide is strictly
required in order to contribute a b-strand for the establishment of the cross-b core of
the fibril, while the rest of the molecule may well remain exposed to the solvent or
even attached as either a partially or completely structured fragment (Sambashivan
et al. 2005). Next, the high degree of molecular complementarity required to build
the cross-b conformation explains how, while the formation of amyloid-like
structures is thermodynamically driven by the backbone-mediated hydrogen bond
network, its assembly is limited by the requirement of amino acidic combinations
able to provide appropriate physico-chemical properties and shape complementar-
ity. In addition, residues whose side chains are responsible for the contacts between
opposite strands sustaining the solvent-protected “steric zipper” tend to have an
apolar character. Because the geometry of the b-conformation results in contiguous
amino acids pointing out in opposite directions, this implies residues that do not

7 Prediction of Protein Aggregation and Amyloid Formation 215



participate of the “steric zipper” would be located in the solvent-exposed face of the
strand, explaining why a sequential pattern that alternates hydrophobic and
hydrophilic amino acids is well accommodated by amyloid-like structures.

7.3 Prediction of Protein Aggregation from
the Primary Sequence

We provide here a detailed description on how the elucidation of the
physico-chemical, sequential, and structural determinants of protein aggregation
into amyloid-like structures has been exploited to develop a variety of mathematical
tools intended for the accurate prediction of the deposition propensities of
polypeptides. Although these methods have also been employed for the analysis of
the aggregation and propagation of prions and prion-like proteins, the singular
features of this particular kind of amyloids have led to the development of specific
tools for its prediction (Alberti et al. 2009; Toombs et al. 2012; Espinosa Angarica
et al. 2013; Lancaster et al. 2014; Sabate et al. 2015; Zambrano et al. 2015a), whose
underlying rationale lies out of the scope of this chapter.

The improved understanding of the determinants of protein aggregation de-
scribed above, and the realization that they are mostly encoded in the primary
sequence, has inspired the development of a variety of mathematical methods that
aim to predict in silico the propensity of a given polypeptide chain to aggregate,
requiring solely the knowledge of its primary structure. To date, more than 20 such
computational tools have been made public (Table 7.2), each of them focusing on
the analysis of a particular set of determinants of protein aggregation to perform its
prediction. Depending on the nature of the determinants of protein aggregation
evaluated and on the rationale of the approach employed in order to implement their
predictions, the methods can be classified into three main families (Caflisch 2006;
Belli et al. 2011). Empirical or phenomenological predictors are based on the
experimental assessment of the different intrinsic determinants of protein aggre-
gation. On the other hand, structure-based approaches rely on the analysis of the
conformational compatibility of sequence stretches within the evaluated polypep-
tide against the structural determinants of amyloid-like structures. Most methods in
this second class approximate such suitability by focusing on the assessment of the
specific features b-strands or b-sheets adopt when they assemble into a cross-b
supersecondary conformation. Finally, consensus methods depart from the premise
that the analysis of a particular determinant, or a discrete set of determinants, is not
sufficient for an accurate prediction of APRs. Therefore, these predictors attempt to
identify these “Hot Spot” by defining a consensus prediction from the outcome of
other methods, both phenomenological and structure-based.

Aside from the differences in the properties under evaluation (which define the
class they are ascribed to), and in their mathematical implementation, the predictors
may also vary in the type of output they provide—though, it commonly comprises
the identification of APRs along the polypeptide sequence together with their
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aggregative potential, as well as the relative or virtually absolute tendency to
aggregate for the whole protein (Fig. 7.2a). Some approaches provide additional
valuable estimates such as the nature of the pairing between b-strands (either
parallel or antiparallel) in the b-sheets that could form the cross-b core of an
amyloid-like fibril; or even attempt to forecast the quaternary assembly of the
polypeptide chain in the amyloid-like structure.

In this section, we provide a brief description of the prediction methods that have
been most widely exploited by the scientific community working in the field of
protein aggregation (Fig. 7.2b), and of all those which have been employed to build
up consensus predictors.

7.3.1 Phenomenological Approaches

The first mathematical tool developed with the aim of predicting protein aggrega-
tion was an empirical equation derived from experimental data on the aggregation
kinetics of different protein variants (Chiti et al. 2003). This equation allows the
calculation for unstructured proteins or peptides of changes, upon mutation, in the
rate of aggregation into amyloid-like structures—on the basis of the changes in
hydrophobicity, in the propensity to convert from a-helical to b-sheet conforma-
tion, and in the net charge of the polypeptide caused by such mutation. A further
refinement of this equation led to the development of an algorithm that allowed the
calculation of fibril elongation rates, from fully or partially unfolded conformations,
by considering seven variables—including intrinsic parameters such as hydropho-
bicity, net charge of the polypeptide, and the presence of alternating patterns of
hydrophobic and hydrophilic residues, as well as extrinsic factors like the pH, ionic
strength, and polypeptide concentration (DuBay et al. 2004). This algorithm was
later adapted to estimate the intrinsic aggregation propensity of the 20
naturally-occurring amino acids. In this way, it was possible to calculate the
aggregation propensity within a polypeptide sequence in a position-specific manner,
by assigning to each residue the average intrinsic aggregation propensity of a
sliding of amino acids centred on it (Pawar et al. 2005). This individual value of
aggregation propensity is normalized relative to a reference value computed for
random sequences with the same length than the analyzed sequence and with the
amino acid frequencies found in the Swiss-Prot database. Therefore, this modifi-
cation of the method by Dubay et al. allows the detection of APRs as those frag-
ments of the sequence with consecutive residues possessing an intrinsic aggregation
propensity above one standard deviation of the reference value.

Following a similar rationale, Tartaglia and co-workers developed a function to
calculate the change in the aggregation rate upon mutation that, aside from the
induced change in the propensity to adopt a b-sheet conformation and in charge,
also takes into account changes in the accessible surface area, the number of aro-
matic residues (which influence the extent of p-stacking), and the dipolar moment
of polar side chains (Tartaglia et al. 2004). An advantage of this method is the
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absence of free parameters, thus allowing a broader generalization for the prediction
of aggregation. This method was subsequently modified, as well, in order to allow
for the prediction of absolute aggregation rates and the detection of APRs, intro-
ducing also the estimation of the preferred orientation (either parallel or antiparallel)
of the b-aggregating segments (Tartaglia et al. 2005b).

Zyggregator implements the concept initially introduced by Chiti and
co-workers to predict protein aggregation. It adds to the equation by Pawar et al. a
parameter that accounts for the impact of gatekeeper residues against aggregation
and (in contrast to the previous developments that only allowed to predict aggre-
gation from fully or partially unfolded states) it also incorporates the influence of
local structural stability (Tartaglia and Vendruscolo 2008; Tartaglia et al. 2008)—
on the basis of the prediction of the flexibility and solvent accessibility of the
polypeptide chain, as implemented in the CamP method (Tartaglia et al. 2007).
Therefore, this algorithm allows to approximate, as well, the propensity of struc-
tured proteins to aggregate, although it cannot be strictly included among the
algorithms which rely on tertiary structure analysis, which are described in
Sect. 7.4.

The first method that allowed the evaluation of the tendency of a protein to
aggregate from its sequence was the TANGO algorithm (Fernandez-Escamilla et al.
2004). This algorithm is based on a statistical mechanics concept where several
states are defined—including the random coil and native conformations, as well as
the a-helix, b-turn, and b-sheet aggregate states—which are characterized by
specific physico-chemical properties, together with empirically and statistically
derived conformational preferences. TANGO calculates the population of fragments
of the sequence on each state according to a partition function whereby its

JFig. 7.2 Typical output of a linear predictor of aggregation and spread within the field of the
different methods developed for the prediction of protein aggregation. a The output of methods that
rely on the analysis of the primary structure commonly comprises a profile along the sequence of a
parameter scoring the tendency to aggregate, “Hot Spots” or APRs are usually identified as regions of
the polypeptide above a minimal length that present values of such parameter overpassing a defined
threshold. The prediction of the aggregative properties with AGGRESCAN (Conchillo-Solé et al.
2007) for a hypothetical protein sequence is shown as an example: the AGGRESCAN score for each
position is computed as the average intrinsic aggregation propensity in vivo for a window of amino
acids centred on the residue under scrutiny (a4v), a “Hot Spot” is detected whenever a polypeptide
stretch of 5 or more residues displays a4v values above the specified threshold. Several parameters
can be derived from this profile that provide additional information on the propensity to aggregate,
such as the normalized aggregation propensity score for the whole polypeptide (Na4vSS) or the
normalized number of “Hot Spots” found (NnHS), which allow a comparative analysis of the
aggregative potential between individual proteins, sets of proteins or even entire proteomes. The
normalized area above the threshold (AATr) and “Hot Spot” area (THSAr) advise, respectively,
about the concentration of the aggregative potential along the sequence and the relevant strength of
the APRs identified, these parameters can also be employed for comparisons between sets of
proteins. b The impact and influence of the different predictors on the field of protein aggregation
may be approximated through the citations statistics of their associated publications. The number of
citations for the articles related to eachmethod (as per Table 7.2) were retrieved fromGoogle Scholar
(blue), Scopus (vermillion) or Web of Science (green) between August 8th and 27th, 2015. Stacked
bars represent different articles associated to the same predictor
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population is proportional to the energy of that fragment in such state. This energy
is obtained taking also into account physico-chemical variables such as the pH,
temperature, and ionic strength, or extrinsic factors like trifluoroethanol
(TFE) concentration. TANGO predicts a segment of the sequence to possess a
tendency to aggregate when its length is of at least 5 residues and it populates the
b-sheet aggregate state with a probability higher than 5%. In this way, TANGO was
also the first method to allow for the detection of APRs within protein sequences.

On the other hand, AGGRESCAN was the first predictor of protein aggregation
that was specifically based on empirical data obtained in vivo. Prokaryotic cells
have recently emerged as suitable model systems to study the mechanisms of
amyloid formation (de Groot et al. 2009; Villar-Piqué and Ventura 2012). Although
the formation of intracellular aggregates during recombinant protein expression was
long considered to result from the nonspecific association of folding intermediates,
leading to amorphous deposits, it has been shown that, indeed, the aggregates
formed by different amyloidogenic proteins in bacteria display clear amyloid fea-
tures, including cytotoxicity (Carrió et al. 2005; Dasari et al. 2011). By exploiting a
strategy developed to determine protein aggregation in bacterial cells employing the
green fluorescent protein GFP (Waldo and Standish 1999), a library of point
mutants of the Ab42 peptide fused to GFP was constructed—this allowed a scale of
intrinsic aggregation propensity in vivo for the 20 naturally-occurring amino acids
to be established (de Groot et al. 2006). AGGRESCAN predicts aggregation
propensity from the primary sequence by computing for each amino acid the
average aggregation propensity of a variable window, depending on the size of the
protein, centred at this position (Conchillo-Solé et al. 2007). An APR or “Hot Spot”
is identified whenever a stretch of 5 or more consecutive residues is detected within
the polypeptide with computed aggregation propensities above the defined
threshold, which corresponds to the average value of the aggregation propensity
scale. The AGGRESCAN algorithm has been implemented as a web server and
constitutes an extremely versatile tool—allowing the calculation of aggregation
properties of either single polypeptides or large protein ensembles, and providing
multiple parameters to establish comparisons between individual proteins or protein
datasets, such as size-normalized absolute aggregation propensities and number of
APRs per molecule, and indicators of the aggregative potency of the detected
APRs.

A related phenomenological approach is represented by methods that rely on the
assessment of previously established scales of physico-chemical properties of
amino acids. The Simple ALgorithm for Sliding Averages (SALSA) assumes a
strong correlation between the propensity to adopt b-strand conformation and the
ability to form amyloid-like fibrillar structures (Zibaee et al. 2007). Therefore, it
attempts to identify APRs as regions of the polypeptide sequence with a strong
b-strand propensity. It does so by assigning to each residue the mean b-strand
propensity of different averaging windows centred on it, according to the secondary
structure propensities defined by Chou and Fasman (1974).
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In turn, Pafig implemented a 2-round statistical scheme to select
physico-chemical property scales that allow to significantly discriminate between
two equally-sized populations in the Hexpepset dataset (Tian et al. 2009). One
contains 1226 6-residue fragments derived from peptides or protein regions known
to be involved in the formation amyloid-like fibrils; the other is composed of 876
6-residue stretches from peptides or polypeptide sequences which have been shown
unable to form amyloid-like fibrils and 350 random hexapeptidic stretches outside
the experimentally confirmed amyloidogenic determinants of Transthyretin, the
Major prion protein, Apolipoprotein A-I, a-Synuclein and b2-Microglobulin. In a
first selection round, a support vector machine was employed to select among an
initial set of 531 physico-chemical property scales for the 20 naturally-occurring
proteinogenic amino acids, as reported in the amino acid index database (Tomii and
Kanehisa 1996; Kawashima et al. 2007), those allowing the separation of amy-
loidogenic from non-amyloidogenic hexapeptides with a certain level of accuracy.
The final set of 41 property scales was subsequently defined employing a standard
genetic algorithm, whose parameters were employed to compute the amyloid-like
structural potential for the collection of 64 million possible combinations of
6-residue amino acid stretches. The certainty of classification provided by this
machine learning strategy was assessed by defining a reliability index. Accordingly,
an APR is detected by this method whenever a polypeptide sequence stretch
matches an hexapeptide with high amyloidogenic propensity and a reliability index
equal or above a fixed value.

7.3.2 Structure-Based Approaches

The structure-based approaches rely on specific structural features associated with
the formation of ordered amyloid-like aggregates. The first method of this kind was
the NetCSSP algorithm, which exploits the concept of “chameleon sequences” or
“conformational switches” as relevant conformational transition triggers in the
formation of amyloid-like structure. This approach is based in the observation that
the regular secondary structure adopted by a polypeptide is dependent on its tertiary
contacts (Minor and Kim 1996), in such a way that certain sequences, that not adopt
a b-conformation in the context of their structural environment, may encode a
hidden b-propensity (Yoon and Welsh 2004). In this sense, Yoon and Welsh have
developed the Contact-dependent Secondary Structure Prediction (CSSP) algo-
rithm, employing artificial neural networks in order to detect sequence stretches
with noticeable hidden b-propensity, which could act as potential “conformational
switches” (Yoon and Welsh 2004; Yoon et al. 2007). A similar detection strategy is
implemented by SecStr, a tool based on the consensus of six different methods for
the prediction of secondary structure (Hamodrakas 1988). This algorithm cannot be
strictly considered a predictor of aggregation propensity, since it was initially
intended for the prediction of secondary structure, but its authors propose it can be
useful in the detection of “conformational switches” (Hamodrakas et al. 2007).
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Therefore, an APR is defined by SecStr whenever a stretch of the polypeptide
sequence is simultaneously predicted to hold a similar propensity to adopt both
a-helical and b-sheet conformations, following a consensus of at least 3 of the
implemented methods.

FoldAmyloid exploits different concepts associated to the conformational
properties of amyloid-like structures. This method exploits the “average packing
density” approach, based originally on the consideration that the observed packing
density of amino acids is associated with the conformational properties of the
polypeptide chain (Galzitskaya et al. 2006a), in a way that amyloid-like structures
are characterized by a notably high packing density. A mean packing density scale
was defined for the 20 naturally-occurring amino acids by averaging their “ob-
served packing density”, defined as the number of contacts established with other
residues. These contacts are computed by considering any neighbouring residue
with at least one atom other than hydrogen within a 8Å radius of the amino acid
under scrutiny, using a dataset of protein structures with less than 25% sequence
identity and belonging to the four major structural classes (all-a, all-b, a/b and a+b)
defined according to the SCOP scheme (Murzin et al. 1995). The method was
extended to account for the relevance of hydrogen-bonding both as the main sta-
bilizing force of the extended b-sheets forming the cross-b core of amyloid-like
aggregates, and in the establishment of side chain stacking interactions by
polypeptide sequences enriched in Gln and Asn (Michelitsch and Weissman 2000;
Nelson et al. 2005). The same structural dataset used to derive the average packing
density scale was also employed to calculate the statistics of the different types of
hydrogen-bonding (backbone to backbone, between backbone and side chains or
involving only side chains), these were subsequently translated into scales of
probability for each individual amino acid to participate in the establishment of
different classes of hydrogen bonds, either as donor or as acceptor (Garbuzynskiy
et al. 2010). FoldAmyloid predicts APRs by exploiting these different scales to
calculate a profile of averaged values along the sequence, employing a sliding
window of 5-residues length by default. The method offers the possibility to select
the scale to be considered for the calculation of the profile, either the average
packing density or any of the distinct hydrogen-bonding scales, or hybrid scales
resulting from different scales combinations. In the latter case, scale values are
obtained by summing scale-specific normalized scores for each amino acid. An
APR is detected according to FoldAmyloid when a stretch of consecutive residues
presents scores in the averaged profile above a certain threshold. The cutoff values
for each of the avaliable scales were statistically inferred as those allowing a better
discrimination between peptides able to form amyloid-like structures and
non-amyloidogenic ones within a dataset of peptides retrieved from the literature
(Fernandez-Escamilla et al. 2004; Thompson et al. 2006).

In contrast to the previous methods, a majority of structure-based approaches are
based on analysis of the specific features of b-sheet structure in the cross-b core of
amyloid-like aggregates. One such method is the Prediction of Amyloid Structure
Aggregation (PASTA) algorithm, which relies on the idea that b-conformation in
amyloid structure corresponds to pairings of in-register b-sheets, either parallel or
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antiparallel. PASTA calculates pairing energies for intermolecular b-sheets on the
basis of individual pairing energies between each two amino acids facing each other
in the b-sheet; such individual pairing energies have been statistically derived from
the observed distribution of every possible pair of facing amino acids found in
b-sheet conformation (either parallel or antiparallel), within a refined dataset of
non-redundant crystal structures of globular proteins with diverse folds (Trovato
et al. 2006). b-sheet energies are calculated by computing intermolecular pairings,
both in a parallel or antiparallel fashion, between identical continuous stretches of
variable length within the input sequence, while the rest of the polypeptide is
considered disordered. The total pairing energies result from the sum of the indi-
vidual pairing energies of each couple of contacting residues, after introducing a
correction for the loss of entropy derived from the ordering of residues within these
stretches. Those pairings of stretches with energies below a certain threshold are
considered to present an increased likelihood to embody the cross-b core in
amyloid-like structures and are identified as APRs. In contrast with other prediction
tools, PASTA predicts, accordingly, the preferred pairing orientation—whether
parallel or antiparallel—APRs would adopt in that cross-b core.

An analogous approach is employed by BETASCAN (Bryan et al. 2009), which
aims to identify b-strand pairings with greater probability to build a b-sheet
encompassing the cross-b core of an amyloid-like structure. The propensity of
segments along the polypeptide chain to adopt a b-strand conformation, and the
likelihood of pairing between couples of these streches are calculated according to
probability scores for residue pairs to be H-bonded in amphiphilic b-sheets. These
scores were derived from the analysis of selected non-redundant structures from the
Protein Data Bank (excluding protein folds structurally similar to the known
amyloid-like architectures, like b-helices, in order to avoid an unwanted bias), by
defining those pairwise probabilities as a function of the residue side chains ori-
entation in the b-sheet—either in the hydrophobic face or in the hydrophilic one.

Another type of structure-based methods are those which rely on the properties
of the solved three-dimensional structures of small peptides forming amyloid-like
structures (Nelson et al. 2005; Sawaya et al. 2007). This kind of short polypeptide
segments are assumed to initially nucleate the amyloid-like aggregation reaction,
becoming further embedded in the core that sustains the mature amyloid-like fibril
(Ventura et al. 2004; Ivanova et al. 2004). The first within this class of approaches
was the 3D profile method (Thompson et al. 2006), which was initially developed
by defining an static ensemble of structural templates through the relative dis-
placement, along the three orthogonal axes, of the opposing b-sheets defined by the
3-dimensional coordinates of the NNQQNY peptide amyloid-like crystal (Nelson
et al. 2005). The conformational fitting to this amyloid-like structural ensemble is
assessed by threading, into all the templates, every hexapeptidic stretch of the
polypeptide sequence not containing a Pro or a Cys, and computing its energy
employing the physics-based energy function implemented in the Rosetta Design
program (Kuhlman and Baker 2000). The method was further developed to model
all the backbone templates experimentally determined to be compatible with the
cross-b conformation (Sawaya et al. 2007), not only that of the NNQQNY
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amyloid-like structure, and was also improved at the computational efficiency level
by introducing a fuzzy search algorithm which looks gradually for the structural
template that provides the best fit for the threaded polypeptide segment sequence (in
terms of spacing and relative translation of the two sheets composing the cross-b
structure), instead of energetically evaluating the whole ensemble of structural
templates. Moreover, the fitting to a given structural template is now computed not
only on the basis of the sequence energy calculated with Rosetta Design, but also
according to additional scores derived from (i) the assessment of shape comple-
mentarity (Lawrence and Colman 1993) between the residue side chains building
the “steric zipper”, and (ii) the analysis of solvent exclusion from the zipper through
the calculation of the solvent accessible surface area (Lee and Richards 1971). This
combined fitness score is computed again by threading onto the templates every
hexapeptidic fragment of the sequence not containing Pro, and with their Cys, if
present, substituted with Ser (to avoid issues associated with modelling disulphide
bonding). A segment of the polypeptide chain is predicted to possess a high
propensity towards the formation of amyloid-like structures when its analysis yields
an energy score below a defined threshold, which has been set up on the basis of the
energetic values computed for the structurally resolved hexapeptidic steric zippers.

An ensemble of static structural templates based on the atomic coordinates of the
NNQQNY amyloid-like crystal, similar to that employed in the initial development
of the 3D profile method, was also implemented in the Pre-Amyl prediction
algorithm (Zhang et al. 2007). In this case, however, the conformational fitting of
hexapeptidic sequence stretches threaded into each template is not evaluated
employing a physics-based forcefield but, instead, according to statistically derived
residue interaction potentials—derived from the number of contacts observed
experimentally (within a certain distance radius) between every possible pair of
residues, in crystallographic protein structures retrieved from the Protein Data Bank
with sequence identity lower than 30% and resolution better than 2Å. This observed
number of contacts is normalized relative to a theoretically-expected number of
contacts within the same radius. A given hexapeptide stretch is considered amy-
loidogenic whenever the structural configuration it populates with lowest energy
yields a computed value below a given energy threshold, which was established
after an statistical analysis of the ability of the method to differentiate between
hexapeptides assembling into amyloid-like fibrils and those that do not form them,
that correspond to the AmylHex database (Thompson et al. 2006).

A different approximation based on the analysis of fibril-forming peptides
concentrates on the effort to identify the position-dependent compositional deter-
minants along the sequence either favouring or disfavouring the assembly into
amyloid-like structures. A very first approach addressed this issue by performing an
exhaustive mutational analysis on the ability to form amyloid-like fibrils by the
STVIIE peptide, whose amyloidogenic properties has been previously tailored
employing a computational method (López de la Paz et al. 2002). This study
allowed the determination of a sequential pattern which defined the compositional
requirements for amyloidogenicity (López de la Paz and Serrano 2004)—at least in
the vicinity of the STVIIE sequence space. The sequences generated by this
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analysis were later incorporated into the AmylHex database (Thompson et al.
2006), composed of two subsets, one corresponding to hexapeptides able to form
amyloid-like fibrils and another comprising non-amyloidogenic peptides. However,
since a large fraction of these datasets is constituted by sequences derived from
STVIIE (most of them corresponding to point mutations of the original peptide), the
database is likely reporting on a closely related sequence space; so that the general
compositional features for the universe of hexapeptidic sequences able to populate
amyloid-like structures cannot be inferred. In order to overcome this limitation, the
AmylHex database was extended to increase its sequential diversity by further
defining candidate amyloidogenic sequences. These were drawn either by (i) ap-
plying a sequential pattern derived from the original AmylHex database to proteins
forming amyloid-like fibrils whose amyloidogenic determinants had not been
previously determined, (ii) engineering double and triple substitutions in the
hydrophobic core of the STVIIE peptide, or (iii) employing another sequential
profile (derived from a preliminarily extended AmylHex database) to analyze
human proteins a priori unrelated to amyloidosis, and retrieve sequences with the
lowest similarity to the original hexapeptide. The ability of these newly retrived
hexapeptides to assemble into amyloid-like structures of the newly retrieved
hexapeptidic sequences was assesed experimentally in order to appropiately classify
them. The resulting extended AmylHex database—comprising 116 peptides able to
form amyloid-like fibrils (positive dataset) and 103 hexapeptides which do not
aggregate into this class of structures (negative dataset)—was employed to build a
position-specific scoring matrix (PSSM) intended to capture the general sequential
determinants of the aggregation into amyloid-like structures. This PSSM is the main
workhorse of the Waltz algorithm (Maurer-Stroh et al. 2010) which aims to
specifically identify amyloidogenic regions within polypeptide sequences according
to a compound scoring function. This function incorporates, first, a sequential
parameter which measures the position-dependent compositional suitability to
adopt amyloid-like structure along the sequence, according to the Waltz PSSM.
Second, the function includes a parameter to weight a series of amino acids'
physico-chemical properties relevant for position-specific amyloid-like assembly.
These latter features were statistically selected, from a collection of databases
comprising some 700 sets of normalized physico-chemical parameters for each of
the 20 naturally-occuring amino acids (Tomii and Kanehisa 1996; Eisenhaber et al.
1998; Kawashima et al. 2007), following two stages. The scales were initially
selected to correlate with amino acid frequencies of non-redundant subsets of the
AmylHex database (independently for the positive and the negative datasets), while
exhibiting the strongest deviation between the positive AmylHex dataset and the
UniRef50 reference dataset (the latter expected to provide randomized values for
the properties). Then, 19 properties scales were further selected using a genetic
algorithm that searchs for a better discrimination between the positive and negative
datasets (these being supplemented with random polypeptide sequences to avoid
overprediction). Finally, the Waltz function also employs a third structural
parameter that evaluates the conformational fitting of the sequence stretch under
scrutiny to the structural template of the GNNQQNY fibril-forming peptide (Nelson
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et al. 2005). This is done employing a position-specific pseudoenergy matrix built
on the basis of the energy difference, upon threading onto the GNNQQNY struc-
tural template, between polyamino acids corresponding to every possible combi-
nation of the 20 naturally-occurring proteinogenic amino acids and the polyAla
sequence; these energies are calculated using the FoldX energy function (Guerois
et al. 2002), which is further described in the Sect. 7.4 of this chapter.

A different structural approach based on the knowledge of the structures of
amyloid-like aggregates is implemented by AmyloidMutants (O’Donnell et al.
2011). Differently from the 3D profile method and Pre-Amyl, which evaluate the
conformational fitting of the polypeptide sequence to predefined structural tem-
plates, this is a statistical mechanics-based predictor which attempts to explore the
conformational landscape of amyloid-like states that can be populated by the
polypeptide chain. In order to allow for a computationally feasible conformational
search, the accessible states are topologically restricted to conform with the
structural features determined experimentally for certain natural amyloid-like
structures—in particular, those of the b-solenoid (Lührs et al. 2005; Wasmer et al.
2008) and the superpleated b-sheet (Kajava et al. 2004) models. This method aims
to predict not solely the portions of the sequence able to form cross-b supersec-
ondary elements but their possible quaternary arrangement as well. Interestingly,
the topological constraints employed to define the accessible states allow the
modelling of b-strand distortions observed experimentally in certain amyloid-like
structures (Wasmer et al. 2008). However, in AmyloidMutants intrachain b-sheets
are restricted to have a parallel arrangement, while it is known that cross-b spines
with an antiparallel arrangement could exist in nature (Sawaya et al. 2007). The
population of the accessible states is obtained, according to a Boltzmann distri-
bution, depending on the polypeptide energy in each state, which is computed
employing interaction potentials derived statistically from non-redundant structures
of the Protein Data Bank. In the case of AmyloidMutants, those potentials are
obtained as a function of features of the structural context which might be relevant
for the population of amyloid-like states; such as amphipathicity, solvent accessi-
bility, the proximity to b-strand or b-sheet edges, distortions of the b-conformation
and stacking interactions of identical residues. This method is also capable of
simultaneously assessing the impact of sequential variation on the population dis-
tribution of the accessible amyloid-like states by allowing the specification of
discrete amino acid substitutions. The output provided by AmyloidMutants consists
of the representative members of structural clusters corresponding to the populated
states, as well as the conformation of the polypeptide sequence within them.

7.3.3 Consensus Methods

Each of the methods described above exploits one or several of the specific
determinants considered as relevant for the aggregation of polypeptides into
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amyloid-like ordered structures. However, no unique tool has been developed yet
that incorporates the ensemble of concepts implemented by the different approa-
ches, despite their underlying principles might turn out as complementary for the
prediction of polypeptides propensity to form b-sheet-enriched aggregates.
Combining the outputs provided by different algorithms might increase the pre-
diction accuracy—by improving the sensitivity towards the most relevant deter-
minants (which may divergently promote the formation of different aggregated
states), while minimizing, at the same time, the method-specific bias towards
overprediction of certain types of aggregation. This rationale has been employed for
the AMYLPRED server, which builds a consensus APRs prediction at a residue
level by integrating the results provided by different previously published methods.
The initial version (Frousios et al. 2009) incorporated 5 methods (the “average
packing density” method which later inspired FoldAmyloid, SecStr, the amy-
loidogenic pattern defined by Lopez de la Paz and Serrano (2004), TANGO and
Pre-Amyl) to construct the consensus prediction. A more recent release, AmylPred2
(Tsolis et al. 2013), can combine up to 11 different methods (the aforementioned
ones complemented with AGGRESCAN, AmyloidMutants, SALSA, NetCSSP,
Pafig and Waltz). Nonetheless, it is also true that for these different predictors, and
particularly among those belonging to the same class, the predictions might be
redundantly reporting on certain determinants of aggregation, thus biasing the
identification of consensus APRs. To reduce this bias, AmylPred2 allows the
selection of the specific methods, among the 11 available, to be employed to
compute the consensus prediction. Therefore, based on expert knowledge the user
could define a customized combination of methods offering a better complemen-
tarity; though, this goal requires a deep understanding of the rationale behind the
methods.

MetAmyl employs a statistical approach in order to construct a consensus method
aimed to achieve a better complementarity between the methods it incorporates
while minimizing their redundancy (Emily et al. 2013). To this end, this consensus
tool is formulated as a linear combination of different predictors, with a series of
parameters weighting the outcome of each individual method. MetAmyl exploits the
expanded AmylHex dataset (Thompson et al. 2006; Maurer-Stroh et al. 2010),
described above, in order to fit the weights of the methods by maximizing the
sensitivity and specificity of the ability to predict amyloid-like structure. In a first
round of development, MetAmyl included the output of 11 predictors (TANGO,
AGGRESCAN, SALSA, Pafig, PASTA,Waltz and the five different scores provided
by FoldAmyloid) as individual variables to fit the weighting parameters of the linear
algorithm. This first step allowed identifying the degree of overlapping in the
information provided by the different predictors through the analysis of the level of
correlation between methods. In this way, SALSA, Pafig, Waltz, and the “average
packing density” scale from FoldAmyloid were found as those reflecting the most
informative properties with a higher complementarity, and were selected in order to
reduce the dimensionality of the MetAmyl algorithm. The weighting parameters
were further refitted to the extended AmylHex dataset, employing only the latter
predictors, in order to yield the final formulation of the algorithm.
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7.3.4 Applications of Sequence-Based Predictors

7.3.4.1 Proteome-Wide Analyses

The computational tools described so far allow performing easy and straightforward
analyses of the tendency to aggregate of individual proteins, as exemplified in
Fig. 7.3, with the only requirement being knowledge of their primary structure. The
outcome of such analyses can assist the user in the characterization of the aggre-
gation process for a given protein of interest, and in the forecasting of the impact of
sequential variations over this reaction. Additionally, some predictors have been
built so as to allow high-throughput analyses of large sets of polypeptide sequences.
Four of these methods—namely TANGO, AGGRESCAN, Zyggregator, and
Waltz—have been intensively employed for the massive analysis of the aggregative
properties of a variety of proteomes and protein datasets. The implementation of
such large scale analyses has resulted in a deeper understanding of the determinants
that influence the aggregation of polypeptides, it has concomitantly revealed sig-
natures of a selective pressure acting on cellular proteomes along evolution in order
to reduce their overall tendency to aggregate, and it has shown how this pressure
has shaped protein sequences and structures (Monsellier and Chiti 2007; Reumers
et al. 2009b; Castillo et al. 2011; Sanchez de Groot et al. 2012). These findings are
further reviewed in this section.

An examination of the context where the APRs detected by these methods are
placed, within the polypeptide chain, has revealed how these sequence stretches are
frequently flanked either by charged residues like Arg, Lys, Asp, and Glu (whose
function would be hampering the establishment of intermolecular interactions
between APRs by providing repulsive charges) or by residues acting as b-sheet
breakers, like Pro (Rousseau et al. 2006b). The presence of this type of residues
(commonly referred to as “gatekeepers”) at the flanks of APRs defines amino acidic
patterns that are coincident with the substrate binding determinants of many chap-
erone classes. Accordingly, it has been suggested that the effect of the selective
pressure against aggregation on protein sequences, leading to the emergence of
“gatekeeper” residues, has concomitantly sculpted the binding specificity of those
members of the protein quality controlmachinery that aid proteins to attain their native
states or that block the establishment of non-functional intermolecular contacts.

High-throughput analyses of the aggregative properties of polypeptides agree
that the presence of APRs represents an ubiquitous property of proteins, since, on
average, the vast majority of polypeptides in a given proteome harbour at least one
such predicted aggregation-prone stretch (Rousseau et al. 2006b; Conchillo-Solé
et al. 2007; Reumers et al. 2009a). Nonetheless, the distribution of APRs is not
uniform across the different classes of proteins embodying a certain proteome
(Linding et al. 2004; Rousseau et al. 2006b; Conchillo-Solé et al. 2007). IDPs are
particularly depleted in APR content, a feature intimately related to the composi-
tional characteristics that differentiate these kind of polypeptides from globular
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proteins (Uversky 2002). More specifically, aggregation-prone residues are
underrepresented in IDPs sequences, while an enrichment is observed in charged
amino acids and b-breaker residues such as Pro (Tompa 2002), this provides them
with a higher net charge and reduced hydrophobicity. Conversely, globular proteins
present a significant number of detected APRs, but the analysis of their location in
the native state of different sets of globular proteins with experimentally resolved
structures reveals that these stretches tend to be buried (Linding et al. 2004; Buck
et al. 2013), in many cases as part of the hydrophobic core, being therefore pro-
tected from the solvent and, thus, unable to establish deleterious intermolecular
contacts under physiological conditions.

In spite of the ubiquitous presence of APRs in a large fraction of proteins from
many, different proteomes, the predicted aggregation propensity is not homogenous
across them but decreases with increasing complexity and longevity of the corre-
sponding organism (Tartaglia et al. 2005b; Rousseau et al. 2006b). This observation

JFig. 7.3 Detection, employing linear predictors, of APRs in human amyloidogenic proteins. APRs
predicted by different methods that rely on the analysis of the primary structure are shown as
coloured bars (missing bars might either imply no APR has been detected, the method failed to
provide an outcome, or the protein under scrutiny constitutes a private precomputed entry not
publicly available), dotted lines delimit groups of methods belonging to the same class
(Phenomenological above, Structure-based in the middle and Consensus approaches in the lower
section). In order to contrast the power and significance of the predictions, the amyloidogenic
regions experimentally confirmed so far in the proteins analysed, as previously compiled by
Hamodrakas and co-workers (Tsolis et al. 2013), are shown as grey shadows in the plot, and also
mapped in red over the structures (when available). For each protein, the UniProt accession code
of its precursor polypeptide is noted, and the region corresponding to the mature form, whose
sequence was employed to run the predictions, is specified within brackets; structures, if
represented, correspond to the mature polypeptide unless the N- and C-termini are explicitly
indicated. The dynamic flexibility of native structures is highlighted by superimposing, when
available, different NMR conformers solved or multiple unique chains in the crystallographic
asymmetric unit. Disulphide bonds are depicted as bright yellow sticks and complexed chloride
ions as green spheres. a and b Predictions for proteins with wild-type structures resolved
experimentally under close-to-native conditions (PDB codes Transthyretin—1TTA, Serum
amyloid A-1 protein—4IP8, apo-Lactotransferrin—1CB6, Apolipoprotein A-I—2A01, Insulin—
1ZNJ, Prolactin—1RW5, Lysozyme C—1LZ1, Transforming growth factor-b-induced protein
ig-h3—2LTB, Major prion protein—2LSB, b2-microglobulin—2XKS, Gelsolin—3FFN). For
Transthyretin and Serum amyloid A-1 protein, the structure shown corresponds to their reported
native quaternary assembly. c Predictions for proteins with experimentally resolved structures
whose correspondence to the true native state is uncertain, either because they were resolved in the
presence of detergents or large cofactors, or because they correspond to mutant sequences (PDB
codes: b-amyloid protein 42—1Z0Q, Islet amyloid polypeptide—2L86, Cystatin-C—3NX0,
Microtubule-associated protein Tau—2MZ7, a-synuclein—2KKW, Proapolipoprotein C-II—
1O8T, Calcitonin—2JXZ). d Predictions for proteins without experimentally resolved structures
available. For proteins in panels c and d, in order to estimate whether the APRs forecasted could be
partially or totally exposed in their actual native states, the tendency along the polypeptide chain to
adopt an ordered structure (Foldability) or to remain disordered was also predicted, according to
the “average packing density” method (Galzitskaya et al. 2006a), employing FoldUnfold
(Galzitskaya et al. 2006b); regions of the polypeptide chain with scores below a defined cut-off
(shown as a red line) are predicted as disordered
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has consistently been acknowledged employing unrelated aggregation predictors
(Tartaglia et al. 2005b; Rousseau et al. 2006b; Graña-Montes et al. 2012b), and is
taken as a robust evidence that evolutionary pressure acts on protein sequences in
order to minimize their tendency to aggregate. Different detailed analyses per-
formed with sequence-based methods have revealed apparent specific traits of this
evolutionary selection against aggregation acting to shape protein sequences and
structures, as well as their functional properties. For instance, the potency of the
detected APRs was found to diminish with increasing polypeptide length
(Monsellier et al. 2008)—this being consistent with theoretical estimates suggesting
the rate of folding to the native state slows down as protein size increases (Ivankov
et al. 2003), so that longer proteins are expected to populate partially unfolded
states (where APRs may become substantially exposed) for a larger amount of time.
On the other hand, protein aggregation is highly dependent on polypeptide con-
centration since it constitutes a high-order reaction, and, at the same time, the
efficiency of the aggregation reaction is influenced by the degree of sequential
identity between interacting molecules (Krebs et al. 2004; Wright et al. 2005).
Consequently, proteins with a native homo-oligomeric architecture are at high a
priori risk of aggregation because of the implicit high local concentration of
identical polypeptide chains. However, proteins with this kind of quaternary
structure generally present, indeed, a lower predicted aggregation propensity rela-
tive to other polypeptides of similar size (Chen and Dokholyan 2008). The same
study also highlighted that proteins exerting essential functions present a lower
predicted tendency to aggregate than non-essential polypeptides. These results
suggest that a greater selective pressure to minimize their tendency to aggregate is
experienced by proteins being at an inherently higher threat of aggregation or by
those developing an essential functional role for the cell. Interestingly, the analysis
of proteins with native oligomeric quaternary structures and protein-protein com-
plexes reveals that the surfaces of interaction between polypeptides overlap spa-
tially with detected APRs (Pechmann et al. 2009; Castillo and Ventura 2009). It has
been proposed, accordingly, that the specific formation of stable quaternary struc-
tures and protein complexes could have evolved, aside from its straightforward
functional implications, also as a protective strategy to avoid the establishment of
non-functional unspecific intermolecular contacts, by exploiting the physical
shielding of APRs. The significance of such a protective shielding strategy is further
supported by the presence of disulphide bonds and attractive electrostatic interac-
tions in the proximity of interfaces, enhancing both their stability and specificity
(Pechmann et al. 2009). Several other mechanisms have been identified to have
apparently been incorporated in cellular proteomes in order to confront the risk of
aggregation. The incorporation of disulphide bonds in protein structures would be
one such strategy, as derived from the observation that polypeptides born with
disulphide bonds present a high predicted aggregation propensity compared to
proteins devoid of these covalent links—such difference becomes substantially
larger when the subset of extracellular proteins is considered alone (Mossuto et al.
2011; Graña-Montes et al. 2012a). These findings suggest the presence of disul-
phide bonds enables tolerance for a greater aggregative potential, particularly in
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proteins that function in harsh environments (such as the extracellular space) where
the maintenance of their native states might be compromised. That increased tol-
erance likely results from the disulphide cross-linking stabilizing effect on native
conformations (Poland and Scheraga 1965; Lin et al. 1984; Grantcharova and Baker
2001; Graña-Montes et al. 2012a), but also because it constraints the kinetics of
aggregation and leads to a reduced cytotoxicity of amyloid-like fibrils (Mossuto
et al. 2011; Graña-Montes et al. 2012a). Likewise, the presence of intrinsically
disordered regions—found frequently at the termini of globular proteins (Lobanov
et al. 2010)—would represent yet another protective mechanism since the com-
positional bias of these regions provides them with a strikingly low predicted
tendency to aggregate, compared to the ensemble of globular proteins
(Graña-Montes et al. 2014). Although intrinsically disordered regions in a terminal
position serve to develop a wide diversity of functions (Uversky 2013b), both
theoretical and experimental models (Abeln and Frenkel 2008; De Simone et al.
2012; Santner et al. 2012) demonstrated that the structural flexibility of disordered
regions adjacent to structured domains can exert a protective role against aggre-
gation, by creating an excluded volume around the domains surface. This kind of
dynamic behaviour, defining the entropic briste effect, thence prevents the estab-
lishment of spurious intermolecular. Remarkably, the anti-aggregative role of
entropic bristles has been corroborated in the context of naturally-occurring protein
domains (Graña-Montes et al. 2014), further supporting the evolutionary emergence
of a widespread activity of these disordered termini against deleterious aggregation.

As mentioned before, aggregation kinetics are highly dependent on protein
concentration, which suggests cellular protein levels should be tightly regulated in
order to manage the risk of aggregation. Indeed, a correlation was observed
between experimentally derived mRNA levels and predicted aggregation propensity
in the human proteome (Tartaglia and Vendruscolo 2009), indicating that protein
abundance is finely tuned at the expression level depending on the aggregation
properties of polypeptides. The relationship between protein synthesis and the
tendency to aggregate was later confirmed by the analysis of experimental data of
gene expression, protein abundance, and protein solubility for polypeptides in the
Escherichia coli proteome (Castillo et al. 2011). In this case, the best correlation
with the aggregation properties of polypeptides is observed when real protein
abundance is considered, thus indicating that are protein, and not mRNA, levels
those under true evolutionary control. The detailed inspection of these data allows
for the discrimination of polypeptide populations that appear to be under different
selective pressure to avoid aggregation, because they exhibit contrasting tendencies
to aggregate. Unsurprinsingly, the most abundant proteins experience a higher
degree of anti-aggregative selection. After synthesis, polypeptide abundance is
controlled by the degradation machinery—consequently, the analysis of human
proteins has shown that long-lived polypeptides display an overall low aggregation
propensity, whereas proteins with high turnover rates can tolerate an increased
aggregation potential (De Baets et al. 2011), thus indicating that protein populations
with a significant lifetime inside the cell are under stronger pressure to avoid the
risk of aggregation. Along the same line, the control of protein concentration

7 Prediction of Protein Aggregation and Amyloid Formation 239



becomes even more relevant when the extremely crowded nature of the cellular
interior is taken into account (Zimmerman and Trach 1991; Ellis 2001), because
macromolecular crowding is considered to increase dramatically the effective local
protein concentration, as well as limiting biomacromolecule diffusibility. In fact,
high molecular weight polymeric able to mimic the crowded intracellular envi-
ronment (such as ficoll or polyethylene glycol) have been shown to accelerate the
aggregation rates of polypeptides (van den Berg et al. 1999; Munishkina et al.
2004). Quite interestingly, the analysis of the aggregation propensity predicted
either for bacterial (de Groot and Ventura 2010) or human (Tartaglia and
Vendruscolo 2009) proteins, relative to their subcellular localization, reveals the
predicted tendency to aggregate diminishes as the volume of the subcellular
compartment decreases. This suggests that the impact of macromolecular crowding
and reduced diffusibility on the risk of aggregation becomes more pronounced as
the compartmental confinement accentuates and, accordingly, the pressure to
decrease the intrinsic aggregation propensity appears stronger for proteins located
in small cellular compartments.

Although the analyses of proteomes provide strong evidence for the existence of
a selective pressure to avoid polypeptide aggregation, a persistent aggregative
potential is still detected in a majority of protein sequences as most of them harbor
at least one APR (Rousseau et al. 2006b; Conchillo-Solé et al. 2007; Reumers et al.
2009a). This suggests the purifying selection towards lower aggregation propensity
in polypeptide sequences is limited to a certain extent, very likely because the
maintenance of protein functionality requires sequential properties that overlap
partially with the determinants of protein aggregation. In this context, the analysis
of homogeneous ensembles of functionally or structurally related proteins has
proved an extremely valuable strategy to identify specific functional constraints
restricting the impact of selective pressure against aggregation, since this approach
reduces significantly the sources of noise associated to the comparison of unrelated
polypeptides. Following this rationale, independent analyses of a collection of
proteins with enzymatic activity (Buck et al. 2013) and a set comprising the
kinomes (ensembles of protein kinases) of different organisms (Graña-Montes et al.
2012b) have shown that, although catalytic amino acids do not tend to reside within
aggregation-prone segments—since they usually present a polar or charged char-
acter—they are more frequently found in close proximity to APRs than would be
expected by chance. This suggests the physico-chemical properties defining APRs
concomitantly provide an appropriate environment for catalytic activity, which, in
turn, restricts the action of purifying selection against these aggregation-prone
stretches. Furthermore, the analysis of kinase domains also revealed that predicted
amyloidogenic stretches usually map to regular secondary structure elements of the
canonical protein kinase-like fold (Graña-Montes et al. 2012b), which is remarkably
consistent with experimentally confirmed amyloidogenic stretches being found
preferentially embedded within the regular secondary structure of the native states
of different amyloidogenic proteins (Tzotzos and Doig 2010). Again, these findings
suggest that the properties accounting for the maintenance of APRs are also rele-
vant for the efficient attainment or preservation of the native structure, illustrating

240 R. Graña-Montes et al.



further the unavoidable competition between folding and aggregation. Such a close
interplay between the ability of a polypeptide to fold into a defined native (fold-
ability) and its propensity to aggregate into non-functional conformations has also
been highlighted by analysis of a representative collection of the ensemble of
disulphide-rich domains (Fraga et al. 2014). The native states of this class of
domains are essentially stabilized by the presence of disulphide bonds, and they
populate long-lived, largely unstructured conformations along their slow folding
reactions. The analysis of their characteristic features shows these kind of
polypeptides escape the risk of aggregation through a compositional bias which
translates into aggregative properties very similar to those of IDPs—with a reduced
overall aggregation propensity, compared to the ensemble of globular proteins, as
well as a very low number of APRs per sequence. Nonetheless, when APRs are still
detected, these follow the same trend described before, by mapping more frequently
to regular secondary structure elements. Here, the interplay between folding and
aggregation is further emphasized by the observation that the differential oxidative
folding efficiency of two structurally homologous disulphide-rich domains can be
associated with the distinct amyloidogenicity of their regular secondary structure
elements. Subsequently, this study arrived to the striking conclusion that the general
traits of the oxidative folding pathways of disulphide-rich proteins can be suc-
cessfully forecasted by the combined analysis of their predicted aggregation
propensity and tendency to disorder. These findings indicate, once again, that the
selective pressure to decrease the aggregation propensity of polypeptides is also
restrained in globular proteins by the requirement to effectively achieve a defined
three-dimensional conformation, provided the physico-chemical determinants of
both efficient folding and aggregation propensity cannot be completely disentan-
gled. The action of an excessive pressure against aggregation might compromise
foldability, in such a way that additional stabilizing elements (such as disulphide
bonds or external cofactors) might be required if a native globular conformation is
to be maintained. The balance between the extent of anti-aggregative selection and
the requirement for the efficient attainment of a three-dimensional structure would
be defined by the combination that better preserves organismal fitness.

7.3.4.2 Prediction of in vivo Protein Aggregation

Most of the algorithms described so far have been developed, and in some cases
parameterized, based on properties of amyloid-like aggregates derived from the
in vitro experimental characterization of aggregation reactions for a number of
model proteins—being AGGRESCAN the sole exception, since it was developed
from an experimentally derived scale of intrinsic aggregation propensity for the
naturally-occurring proteinogenic amino acids.

Since the complex cellular environment strongly influences polypeptide depo-
sition—indeed possess an intricate machinery to control this phenomenon—the
question arises as to whether the previously described prediction tools are able to
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predict protein aggregation in vivo. In order to address this question, Chiti and
co-workers evaluated the ability of different publicly-available algorithms to predict
the depositional properties of polypeptides inside the cell, by employing several
datasets of proteins whose tendency to aggregate had been experimentally deter-
mined in vivo (Belli et al. 2011). In general terms, the predictors are substantially
accurate in the forecasting of protein aggregation in vivo with phenomenological
approaches performing globally better than structure-based methods. Such differ-
ence can be rationalized considering the constraints influencing the course of
protein aggregation in the crowded cellular environment which certainly differ
significantly from those in a test tube—here, the controlled environment and the
absence of interference from other molecular components allow for more repro-
ducible aggregation kinetics rendering highly ordered aggregated structures.
Therefore phenomenological methods are, in principle, expected to capture the
complexity of environmental conditions in vivo better than approaches, based
exclusively on properties of the fine structure of late assembly products.
Unsurprinsingly, AGGRESCAN (relying on its in vivo derived aggregation scale) is
the algorithm yielding the best global performance across the different datasets
analyzed. Interestingly, the good performance of AGGRESCAN, all considering
the proteins in the testing datasets employed by Chiti and co-workers belong to
different organisms, provides yet another piece of evidence for the suitability of
E. coli as a model organism for the analysis of protein aggregation.

7.4 Prediction of Aggregation Propensity
from the Tertiary Structure

The computational methods described so far make use only of the primary structure
of polypeptides to perform predictions of their tendency to aggregate. In spite of the
widely varying rationales behind each of these tools, they have been shown to
forecast with significant overall accuracy, as mentioned, the actual change in the
tendency to aggregate determined in vivo for a variety of datasets comprising
mutational variants of different proteins (Belli et al. 2011).

The establishment of intermolecular contacts between APRs in polypeptides so
as to build the cross-b spine of amyloid-like fibrils can be easily explained in the
context of IDPs, because of the outspread nature of this kind of proteins.
Conversely, since the APRs detected with linear predictors of aggregation map with
high frequency to regions buried within the native state of globular proteins
(Linding et al. 2004; Buck et al. 2013), the formation of amyloid-like structure by
these polypeptides most likely requires significant conformational changes.
Although different models have been proposed to rationalize the conversion of
amyloidogenic proteins departing from globular native states into the cross-b
conformation and its extension to form amyloid structures (Nelson and Eisenberg
2006), a better understanding of the mechanisms that trigger such conformational
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conversion is still required. A couple of features appear of particular relevance for
the amyloidogenic conversion, at least in its early stages, of proteins displaying a
globular native state: (i) the modulation of the aggregative potential of specific
APRs by their environment in the tertiary structure (that is, by residues or protein
regions in close 3-dimensional vicinity), and (ii) variations in APRs’ exposure to
solvent due to local or global structural fluctuations, particularly regarding large
scale variations that may arise from destabilizing mutations or harsh environmental
conditions. The computational approaches that forecast the tendency to aggregate
employing primary structure information only cannot deal with such conforma-
tional features. Consequently, the focus has recently moved towards the develop-
ment of tools for the prediction of protein aggregation able to integrate the
knowledge of the native tertiary and quaternary structures (Table 7.3).

A very first approach to predict the tendency to aggregate from the
3-dimensional structure of globular states was the Spatial Aggregation Propensity
(SAP) method (Chennamsetty et al. 2009). This method was specifically aimed at
the optimization of antibodies, which currently represent one of the most relevant
groups of therapeutic agents. Since the production of these biomolecules is mainly

Table 7.3 Characteristics of methods for the prediction of protein aggregation relying on the
analysis of structural information (structural predictors)

SAP CamSol Solubis A3D

Structure-related
features

Influence of the
structural environment
on the aggregation
propensity/solubility, as
a function of exposure

✓ ✓ ✗ ✓

Influence of the
structural environment
on the aggregation
propensity/solubility, as
a function of distance

✗ ✓ ✗ ✓

Modelling of structural
dynamics

✓ ✗ ✗ ✓

Modelling of the impact
of mutations on the
structural stability

✗ ✗ ✓ ✓

Semi-automated
mutational redesign for
reduction of aggregation
propensity/improvement
of solubility

✗ ✓ ✓ ✗

Level of development Equation Server YASARA
plug-in

Server

URL – www-
mvsoftware.
ch.cam.ac.
uk

solubisyasara.
switchlab.org

biocomp.
chem.
uw.edu.
pl/A3D/
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hampered by their typically low solubility, decreasing their tendency to aggregate
seems an appropriate strategy to improve their industrial development. SAP
exploits the great potential of the Molecular Dynamics (MD) computational tools
(Dror et al. 2012; Papaleo 2015; see also Chap. 12) in order to simulate the
structural fluctuations and molecular motions that underlie a wide variety of bio-
logical processes (Karplus and Kuriyan 2005; Dodson et al. 2008; Shaw et al. 2010;
Lin et al. 2011; Dror et al. 2012), including the analysis of amyloid-like structures
and of the different stages leading to their formation (Invernizzi et al. 2012).
Concretely, SAP attempts to describe the dynamically averaged tendency to
aggregate of a given protein structure or, in other words, the mean exposure of
aggregation-prone patches at its surface—by exploring the polypeptide conforma-
tional space in the near-native ensemble through MD simulations in the tens of
nanoseconds timescale. Although MD simulations performed in this timescale were
found highly robust regardless of the force field employed (Rueda et al. 2007), this
range of time appears to capture, essentially, fast relaxations corresponding to side
chain motions (Henzler-Wildman and Kern 2007; van den Bedem and Fraser
2015); while backbone fluctuations, which would be consistent with transitions
between local energy minima in the vicinity of the native conformation (native-like
states), take place in the microsecond range (Shaw et al. 2010). It is the flux
between native-like states, easily accessible because of thermal fluctuations, that
can be expected (aside from mutations with a deep conformational impact) to
influence more likely the aggregation propensity of polypeptides, rather than mere
side chain motions at the protein surface. Therefore, the assessment of the tendency
to aggregate of a globular protein would be better performed by means of simu-
lations in the microsecond timescale. However, despite recent force field devel-
opments have dramatically increased both their reliability and consistency in order
to perform MD simulations up to the millisecond time scale and beyond
(Lindorff-Larsen et al. 2012), this kind of MD simulations remain highly costly in
computational terms, even when dedicated computational resources are employed.
Thus, their application in the prediction of aggregation propensity from tertiary and
quaternary structure is not feasible yet, especially since the analysis of protein
aggregation usually involves the evaluation of a large number of protein structures
or sequential variants.

The impact of surface exposure and dynamic fluctuations on the tendency to
aggregate is approximated in the SAP method by obtaining a score of aggregation
proneness (Spatial Aggregation Propensity; SAP) per residue as the mean of the
SAP values computed for each of the side chains’ constituent atoms. The method
relies on the expectation that the aggregation propensity of a particular side chain
atom is modulated by that of any other neighbouring atom from side chains in
spatial proximity. Consequently, SAP for a given atom is calculated by the sum-
ming the contribution (to its tendency to aggregate) of every side chain atom found
within a sphere of 5Å radius centred on the atom of interest. Such contribution is
obtained, for each atom within the sphere, as the product of the atom’s solvent
accessible area (SAA) with the hydrophobicity of the amino acid it belongs to. The
atom's solvent exposure is computed relative to the SAA it would exhibit if its
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corresponding amino acid (X) was fully exposed in a Ala-X-Ala tripeptide; and
amino acid hydrophobicities are derived from a modified Black and Mould
hydrophobicity scale (Black and Mould 1991), normalized to make Gly
hydrophobicity equal to 0. The ultimate SAP score assigned to each atom results
from averaging the values computed over all the structural conformations sampled
along the MD simulation frames. In this way, the aggregation propensity per
residue (evaluated in the context of its solvent exposure and considering the
influence of structural fluctuations) is mapped on the protein surface, thus allowing
a direct evaluation of exposed aggregation-prone patches and changes in APR
structural shielding.

Although the development of SAP constituted a major breakthrough since it was
the first tool that introduced the prediction of aggregation propensity from the
3-dimensional structure of globular proteins, it approximates the tendency to
aggregate by considering fundamentally a hydrophobicity scale. However, it has
long been known that hydrophobicity alone does not suffice for an accurate pre-
diction of the potential to aggregate (Wurth et al. 2002; Chiti et al. 2003; Rousseau
et al. 2006a). Still, SAP has inspired further developments of predictive algorithms
which, based on the amyloidogenic stretch or “Hot Spot” hypothesis (Ventura et al.
2004; Ivanova et al. 2004), were initially intended to forecast aggregation departing
solely from the knowledge of the primary structure. Nonetheless, the Zyggregator
method already considered the impact on the aggregation propensity exerted by the
structural shielding of APRs provided by native states—yet this was done
employing the primary sequence, too, in order to predict the protection from
hydrogen exchange (Tartaglia et al. 2007), which serves as an estimator of local
structural stability along the sequence. The models implemented in Zyggregator
have been recently redefined in order to develop the CamSol method, aiming to
optimize the solubility of globular proteins by exploiting the knowledge of the
tertiary structure, and with a particular focus on protein-based therapeutic agents
(Sormanni et al. 2015). This algorithm relies on the assumption that, although
solubility and aggregation propensity are related, they reflect distinct properties of
the conformational energy landscape of the polypeptide chain—while solubility
would constitute a thermodynamic property measuring the free energy difference
between the native and aggregated states, the propensity to aggregate would rep-
resent a kinetic property describing the height of the free energy barrier between
such states. Since CamSol has been designed to increase protein solubility through
a rational and automated engineering of amino acid substitutions that preserve
protein structure, the parameters in the original Zyggregator algorithm have been
consequently modified to account for solubility (as a thermodynamic property) so
as to reduce the bias towards the prediction of aggregation into amyloid-like
structures. According to the authors, this is achieved by (i) substituting the
hydrophobicity scale implemented in Zyggregator with another derived from the
Wimley-White scale (Wimley and White 1996), (ii) modifying the preferences for a
and b conformation (which are now computed from PDB structures), and (iii) re-
fitting the parameters that weight the properties taken into account for computing
the intrinsic solubility (instead of the intrinsic aggregation propensity) of each
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individual amino acid. Hence, the major differences between intrinsic aggregation
propensity and intrinsic solubility are found for Pro and Gly residues, whose ability
to disfavour the deposition into amyloid-like aggregates is well known (Wood et al.
1995; Steward et al. 2002; Parrini et al. 2005) because, as previously mentioned,
they tend to disrupt b-conformation (Monsellier and Chiti 2007)—according to the
CamSol method, however, these residues have a low impact on protein solubility.

In this way, CamSol is not strictly suitable for a direct assessment of protein
aggregation. It is discussed in this section, however, because of the close related-
ness between protein solubility and aggregation propensity, and, more importantly,
because it represents one of the first tools to evaluate the influence exerted on the
physico-chemical properties of a given amino acid by their neighbouring residues in
the 3-dimensional protein structure. More specifically, CamSol first computes a
solubility profile on the primary structure of the polypeptide (as done by
Zyggregator) by assigning to each amino acid position the average of the intrinsic
solubility score for a 7-residue window centred on it, and then adding both the
impact of amino acid patterning along the sequence and of neighbouring charges.
As discussed before, Zyggregator included the impact of patterning because certain
amino acid arrangements (discussed previously amidst the determinants of protein
aggregation) are known to facilitate aggregation into amyloid-like structures—its
influence on protein solubility, though, is not as evident. The impact of side chain
charges on solubility is more straightforward since, in aqueous environment,
charged atoms can establish electrostatic interactions with water molecules, so
solvation free energies of these residues are more favourable. At this point, CamSol
introduces a first structural correction by modulating the effect of charges on the
score assigned to a given amino acid in the solubility profile—as a function of both
the distance (in the primary structure) between the charged residue and the centre of
the window, and of the sign of the charges.

In CamSol, the solubility profile of the polypeptide chain is further corrected on
the basis of the 3-dimensional coordinates, following a principle similar to that
implemented in the SAP method, since the intrinsic solubility of neighbouring
residues is considered to modulate the actual solubility of other amino acids along
the structure. To this end, the contribution of any residue other than those defining
the initial 7-residue window is estimated as the addition, for all these residues, of a
solubility score, corrected by both weighting their relative exposure to solvent and
their distance to the amino acid at the centre of the original window; such distance
correction represents a novel feature relative to the approach introduced by
SAP. The influence of exposure is defined by a sigmoid-like function, in such a way
that residues with a relative solvent accessibility lower than 5% bear a weight of 0
(this means these residues are not considered as contributors to the solubility of
their neighbours), the weight increases slowly up to a relative exposure around 20%
and then linearly until reaching a maximum weight of 1 for amino acids with
relative exposures equal to or above 50%. In the case of CamSol, the relative
exposure is calculated employing the SAA of amino acid X in an extended
Gly-X-Gly tripeptides as a reference. Meanwhile, the distance correction is pro-
vided by a function that decreases linearly with distance from 1 until reaching 0 at 8
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Å or longer. Therefore, the structural context considered by CamSol to affect the
solubility of a given residue is defined by a sphere of 8 Å radius centred on it,
which, according to the authors, is equivalent to a projection of the 7-residue
window over the 3-dimensional space. The aforementioned solubility score for any
surrounding residue within the sphere that defines the structural context is, in turn,
computed as the sum within a linear 7-residue window (centred on that neigh-
bouring amino acid) of the product between residue intrinsic solubility and its
relative exposure, which is then divided by the total relative solvent accessibility of
the window—in this way, a solubility score is obtained somewhat averaged on the
basis of exposure. This score for neighbouring residues is again corrected by the
influence of amino acidic patterns, and by the “gatekeeping” effect of surrounding
charges as well. The final structurally-corrected solubility value for each amino acid
is obtained by summing the intrinsic score of that position in the linear solubility
profile with the contribution of its structural context, and then multiplying this
figure by the solvent exposure weight of the residue.

Once the structurally-corrected solubility profile is calculated, CamSol exploits it
for a semi-automated rational redesign strategy aiming to identify amino acid
substitutions or insertions able to increase the solubility of the target protein. This
strategy first scans the structurally-corrected profile searching for poorly soluble
sequence fragments. The identified stretches are then ranked in order to select the
larger and less soluble ones as the better candidates for engineering an increase of
their solubility. Next, the residues within the selected fragments are analyzed in
order to identify the most suitable positions for the introduction of amino acid
substitutions—defined as those being significantly exposed, but not essential either
for protein function (this feature must be specified by the user) or for the mainte-
nance of the structural stability (i.e. not being involved in relevant electrostatic
interactions or hydrogen-bonding networks). Such requirements might imply, for
instance, it is not most insoluble position that chosen for mutation however, since
targeted amino acids are substituted by residues with a high intrinsic solubility, such
as charged amino acids at neutral pH, the mutations introduced within the stretch
might suffice (following the concept of solubility properties of a given residue being
modulated by those of its neighbours) to significantly increase the solubility of the
whole fragment. When functional or structural constraints impede the introduction
of residue substitutions within the selected stretch, CamSol targets instead the
flanks of the fragments for the insertion of amino acids which, by the mentioned
proximity effect may enhance the solubility of the region. Once the target sites
susceptible of substitution or insertion have been defined, the sequential variants
incorporating changes at these positions are generated. In spite of the care taken by
CamSol to delimit mutable positions, it additionally requires the user to set a
maximum number of sites to be simultaneously engineered, thereby requiring
expert knowledge to assist the protein redesign in avoiding the compromise of its
stability by means of excessive mutation (this level of user intervention is cir-
cumvented in other methods by modelling the impact of sequential modifications
on the structural stability). In order to assess the impact on solubility of the
introduced substitutions CamSol computes the linear solubility profile, but not the
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structurally-corrected profile since the program assumes that changes at selected
sites would not perturb the polypeptide structure. A global solubility score is also
provided for every variant, allowing an easier analysis of their mutational impact on
solubility, which is obtained as a length-normalized summatory of the contribution
to the solubility profile of each position with a score either above or below defined
significance thresholds (of solubility or insolubility, respectively), while the
intrinsic solubility of the remaining positions is not considered.

Additional methods specifically intended to forecast aggregation propensity in
globular proteins that are based on well-established linear predictors have been
recently released. One is Solubis, based on the previously described TANGO
algorithm, which represented the first predictor purposely designed for the detection
of APRs. Solubis does not represent a further development of the TANGO algo-
rithm but is better described as a hybrid methodology that combines the prediction
of the tendency to aggregate with the forecasting of the mutational impact on
protein stability. In this way, Solubis exploits a different approach than SAP and
CamSol, since it does not evaluate the modulation exerted on APR potential by the
properties of their structural context, but instead relies on the observation that
destabilization of the native state promotes the formation of different types of
aggregates both in proteins associated to pathologies (Chan et al. 1996; Wall et al.
1999) and in model polypeptides (Chiti et al. 2000; Espargaró et al. 2008; Castillo
et al. 2010). This supports the concept of the reduction in the conformational
stability increasing the population of partially or even largely unfolded states where
APRs might become substantially exposed, thence enabled to interact. In order to
assess the mutational impact on protein stability the Solubis method integrates the
FoldX algorithm, which has been extensively employed to model the impact of
amino acid substitutions on protein structural stability for the analysis of a wide
diversity of functional implications (Tokuriki et al. 2007; Kiel et al. 2008;
Ashenberg et al. 2013; Fraga et al. 2014). FoldX implements an algorithm that
weights the contribution of a variety of energetic terms which have been identified
as the most relevant to account for protein stability (Guerois et al. 2002). Briefly,
these include: Van der Waals interactions, the solvation energies for polar and
non-polar amino acids, hydrogen bonds and electrostatic interactions, the entropic
cost associated with the restriction of the configurational freedom of the backbone
and side chain in the folded state, and the interaction between protein atoms and
water molecules. The values for these energetic terms were obtained employing
different approaches, such as the use of experimentally determined
physico-chemical properties of amino acids (Nozaki and Tanford 1971; Levitt
1976; Radzicka and Wolfenden 1988; Roseman 1988) to approximate Van der
Waals and solvation energies, the Coulomb and Debye-Hückel physical potentials
employed to measure electrostatic interactions, statistical potentials based on sec-
ondary structure preferences of amino acids (Muñoz and Serrano 1994) to deter-
mine the entropic cost for backbone and side chain fixation, as well as experimental
observations combined with theoretical estimates for the calculation of
hydrogen-bonding and interactions with water. Some of these terms are modulated
by employing scaling factors which take into account (i) the solvent accessibility of
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amino acids, calculated according to the solvent contact method (Colonna-Cesari
and Sander 1990), which computes residue exposure by considering the volumes of
all the atoms surrounding a given atom, (ii) the steric clashes within a protein
structure, and (iii) the effect of N-capping in a-helices. Among them, the most
relevant scaling factor in the FoldX algorithm is solvent exposure, accounting for
the observed lower impact of surface mutations on protein stability (Serrano et al.
1992; Matthews 1995) arising from a greater flexibility at this positions. The
weights of the energy terms defining the ultimate FoldX energy function were fitted
employing a large dataset of single point mutants from different proteins, whose
associated stability changes had been experimentally determined. Once an input
structure is provided, this function allows the prediction of stability changes upon
mutation. To this end, FoldX attempts an optimization of the amino acids rotamer
configurations in the mutant structure, and the energy difference is calculated by
applying the same rotamer configurations to the wild-type (or other alternative
reference) structure. In this way, FoldX is able to estimate mutational effects on
stability by modelling the changes induced in side chain configurations—however,
it cannot predict structural perturbations upon mutation since this method has not
been designed to model backbone fluctuations

Solubis has been developed as a plug-in for the molecular graphics YASARA
program (Krieger and Vriend 2014), which can be employed to perform a variety of
analysis on protein structures, including modelling and simulation of their
dynamics. The Solubis plug-in allows the calculation of the aggregation propensity
for a polypeptide chain employing the TANGO algorithm and then plots the
detected APRs on its 3-dimensional structure. Thus, although Solubis does not
correct the tendency to aggregate by accounting for the physico-chemical properties
of the structural environment, it still allows the user to evaluate the impact of
structural shielding through a visual inspection of APRs location. Furthermore, this
method also has an option to search for amino acid substitutions that reduce the
tendency to aggregate, by mutating positions along the sequence to “gatekeeper”
residues (Lys, Arg, Asp, Glu or Pro) (Rousseau et al. 2006b). However, since APRs
are more frequently found buried within globular proteins and provided a high local
b-sheet propensity is a sequential determinant that favours aggregation, there is an
increased likelyhood that positions targeted for these substitutions might be located
in the hydrophobic core or within b-strands. Hence, outmost caution must be taken
when selecting mutable positions because “gatekeepers” are either amino acids
charged at neutral pH (that may jeopardise protein structure by destabilizing the
hydrophobic core) or Pro (whose tendency to disrupt b-conformation may com-
promise secondary structure elements). To circumvent the requirement of expert
knowledge to determine the most suitable mutable sites, the Solubis mutagenic
search workflow offers the option to perform a complementary analysis of the
mutational impact on the structural stability, employing the FoldX algorithm.
Following this scheme, Solubis assists the rational design of polypeptide variants
bearing a lower aggregative potential, within a desired stability threshold expected
to preserve the native conformation.
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As a computational tool for the prediction of aggregation propensity from
structural information, Solubis obviously requires a 3-dimensional structure as an
input. An interesting alternative when experimentally determined protein structures
are not available, is the generation of homology models (see Chap. 4). Both SAP
and CamSol employed, to different extents, homology models in their case
studies—although a specific validation between the performance of these methods
with homology models and that with experimentally resolved structures would be
necessary, it can be assumed a priori that employing homology models is an
acceptable approximation when experimentally derived 3-dimensional coordinates
are missing. In the case of Solubis, however, the authors explicitly discourage the
use of homology models since this kind of structures are known to significantly
affect accuracy of the FoldX algorithm in the estimation of stability changes upon
mutation.

The method most recently developed as the upgrade of an existing algorithm
employing the linear sequence only into a predictor of aggregation propensity
exploiting structural information. Inspired by AGGRESCAN, which (as previously
described) has emerged as a highly consistent predictor for the accurate forecasting
of aggregation propensity in vivo (Belli et al. 2011), A3D exploits the same intrinsic
aggregation propensity scale determined in vivo for each of the 20
naturally-occuring proteinogenic amino acids (de Groot et al. 2006). However,
instead of employing an averaging window to calculate the aggregation propensity
along the polypeptide sequence, this new development of the method corrects the
intrinsic aggregation propensity of each amino acid in the 3-dimensional structure
with the effect of its solvent exposure and the influence of its structural environ-
ment. In this sense, the algorithm evaluates, similarly to CamSol, both the impact of
the structural shielding provided by residue burial, together with the influence of the
properties of amino acids in the 3-dimensional vicinity; but, notably, A3D is
specifically intended for the prediction of the tendency to aggregate. This method
weights the role of amino acid exposure by correcting its intrinsic aggregation
propensity with an exponential function (described below) of the relative surface
accessibility. Here, the SAA is obtained as the contour defined by the centre of a 1.4
Å sphere (which approximates a water molecule) rolling over the Van der Waals
surface of the protein (Lee and Richards 1971)—as implemented in the Naccess
software (bioinf.manchester.ac.uk/naccess/)—employing the exposure of each
amino acid X in extended Ala-X-Ala tripeptides as the reference solvent accessi-
bility. The A3D score for each residue under inspection is then obtained by adding,
to its exposure-corrected intrinsic aggregation propensity, the contribution of the
structural context, which is estimated as the sum of the corrected aggregation
propensity computed for every residue within a 10 Å radius from the Ca of the
amino acid under evaluation. This aggregation proneness for each amino acid in the
structural vicinity is calculated, in turn, by correcting its intrinsic aggregation
propensity both with the exponential function of its solvent exposure and with
another exponentially decreasing function of the distance between the neighbouring
residue and the amino acid at the centre of the sphere. The exponential functions are
defined so that relative solvent accessibility reaches a maximal weight of 1 when it
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is equal to or above 55%, and a minimum of 0.1 at 10% exposure (with residues
exhibiting a relative accessibility lower than 10% considered not to contribute to the
structurally-corrected aggregation propensity). Analogously, neighbouring amino
acids attain the highest weight of 1 at 1 Å or less from the centre of the sphere,
while this weight decreases with distance until reaching 0.1 at 10 Å (amino acids
outside the sphere are not considered to influence the aggregation propensity of the
residue under scrutiny). Additionally, A3D offers the option to set a smaller sphere
radius of 5 Å that, according to the authors, allows to assess the specific contri-
bution of individual amino acids within APRs detected in the 3-dimensional
structure.

Prior to the calculation of the structurally-corrected aggregation propensity, A3D
performs an energy minimization of the input structure with the FoldX algorithm,
intended to remove unfavourable energies arising from improper torsion angles,
steric hindrance between amino acid side chains, and suboptimal rotamer config-
urations of residues in close vicinity. The A3D method also incorporates the FoldX
energy function to allow the assessment of mutational effects on the stability of
protein structures. Within the A3D workflow, the analysis of the mutational impact
can be performed either before or after running the prediction of aggregation
propensity on the input structure, depending on whether the aggregative properties
of the wild-type (or alternative reference) structure are of interest.

The previously mentioned analyses may be performed on a static structural
model, either provided directly as input or generated previously through FoldX (e.g.
when only the assessment of a certain variant, bearing a specific substitution, is of
interest). However, A3D also integrates the possibility to evaluate the impact of
structural fluctuations on the aggregation propensity of the polypeptide. Averaging
the properties of different conformers as in the SAP case is, perhaps, not be the best
strategy for a realistic prediction because it could lead to underestimation of the
potential of certain aggregation-prone conformer—i.e. an aggregation-prone state
might trigger aggregation even when it is only transiently populated. In this sense,
A3D produces a more valuable output by providing the model corresponding to the
most aggregation-prone conformer. To this end, a “dynamic mode” of the method is
available, which allows modelling of protein structural dynamics according to the
CABS-flex protocol (Jamroz et al. 2013a). CABS-flex is a high-resolution
coarse-grained molecular modelling approach that follows a Monte Carlo simula-
tion scheme to sample backbone fluctuations. Through an extensive validation of its
performance, CABS-FLEX has been shown to consistently reproduce the dynamic
fluctuations of the near-native ensembles derived from all-atom MD simulations
performed with a variety of force fields (Jamroz et al. 2013b). In “dynamic mode”,
A3D employs this robust computational tool in order to analyze an input or
FoldX-mutated structure and then generate a collection of models describing the
most representative fluctuations of the chain. Next, the structurally-corrected
aggregation propensity is computed by A3D on these models, and the one with the
highest A3D score is returned as the output approximating the most
aggregation-prone state that is populated within the polypeptide’s native-like con-
formational ensemble.

7 Prediction of Protein Aggregation and Amyloid Formation 251



Fig. 7.4 Potential applications of methods that integrate structural information for the prediction
of protein aggregation are illustrated using A3D in “dynamic mode” (Zambrano et al. 2015b).
a Structural methods are useful for the rationalization of the impact of mutations in the aggregation
propensity of proteins that adopt a defined tertiary and/or quaternary structure: A3D reveals
changes in the tendency to aggregate of Superoxide dismutase [Cu-Zn] (SOD1, PDB code: 1PU0)
caused by the specified mutations, which are associated with either an increased rate of fibrillation
or with severe forms of amyotrophic lateral sclerosis 1 (ALS1). These mutations raise the
aggregation potential in the vicinity of the SOD1 dimerization interface; superimposing the
modelled mutant monomeric unit (shown as surface representation) to the native quaternary
structure (shown as grey cartoon), evidences how, upon disruption of the dimeric assembly (which
might, indeed, be induced by the same mutations or result from a transient dissociation of the
interaction surface), these amino acid substitutions increase the likelihood of aberrant
intermolecular interactions. Metal ions complexed to SOD1 are depicted as spheres (copper in
brown and zinc in grey) b Structural methods are also helpful to assist the redesign of
protein-based drugs as exemplified by the analysis with A3D of a rationally-engineered
substitution in the heavy chain constant region (represented as surface) of Immunoglobulin G1 b12
(IgG1 b12, PDB code: 1HZH), a potent neutralizing antibody against human immunodeficiency
virus type 1 (HIV-1). This same structure was previously employed as a template for the structural
modelling of antibodies analyzed with SAP (Chennamsetty et al. 2009). Here, the figure illustrates
the potential of these methods for optimizing the formulation of proteinaceous therapeutic agents
through the reduction of its tendency to aggregate by carefully engineering portions of the
polypeptide without compromising function or stability. The light chains (sand colour) and heavy
chains regions (grey) which have not been modelled with A3D are shown as spheres. UniProt
codes are noted for SOD1 and for the light and heavy chains of IgG1 b12; the structure employed
for A3D modelling of the latter presents two amino acidic substitutions relative to the canonical
sequence deposited in UniProt
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In this way, A3D encompasses in a single prediction tool the ensemble of
features that are more relevant for the prediction of aggregation propensity in
globular states (Fig. 7.4)—namely, the modulation of this propensity by the
structural context, the assessment of the impact of mutations on both the tendency
to aggregate and the stability of protein structure, and the evaluation of structural
fluctuations. Regarding this latter point, the approach introduced in A3D for the
modelling of protein conformational dynamics represents a significant advantage
relative to the all-atomistic MD simulation performed by the SAP method, since the
CABS-flex approach is able to equivalently reproduce the dynamic fluctuations in
the near-native ensemble with a much higher computational efficiency.
Furthermore, the dynamic modelling implemented in A3D might compensate for
the previously mentioned issues arising in the assessment of the mutational impact
on the structural stability with FoldX when the use of homology models cannot be
avoided, though this potential remains to be explored. It is important to highlight
that—because AGGRESCAN3D is ultimately based on an amino acid scale of
intrinsic aggregation propensity determined in vivo—it is particularly suitable for
the prediction of the aggregation propensities of therapeutic proteins, which are
recombinantly produced employing heterologous expression systems.

7.5 Concluding Remarks

When we look back, the advances in the field of protein aggregation in the last
fifteen years have been remarkable. This progress and the interest of the scientific
community in the topic is clearly illustrated by more than 40,000 publications
retrieved under the keyword “protein aggregation” in PubMed from the year 2000
onwards. A significant part of this progress owes to the ability of the computational
methods described here to predict protein aggregation propensities with reasonable
accuracy. These approaches have allowed the identification of the most dangerous
regions of proteins linked to conformational diseases, the prediction of the impact
of genetic mutations in these disorders, the analysis of the aggregation properties of
entire proteomes, the design of therapeutic antibodies with highly improved solu-
bility, and the invention of biomimetic materials—just to mention a few examples.
Indeed, increasing evidence indicates that, apart from its involvement in disease, the
amyloid fold is also exploited for evolutionarily selected biological functions, in
diverse species, from bacteria to humans. The roles fulfilled by these so-called
functional amyloids range from obligate macromolecular structures required for
scaffolding and/or movement, to conditional amyloids (such as the yeast prions),
whose aggregation can be triggered by environmental factors. Whether obligate or
conditional, the natural selection of amyloid structure as a functional motif indicates
that these properties are likely encoded in the sequence, and thus amenable for
identification using aggregation prediction algorithms. Each of the discussed
algorithms has its own pros and cons, and users should select the most suitable
approach bearing in mind the specific problem they want to address—provided
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these methods have been implemented using different theoretical or experimental
knowledge and, therefore, they tend to capture different aspects accounting for the
aggregation of natural or designed proteins. For this reason, the combination of
existing methods in consensus algorithms has become a straightforward way of
enhancing in silico predictive power. Nowadays, we are witnessing a new wave in
which predictive strategies based on the analysis of protein sequences will be
progressively substituted with tools able to deal with the much greater complexity
of protein structures. The first 3D algorithms are just beginning to show their
predictive power and are likely to become pivotal in providing novel mechanistic
insights that, in turn, would allow development of even more precise computational
tools in the very near future.
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Chapter 8
Prediction of Biomolecular Complexes

Anna Vangone, Romina Oliva, Luigi Cavallo
and Alexandre M.J.J. Bonvin

Abstract Almost all processes in living organisms occur through specific inter-
actions between biomolecules. Any dysfunction of those interactions can lead to
pathological events. Understanding such interactions is therefore a crucial step in
the investigation of biological systems and a starting point for drug design. In recent
years, experimental studies have been devoted to unravel the principles of
biomolecular interactions; however, due to experimental difficulties in solving the
three-dimensional (3D) structure of biomolecular complexes, the number of
available, high-resolution experimental 3D structures does not fulfill the current
needs. Therefore, complementary computational approaches to model such inter-
actions are necessary to assist experimentalists since a full understanding of how
biomolecules interact (and consequently how they perform their function) only
comes from 3D structures which provide crucial atomic details about binding and
recognition processes. In this chapter we review approaches to predict biomolecular
complexes, introducing the concept of molecular docking, a technique which uses a
combination of geometric, steric and energetics considerations to predict the 3D
structure of a biological complex starting from the individual structures of its
constituent parts. We provide a mini-guide about docking concepts, its potential and
challenges, along with post-docking analysis and a list of related software.
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Binding affinity � PRODIGY � CONSRANK

8.1 Introduction

Biomolecular complexes, such as protein-protein and protein-ligand ones, underlie
almost all biological processes in the cell, such as DNA replication, transcription,
translation, signaling pathways, immune system response, enzyme inhibition. To
implement this wide diversity of (bio)chemical processes, proteins get in touch with
other proteins, nucleic acids, sugars, lipids and various other molecules (Jones and
Thornton 1996; Alberts 1998). The biological function of a protein is defined by its
interactions in the cell. Inappropriate or altered (either inhibited and enhanced)
interactions can lead to disease (Stites 1997; Sugiki et al. 2014). For these reasons,
research aimed at understanding, disrupting or modulating protein-protein inter-
actions (PPIs) is a crucial step in the investigation of almost all biological processes,
ranging from enzyme catalysis and inhibition to signal transduction and gene
expression. Accordingly, PPIs are currently receiving considerable attention as
targets for rational drug design (González-Ruiz and Gohlke 2006; Metz et al. 2012;
Nisius et al. 2012) and as therapeutic agents (Szymkowski 2005; Hwang and Park
2008; Zhou et al. 2013).

In recent years, experimental and theoretical work has been devoted to unravel
the principles of protein-protein interactions (Phizicky and Fields 1995; Jones and
Thornton 1996). The formation of biological complexes is driven by the free energy
of the complex (mostly determined by physicochemical and geometrical interface
properties) and the concentration of the protein components. The association of two
proteins, in fact, relies on an encounter and possible rearrangement of the inter-
acting surfaces, requiring co-localization in time and space. Generally proteins
reside in crowded environments, with many potential binding partners with dif-
ferent surface properties; consequently, during evolution, the interaction surfaces
are believed to have evolved to both optimize interaction efficacy and prevent
undesired interactions (Ofran and Rost 2003).

In this scenario, it is a must to obtain 3D structural information in order to gain a
complete understanding of both the biochemical nature of the process bringing the
components together and to facilitate the design of compounds that might influence
it. The structural characterization of a protein-protein interface includes in particular
the identification of interatomic hydrogen bonds, salt bridges and hydrophobic
interactions, the determination of the interaction surface area and possibly the
identification of bridging water molecules (Northrup and Erickson 1992; Tsai et al.
1999). The combination of all this information defines the nature of the binding site
and of the network of interactions, which makes it possible to pinpoint key residues
and contacts for complex formation.
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Obtaining 3D structures of biological complexes is therefore of supreme signif-
icance for the study of biomolecular interactions and all their possible pharmaceu-
tical and medicinal applications. High-resolution atomic structures are obtained by
X-ray crystallography and nuclear magnetic resonance (NMR), while methods like
Small-Angle X-ray Scattering (SAXS) (Yang 2014; Chaudhuri 2015) or
cryo-Electron Microscopy (cryo-EM) give low-resolution structural data, although
the latter, thanks to recent developments in both detector technology and software, is
now reaching near atomic resolution (Bai et al. 2015) with, for example, the
recent <3 Å high-resolution structure of the ribosome-EF-Tu complex (Fischer et al.
2015). Experimental determination of biomolecules remains, however, difficult,
time-consuming and costly (Chruszcz et al. 2010): with X-ray crystallography,
dynamics and disorder can impede the crystallization, while (solution) NMR suffers
from a size limitation when it comes to studying large macromolecular complexes;
and both methods struggle with membrane-resident and membrane-associated
complexes. For these reasons, there is relatively little structural information available
about biomolecular complexes compared to proteins that exist as single chains or
form permanent oligomers (Schreiber and Fersht 1996). As a result, the number of

Fig. 8.1 Yearly growth of protein structures number in Protein Data Bank (PDB) from 1990.
The PDB was established in 1971, the total number of protein structures grew to 434 in 1990,
reaching 106,650 structures on June 2015. The number of single protein structures is reported in
blue, the number of multiple proteins systems is reported in magenta. Some of the Nobel Prized
awarded for elucidation of structure (and function) of macromolecular systems are reported in the
figure
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solved complexes deposited in the Protein Data Bank (PDB) (Bernstein et al. 1977)
(http://www.rcsb.org/) is still orders of magnitude smaller than that of individual
proteins as shown in Fig. 8.1. Despite this disproportion, the growing number of
available experimental structures for protein-protein complexes over the years has
allowed statistical studies of the properties and physico-chemical forces that regulate
protein-protein interactions (hydrophobicity, hydrogen bonding, electrostatic inter-
actions, van der Waals interactions, and so on). These provide useful information in
the development of computational strategies for structure prediction and character-
ization. Considering the experimental limitations discussed above, computational
structural biology is now routinely considered an integral part of research.

Since the pioneering work of Janin and Wodak (Wodak and Janin 1978) who
described, more than 30 years ago, the first automated algorithm to predict the 3D
interaction between bovine pancreatic trypsin and its natural inhibitor, the docking
field (with docking defined as the prediction of protein complexes structures
starting from the structures of the free molecules) has advanced considerably
(Schlick et al. 2011). The past decades have seen the emergence of a large variety of
theoretical algorithms designed to predict the structures of protein-protein and
protein-ligand complexes (Smith and Sternberg 2002; Bonvin 2006; Ritchie 2008;
Vajda and Kozakov 2009; Moal et al. 2013a).

8.2 Docking

Molecular docking is a computational modeling technique that aims at predicting
the 3D structure of a complex (bound form) given the structures of the individual
molecules (unbound forms) (Fig. 8.2), hopefully revealing most of the relevant
residue-residue contacts involved in the interaction (Smith and Sternberg 2002). It
offers a tool for fundamental studies of biomolecular interactions and provides a
structural basis for drug design. Docking approaches assume that the native com-
plex is near the global minimum of the energy landscape. In fact, based on the
thermodynamic hypothesis, at fixed temperature and pressure the Gibbs free energy
of the macromolecule-solvent system reaches its global minimum at the native state
of the macromolecule (Ruvinsky and Vakser 2008).

Fig. 8.2 An illustration of protein-protein docking procedure starting from the unbound structures
(A and B), into their final bound form (AB). (PDBcode: 1BRS (Buckle et al. 1994), chains A and B)
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Progress in protein-protein docking performance has been monitored over the years
with the community wide Critical Assessment of PRedicted Interactions (CAPRI)
experiment (Janin et al. 2003; Lensink et al. 2007). Many rounds of blind pre-
dictions have highlighted the increasing accuracy of docking methods, in particular
for some of them that consistently show good performance (Lensink and Wodak
2013; Lensink et al. 2016) (CAPRI results can be found at the url: http://www.ebi.
ac.uk/msd-srv/capri/).

All current docking methods, despite their differences, start from the 3D struc-
tures of the unbound components (whether experimentally determined or compu-
tationally predicted) and incorporate two crucial steps (Halperin et al. 2002; Vajda
and Kozakov 2009):

1. Searching, consisting in the generation of thousands of alternative poses to
sample the conformational landscape;

2. Scoring, consisting in assessing the generated poses using a ‘pseudo-energy’
function in order to rank them and select the native-like solutions.

This separation into two stages is just one way of describing the docking ap-
proach, since sometimes there is no clear separation between these, or they may
incorporate multiple different sub-steps. A fundamental point of any docking
method is to be computationally efficient both in the search step and in its refine-
ment and scoring scheme in order to be able to evaluate a huge number of candidate
solutions and discriminate native-like binding modes from wrong ones in a rea-
sonable computation time.

8.2.1 Step 1: Searching

The search step involves an exhaustive sampling of the conformational space of one
protein with respect to the other, resulting in a six-dimensional search (6D) in the
case of rigid molecules. Almost all docking programs use a similar approach for the
search step: one protein is fixed in space (usually the larger one, named receptor)
and the second (named the ligand) is rotated and translated around the first. Various
methods have been developed that can efficiently cover the entire conformational
space (Vajda and Kozakov 2009) such as:

• Fast Fourier transforms (FFT)-based docking. Despite the huge size of the
conformational space to be sampled, the search can be efficiently performed
through several FFT calculations, as originally introduced by Katchalski-Katzir
et al. (1992). FFT-based methods represent the proteins on a Cartesian grid, with
some degree of inter-protein penetration between the ligand and the receptor
allowed to account for small conformational changes of mainly side-chains. The
shape complementarity is measured using Fourier correlation. Additional terms
can be encoded into measure for example electrostatic and hydrophobic
matching. Adding such terms in the scoring typically requires multiple FFT
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evaluation per pose. Widely used nowadays (Comeau et al. 2007; Pierce et al.
2011; Jiménez-García et al. 2013), such methods efficiently perform an
exhaustive rigid-body search.

• Geometric hashing docking. First developed in the area of computer vision and
implemented in docking by Wolfson and colleagues (Fischer et al. 1992;
Mashiach et al. 2010b), this approach allows efficient searching by dividing the
biomolecular surface into patches and matching them across the interacting
molecules.

• Spherical harmonics-based docking. Pioneered by Ritchie and co-workers
(Ritchie and Kemp 2000; Macindoe et al. 2010), this uses spherical polar
Fourier correlations to accelerate the search, describing the protein shapes as a
combination of spherical harmonic functions and calculating the relative ori-
entations via scalar products of rotated and translated coefficient vectors.

Those methods can evaluate very large numbers of interaction poses in a rela-
tively short time amount, making efficient use of computational resources (CPU
cores), but other algorithms, although less computationally efficient, can reach high
performance as well. HADDOCK (Dominguez et al. 2003) for example uses a
gradient-based search method in Cartesian space (rigid-body energy minimization),
targeting specific patches on the molecular surface deemed favorable by the energy
function used. ATTRACT (Zacharias 2005) pioneered normal-mode analysis into
the searching phase and SwarmDock (Moal and Bates 2010) incorporated it into a
Particle Swarm Optimization meta-heuristic to perform docking while optimizing
conformation, position and orientation simultaneously.

Table 8.1 reports a list of the top-performing docking approaches in CAPRI. For
a more complete compilation of the existing docking programs see the latest CAPRI
assessment, for recent reviews on the topic see (Moreira et al. 2010; Rodrigues and
Bonvin 2014).

8.2.2 Step 2: Scoring

While the goal of sampling is to generate a set of poses, ideally with the highest
number of correct conformations (although non-exhaustive sampling might not
allow to do that), the goal of scoring is to single out the near-native ones within the
pool of models generated. Due to the high complexity of the energetics governing
the interaction, scoring is a critical step in docking: for such a reason, a separate
challenge to test scoring methods has been added to CAPRI (Lensink et al. 2007).

In an ideal scoring process, one or more descriptors of the docking poses allows
to derive a score, which nicely correlates with the model quality (in terms of
similarity to the true solution), thus unambiguously distinguishing correct solutions
from incorrect ones (Fig. 8.3a–c).

However, current scoring functions are far from reaching perfection, although
the CAPRI experiment shows that they are constantly improving (Lensink and
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Wodak 2010, 2013). Traditionally, scoring functions for protein-protein docking
poses rely on two approaches, both of them widely tested in CAPRI blind tests
where they were shown to perform competitively. The first approach uses a linear
combination of energy terms, which can be physics-based and/or empirical, such as
van der Waals, electrostatics and desolvation energies, buried surface area and
terms accounting for shape complementarity (Gray et al. 2003; Cheng et al. 2007;
de Vries et al. 2007; Venkatraman et al. 2009; Gong et al. 2010). Weights used in
the linear combination are usually optimized to distinguish native-like solutions
from non native-like ones.

The second traditional approach is statistics-based or “knowledge-based”, as it
uses properties derived from experimental structures of protein-protein complexes.
Such properties are usually embodied in atom-atom or residue-residue potentials,
derived from the statistical occurrences observed in the analyzed database of
complexes by means of an inverse Boltzmann equation (the higher the population,
the lower the energy) (Moont et al. 1999; Jiang et al. 2002; Lu et al. 2003; Huang
and Zou 2008; Kowalsman and Eisenstein 2009; Khashan et al. 2012).

Table 8.1 List of protein-protein docking algorithms

Program name Searching protocol details Web-server

ATTRACT (Zacharias
2005)

Energy minimization in translational
and rotational space using NMA to
allow conformational changes upon
binding

None

ClusPro (Comeau et al.
2004b)

Rigid-body search via FFT http://cluspro.bu.edu

GRAMM-X
(Tovchigrechko and
Vakser 2006)

Grid-based FFT rigid-body docking http://vakser.compbio.
ku.edu/resources/
gramm/grammx/

HADDOCK (de Vries
et al. 2010)

Rigid-body energy minimization
followed by semi-flexible refinement in
torsion angle space

http://haddocking.org

HEX server (Macindoe
et al. 2010)

Spherical harmonics, polar FFT http://hexserver.loria.fr

PatchDock
(Schneidman-Duhovny
et al. 2005)

Geometric hashing http://bioinfo3d.cs.tau.
ac.il/PatchDock

pyDock (Cheng et al.
2007)

Rigid-body search via FFT http://life.bsc.es/
servlet/pydock/home

RosettaDock (Lyskov
and Gray 2008)

Low-resolution, rigid-body MC search http://antibody.
graylab.jhu.edu/
docking

SwarmDock (Moal and
Bates 2010)

Local docking and particle swarm
optimization of position and
orientation, NMA

http://bmm.
cancerresearchuk.org/
*SwarmDock/

ZDOCK (Chen et al.
2003)

FFT-based rigid-body serach http://zdock.
umassmed.edu

FFT fast Fourier transform, MC Monte Carlo, NMA Normal Mode Analysis
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This approach (Viswanath et al. 2013), like the energy-based one, can also take
advantage of a training process on extended sets of docking poses, to distinguish
correct from incorrect solutions.

The above approaches are, however, not mutually exclusive and in several
scoring functions they are indeed combined into a hybrid approach (Pierce and
Weng 2007; Andrusier et al. 2007; Vreven et al. 2011). Some of these methods also
take advantage of machine learning algorithms in the training process to derive best
coefficients to combine the different scoring terms (Champ and Camacho 2007;
Fink et al. 2011).

It is important to mention that, as now generally accepted, a native structure is
not an isolated event in the global energy landscape and thus native-like models are
expected to form “funnels”, i.e. clusters of similar low energy solutions. The
clustering is often done based on RMSD comparisons between models, but can also
efficiently be performed based on the fraction of common contact as introduced by
Rodrigues et al. (2012). On these bases, some scoring methods try to characterize
funnel-like energy structures on the global energy landscape (Kozakov et al. 2008;
London and Schueler-Furman 2008; Moal and Bates 2010; Torchala et al. 2013),
also using the concept of transient complex (Qin and Zhou 2013), while others,
after scoring, perform a clustering of models in an ensemble of low-energy con-
formations and select the top ones based on the cluster population (Comeau et al.
2004a). The above approaches implicitly use the concept of consensus, i.e. simi-
larity within an ensemble of docking models. More recently, a “pure” consensus
method, CONSRANK, based on the frequency of inter-residue contacts in an
ensemble of docking solutions, has been proposed for the ranking of docking
solutions. Blind testing in CAPRI Round 30 showed it to perform competitively
with classical energy- and knowledge-based approaches.

Other approaches to the scoring include methods using evolutionary information
(Tress et al. 2005; Andreani et al. 2013; Xue et al. 2014) and methods using
experimental information on the complex, when available (de Vries et al. 2007;
Gajda et al. 2010; Moreira et al. 2015). For recent reviews on the topic see (Moal
et al. 2013a, b).

JFig. 8.3 a Scheme of an ideal scoring process: the score strongly correlates with the distance of
the model from the native structure (same color scheme of b and c). b, d Actin-DNase I complex
[PDB ID: 1ATN (Kabsch et al. 1990)]: surface representation of the receptor (actin, light blue)
with sphere representation of the center of mass of the ligand (DNase I, teal) interface (b) and
intermolecular contact map generated by COCOMAPS server (Vangone et al. 2011) (d). c, e An
ensemble of 185 predicted docking poses for 1ATN: surface representation of the receptor (light
blue) with sphere representation of the centre of mass of the model ligand interface (green: correct;
red: incorrect; orange: intermediate c and ‘consensus map’ (e)
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8.2.3 Data-Driven Docking

Although important progresses in the searching and scoring procedures have been
achieved, one of the most useful approaches to improve the quality of the docking
simulations is the use of biological information about the interaction regions of the
complex when available. As clearly inferable from the latest CAPRI assessment
reports (Lensink and Wodak 2013), information (experimentally or computationally
derived) on regions and residues involved in the interaction is one of the key points
for the improvement of a docking simulation. Many docking programs offer the
possibility to integrate data, for example as a scoring bias or as a filter to select
solutions at the end, to exclude from the search regions not involved in the inter-
action or to drive the docking towards the areas known to be involved.

HADDOCK, one of the top performing docking program in the last
CAPRI rounds (Lensink and Wodak 2013; Lensink et al. 2016), is the pioneer of
data (or information)-driven docking and, in contrast to other docking methods that
usually incorporate data at some stage of the protocol, HADDOCK is the only
program that uses such data throughout the entire protocol (see Sect. 8.3.1).
In HADDOCK the data (experimental and/or predicted) are incorporated into the
calculation as an additional restraint energy term, as distance [i.e. mutagenesis,
nuclear Overhauser effect, chemical cross-links, electron paramagnetic resonance
distances, or even co-evolution-derived distances (Hopf et al. 2014)], orientation
[e.g. NMR residual dipolar coupling (van Dijk et al. 2005), pseudo-contact shifts
(Schmitz and Bonvin 2011)] or relaxation anisotropy (van Dijk et al. 2006)
restraints (Schmitz et al. 2012) or even recently shape information [e.g. cryo-EM
data (van Zundert et al. 2015)]. HADDOCK implements the concept of highly
ambiguous distance restraints to incorporate information which define patches of
interacting residues but no specific pairwise interactions between them (like in the
case of NMR chemical shift perturbations).

Most traditionally successful methods in CAPRI also offer the possibility to
integrate data into the protocol: FFT-based approaches [ClusPro (Comeau et al.
2004b), GRAMM-X (Tovchigrechko and Vakser 2006), pyDock (Cheng et al.
2007), ZDOCK (Chen et al. 2003) and HEX (Macindoe et al. 2010)] use data to
bias the score toward models that satisfy it, or as a filter at the end. Thus,
SwarmDock (Moal and Bates 2010) uses the data to pre-orientate the molecules
such as the identified or predicted interfaces face each other while PatchDock
(Schneidman-Duhovny et al. 2005) allows the definition of interacting or
non-interacting regions, and also the setting of distance constraints. The
RosettaDock (Lyskov and Gray 2008) program includes data as distance-filters to
bias the Monte Carlo search whereas the most recent version of ATTRACT now
also supports ambiguous distance restraints and allows docking using Cryo-EM
density maps (de Vries and Zacharias 2012). Finally, ZDOCK (Chen et al. 2003)
includes specific knowledge-based scoring functions in the protocol.

The quality of models coming out of data-driven docking approaches will
depend on the quality of the data used. The most common experiments that give
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information about interface residues involved in the binding are mutagenesis, NMR
chemical shift perturbation and cross-saturation and hydrogen/deuterium exchange,
while techniques such as nuclear Overhauser effect in NMR and cross-link
experiments in mass spectromety provide distance information. This experimental
information can be complemented or even replaced by bioinformatics predictions.
These are mostly based on the study of sequence/structure conservation of key
residues, co-evolution principles allowing to derive residue pairs in predicted
proximity, propensity of residues to be surface-exposed, or the combination of such
information as consensus and partner-specific methods (Neuvirth et al. 2004; de
Vries et al. 2006; Porollo and Meller 2006; Negi et al. 2007; Qin and Zhou 2007;
Ashkenazy et al. 2010; Ahmad and Mizuguchi 2011; de Vries and Bonvin 2011;
Zhang et al. 2011; Zellner et al. 2012; Xue et al. 2014). However, the predictions
have to be analyzed critically and combined with experimental information when
available.

8.3 The Challenges of Docking: Flexibility and Binding
Affinity

8.3.1 Changes upon Binding: The Flexible Docking
Challenge

Although docking programs have improved their performance over the years
according to CAPRI, predicting the structure of biomolecular complexes remains a
difficult problem with, at the moment, two major challenges: the identification of
correct solutions within a pool of models (scoring) and the treatment of proteins
with substantial conformational change upon binding (flexibility).

Proteins are not rigid, and during the association process they usually undergo
conformational changes that include both backbone and side-chains movements
(Betts and Sternberg 1999). As a result, the conformation of the proteins within the
complex/bound form might be different from the one they have in the free form.
Therefore, incorporating flexibility in docking algorithms is necessary to predict the
native associations and reach high accuracy of the solutions. In the cases where
structural changes occurring upon binding are minimal, the difference between
bound and free forms can be neglected so the rigid body docking is sufficient.
A major problem here is that, in general, one can not know a priori if conforma-
tional changes will take place or not, nor their extent. Properly dealing with flex-
ibility in docking is therefore one of the main challenges in the field (Smith et al.
2005a; Bonvin 2006; Lensink et al. 2007).

A major problem of incorporating flexibility in docking, compared to performing
rigid-body docking only, is the considerable increase in the number of degrees of
freedom and, consequently, in the search space. This also often goes together with a
higher rate of false-positive solutions, since all might be refined to some local
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energy minimum, which thus complicates the identification of correct solutions
(Andrusier et al. 2008).

Flexibility can be introduced at several levels:

• Implicitly. Implicit flexibility can be incorporated by soft-docking, by smoothing
the protein surface or allowing some degrees of interpenetration or overlap of
atoms (Palma et al. 2000; Heifetz and Eisenstein 2003) [although one of the
drawbacks of such an approach is that severe steric clashes can be introduced
(Smith et al. 2005b)], or with cross-docking by performing rigid-body docking
of ensembles of conformations, taken for example from NMR structures or MD
simulations or any other conformational sampling method (de Groot et al.
1997). Depending on the implementation this can lead to a significant increase
in computing time. It has, on the other hand, the advantage that rather large
conformational changes can be pre-sampled in that way.

• Explicitly. In the past few years, flexibility has been explicitly introduced into
the docking process by allowing side-chains and/or backbone to move. The
docking programs allowing side-chain flexibility (Fernández-Recio et al. 2003;
Zacharias 2005; de Vries et al. 2007; Lyskov and Gray 2008; de Vries et al.
2010) use different approaches, like Monte Carlo (MC) optimization of the
ligand (ICM-DISCO) (Fernández-Recio et al. 2003), sampling the known
populated rotamers of the side-chains followed by energy minimization steps
(ATTRACT) (Zacharias 2005), using MD simulated annealing for refinement of
both receptor and ligand side-chains (HADDOCK) (de Vries et al. 2010), or
repacking and optimization of side-chains in a MC search (RosettaDock)
(Lyskov and Gray 2008).

In contrast with side-chains flexibility, which is easier to model, backbone
flexibility is currently one of the main challenges in docking.

In addition to conformational changes upon binding, some programs have been
developed to tackle the challenge of large domain motions, such as the flexible
multi-domain docking approach proposed by Karaca and Bonvin (Karaca and
Bonvin 2011) that can describe large domain motion-type conformational changes.
The proper treatment of flexibility in protein-protein docking and also for peptide
docking (see Sect. 8.4) remains an active area of research. In small-molecule
docking (like protein-ligand docking), in which flexibility plays a major role, the
problem is more tractable, but no less challenging (Brooijmans and Kuntz 2003;
Erickson et al. 2004).

8.3.2 The ‘Perfect’ Scoring Function and the Binding
Affinity Problem

Scoring approaches typically attempt to fish the most likely model of a complex
from a set of poses but are not designed to predict how strongly the proteins bind,
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i.e. their free energy of binding DGbinding, or whether they bind at all [as showed by
cross-docking simulations (Sacquin-Mora et al. 2008; Wass et al. 2011a, b, Martin
and Lavery 2012)]. That is because scoring (ranking) and binding affinity prediction
(DG) are two different things. The DGbinding, or Gibbs free energy of the complex
can be determined by measuring the dissociation constant as:

DG ¼ RT lnKd

where R is the gas constant, T is the temperature and Kd is the dissociation constant.
It reflects the natural inclination of molecules entities to associate and is a key
thermodynamic quantity for understanding recognition and association phenomena,
and possible dysfunctions thereof.

Accurately predicting binding free energies with a general scoring function,
while a very ambitious goal, would revolutionize the efficiency of docking meth-
ods. Different methods aimed at predicting binding affinity in protein complexes
have been proposed throughout the years, taking into account different structural
and energetic features of the complex and varying greatly in terms of accuracy and
computational cost. Based on the initial observation of Chothia and Janin (1975) in
the 1970s and described by Horton and Lewis (1992) in 1992, the buried surface
area (BSA), i.e. the surface that is buried upon complex formation, has been the first
descriptor to be related to the binding affinity. Since then, many methods have been
proposed. Exact methods such as free energy perturbation and thermodynamics
integration can be very accurate, but due to their computational costs their appli-
cation is extremely limited (mostly to low throughput studies and mainly for small
drug binding or mutations). Methods based on empirical functions (empirical, force
field-based potentials, statistical potentials, scoring functions used in docking) are
much faster (Jiang et al. 2002; Ma et al. 2002; Zhang et al. 2005; Audie and
Scarlata 2007; Su et al. 2009; Bai et al. 2011; Qin et al. 2011; Moal and Bates 2012;
Tian et al. 2012; Luo et al. 2014; Kastritis et al. 2014). However, even if some have
been very successful on small training sets (Horton and Lewis 1992; Audie and
Scarlata 2007), most published models still fail to systematically predict the binding
affinity (Kastritis and Bonvin 2010, 2013a, b) for large datasets or discriminate
between binders from non-binders (Sacquin-Mora et al. 2008; Fleishman et al.
2011). Usually, factors such as conformational changes occurring upon binding,
allosteric regulation, solvent and co-factor effects, which may contribute to the
binding strength, are neglected, which entails their main weaknesses. Using a large
binding affinity benchmark consisting of 144 complexes (Kastritis et al. 2011)
[updated version of the benchmark now available in (Vreven et al., 2015)], Kastritis
et al. (2014) demonstrated that non-interacting surface properties like percentages
of charged and polar residues do also contribute to binding affinity. These rather
surprising finding were corroborated in a recent study by Cazal et al. in which this
contribution from the non-interaction surface was reproduced (Marillet et al. 2015).
New advances were made by Vangone and Bonvin (Vangone and Bonvin 2015;
Xue et al. 2016) who recently showed that the network of contacts made at the
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interface in a protein-protein complex is a better structural descriptor of the binding
affinity then the BSA.

8.4 Protein-Peptide Docking

In eukaryotes more than 40% of the interactions are estimated to be mediated by
peptides, for example in signal transduction, protein degradation, transcription
regulation and immune response (Petsalaki and Russell 2008). Due to their
involvement in many biological pathways, peptide interactions are implicated in
many diseases and in cancer (Petsalaki and Russell 2008; Naider and Anglister
2009), making them of high interest in the development of new therapeutics and for
drug design (Vaara 2009). Indeed, alongside small-molecule inhibitors, peptides are
large enough to competitively inhibit protein-protein interactions and can mimic
protein binding domains. However, the experimental structure determination of
protein-peptide recognition remains a challenging task also in this case, mainly due
of two factors: peptides are highly flexible and they usually show transient inter-
actions with the substrate. From a structural point of view, peptides are short chains
ranging from 5 to 30 amino acids, often lacking a well-defined fold in their free
form. They might not necessarily be independent molecules, but can appear as
disordered regions of proteins (for example at termini), and they can show multi-
plicity in their interaction, as for example in the case of the tumor suppressor p53
(Russell and Gibson 2008).

Complementary computational prediction methods like docking are therefore
urgently required to model those systems, as also reflected by the recent addition of
protein-peptides cases in CAPRI. Peptides’ peculiar characteristics represent,
however, a unique challenge for computational predictions. Conventional
protein-protein docking struggles with the high flexibility of peptides while
ligand-docking protocols have only been successfully applied to short peptide, due
to the significant higher number of peptide rotatable bonds than in drug-like small
molecules (Hetényi and van der Spoel 2002; Sousa et al. 2006; Rubinstein and Niv
2009; London et al. 2013). Over the last years a number of new algorithms or ad
hoc adaptations have been developed with the aim of modelling protein-peptide
complexes (Petsalaki et al. 2009; Antes 2010; Raveh et al. 2010; Ben-Shimon and
Eisenstein 2010; Raveh et al. 2011; Donsky and Wolfson 2011; Dagliyan et al.
2011; Trellet et al. 2013; Verschueren et al. 2013; Lavi et al. 2013; Ben-Shimon
and Niv 2015; Kurcinski et al. 2015). Similarly to protein-protein docking, there are
two main steps: (i) identification of the binding site on the protein surface (which
might include the use of experimental or bioinformatics data when available; see
also Chap. 10) and (ii) docking and refinement of the peptide into the binding site.

Several high-resolution approaches have been successfully applied to unbound
protein-peptide datasets. FlexPepDock (Raveh et al. 2010, 2011), the first generic
algorithm released to model protein-peptide complexes, uses fragment-based
sampling for the generations of different peptide backbone conformations, and then
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allows full flexibility of the peptide and to the protein side chains within a defined
docking site. HADDOCK (Trellet et al. 2013) overcomes the problem of the
indetermination of the peptide free structure by using as input an ensemble of three
different conformation of the peptide: alpha-helix, polyproline-II and extended.
Taken together, these conformations cover about 80% of the observed
protein-peptide structures in the PDB (Diella et al. 2008). This is followed by
flexible refinement step in which more flexibility is given to the peptide. This
protocol mimics the conformational selection mechanism/induced fit recognition
mechanism (Weikl and Deuster 2009; Hammes et al. 2009; Csermely et al. 2010;
Changeux and Edelstein 2011). Lately Blaszczyk and co-workers implemented
CABS-dock, an ab initio protein-peptide modelling approach (Kurcinski et al.
2015) that performs the search for the binding site and docking (giving flexibility)
simultaneously using a coarse grained representation of the system. Additional
ab initio algorithms or tools aimed to predict candidate sites of interaction on the
protein surface (Trabuco et al. 2012) have been implemented lately to overcome the
lack of information on the peptide binding site (Ben-Shimon and Niv 2015). which
is, in addition to the high flexibility of peptides, the main challenge to overcome in
protein-peptide docking.

Despite the recent progresses, this is a field that still is its infancy with further
development and extensive evaluation required, for example in CAPRI challenges.
For further information please check (London et al. 2013; Trellet et al. 2015).

8.5 Post-docking: Interface Prediction
from Docking Results and Use of Docking-Derived
Contacts for Clustering and Ranking

It is now over ten years since Fernandez-Recio et al. (2004) proposed to predict
residues at the protein-protein interface from results of docking simulations
(Fig. 8.4a). They analyzed the rigid-body docking energy landscape in several
training sets, in search of protein recognition areas, showing that the energy profile
for the ensemble of found docked poses can be used to determine accurately
interaction sites on protein surfaces. In particular, they defined a normalized
interface propensity (NIP) parameter, which represents the tendency of a given
residue to be located at the interface, based on the buried surface area in docking
poses from rigid docking simulations. Based on the NIP definition, more recently
Fernadez-Recio and Grosdidier derived a method for hot-spot residues prediction,
achieving up to 80% positive predictive value (Grosdidier and Fernández-Recio
2008).

In 2010, based on their experience as assessors in the CAPRI experiment,
Lensink and Wodak confirmed the potential of docking techniques for the pre-
diction of protein interfaces (Lensink et al. 2014). By analyzing docking models
submitted in CAPRI by 76 participants for 46 interfaces in 20 targets, they found
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that the best performing groups were able to predict residues at the interface with
precision and sensitivity levels around 60% for the majority of the analyzed cases,
thus reaching a performance competitive with the most successful
non-docking based methods in the field. The main finding of this analysis was thus
that, apparently, models ranked highly by docking procedures are more enriched in
correct interfaces than in correct complexes. In fact, prediction of correct interfaces
is also contributed by incorrect (according to the CAPRI assessment) models, which
were found to feature one quarter of correct interfaces (with precision and sensi-
tivity above 50%), contributing to 70% of the overall correct interface predictions.

de Vries and Bsonvin also showed that, after improving the performance of
docking predictions with HADDOCK by a consensus monomer-based interface
prediction, the interface prediction itself could be further improved by
post-prediction based on top-scored docking results (de Vries and Bonvin 2011).
Following these findings, Weng and colleagues recently developed RCF (residue
contact frequency), another method to predict interface residues from models
generated by docking algorithms (Hwang et al. 2014) (Fig. 8.4a). They used RCF
to predict the binding interfaces of proteins that bind to multiple partners, finding
that it correctly predicts interface residues unique for the respective binding part-
ners. They also showed that the combination of RCF with monomer-based interface
prediction methods, through a support vector machine, improved performance
compared to both separated approaches. RCF was also used by the Weng’s group to

Fig. 8.4 Scheme of the use of docking results for: a predicting residues at the interface, and for:
b models clustering and c ranking. Figure adapted from Oliva et al. (2013)
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analyze their docking results in the CAPRI rounds 20–26, where selection of final
models for submission was in fact guided by RCF (Vreven et al. 2013).

Besides the identification of residues likely involved in the interface from results
of docking simulations, specific inter-residue contacts observed in docking poses
have been recently used to guide their clustering, analysis and ranking. As the
native structure of a complex is not expected to be an isolated position in the energy
landscape, docking experiments often incorporate one clustering step in their pro-
tocols, which is classically based on time-consuming (live memory, RAM) and
size-dependent RMSD measures (Janin 2010). In this context, Bonvin and col-
leagues proposed the use of the fraction of common contacts (FCC) within models
as a similarity description to base their clustering on (Rodrigues et al. 2012)
(Fig. 8.4b). They showed that FCC is an efficient measure of the structure similarity
for protein complexes, greatly reducing the computation time while generating
clusters of similar quality with the state-of-the art RMSD-based methods. Further, it
is particularly suited for flexible docking approaches, multicomponent assemblies
and heterogeneous systems like protein-DNA complexes.

Oliva and colleagues proposed instead to analyse an ensemble of protein-protein
docking models, by deriving a consensus based on the conservation within them of
the inter-residue contacts (Vangone et al. 2012). Such a consensus can also be
visualized as a “consensus contact map”, i.e. an intermolecular contact map where
the conservation of contacts is reported on a gray scale (see an example in Fig. 8.3e,
compared to the intermolecular contact map of the corresponding crystal structure,
Fig. 8.3d). Analysis of prediction sets of docking models for seven CAPRI targets
showed that a significant fraction of native contacts was included within the con-
tacts with highest conservation rate, even in the cases where only a small percentage
of solutions were correct. This suggests that incorrect models can contribute to the
correct prediction not only of residues, but also of specific inter-residue contacts at
the complexes interface. A natural extension of this approach was the development
of CONSRANK (CONSensus-RANKing) (Oliva et al. 2013; Vangone et al. 2013),
a consensus method for the scoring of docking models, which ranks models based
on their ability to match the most conserved contacts in the ensemble they belong to
(Fig. 8.4c).

8.5.1 Web Tools for the Post-docking Processing

As discussed previously (Sect. 8.2.2), a scoring/filtering step is normally included
in a docking procedure. However, to date no program can provide a single docking
solution with a high enough confidence to be correct. Docking programs instead
generally provide the user with an ensemble of models, corresponding to a subset
(usually refined) of the solutions they generated in the conformational sampling
step, which possibly contain native-like models. These models have thus to be
analyzed to attempt to single out the correct ones. Some tools have been specifically
devoted to the post-docking processing, i.e. the analysis, scoring and ranking of
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models representing the output of docking programs. Several of these
post-processing tools are publicly available as web servers and are listed in
Table 8.2, together with the corresponding URLs. The scoring approaches they
mainly rely on, reflecting the ones described above (Sect. 8.2.2), are also reported
in Table 8.2.

Table 8.2 List of available web servers for the post-docking processing

Server name Algorithm Analyses URL

CCharPPI (Moal
et al. 2015)

Energy/knowledge-based 109 parameters including
FireDock, PyDock,
RosettaDock, SIPPER &
ZRANK scores

http://life.bsc.
es/pid/
ccharppi/

CONSRANK
(Chermak et al.
2014)

Consensus-based Contacts analysis and
visualization; re-scoring

https://www.
molnac.unisa.
it/BioTools/
consrank/

DOCKRANK
(Xue et al. 2014)

Evolution-based Prediction of the interface;
re-scoring

http://einstein.
cs.iastate.edu/
DockRank/

FastContact
(Champ and
Camacho 2007)

Energy/knowledge-based Energy minimization;
prediction of residue contact
free energies; re-scoring

http://structure.
pitt.edu/
servers/
fastcontact/

FiberDock
(Mashiach et al.
2010a, 2008)

Energy/knowledge-based Flexible refinement;
re-scoring

http://
bioinfo3d.cs.
tau.ac.il/
FiberDock/
http://
bioinfo3d.cs.
tau.ac.il/
FireDock/

FILTREST3D
(Gajda et al.
2010)

User-defined restraints
from experimental data

Re-scoring http://
filtrest3d.
genesilico.pl/
filtrest3d/

FunHunt
(London and
Schueler-Furman
2008)

Energy-based Characterization of local
energy landscape

http://funhunt.
furmanlab.cs.
huji.ac.il/

PROCOS (Fink
et al. 2011)

Energy/knowledge-based Re-scoring http://
compdiag.uni-
regensburg.de/
procos/
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8.6 Concluding Remarks

In view of the growing interest in protein-protein interactions for pharmaceutical
and medical applications, and the persistent disproportion between experimental
structures available for single proteins and multiple protein systems, the relevance
of molecular docking as the method of choice for modelling the structure of
protein-protein complexes is set to increase.

In the last 15 years, the CAPRI blind assessment has shown that docking
techniques can be successfully applied to a variety of cases, with biological
information on the interface, when available, further improving results, by driving
the search of allowed configurations and helping in filtering out incorrect solutions.
At the same time, the development of web servers characterized by a user-friendly
interface, for performing both docking predictions and post-docking analyses, is in
fact making the use of this technique accessible also to a non-specialized audience.

That notwithstanding, to further extend its confident applicability to critical
cases, protein-protein docking needs to face a number of challenges in the near
future. First of all, the flexibility of the two interacting proteins has to be more
confidently coped with, possibly by exploring novel approaches to the sampling of
the conformational space. In this regard, it is remarkable that, in the latest
CAPRI rounds, scorer groups have been shown to achieve overall a better pre-
diction performance than predictor groups. In other words, the same groups typi-
cally recognized more correct solutions from ensembles of models obtained by a
variety of techniques, rather than from their own generated models ensemble. This
suggests that the bottleneck in a docking procedure still resides in an efficient
sampling of the conformational space and that application of different docking
strategies to the target system could help overcoming the issue—a kind of con-
sensus docking strategy using various approaches. Other challenges that need to be
addressed include a reliable identification of native-like models, with possibly an
estimation of the binding affinity of the complex. In addition, when one of the
interacting partners is a peptide, docking protocols have to deal with further
challenges, such as the high flexibility and the undefined folding of peptides.

Finally, the prediction of the 3D structure of a biomolecular complex, which is
fundamental for understanding biological processes, can also help in advancement
of related fields. Indeed, it is becoming increasingly clear that results of docking
simulations can also be used as an intermediate step for other applications, such as
the interface prediction itself, which can be very valuable for experimentalists to
guide their work (e.g. to target mutagenesis to interesting regions on the surface of a
protein). Further, three-dimensional structural information can also be useful to
identify pair on interacting proteins/peptide motifs with the final goal to predict the
full network of protein-protein interactions governing the cells (Zhang et al. 2012;
Chen et al. 2015).
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Chapter 9
Function Diversity Within Folds
and Superfamilies

Benoit H. Dessailly, Natalie L. Dawson, Sayoni Das
and Christine A. Orengo

Abstract The structural genomics initiatives significantly increased the numbers of
three-dimensional structures available for proteins of unknown function. However,
the extent to which structural information helps understanding function is still a
matter of debate. Here, the value of detecting structural relationships at different
levels (typically, fold and superfamily) for transferring functional annotations
between proteins is reviewed. First, function diversity of proteins sharing the same
fold is investigated, and it is shown that although the identification of a fold can in
some cases provide clues on functional properties, the diversity of functions within
a fold can be such that this information is very limited for some particularly diverse
folds (e.g. super-folds). Next, since structural data can help detecting homology in
the absence of sequence similarity, function diversity between proteins from the
same superfamily (homologous proteins) is analysed. The evolutionary causes and
the mechanisms that have generated the observed functional diversity between
related proteins are discussed, and helpful tools for the correlated analysis of
structure, function and evolution are reviewed.
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9.1 Defining Function

Before discussing how the detection of fold or superfamily relationships can help
determining the function of a protein, it is necessary to define clearly the meaning
of the term function in this chapter and, in particular, to delineate the aspects of
function that can be inferred best using structural information.

Function is a relatively vague concept that covers many different aspects of the
activity of a protein. Furthermore, the aspects covered by that single word vary with
the different fields of protein science. For example, a physiologist may describe the
function of a protein in terms of its impact on the global phenotype (e.g. “inducer of
cell death”), whereas a biochemist would generally define the function of the
protein he studies on the basis of its molecular interactions or catalytic activity (e.g.
“Receptor-interacting serine/threonine-protein kinase”). Because of these different
usages of the word, it is very difficult to provide a universal and widely accepted
definition of function.

However, it is not essential to come up with such a definition. The Gene
Ontology (GO) consortium have proposed a framework with which they have been
able to define or, most importantly, categorise the functions of proteins in a widely
accepted way (Ashburner et al. 2000). In GO, three different aspects of function are
considered and defined separately. According to GO, the cellular component
describes the biological structures to which the protein belongs (e.g. nucleus or
ribosome); the biological process corresponds to the processes or pathways in
which the protein is involved (e.g. metabolism, signal transduction or cell differ-
entiation); the molecular function of a protein is the ensemble of activities it can
undertake (e.g. binding, catalysis or transport).

Three-dimensional structures of proteins mostly shed light on catalytic mecha-
nisms and potential interactions with other molecules, both aspects which are
covered by the molecular function category. Consequently, it is essentially
molecular function that is considered when dealing with structure-function rela-
tionship as is the case in this chapter.

Several databases and annotation systems are available for the description of the
molecular function of proteins, and are very helpful for studying structure-function
relationships, notably on an automated basis. Probably the oldest system for
describing the molecular function of proteins is the Enzyme Commission numbering
scheme (EC) in which enzymatic reactions are hierarchically classified using a
four-digit system, where each level describes increasingly detailed aspects of the
reaction, from the general type of catalytic activity (oxidoreductase, hydrolase, etc.) to
the specific molecule that acts as substrate of the reaction (Nomenclature Committee
of the IUBMB 1992). In order to address long-standing limitations of the EC clas-
sification, two new databases have recently been set up to classify enzymes and their
reactions: EzCatDB (“Enzyme catalytic-mechanism Database”) (Nagano 2005) and
MACiE (“Mechanism, Annotation and Classification in Enzymes”) (Holliday et al.
2011). Both of these databases focus on the description and classification of enzymatic
reaction mechanisms rather than the reactions themselves, since it has been argued
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that a reaction-based classification like the EC system is not necessarily appropriate as
a classification of the corresponding enzymes (O’Boyle et al. 2007). Complementary
to these databases, the Catalytic Site Atlas provides detailed information on the
specific amino acid residues that directly participate in catalytic mechanisms, for
enzymes of known structure (Porter et al. 2004; Furnham et al. 2014). Several data-
bases provide further description of all protein residues involved in binding biolog-
ically important molecules such as substrates and cofactors (Dessailly et al. 2008;
Lopez et al. 2011). Other widely-used annotation systems for protein function include
KEGG, which was initially aimed at describing metabolic pathways and biological
reaction networks, and has now extended into a more widely-scoped classification
system of biological functions (Kanehisa et al. 2014); FUNCAT (the Functional
Catalogue), which classifies protein functions into a unique hierarchical tree (Ruepp
et al. 2004); Reactome, which focuses on characterising human biological metabolic
pathways (Croft et al. 2014); and MetaCyc, a database of primary and secondary
metabolic pathways from all kingdoms of life (Caspi et al. 2014). KEGG and
FUNCAT have traditionally been more focused on the biological processes in which
proteins are involved rather than their molecular activities, but both of these databases
can nevertheless provide very useful clues regarding what is referred to as molecular
function in GO.

9.2 From Fold to Function

9.2.1 Definition of a Fold

9.2.1.1 General Understanding

The fold adopted by a protein is generally understood as the global arrangement of its
main elements of secondary structures, both in terms of their relative orientations and
of their topological connections. A major difficulty directly arises from this general
statement since there are no objective rules to decide which are the main elements of
secondary structure to be considered for defining the fold (Grishin 2001).

One objective of this chapter is to describe how knowledge of relationships
between proteins, such as sharing the same fold, helps in transferring functional
annotations from well-characterised proteins to proteins of unknown function. As
will be discussed further in Sect. 9.3, the main assumption made in the process of
transferring annotations between proteins is that evolutionarily related (i.e.
homologous) proteins generally tend to share functional properties. But proteins
adopting the same fold are not necessarily homologous. It has been argued that
proteins can attain a given fold independently by convergent evolution, because
only a limited number of folds are physically acceptable (Russell et al. 1997). For
example, it is not clear whether all superfamilies of proteins that adopt the TIM-like
(b/a)8 barrel fold are evolutionarily related, as definitive evidence in that sense has
not been found (Nagano et al. 2002).
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9.2.1.2 Practical Definitions

Several databases have been set-up to classify protein structures into a compre-
hensive framework of structural relationships (Table 9.1). The practical definition
of a fold used in the most-widely used of these databases is given below. As will
emerge from the following definitions, the concept of fold is generally applied to
domains rather than full-length proteins, but the definition of a domain can vary
between databases.

CATH—The CATH database is a hierarchical classification of protein domain
structures (Orengo et al. 1997; Sillitoe et al. 2015). The highest level of classifi-
cation assigns protein domains to 3 different classes based on their global content in
secondary structures. Within CATH classes, protein domains are classified into
different architectures that describe the orientation of secondary structures without
considering their connectivity. Domains in a given architecture are further
sub-classified into different topologies, depending on how secondary structures are
connected to one another. It is this topology level that fits most closely to the
general notion of a fold described above. In practise, assignment of domains to the
topologies in CATH is performed automatically with the structural alignment
program SSAP (Orengo and Taylor 1996) and empirically derived cut-offs.

SCOP—Like CATH, the Structural Classification of Proteins (SCOP) is a hier-
archical classification of protein domain structures (Murzin et al. 1995; Pethica et al.
2012), but the levels of classification differ between the two databases. As in CATH,
the highest level of classification in SCOP is the structural class, but SCOP defines
four different classes whereas CATH defines three. The next level of classification is
the fold; two protein domains are assigned to the same fold if they share the samemajor
elements of secondary structure arranged in a similar orientation, and with the same
topological connections. This definition corresponds well to the definition of the
topology level in CATH but, in practise, assignments of individual domains can differ
between the two databases because of the degree of subjectivity in each definition (i.e.
which secondary structure elements are to be considered major), and of the protocols
used to assign the domains (automated in CATH, mostly manual in SCOP).

SCOP2—With the large increase in structural data deposited in the PDB, more
remote evolutionary relationships have been detected. These have in turn have
revealed complex relationships between domain structures in some fold groups and
homologous superfamilies, which have led to the production of a SCOP2 prototype.
This database still organises protein domains using structural and evolutionary
relationships but instead uses them to form a network rather than a hierarchy
(Andreeva et al. 2014, 2015).

FSSP—Apurely objective definition offolds has been offered byFSSP (families of
structurally similar proteins) (Holm and Sander 1996a). In FSSP, pair-wise structural
alignments were performed for a set of representative and non-redundant PDB
structures using the structural alignment program DALI (Holm and Sander 1993).
Hierarchical clustering was applied using the scores obtained from these pair-wise
structural alignments thus generating a so-called fold tree, from which fold families
were automatically defined by cutting the tree at different levels of similarity.
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ECOD—The Evolutionary Classification of Protein Domains, or ECOD (Cheng
et al. 2014), is a new resource by the Grishin group that currently consists of
proteins with experimentally determined structures. Similar to CATH and SCOP,
protein domains are hierarchically classified using evolutionary relationship infor-
mation, however this database focuses on finding remote homologues and it is also
updated every week.

There are 5 levels to the ECOD hierarchy. The top level is the ‘Architecture’,
which is comparable to the A-level in CATH as it represents domains grouped
according to the secondary structure composition and their arrangement in 3D
space. The second, ‘X-group’, level does not have an equivalent in either CATH or
SCOP. It represents groups of domains that are thought to be homologues but do
not yet have enough supporting evidence apart from structural similarity. The
H-group, is comparable to the homologous superfamily level in CATH and SCOP
and domains are classified to these groups using sequence, structure, and function
information. The next level down is the T-group, which is made up of groups
having similar topological connections, such as in CATH’s T-level. Finally, there
are the family F-groups. These groups of domains have significant sequence sim-
ilarity and are largely made up of mapped Pfam families (Finn et al. 2014) and
HHsearch-based clusters (Söding 2005).

SCOPe—SCOP and SCOP2 are not up-to-date with the latest version of the
PDB. To overcome this issue, an extended version of SCOP, SCOPe, has been
introduced by the Chandonia group (Fox et al. 2014). SCOPe uses a combination of
automatic and manual curation methods to classify more recent PDB structures and
also corrects some errors in SCOP. The ASTRAL database is also incorporated and
updated. A sequence-based approach is used to classify recently deposited PDB
protein chains into SCOPe using the structural classification hierarchy in
SCOP. New protein chains are searched against SCOP using BLAST to look for
previously classified domains that are significantly similar in sequence and the
aligned match must also have high coverage to the query sequence (Fox et al. 2014).

9.2.1.3 Paradigm Shift

Structure is generally better conserved than sequence in evolution, and many
proteins display common structural characteristics. As more and more
three-dimensional protein structures were being solved in the mid-nineties, struc-
tural classification systems became necessary in order to make some sense out of
the increasing amount of data. This lead to the development of the above-mentioned
hierarchical classifications of protein structures. The realisation that global struc-
tural motifs, such as the (b/a)8 barrels or the 4-helix bundles, were observed in
proteins that were unrelated in sequence, lead to the notion of fold that we have just
described. Until recently, folds have been understood as recurrent global structural
motifs that incidentally act as practical divisions of the protein structure space.
Implicit in that view is the idea that fold space is discrete, in the sense that (a) each
protein has a unique fold, which it will share with other related proteins, and which

9 Function Diversity Within Folds and Superfamilies 299



will distinguish it from most other unrelated proteins (though accounting for the
existence of analogous folds, see Sect. 9.2.2.1); and (b) that each fold is structurally
different and constitutes an isolated and non-overlapping structural group from the
others (Kolodny et al. 2006).

But as more and more structural data becomes available, notably via structural
genomics initiatives, the perception of the fold is changing in favour of a view of fold
space that is continuous rather than discrete (Harrison et al. 2002). It is now becoming
widely recognised that homologous proteins can actually adopt different folds
(Grishin 2001; Kolodny et al. 2006), and that some proteins can adopt multiple,
changeable folding motifs depending on time and conditions (Andreeva and Murzin
2006). This has consequences on the usability of the fold for function prediction; the
main argument for using fold similarities when inferring function is that proteins
sharing the same fold may often display remote homologies that would not be
detectable otherwise, and that homologous proteins should in turn tend to perform
related functions (Moult and Melamud 2000). It necessarily follows from the finding
that the relationship between fold and homology is not clear, that the relationship
between fold and function is likely to be fuzzy as well. However, recent results
obtained using the ensemble of currently available structural data in CATH suggest
that the majority of folds are structurally coherent and significantly distinct from other
folds (Cuff et al. 2009); and indeed, as will be shown presently, fold similarities can
provide some clues on function similarities between proteins (Martin et al. 1998).

9.2.2 Prediction of Function Using Fold Relationships

This section focuses on functional properties that can be inferred using features that
do not imply homology, i.e. functional properties that tend to arise by convergent
evolution; issues regarding functional inference based on homology relationships
are addressed in Sect. 9.3 of this chapter.

In general, the determination of a protein structure and its fold will allow a
researcher to run a plethora of structure-based function predictionmethods that would
not be available if the structure was not known. Some of these methods rely on the
principle that knowing the structure allows one to detect global homologies that are
not apparent at the sequence level (Lee et al. 2007). But other approaches are only
making use of purely structural properties that are expected to be relevant for a protein
to perform its molecular function, with no evolutionary consideration. Many of these
methods are covered by several other chapters in this book (see Chaps. 10, 11, 13 and
14). Here, only situations that directly relate to knowledge of the fold are discussed.

9.2.2.1 Folds with a Single Function

A newly solved protein structure can be used to search for fold similarities with
previously known structures, via structure comparison programs that generally

300 B.H. Dessailly et al.

http://dx.doi.org/10.1007/978-94-024-1069-3_10
http://dx.doi.org/10.1007/978-94-024-1069-3_11
http://dx.doi.org/10.1007/978-94-024-1069-3_13
http://dx.doi.org/10.1007/978-94-024-1069-3_14


assess the significance of detected structural similarities using specific scoring
schemes. Several of these programs are publicly available (Table 9.1) and have
been recently benchmarked using a large dataset of known structure similarities
built from CATH (Kolodny et al. 2005; Redfern et al. 2007). Such programs
include DALI (Holm and Sander 1996b), FATCAT (Ye and Godzik 2003), SSM
(Krissinel and Henrick 2004), CE (Shindyalov and Bourne 1998) and
CATHEDRAL (Redfern et al. 2007). If the new structure is from a protein of
unknown function, the next step if fold similarity has been detected is to evaluate
whether functional annotations can be transferred from structurally similar proteins.

Some folds are adopted only by homologous proteins whereas other folds may
have arisen partly by convergent evolution. These folds are coined homologous and
analogous folds, respectively (Moult and Melamud 2000). Similarly, some folds
appear homogeneous in terms of functions whereas others are adopted by proteins
with widely divergent functions. For example, about *10% of the folds in the
current version of CATH (v4.0) have 100 or more functions associated with them. It
is generally assumed that homologous folds are more functionally homogeneous
than analogous folds (Moult and Melamud 2000). Obviously, if a fold is associated
to a unique function X, the recognition of that fold in a protein of unknown function
would directly allow to annotate that protein with function X. But in practise, the
situation is more complex because a functionally diverse fold can misleadingly
appear to be related to only one function due to sampling bias.

In any case, there are documented cases where fold identification has helped
predicting the function of a protein (Moult and Melamud 2000). For example, the
three-dimensional structure of the ycaC gene product from Escherichia Coli
revealed a fold similar to that adopted by a family of amidohydrolases, and further
investigation indicated that this protein had a similar catalytic apparatus as other
proteins sharing that fold (Colovos et al. 1998; Moult and Melamud 2000).
Increasing numbers of successful examples of function prediction via fold identi-
fication are being documented in the context of structural genomics that globally
aim at solving large numbers of protein structures (Adams et al. 2007). In most
cases, however, successful function prediction does not result from fold identifi-
cation only, but rather from a combination of fold relationship with other evidence
such as sequence motif recognition or functional site similarities.

9.2.2.2 Supersites

Generally, three-dimensional structures are very helpful for identifying protein
functional sites, i.e., the subsets of residues that are crucial for the molecular
function of the protein. Functional sites mostly consist of binding sites (sets of
protein residues that interact with ligands) (Dessailly et al. 2008) or catalytic sites
(sets of residues that directly participate in an enzymatic reaction) (Porter et al.
2004).

One reason why structures are useful for detecting functional site(s) is that the
latter tend to occupy well-conserved topological locations in the structure.
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Furthermore, even when no definitive evidence supports homology between pro-
teins that share a given fold, functional sites still tend to locate in similar regions of
the three-dimensional structures. Such functional sites are called supersites and
have been shown to occur in a large number of analogous folds (or superfolds, see
Sect. 9.2.3.1), that is folds shared by non-homologous proteins (Russell et al.
1998). Figure 9.1 describes a very well-known example of supersite: the catalytic
site of proteins adopting the (b/a)8 barrel fold, in which the catalytic residues

Fig. 9.1 Supersites in the (b/a)8 TIM-like barrel fold. Cartoon illustrations of 4 proteins adopting
the (b/a)8 barrel fold, which have been classified in different CATH (and SCOP) superfamilies:
(a) E. coli Dihydropteroate Synthase (CATH domain ID: 1aj0A00), (b) P. furiosus Tryptophan
Synthase alpha-subunit (CATH domain ID: 1geqB00), (c) C. thermocellum
Endo-1,4-beta-xylanase Z (CATH domain ID: 1xyzA00), and (d) H. sapiens Aldehyde
Reductase (CATH domain ID: 2alrA00). The four structures have been superposed using
CORA (Orengo 1999). They are shown into a similar orientation, and common elements between
the four structures are coloured in red. The positions of the catalytic residues in these 4 proteins (as
defined in the Catalytic Site Atlas) are coloured green. In spite of major structural differences and
the absence of evidence for homology between these proteins, the catalytic sites always locate
around the C-terminal end of the core b-strands. Figures of three-dimensional structures were
drawn using Molscript (Kraulis 1991) and rendered using Raster3D (Merritt and Bacon 1997)
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invariably occur at the C-terminal ends of the b-strands in the central parallel
b-sheet, although the particular b-strands to which they belong may vary (Nagano
et al. 2002).

9.2.2.3 Superfolds

Folds that are adopted by proteins from many different superfamilies, and that
generally display remarkable functional diversity, have been called “superfolds”
(Orengo et al. 1994). Striking examples of such superfolds comprising proteins with
many different functions include the TIM-like (b/a)8 barrel fold which is adopted
by proteins from more than 29 diverse superfamilies (Nagano et al. 2002); and the
Rossmann-fold, which is adopted by proteins from 130 CATH superfamilies
(CATH v4.0), several of which are functionally diverse. Even though they represent
a very small fraction of known folds, these superfolds seem to account for a
disproportionate fraction of proteins in known genomes (Lee et al. 2005).
Superfolds also cause a major problem for function prediction using fold recog-
nition since proteins sharing such a fold do not necessarily share the same function.
The existence of such folds and their considerable coverage of the protein world has
prompted caution regarding the usefulness of detecting fold relationships for
function prediction.

9.3 Function Diversity Between Homologous Proteins

In general, detecting homology (superfamily relationship) is much more helpful for
function prediction than structural similarity alone (fold relationship). In this sec-
tion, the relation between function diversity and structural homology is examined
and it is shown that even when homology is identified, many obstacles remain when
attempting to transfer functional annotations from one protein to another.

9.3.1 Definitions

Before explaining how function diverges within superfamilies, it is necessary to
define clearly what a superfamily is, and how it is used in practise. The term family,
which is used throughout this section, is also introduced.

9.3.1.1 General Understanding

A superfamily is an ensemble of proteins that are thought to be evolutionarily
related. Superfamily relationships can be determined by sequence similarities,
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which are detected using either traditional sequence alignment methods or more
sensitive HMM searches (Reid et al. 2007). In the absence of sequence similarity,
remote homologies can also be uncovered from structure and/or function similar-
ities. But contrary to the situation with sequence similarity, there is no widely
accepted approach to assess whether a structural or functional similarity is statis-
tically significant. Because of that, the cut-offs used to define superfamily rela-
tionships can be arbitrary and somewhat subjective. Today, several databases such
as CATH and SCOP have come up with standard and widely-accepted definitions
of what superfamilies are (see Sect. 9.3.1.2). But in all of these, some degree of
subjectivity in the assignment of proteins to superfamilies remain, as hinted by the
facts that they still rely on manual validation for this specific process, and that
incompatible assignments are made in the different databases for a number of
domains (Greene et al. 2007; Andreeva et al. 2007). It is worth noting that both
CATH and SCOP now pre-classify new protein structures using automated pro-
tocols, but final assignment to superfamilies still ultimately involves manual
processing.

The concept of a family is vaguer. Nowadays, a family is commonly understood
as a sub-classification of homologous proteins according to some criteria. For
example, a sequence family at a particular level of sequence similarity groups
together all proteins that share at least that level of sequence similarity; a functional
family groups together homologues that have the same function; an orthologous
family groups together orthologues; etc. Depending on the focus of the databases,
the definition of a family will vary.

9.3.1.2 Practical Definitions

Only databases that consider structural data are described here.
CATH and Gene3D—In the CATH classification, domains in a given topology

(see Sect. 9.2.1.2) are further classified in the same Homologous superfamily (H-
level) if they are believed to have a common ancestor. Two domains are considered
homologous if they satisfy at least two of the following criteria: (a) structural
similarity, assessed using empirically-derived cut-offs; (b) sequence similarity,
assessed using standard sequence comparison methods and HMM sequence sear-
ches; and (c) functional similarity, identified using manual analysis. Gene3D
expands this classification to proteins of unknown structure, by scanning sequences
against a library of CATH profile-HMM’s, thus matching parts of these sequences
to CATH homologous superfamilies (Yeats et al. 2008; Lees et al. 2014).

CATH superfamilies are further divided into functional families or FunFams that
groups together sequence homologues that share the same function or sub-function
within a superfamily (Sillitoe et al. 2015; Das et al. 2015). This is done by hier-
archical agglomerative clustering of all sequence homologues of each CATH
superfamily using the GeMMA algorithm (Lee et al. 2010) to generate a clustering
tree, followed by an optimal partitioning of the tree using the FunFHMMer algo-
rithm (Das et al. 2015) which exploits sequence patterns. GeMMA first clusters the
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sequence homologues at 90% sequence identity into S90 clusters using CD-HIT
(Fu et al. 2012), and builds multiple sequence alignments for each cluster using
MAFFT (Katoh and Standley 2013). It then exploits COMPASS (Sadreyev and
Grishin 2003) to compare sequence profiles derived from the sequence alignments
of pairs of clusters present at each iteration of the clustering. After each iteration,
the cluster profiles matching above a threshold are merged and alignments are
generated for the new clusters. These iterations continue till a single cluster remains
generating a bottom-up hierarchical clustering tree built from the leaf nodes to the
root. FunFHMMer identifies highly conserved positions and specificity-determining
positions in sequence alignments to distinguish between families that perform
different functions and ensure functional coherence in the identified families.
Residues in multiple sequence alignments that are highly conserved among all the
sequence relatives are generally important for stability, folding or carrying out a
common function of the domain whereas specificity-determining positions i.e.
residues that are differentially conserved in groups of sequences sharing a function
or sub-function in a multiple sequence alignment are generally implicated in
functional divergence (Rausell et al. 2010). The functional purity of the CATH
FunFams has been demonstrated by their utility to transfer functional annotations
for query sequences. This was validated by the international function prediction
experiment, CAFA (Critical Assessment of Function Annotation experiment)
(Radivojac et al. 2013) where FunFHMMer was ranked among the top 5 function
prediction methods. A comprehensive summary of the relationships between
FunFams in a superfamily can be visualised using CATH superfamily networks
(Fig. 9.2) where FunFams are represented by nodes and the edge distances corre-
spond to the sequence similarity between the FunFams. CATH superfamilies have
also been divided into coarser sequence families that are defined at different cut-offs
of sequence identity. A cut-off of 35% sequence identity is used to define
non-redundant groups of proteins (s35 families).

SCOP and Superfamily—For SCOP superfamilies, homologies are determined
by sequence similarity or by manual comparison of structural and functional fea-
tures (Andreeva et al. 2007). This manual assignment provides the community with
a curated expert classification of domain structures, but suffers from the con-
comitant drawback that any manual process is inevitably prone to subjective
decisions. Domains are classified into the same SCOP family if they are “clearly
evolutionarily related”. In practise, this definition generally means that protein
domains are grouped into the same family if they share pair-wise residue identities
of more than 30%. However, some domains are classified into the same SCOP
families in the absence of high sequence identities if similar structures and functions
provide definitive evidence of common ancestry. This has the advantage of
allowing for some flexibility in the assignment of homology relationships but also
gives more room for subjectivity in the process. The Superfamily database expands
SCOP to proteins of unknown structure by annotating sequences with SCOP
descriptions at the family and superfamily level (Wilson et al. 2007; Oates et al.
2015). As with Gene3D, Superfamily uses SCOP-based HMM profiles to assign
matches in sequences.
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SFLD—The Structure-Function Linkage Database (SFLD) has been developed
more recently with the specific aim of studying the structure-function relationships
amongst homologous enzymes. It currently covers a relatively small set of super-
families, as compared with CATH and SCOP, but provides a detailed description of
the evolution of function within these superfamilies. The SFLD imposes that
enzymes within superfamilies should not only be homologous but must share a
mechanistic attribute in the catalytic reaction using conserved structural elements
(Akiva et al. 2014). SFLD families consist of enzymes that perform the same
overall reaction in a given superfamily.

FunTree—The FunTree resource (Furnham et al. 2012a, b) uses sequence,
structure, phylogenetics, chemical and reaction mechanism data to functionally

Fig. 9.2 Visualization of functional family (FunFam) relationships in a CATH superfamily
(CATH code: 3.40.50.620) using networks. Each node in the network corresponds to a FunFam,
where the size of the node reflects the relative size of the FunFam. The edges in the network
represent the sequence similarities between the FunFam profile HMMs using Profile Comparer
(PRC; Madera 2008). The nodes are coloured according to their enzyme commission
(EC) numbers, where grey nodes indicate FunFams without any EC annotation, including
non-enzymes. The nodes are linked by edges if the similarity of their profile HMMs is within a
threshold PRC score of 50
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annotate and analyse CATH enzyme domain superfamilies. Through this resource,
information is provided to help users understand how particular enzymes have
evolved new functions. Enzyme domain superfamilies are selected for analysis by
using CATH to first find protein domains with structural data and then secondly, the
MACiE database (Holliday et al. 2011) is used to determine whether the domain is
part of an enzyme. As functional divergence can occur due to mutations within a
single domain or from a change in the multi-domain architecture, FunTree gener-
ates two types of data clusters for analysis: one based only on the single superfamily
domain, and the second type uses all of the domains in the protein sequences.
Sequence data from UniProtKB/SwissProt (The UniProt Consortium 2014) and
CATH-Gene3D is used to build phylogenetic trees, which are combined with
functional information from the MACiE and Catalytic Site Atlas (Furnham et al.
2014) databases and displayed online.

9.3.2 Evolution of Protein Superfamilies

Ultimately, the criterion to group proteins together in superfamilies is that the genes
encoding them descend from a common ancestor gene. The processes by which an
ancestor gene gives rise to two (or more) copies of itself are commonly referred to
under the term duplication.

By definition, a duplication event gives rise to homologous genes. But further
distinctions can be made. Genes that descend from a common ancestor gene via
duplication within a given genome and in the absence of an accompanying spe-
ciation process are known as paralogues. Genes that descend from a common
ancestor gene via duplication of the genome itself during speciation are known as
orthologues. It is generally assumed that orthologous genes tend to preserve the
function of the ancestor gene, due to a strong selective pressure to ensure that the
ancestral function is still performed in both descendant species (Tatusov et al.
1997). Based on this assumption, some authors even define orthologues as
homologues that have the same function in different species. Several databases have
been set up to define orthologous genes from different sets of organisms (Dolinski
and Botstein 2007). On the contrary, the presence of multiple copies of a given gene
within a genome, i.e. paralogues, could arguably often result in one of the copies
being under strong selective pressure to maintain the original function thus allowing
more freedom for divergence for the other copies. The process by which one copy
of a duplicated gene conserves the function of the ancestor gene, whereas the other
copies evolve alternative functions is known as neofunctionalisation. In the absence
of selective pressure on these additional copies, a frequent outcome of evolutionary
divergence is the loss of some of them into pseudo-genes, which are gene relics no
longer expressed (Harrison and Gerstein 2002). This evolutionary process is called
nonfunctionalisation. Subfunctionalisation is a third evolutionary process which
refers to cases where multiple functions of an ancestral gene are divided between
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the paralogues. In any case, paralogues are often considered to be more functionally
diverse than orthologues because of their larger freedom to diverge.

In whatever order they occurred, the subsequent events of duplication into
orthologues or paralogues that took place during biological history have resulted in
the current protein superfamilies. Not all superfamilies seem to have been equally
successful in this process, as some of them are known to account for dispropor-
tionately large numbers of genes in fully sequenced genomes (Marsden et al. 2006;
Chothia and Gough 2009). To date, reasons for evolutionary success disparity of
the different superfamilies are not clear, and arguments relating to structural and
functional properties, or evolutionary dynamics have been proposed (Goldstein
2008). It can be expected that older superfamilies, having had more time to diverge
and explore different functions, should generally be more extended in present time.
For example, the HUP superfamily (CATH code 3.40.50.620), which on account of
phylogenetic considerations is believed to trace back to the RNA world, displays a
very wide array of seemingly unrelated functions (Aravind et al. 2002); whereas
several recent superfamilies that are observed exclusively in eukaryotic species are
often restricted to very specific sets of functions. However, the age doesn’t seem to
be the main factor explaining the varying sizes of superfamilies. In a recent analysis
of evolutionary dynamics of gene families that contain genes with essential func-
tions (termed E-families) and gene families that do not contain such genes (termed
N-families), it was proposed that paralogues in E-families are more likely to evolve
new functions than those in N-families thus suggesting that the function of ancestral
genes in a family is a key determinant of its evolutionary success (Shakhnovich and
Koonin 2006). As will be shown in the next section, other arguments to explain the
variable success of protein superfamilies may derive from the mechanisms that have
been proposed to explain function evolution.

9.3.3 Function Divergence During Protein Evolution

The traditional approach for annotating a protein of unknown function is to look for
homologies between that protein and other well-characterised proteins, and to
transfer the functional annotations from the latter to the former, assuming that
proteins that descend from a common ancestor should share some degree of
common functionality (Whisstock and Lesk 2003). But it is now a well-established
fact that this approach is error-prone and that its incautious application results in
unmanageable propagation of erroneous annotations in databases (Devos and
Valencia 2001).

The major source of errors in this process is that the assumption following which
homologous proteins have similar functions is inaccurate (Devos and Valencia
2000). There are now numerous documented cases of related proteins with very
different functions, including the long-known example of hen egg-white lysozyme
and mammalian a-lactalbumin that share more than 35% sequence identity and
have very similar structures. Yet, it is reasonable to assume that the larger the
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evolutionary distance between two homologous proteins, the lower the probability
of these proteins sharing the same function. Several studies have attempted to
determine sequence identity cut-offs that would safely guarantee conservation of
function between pairs of homologues, but results are somewhat discordant and the
issue is still under debate (Todd et al. 2001; Rost 2002; Tian and Skolnick 2003;
Sangar et al. 2007; Addou et al. 2009). One likely explanation for the difficulty to
derive universal sequence identity cut-offs for reliable transfer of function annota-
tions between homologues is the above-mentioned fact that different superfamilies
have very different patterns of sequence and function divergence. Accordingly,
many recent studies focus on the analysis of sequence-structure-function relation-
ships in specific superfamilies or subsets thereof, and may reveal highly valuable
insights as to how the variations in sequence and structure correlate with variations
in function.

In the following section, we describe function variation within superfamilies in
more detail, with particular emphasis on the mechanisms thought to bring about this
variation.

9.3.3.1 Function Diversity at the Superfamily Level

The sequences of proteins classified in the same superfamily have sometimes
diverged beyond levels that can be detected by standard sequence alignment
methods. Even though three-dimensional structures are generally accepted to be far
more conserved than sequences during evolution, major differences can still be
observed between the structures of remote homologues. Such structural differences
can arise from insertions/deletions (indels) of large elements of secondary structures
or even several of these. A recent study of indels amongst homologous structures
showed that it is not uncommon for successive insertions of secondary structures to
occur in the same location of the fold of a protein during evolution, thus giving rise
to so-called nested indels (Jiang and Blouin 2007). Another analysis of insertions
within CATH superfamilies showed that not only do inserted secondary structures
tend to co-locate in the fold but that the resulting embellishments often occur close
to functionally important regions such as enzyme catalytic sites or protein-protein
interfaces (Reeves et al. 2006); this observation indicates a correlation between
structural and functional changes.

Insertions of new elements of secondary structure near the active site will most
likely change the function, but more subtle changes such as residue substitutions of
important catalytic residues will also result in functional differences. Recent anal-
ysis found cases in 16 enzyme domain superfamilies in CATH where the catalytic
residues changed across functional families, even though their members performed
the same enzyme chemistry (Furnham et al. 2015). The “Aldolase Class I” CATH
superfamily (CATH ID 3.20.20.70) for example has four functional families that
perform the same aldehyde lyase enzyme chemistry, however they each use dif-
ferent catalytic machineries (see Fig. 9.3). Changes in domain context can also
result in drastic changes in the role of proteins, so that even if some aspect of
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molecular function is conserved, it can hardly be said of the proteins that their
function is the same (Todd et al. 2001; Hegyi and Gerstein 2001). This is the case of
the PBP-like domains of eukaryotic and prokaryotic glutamate receptors, which
bind the same ligand in a similar topological location, but widely differ in their
function at the cellular level (see Fig. 9.4).

The long-term evolutionary processes via which function can diverge between
homologues are numerous and difficult to summarise. Nevertheless, in a recent
attempt to understand and categorise such processes, Bashton and Chothia have
described and illustrated a subset of these to understand how the function of
homologous domains can change depending on whether they are found in the
context of single-domain proteins or combined with other domains in multi-domain
proteins (Bashton and Chothia 2007). Examples of the processes identified include
cases where the domain function is modified by its combination with other domains

Fig. 9.3 Comparison of the structural positions and functional properties of catalytic residues in
four domains with the same enzyme chemistry but different catalytic machineries. A superposition
of CATH domains from the Aldolase Class I superfamily (CATH ID 3.20.20.70) that catalyse
aldehyde lyase activity (EC 4.1.2.-): 1aldA00 (light blue), 1ok4A00 (light yellow), 1fq0A00 (light
green), and 1b57A00 (light pink). The catalytic residues (dark blue, brown, green, and red) from
these four functional family representative domains (1aldA00, 1ok4A00, 1fq0A00, and 1b57A00,
respectively) cluster into five spatial sites and one can assign a common functional property to
each cluster
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that modify its substrate specificity, or cases where the fusion of domains results in
multi-functional proteins in which each domain is responsible for a particular
function.

The above-mentioned occurrence of structural changes in the vicinity of func-
tional regions points at the resulting functional diversity that is to be expected
between superfamily members. And indeed, results from several studies indicate
that remote homologues within superfamilies often perform very different functions
(Todd et al. 2001). Most of these studies are focused on the evolution of function
within particular superfamilies that generally show exceptional functional diversi-
fication, and prominent examples of which include haloacid dehalogenases
(Burroughs et al. 2006), short-chain dehydrogenases/reductases (Favia et al. 2008),
enolases (Gerlt and Babbitt 2001), HUP domains (Aravind et al. 2002) or “Two
dinucleotide binding domains” flavoproteins (tDBDF’s) (Ojha et al. 2007). The
study of these different groups of proteins has revealed a large variety of processes
by which function diverges between relatives, and these processes will now be
considered separately with examples.

Mechanistically Diverse Superfamilies
A subset of much studied superfamilies constitute the core of the data in the
Structure-Function Linkage Database (Akiva et al. 2014) and in spite of their
functional diversity, and respecting the criteria of inclusion in SFLD (see
Sect. 9.3.1.2), all members of these superfamilies share a common mechanistic
attribute in the diverse reactions they catalyse.

The SFLD is in fact specifically aimed at describing these mechanistically
diverse enzyme superfamilies and provides a classification of evolutionarily related
enzymes notably based on similarities in their functional mechanisms. For example,
the SFLD superfamily of haloacid dehalogenases groups together enzymes that can
process a vast variety of substrates, but always act via the formation of a covalent
enzyme-substrate intermediate through a conserved aspartate (Glasner et al. 2006),
that in turn facilitates cleavage of C–Cl, P–C or P–O bonds. The haloacid
dehalogenase superfamily contains 1285 unique sequences classified in 20 different
families, each of which catalyses a unique reaction (e.g. histidinol phosphatases—
EC number 3.1.3.15; or trehalose phosphatases—EC number 3.1.3.12). Some
families are grouped together into sub-groups that constitute a convenient inter-
mediate level whose definition varies between superfamilies.

Currently, the SFLD only covers 12 superfamilies. But the conservation of parts
of the reaction chemistry within superfamilies appears very common, being
observed in 22 out of the 31 enzyme superfamilies that were studied by Todd et al.
(2001). In contrast, substrate specificity was not conserved in 20 of these super-
families (see below).

The occurrence of a common mechanistic step in mechanistically diverse
superfamilies suggests that enzymes in these superfamilies have maintained aspects
of their catalytic mechanism in the course of their evolutionary diversification. Such
situations hint at an evolutionary scenario in which enzymes evolve new functions,
via duplication and recruitment, by maintaining partial reaction mechanisms (rather
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than partial substrate specificity, see below), thus resulting in the mechanistically
diverse superfamilies observed nowadays (Gerlt and Babbitt 2001).

A recent large-scale analysis of 379 enzyme domain superfamilies in CATH also
confirmed conservation of reaction mechanism chemistry within some superfami-
lies (Furnham et al. 2015). The study also examined how function had diverged
within these enzyme superfamilies by quantifying changes in the reaction mecha-
nisms with EC-BLAST (Rahman et al. 2014) and used the scores as a proxy for a
change in enzyme chemistry. To examine whether a change in enzyme chemistry
between functional families was typically associated with a change in catalytic
machinery, the similarity in reaction mechanism was compared with the similarity
in catalytic residues. No clear correlation was found and examples of all combi-
nations were found. Extreme outliers were discussed, for example: two domains
from different functional families within a superfamily that performed very different
reaction mechanisms using the same catalytic machinery (e.g. the catalytic domains
from L-lactase dehydrogenase in yeast and glycolate oxidase in spinach); and on the
other hand, domains that performed the same reaction mechanism using very dif-
ferent catalytic machinery (e.g. the domains with aldehyde lyase activity in
Fig. 9.3) (Furnham et al. 2015).

Specificity Diverse Superfamilies
An alternative scenario for the divergent evolution of enzymatic functions within
superfamilies is one in which an ancestral enzyme with broad specificity duplicates
and the descendant copies specialise in binding more specific substrates. In such a
scenario, substrate specificity is the dominant factor for function evolution in the
superfamily. In their extensive analysis of enzyme superfamilies, Todd et al.
showed that in most cases, reaction mechanisms were more conserved than sub-
strate specificities between homologous enzymes. Out of 28 superfamilies that were
involved in substrate binding, 10 displayed no conservation of the substrate
whatsoever, and another 10 had very varied substrates with only a small common
chemical moiety such as a peptide bond (Todd et al. 2001).

The expectation that substrate specificity might be conserved between homol-
ogous enzymes in a superfamily derives from Horowitz’s proposal on the backward
evolution of metabolic pathways (Horowitz 1945). This hypothesis suggests that
when the substrate of an enzyme becomes depleted, an organism possessing a new
enzyme that is able to produce that substrate from a precursor compound which is
available will have a selective advantage over others, and the new enzyme will be
fixed by evolution thus giving rise to an initial 2-step metabolic pathway. A similar
evolutionary process can then take place for the other steps of the extant pathway.
According to this scenario, pathway evolution goes backward as compared with the
direction of the metabolic flow (Rison and Thornton 2002). Because the original
enzyme has the ability to bind a substrate molecule that is the same as the product
of the new enzyme, it has been suggested that this common property may be used as
a basis for the evolution of the latter enzyme. Following this idea, all enzymes
within a metabolic pathway would be homologous, and the enzyme catalysing the
final step of the pathway would be the most ancient. In addition, the evolution of
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these enzymes would have been driven by their substrate selectivity, and this would
result in a tendency of extant superfamilies to display commonalities in substrate
specificity. Possible examples of backward evolution have been collected, including
that of the tryptophan biosynthesis pathway in which several enzymes that catalyse
sequential steps are clearly homologous (Gerlt and Babbitt 2001; Todd et al. 2001).

However, results from several studies suggest that this hypothetical process has
actually played a marginal role in the evolution of metabolism, which instead,
would have resulted mostly from a chemistry-driven recruitment of enzymes
between pathways (Rison and Thornton 2002). Indeed, superfamilies in which the
substrate selectivity is conserved seem rare in comparison with those cases where
the catalytic mechanism is conserved. Interestingly, the TIM-barrel
phosphoenolpyruvate-binding enzymes superfamily, which was the only super-
family with absolutely conserved substrate specificity in the analysis of Todd et al.
(2001), proved to be amongst the superfamilies with most diverse cognate ligands
in a more recent study (Bashton et al. 2006), suggesting that the data used in the
previous analysis may have been misleading due to its scarcity.

PROCOGNATE (Bashton et al. 2008) is a very useful tool for the analysis of
ligand diversity bound by the different enzymes within a superfamily.
The PROCOGNATE database maps enzymes to their cognate ligands, i.e. the
ligands that the enzymes bind in vivo. Indeed, ligand data from PDB structures
poses a problem: frequently, non-specific ligands bind to the enzymes in their active
site thus mimicking the real ligand that binds in vivo (Dessailly et al. 2008). These
contaminants make it difficult to automatically study ligand diversity in proteins of
known structures as it is not obvious how to distinguish them from the biological
ligands. PROCOGNATE is organised around the superfamilies (CATH, SCOP or
PFAM) to which the enzymes belong. It is therefore useful for determining ligand
diversity for any given superfamily of interest. For example, searching
PROCOGNATE for the mechanistically diverse haloacid dehalogenase superfamily
(CATH code 3.40.50.1000) returns a list of 57 cognate PDB ligands and 17 cognate
KEGG compounds that bind to enzymes in that superfamily. The ancient and
diverse HUP-domain superfamily (CATH code 3.40.50.620) is associated with 92
PDB ligands and 29 KEGG ligands in PROCOGNATE. These 29 KEGG ligands
are shown in Fig. 9.5 and illustrate the diversity of molecules that can be bound by
evolutionarily related proteins.

Functional Changes Due To Changes in the Environmental Context
Functional changes between duplicated copies of a protein can also arise not so
much from changes within the protein itself, but rather from changes in the envi-
ronmental conditions in which the different copies are active. For example, the
recruitment of a protein in new locations of an organism may theoretically result in
its encounter with small molecules that were not present in the original environment
of the ancestor protein, and the recruited protein may display unexpected ability to
bind these newly available ligands. Likewise, the molecular function of a protein
may change if other proteins in its environment undergo mutations which result in
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the possibility for new interactions or, on the contrary, in some protein-protein
interactions becoming no longer possible.

A known example of functional changes between homologous enzymes that is
related to changes in the environment is described in the literature for the “Two
dinucleotide binding domains” flavoproteins, where diversification of function
across the superfamily has resulted from the conscription of different protein
partners acting as electron acceptors, via a conserved mode of protein-protein
interactions (Ojha et al. 2007).

Enzyme—non-enzyme
A source of functional diversity in superfamilies that is not often discussed in the
literature is that arising from the loss/gain of catalytic capability between homo-
logues. Indeed, the analysis of non-enzymatic proteins is not as straightforward as
that of enzymes, for which several annotation systems and analysis tools are now
well-established (e.g. EC, KEGG and CSA; see Sect. 9.1). Non-enzymatic proteins
are nevertheless frequently found in so-called enzymatic families. The processes by
which a protein loses catalytic capabilities are fairly straightforward as the mere loss
of a single crucial catalytic residue by substitution will generally lead to a loss of
the enzymatic activity (Todd et al. 2002). The superfamily of HUP domains (CATH
code 3.40.50.620) consists mostly of enzymes, but contains a few isolated examples
of proteins with no known catalytic activity. For example, subunits of electron
transferring flavoproteins constitute a separate functional family and display sig-
nificant sequence, structure, and function alterations from other members of the
superfamily (Aravind et al. 2002). An example at another level within that super-
family is that of the cryptochrome DASH, a non-enzyme that shows striking
similarities with evolutionarily related DNA repair photolyases in terms of DNA
binding and redox-dependent function, but also major differences notably in the
active site (Brudler et al. 2003). There are also examples of superfamilies that are
largely dominated by non-enzymes, such as the Periplasmic-Binding-Protein like
domains (CATH code 3.40.190.10) in which many distinct functional families are
identified on the basis of the molecules to which they bind, or of their role in the
context of the cell, e.g. transporters or surface receptors.

Extreme examples of functionally diverse superfamilies
From the above discussion on mechanistically diverse and specificity diverse
superfamilies, it appears that most superfamilies maintain some degree of functional
commonality between members in spite of their divergence. This is to be expected
since superfamilies consist of evolutionarily related proteins by definition, and the
rules of parsimony make it reasonable to assume that homologous proteins may
retain at least some aspect of their function in the course of evolution. However,
examples of superfamilies also exist in which such commonalities have not been
uncovered yet. In the previously mentioned analysis of large and diverse super-
families by Todd et al., one superfamily—the Hexapeptide Repeat Proteins—dis-
played neither commonalities in catalytic mechanism nor in substrate selectivity
(Todd et al. 2001). Another example of superfamily for which any functional
similarity fails to emerge between members is that of the HUP-domains. Figure 9.6
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summarises the functional diversity in that superfamily, together with representative
structures for the main functional groups. Yet, due to the difficulty to apprehend
function, it may well be that even within these extremely diverse superfamilies,
functional commonalities that are not apparent at this stage will come to light as
more data is collected and studied.

9.3.3.2 Function Diversity Between Close Homologues

The above sections described the amount of functional diversity that is to be
expected within protein superfamilies, with particular emphasis on remote homo-
logues. But functional diversity is also observed between closer homologues, and

Fig. 9.4 Multi-domain architectures of (a) Periplasmic Glutamate-binding protein from
Gram-negative bacteria and (b) subunit NR2 of Glutamate [NMDA] receptor from Rat.
Individual domains are represented as rectangles. N- and C-termini are represented with capital
letters “N” and “C”, respectively. The ligand L-glutamate is represented as a brown sphere. The
cellular membrane in (b) is displayed as a double dotted line. The domains between which
L-glutamate binds are coloured green. These domains are homologous to one another, both within
and between the 2 proteins (CATH superfamily 3.40.190.10). These 2 proteins have very different
functions, as suggested by their very different multi-domain architectures: (a) bacterial periplasmic
glutamate-binding protein consists only of the 2 domains involved in binding glutamate and freely
transports the latter across the periplasm (Takahashi et al. 2004). (b) Glutamate [NMDA] receptor
(subunit NR2) is part of a transmembrane channel that plays a major role in excitatory
neurotransmission; it consists of 5 globular domains and its binding to L-glutamate participates in
opening the channel for cation influx (Furukawa et al. 2005). Even though the pair of green
domains in these 2 proteins are homologous and share the ability to bind L-glutamate in a similar
location of their structure, they undoubtedly have very different functions
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Fig. 9.5 KEGG cognate ligands identified in PROCOGNATE as binding HUP domains (CATH
superfamily 3.40.50.620). Three major categories of ligands are distinguished for clarity:
(a) adenine-containing ligands and derivatives thereof, (b) amino-acids and derivatives thereof,
and (c) diverse ligands that cannot be classified in either of the above two categories. Many more
molecules (92) are found to bind HUP domains in the PDB but are not shown here. This figure
shows that evolutionarily related domains are able to bind to a diverse range of molecules
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sometimes even between exactly identical proteins seen in diverse contexts. For
example, relatives can have multiple catalytic activities not necessarily of equal
efficiency, as in promiscuous enzymes (Khersonsky and Tawfik 2010); or moon-
lighting functions whereby proteins perform completely different functions to their
native activity sometimes involving different sites (Jeffery 1999). Promiscuity can
be often be the starting point for the evolution of a new function and under natural
selection, these enzymes can give rise to specialist enzymes by a variety of different
mechanisms including domain insertions (Pandya et al. 2014), rearrangements in
the catalytic metal ions (Baier and Tokuriki 2014) or binding of alternative
cofactors (Baier et al. 2015) (Fig. 9.7).

Well-known examples of moonlighting proteins are eye lens crystallins, which
are identical in sequence to liver enolase and lactate dehydrogenase (Piatigorsky

Fig. 9.6 Diversity of structures and functions in the HUP-domains superfamily (CATH code
3.40.50.620). HUP-domains adopt a Rossmann-like fold and have been shown to be very ancient
(Aravind et al. 2002). Together, they form a very large superfamily with many different functions.
In this figure, representative structures of the major functional groups in this superfamily are
displayed in cartoons. These structures were multiply aligned with CORA (Orengo 1999) and the
multiple alignment was used to derive the common core of the domain. Residues that constitute the
core are coloured red in each structure. The CATH domains that were used as representatives of
each functional groups are: (a) 1dnpA01 for DNA repair photolyases, (b) 1ej2A00 for
nucleotidyltransferases, (c) 1gpmA02 for N-type ATP pyrophosphatases, (d) 1n3lA01 for class I
aminoacyl tRNA synthetases and (e) 1o97D01 for electron transfer flavoproteins
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et al. 1994; Whisstock and Lesk 2003). The multiple roles of moonlighting proteins
are not restricted to certain organisms or protein families, nor do they have a
common mechanism through which they switch between different functions.
However, the functional diversity of moonlighting proteins is not caused by gene
fusion, splice variance, varying post-transcriptional modifications, or multiple
proteolytic fragments. Experimentally identified moonlighting proteins have been
shown to switch functions as a consequence of changes in cellular locations within
and outside the cell, expression in different cell types, oligomerisation states, ligand
binding locations, binding partners and complex formation (Jeffery 1999, 2004).
Moreover, orthologous proteins in different organisms do not necessarily share

Table 9.1 URLs and short descriptions of databases and tools of interest mentioned in the text

Name URL Description

CATH http://www.cathdb.info Structural classification of proteins

SCOP http://scop.mrc-lmb.cam.ac.
uk/scop/

Structural classification of proteins

SCOP2 http://scop2.mrc-lmb.cam.ac.
uk

Structural classification of proteins

SCOPe http://scop.berkeley.edu/
about/ver=2.05

Structural classification of proteins

ECOD http://prodata.swmed.edu/
ecod/

Structural classification of proteins

SFLD http://sfld.rbvi.ucsf.edu/ Functional classification of enzyme
superfamilies

FunTree http://www.funtree.info/
FunTree/

Exploring the evolution of protein
function with sequence, structure and
phylogenetics

PROCOGNATE http://www.ebi.ac.uk/
thornton-srv/databases/
procognate/index.html

Mapping of domains to their cognate
ligands

Gene Ontology http://www.geneontology.org Controlled vocabulary of protein
functions

EC http://www.chem.qmul.ac.uk/
iubmb/enzyme/

Classification of enzymatic reactions

EzCatDB http://ezcatdb.cbrc.jp/
EzCatDB/

Database of enzyme catalytic
mechanisms

MACiE http://www.ebi.ac.uk/
thornton-srv/databases/
MACiE/

Database of enzyme reaction
mechanisms

KEGG http://www.genome.jp/kegg/ Integrated representation of genes, gene
products and pathways

FUNCAT http://mips.helmholtz-
muenchen.de/funcatDB/

Annotation scheme of protein functions

DALI http://ekhidna.biocenter.
helsinki.fi/dali_server

Structure alignment

FATCAT http://fatcat.burnham.org/ Flexible structure alignment
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moonlighting functions. Currently, there exist two manually-curated databases of
moonlighting proteins, MultitaskProtDB (Hernández et al. 2014) and MoonProt
(Mani et al. 2014), each of which lists more than 280 moonlighting proteins known
in the literature. However, the rapid increase in the number of identified moon-
lighting proteins suggest that the phenomenon may be common in all kingdoms of
life.

Furthermore, increasing evidence indicate that enzymes carry in them the
potential for functional changes, in that they are generally able to catalyse
promiscuous reactions in addition to the main, generally highly specific, reaction
they are responsible for (Khersonsky et al. 2006). These extreme cases of function
diversity between proteins displaying no or very low differences in sequence and
structure are mentioned here in order to convey further the notion that the rela-
tionship between sequence, structure and function diversity is definitely a highly
complex one, and that simple and reliable rules to predict function from sequence
and structure are difficult to derive.

Fig. 9.7 The various mechanisms, one or a combination of which can give rise due to functional
diversity of proteins, are: (a) structural embellishments around active site, (b) structural
embellishments changing interfaces, (c) gene fusion, (d) oligomerisation, (e) promiscuity,
(f) moonlighting, (g) post-translational modification and (h) changes in active site residue. Note
that for the mechanism panels (a), (c) and (d), one of the enzyme active site residue is contributed
by its domain partner
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9.4 Conclusion

In this chapter, the relationship between function and structural similarity is
explored. It is first shown that proteins sharing the same fold do not necessarily
share the same function, but that knowledge of the structure and fold is often
helpful for function annotation. The definition of a fold is discussed, with particular
emphasis on the recent conceptual shift towards a continuous rather than discrete
view of fold space.

Proteins sharing the same fold are not necessarily homologous. On the contrary,
superfamilies are defined as groups of evolutionarily related proteins. But even
within superfamilies, proteins are likely to perform different functions. Diverse
processes to explain the evolution of superfamilies, and of protein function within
them have been considered in the literature, and these processes are commented
upon here. It is shown that even though evolutionarily related proteins do not
necessarily share the same function, common elements of functionality are gener-
ally likely to remain between them. For example, mechanistically diverse super-
families consist of enzymes that share a common mechanistic attribute in the
enzymatic reactions they catalyse.

The relationship between protein function, structure and homology is complex,
and perfect prediction of one of these attributes from any of the others is still not yet
possible without errors. Nevertheless, identification of fold similarities or structural
homologies between proteins is clearly helpful in function prediction, and the
increase in structure, sequence and function data from the various—omics initia-
tives promises to greatly improve our understanding of the relationships between
these attributes.
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Chapter 10
Function Prediction Using Patches,
Pockets and Other Surface Properties

Daniel J. Rigden

Abstract With few exceptions protein functions depend sensitively upon their
interactions with other biomolecules. Thus, the surface of a protein is of particular
interest for function annotation: definition of the protein surface in experimental or
modelled protein structure enables the application of a wide range of structural
bioinformatic tools for function prediction. The development of such tools has been
significantly accelerated in recent years as a response to the flux of information
from Structural Genomics programs which, at least in part, have deliberately tar-
geted mysterious protein families of unknown function about which conventional
homology-based protein function annotation can say little or nothing (Bateman
et al. in Acta Crystallographica Section F: Structural Biology and Crystallization
Communications 66:1148–1152, 2010). As this chapter will illustrate, the under-
lying principles behind the resulting toolset vary impressively but, ultimately, most
are based upon discovering putative interaction sites through detecting ways in
which they differ somehow from protein surface in general. These differences may
be physicochemical, electrostatic or steric in nature, or be of evolutionary origin.
Predictions can be strengthened by observing concordant results from orthogonal
methods. Indeed, many programs now improve performance by combining multiple
factors in their calculations. Some methods find functional sites in general, others
provide direct evidence supporting specific biochemical functions. This chapter will
not attempt a comprehensive historical overview of the area, rather aiming to guide
the user to the current state of the art while acknowledging key methodology
papers. Methods that are readily available will be favoured, particularly those
implemented at servers and those for which plug-ins for popular molecular visu-
alisation tools exist.
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10.1 Definitions of Protein Surfaces

Most of the methods in this chapter depend on defining and describing a protein
surface. It is therefore appropriate to briefly introduce the commonly encountered
definitions of a protein surface (Fig. 10.1). The simplest is known as the van der
Waals surface and is straightforwardly defined as the outermost surface of a set of
overlapping atomic spheres, one for each atom in the protein, each having the
corresponding van der Waals radius of the atom in question (Fig. 10.1a). It is most
often seen as the space-filling representation of a molecule in visualisation software.
It is not often used as a representation of the protein surface since much of the
empty space between atoms is inaccessible to solvent atoms.

Two related definitions of protein surface are used more frequently. In each the
surface is defined with reference to surrounding solvent by rolling a solvent
molecule, generally modelled as a sphere with radius 1.4 Å, over the protein’s van
der Waal’s structure. The first, the Molecular surface, also known as the Connolly
surface (Connolly 1983), is defined as the surface traced by contact points between
the protein and the rolling solvent. It reveals the surface that is available for
interaction with solvent or other molecules. The surface is composed of a contact
surface and a reentrant surface where the solvent molecule is in touch with one or
multiple protein atoms, respectively. By doing so it defines a solvent-excluded
volume that sums the van der Waal’s volume and interstitial volumes, including
those on the interior side of reentrant surfaces (Fig. 10.1b).

The most common definition of the protein surface is the solvent accessible
surface (SAS; Lee and Richards 1971). As with the Molecular surface, a solvent
molecule rolls over the van der Waal’s surface but this time the surface is describe
by the centre of the solvent molecule yielding a larger surface (Fig. 10.1c).

Fig. 10.1 Illustrations of three commonly used molecular surfaces (dotted lines): a the van der
Waals surface, b the molecular (Connolly) surface and c the solvent accessible surface. In (a) and
(b) the shaded atoms are shown at slightly less than their van der Waals radius in order to reveal
the surface better. Adapted from a figure originally published in Burgoyne and Jackson (2009);
published with kind permission of © Springer Science+Business Media B.V. All Rights Reserved
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10.2 Surface Patches

Regions whose characteristics depart from those generally expected of protein
surfaces make a good starting point for prediction of protein functional sites. The
majority of a protein surface is likely to lack specific function, serving for example
only to help solubilise a globular protein or maintain favourable lipid interactions in
the case of transmembrane stretches of a membrane-resident protein. This major
portion need only have the appropriate general physicochemical properties. On the
other hand, a functional site may need to buck these trends possessing, for example,
the pronounced hydrophobic characteristics required for binding of a similarly
hydrophobic ligand, even in the context of the generally hydrophilic surface of a
globular protein and despite a consequent destabilisation of the protein fold.
Furthermore, the astonishing range of molecules bound by proteins exerting their
biological roles means that binding sites for different natural ligands can vary
dramatically: thus bioinformatic analysis of protein surfaces in diverse respects is
important for a full understanding of protein function. In the case of enzymes, the
atypical characteristics of the catalytic site can be seen as a tradeoff between sta-
bility and activity (Beadle and Shoichet 2002): indeed spotting residues whose
replacement is predicted to electrostatically stabilise structure can be used to predict
catalytic sites (Elcock 2001) (see later). Furthermore, an important binding site will
be constrained by evolution in terms of shape and potential interactions such that
mutations may not be tolerated.

10.2.1 Hydrophobic Patches

It has long been known that the surfaces of proteins found in an aqueous envi-
ronment are largely composed of hydrophilic amino-acids. Indeed, the entropic
benefits of burying hydrophobic amino-acids in the core of the protein structure
drive protein folding. Nevertheless, functional surfaces of a soluble protein may
have to be at least partially hydrophobic in order to provide a complementary site
for a given ligand. The program QUILT (Lijnzaad et al. 1996), not implemented as
a server but available to download (Table 10.1), seeks the largest patch on the SAS
composed of carbon or sulphur atoms. A randomisation is used to estimate the
significance of patches found. In initial tests the largest patches it found coincided
with known binding regions of proteins with hydrophobic ligands such as lipase
and LIV-binding protein: for other proteins the hydrophobic nature of the largest
patch was generally less clearly correlated to known function. Interestingly, how-
ever, a dimer interface was picked out for triose phosphate isomerase: it is now
well-understood that protein-protein interfaces tend to be more hydrophobic than
protein surface in general and this observation contributes to many predictive
methods (see Sect. 10.5). Among subsequent applications, QUILT was used to
describe the surface of a model of an emulsifying protein from sunflower seed.

10 Function Prediction Using Patches, Pockets … 329



T
ab

le
10

.1
Se
le
ct
ed

w
eb
se
rv
er
s
an
d
ot
he
r
m
et
ho

ds
fo
r
fu
nc
tio

n
an
no

ta
tio

n
by

an
al
ys
is

of
pr
ot
ei
n
su
rf
ac
e
pr
op

er
tie
s.

U
R
L
s
in
di
ca
te

se
rv
er
s
ex
ce
pt

th
os
e

ita
lic
is
ed

w
hi
ch

ar
e
fo
r
so
ft
w
ar
e
do

w
nl
oa
ds

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

P
at
ch
es

H
yd
ro
ph
ob
ic
ity

Q
U
IL
T

M
ea
su
re
s
hy
dr
op
ho
bi
c
pa
tc
he
s
as

ca
rb
on

an
d
su
lp
hu
r

co
nt
ri
bu

tio
ns

to
th
e
so
lv
en
t
ac
ce
ss
ib
le

su
rf
ac
e

ht
tp
:/
/b
io
in
fo
rm

at
ic
s.

ho
ls
te
ge
la
b.
nl
/p
ub
lic
at
io
ns
/

lij
nz
aa
d/
qu

ilt

L
ijn

za
ad

et
al
.
(1
99

6)

E
le
ct
ro
st
at
ic
s

D
E
L
PH

I
Fi
ni
te

di
ff
er
en
ce

Po
is
so
n-
B
ol
tz
m
an
n

ht
tp
://
co
m
pb
io
.c
le
m
so
n.
ed
u/

de
lp
hi
_w

eb
se
rv
er

R
oc
ch
ia

et
al
.
(2
00

2)

A
PB

S
A
da
pt
iv
e
Po

is
so
n-
B
ol
tz
m
an
n

ht
tp
://
nb
cr
-2
22
.u
cs
d.
ed
u/

pd
b2

pq
r_
1.
8

B
ak
er

et
al
.
(2
00

1)

eF
-s
ite
/e
F-
su
rf

Po
is
so
n-
B
ol
tz
m
an
n

ht
tp
://
ef
-s
ite
.h
gc
.jp

/e
F-
si
te

K
in
os
hi
ta

an
d
N
ak
am

ur
a

(2
00

4)

Pa
tc
h
Fi
nd
er

Pl
us

U
se
s
A
PB

S
ht
tp
://
pf
p.
te
ch
ni
on
.a
c.
il

Sh
az
m
an

et
al
.
(2
00

7)

w
eb
PI
PS

A
U
se
s
e.
g.

A
PB

S
ht
tp
://
pi
ps
a.
em

l.o
rg

R
ic
ht
er

et
al
.
(2
00

8)

B
lu
ue
s

U
se
s
ap
pr
ox
im

at
e
ge
ne
ra
liz
ed

bo
rn

m
od
el

ht
tp
://
pr
ot
ei
n.
bi
o.
un
ip
d.
it/

bl
uu

es
W
al
sh

et
al
.
(2
01

2)

C
on

se
rv
at
io
n

C
on
Su

rf
;

C
on
Su

rf
-D

B
Ph

yl
og
en
et
ic

tr
ee
-b
as
ed

in
fe
re
nc
e
of

co
ns
er
ve
d
re
si
du
es

an
d
op
tio

ns
fo
r
vi
su
al
is
at
io
n

ht
tp
://
co
ns
ur
f.t
au
.a
c.
il;

ht
tp
://

co
ns
ur
fd
b.
ta
u.
ac
.il

A
sh
ke
na
zy

et
al
.
(2
01

0,
20

16
),
G
ol
de
nb

er
g
et

al
.

(2
00

9)

Fu
nc
Pa
tc
h

Ph
yl
og
en
et
ic

tr
ee
-b
as
ed

in
fe
re
nc
e
of

co
ns
er
ve
d
re
si
du
es
,

co
m
bi
ne
d
w
ith

a
B
ay
es
ia
n
tr
ea
tm

en
t
of

co
rr
el
at
ed

su
bs
tit
ut
io
n
ra
te
s
at

sp
at
ia
lly

ne
ar
by

po
si
tio

ns

ht
tp
://
in
fo
.m

cm
as
te
r.c

a/
yi
fe
i/

Fu
nc
Pa
tc
h

H
ua
ng

an
d
G
ol
di
ng

(2
01

5)

E
V
tr
ac
e

Ph
yl
og
en
et
ic

tr
ee
-b
as
ed

in
fe
re
nc
e
of

co
ns
er
ve
d

re
si
du

es
an
d
op

tio
ns

fo
r
vi
su
al
is
at
io
n

ht
tp
://
m
am

m
ot
h.
bc
m
.tm

c.
ed
u

M
or
ga
n
et

al
.
(2
00

6)
,
W
ar
d

et
al
.
(2
00

9)
,
W
ilk

in
s
et

al
.

(2
01

2)
(c
on

tin
ue
d)

330 D.J. Rigden

http://bioinformatics.holstegelab.nl/publications/lijnzaad/quilt
http://bioinformatics.holstegelab.nl/publications/lijnzaad/quilt
http://bioinformatics.holstegelab.nl/publications/lijnzaad/quilt
http://compbio.clemson.edu/delphi_webserver
http://compbio.clemson.edu/delphi_webserver
http://nbcr-222.ucsd.edu/pdb2pqr_1.8
http://nbcr-222.ucsd.edu/pdb2pqr_1.8
http://ef-site.hgc.jp/eF-site
http://pfp.technion.ac.il
http://pipsa.eml.org
http://protein.bio.unipd.it/bluues
http://protein.bio.unipd.it/bluues
http://consurf.tau.ac.il
http://consurfdb.tau.ac.il
http://consurfdb.tau.ac.il
http://info.mcmaster.ca/yifei/FuncPatch
http://info.mcmaster.ca/yifei/FuncPatch
http://mammoth.bcm.tmc.edu


T
ab

le
10

.1
(c
on

tin
ue
d)

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

IN
T
R
E
PI
D

Ph
yl
og
en
et
ic

tr
ee
-b
as
ed

in
fe
re
nc
e
of

co
ns
er
ve
d
re
si
du
es

ht
tp
://
ph
yl
og
en
om

ic
s.
be
rk
el
ey
.

ed
u/
in
tr
ep
id

Sa
nk

ar
ar
am

an
et

al
.
(2
00

9)

SD
Ps
ite

Fi
nd

s
cl
us
te
rs

of
co
ns
er
ve
d
re
si
du

es
an
d
pu

ta
tiv

e
sp
ec
ifi
ci
ty
-d
et
er
m
in
in
g
re
si
du
es

ht
tp
://
bi
oi
nf
.fb

b.
m
su
.ru

/S
D
Ps
ite

K
al
in
in
a
et

al
.
(2
00

9)

Su
rf
ac
e
st
at
is
tic
s

ST
P

Su
rf
ac
e
at
om

tr
ip
le
t
pr
op
en
si
tie
s

ht
tp
://
op
us
.b
ch
.e
d.
ac
.u
k/
st
p

M
eh
io

et
al
.
(2
01

0)

L
IS
E

Su
rf
ac
e
at
om

tr
ia
ng
le

pr
op
en
si
tie
s
an
d
co
ns
er
va
tio

n
ht
tp
://
lis
e.
ib
m
s.
si
ni
ca
.e
du
.tw

X
ie

an
d
H
w
an
g
(2
01

2)
,
X
ie

et
al
.
(2
01

3)

M
ul
tip

le
pr
op

er
tie
s

H
ot
Pa
tc
h

H
yd
ro
ph
ob
ic
ity

,
el
ec
tr
os
ta
tic

pr
op
er
tie
s,
su
rf
ac
e

ro
ug

hn
es
s,
co
nc
av
ity

an
d
co
m
bi
na
tio

ns
th
er
eo
f.

ht
tp
://
ho
tp
at
ch
.m

bi
.u
cl
a.
ed
u

Pe
tti
t
et

al
.
(2
00

7)

P
oc
ke
ts

G
eo
m
et
ri
c

de
sc
ri
pt
io
n

PA
SS

T
he

su
rf
ac
e
is
co
ve
re
d
in

pr
ob
es
.
A
ft
er

re
m
ov

al
of

th
os
e
in

co
nv
ex

re
gi
on
s,
cl
us
te
rs

de
fi
ne

po
ck
et
s

ht
tp
:/
/w
w
w
.c
cl
.n
et
/c
ca
/

so
ftw

ar
e/
U
N
IX
/p
as
s/
ov
er
vi
ew

.
ht
m
l

B
ra
dy

an
d
St
ou
te
n
(2
00

0)

G
H
E
C
O
M

Po
ck
et
s
ar
e
de
fi
ne
d
as

ac
ce
ss
ib
le

to
a
sm

al
l
pr
ob

e
pl
ac
ed

on
th
e
pr
ot
ei
n
su
rf
ac
e,

bu
t
no

t
to

a
la
rg
e
pr
ob

e
ht
tp
://
st
rc
om

p.
pr
ot
ei
n.
os
ak
a-
u.

ac
.jp

/g
he
co
m

K
aw

ab
at
a
(2
01

0)

C
A
ST

p
B
as
ed

on
D
el
au
na
y
tr
ia
ng
ul
at
io
n

ht
tp
://
st
s.
bi
oe
.u
ic
.e
du
/c
as
tp

D
un

da
s
et

al
.
(2
00

6)

Fp
oc
ke
t

U
se
s
al
ph

a
sp
he
re
s
to

id
en
tif
y
po

ck
et
s.

C
an

tr
ac
k
po
ck
et
s
du
ri
ng

M
D

tr
aj
ec
to
ri
es

ht
tp
://
bi
os
er
v.
rp
bs
.u
ni
v-
pa
ri
s-

di
de
ro
t.f
r/
se
rv
ic
es
/f
po
ck
et

Sc
hm

id
tk
e
et

al
.
(2
01

0)

K
V
Fi
nd
er

T
w
o-
pr
ob

e
gr
id
-b
as
ed

m
et
ho
d
al
lo
w
in
g
us
er
-d
efi
ne
d

sp
lit
tin

g
of

po
ck
et
s

ht
tp
:/
/ln

bi
o.
cn
pe
m
.b
r/

bi
oi
nf
or
m
at
ic
s/
m
ai
n/
so
ftw

ar
e

O
liv

ei
ra

et
al
.
(2
01

4)

T
un

ne
ls
an
d

ch
an
ne
ls

M
O
L
E
on

lin
e
2.
0

D
is
co
ve
rs

an
d
de
sc
ri
be
s
tu
nn

el
s
le
ad
in
g
to

bu
ri
ed

ca
vi
tie
s
an
d
tr
an
sm

em
br
an
e
ch
an
ne
ls

ht
tp
://
m
ol
e.
up
ol
.c
z

B
er
ka

et
al
.
(2
01

2)

M
ol
A
xi
s

D
is
co
ve
rs

an
d
de
sc
ri
be
s
tu
nn

el
s
le
ad
in
g
to

bu
ri
ed

ca
vi
tie
s
an
d
tr
an
sm

em
br
an
e
ch
an
ne
ls

ht
tp
://
bi
oi
nf
o3
d.
cs
.ta
u.
ac
.il
/

M
ol
A
xi
s

Y
af
fe

et
al
.
(2
00

8) (c
on

tin
ue
d)

10 Function Prediction Using Patches, Pockets … 331

http://phylogenomics.berkeley.edu/intrepid
http://phylogenomics.berkeley.edu/intrepid
http://bioinf.fbb.msu.ru/SDPsite
http://opus.bch.ed.ac.uk/stp
http://lise.ibms.sinica.edu.tw
http://hotpatch.mbi.ucla.edu
http://www.ccl.net/cca/software/UNIX/pass/overview.html
http://www.ccl.net/cca/software/UNIX/pass/overview.html
http://www.ccl.net/cca/software/UNIX/pass/overview.html
http://strcomp.protein.osaka-u.ac.jp/ghecom
http://strcomp.protein.osaka-u.ac.jp/ghecom
http://sts.bioe.uic.edu/castp
http://bioserv.rpbs.univ-paris-diderot.fr/services/fpocket
http://bioserv.rpbs.univ-paris-diderot.fr/services/fpocket
http://lnbio.cnpem.br/bioinformatics/main/software
http://lnbio.cnpem.br/bioinformatics/main/software
http://mole.upol.cz
http://bioinfo3d.cs.tau.ac.il/MolAxis
http://bioinfo3d.cs.tau.ac.il/MolAxis


T
ab

le
10

.1
(c
on

tin
ue
d)

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

Po
re
W
al
ke
r

D
is
co
ve
rs

an
d
de
sc
ri
be
s
tr
an
sm

em
br
an
e
ch
an
ne
ls

ht
tp
://
w
w
w
.e
bi
.a
c.
uk
/th

or
nt
on
-

sr
v/
so
ft
w
ar
e/
Po

re
W
al
ke
r

Pe
lle
gr
in
i-
C
al
ac
e
et

al
.

(2
00

9)

C
A
V
E
R

D
is
co
ve
rs

tu
nn

el
s
an
d
ch
an
ne
ls

ht
tp
:/
/w
w
w
.c
av
er
.c
z

C
ho

va
nc
ov

a
et

al
.
(2
01

2)

D
is
tin

gu
is
hi
ng

fu
nc
tio

na
l

po
ck
et
s

L
IG

SI
T
E
C
S
C

C
av
ity

de
te
ct
io
n
us
in
g
th
e
C
on
no
lly

su
rf
ac
e
co
m
bi
ne
d

w
ith

se
qu
en
ce

co
ns
er
va
tio

n
ht
tp
://
go
pu
bm

ed
2.
bi
ot
ec
.tu

-
dr
es
de
n.
de
/c
gi
-b
in
/in

de
x.
ph
p

H
ua
ng

an
d
Sc
hr
oe
de
r

(2
00

6)

C
on
C
av
ity

C
av
iti
es

sc
or
ed

by
se
qu
en
ce

co
ns
er
va
tio

n
ht
tp
://
co
m
pb
io
.c
s.
pr
in
ce
to
n.

ed
u/
co
nc
av
ity

C
ap
ra

et
al
.
(2
00

9)

PD
B
in
de
r

Po
ck
et
s
ar
e
an
al
ys
ed

fo
r
co
ns
er
va
tio

n
an
d
by

bi
nd
in
g

pr
op
en
si
tie
s
fo
r
re
si
du
e
tr
ip
le
ts
in

th
e
pr
ot
ei
n
of

in
te
re
st

ht
tp
:/
/c
bm

.b
io
.u
ni
ro
m
a2
.it
/

pd
bi
nd

er
/u
sa
ge
.h
tm
l

B
ia
nc
hi

et
al
.
(2
01

3)

V
A
SP

-E
C
al
cu
la
tio

n
an
d
co
m
pa
ri
so
n
of

vo
lu
m
es

re
pr
es
en
tin

g
el
ec
tr
os
ta
tic

po
te
nt
ia
l.

ht
tp
:/
/w
w
w
.c
se
.le
hi
gh
.e
du
/

*
ch
en
/s
of
tw
ar
e.
ht
m

C
he
n
(2
01

4)

D
ep
th

M
ea
su
re
s
ca
vi
ty

de
pt
h,

op
tio

na
lly

in
cl
ud
in
g
co
ns
er
va
tio

n
in
fo
rm

at
io
n

ht
tp
://
m
sp
c.
bi
i.a
-s
ta
r.e

du
.s
g/

ta
nk

p
T
an

et
al
.
(2
01

3)

Su
M
o

D
efi
ne
s
an
d
m
at
ch
es

3D
ar
ra
ng
em

en
ts
of

ch
em

ic
al
gr
ou
ps

ht
tp
://
su
m
o-
pb
il.
ib
cp
.fr

Ja
m
bo

n
et

al
.
(2
00

3)

Pr
oB

is
M
at
ch
es

gr
ap
h
re
pr
es
en
ta
tio

ns
of

su
rf
ac
e
fe
at
ur
es

ht
tp
://
pr
ob
is
.c
m
m
.k
i.s
i

K
on
c
an
d
Ja
ne
zi
c
(2
01

0)

SM
A
P

A
lig

ns
pr
ofi

le
s
th
at

re
pr
es
en
t
bi
nd
in
g
si
te
s
in

a
se
qu
en
ce
-o
rd
er

in
de
pe
nd
en
t
fa
sh
io
n

ht
tp
://
nb
cr
-2
22
.u
cs
d.
ed
u/
op
al
2/

se
rv
ic
es
/S
M
A
PD

B
Se
ar
ch

R
en

et
al
.
(2
01

0)

Pa
tc
h-
Su

rf
er

M
at
ch
es

po
ck
et
s
re
pr
es
en
te
d
as

m
ul
tip

le
lo
ca
l
pa
tc
he
s

ca
pt
ur
in
g
ge
om

et
ry
,
hy
dr
op
ho
bi
ci
ty

an
d
el
ec
tr
os
ta
tic

po
te
nt
ia
ls

ht
tp
://
ki
ha
ra
la
b.
or
g/

pa
tc
hs
ur
fe
r2
.0

Sa
el

an
d
K
ih
ar
a
(2
01

2)

Is
oM

IF
Fi
nd
er

M
at
ch
es

si
x
m
ol
ec
ul
ar

in
te
ra
ct
io
n
fi
el
ds

ht
tp
://
bc
b.
m
ed
.u
sh
er
br
oo
ke
.c
a/

im
fi

C
ha
rt
ie
r
et

al
.
(2
01

6)

m
et
aP
oc
ke
t
2.
0

M
et
a
se
rv
er
,
la
rg
el
y
ba
se
d
on

po
ck
et

de
te
ct
io
n
by

ge
om

et
ri
c
cr
ite
ri
a

ht
tp
://
pr
oj
ec
ts
.b
io
te
c.
tu
-

dr
es
de
n.
de
/m

et
ap
oc
ke
t

Z
ha
ng

et
al
.
(2
01

1) (c
on

tin
ue
d)

332 D.J. Rigden

http://www.ebi.ac.uk/thornton-srv/software/PoreWalker
http://www.ebi.ac.uk/thornton-srv/software/PoreWalker
http://www.caver.cz
http://gopubmed2.biotec.tu-dresden.de/cgi-bin/index.php
http://gopubmed2.biotec.tu-dresden.de/cgi-bin/index.php
http://compbio.cs.princeton.edu/concavity
http://compbio.cs.princeton.edu/concavity
http://cbm.bio.uniroma2.it/pdbinder/usage.html
http://cbm.bio.uniroma2.it/pdbinder/usage.html
http://www.cse.lehigh.edu/%7echen/software.htm
http://www.cse.lehigh.edu/%7echen/software.htm
http://mspc.bii.a-star.edu.sg/tankp
http://mspc.bii.a-star.edu.sg/tankp
http://sumo-pbil.ibcp.fr
http://probis.cmm.ki.si
http://nbcr-222.ucsd.edu/opal2/services/SMAPDBSearch
http://nbcr-222.ucsd.edu/opal2/services/SMAPDBSearch
http://kiharalab.org/patchsurfer2.0
http://kiharalab.org/patchsurfer2.0
http://bcb.med.usherbrooke.ca/imfi
http://bcb.med.usherbrooke.ca/imfi
http://projects.biotec.tu-dresden.de/metapocket
http://projects.biotec.tu-dresden.de/metapocket


T
ab

le
10

.1
(c
on

tin
ue
d)

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

eM
at
ch
Si
te

M
at
ch
es

to
se
qu
en
ce

or
de
r-
in
de
pe
nd
en
t
lo
ca
l
bi
nd
in
g
si
te

al
ig
nm

en
ts
.
Pa
rt
ic
ul
ar
ly

de
si
gn
ed

fo
r
pr
ot
ei
n
m
od
el
s

ht
tp
://
br
yl
in
sk
i.c
ct
.ls
u.
ed
u/

em
at
ch
si
te

B
ry
lin

sk
i
(2
01

4)

G
al
ax
yS

ite
C
om

po
un
ds

fr
om

su
pe
ri
m
po
sa
bl
e
st
ru
ct
ur
es

ar
e
do
ck
ed

an
d
ra
nk
ed

as
ca
nd

id
at
e
lig

an
ds

fo
r
th
e
pr
ot
ei
n
of

in
te
re
st

ht
tp
://
ga
la
xy
.s
eo
kl
ab
.o
rg
/c
gi
-

bi
n/
su
bm

it.
cg
i?
ty
pe
=S

IT
E

H
eo

et
al
.
(2
01

4)

Pr
oB

IS
-l
ig
an
ds

Pr
ed
ic
ts
lig

an
d
bi
nd

in
g
po

se
s
ba
se
d
on

bi
nd

in
g
si
te
s

m
at
ch
ed

by
PR

O
B
IS

ht
tp
://
pr
ob
is
.c
m
m
.k
i.s
i/l
ig
an
ds

K
on
c
an
d
Ja
ne
zi
c
(2
01

4)

FI
N
D
SI
T
E
-L
H
M

D
oc
ks

an
d
cl
us
te
rs

lig
an
ds

m
at
ch
in
g
pr
ed
ic
te
d
bi
nd
in
g

si
te
s

ht
tp
://
cs
sb
.b
io
lo
gy
.g
at
ec
h.
ed
u/

fi
nd

si
te
lh
m

B
ry
lin

sk
i
an
d
Sk

ol
ni
ck

(2
00

9)

C
O
FA

C
T
O
R

D
oc
ks

an
d
cl
us
te
rs

lig
an
ds

m
at
ch
in
g
pr
ed
ic
te
d
bi
nd
in
g

si
te
s

ht
tp
://
zh
an
gl
ab
.c
cm

b.
m
ed
.

um
ic
h.
ed
u/
C
O
FA

C
T
O
R

R
oy

et
al
.
(2
01

2)

C
O
A
C
H

C
on
se
ns
us

pr
ed
ic
tio

n
ap
pl
ic
ab
le

to
bo
th

po
ck
et
s
an
d

pa
tc
he
s

ht
tp
://
zh
an
gl
ab
.c
cm

b.
m
ed
.

um
ic
h.
ed
u/
C
O
A
C
H
/

Y
an
g
et

al
.
(2
01

3)

C
at
al
yt
ic

re
si
du

es
M
E
PI

C
at
al
yt
ic

si
te

re
si
du
e
pr
op
en
si
tie
s,
m
ic
ro
-e
nv
ir
on
m
en
ta

nd
ge
om

et
ry
.
A

fu
rt
he
r
sc
or
e
in
cl
ud
es

co
ns
er
va
tio

n
ht
tp
://
pr
ot
ei
n.
ca
u.
ed
u.
cn
/m

ep
i

H
an

et
al
.
(2
01

2)

D
IS
C
E
R
N

M
ul
tip

le
fa
ct
or
s,
in
cl
ud
in
g
st
ru
ct
ur
e-

an
d

se
qu
en
ce
-d
er
iv
ed

ch
ar
ac
te
ri
st
ic
s

ht
tp
://
ph
yl
og
en
om

ic
s.
be
rk
el
ey
.

ed
u/
in
tr
ep
id

Sa
nk

ar
ar
am

an
et

al
.
(2
01

0)

PO
O
L

T
H
E
M
A
T
IC
S,

po
ck
et
s
an
d
(o
pt
io
na
lly

)
co
ns
er
va
tio

n
ht
tp
://
w
w
w
.p
oo
l.n

eu
.e
du
/

w
PO

O
L
/in

de
x2
.js
p

So
m
ar
ow

th
u
et

al
.
(2
01

1)

E
X
IA

2
R
el
at
iv
e
si
de

ch
ai
n
or
ie
nt
at
io
n,

ba
ck
bo
ne

fle
xi
bi
lit
y
an
d

(o
pt
io
na
lly

)
co
ns
er
va
tio

n
ht
tp
://
20
3.
64
.8
4.
19
6

C
hi
en

an
d
H
ua
ng

(2
01

2)
,

L
u
et

al
.
(2
01

4)

Pr
ot
ei
n-
pr
ot
ei
n

in
te
rf
ac
es

co
ns
-P
PI
SP

U
se
s
se
qu

en
ce

pr
ofi

le
s
an
d
so
lv
en
t
ac
ce
ss
ib
ili
ty

fo
r

re
si
du

es
an
d
th
ei
r
ne
ig
hb

ou
rs

ht
tp
://
pi
pe
.s
cs
.fs
u.
ed
u/
pp
is
p.

ht
m
l

Z
ho

u
an
d
Sh

an
(2
00

1)

m
et
a-
PP

IS
P

M
et
as
er
ve
r
us
in
g
co
ns
-P
PI
SP

,
PI
N
U
P
an
d
Pr
om

at
e

pr
ed
ic
tio

ns
ht
tp
://
pi
pe
.s
cs
.fs
u.
ed
u/
m
et
a-

pp
is
p.
ht
m
l

Q
in

an
d
Z
ho

u
(2
00

7)

(c
on

tin
ue
d)

10 Function Prediction Using Patches, Pockets … 333

http://brylinski.cct.lsu.edu/ematchsite
http://brylinski.cct.lsu.edu/ematchsite
http://galaxy.seoklab.org/cgi-bin/submit.cgi%3ftype%3dSITE
http://galaxy.seoklab.org/cgi-bin/submit.cgi%3ftype%3dSITE
http://probis.cmm.ki.si/ligands
http://cssb.biology.gatech.edu/findsitelhm
http://cssb.biology.gatech.edu/findsitelhm
http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://zhanglab.ccmb.med.umich.edu/COFACTOR
http://zhanglab.ccmb.med.umich.edu/COACH/
http://zhanglab.ccmb.med.umich.edu/COACH/
http://protein.cau.edu.cn/mepi
http://phylogenomics.berkeley.edu/intrepid
http://phylogenomics.berkeley.edu/intrepid
http://www.pool.neu.edu/wPOOL/index2.jsp
http://www.pool.neu.edu/wPOOL/index2.jsp
http://203.64.84.196
http://pipe.scs.fsu.edu/ppisp.html
http://pipe.scs.fsu.edu/ppisp.html
http://pipe.scs.fsu.edu/meta-ppisp.html
http://pipe.scs.fsu.edu/meta-ppisp.html


T
ab

le
10

.1
(c
on

tin
ue
d)

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

C
PO

R
T

C
on
se
ns
us

pr
ed
ic
tio

n
fr
om

si
x
di
ff
er
en
t
m
et
ho
ds

ht
tp
://
ha
dd
oc
k.
sc
ie
nc
e.
uu
.n
l/

se
rv
ic
es
/C
PO

R
T

de
V
ri
es

an
d
B
on
vi
n
(2
01

1)

PR
IS
E

A
to
m
ic
co
m
po
si
tio

n,
re
si
du
e
ty
pe

an
d
so
lv
en
te
xp
os
ur
e
of

a
ce
nt
ra
l
su
rf
ac
e
re
si
du

e
pl
us

its
ne
ig
hb

ou
rs

ht
tp
://
pr
is
e.
cs
.ia
st
at
e.
ed
u/
in
de
x.

py
Jo
rd
an

et
al
.
(2
01

2)

V
O
R
FF

IP
C
on

si
de
rs

a
va
ri
et
y
of

st
ru
ct
ur
al
,
en
er
ge
tic
,
ev
ol
ut
io
na
ry

an
d
cr
ys
ta
llo

gr
ap
hi
c
pa
ra
m
et
er
s

ht
tp
://
w
w
w
.b
io
in
si
lic
o.
or
g/

V
O
R
FF

IP
Se
gu

ra
et

al
.
(2
01

1)

N
uc
le
ic

ac
id
s

iD
B
Ps

C
on
se
rv
at
io
n,

el
ec
tr
os
ta
tic
s
an
d
se
co
nd
ar
y
st
ru
ct
ur
e

ht
tp
://
id
bp
s.
ta
u.
ac
.il

N
im

ro
d
et

al
.
(2
00

9)

D
IS
PL

A
R

Pr
ot
ei
n-
D
N
A

in
te
rf
ac
e
pr
op
en
si
tie
s,
co
ns
er
va
tio

n
an
d

so
lv
en
t
ac
ce
ss
ib
ili
ty

ht
tp
://
pi
pe
.s
cs
.fs
u.
ed
u/
di
sp
la
r.

ht
m
l

T
jo
ng

an
d
Z
ho

u
(2
00

7)

D
P-
do
ck

D
oc
ki
ng

co
m
pa
tib

ili
ty

w
ith

B
-D

N
A

ht
tp
://
cs
sb
.b
io
lo
gy
.g
at
ec
h.
ed
u/

sk
ol
ni
ck
/w
eb
se
rv
ic
e/
D
P-
do
ck
/

in
de
x.
ht
m
l

G
ao

an
d
Sk

ol
ni
ck

(2
00

9)

D
R
_b
in
d

G
eo
m
et
ry
,
el
ec
tr
os
ta
tic
s
an
d
co
ns
er
va
tio

n
ht
tp
://
dn
as
ite
.li
m
la
b.
ib
m
s.

si
ni
ca
.e
du
.tw

C
he
n
et

al
.
(2
01

2b
)

B
in
dU

P
E
le
ct
ro
st
at
ic
s
an
d
ot
he
r
st
ru
ct
ur
al

fe
at
ur
es

ht
tp
://
bi
nd
up
.te
ch
ni
on
.a
c.
il/

Pa
z
et

al
.
(2
01

6)

R
B
sc
or
e

E
le
ct
ro
st
at
ic

po
te
nt
ia
l,
so
lv
en
t
ac
ce
ss
ib
ili
ty

an
d
se
qu
en
ce

co
ns
er
va
tio

n
fo
llo

w
ed

by
ne
ig
hb

ou
ri
ng

ne
tw
or
k
an
al
ys
is

ht
tp
://
ah
so
ka
.u
-s
tr
as
bg
.fr
/

rb
sc
or
e/

M
ia
o
an
d
W
es
th
of

(2
01

5)

K
Y
G

R
es
id
ue

pr
op
en
si
tie
s
at

R
N
A
-b
in
di
ng

si
te
s,
si
ng
le

an
d

do
ub
le
t,
pl
us

co
ns
er
va
tio

n
ht
tp
://
ci
b.
cf
.o
ch
a.
ac
.jp

/K
Y
G

K
im

et
al
.
(2
00

6)

aa
R
N
A

G
eo
m
et
ry
,
co
ns
er
va
tio

n
an
d
re
si
du
e
co
m
po
si
tio

n
ht
tp
://
sy
si
m
m
.if
re
c.
os
ak
a-
u.
ac
.

jp
/a
ar
na

L
i
et

al
.
(2
01

4b
)

N
A
B
in
d

E
le
ct
ro
st
at
ic
s
an
d
tr
ip
le
t
in
te
rf
ac
e
pr
op
en
si
ty

ht
tp
://
lil
ab
.e
cu
st
.e
du
.c
n/

N
A
B
in
d

Su
n
et

al
.
(2
01

6)

(c
on

tin
ue
d)

334 D.J. Rigden

http://haddock.science.uu.nl/services/CPORT
http://haddock.science.uu.nl/services/CPORT
http://prise.cs.iastate.edu/index.py
http://prise.cs.iastate.edu/index.py
http://www.bioinsilico.org/VORFFIP
http://www.bioinsilico.org/VORFFIP
http://idbps.tau.ac.il
http://pipe.scs.fsu.edu/displar.html
http://pipe.scs.fsu.edu/displar.html
http://cssb.biology.gatech.edu/skolnick/webservice/DP-dock/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/DP-dock/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/DP-dock/index.html
http://dnasite.limlab.ibms.sinica.edu.tw
http://dnasite.limlab.ibms.sinica.edu.tw
http://bindup.technion.ac.il/
http://ahsoka.u-strasbg.fr/rbscore/
http://ahsoka.u-strasbg.fr/rbscore/
http://cib.cf.ocha.ac.jp/KYG
http://sysimm.ifrec.osaka-u.ac.jp/aarna
http://sysimm.ifrec.osaka-u.ac.jp/aarna
http://lilab.ecust.edu.cn/NABind
http://lilab.ecust.edu.cn/NABind


T
ab

le
10

.1
(c
on

tin
ue
d)

R
es
ou

rc
e

cl
as
si
fi
ca
tio

n
R
es
ou
rc
e
na
m
e

M
et
ho
d
de
sc
ri
pt
io
n

U
R
L

R
ef
er
en
ce
s

M
et
ho

ds
fo
r

ot
he
r
cl
as
se
s
of

lig
an
ds

IS
M
B
L
ab

Pr
ob
ab
ili
ty

de
ns
ity

di
st
ri
bu
tio

ns
of

in
te
ra
ct
in
g
at
om

s
ht
tp
://
is
m
bl
ab
.g
en
om

ic
s.
si
ni
ca
.

ed
u.
tw
/in

de
x.
ph
p

T
sa
i
et

al
.
(2
01

2)

Si
te
H
ou
nd

C
lu
st
er
s
pr
ed
ic
tio

ns
fr
om

in
te
ra
ct
io
n
en
er
gy

m
ap
s

ht
tp
://
sc
bx
.m

ss
m
.e
du
/

si
te
ho
un
d/
si
te
ho
un
d-
w
eb
/I
np
ut
.

ht
m
l

H
er
na
nd
ez

et
al
.
(2
00

9)

D
ru
gg

ab
ili
ty

D
oG

Si
te
Sc
or
er

Pr
ed
ic
ts
dr
ug

ga
bi
lit
y
of

po
ck
et
s
an
d
su
bp
oc
ke
ts

us
in
g
bo

th
lo
ca
l
an
d
gl
ob

al
fe
at
ur
es

ht
tp
://
do
gs
ite
.z
bh
.u
ni
-h
am

bu
rg
.

de
V
ol
ka
m
er

et
al
.
(2
01

2)

FT
M
A
P

D
oc
ks
,
sc
or
es

an
d
cl
us
te
rs

sm
al
l
m
ol
ec
ul
ar

pr
ob
es

ht
tp
://
ft
m
ap
.b
u.
ed
u

N
ga
n
et

al
.
(2
01

2)

10 Function Prediction Using Patches, Pockets … 335

http://ismblab.genomics.sinica.edu.tw/index.php
http://ismblab.genomics.sinica.edu.tw/index.php
http://scbx.mssm.edu/sitehound/sitehound-web/Input.html
http://scbx.mssm.edu/sitehound/sitehound-web/Input.html
http://scbx.mssm.edu/sitehound/sitehound-web/Input.html
http://dogsite.zbh.uni-hamburg.de
http://dogsite.zbh.uni-hamburg.de
http://ftmap.bu.edu


In that case the presence of a large hydrophobic patch was putatively linked to the
emulsifying activity (Pandya et al. 2000).

Interesting recent work has quantified the importance of hydrophobic surface
patches for enzyme adsorption onto lignin films. The existence of such patches,
rather than overall hydrophobic surface area, was found to be predictive of the
lignin interaction (and hence inhibition) of enzymes involved in the breakdown of
plant cell wall polysaccharides (Sammond et al. 2014). Such findings should enable
enzyme cocktails with better performance to be devised or designed.

10.2.2 Electrostatics

Analysis of the electrostatic field of a protein can help explain and predict its
function. This is most commonly done by mapping local electrostatic potential to a
representation of the protein surface, but overall properties such as the electric
dipole and quadrupole moments can also be calculated and have predictive value.
The best known application is for DNA or RNA binding proteins: since these
nucleic acids have a pronounced negative charge on their sugar-phosphate back-
bones proteins that bind to them often do so at positively-charged surfaces e.g.
(Ohlendorf and Matthew 1985); see Fig. 10.2a. Specialised methods for prediction
of patches binding nucleic acids are considered later (Sect. 10.6). Similarly,
enzymes with charged substrates may use long-range electrostatic interactions to
assist in substrate binding e.g. (Warwicker 1986).

The best known packages for calculation of protein electrostatic properties are
APBS, Adaptive Poisson-Boltzmann Solver (Baker et al. 2001), and DelPhi
(Rocchia et al. 2002). Both of these interface to the Chimera molecular visualisation
software (Pettersen et al. 2004), while access to APBS for PyMOL users is facil-
itated by a plug-in (http://www.pymolwiki.org/index.php/Apbsplugin). Each is also
available via a server (Table 10.1) with visualisation after calculation. Additional,
browser-based visualisation of electrostatic properties is offered by a variety of
servers, including eF-site/eF-surf for deposited PDB structures or uploaded files
respectively (Kinoshita and Nakamura 2004), Patch Finder Plus (Shazman et al.
2007), webPIPSA (Richter et al. 2008) and Bluues (Walsh et al. 2012). Notably, the
latter two allow useful comparisons to be made. Bluues allows for modelling of a
point mutation in a known structure and analysis of the consequent changes in
electrostatic potential and other factors such as pKa values of nearby residues.
WebPIPSA focuses on potentials alone, but allows easy comparison of multiple
structure with sophisticated methods for analysing the results. This comparative
approach can be used to rationalise and predict enzyme kinetic parameters
(Gabdoulline et al. 2007).
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10.2.3 Sequence Conservation

Sequence conservation is one of the most powerful and general factors for inferring
the importance of residues in a protein: positions at which mutations have been
disallowed or restricted to similar amino-acids over long evolutionary time periods
can be generally interpreted as being important for protein folding or function.
Localization of such positions at the protein surface suggests a potential functional
role in inter-molecular interactions, rather than the structural role that would be
inferred for a conserved, buried position. Of particular interest may be residues
conserved only among orthologous subsets within a large superfamily, not across
the whole superfamily, often called specificity-determining residues (SDRs) (re-
viewed in Chagoyen et al. 2016).

Perhaps the best known protein conservation tool is ConSurf (Ashkenazy et al.
2010, 2016), also available with precalculated results for PDB entries as
ConSurf-DB (Goldenberg et al. 2009). The method involves a pipeline of a
sequence database search (that can be initiated by a structure of interest), sequence
alignment, phylogenetic tree inference and tree based estimation of conservation
from site-specific evolutionary rates. Example results are shown in Figs. 10.2b and
10.3b. The server allows choices to be made at all steps including, crucially,
selection of database search results to include in the calculation. This selection
allows tailoring of the search to either encompass all members of a superfamily or
to restrict the calculation to members of a defined sub-group within a superfamily
thereby highlighting SDRs. A sophisticated but rapid treatment of sequence con-
servation is provided by the FuncPatch server (Huang and Golding 2015). It can
exploit the reasonable assumption that nearby residues in a functional patch will be
subject to similar substitution rates. The user provides an alignment which again, as
the authors point out, can alternatively contain a wide selection of sequences or
focus on a sub-group of orthologues.

The approach, of finding positions whose variation correlates with phylogenetic
tree structure—potential SDRs, has been well-explored. The well-known
Evolutionary Trace (ET) method (Lichtarge et al. 1996), available at a server

JFig. 10.2 Predictions of binding sites for the DNA-binding protein Magnaporthe oryzae PCG2
(PDB code 4ux5). In each component, the DNA duplex is shown as grey cartoon and the protein
as its solvent-accessible surface (a) or molecular surface (b, c). Each component contains a
component orientated to face the DNA-binding site on the left and, for comparison, a view of the
opposite face of the molecule on the right. a Electrostatic analysis using APBS (Baker et al. 2001)
and visualised using the PyMOL plugin. The protein surface is coloured blue (positive charge) or
red (negative charge). The unit of the scale is kBT/ec where kB is the Boltzmann constant, T is the
temperature, and ec is the charge of the electron. b Conservation analysis from the ConSurf server
(Ashkenazy et al. 2010; Goldenberg et al. 2009). The surface is coloured using a spectrum from
blue, most conserved, to red, least conserved. c Combined results from two structure-based
methods to predicted DNA-binding residues. Magenta shows predictions from both DISPLAR
(Tjong and Zhou 2007) and DR_BIND (Chen et al. 2012b), light purple residues predicted by
DISPLAR alone and deep purple residues only predicted by DR_BIND. The advantage of
applying multiple methods is immediately evident since each makes unique correct predictions
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(Table 10.1), is fundamentally a sequence-based method, but the results can be
visualised in the context of a representative known structure (Nemoto et al. 2013).
The ET Viewer server (Morgan et al. 2006) allows access to precalculated results
for structures in the PDB online or by a PyMOL session download and associated
plugin (http://mammoth.bcm.tmc.edu/pyetv). Extensions to the ET method propose
3D motifs composed of predicted functional residues that can be compared to other
structures and databases by the methods discussed in Chap. 11 (Ward et al. 2009).
Similar methods, available at the SDPsite server, automatically detect spatial
clusters of both broadly conserved positions and sub-tree conserved putative SDRs
using a known protein structure thereby improving prediction of functional sites
(Kalinina et al. 2009).

The INTREPID algorithm (Sankararaman and Sjolander 2008), also available as
a server (Sankararaman et al. 2009), is broadly comparable to the ET method, but
applies a different statistical model to analysis of the tree, enabling the effective use
of more divergent sequence alignments. Accordingly, it proved to predict functional
residues better than the ConSurf and ET algorithms of the time. INTREPID data are
widely used as a component of multi-factorial methods for catalytic site prediction.

Interesting recent work describes how amino-acid positions conserved within a
group of orthologues can be distinguished from those conserved in a broader family
of proteins (Lee et al. 2015). It involves one filter based on statistical comparison of
putative within-orthologue conserved positions to residues found more broadly,
discarding those commonly found elsewhere, and another that exploits structural
knowledge by selecting solvent-exposed positions. This results in a set of
specificity-conserved sites, in one case picking out heparin binding sites found only
in antithrombins, but not more broadly in the larger serpin family (Lee et al. 2015).

A less common means of assessing the importance of protein residues is to
measure the strength of purifying selection pressure on them at the DNA level as
the ratio of non-synonymous to synonymous substitutions (Nei and Gojobori 1986;
Suzuki 2004). Although much more labour-intensive, this approach has some
advantages, particularly an ability to work effectively with smaller numbers of
sequences. One interesting application mapped surfaces of membrane proteins,
revealing stronger selection pressure on interfaces for some bound lipids e.g.
cholesterol than on lipid-facing surfaces in general (Adamian et al. 2011).

10.2.4 Surface Atom Triplet Propensities

Two comparable methods exploit a purely statistical description of the protein
surface in terms of protein triplets or triangles, composed of 13 different atom types.
The STP method (Mehio et al. 2010) calculates points at which a probe (of 1.4 Å
radius, simulating a water molecule) simultaneously touches three protein atoms.
Purely empirically, it is observed that triplets composed of certain combinations of
atom types are more commonly found at ligand binding sites than others. Triplet
propensities to be found at binding sites drive a rapid calculation the result of which
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is visualised as a colour-coded surface. Interestingly, some preferences for certain
triplets of particular ligand atom types could be discerned. The results were com-
parable to or better than site finding through pocket finding by geometric or
energetic criteria (see below). These statistics are independent of geometric or
evolutionary information: thus they require only a single experimentally-
determined protein structure, and are equally applicable to surface patches, shal-
low peptide-binding sites or pockets (Mehio et al. 2010).

The later LISE method (Xie and Hwang 2012; Xie et al. 2013) finds triangles of
certain maximum dimensions that would be capable of contacting two ligand
atoms. As with STP, propensities for each triangle to be located at binding sites are
calculated but, in contrast, conservation information from PSI-BLAST is employed
and makes an additional small contribution to success. Again different to STP’s
surface mapping, the results are grid points above the protein surface predicted to be
likely sites of occupancy by ligands. Use of these two methods is illustrated in
Fig. 10.3d, e.

10.2.5 Multiple Properties

Recognition of the many distinct special properties that functional patches may
have, in comparison to protein surface in general, led to the development of
HotPatch which finds unusual patches based on diverse criteria (Pettit et al. 2007).
These include hydrophobicity, electrostatic properties, surface roughness and
concavity. Different properties proved to be effective for detecting different kinds of
functional patches, benchmarked against different classes of enzymes and proteins
that binding different classes of ligands, nucleic acids, lipids, carbohydrates etc. For
most challenges, neural networks capturing multiple properties out-performed
single characteristics in pinpointing functional patches.

10.3 Pockets

It has long been recognised that protein pockets or cavities are well-suited to small
molecule binding, the invagination of the protein surface providing increased
opportunities for intermolecular interactions for affinity or specificity of binding.
For enzymes, such an arrangement can also allow the necessarily precise orientation
of substrate at the catalytic site, as well as advantageously lowering the local
dielectric constant (Fersht 1985). The power of a purely geometric analysis of the
protein surface for identifying sites of interest was amply illustrated by a survey of
cavities in single-chain enzyme structures (Laskowski et al. 1996) showing that in a
remarkable 83% of cases the catalytic site was located in the largest cavity. This
correlation was particularly strong where the cavity was unusually large compared
to the other cavities found in the same protein.
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10.3.1 Geometric Descriptions of Pockets

The geometric definition of surface pockets has a long history, but new algorithms
continue to emerge, seeking greater efficiency and offering useful capabilities e.g.
for splitting pockets into distinct sub-pockets. The oldest and simplest pocket
finding methods placed the protein structure in a grid and then sought grid points
that were defined in some way as being within the protein. In Pocket (Levitt and
Banaszak 1992), for example, cavities were defined as empty regions enclosed on
both sides (along some dimension) by protein. LIGSITE (Hendlich et al. 1997)
introduced sampling along diagonals and a finer grid size to smooth the surface of
the pockets obtained and to reduce the orientation-dependence of the results. This
method was later developed into the popular LIGSITECSC (Huang and Schroeder
2006; see Sect. 10.3.3 and Table 10.1). A recent grid-based method, KVFinder,
adopts a two probe approach, defining pockets as volumes accessible to a small
probe—given a radius of 1.4 Å to emulate a water molecule—but not to a variably
sized larger probe (Oliveira et al. 2014). Available via a PyMOL plug-in, the
method notably allows users the ability to segment pockets into distinct functional
sub-pockets and measure their volume.

Grid-based methods have the disadvantage of producing slightly different vol-
ume measurements according to grid spacing and the orientation of the structure
with respect to a frame of reference. Grid-free methods can be divided into those
that use probes to define the protein surface and those based on representing the
surface using Voronoi diagrams. SURFNET (Laskowski 1995) defines cavities by
placing spheres between pairs of protein atoms and progressively reducing the
sphere diameter until protein atom overlaps are eliminated. Spheres for which the
radius drops below 1 Å are discarded, the retained remainder, with radii between 1
and 4 Å, defining the surface cavities. SURFNET is available through the inte-
grated ProFunc server (see Chap. 13) and contributes to metaPocket 2.0

JFig. 10.3 Predictions of binding sites for a Family 15 Carbohydrate Binding Module from
Cellvibrio japonicus (PDB code 1gny). a Stereo view of xylopentaose (balls and sticks) bound to
the protein surface (coloured by atom type). The carbohydrate is bound partly within a surface
crevice, interactions with the protein including both hydrogen bonds and hydrophobic interactions
with solvent-exposed aromatic residues. In this case only a small number of homologous
sequences are available so that evolutionary conservation does not help locate the binding site.
The GHECOM (b; Kawabata 2010) pocket detection picks out the small binding crevice, while the
metaPocket results (c; Zhang et al. 2011) extend the prediction to cover a slightly more open
region of the binding site. In each case, small spheres indicate predicted pocket regions. The
surface statistics methods STP (d; Mehio et al. 2010; surface coloured from red (high) to blue
(low) propensity) and LISE (e; Xie and Hwang 2012; Xie et al. 2013; two sites with volumes
represented by differently coloured small spheres) both provide very useful complementary
predictions, each covering parts of the binding site not detected by pocket predictions. Detection of
carbohydrate binding sites by using a hydroxyl group probe also works well: second cluster from
SiteHound (f; Hernandez et al. 2009; site represented by small magenta spheres) and the top patch
from the ISMBLab server (g; Tsai et al. 2012; predicted binding residues coloured red) both
correspond to the experimentally observed site
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(Zhang et al. 2011), and a version of the software can be accessed from within
Chimera. The PASS method (Brady and Stouten 2000) iteratively covers the pro-
tein surface with probes, eliminating between each cycle probes that are less buried.
This burial is defined using the number of protein atoms nearby, a number that will
be lower at convex surface regions than in surface cavities. At the end of the
process, clusters of probes remain within protein pockets. It is available for
download and accessible through the metaPocket 2.0 server. Similarly to KVFinder,
the PHECOM method (Kawabata and Go 2007) employs two probes. The protein
surface is covered with a small probe after which locations that overlap with
positions that could be taken up by a large probe are eliminated. In this way only
buried small probe locations, inaccessible to a large probe, are spared. Interestingly,
different radii of the larger probe were optimal for detection of binding sites for
different ligand classes. A grid-based extension of the method GHECOM
(Kawabata 2010) is available as a server (Table 10.1). Its use is illustrated in Fig.
10.3b.

Approaches based on Voronoi diagrams include CASTp (Liang et al. 1998).
This works with a mathematically equivalent Delaunay triangulation representation
of the protein surface, identifying pockets as collections of empty triangles by the
discrete flow method. Conveniently, the method produces a clear description of the
boundary between bulk solvent and pocket and, lacking a grid basis, is rotationally
invariant. In addition to a server (Dundas et al. 2006) (Table 10.1), the method has
a useful PyMOL plug-in (http://sts.bioe.uic.edu/castp/pymol.php) while precalcu-
lated server results for structures deposited in the PDB can be read directly into
Chimera. A recent method Fpocket (Le Guilloux et al. 2009) works with alpha
spheres, spheres that contact four atoms but which contain no atom. Such alpha
spheres of very small radius could be located within the protein, large spheres only
accommodated exterior to the protein. In an interesting intermediate range of radii
these spheres can occupy surface cavities and so their clustering can be used to
identify pockets. A final ranking follows the elimination of small and hydrophilic
pockets. The method relates to Voronoi diagrams since Voronoi vertices correspond
to the alpha sphere centres. An Fpocket server extends the methodology using the
MDpocket package to allow tracking of pocket volumes during Molecular
Dynamics trajectories (Schmidtke et al. 2010). Cavities can be automatically
identified or the user may focus on a region of particular interest.

10.3.2 Channels and Tunnels

A number of servers are specialised in the related tasks of finding the tunnels that
link enzyme catalytic sites to bulk solvent or the transmolecular channels that allow
transit through membrane transporters or pores. These analyses can facilitate an
in-depth understanding of protein function, but can also be predictive since the size
and characteristics of membrane channels, for example, will naturally define their
permeability to different ligands.

10 Function Prediction Using Patches, Pockets … 343

http://sts.bioe.uic.edu/castp/pymol.php


The MOLEonline 2.0 (Berka et al. 2012), MolAxis (Yaffe et al. 2008) and
BetaCavityWeb (Kim et al. 2015) servers can each accept a single structure and
then define tunnels leading to buried protein cavities, either automatically identified
or specified by the user. The residues lining the tunnels are specified and an esti-
mate made of the bottleneck radius i.e. the radius of the tunnel at its most restricted
point. The corresponding MOLE 2.0 version is also available as a standalone
program and as a PyMOL plugin (http://webchem.ncbr.muni.cz/Platform/App/
Mole). Application of MOLE 2.0 has provided interesting insights into the fre-
quency and composition of channels, and how channel characteristics can be cor-
related to protein function (Pravda et al. 2014; Sehnal et al. 2013). PoreWalker
(Pellegrini-Calace et al. 2009) is a tool specifically designed for identifying chan-
nels through transmembrane proteins. It provides profiles of channel radius along
the pore axis and measurements of a potassium channel supported the proposed
existence of a selectivity filter allowing passage only to dehydrated K+ ions. The
transient and dynamic nature of these tunnels and channels means that analytical
tools will ideally accept multiple conformations from, for example, Molecular
Dynamics simulations. This is the case for the CAVER software, available as a
freestanding application CAVER Analyst (Kozlikova et al. 2014) and via a PyMOL
plug-in (http://www.caver.cz/). Impressively, analysis of the dynamic behaviour of
bottleneck radii in tunnels determined for a haloalkane dehalogenase structure was
in very good agreement with kinetic data previously obtained for proteins mutated
at bottleneck positions (Chovancova et al. 2012).

10.3.3 Distinguishing Functional Pockets

Once discovered geometrically, the key question then becomes how to further
distinguish between pockets that are likely to bind ligands and those that have
arisen by chance. This is likely to be a particular issue for smaller pockets since
atypically large pockets are very likely to be functional (Laskowski et al. 1996).
Identifying which (sub-)pockets are capable of binding small ligands has two
distinct applications, one in predicting or understanding the binding of natural
ligands, the second in prediction of druggability. Druggability refers to the ability of
proteins, and especially the functionally important regions of those proteins, to bind
to small molecules with drug-like properties. These properties are somewhat dis-
tinct from those of naturally occurring compounds (Feher and Schmidt 2003) and
so some specialised predictors have been developed as discussed in Sect. 10.7.

Some of the methods used to predict functional pockets among candidate surface
invaginations are the general ones previously encountered above. Thus, mapping of
evolutionary conservation on to the protein surface will highlight functionally
important pockets through their conservation. This was implemented, for example,
by the ConCavity method (Capra et al. 2009) and by the LIGSITECSC algorithm
(Huang and Schroeder 2006) each of which was demonstrated to perform better
than a purely structural approach. webPDBinder (Bianchi et al. 2013) adds a third,
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novel property to geometry and conservation in making its predictions of
ligand-binding pockets. This represents the frequency with which similarities
between residue triplets in the protein structure of interest, each residue being
represented by three main chain and three side chain points in three dimensions, are
found in databases of binding and non-binding pockets. Triplets over-represented in
binding versus non-binding pockets are inferred as making the pocket in which they
are found in the structure of interest more likely to be ligand binding.

The method Q-Sitefinder (Laurie and Jackson 2005) implemented an
energy-based, rather than purely geometric, discovery of pockets. The protein of
interest was placed in a grid and van de Waals interaction potential energy calcu-
lated for all intersections that do not overlap with the protein. Clustering of the
positions with the most favourable interaction energy produces a ranking of pockets
in terms of probability of ligand binding. Comparable probe-based interaction
methods can be used, with probes of diverse chemical types, to help predict specific
binding sites for certain kinds of ligands e.g. carbohydrates or phosphorylated
compounds (see Sect. 10.6).

Another factor, not yet mentioned, that distinguishes ligand binding pockets is
their depth: most such cavities will possess residues that are both solvent accessible
and deep i.e. determined to be distant from bulk solvent. This approach, optionally
including additional sequence conservation information, is available at the Depth
server (Tan et al. 2013) (Table 10.1). Similarly, the electrostatic properties of
identified pockets have been given special treatment by the VASP-E method (Chen
2014). This defines 3D volumes representing electrostatic potentials and can
compare volumes between homologous sequences, rationalising observed substrate
specificities and allowing prediction of key specificity-determining residues.
A further property that distinguishes functional properties is desolvation. The
dPredGB method (Schneider and Zacharias 2012), for example, has been shown to
improve detection of binding pockets by adding desolvation to purely geometric
pocket finding criteria. Finally, it is worth mentioning the MetaPocket server
(Zhang et al. 2011) which integrates results from several distinct algorithms (see
also Fig. 10.3c). These largely employ distinct algorithms for geometry-based
discovery of pockets, but some methods additionally factor in conservation and
physicochemical properties.

10.3.4 Predicting Ligands for Pockets

10.3.4.1 Pocket Matching

Some methods go further than predicting ligand binding and attempt to predict
which ligands are likely to bind to a given pocket or sub-pocket. This can involve
an attempt to spot broad similarities between new pockets of interest and others
already characterized as binding a particular ligand, as reviewed in (Jalencas and
Mestres 2013). These programs are comparable to the 3D motif methods discussed
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in Chap. 11. A recent review has examined small molecule binding pockets on a
large scale, considering how a single pocket can recognise diverse ligands or,
conversely, how a single ligand can bind to similar or quite different pockets on
different proteins (Gao and Skolnick 2013). Among pocket matching methods with
currently available servers, SuMo (Jambon et al. 2003) describes and matches 3D
arrangements of chemical groups in a fashion that is independent of both
amino-acid identity and residue order. ProBIS represents functional groups of
protein surfaces as graphs and produces results that identify the superimposable
sub-graphs between graphs for query and database proteins (Konc and Janezic
2010). A recent extension, ProBIS-ligands (Konc and Janezic 2014), uses matching
binding sites to predict the binding mode of a ligand for a protein of interest based
on the pose observed in another (see also below). SMAP works by aligning profiles
that represent binding sites in a sequence-order independent fashion (Xie et al.
2009). Importantly, recent developments demonstrate improvements in matching
known binding sites in the PDB to homology models (Brylinski 2014), using
sequence-order independent binding site alignments, with tolerance of
modelling-induced distortions in the sites. A particularly sophisticated treatment of
pocket characteristics is implemented by Patch-Surfer (Sael and Kihara 2012). 3D
Zernike descriptors are used to efficiently capture characteristics of circular patches
within putative ligand-binding pockets enabling rapid database searching. These
characteristics include geometric properties (surface shape and visibility i.e. con-
cavity or convexity), hydrophobicity and electrostatic potential. Benchmarking
confirmed that two important advantages result from this local, patch-based char-
acterisation: identification of pocket similarity even if the two related structures are
in different conformations or if the sites are flexible; and ligand prediction based on
analogous pockets in the absence of sequence or structure similarity. A recent
method, IsoMIF (Chartier and Najmanovich 2015) (also available as a server
Chartier et al. 2016) calculates in-pocket molecular interaction fields (MIFs) using
six probes—hydrophobic, aromatic, H-bond donor, H-bond acceptor, positive
charge and negative charge—and assesses similarities to user-provided pockets or
larger databases such as a set of drug-target complexes. Similar MIFs are indicative
of potentially similar native binding properties. Finally, although these methods are
based on clear physicochemical similarities between evolutionarily unrelated
binding sites for similar ligands e.g. mononucleotides (Kinoshita et al. 1999), other
work has highlighted the sometimes surprisingly different environments the same
compound encounters in different binding sites (Kahraman et al. 2010).

10.3.4.2 Docking for Function Prediction

Just as pockets may be probed with atoms or small groups (e.g. with Q-Sitefinder,
see above) they may be targeted for docking of whole molecules. A detailed dis-
cussion of small molecule docking algorithms is not appropriate here, but their use
to annotate protein function is worth mentioning. This has been established in a
series of papers that have docked libraries of molecules to proteins, considering as
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putative natural ligands those which are predicted to interact most favourably
(Hermann et al. 2006). An early prominent example concerned a member of the
amidohydrolase superfamily, of previously unknown function, from Thermotoga
maritima. Given this superfamily membership, around 4000 potential substrates
were identified from the KEGG database (Kanehisa 2002) and modelled in their
high-energy tetrahedral transition states. The best-scoring molecules upon docking
frequently contained an adenosine substructure leading to the eventual biochemical
characterisation of the enzyme in question as a 5-methylthioadenosine/S-adeno-
sylhomocysteine deaminase (Hermann et al. 2007). Importantly, other papers
demonstrate the value of homology models of target structure for function anno-
tation by docking, in one case to assign substrate specificity among dipeptide
epimerases (Lukk et al. 2012). An interesting recent variation of this theme
employed docking of multiple potential intermediates in order to better understand
specific reaction routes taken by triterpenoid synthases (Tian et al. 2014). In these
studies, well-known docking programs such as DOCK (Lang et al. 2009) and Glide
(Friesner et al. 2004) have been used but they can also be supplemented with more
CPU-intensive quantum mechanical/molecular mechanical (QM/MM) calculations
to provide structure-based predictions of enzyme specificity e.g. (Tian et al. 2013).

A number of comparable methods discover potential ligand binding sites
through analysis of structures of proteins homologous to that of interest. In
GalaxySite (Heo et al. 2014), compounds found bound to PDB structures of
homologous proteins are treated as candidate ligands for the new structure of
interest and their poses considered as starting points for refinement. Compounds
that refine to favourable binding modes are considered as potential true ligands of
the compound of interest. More advanced methods like FINDSITE (Brylinski and
Skolnick 2009) and COFACTOR (Roy et al. 2012) find additional candidate
binding sites in the protein of interest, and thereby additional candidate ligands
through, for example, 3D motif matching (Chap. 11). After refinement, candidate
ligands are clustered, scored and used for function prediction. As reflected in the
name sometimes applied to these tools, Ligand Homology Modelling, performance
on modelled rather than experimental structures has been a particular focus, and
even poorer models have useful predictive power (Skolnick et al. 2013).

10.4 Prediction of Catalytic Residues

As mentioned above, a geometric analysis of the protein surface is surprisingly
effective at picking out pockets containing catalytic sites. Within catalytic sites,
which would also be expected to be strongly conserved of course, a variety of
methods aim to predict the identity of key catalytic residues (Zhang et al. 2009).
Among them are methods to spot previously seen arrangements of catalytic residues
through the use of motifs (see Chap. 11).

Other methods can exploit the statistical over-representation of certain
amino-acids among catalytic residues (Bartlett et al. 2002). Amino-acids with acidic
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or basic side chains are the most common with His, having a pKa value near
neutrality, being the most over-represented. Small or hydrophobic amino-acids,
lacking suitable chemistry in their side chains, rarely participate in catalytic sites.
Other individual characteristics that can be used to help predict catalytic residues
are relatively low solvent accessibility compared to non-catalytic polar residues
(Bartlett et al. 2002), relatively high numbers of contacts with other residues (del
Sol et al. 2006), relative centrality (closeness to the protein’s centre; Ben-Shimon
and Eisenstein 2005) and relatively high rigidity (Sacquin-Mora et al. 2007; Yuan
et al. 2003). Striking recent success has also been achieved by a measure of relative
side chain orientation, catalytic residues tending to point towards the centre of the
catalytic site (Chien and Huang 2012).

Two interesting methods have detected catalytic residues through in silico cal-
culation of biophysical properties. The first detects catalytic residues through their
often being charged residues (see above) positioned in an electrostatically desta-
bilising environment (Elcock 2001). Thus, residues with the most positive calcu-
lated electrostatic free energies are often found to be catalytic or otherwise
functionally important. The second method, theoretical microscopic titration curves
(THEMATICS), exploits the observation that catalytic residues possessing ionis-
able groups are often positioned in environments that perturb their protonation
behaviour. pKa values are often found to deviate from those typically observed for
the amino-acid in question and perturbed residues can persist in a given partially
protonated state over an unusual span of pH ranges (Ondrechen et al. 2001).

Current methods for predicting catalytic residues typically exploit several dis-
tinct characteristics, exploiting statistical or Artificial Intelligence means to produce
improved consensus predictions. For example, the MEPI server (Han et al. 2012)
profitably combines individual Dscore and MEscore, measuring distance from
protein centre and residue propensities in the microenvironment of a given residue
respectively, producing a MEDscore. The performance of this measure was com-
parable to a conservation-based CONscore with which it could be further combined
to produce a best-performing CMEDscore. The recently introduced EXIA2 server
(Lu et al. 2014) achieves excellent performance by combining a novel metric, based
on the tendency of catalytic residue side chains to point towards the centre of the
catalytic site, with conservation information (Chien and Huang 2012).
The DISCERN server uses INTREPID phylogenomic data (see Sect. 10.2.3), cat-
alytic site residue propensities, characteristics of neighbouring sites, location in a
pocket (calculated with LIGSITECSC; see Sect. 10.3.3), centrality, solvent acces-
sibility, rigidity (inferred from B-factors of crystal structures) and secondary
structure (Sankararaman et al. 2009). These factors, weighted after benchmarking,
are combined in a linear fashion using logical regression. The THEMATICS pro-
tocol is now bundled with pocket detection and optional conservation analysis in
the POOL server (Somarowthu et al. 2011). Combination of these distinct char-
acteristics using a Machine Learning approach boosts performance over
THEMATICS alone to levels above comparable predictors.
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10.5 Protein-Protein Interfaces

Many protein functions depend on interactions, either obligate or transitory,
between two or more proteins. For the purposes of this chapter it is useful to
distinguish protein-protein interactions, between two folded protein domains, and
protein-peptide interactions where a linear motif in one partner interacts with a
folded domain in another. Although both types of interface would be expected to be
detectable using sequence conservation, in other ways they differ. Protein-protein
interfaces are known to be relatively flat, somewhat more hydrophobic than protein
surface in general, and to have distinct residue propensities such as a relative
over-representation of aromatic amino-acids (Jones and Thornton 1997). In con-
trast, linear motifs typically bind to a cavity on their partner, with the interface
producing more hydrogen bonds than protein-protein interfaces, and showing a
clear over-representation of Ile and Leu, as well as aromatic residues (London et al.
2010). Indeed, peptides tend to bind to the largest pocket on the surface of their
partner (London et al. 2010) so that many of the cavity detection methods men-
tioned above can be expected to work well for detecting putative interfaces. The
geometry-independent method STP (Mehio et al. 2010) has also been shown to
predict protein-peptide interfaces.

For protein-protein interactions, a number of predictors are available to try to
predict the position and composition of interfaces from structural information for
one partner (recently reviewed by Esmaielbeiki et al. 2016). Typically they inte-
grate a selection of characteristics each of which helps differentiate interfaces in
some way from the remaining protein surface. These include sequence conserva-
tion, solvent accessibility, hydrophobicity, amino-acid propensities and shape. The
cons-PPISP server (Zhou and Shan 2001), for example, uses position-specific
sequence profiles to represent residue propensities and sequence conservation, and
solvent accessibility data. Information for a given residue is considered along with
similar data for its sequential neighbours. The meta-PPISP (Qin and Zhou 2007) is
a metaserver that takes cons-PPISP predictions, along with those from PINUP and
Promate methods, to produce better joint predictions. CPORT is another consensus
predictor that performed better than its six component contributions (de Vries and
Bonvin 2011). Its predictions were used to inform data-driven 3D docking of
protein structures (see Chap. 8) with HADDOCK; results comparing well to
ab initio docking predictions. A different approach is taken by the PRISE server
(Jordan et al. 2012) which defines a ‘structural element’ for each surface residue of
a protein, considering atomic composition, residue type and solvent exposure of the
central residue plus its neighbours on the surface. ‘Structural elements’ are com-
pared to a database of known binding sites to predict whether they are likely to form
part of an interface on the protein of interest. The VORFFIP method (Segura et al.
2011) again considers residues in their surface environment (defined using Voronoi
diagrams) and integrates a variety of metrics from structural features (solvent
accessibility, hydrophobicity and so on), energy predictions, sequence conservation
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and crystallographic B-factors. Example results for several servers for
protein-protein interface prediction are shown in Fig. 10.4.

10.6 Other Specialised Binding Site Predictors

As well as the broad range of general methods already discussed, certain ligands,
through their importance or distinct features, have inspired the development of
specialised predictors. First among these ligands is duplex DNA (Ding et al. 2010)
and, to a lesser extent, RNA (Puton et al. 2012; Zhao et al. 2013). These nucleic

Fig. 10.4 Predictions of binding sites for human cyclin-dependent kinase 6 in complex with
cyclin (magenta cartoon) and the p18 kinase inhibitor (grey cartoon). In each component two
views are shown, the left facing the cyclin binding site, the right focusing on the inhibitor site.
a Interface residues at the two sites coloured shades of yellow. b Results of ConSurf analysis
(Ashkenazy et al. 2010; Goldenberg et al. 2009). The surface is coloured using a spectrum from
blue, most conserved, to red, least conserved. The large blue areas distinct from the protein
interfaces contain the ATP-binding site and catalytic residues. c Residues predicted as protein
interface by PRISE (Jordan et al. 2012) are coloured orange. d CPORT analysis (de Vries and
Bonvin 2011) with predicted interface residues red and neighbouring possible interface residues
green. Non-interface residues are coloured blue. e and f show results from VORFFIP (Segura et al.
2011) and meta-PPISP (Qin and Zhou 2007), respectively, with surface residues according to
predicted interface propensity—red, strongly predicted to form a protein interface, to blue, not
predicted
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acids share a highly negatively charged backbone and so identifying patches with a
distinct positive charge is often the starting point for predicting DNA- or RNA-
binding sites (Jones et al. 2003). Currently available servers adopt distinct strate-
gies. DNA-binding proteins, for example, finds conserved patches and then predicts
DNA binding capacity using patch- and whole protein-derived measures of con-
servation, electrostatics and secondary structure (Nimrod et al. 2009). The recent
BindUP server (Paz et al. 2016) finds patches, both positive and negative, feeding
information on the largest of these and other structural features to a Support Vector
Machine classifier. DISPLAR uses residue interface propensities, conservation
information and solvent accessibility, supplementing these data for a given residue
with those figures for its near spatial neighbours (Tjong and Zhou 2007) (see
Fig. 10.2c for an example). DR-bind considers solvent exposure to target surface
patches but not pockets, subsequently employing both electrostatics and conser-
vation information (Chen et al. 2012b) (see Fig. 10.2c). The DP-dock server pre-
dicts which residues of a DNA-binding protein contact DNA through explicit
docking of its structure with B-form DNA (Gao and Skolnick 2009), a more
compute-intensive approach that somewhat outperforms DISPLAR. For RNA, the
KYG server for prediction of RNA-binding interfaces uses propensities for different
amino-acids to be found at known interfaces—calculated both for individual
amino-acids and for doublets—as well as PSI-BLAST derived information on
conservation (Kim et al. 2006). The recently introduced aaRNA predictor (Li et al.
2014b) uses structure-based data derived from geometry, conservation and residue
composition. Unusually, it also integrates sequence-based predictive methods and
can apply structure-based predictions from homology models when experimental
structural data are not available. The very recent NABind server (Sun et al. 2016)
detects RNA binding sites using electrostatic potential and interface triplet
propensities (see also 10.2.4). Finally, the RBscore server (Miao and Westhof
2015), designed for RNA binding site prediction but also demonstrated to work
well for DNA-binding sites, first assesses individual residues using electrostatic
potential, solvent accessibility and sequence conservation. Residue binding prob-
ability is then predicted using neighbouring network based scoring.

Carbohydrate-binding sites are known to be enriched in certain amino-acids
(Malik and Ahmad 2007; Taroni et al. 2000). Aromatic residues interact with the
relatively flat surface of carbohydrate monomers while other common residues such
as Arg and Asp can form bidentate hydrogen bonds with the hydroxyl groups of the
carbohydrate ligand. These propensities were used to predict surface patches as
candidate carbohydrate binding sites (Taroni et al. 2000). The InCa-SiteFinder
algorithm (Kulharia et al. 2009) used these propensities in conjunction with
Q-SiteFinder prediction (see Sect. 10.3.3). Most recently, 3D probability densities
of interacting atoms have been used to obtain excellent results (Tsai et al. 2012) by
one of the few methods available as a server (see Table 10.1 and Fig. 10.3f). This
methodology, first applied by the authors to predict protein-protein interfaces (Chen
et al. 2012a) (see also Sect. 10.5) has also found use for prediction of binding sites
for other ligands—fatty acids (Mahalingam et al. 2014a) and flavin mononucleotide
(Mahalingam et al. 2014b). A similarly flexible framework for discovery of binding
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sites for particular classes of ligands is offered by EasyMIFS and SiteHound (Ghersi
and Sanchez 2009), the former producing interaction energy maps for a given probe
over the protein surface, the latter clustering the results to derive predicted binding
sites as top ranking clusters. A particular application was the prediction of binding
sites for phosphorylated ligands, including phosphorylated peptides, sugar phos-
phates and ATP (Ghersi and Sanchez 2009). For most ligand classes EasyMIFS in
combination with SiteHound provided the best predictions. Example results for
SiteHound are shown in Fig. 10.3e.

10.7 Medicinal Applications

As mentioned above, the properties of drugs differ somewhat to those of natural
products (Feher and Schmidt 2003). Accordingly, some methods have been opti-
mised for the distinct purpose of detecting pockets with suitable properties for
binding drug-like molecules. The Fpocket method mentioned above has been
extended to include a druggability score (Schmidtke and Barril 2010) based on
hydrophobic and polarity measures of the pockets identified. Fpocket druggability
scores are reported in the pocket PDB files downloaded from the server with scores
greater than 0.5 indicating predicted druggability. The DoGSiteScorer server
(Volkamer et al. 2012) automatically detects pockets in a protein structure provided
and scores druggability using a support vector machine to process both global and
local descriptors of the pocket. In the former category are characteristics such as
size, shape and hydrophobicity, but local features such as frequency of interactions
of certain residue types are shown to enhance predictive value. Also unusually, the
server can decompose pockets into subpockets automatically. These methods
appear to have comparable predictive value. Another druggability method, FTMAP,
operates as an in silico analog of experimental methods for finding druggable
pockets by exposure of a protein to small organic molecules (Ngan et al. 2012).
Small probe molecules are rigid body docked to the protein surface, energy min-
imised and scored. Clusters of probes represent predictions of druggable loci on the
protein surface.

Protein-protein interfaces, being more planar and larger than most surface
pockets are often considered less druggable (Arkin and Wells 2004). However, the
realisation that a few key residues—the ‘hot spots’—often contribute most of the
interaction energy (Bogan and Thorn 1998) encourages optimism that these specific
regions can be targeted by small molecules. Some methods take an experimentally
determined interface and predict which residues contribute most to the interaction.
Here, only the few methods for the distinct and more challenging task of predicting
hot spots for a single structure, in the absence of its partner, are considered. Similar
clustering of docked small molecules as with FTMAP has recently been shown not
only to find druggable hot spots within interfaces, but also in fact to be useful for
the preceding step of interface identification (Li et al. 2014a) (see above). Recently,
unsuspected allosteric sites have emerged as loci for structure-based drug design
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e.g. (De Smet et al. 2014). Since protein molecules are dynamic, and druggable
pockets can transiently form and disappear, more compute-intensive Molecular
Dynamics-based methods have also been devised. One protocol studied the inter-
action of hydrophobic solvent probes mixed with water for a series of test cases.
Druggable sites were identified first by finding regions of the protein enriched in
probe binding vs a reference simulation and then by clustering the resulting probe
interaction spots (Bakan et al. 2012). Interesting recent work has discovered that
allosteric sites can be identified through analysing calculated energy differences
between residue pair interactions, in Molecular Dynamics simulations (see
Chap. 12) of paired holo and apo structures (Ma et al. 2014). Categorising these
differences in terms of their magnitude and comparing the sizes of the resulting
categories allowed a predictive metric for allosteric sites to be produced. Based on
this finding, a pipeline that finds cavities, scores their druggability and then com-
pares residue-residue interactions in the two allosteric states was used to predict
druggable allosteric sites, with data supporting the proposed functionality of some
already being available (Ma et al. 2014). An obvious current limitation of the
method is the requirement for reliable structural information on both allosteric
states.

It is worth noting that pocket detection and comparison as discussed here has
other potential roles in drug design and discovery. Drug promiscuity, binding to
more than one target, is known to depend more on binding site similarity than any
properties of the compound in question (Haupt et al. 2013). This promiscuity can be
a problem—the undesirable binding of a drug to sites other than that originally
targeted—but may also be advantageous: it underlies efforts to repurpose existing
drugs for new diseases with considerable advantages compared to discovery and
testing of novel compounds (Novac 2013). Drug promiscuity can be rationalised
and predicted through binding site pocket comparison (Vulpetti et al. 2012).
Interesting recent work using molecular interaction fields implemented in the FLAP
software, could explain off-target binding of oestrogen receptor modulators to an
ion channel ATPase, for example, as well as the polypharmacology of Nilotinib for
oxidoreductase NQO2 alongside the originally targeted kinase (Siragusa et al.
2015). In two papers focusing on large-scale comparison of pockets and drug-target
networks in the Mycobacterium tuberculosis ‘pocketome’, known polypharma-
cology of certain drugs could again be correlated to the statistically significant
similarity observed between the respective binding sites (Anand and Chandra 2014;
Kinnings et al. 2010).

10.8 Conclusions

This chapter has tried to cover up-to-date and readily available methods that help
understand and predict protein function from analysis of the surface of a protein
structure. Two themes emerge: first that a remarkable variety of properties can be
analysed, understood and used predictively; second that individual factors can
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frequently be advantageously combined to improve performance. Binding sites
were here divided into surface patches and pockets but a clear classification is not
necessarily possible or even desirable. Of course, many characteristics such as
evolutionary conservation and electrostatic potential can be equally informative for
both patches and pockets, as discussed. Furthermore, recent consensus methods
such as COACH (Yang et al. 2013) conveniently predict both flatter sites for
binding of DNA, for example, as well as pockets for binding small molecules. The
geometry-independent STP method (Mehio et al. 2010) is another flexible tool.
Encouragingly, several papers have shown that homology models, even those based
on relatively distant relationships, can be profitably analysed by the methods
described here (Lukk et al. 2012; Skolnick et al. 2013; Yang et al. 2013). Although
the PDB continues to expand rapidly, with the total number of deposits having
surpassed 100,000, this applicability to in silico models dramatically extends the
value of structure-based function annotation methods.
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Chapter 11
3D Motifs

Jerome P. Nilmeier, Elaine C. Meng, Benjamin J. Polacco
and Patricia C. Babbitt

Abstract Three-dimensional (3D) motifs are patterns of local structure associated
with function, typically based on residues in binding or catalytic sites. Protein
structures of unknown function can be annotated by comparing them to known 3D
motifs. Many methods have been developed for identifying 3D motifs and for
searching structures for their occurrence. Approaches vary in the type and amount
of input evidence, how the motifs are described and matched, whether the results
include a measure of statistical significance, and how the motifs relate to function.
Compared to algorithm development, less progress has been made in providing
publicly searchable databases of 3D motifs that are both functionally specific and
cover a broad range of functions. A roadblock has been the difficulty of generating
detailed structure-function classifications; instead, automated, large-scale studies
have relied upon pre-existing classifications of either structure or function.
Complementary to 3D motif methods are approaches focused on molecular surface
descriptions, global structure (fold) comparisons, predicting interactions with other
macromolecules, and identifying physiological substrates by docking databases of
small molecules.
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List of Abbreviations

3D Three-dimensional
CSA Catalytic Site Atlas
DRESPAT Detection of REcurring Sidechain PATterns
EC Enzyme Commission
FFF Fuzzy Functional Form
GASPS Genetic Algorithm Search for Patterns in Structures
GO Gene Ontology
HMM Hidden Markov Model
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S-BLEST Structure-Based Local Environment Search Tool
SCOP Structural Classification of Proteins
SOIPPA Sequence Order-Independent Profile-Profile Alignment
SPASM SPatial Arrangements of Sidechains and Mainchains
TESS TEmplate Search and Superposition

11.1 Background: Functional Annotation

The genomic approach to biology has resulted not only in copious amounts of new
sequence and structure data, but also the prospect of obtaining a complete “parts
list” for many organisms. However, a parts list is of little use without some
understanding of what each part does. Even with entire genome sequences in hand,
not all genes have been identified, and among identified genes, significant numbers
have not been annotated with any function. The amount of sequence data far
outweighs the available structures, so to a large extent, the assignment of functions,
or functional annotation, has been performed by large-scale sequence searching. In
many cases, the function of an unknown sequence is inferred, or transferred,
through similarity to a sequence with a known function.
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11.1.1 What Is Function?

Function can be described at many levels and from many perspectives (Radivojac
et al. 2013). Objective classifications of function are needed for training and testing
any method of functional annotation. The Gene Ontology (GO) system (Ashburner
et al. 2000) is a hierarchical set of functional descriptors ranging from broad to specific
in each of three categories: biological process, cellular component, and molecular
function. For the specific molecular functions of enzymes, GO embeds the Enzyme
Commission (EC) system (International Union of Biochemistry and Molecular
Biology: Nomenclature Committee and Webb 1992) which is also hierarchical:
catalysed reactions are described with four integers, where the first number refers to a
broad class of reactions and the last number refers to a specific substrate. GO also
includes molecular function terms for stable binding relationships (where binding is
not functionally associated withmembrane transport or catalytic activity). TheKEGG
annotation (Kanehisa and Goto 2000; Ogata et al. 1999), while used mostly for
studying reaction pathways, can also be used to annotate enzyme function.

Other methods for classifying proteins, while less directly related to function, can
be used to infer relationships related to function. These include Structural
Classification of Proteins (SCOP) (Murzin et al. 1995; Conte et al. 2000; Andreeva
et al. 2004, 2008) and Class, Architecture, Topology, and Homologous superfamily
(CATH) (Orengo et al. 1997, 1999, 2003). Both methods are hierarchical classifi-
cations of protein substructures such as folds (Richardson 1981) or domains (Chothia
and Lesk 1986; Rost 1997), that can be “mixed and matched” evolutionarily (Chothia
et al. 2003). In SCOP, domains are classified into families, superfamilies, folds, and
classes. Folds are, in general, only indirectly related to function (Babbitt and Gerlt
1997; Todd et al. 2001), but they can be very informative for many cases. The use of
fold similarity for annotation transfer is discussed in Chap. 9.

The GO and EC annotations for functional annotation cover nearly all reactions
found in biochemical systems. They do not, however, include details on enzymatic
mechanism, or the role of the protein in the reaction (Babbitt 2003). Two enzymes
that catalyze the same overall reaction would have the same EC number, even if
their structures and catalytic intermediates are very different. Additionally, many
enzymes are evolutionarily related because they share an intermediate step in the
overall reaction, that is, a common partial reaction. The EC and GO naming
systems do not account for such similarities in any practical way, and yet such
similarities are a defining feature for many protein superfamilies, with the enolase
superfamily as the most notable example. Figure 11.1 illustrates the variety of
reactions associated with the enolase superfamily.

11.1.2 Genomics and Functional Annotation

The progress in the genomics community in assigning functional annotations
through sequence-based methods is impressive. Given that function is related
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indirectly to sequence through a protein structure, however, it makes sense to
consider methods that incorporate protein structure more directly in the inference of
function.

Sequence alignment methods such as BLAST (Altschul et al. 1990) and
CLUSTALW (Larkin et al. 2007; Thompson et al. 1994) have enjoyed wide suc-
cess in inferring function when sequence similarity is greater than 40–60% (Tian
and Skolnick 2003; Devos and Valencia 2001; Rost 2002). More sophisticated

Fig. 11.1 Illustration of the common partial reaction in the enolase superfamily. The extraor-
dinary diversity of reactions shown in these enzymes share one step in common, which is the
initial abstraction of a proton (indicated in red). Abbreviations are MR mandelate racemase, GlucD
glucarate dehydratase, MLE muconate lactonizing enzyme, b-MAL b methylaspartate ammonia
lyase, OSBS O-succinylbenzoate synthase
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methods, including Hidden Markov Model (HMM) methods (Krogh et al. 1994;
Sjölander et al. 1996), and ancestry-based methods such as the Evolutionary Trace
(Lichtarge et al. 1996), INTREPID (Sankararaman and Sjölander 2008), Phylofacts
(Glanville et al. 2007; Krishnamurthy et al. 2006), Bayesian Monte Carlo inference
from phylogenetic trees (Tseng and Liang 2006) and EFICAz (Arakaki et al. 2009;
Tian et al. 2004) combine sequence alignment procedures and machine learning
techniques to specifically assign function to a sequence.

11.1.3 The Need for Structure-Based Methods

Protein structures, however, may reveal important similarities or possible evolu-
tionary relationships that are not evident from their sequences alone. The natural
analogue to a global sequence alignment is a global structure alignment. Methods
like LGA (Zemla 2003), PINTS (Stark and Russell 2003) and CE (Shindyalov and
Bourne 1998, 2001) can accomplish this alignment in various ways and sometimes
reveal more significant relationships in the alignments.

Other approaches use combinations of sequence and structural information, such
as SOIPPA (Xie and Bourne 2008, 2009; Ren et al. 2010), DISCERN
(Sankararaman et al. 2010), and PevoSOAR (Tseng et al. 2009), and can provide
improvements to sequence based methods alone. Additionally, methods like the
FFF approach that are essentially structural in nature benefit from addition of
sequence information (Cammer et al. 2003). The success of any of these global
similarity-based techniques depends largely on the ability to distinguish conser-
vation patterns that correspond to the actual functional or catalytic portions of a
protein sequence or structure.

Related proteins may have diverged so far that global sequence or structure
alignments are challenging. Conversely, proteins with highly similar folds can
perform different functions (Babbitt and Gerlt 1997; Todd et al. 2001). This
observation points to the need for a more fundamental definition of a structural unit,
or 3D motif which more specifically defines the functional aspects of a given
protein structure.

Structural genomics efforts have long recognized the fact that structural data is
much more informative than sequence data alone. This data is used not only for
annotation, but for homology modelling and in silico drug design. On principal
driving idea behind this effort is to crystallize structures that are underrepresented in
sequence space, so that more sequences can be more directly represented in
structural forms (Berman et al. 2000; Baker and Sali 2001). The number of
structures in the PDB from these initiatives has continued to grow at an increasing
rate, and many target structures were previously completely unannotated, or
annotated incorrectly using automated sequence-based methods.

Functional assignment to these proteins remains as a frontier challenge for
structural genomics, and 3D motif-based methods are likely to play a prominent
role for proteins where current methods fall short.
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11.2 3D Motif Matching Techniques

11.2.1 What Is a 3D Motif?

3D motifs are spatial patterns of points based on a few residues (generally under a
dozen) associated with some protein function or classification of interest. They are
sometimes called active site templates, since the residues may contribute to a

Fig. 11.2 Example of a catalytic template constructed from a Catalytic Site Atlas (CSA) entry,
which has a corresponding EC number along with a list of residues that comprise the site. Each
residue has a centroid associated with it, which is labelled in parentheses and shown as spheres in
(a) and (b). Cofactors, ions, and residues can often have either a single centroid or many centroids
associated with them (see Fig. 11.3). In this example, Ca coordinates are used as the residue
centroids, but centroids may be computed in other ways. For this templating approach, a graphical
representation of the template is used, with nodes associated with the centroid identity, and edges
defined by the interatomic distances. The template is stored as a distance matrix, shown in (b). The
image was created with UCSF Chimera (Pettersen et al. 2004) (http://www.cgl.ucsf.edu/chimera)
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binding or catalytic pocket, or structural templates. The positions of one or a few
atoms per residue are used, and the points are labelled with additional information,
such as atom and residue type, used in matching. The residues are often strictly
positioned in space but not necessarily in sequence. Figure 11.2 describes a typical
binding site found in the Catalytic Site Atlas (CSA), and one way to represent it in a
reduced form. In this example, the Ca atoms are used as pseudoatoms, but many
approaches use atomic coordinates from the sidechains, or a centroid using clusters
of atoms in the pseudoatom positions as well (Oldfield 2002), as is the case for the
templates in Fig. 11.3.

3D motifs represent highly conserved patterns of local structure. Often the
residues are conserved to sub-angstrom resolution, and the absence of one residue
in the motif can completely eliminate its function. The remainder of the protein,
however, can often vary substantially. Ideally, a 3D motif will describe exactly
these function-critical structural components and serve as a sensitive and specific
signature of the function.

Since such a motif can often be the only evolutionary constraint, many different
structures can be present with the same motif, and there is no restriction on the

Fig. 11.3 Active site residues from members of the enolase superfamily, illustrating aspects of
motif representation and specificity. The superimposed side chains of two basic and three acidic
residues are shown from each of the following: mandelate racemase (yellow, PDB 2mnr), enolase
(salmon, PDB 4enl), and methylaspartate ammonia lyase (blue, PDB 1kcz). Balls indicate
alpha-carbon (Ca) and side chain centroid locations. Single-letter codes near the alpha-carbons
indicate residue types: H for histidine, K for lysine, D for aspartic acid, and E for glutamic acid.
While the acidic residues at the two lower left positions are highly conserved in type and
conformation, variations in the sites include: 1 differing (albeit similar) residue types at the other
three positions; 2 different side chain conformations, exemplified by the two lysines on the right; 3
different locations in primary sequence, where the basic residue on the upper left is C-terminal to
the others in enolase but N-terminal in the sequences of the other two proteins. Using side chain
centroids rather than the positions of functional atoms generally allows for more variety in
backbone conformations, assuming the sidechain positions are well conserved across templates
(Todd et al. 2002). The image was created with UCSF Chimera (Pettersen et al. 2004) (http://
www.cgl.ucsf.edu/chimera)
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location or relative order of residues in the sequence. Figure 11.4 shows a case of
convergent evolution in the serine protease Asp-His-Ser catalytic triad. While the
catalytic triad is highly conserved structurally, the remaining structural elements
display noticeable variations. This particular catalytic triad was, historically, the
first to be thought of as a ‘motif’ based on these observations. Variations in
structure relative to a motif are even more pronounced in other more recent
examples, including the disulfide oxidoreductase site shown in Fig. 11.5, which is
taken from an example of a Fuzzy Functional Form (FFF) template (Fetrow and
Skolnick 1998; Di Gennaro et al. 2001).

Fig. 11.4 Two serine proteases superimposed at their catalytic triads reveals the close similarity
of residues in the active sites despite different overall folds. a Ribbon diagrams of trypsin (blue/
light blue, PDB 1sgt) and proteinase K, a homolog of subtilisin, (red/salmon, PDB 2pkc) show that
the two proteins have different folds with no corresponding secondary structure elements, yet their
catalytic triads (displayed in stick representation) overlap. They are considered to have no common
ancestor. b The sidechains of the catalytic triads are shown enlarged to display the similar
orientations of the catalytic triad residues (1sgt: Asp102, His57, Ser195; and 2pkc: Asp39, His69,
Ser224). The similarity of the catalytic triad in these non-homologous structures demonstrates the
ability of 3D motifs to detect similar functions in a pair of proteins where homology-based
methods will fail. The image was created with UCSF Chimera (Pettersen et al. 2004) (http://www.
cgl.ucsf.edu/chimera)
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11.2.2 Historical Development of Motif Matching Methods

Early ideas about catalytic motifs were based on observation, and were not algo-
rithmic in nature. The most widely studied motif is the Ser-His-Asp catalytic triad
mentioned above, first recognized in serine proteases (Blow et al. 1969; Wright
et al. 1969) and later in other hydrolases such as esterases and lipases. The catalytic
triad occurs in different folds, and thus it encompasses cases of both divergent and
convergent evolution (Fig. 11.4). Early discoveries of the catalytic triad found it
present in entirely different folds of subtilisins, (Fischer et al. 1994). The Thornton
group, studying triads in detail, formulated a more careful description of the site,
based on the observation that only the relative positions of serine and aspartate

Fig. 11.5 The FFF motif for the disulfide oxidoreductase active site is found in many proteins.
Illustrated are T4 glutaredoxin, 1aaz, chain A (left), human thioredoxin, 4trx (middle) and proline
disulfide isomerase, 1dsb, chain A. The three key residues which define this FFF are two cysteines
(red side chains) and a proline (cyan side chain). The active site structure of these proteins is
conserved, although the rest of the protein structures exhibit some differences. Using these three
key residues, the active site signature for each protein was identified (fragments shown as blue
ribbons in each protein). Global sequence alignment, produced using ClustalW, of these three
proteins shows the location of the key residues (red and cyan, underlined) and the active site
signature fragments (blue) within the whole sequence. The alignment illustrates the lack of overall
sequence similarity between the three proteins, even though the active site structure itself is highly
conserved
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oxygens and the histidine ring were preserved across many examples (Wallace et al.
1996).

During this time, the concept of a 3D motif began to emerge in an algorithmic
context, which is generally described as template matching or motif matching.

Artymiuk et al. (1994) appear to be the first to apply such a procedure, which
they called ASSAM, to enzymatic site detection. Their work used the subgraph
isomorphism procedure, which is a graph theoretic method for finding a motif
graph in a larger structure graph. The method, originally proposed by Ullmann
(1976), is described in Sect. 11.2.1. Later work by Artymiuk et al. expanded the
approach beyond catalytic sites to other structural applications, such as the iden-
tification of tertiary structures (Mitchell et al. 1990; Spriggs et al. 2003). In this
work, many careful choices were made with regard to which atoms to use as part of
the template, and particular attention was paid to reliable detection of residue triads,
given the importance of catalytic triads as an archetypal motif.

During this period, Kleywegt also developed a site-matching procedure origi-
nally designed to identify patterns in distance matrices determined by Nuclear
Overhauser Effect (Radivojac et al.) measurements (Kleywegt et al. 1989). Later
Kleywegt introduced a program called DEJAVU that detects protein motifs
(Kleywegt and Jones 1997). A technique based on DEJAVU was later generalized
to identify enzymatic sites with a method called SPASM, along with a comple-
mentary approach, known as RIGOR (Kleywegt 1999), used to search a list of
motifs for similarity to a given structure. Early work with this method focused on
triad motifs as well. A notable example from the Kleywegt study (Kleywegt 1999)
was the discovery of a family of glucanases.

A related set of approaches to the template matching problem uses a procedure
known as geometric hashing (Wolfson and Rigoutsos 1997; Brakoulias and
Jackson 2004). The main difference between the geometric hashing procedure and
graph-based procedures is that geometric hashing uses a Cartesian grid (with a
suitable coordinate system) to bin similar coordinates. It is used widely in image
processing, and has been successfully adapted to structural approaches. It is
dependent on the frame of reference, however, and additional overhead is required
to accomplish optimal translations and rotations for comparison. The Thornton
group proposed a template-matching procedure, named TESS (Wallace et al. 1997),
built on such an approach. A later iteration, known as JESS (Barker and Thornton
2003), incorporated recursive ideas and threshold constraints to improve searching
procedures. More recently, the Kavraki group developed a series of procedures built
on a match augmentation method, MASH, that iteratively grows a template match
from pairwise matches obtained through geometric hashing (Chen et al. 2007a).
Later developments from this group include the addition of residue hash matching,
the LabelHash algorithm (Moll et al. 2010; Moll and Kavraki 2008), along with
impressive optimizations at the hardware and software level to improve perfor-
mance. Other geometric hashing approaches include SitesBase (Gold and Jackson
2006a, b), and GIRAF (Kinjo and Nakamura 2007).
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Success of template-matching methods, within the Thornton group and else-
where, led to the important recognition that a high quality curated database of
enzymatic sites was needed. This recognition led directly to the development of the
Catalytic Site Atlas (CSA) (Porter et al. 2004), which is a manually curated table of
enzymes and binding site residues, as well as tabulated Enzyme Commission
(EC) numbers (Bairoch 1994). The CSA is somewhat limited in coverage, however,
and the scale of such a database will always be strictly limited by the capacity of
expert manual curators. As a result, many approaches have been developed which
attempt to automatically locate structural features that may be used as templates.
These approaches include physics-based approaches (Halgren 2007, 2009) and
statistical modelling of measures (Liang et al. 2003; Brylinski and Skolnick 2008;
Skolnick and Brylinski 2009). Methods that consider protein dynamics (Yang and
Bahar 2005; Glazer et al. 2008) represent a promising direction as computational
capabilities improve (see also Chap. 12).

Other valuable resources related to this effort, including the MACiE database
(Holliday et al. 2007), and the ProFunc server (Laskowski et al. 2005), as well as
metaservers like ProKnow (Whisstock and Lesk 2003), resulted from the success
and utility of structure-based approaches to understanding function. Table 11.1 lists
some of the database resources that have resulted from efforts in this field.

The Babbitt and Gerlt groups have gone beyond matching of catalytic residues
and matched enzymes by their chemical mechanism. They established the concept
of a mechanistically diverse superfamily, where the similarity among members is
governed by the conservation of partial reactions within the protein family, rather
than by sequence or structure conservation alone (Galperin et al. 1998; Gerlt and
Babbitt 2001; Gerlt et al. 2012). This approach is in contrast to a sequence-based
approach, which relies on global sequence similarity with the expectation that
conservation patterns can point to residues of functional interest. It also presents an
alternative to the Enzyme Commission (EC) classification scheme (Webb 1992),
which builds a hierarchy based on the substrate reaction chemistry. This alternative
approach to classification, with its emphasis on binding site architecture and con-
servation of partial reactivity, led to the development of the Structure-Function
Linkage Database SFLD (Pegg et al. 2005, 2006). These ideas led to the larger
Enzyme Function Initiative (Gerlt et al. 2011), which has the goal of large-scale
enzyme characterization and classification based on experimental and computa-
tional work (Gerlt et al. 2012; Kalyanaraman et al. 2008; Song et al. 2007).
Template-matching procedures using superfamily template libraries were applied
(Meng et al. 2004), and led to a procedure known as GASPS and the database
GASPSdb. GASPS is designed to develop new template libraries based on any
classification of structures into those with and without a function (or other property)
of interest (Polacco and Babbitt 2006).
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Table 11.1 Servers and other web resources for 3D motif searching and comparison

Server name and citation Server URL

Description of resource Motif database description

Catalytic site atlas (CSA) (Furnham et al.
2014)

http://www.ebi.ac.uk/thornton-srv/databases/
CSA/

Basic interface to motif database (CSA) Ca and Cb functional atom motifs for 147
well-characterized enzyme families. Database
freely available for download

ProFunc (Laskowski et al. 2005) http://www.ebi.ac.uk/thornton-srv/databases/
profunc/

Multi-search including motif search with
JESS: whole structure query vs. motif
database, fragment query versus whole chains

CSA motifs, 13,057 ligand-binding and 1200
DNA-binding modes from PDB. Motifs
contain both sidechain and backbone atoms

Catalytic site identification (Kirshner et al.
2013)

http://catsid.llnl.gov/

Finds matches to motifs with user defined
target and/or protein databank. Uses subgraph
isomorphism and machine learning

2244 motifs, including modified CSA and
enolase superfamily templates. User can also
search for unannotated structures by EC
number

Uppsala Software Factory (Kleywegt 1999) http://xray.bmc.uu.se/usf/

Software is available for download. SPASM
compares a query motif to a database of
targets. RIGOR compares a query structure to
a database of motifs

RIGOR database contains 73,164 motifs from
PDB. 57,719 motifs have residue type labels.
The remaining are unlabelled (engineerable)

ProKnow (Pal and Eisenberg 2005) http://proknow.mbi.ucla.edu/

Multi-search, including RIGOR motif
searches. GO annotations included in output

10,230 motifs with GO annotations from their
source structures, 7819 if electronic
annotations are excluded

GASPSdb (Polacco and Babbitt 2006) http://gaspsdb.rbvi.ucsf.edu/

Browse database of 3D motifs representing
SCOP families and superfamilies

Motifs have Ca and side chain coordinates.
RIGOR-formatted database files are available
for download

funClust (Ausiello et al. 2008) http://pdbfun.uniroma2.it/funclust/

Uses Query3D to identify motifs shared by
groups of 3–20 structures

User supplied structures for consensus motif

pdbFun (Ausiello et al. 2005b) http://pdbfun.uniroma2.it/

Compares specified probe and target residue
sets using Query3D

>12 M individual residues. Subsets are
defined with Boolean descriptors
combinations

ProBIS (Konc and Janežič 2012) http://probis.cmm.ki.si/

Detects similar binding sites using a clique
detection algorithm (ProBIS)

Database contains pre-calculated matches for
non-redundant (95%) pdb

The LabelHash server (Moll et al. 2011) http://labelhash.kavrakilab.org/

Compares motifs with PDB or user structures
using LabelHash algorithm

17 predefined motifs derived from CSA. User
defined motifs are allowed

WebFEATURE (Liang et al. 2003; Buturovic
et al. 2014)

http://feature.stanford.edu/webfeature/

(continued)
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11.3 Algorithmic Approaches to Motif Matching

The historical development of motif matching methods and current methods sug-
gest the following categorization of these methods.

Table 11.1 (continued)

Server name and citation Server URL

Uses radially symmetric patterns as motifs Motifs are derived from PROSITE v20.81,
and are available for individual download

PAR-3D (Goyal et al. 2007) http://sunserver.cdfd.org.in:8080/protease/
PAR_3D/access.html

Compares query to motifs expressed as
distance and angle ranges

Ca and Cb motifs for 6 protease classes and
10 glycolytic enzymes. Metal chelating sites
have sidechain centroids as well

PDBSiteScan (Ivanisenko et al. 2004) http://wwwmgs.bionet.nsc.ru/mgs/gnw/
pdbsitescan/

Compares query to all or a subset of motifs in
the PDBSite database

36,273 backbone-atom motifs from SITE
annotations. Also includes interfaces with
DNA, RNA, or other proteins

PINTS (Stark and Russell 2003) http://www.russelllab.org/cgi-bin/tools/pints.
pl

Compares query structure to motif database,
query motif to PDB, or two proteins to each
other

Ligand-binding and SITE-annotated motifs
consisting of side chain points from polar
residues

SuMo (Jambon et al. 2005) http://sumo-pbil.ibcp.fr/

Compares query structure, chain, or ligand-
binding site to database

Database contains 34,210 ligand-binding
sites, and also whole structures. Motifs are
built from functional groups

S-BLEST (Schmitt et al.) (Mooney et al.
2005)

http://www.sblest.org/

Queries residue-centred patterns against
nr-PDB. Returns best-matching chains and
annotations

Searches for similarity to uploaded structure
only

SiteEngine (Shulman-Peleg et al. 2005) http://bioinfo3d.cs.tau.ac.il/SiteEngine/

Compares the binding site of a ligand-bound
structure to the entire surface region of
another structure

Linux executable for non-commercial use
only

Nestor3D (Nebel et al. 2007) http://staffnet.kingston.ac.uk/*ku33185/
Nestor3D.html

Generates a consensus motif with input
structures and structure alignments

User supplies input structures for comparison.
Software is available for download

11 3D Motifs 373

http://sunserver.cdfd.org.in:8080/protease/PAR_3D/access.html
http://sunserver.cdfd.org.in:8080/protease/PAR_3D/access.html
http://wwwmgs.bionet.nsc.ru/mgs/gnw/pdbsitescan/
http://wwwmgs.bionet.nsc.ru/mgs/gnw/pdbsitescan/
http://www.russelllab.org/cgi-bin/tools/pints.pl
http://www.russelllab.org/cgi-bin/tools/pints.pl
http://sumo-pbil.ibcp.fr/
http://www.sblest.org/
http://bioinfo3d.cs.tau.ac.il/SiteEngine/
http://staffnet.kingston.ac.uk/%7eku33185/Nestor3D.html
http://staffnet.kingston.ac.uk/%7eku33185/Nestor3D.html


11.3.1 Methods Using 3D Motifs

Many elements can make up the definition of a motif, but the majority of
approaches consider a motif as a constellation of labelled points derived directly
from an important subset of atomic coordinates of a structure or set of structures.
A side chain centroid, for example, is simply a pseudoatom at the average position
of the atoms in the side chain. Up to a few points are used per residue in the motif,
and the points are labelled with additional information such as atom type, residue
type, or physicochemical characteristics.

Searching can be computationally intensive, especially considering that thou-
sands of structures may be compared to thousands of motifs; 3D motif searching
has relied on the development of efficient algorithms, often involving one or more
of the following:

• Geometric hashing. Hashing is a broad term for reducing complex data to a
simpler form that can be compared more rapidly. In its most basic form, a
geometric hash can be a lookup table of Cartesian coordinate points (Fischer
et al. 1994) and pseudoatom identities as well as many other properties,
including distances, angles, and other residue features (Shulman-Peleg et al.
2004). In general, hash comparisons are very fast, especially compared to the
time required to align the coordinates (Pennec and Ayache 1998). Hashing or
preprocessing the data takes time, but only needs to be done once per structure
and can greatly speed up comparisons.

• Graph Theoretic Methods. A graph consists of vertices (Kaminski et al. 2001)
and edges (lines that connect pairs of vertices). A molecular structure or 3D
motif can be treated as a labelled graph. Figure 11.2 shows how a catalytic site
might be represented as a group of labelled vertices with interatomic distances
used as edges. Subgraph isomorphism algorithms look for the occurrence of a
subgraph (the 3D motif) in a larger graph (the structure). While the subgraph
isomorphism is formally treated as a method for identical matches, many
modifications to this basic approach are used for imperfect matches, including a
variety of distance tolerances, as well as allowances for substitutions (Nilmeier
et al. 2013). Clique detection (Schmitt et al. 2002) is essentially a similar
algorithm, but the graph in this case describes the geometries of both structures
together. A vertex in the graph represents a pair of atoms or pseudoatoms, one
from structure A and one from structure B (where “structure” could be a 3D
motif). Only atoms with matching types are allowed to pair. Two vertices are
connected by an edge if the distance between the two atoms in A matches the
distance between the two atoms in B within a specified tolerance. A clique is a
graph in which every vertex is connected to every other vertex. Thus, clique
detection identifies a set of atoms from A with internal distances completely
consistent with those among a paired set of atoms from B.
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11.3.2 Efficiency Considerations for 3D Motifs

Motif matching algorithms can be very fast for perfect matches. A challenge in the
design of these algorithms, however, is that the extension to imperfect matches can
lead to exponential scaling—sometimes referred to as nonpolynomial (Larkin et al.
2007) scaling—with respect to template and structure size, with concomitant losses
in speed and efficiency.

To address this challenge variations of branch and bound approaches are used.
These approaches leverage combinations of breadth-first and depth-first searches,
and usually build a series of partial templates for comparison. In template matching
algorithms, a breadth-first search typically refers to a method whereby a partially
constructed template with few vertices and a ‘breadth’ of candidate edges are
compared for fitness. The best candidates are then selected for the next iteration.
Alternatively, a depth-first search builds a ‘deeper’ partial template with many
vertices and fewer edges before iterating to the next comparison step. While
described graphically, these ideas can be used in the geometric hashing compar-
isons as well.

During the buildup procedure, the list of candidates in the search is usually
pruned using a heuristic similarity cutoff that can be highly specific to the algo-
rithms and templates that are used. This buildup procedure is discussed in some of
the isomorphism searches (Nilmeier et al. 2013), and in variants of the geometric
hashing technique (Chen et al. 2007b).

Care must be applied in determining these cutoffs, especially in the
time-intensive search portions. If the similarity cutoffs are relaxed, false positives
may be obtained. More importantly, however, the scaling can rapidly become
unmanageable, since each list is carried into the next iteration. On the other hand, if
the cutoffs are too strict, then good matches are discarded. In addition to the pruning
criterion, other measures are applied to restrict the search space. For example, in
graph comparison algorithms the default description of the resulting graph would
contain all distances, resulting in a large, fully connected (clique) structure graph.
Nearly all of these edges are unnecessary when comparing the graphs, so careful
construction of the graphs beforehand will vastly improve performance.

Application of similarity thresholds can be a nontrivial effort, and very specific
to the templates under consideration. Consider the residues in the lower right hand
corner of Fig. 11.3. The active site residues are represented as Ca and side chain
centroids (Oldfield 2002). In this case, centroid position is highly conserved, but the
Ca position is not, and the residue identity is also different (Asp ⟶ Glu). The
choice of which constraints to apply and which to relax in this case would require
detailed knowledge about the significant elements involved (in this case, the proton
abstraction residue).
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11.3.3 Methods with Nonstandard Motif Information

It is not always straightforward to differentiate between methods that use ‘standard’
3D motifs from methods that incorporate additional information. For example,
many techniques have multiple stages. In these techniques, a fast template matching
algorithm is used to generate an initial candidate list, followed by a more complex
scoring procedure to refine results (Laskowski et al. 2005; Kirshner et al. 2013;
Nilmeier et al. 2013). While the second stage scoring procedure may incorporate
more complex representations of the catalytic site, the core search algorithm uses
the classic definition of a motif.

Other methods, however, incorporate a fundamentally different definition of a
motif in the primary search machinery. For example, hybrid point-surface and
single-point-centred descriptions of local structure do not fall under our working
definition of a 3D motif approaches, but they do share many similarities. Methods
primarily based on surface descriptions are covered in Chap. 10.

• Single-Point-Centred Descriptions. The program FEATURE (Bagley and
Altman 1995) describes local structure as a set of properties in concentric shells
emanating from a single point. The properties include descriptors of atoms,
functional groups, residues, secondary structure, and simple biophysical char-
acteristics. Because values are summed over spherical shells, however, direc-
tional information is lost. Both the WebFEATURE server (Liang et al. 2003;
Buturovic et al. 2014) and the Structure-Based Local Environment Search Tool
S-BLEST web server (Mooney et al. 2005; Peters et al. 2006) use FEATURE
templates, and each provide their own results, along with enhanced annotations
(Table 11.1).

• Hybrid (Point-Surface) Descriptions. Cavbase (Schmitt et al. 2002; Kuhn
et al. 2006) and SiteEngine (Shulman-Peleg et al. 2004) describe binding sites as
collections of pseudoatoms and their associated surface patches. The pseu-
doatoms represent surface-exposed functional groups of various types, such as a
hydrogen bond donor or acceptor. Comparisons involve finding geometrically
and physicochemically consistent sets of pseudoatoms, superimposing structures
based on those matches, and then scoring based on surface patch overlap and
physicochemical similarity. Surface points typically far outnumber the pseu-
doatoms, so scoring is relatively computationally demanding. The SiteEngine
web server (Shulman-Peleg et al. 2005) performs pairwise comparisons but not
database searches(Table 11.1). Other surface-based methods include eF-site
(Kinoshita and Nakamura 2003), SuMo (Jambon et al. 2003), SiteEngine
(Shulman-Peleg et al. 2004), and Query3D (Ausiello et al. 2005a)
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11.3.4 Interpretation of Results

The previous sections have discussed the technical challenge of finding a given
motif in a structure. However, there are still questions that must be answered when
applying these methods. What can be said about the function of the structure if a
positive match is found? What constitutes a positive match, and how reliable is it?

Several issues must be considered when deciding what a positive match means.
The ideal case is when the motif perfectly defines the residues for a particular
annotated function. In these cases, the interpretation of the match is straightforward:
the structure has the annotated function that the matching motif has. Developing a
motif library with these desirable properties is a challenge in itself, and is discussed
in Sect. 11.3. This simple mapping of function from a motif to the structure is not
always straightforward, as motifs may be only indirectly associated with a specific
function. For example, if a motif is derived from a SCOP superfamily, a match may
only imply some function which is commonly found in the SCOP structure.

Any given motif-to-structure comparison is an NP-hard challenge, and even an
efficient procedure may still yield several different candidate matches. Additionally,
motif libraries can number on the order of thousands, while the PDB has tens of
thousands of structures. A comparison of the full set of possibilities can quickly
lead to an intractable problem unless sensible cutoffs to candidate matches are
applied during the evaluation steps.

It is even more important to be able to report a manageable list of matches that
can be easily interpreted and understood by users. This list will likely contain trivial
matches of nearly exact motifs found in proteins with very similar global structure.
The more interesting matches in the list should include somewhat distant but still
plausible relationships; possibly with residue substitutions, or noticeable differences
in global structures.

Basic measures of structural similarity are usually the starting point for scoring.
The root mean square deviation, or RMSD, is one very common measure. It has
many limitations, however. Most notably, it is not a useful measure when com-
paring matches to motifs of different sizes. Many other nuances begin to become
apparent, including substitution allowances as well as subtle geometric relation-
ships that may not be properly represented by the reduced geometric form of the
motif.

To account for these issues and provide a better ranking of hits, some groups
apply a multistage method. The fast, coarse search method will generate a large
candidate list that is then subjected to a more rigorous scoring procedure.
Sometimes the scoring procedure is intended to have a direct statistical interpre-
tation, much like a p-value or other probabilistic score (Barker and Thornton 2003;
Nilmeier et al. 2013; Kirshner et al. 2013). The determination of the cutoff score,
which indicates whether the candidate is a positive match, can often be heuristic.
There are, however, classic machine learning techniques that can be applied to
determine appropriate cutoffs.
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The ability of a procedure to identify true positives, measured by the true pos-
itive rate (TPR) or sensitivity, while also minimizing the false positive rate (FPR) is
usually the measure of performance of many of these techniques. One technique
that is used frequently is the Receiver Operating Characteristic (Bairoch), which is
simply a plot of these values as the cutoff is adjusted, in which the Area Under the
Curve (AUC) indicates a quality measure of the prediction procedure. This is only
one of many techniques to identify good cutoff values, but is widely used in the
motif matching literature and elsewhere.

Another approach to interpretation is to take the predictions of multiple methods
into consideration. This can often prove to be more useful than relying on any one
particular method. Some servers provide predictions from multiple sources, leaving
the final determination to the user. Notable examples include the ProKnow server
(Pal and Eisenberg 2005) and ProFunc (Laskowski et al. 2005) servers, and are
listed in Table 11.1. These servers are also discussed in detail in Chap. 13.

Finally, common sense must be applied. Many confounding factors will still
present themselves, even in the most carefully constructed procedures. For exam-
ple, a motif may be correctly located in a structure, but there is no actual binding
cavity to accommodate the substrate. It is prudent, if not essential, to inspect
matches visually and to evaluate them using biologically relevant criteria when
inferring the function from a match. Many of the most useful servers and software
have some visualization process as an integral part of the procedure for studying
matches, simply because expert evaluation of the matches is still the best way to
determine if algorithms are working as expected.

11.4 Methods for Deriving Motifs

Most of the effort in motif matching approaches is invested in locating a motif in a
protein structure. This challenge, however, assumes that the motif is available as a
ground truth. Sometimes the methods allow the user to supply a motif, while other
methods use a library of motifs. How, then, are these motifs generated in the first
place?

Ideally, for motif discovery, the set of positive examples should be as diverse as
possible while retaining the common feature, and the negative examples should be
as similar as possible to the positive examples while lacking that feature. In prac-
tice, the positive and negative sets may not be ideal, and part or all of a derived 3D
motif could still reflect common ancestry or coincidence rather than shared
function.

Others treat motif discovery or generation of motif libraries essentially as the
primary goal of their method.
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11.4.1 Literature Search and Manual Curation

Perhaps the most reliable approach to motif discovery is to mine the published
literature for experimental evidence. For 3D motifs, the focus is on residues that
provide a specific binding or catalytic capability.

The Catalytic Site Atlas (CSA) (Table 11.1) contains several hundred families of
enzymes, each comprised of a structure with catalytic residue annotations from the
literature (Barker and Thornton 2003; Porter et al. 2004; Torrance et al. 2005). The
atlas library also includes structures related through sequence homology.
Representative structural templates (3D motifs) are based on side-chain functional
atoms, alpha carbons (Ca) and beta carbons (Cb). In all, more than 2200 unique
motifs were generated, whose function is verified through literature values, which
often include experimental verification of the function.

The generation of this dataset was a fundamental advance in the field. Other
servers rely on this dataset, including multiservers like ProFunc, (Laskowski et al.
2005), and groups who have curated or modified this Atlas and incorporated it in
their own servers (Moll et al. 2011; Kirshner et al. 2013; Nilmeier et al. 2013).

11.4.2 Annotated Sites in PDB Structures

Another approach is to use the annotations given to the crystallographic structures
in the PDB. In practice, this means looking at the SITE records of a given protein
databank file, or at residues around molecules labelled as LIGAND. Sometimes
even the residues around nonspecific heteroatoms (HET) or analysis of the residues
of macromolecular interfaces can give some clue as to what portions of a protein
may be involved in catalysis. This is not always informative, as these annotations
are not guaranteed to point to the catalytic site of the protein of interest. It is often a
very good starting point, however, and can provide new hypothesis for motifs.

Several databases of 3D motifs have been generated using only information from
each source structure individually. For example, binding site motifs can be col-
lected by taking residues within a cutoff distance of ligands, nucleic acids, or even
other protein chains. The PINTS (Patterns in Non-homologous Tertiary Structures)
server (Stark and Russell 2003) derives its database from binding sites defined as
residues within three angstroms of a ligand as well as motifs annotated in the PDB
as a SITE record (Russell 1998), along with careful statistical models (Stark et al.
2003, 2004) that estimate the statistical significance of matches. The PDBSite
database (Ivanisenko et al. 2005) (Table 11.1) includes SITE records, along with
interfacial reaction sites with other proteins, RNA, and DNA. Residues with at least
three atoms within five angstroms of the other chain are included in an interaction
site. The search machinery is called PDBSiteScan (Ivanisenko et al. 2004)
(Table 11.1). The pdbFun web server (Ausiello et al. 2005b) uses sites defined as
residues within 3.5 angstroms of a ligand (Ausiello et al. 2005a).
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11.4.3 Mining for Emergent Properties

When groups of structures are studied, local structural features shared among
proteins may be taken as a 3D motif. The process of identifying these common
features may be described as the mining step. It is helpful to separately identify the
grouping methods as either undirected or directed. In general, undirected (unsu-
pervised) mining methods do not specifically use labels or annotations in the
grouping step, while directed (supervised) mining methods tend to use labelled
structures. Each approach will be discussed in the following sections.

In some cases investigators provide a mining toolset for the user. The technology
is focused on mining the pattern or motif from a group, rather than in how the
groups are defined. The applications of these methods are, in general, directed
mining approaches. At the heart of these techniques is a search for a clique that is
common to the grouping that can be interpreted as a functionally important motif.
Methods such as the common structural cliques method (Milik et al. 2003), the
maximum common clique (ProBIS) algorithm (Konc and Janežič 2010), as well as
the Detection of REcurring Sidechain PATterns (DRESPAT), (Kar et al. 2012) are
all designed to locate maximal cliques among sets of structures.

In other cases, the approaches for determining a motif are more dependent on the
nature of the groupings: these are discussed in the next sections.

11.4.3.1 Undirected Mining

Undirected mining refers to finding common patterns in unannotated, or unlabelled
structures. The undirected mining approaches have elements of what is usually
considered unsupervised learning. For example, many of these approaches make
all-to-all similarity comparisons (Russell 1998), which has some analogy to the
notion of a distance matrix as seen in traditional clustering methods. Structures
with sufficiently similar measures are grouped as a cluster. Other methods count
motifs that appear with relatively high frequency (Oldfield 2002), and consider the
structures having those motifs as a grouping.

Mining techniques apply to both unlabelled and labelled groupings, as well as
cases where the distinction between unlabelled and labelled is not always
straightforward. For example, a study that used groups of structures with similarity
to sites with hypothesized function (Ausiello et al. 2007) was able to detect and
propose new motifs. The reference structures were based on sequence similarity,
proximity to a co-crystallized ligand, or contact with a cavity, but did not have a
specific functional annotation.
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11.4.3.2 Directed Mining

In directed mining, the focus is on the use of labelled examples to suggest geo-
metric features (residues) that are common, both within the labelled dataset and
other structures that may be deemed similar to the labelled dataset. Directed mining
may also be considered to be more of a targeted search for motifs and themes within
a given group.

In general, only positive examples are used for motif discovery. Positive
examples are those structures whose labels indicate a positive membership in the
functional set. The motif discovery process is then to find what essential features
define that set. The use of negative examples is not as frequent in the motif
discovery process. It does, however, appear in the validation of the models. One
notable exception to this approach is the GASPS method (Polacco and Babbitt
2006), which uses both positive and negative examples in the motif discovery
process, and is discussed in the next section.

It is often more practical to develop motifs from crystallographic structures
where the ligand is present. Studies of this sort tend to be more specific to the ligand
types of interest. For example, one of the early approaches was developed for
adenine mononucleotide sites, based on the fact that there were over 100 structures
available for comparison at the time (Kobayashi and Go 1997). A high similarity
was found between structures of different folds, which is a hallmark of a good
motif. Later, after many more structures had become available, a similar approach
was used to generate consensus binding-site motifs (Nebel et al. 2007), and the
study was expanded to study mono-, di-, and tri-phosphate complexes as well,
resulting in 13 high quality motifs. The same group developed motifs specifically
for porphyrin-binding sites (Nebel 2006). Another study used phosphate groups as
the ligand in protein-nucleotide complexes, and applied a clique detection algorithm
to discover motifs (Brakoulias and Jackson 2004).

Other methods use more standard template-matching programs, but on smaller
motifs, with emergent motifs built from the smaller ones. The funClust server
(Ausiello et al. 2008) (Table 11.1) identifies 3D motifs shared by up to 20 input
structures. The structures are then filtered by sequence identity and other geometric
filters, and the comparison is made with Query3D (Ausiello et al. 2005a). Another
method, the PAR-3D (Protein Active site Residues using 3-Dimensional structural
motifs) server (Goyal et al. 2007) (Table 11.1) compares a structure to motifs for
proteases, glycolysis enzymes, and metalloenzyme sites with only three or four
residues (Goyal and Mande 2008) that are common to the broadly defined func-
tions. The motifs returned are given as allowed ranges of interatomic distances to
the library of motifs. Another approach, termed Geometric Sieving, starts with an
existing motif or list of putatively important residues (Chen et al. 2007b), and
develops candidate motifs by comparing them to a representative sample of
structures. It is assumed that the low-RMSD tail in a distribution represents true
positives.
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11.4.3.3 Directed Mining with Positive and Negative Examples

In most of the approaches listed above, only sets with known positives are used to
discover the emergent features of a binding-site. Sometimes, however, it is
important to know not just consensus features of a catalytic site, but the essential
features. For this more subtle delineation, negative examples are needed to more
precisely define what is an outlier.

For example, a simple mutation from Asp to Glu in a set of binding site residues
may still preserve function, while a mutation from Asp to Asn may remove function
completely if the residue needs to be protonated at some point in the catalysis. If,
however, the residue only needs to be polar, then the Asp to Asn mutation might
still be allowable.

These types of differences may not be easily seen by consensus methods, but
some very carefully chosen negative examples can reveal these more subtle dif-
ferences. The use of negative training examples is well understood in machine
learning approaches with linear models. Here, the goal is to discover geometric
features, rather than to apply a fitting procedure to determine parameters for a linear
model. This presents a fundamentally different optimization problem.

One very successful approach to this problem is GASPS (Genetic Algorithm
Search for Patterns in Structures), which finds patterns of residues that best separate
the two groups (Polacco and Babbitt 2006). No prior residues list is required, and
how the positive/negative groups are defined is independent of the method. The
underlying search tool is SPASM (Kleywegt 1999), with residues represented by
alpha-carbons and side chain centroids and only identical residue types allowed to
match. To limit the search space, GASPS considers only the 100 most conserved
residues in a structure chain, based on an automatically constructed sequence
alignment. An initial candidate motif is constructed by picking one residue ran-
domly and then choosing four more, also randomly except in the vicinity of the
first. Each of 50 initial candidates is scored on how well it separates the positive and
negative structures in terms of best match RMSD values. In each round of the
genetic algorithm, the 16 highest-scoring motifs are used as the parents of 36 new
motifs, and the top-scoring motif after 50 rounds is declared the winner. Motifs are
allowed to contain from three to ten residues. Sensitive and specific motifs were
obtained for diverse superfamilies (Babbitt and Gerlt 2000) and serine proteases.
Most of the residues in the motifs were functionally important, but in some cases,
residues with no known functional role were found to be equally predictive
(Polacco and Babbitt 2006).

The GASPSdb database (Table 11.1) allows browsing and downloading 3D
motifs previously generated by GASPS for SCOP families and superfamilies.
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11.5 Molecular Docking for Functional Annotation

Ultimately, the ligand specificity and catalytic capabilities of a protein depend on
the arrangement of atoms in its binding or active site(s). The use of 3D motifs can
be seen as informatics approaches that are informed by the chemistry of the protein.
These methods are limited in that they can only associate function to known motifs.
There are many cases, however, where a high resolution target structure is available
(either experimentally or through homology modelling), but there is no identifiable
motif in the structure. For these cases, a more fundamental physical approach can
fill in gaps in knowledge that the informatics approaches do not provide.

A computational method known as ligand docking can provide a different
perspective on the problem of functional annotation (Jacobson et al. 2014). This
technique (also mentioned in Chap. 10) uses molecular mechanics forcefields to
directly estimate ligand protein energetics and complementarities. The field of
docking is vast, and we list only a few examples for reference (Meng et al. 1992;
Wang et al. 2003). As the name suggests, the molecule is ‘docked’ into the target
protein, and the quality of the resulting pose is evaluated for fitness. Figure 11.6
illustrates a typical workflow that uses docking as a method for functional
assignments. In general, the target is held rigid, but more recent approaches also
allow for sidechain flexibility (Sherman et al. 2006). Since it is based on molecular
interaction energies, this technique can conceivably predict molecular binding
modes that are novel, but still physically reasonable.

Traditionally, database docking, or in silico screening has been applied to the
lead discovery phase of drug design pipelines. As such, the technique is highly
automated, and designed to dock large libraries of small molecules to selected
targets (on the order of a million of compounds or more in some cases). While most
ligand docking studies are focused on finding inhibitors to the target, the functional
annotation effort seeks to find the native metabolite that is catalysed in the target.
Many of the technical challenges in ligand docking are common to both goals,
however, such as the need to distinguish true positives from false positives, or
decoys (Huang et al. 2006). These studies highlight the need not only for high
quality poses, but also for scoring procedures that will properly rank ligand
affinities. Metabolite docking can be distinct from inhibitor docking, most notably
due to the fact that most metabolites are highly charged (Song et al. 2007).

Despite these challenges, this approach has received considerable attention
(Favia et al. 2008; Kalyanaraman et al. 2005; Macchiarulo et al. 2004; Paul et al.
2004; Tyagi and Pleiss 2006; Jacobson et al. 2014) In particular, studies of
alpha-beta barrel enzymes (Song et al. 2007) and amidohydrolases (Hermann et al.
2007) have firmly established the capabilities of docking approaches as a supple-
ment to approaches using sequence- and motif-based comparative approaches.

As these approaches have progressed, an emergent challenge for functional
annotation is to not only generate comparative affinities for a particular target, but
also to be able to compare affinities across targets. While inhibitor design is usually
focused on a single target, the goal of functional annotation is to characterize entire
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synthetic pathways or proteomes in an automated fashion. Studying target groups
for entire synthetic pathways provides a much larger perspective, as the molecules
are related by a chain of incremental modifications, and the targets are often
expressed from the same ‘genome neighborhood’. Applying these additional
guidelines for self consistency, while also using homology modelling to construct
missing targets, can allow for elucidation of complete pathways that were

Fig. 11.6 Structure-based virtual metabolite docking protocol for enzyme activity prediction.
When no structure has been experimentally determined for a protein sequence, a model can be
built using a variety of comparative modelling methods, if sequence identity is approximately 30%
or more. Whether using a structure of a model, it is critical that active site metal ions and cofactors
are present, and that catalytic residues are positioned appropriately for catalysis. Virtual
metabolites libraries can be constructed and ‘docked’ against the putative active sites of structures
or models using computational tools more commonly used in structure-based drug design (e.g.,
Glide or DOCK). The docking scoring functions can be used to rank the ligands according to their
estimated relative binding affinities. Top-scoring metabolites are typically inspected for plausibility
and then selected for in vitro testing. (This Figure was reprinted from Jacobson et al. (2014) with
permission from Elsevier License #3624901501981)
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previously unknown (Zhao et al. 2013), with potential applications to synthetic
biology and other efforts that have not traditionally relied on structure-based
techniques (Jacobson et al. 2014).

While molecular recognition techniques are significantly more computationally
demanding than 3D motif matching, docking has the potential to extrapolate to
functions not associated with previously characterized structures, and represents a
frontier direction in the field for the most challenging of catalytic sites.

11.6 Discussion and Conclusions

The question of how best to describe the function of a protein with a meaningful
language remains. While fold-based methods and ligand-based methods have been
shown to be very useful, the use of a 3D motif as a signature for protein function
has offered new perspectives on catalytic sites, and could ultimately form the
foundation of a functional annotation language. Challenges remain on how to
identify these motifs, and even with knowledge of the substrate and many exam-
ples, it can be nontrivial to identify the ideal 3D motif that uniquely and completely
defines function for a given enzyme.

What, then, is the most natural classification of protein function, if we choose 3D
motifs as a basis for classification? In enzymes, individual residues or functional
groups play different roles in the course of a reaction: substrate recognition,
catalysis of a particular step in the reaction, stabilization of an intermediate, or some
combination of these. As proteins evolve to perform new functions, they can make
use of existing pieces of catalytic machinery that carry out a common partial
reaction (Babbitt and Gerlt 2000; Bartlett et al. 2003). This explains in part why
members of a homologous but diverse group of enzymes often make use of the
same configuration of a small number of amino acids, despite catalysing different
overall reactions. It may well be that these subunits (which are 3D motifs) will form
the basic building blocks of all enzymes, and a functional classification scheme
should include these basic units in its language.
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Chapter 12
Protein Dynamics: From Structure
to Function

Marcus B. Kubitzki, Bert L. de Groot and Daniel Seeliger

Abstract Understanding protein function requires detailed knowledge about pro-
tein dynamics, i.e. the different conformational states the system can adopt. Despite
substantial experimental progress, simulation techniques such as molecular
dynamics (MD) currently provide the only routine means to obtain dynamical
information at an atomic level on timescales of nano- to microseconds. Even with the
current development of computational power, sampling techniques beyond MD are
necessary to enhance conformational sampling of large proteins and assemblies
thereof. The use of collective coordinates has proven to be a promising means in this
respect, either as a tool for analysis or as part of new sampling algorithms. Starting
from MD simulations, several enhanced sampling algorithms for biomolecular
simulations are reviewed in this chapter. Examples are given throughout illustrating
how consideration of the dynamic properties of a protein sheds light on its function.

Keywords Protein dynamics � Molecular dynamics � Conformational sampling �
Collective coordinates � Collective degrees of freedom � Enhanced sampling � Replica
exchange � Principal component analysis/PCA � Essential dynamics � TEE-REX �
CONCOORD/tCONCOORD � Geometrical constraints

12.1 Molecular Dynamics Simulations

Over the last decades, experimental techniques have made substantial progress in
revealing the three-dimensional structure of proteins, in particular X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron
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microscopy. Going beyond the static picture of single protein structures has proven
to be more challenging, although, a number of techniques such as NMR relaxation,
fluorescence spectroscopy or time-resolved X-ray crystallography have emerged
(Kempf and Loria 2003; Weiss 1999; Moffat 2003; Schotte et al. 2003), yielding
information about the inherent conformational flexibility of proteins. Despite this
enormous variety, experimental techniques having spatio-temporal resolution in the
nano- to microsecond as well as the nanometre regime are not routinely available,
and thus information on the conformational space accessible to proteins in vivo
often remains obscure. In particular, details on the pathways between different
known conformations, frequently essential for protein function, are usually
unknown. Here, computer simulation techniques provide an attractive possibility to
obtain dynamic information on proteins at atomic resolution in the microsecond
time range. Of all ways to simulate protein motions (Adcock and McCammon
2006), molecular dynamics (MD) techniques are among the most popular.

Since the first report of MD simulations of a protein some 30 years ago
(McCammon et al. 1977), MD has become an established tool in the study of
biomolecules. Like all computational branches of science, the MD field benefits
from the ever increasing improvements in computational power. This progression
also allowed for advancements in simulation methodology that have led to a large
number of algorithms for such diverse problems as cellular transport, signal
transduction, allostery, cellular recognition, ligand-docking, the simulation of
atomic force microscopy and enzymatic catalysis.

12.1.1 Principles and Approximations

Despite substantial algorithmic advances, the basic theory behind MD simulations
is fairly simple. For biomolecular systems having N particles, the numerical solu-
tion of the time-dependent Schrödinger equation

i�h
@

@t
wðr; tÞ ¼ Hwðr; tÞ

for the N-particle wave function w(r, t) of the system is prohibitive. Several
approximations are therefore required to allow the simulation of solvated biomo-
lecules at timescales on the order of microseconds. The first of these relates to
positions of nuclei and electrons: due to the much lower mass and consequently
much higher velocity of the electrons compared to the nuclei, electrons can often be
assumed to instantaneously follow the motion of the nuclei. Thus, within the
Born-Oppenheimer approximation, only the nuclear motion has to be considered,
with the electronic degrees of freedom influencing the dynamics of the nuclei in the
form of a potential energy surface V(r).

The second essential approximation used in MD is to describe nuclear motion
classically by Newton’s equations of motion
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mi
d2ri
dt2

¼ �riVðr1; . . .; rNÞ;

where mi and ri are the mass and the position of the i-th nucleus. With the nuclear
motion described classically, the Schrödinger equation for the electronic degrees of
freedom has to be solved to obtain the potential energy V(r). However, due to the
large number of electrons involved, a further simplification is necessary.
A semi-empirical force field is introduced which approximates V(r) by a large
number of functionally simple energy terms for bonded and non-bonded interac-
tions. In its general form

VðrÞ ¼ Vbonds þVangles þVdihedrals þVimproper þVCoul þVLJ
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The simple terms are often harmonic (e.g. Vbonds, Vangles, Vimproper) or motivated by
physical laws (e.g. Coulomb VCoul, Lennard-Jones VLJ). They are defined by their
functional form and a small number of parameters, e.g. an atomic radius for van der
Waals interactions. All parameters are determined using either ab initio quantum
chemical calculations or comparisons of structural or thermodynamical data with
suitable averages of small molecule MD ensembles. Between different force fields
(Brooks et al. 1983; Weiner et al. 1986; van Gunsteren and Berendsen 1987;
Jorgensen et al. 1996) the number of energy terms, their functional form and their
individual parameters can vary considerably.

Given the above description of proteins as point masses (positions ri, velocities vi)
moving in a classical potential under external forces Fi, a standard MD simulation
integrates Newton’s equations of motion in discrete timesteps Dt on the femtosecond
timescale by some numerical scheme, e.g. the leap-frog algorithm (Hockney et al.
1973):

viðtþ Dt
2
Þ ¼ viðt � Dt

2
Þþ FiðtÞ

mi
Dt

riðtþDtÞ ¼ riðtÞþ viðtþ Dt
2
ÞDt:

Besides interactions with membranes and other macromolecules, water is the
principal natural environment for proteins. For a simulation of a model system that
matches the in vivo system as close as possible, water molecules and ions in
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physiological concentration are added to the system in order to solvate the protein.
Having a simulation box filled with solvent and solute, artefacts due to the
boundaries of the system may arise, such as evaporation, high pressure due to
surface tension and preferred orientations of solvent molecules on the surface. To
avoid such artefacts, periodic boundary conditions are often applied. In this way,
the simulation system does not have any surface. This, however, may lead to new
artefacts if the molecules artificially interact with their periodic images due to
e.g. long-range electrostatic interactions. These periodicity artefacts are minimized
by increasing the size of the simulation box. Different choices of unit cells, e.g.,
cubic, dodecahedral or truncated octahedral allow an optimal fit to the shape of the
protein, and, therefore, permit a suitable compromise between the number of sol-
vent molecules while simultaneously keeping the crucial protein-protein distance
high.

As the solvent environment strongly affects the structure and dynamics of pro-
teins, water must be described accurately. Besides the introduction of implicit
solvent models, where water molecules are represented as a continuous medium
instead of individual “explicit” solvent molecules (Still et al. 1990; Gosh et al.
1998; Jean-Charles et al. 1991; Luo et al. 2002), a variety of explicit solvent
models are used these days (e.g. Jorgensen et al. 1983). These models differ in the
number of particles used to represent a water molecule and the assigned static
partial charges, reflecting the polarity and, effectively, in most force fields, polar-
ization. Because these charges are kept constant during the simulation, explicit
polarization effects are thereby excluded. Nowadays, several polarizable water
models (and force fields) exist, see Warshel et al. (2007) and Huang et al. (2014)
for reviews.

In solving Newton’s equations of motion, the total energy of the system is
conserved, resulting in a microcanonical NVE ensemble having constant particle
number N, volume V and energy E. However, real biological subsystems of the size
studied in simulations constantly exchange energy with their surrounding.
Furthermore, a constant pressure P of usually 1 bar is present. To account for these
features, algorithms are introduced which couple the system to a temperature and
pressure bath (Anderson 1980; Nose 1984; Berendsen et al. 1984), leading to a
canonical NPT ensemble.

12.1.2 Applications

Molecular Dynamics simulations have become a standard technique in protein
science and are routinely applied to a wide range of problems. Conformational
dynamics of proteins, however, is still a demanding task for MD simulations since
functional conformational transitions often occur at timescales of microseconds to
seconds which are not routinely accessible with current algorithms and computer
power.
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12.1.2.1 Nuclear Transport Receptors

Despite their computational demands, MD simulations have been successfully
applied to study functional modes of proteins. As an illustration, we will discuss in
some detail the work of Zachariae et al. (Zachariae and Grubmüller 2006) that
revealed a strikingly fast conformational transition of the exportin CAS (Cse1p in
yeast) from the open to the closed state. CAS/Cse1p is a nuclear transport receptor
consisting of 960 amino acids that binds importin-a and RanGTP in the nucleus.
The heterotrimeric complex (Fig. 12.1) can cross nuclear pores and dissociates by
catalyzed GTP hydrolysis in the cytoplasm and, thus, represents an important part
of the nucleocytoplasmic transport cycle in cells.

For the function of the importin-a/CAS system it is essential that, after disso-
ciation of the complex in the cytoplasm, CAS/Cse1p undergoes a large confor-
mational change that prevents reassociation of the complex. X-ray structures of
Cse1p show that the cargo bound conformation adopts a superhelical structure with
curls around the bound RanGTP (Fig. 12.2 left), whereas the cytoplasmic form
exhibits a closed ring conformation that leads to occlusion of the RanGTP binding
site (Fig. 12.2 right). In order to understand the mechanism of this conformational
switch, Zachariae et al. carried out MD simulations of Cse1p starting from the cargo
bound conformation. They found that, mainly driven by electrostatic interactions,
the structure of Cse1p spontaneously collapses and adopts a conformation close to
the experimentally determined cytoplasmic form within a relatively short timescale
of 10 ns. Simulations of mutants with different electrostatic surface potentials did
not reveal a significant conformational change but remained in an open confor-
mation which is in good agreement with experimental findings (Cook et al. 2005).
This example shows that functionally relevant conformational changes that occur
on short time scales can be studied by MD simulations. However, in this particular
case the simulation has—due to the removal of importin-a and RanGTP—not been

Fig. 12.1 Heterotrimeric
complex of Cse1p (blue),
RanGTP (yellow) and
importin-a (red). Cse1p
adopts a superhelical structure
and binds RanGTP and
importin-a. The complex can
cross nuclear pores and
dissociates by catalyzed GTP
hydrolysis in the cytoplasm
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started from an equilibrium conformation and thus, presumably, no significant
energy barrier had to be overcome to reach the closed conformation. When simu-
lations are started from a free energy minimum, which is usually the case, the
accessible time scales are often too short to overcome higher energy barriers and,
thus, to observe functionally relevant conformational transitions. This is known as
the “sampling problem” and is a general problem for MD simulations.

12.1.2.2 Lysozyme

MD simulations of bacteriophage T4-lysozyme (T4L), an enzyme which is six
times smaller than Cse1p, impressively illustrate this sampling problem for rela-
tively long MD trajectories. T4L has been extensively studied with X-ray crystal-
lography (Faber and Matthews 1990; Kuroki et al. 1993) and, since it has been
crystallized in many different conformations, represents one of the rare cases where
information about functionally relevant modes can be directly obtained at atomic
resolution from experimental data (Zhang et al. 1995; de Groot et al. 1998). The
domain character of this enzyme is very pronounced (Matthews and Remington
1974) and from the differences between crystallographic structures of various
mutants of T4L it has been suggested that a hinge-bending mode of T4L (Fig. 12.3)
is an intrinsic property of the molecule (Dixon et al. 1992). Moreover, the domain
fluctuations are predicted to be essential for the function of the enzyme, allowing
the substrate to enter and the products to leave the active site in the open config-
uration, with the closed state presumably required for catalysis.

Fig. 12.2 Nucleoplasmic (left) and cytoplasmic (right) form of Cse1p. In the nucleoplasmic form,
Cse1p is bound to RanGTP and importin-a (both not shown) and adopts a superhelical structure.
After dissociation in the cytoplasm, Cse1p undergoes a large conformational change and forms a
ring conformation that occludes the RanGTP binding site and prevents reassociation of the
complex. The structures are coloured in a spectrum from blue (N-terminus) to red (C-terminus)
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The wealth of experimental data also provides the opportunity to assess the
reliability and sampling performance of simulation methods. Two MD simulations
have been carried out using a closed (simulation 1) and an open conformation
(simulation 2) as starting points, respectively. In order to assess the sampling
efficiency a principal components analysis (PCA, see Sect. 12.2 below) has been
carried out on the ensemble of experimentally determined structures and the X-ray
ensemble and the two MD trajectories have been projected onto the first two
eigenvectors. The first eigenvector represents the hinge-bending motion, whereas
the second eigenvector represents a twist of the two domains of T4L. The pro-
jections are shown in Fig. 12.4. The X-ray ensemble is represented by dots, each
dot representing a single conformation. Movement along the first eigenvector
(x-axis) describes a collective motion from the closed to the open state. It can be
seen that neither of the individual the MD trajectories, represented by lines, fully
samples the entire conformational space covered by the X-ray ensemble, although
the simulation times (184 ns for simulation 1 and 117 ns for simulation 2) are one
order of magnitude larger than in the previously discussed Cse1p simulation. From
the phase space density one can assume that an energy barrier exists between the
closed and the open state and neither simulation achieves a full transition, from the
closed to the open state, or vice versa.

Fig. 12.3 Hinge-bending motion in bacteriophage T4-lysozyme. Domain fluctuations (domains
are coloured differently) are essential for enzyme function, allowing the substrate to enter and the
products to leave the active site
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12.1.2.3 Aquaporins

Aquaporins present a prime example of how MD simulations have contributed to
the understanding of protein function both in terms of dynamics and energetics.
Aquaporins facilitate efficient and selective permeation of water across biological
membranes. Related aquaglyceroporins in addition also permeate small neutral
solutes like glycerol. Available high-resolution structures provided invaluable
insights in the molecular mechanisms acting in aquaporins (Fu et al. 2000; Murata
et al. 2000; de Groot et al. 2001; Sui et al. 2001). However, mostly static infor-
mation is available from such structures and we can therefore not directly observe
aquaporins “at work”. So far, there is no experimental method that offers sufficient
spatial and time resolution to monitor permeation through aquaporins on a
molecular level. MD simulations therefore complement experiments by providing
the progression of the biomolecular system at atomic resolution. As permeation is
known to take place on the nanosecond timescale, spontaneous permeation can be
expected to take place in multi-nanosecond simulations, allowing a direct obser-
vation of the functional dynamics. Hence, such simulations have been termed
“real-time simulations” (de Groot and Grubmüller 2001).

Indeed, spontaneous permeation events were observed in MD simulations of
aquaporin-1 and the aquaglyceroporin GlpF. These simulations identified that the
efficiency of water permeation is accomplished by providing a hydrogen bond

Fig. 12.4 Principal components analysis of bacteriophage T4-lysozyme. The X-ray ensemble is
represented by dots, MD trajectories by lines. A movement along the first eigenvector (x-axis)
represents a collective motion from the open to the closed state. Neither simulation 1 started from a
closed conformation—, nor simulation 2 started from an open conformation—show a full
transition due to an energy barrier that separates the conformational states
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complementarity inside the channel comparable to bulk water, thereby establishing
a low permeation barrier (de Groot and Grubmüller 2001; Tajkhorshid et al. 2002).
The simulations furthermore identified that the selectivity in these channels is
accomplished by a two-stage filter. The first stage of the filter is located in the
central part of the channel at the conserved asparagine/proline/alanine
(NPA) region; the second stage is located on the extracellular face of the channel
in the aromatic/arginine (ar/R) constriction region (Fig. 12.5). As water permeation
takes place on the nanosecond timescale, permeation coefficients can be directly
computed from the simulations, and compared to experiment. Quantitative agree-
ment was found between permeation coefficients from experiment and simulation,
thereby validating the simulations.

A long standing question in aquaporin research has been the mechanism by
which protons are excluded from the aqueous pores. The MD simulations
addressing water permeation revealed a pronounced water dipole orientation pattern
across the channel, with the NPA region as its symmetry center (de Groot and

Fig. 12.5 a Water molecules are strongly aligned inside the aquaporin-1 channel, with their
dipoles pointing away from the central NPA region (de Groot and Grubmüller 2001). The water
dipoles (yellow arrows) rotate by approx. 180° while permeating though the AQP1 pore. The red
and blue colours indicate local electrostatic potential, negative and positive, respectively.
b Hydrogen bond energies per water molecule (solid black lines) in AQP1 (left) and GlpF (right).
Protein-water hydrogen bonds (green) compensate for the loss of water-water hydrogen bonds
(cyan). The main protein-water interaction sites are the ar/R region and the NPA site

12 Protein Dynamics: From Structure to Function 401



Grubmüller 2001). In the simulations, the water molecules were found to rotate by
180° on their path through the pore (Fig. 12.5a). In a series of simulations
addressing the mechanism of proton exclusion it was found that the pronounced
water orientation is due to an electric field in the channel centred at the NPA region
(de Groot et al. 2003; Chakrabarti et al. 2004; Ilan et al. 2004). Electrostatic effects
therefore form the structural basis of proton exclusion. A debate continues about the
origin of the electrostatic barrier, where both direct electrostatic effects caused by
helix dipoles has been suggested (de Groot et al. 2003; Chakrabarti et al. 2004), as
well as a specific desolvation effects (Burykin and Warshel 2003). Some results
suggest that both effects contribute approximately equally (Chen et al. 2006).

Recently, MD simulations allowed for the elucidation of the mechanism of
selectivity of neutral solutes in aquaporins and aquaglyceroporins. Aquaporins were
found to be permeated solely by small polar molecules like water, and to some
extent also ammonia, whereas aquaglyceroporins are also permeated by apolar
molecules like CO2 and larger molecules like glycerol, but not urea (Hub and de
Groot 2008). For aquaporins, an inverse relation was observed between perme-
ability and solute hydrophobicity—solutes competing with permeating water
molecules for hydrogen bonds with the channel determine the permeation barrier.
A combination of size exclusion and hydrophobicity therefore underlies the
selectivity in aquaporins and aquaglyceroporins.

12.1.3 Limitations—Enhanced Sampling Algorithms

Although molecular dynamics simulations have become an integral part of struc-
tural biology and provided numerous invaluable insights into biological processes
at the atomic level, limitations occur due to both methodological restrictions and
limited computer power. Methodological limitations arise from the classical
description of atoms and the approximation of interactions by simple energy terms
instead of the Schrödinger equation. This means that chemical reactions (bond
breaking and formation) can not be described. Also polarization effects and proton
tunnelling lie out of the scope of classical MD simulations.

The second class of limitations arises from the computational demands of MD
simulations. Although bonds are usually treated as constraints thereby eliminating
the highest frequency motions, the timestep length in MD simulations usually
cannot be chosen longer than 4 fs. Hence, a nanosecond simulation requires
250,000 force calculations and integration steps. Despite the rapid progress in
algorithm techniques, the development of special purpose hardware and the uti-
lization of graphics processing units (GPUs) as calculation engines, the simulation
of timescales at which biological phenomena occur are not routinely accessible.

Biologically relevant protein motions like large conformational transitions,
folding and unfolding usually take place on the micro- to (milli)second timescale.
Thus it becomes evident that, despite ever increasing computer power, which
roughly grows by a factor of 100 per decade, MD simulations will not solve the
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“sampling problem” anytime soon by just waiting for faster computers. Therefore,
alternative methods—partly based on MD—have been developed to specifically
address the problem of conformational sampling and to predict functionally relevant
protein motions.

Reducing the number of particles is one approach. Since proteins are usually
studied in solution most of the simulation system consists of water molecules. The
development of implicit solvent models is therefore a promising means to reduce
computational demands (Still et al. 1990; Gosh et al. 1998; Jean-Charles et al.
1991; Luo et al. 2002). Another possibility to reduce the number of particles is the
use of so-called coarse-grained models (Bond et al. 2007; Saunders and Voth
2013). In these models, atoms are grouped together, for instance typically four
water molecules are treated as one pseudo-particle (bead). These groupings have
two effects. First, the number of particles is reduced and, second, the timestep,
depending on the fastest motions in the system, can be increased. However,
coarse-graining is not restricted to water molecules. Representations of several
atoms up to complete amino acids by a single bead are nowadays used. This allows
for a drastic reduction of computational demands, thereby enabling the simulation
of large macromolecular aggregates on micro- to millisecond timescales. An even
coarser model, collapsing entire protein domains into single interaction sites, has
recently been introduced to study intermolecular interactions in solutions of anti-
bodies. Here viscosity at high concentrations poses a severe challenge on antibody
development and reliable viscosity predictions would be a major step forward in the
field of computational biotechnology (Chaudhri et al. 2012).

The gain in efficiency due to coarse graining, however, comes with an inherent
reduction of accuracy compared to all-atom descriptions of proteins, restricting
current models to semi-quantitative statements. Essential for the success of
coarse-grained simulations are the parameterizations of force fields that are both
accurate and transferable, i.e. force fields capable of describing the general
dynamics of systems having different compositions and configurations. As the
graining becomes coarser, this process becomes increasingly difficult, since more
specific interactions must effectively be included in fewer parameters and functional
forms. This has led to a variety of models for proteins, lipids and water, repre-
senting different compromises between accuracy and transferability (see e.g.
Marrink et al. 2004).

Other MD based enhanced sampling methods, which retain the atomistic
description, include replica exchange molecular dynamics (REMD) and essential
dynamics (ED) which are discussed in subsequent sections. Moreover, a number of
non-MD based methods are discussed that aim towards the prediction of functional
modes of proteins.

12.1.3.1 Replica Exchange

The aim of most computer simulations of biomolecular systems is to calculate
macroscopic behaviour from microscopic interactions. Following equilibrium
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statistical mechanics, any observable that can be connected to macroscopic
experiments is defined as an ensemble average over all possible realizations of the
system. However, given current computer hardware, a fully converged sampling of
all possible conformational states with the respective Boltzmann weight is only
attainable for simple systems comprising a small number of amino acids (see
e.g. Kubitzki and de Groot 2007). For proteins, consisting of hundreds to thousands
of amino acids, conventional MD simulations often do not converge and reliable
estimates of experimental quantities can not be calculated.

This inefficiency in sampling is a result of the ruggedness of the systems’ free
energy landscape, a concept put forward by Frauenfelder (Frauenfelder et al. 1991;
Frauenfelder and Leeson 1998). The global shape is supposed to be funnel-like,
with the native state populating the global free energy minimum (Anfinsen 1973).
Looking in more detail, the complex high-dimensional free energy landscape is
characterized by a multitude of almost iso-energetic minima, separated from each
other by energy barriers of various heights. Each of these minima corresponds to
one particular conformational substate, with neighboring minima corresponding to
similar conformations. Within this picture, structural transitions are barrier cross-
ings, with the transition rate depending on the height of the barrier. For MD sim-
ulations at room temperature, only those barriers are easily overcome that are
smaller than or comparable to the thermal energy kBT and the observed structural
changes are small, e.g. side chain rearrangements. Therefore the system will spend
most of its time in locally stable states (kinetic trapping) instead of exploring
different conformational states. This wider exploration is of greater interest, due to
its connection to biological function, but requires that the system be able to over-
come large energy barriers. Unfortunately, since MD simulations are mostly
restricted to the nanosecond timescale, functionally relevant conformational tran-
sitions are rarely observed.

A plethora of enhanced sampling methods have been developed to tackle this
multi-minima problem (see e.g. van Gunsteren and Berendsen 1990; Tai 2004;
Adcock and McCammon 2006 and references therein). Among them, generalized
ensemble algorithms have been widely used in recent years (for a review, see
e.g. Mitsutake et al. 2001; Iba 2001). Generalized ensemble algorithms sample an
artificial ensemble that is either constructed from combinations or alterations of the
original ensemble. Algorithms of the second category (e.g. Berg and Neuhaus
1991) basically modify the original bell-shaped potential energy distribution p(V)
of the system by introducing a so-called multicanonical weight factor w(V), such
that the resulting distribution is uniform, p(V)w(V) = const. This flat distribution
can then be sampled extensively by MD or Monte-Carlo techniques because
potential energy barriers are no longer present. Due to the modifications introduced,
estimates for canonical ensemble averages of physical quantities need to be
obtained by reweighting techniques (Kumar et al. 1992; Chodera et al. 2007). The
main problem with these algorithms, however, is the non-trivial determination of
the different multicanonical weight factors by an iterative process involving short
trial simulations. For complex systems this procedure can be very tedious and
attempts have been made to accelerate convergence of the iterative process
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(Berg and Celik 1992; Kumar et al. 1996; Smith and Bruce 1996; Hansmann 1997;
Bartels and Karplus 1998).

The replica exchange (REX) algorithm, developed as an extension of simulated
tempering (Marinari and Parisi 1992), removes the problem of finding correct
weight factors. It belongs to the first category of algorithms where a generalized
ensemble, built from several instances of the original ensemble, is sampled. Due to
its simplicity and ease of implementation, it has been widely used in recent years.
Most often, the standard temperature formulation of REX is employed (Sugita and
Okamoto 1999), with the general Hamiltonian REX framework gaining increasing
attention (Fukunishi et al. 2002; Liu et al. 2005; Sugita et al. 2000; Affentranger
et al. 2006; Christen and van Gunsteren 2006; Lyman and Zuckerman 2006).

In standard temperature REX MD (Sugita and Okamoto 1999), a generalized
ensemble is constructed from M + 1 non-interacting copies, or “replicas”, of the
system at a range of temperatures {T0, …, TM} (Tm � Tm+1; m = 0, …, M), e.g.
by distributing the simulation over M + 1 nodes of a parallel computer (Fig. 12.6
left). A state of this generalized ensemble is characterized by S = {…, sm, …},
where sm represents the state of replica m having temperature Tm. The algorithm
now consists of two consecutive steps: (a), independent constant-temperature
simulations of each replica, and (b), exchange of two replicas S = {…, sm, …, sn,
…}! S′ = {…, sn′, …,sm′, …} according to a Metropolis-like criterion. The
exchange acceptance probability is thereby given by

PðS ! S0Þ ¼ min 1; exp ðbm � bnÞ½Vm � Vn�f gf g ð1:1Þ

with Vm being the potential energy and b�1
m ¼ kBTm. Iterating steps a and b, the

trajectories of the generalized ensemble perform a random walk in temperature
space, which in turn induces a random walk in energy space. This facilitates an
efficient and statistically correct conformational sampling of the energy landscape
of the system, even in the presence of multiple local minima.

The choice of temperatures is crucial for an optimal performance of the algo-
rithm. Replica temperatures have to be chosen such that (a) the lowest temperature
is small enough to sufficiently sample low-energy states, (b) the highest temperature
is large enough to overcome energy barriers of the system of interest, and (c) the
acceptance probability P(S ! S′) is sufficiently high, requiring adequate overlap of
potential energy distributions for neighboring replicas. For larger systems simulated
with explicit solvent the latter condition presents the main bottleneck. A simple
estimate (Cheng et al. 2005; Fukunishi et al. 2002) shows that the potential energy
difference DV * NdfDT is dominated by the contribution from the solvent degrees
of freedom Nsol

df , constituting the largest fraction of the total number of degrees of
freedom Ndf of the system. Obtaining a reasonable acceptance probability therefore
relies on keeping the temperature gaps DT = Tm+1 − Tm small (typically only a few
Kelvin) which drastically increases computational demands for systems having
more than a few thousand particles. Despite this severe limitation, REX methods
have become an established tool for the study of peptide folding/unfolding
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(Zhou et al. 2001; Rao and Caflisch 2003; García and Onuchic 2003; Pitera and
Swope 2003; Seibert et al. 2005); structure prediction (Fukunishi et al. 2002;
Kokubo and Okamoto 2004), phase transitions (Berg and Neuhaus 1991) and free
energy calculations (Sugita et al. 2000; Lou and Cukier 2006).

Going beyond conventional MD, another class of enhanced sampling algorithms
is successfully applied to the task of elucidating protein function. These algorithms
make use of the fact that fluctuations in proteins are generally correlated. Extracting
such collective modes of motion and their application in new sampling algorithms
will be the focus of the following two sections.

12.2 Principal Component Analysis

Principal component analysis (PCA) is a well-established technique to obtain a
low-dimensional description of high-dimensional data. Its applications include data
compression, image processing, data visualization, exploratory data analysis, pat-
tern recognition and time series prediction (Duda et al. 2001). In the context of
biomolecular simulations PCA has become an important tool in the extraction and
classification of relevant information about large conformational changes from an
ensemble of protein structures, generated either experimentally or theoretically
(García 1992; Gō et al. 1983; Amadei et al. 1993). Besides PCA, a number of
similar techniques are nowadays used, most notably normal mode analysis
(NMA) (Brooks and Karplus 1983; Gō et al. 1983; Levitt et al. 1983),
quasi-harmonic analysis (Karplus and Kushick 1981; Levy et al. 1984a, b; Teeter
and Case 1990) and singular-value decomposition (Romo et al. 1995; Bahar et al.
1997).

PCA is based on the notion that by far the largest fraction of positional fluc-
tuations in proteins occurs along only a small subset of collective degrees of
freedom. This was first realized from NMA of a small protein (Brooks and Karplus

t t t t0 1 2 3

T2

T1

T0

t t t t0 1 2 3

( , )Tes T2 0

( , )TTes
1 0

( , )T T0 0

Fig. 12.6 Schematic comparison of standard temperature REX (left panel) and the TEE-REX
algorithm (right panel) for a three-replica simulation. Temperatures are sorted in increasing order,
Ti+1 > Ti. Exchanges ($) are attempted (…) with frequency mex. Unlike REX, only an essential
subspace {es} (red boxes) containing a few collective modes is excited within each TEE-REX
replica. Reference replica (T0, T0), containing an approximate Boltzmann ensemble, is used for
analysis

406 M.B. Kubitzki et al.



1983; Gō et al. 1983; Levitt et al. 1983). In NMA (see Sect. 12.4.1), the potential
energy surface is assumed to be harmonic and collective variables are obtained by
diagonalization of the Hessian1 matrix in a local energy minimum. Quasi-harmonic
analysis, PCA and singular-value decomposition of MD trajectories of proteins that
do not assume harmonicity of the dynamics, have shown that indeed protein
dynamics is dominated by a limited number of collective coordinates, even though
the major modes are frequently found to be largely anharmonic. These methods
identify those collective degrees of freedom that best approximate the total amount
of fluctuation. The subset of largest-amplitude variables form a set of generalized
internal coordinates that can be used to effectively describe the dynamics of a
protein. Often, a small subset of 5–10% of the total number of degrees of freedom
yields a remarkably accurate approximation. As opposed to torsion angles as
internal coordinates, these collective internal coordinates are not known beforehand
but must be defined either using experimental structures or an ensemble of simu-
lated structures. Once an approximation of the collective degrees of freedom has
been obtained, this information can be used for the analysis of simulations as well
as in simulation protocols designed to enhance conformational sampling
(Grubmüller 1995; Zhang et al. 2003; He et al. 2003; Amadei et al. 1996).

In essence, a principal component analysis is a multi-dimensional linear least
squares fit procedure in configuration space. The structure ensemble of a molecule,
having N particles, can be represented in 3N-dimensional configuration space as a
distribution of points with each configuration represented by a single point. For this
cloud, always one axis can be defined along which the maximal fluctuation takes
place. As illustrated for a two-dimensional example (Fig. 12.7), if such a line fits
the data well, all data points can be approximated by only the projection onto that
axis, allowing a reasonable approximation of the position even when neglecting the
position in all directions orthogonal to it. If this axis is chosen as coordinate axis,
the position of a point can be represented by a single coordinate. The procedure in
the general 3N-dimensional case works similarly. Given the first axis that best
describes the data, successive directions orthogonal to the previous set are chosen
such as to fit the data second-best, third-best, and so on (the principal components).
Together, these directions span a 3N-dimensional space. Mathematically, these
directions are given by the eigenvectors li of the covariance matrix of atomic
fluctuations

C ¼ xðtÞ � xh ið Þ xðtÞ � xh ið ÞT� �
,with the angle brackets 〈�〉 representing an

ensemble average. The eigenvalues ki correspond to the mean square positional
fluctuation along the respective eigenvector, and therefore contain the contribution
of each principal component to the total fluctuation (Fig. 12.8). Applications of
such a multidimensional fit procedure on protein configurations from MD
simulations of several proteins have proven that typically the first ten to twenty
principal components are responsible for 90% of the fluctuations of a protein

1second derivative (∂2V)/(∂xi∂xj) of the potential energy.
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(Kitao et al. 1991; García 1992; Amadei et al. 1993). These principal components
correspond to collective coordinates, containing contributions from every atom of the
protein. In a number of cases these principal modes were shown to be involved in the
functional dynamics of the studied proteins (Amadei et al. 1993; van Aalten et al.
1995a, b; de Groot et al. 1998). Hence, the subspace responsible for the majority of
all fluctuations has been referred to as the essential subspace (Amadei et al. 1993).

The fact that a small subset of the total number of degrees of freedom (essential
subspace) dominates the molecular dynamics of proteins originates from the
presence of a large number of internal constraints and restrictions defined by the
atomic interactions present in a biomolecule. These interactions range from strong
covalent bonds to weak non-bonded interactions, whereas the restrictions are given
by the dense packing of atoms in native-state structures.

Overall, protein dynamics at physiological temperatures has been described as
diffusion among multiple minima (Kitao et al. 1998; Amadei et al. 1999; Kitao and
Gō 1999). The dynamics on short timescales is dominated by fluctuations within a
local minimum, corresponding to eigenvectors having low eigenvalues. On longer
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Fig. 12.7 Illustration of PCA in two dimensions. Two coordinates (x, y) are required to identify a
point in the ensemble in panel (a), whereas one coordinate x′ approximately identifies a point in
panel (b)
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Fig. 12.8 Typical PCA eigenvalue spectrum (MD ensemble of guanylin backbone structures).
The first five eigenvectors (panel a) cover 80% of all observed fluctuations (panel b)
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timescales large fluctuations are dominated by a largely anharmonic diffusion
between multiple wells. These slow dynamical transitions are usually represented
by the largest-amplitude modes of a PCA. In contrast to normal mode analysis,
PCA of a MD simulation trajectory does not rest on the assumption of a harmonic
potential. In fact, PCA can be used to study the degree of anharmonicity in the
molecular dynamics of the simulated system. For proteins, it was shown that at
physiological temperatures, especially the major modes of collective fluctuation that
are frequently functionally relevant, are dominated by anharmonic fluctuations
(Amadei et al. 1993; Hayward et al. 1995).

12.3 Collective Coordinate Sampling Algorithms

Analyzing MD simulations in terms of collective coordinates (obtained e.g. by
PCA or NMA) reveals that only a small subset of the total number of degrees of
freedom dominates the molecular dynamics of biomolecules. As protein function
could in many cases been linked to these essential subspace modes (e.g. Brooks and
Karplus 1983; Gō et al. 1983; Levitt et al. 1983), the dynamics within this
low-dimensional space was termed “essential dynamics” (ED). This not only aids
the analysis and interpretation of MD trajectories but also opens the way to en-
hanced sampling algorithms that search the essential subspace in either a systematic
or exploratory fashion (Grubmüller 1995; Amadei et al. 1996).

12.3.1 Essential Dynamics

The first attempts in this direction were aimed at a simulation scheme in which the
equations of motion were solely integrated along a selection of primary principal
modes, thereby drastically reducing the number of degrees of freedom (Amadei
et al. 1993). However, these attempts proved problematic because of non-trivial
couplings between high- and low-amplitude modes, even though after diagonal-
ization the modes are linearly independent (orthogonal). Therefore, instead, a series
of techniques has prevailed that take into account the full-dimensional simulation
system and enhance the motion along a selection of principal modes. The most
common of these techniques are conformational flooding (Grubmüller 1995) and
ED sampling (Amadei et al. 1996; de Groot et al. 1996a, b). In conformational
flooding, an additional potential energy term that stimulates the simulated system to
explore new regions of phase space is introduced on a selection of principal modes,
whereas in ED sampling a similar goal is achieved by geometrical constraints along
a selection of principal modes. With these techniques a sampling efficiency
enhancement of up to an order of magnitude can be achieved, provided that a
reasonable approximation of the principal modes has been obtained from a con-
ventional simulation. However, due to the applied structural or energetic bias on the
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system, the ensemble generated by ED sampling and conformational flooding is not
canonical, restricting analysis to structural questions.

12.3.2 TEE-REX

Enhanced sampling methods such as ED (Amadei et al. 1996) achieve their sam-
pling power (Amadei et al. 1996; de Groot et al. 1996a, b) primarily from the fact
that a small number of internal collective degrees of freedom dominate the con-
figurational dynamics of proteins. Yet, systems simulated with such methods are
always in a non-equilibrium state, rendering it difficult to extract thermodynamic,
i.e. equilibrium properties of the system from such simulations. On the other hand,
generalized ensemble algorithms such as REX not only enhance sampling but yield
correct statistical ensembles necessary for the calculation of equilibrium properties
which can be subjected to experimental verification. However, REX quickly
becomes computationally prohibitive for systems of more than a few thousand
particles, limiting its current applicability to smaller peptides (Pitera and Swope
2003; Cecchini et al. 2004; Nguyen et al. 2005; Liu et al. 2005; Seibert et al.
2005). The newly developed Temperature Enhanced Essential dynamics Replica
EXchange (TEE-REX) algorithm (Kubitzki and de Groot 2007) combines the
favorable properties of REX with those resulting from a specific excitation of
functionally relevant modes, while at the same time avoiding the drawbacks of both
approaches.

Figure 12.6 shows a schematic comparison of standard temperature REX (left)
and the TEE-REX algorithm (right). TEE-REX builds upon the REX framework,
i.e. a number of replicas of the system are simulated independently in parallel with
periodic exchange attempts between neighbouring replicas. In contrast to REX, in
each but the reference replica, only those degrees of freedom are thermally stim-
ulated that contribute significantly to the total fluctuations of the system (essential
subspace {es}). This way, several benefits are combined and drawbacks avoided. In
contrast to standard REX, the specific excitation of collective coordinates promotes
sampling along these often functionally relevant modes of motion, i.e. the advan-
tages of ED are used. To counterbalance the disadvantages associated with such a
specific excitation, i.e. the construction of biased ensembles, the scheme is
embedded within the REX protocol. Thereby ensembles are obtained having
approximate Boltzmann statistics and the enhanced sampling properties of REX are
utilized. The exchange probability (1.1) between two replicas crucially depends on
the excited number of degree of freedom of the system. Since the stimulated number
of degrees of freedom makes up only a minute fraction of the total number of
degrees of freedom of the system, the bottleneck of low exchange probabilities in
all-atom REX simulations is bypassed. For given exchange probabilities, large
temperature differences DT can thus be used, such that only a few replicas are
required.
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Figure 12.9 shows a two-dimensional projection of the free energy landscape of
dialanine, calculated with MD (panel A) and TEE-REX (panel B). The thermo-
dynamic behaviour of a system is completely known once a thermodynamic
potential such as the relative Gibbs free energy DG is available. Comparing free
energies thus enables us to decide to which degree ensembles created by different
simulation methods coincide. In doing so, ensemble convergence is an absolute
necessity. For the dialanine test case, this requirement is met. A detailed analysis of
the shape of the free energy surfaces generated by MD and TEE-REX shows that
the maximum absolute deviations of 1.5 kJ/mol ≅ 0.6kBT from the ideal case
DGTEE-REX − GMD = 0, commensurate with the maximum statistical errors of
0.15kBT found for each method. The small deviations found for the TEE-REX
ensemble are presumably due to the exchange of non-equilibrium structures into the
TEE-REX reference ensemble.

The sampling efficiency of the TEE-REX algorithm compared to MD was
evaluated for guanylin, a small 13 amino-acid peptide hormone (Currie et al. 1992).
Trajectories generated with both methods-using the same computational effort-were
projected into (/, w)-space as well as different two-dimensional subspaces spanned
by PCA modes calculated from an MD ensemble of guanylin structures. From these
projections, the time evolution of sampled configuration space volume was mea-
sured. Overall, the sampling performance of MD is quite limited compared to
TEE-REX, the latter outperforming MD on average by a factor of 2.5, depending on
the subspace used for projecting.

12.3.2.1 Applications: Finding Transition Pathways in Adenylate
Kinase

Understanding the functional basis for many protein functions (Gerstein et al. 1994;
Berg et al. 2002; Karplus and Gao 2004; Xu et al. 1997) requires detailed
knowledge of transitions between functionally relevant conformations. Over the last
years X-ray crystallography and NMR spectroscopy have provided mostly static
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Fig. 12.9 Comparison of two-dimensional relative free energy surfaces (in units of kJ/mol) of
dialanine generated by MD (panel a) and TEE-REX (panel b). Deviations D GTEE-REX − GMD are
commensurate with the statistical errors of *0.1 kBT
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pictures of different conformational states of proteins, leaving questions related to
the underlying transition pathway unanswered. For atomistic MD simulations,
elucidating the pathways and mechanisms of protein conformational dynamics
poses a challenge due to the long timescales involved. In this respect, E. coli
adenylate kinase (ADK) is a prime example. ADK is a monomeric enzyme that
plays a key role in energy maintenance within the cell, controlling cellular ATP
levels by catalyzing the reaction Mg2+: ATP + AMP $ Mg2+: ADP + ADP.
Structurally, the enzyme consists of three domains (Fig. 12.10): the large central
“CORE” domain (light grey), an AMP binding domain referred to as “AMPbd”
(black), and a lid-shaped ATP-binding domain termed “LID” (dark grey), which
covers the phosphate groups at the active centre (Müller et al. 1996). In an unli-
gated structure of ADK the LID and AMPbd adopt an open conformation, whereas
they assume a closed conformation in a structure crystallized with the transition
state inhibitor Ap5A (Müller and Schulz 1992). Here, the ligands are contained in a
highly specific environment required for catalysis. 15N nuclear magnetic resonance
spin relaxation studies (Shapiro and Meirovitch 2006) have shown the existence of
catalytic domain motions in the flexible AMPbd and LID domains on the
nanosecond time scale, while the relaxation in the CORE domain is on the
picosecond time scale (Tugarinov et al. 2002; Shapiro et al. 2002). For ADK,
several computational studies have addressed its conformational flexibility (Temiz
et al. 2004; Maragakis and Karplus 2005; Lou and Cukier 2006; Whitford et al.
2007; Snow et al. 2007). However, due to the magnitude and timescales involved,
spontaneous transitions between the open and closed conformations have not been
achieved until now by all-atom MD simulations. Using TEE-REX, spontaneous
transitions between the open and closed structures of ADK are facilitated, and a
fully atomistic description of the transition pathway and its underlying mechan-
ics could be achieved (Kubitzki and de Groot 2008). To this end, different essen-
tial subspaces {es} were constructed from short MD simulations of either
conformation as well as from a combined ensemble holding structures from both
the open and closed conformation. In the latter case, {es} modes were excited
containing the difference X-ray mode connecting the open and closed experimental
structures.

The observed transition pathway can be characterized by two phases. Starting
from the closed conformation (Fig. 12.10 left), the LID remains essentially closed
while the AMPbd, comprising helices a2 and a3, assumes a half-open conforma-
tion. In doing so, a2 bends towards helix a4 of the CORE by 15° with respect to a3.
This opening of the AMP binding cleft could facilitate an efficient release of the
formed product. For the second phase, a partially correlated opening of the LID
domain together with the AMPbd is observed. Compared to coarse-grained
approaches, all-atom TEE-REX simulations allow detailed analyses of inter-residue
interactions. For ADK, a highly stable salt bridge between residues Asp118 and
Lys136 forms during phase one, connecting the LID and CORE domains.
Estimating the total non-bonded interaction between LID and CORE, it was found
that this salt-bridge contributes substantially to the interaction of the two domains.
Breaking this salt bridge via mutation, e.g. Asp118Ala, should thus decrease the
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stability of the open state. From a comparison of fourteen Protein Data Bank
(PDB) structures from yeast, maize, human and bacterial ADK, eleven structures
feature such a salt-bridge motif at the LID-CORE interface.

Alternative transition pathways seem possible, however an analysis of all
TEE-REX simulations suggests a high free energy barrier obstructing the full
opening of the AMPbd after the LID has opened. Together with the observed larger
fluctuations in secondary structure elements, indicating high internal strain energies,
the enthalpic penalty along this route possibly renders it unfavourable as a transition
pathway of ADK.

12.4 Methods for Functional Mode Prediction

As discussed in the previous section, functional modes in proteins are usually those
with the lowest frequencies. Apart from molecular dynamics based techniques,
there are several alternative methods that focus on the prediction of these essential
degrees of freedom based on a single input structure.

12.4.1 Normal Mode Analysis

Normal mode analysis (NMA) is one of the major simulation techniques used to
probe the large-scale, shape-changing motions in biological molecules (Gō et al.
1983; Brooks and Karplus 1983; Levitt et al. 1983). These motions are often
coupled to function and a consequence of binding other molecules like substrates,
drugs or other proteins. In NMA studies it is implicitly assumed that the normal
modes with the largest fluctuation (lowest frequency modes) are the ones that are

CLOSED phase 1 phase 2 OPEN

LID

AMPbd

CORE

Fig. 12.10 Closed (left) and open (right) crystal structures of E. coli adenylate kinase
(ADK) together with intermediate structures characterizing the two phases of the closed-open
transition. ADK has domains CORE (light grey), AMPbd (black) and LID (dark grey). The
transition state inhibitor Ap5A is removed in the closed crystal structure (left)
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functionally relevant, because, like function they exist by evolutionary “design”
rather than by chance.

Normal mode analysis is a harmonic analysis. The underlying assumption is that
the conformational energy surface can be approximated by a parabola, despite the
fact that functional modes at physiological temperatures are highly anharmonic
(Brooks and Karplus 1983; Austin et al. 1975). To perform a normal mode analysis
one needs a set of coordinates, a force field describing the interactions between
constituent atoms, and software to perform the required calculations. The perfor-
mance of a normal mode analysis in Cartesian coordinate space requires three main
calculation steps.

1. Minimization of the conformational potential energy as a function of the atomic
coordinates.

2. The calculation of the so-called “Hessian” matrix

H ¼ @2V
@xi@xj

which is the matrix of second derivatives of the potential energy with respect to
the mass-weighted atomic coordinates.

3. The diagonalization of the Hessian matrix. This final steps yields eigenvalues
and eigenvectors (the “normal modes”).

Energy minimization can require quite a lot of CPU time. Furthermore, as the
Hessian matrix is a 3N � 3N matrix, where N is the number of atoms, the last step
can be computationally demanding.

12.4.2 Elastic Network Models

Elastic or Gaussian network models (Tirion 1996) (ENM) are basically a simpli-
fication of normal mode analysis. Usually, instead of an all atom representation,
only Ca atoms are taken into account. This means a ten-fold reduction of the
number of particles which decreases the computational effort dramatically.
Moreover, as the input coordinates are taken as representing the ground state, no
energy minimization is required.

The potential energy is calculated according to

V ¼ c
2

X

r0ijj j\RC

ðrij � r0ijÞ2

where c denotes the spring constant and RC the cut-off distance. Regarding the
drastic assumptions inherent in normal mode analysis, these simplifications do not
mean a severe loss of quality. This, together with the relatively low computational
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costs, explains the current popularity of elastic network models. ENM calculations
are also offered on web servers such as ElNemo (Suhre and Sanejouand 2004a, b)
(http://www.igs.cnrs-mrs.fr/elnemo/) and AD-ENM (Zheng and Doniach 2003;
Zheng and Brooks 2005) (http://enm.lobos.nih.gov/).

12.4.3 CONCOORD

CONCOORD (de Groot et al. 1997) uses a geometry-based approach to predict
protein flexibility. The three-dimensional structure of a protein is determined by
various interactions such as covalent bonds, hydrogen bonds and non-polar inter-
actions. Most of these interactions remain intact during functionally relevant con-
formational changes. This notion lies at the heart of the CONCOORD simulation
method: based on an input structure, alternative structures are generated that share
the large majority of interactions found in the original configuration. To this end, in
the first step of a CONCOORD simulation (Fig. 12.11) interactions in a single input
structure are analyzed and turned into geometrical constraints, mainly distance
constraints with upper and lower bounds for atomic distances but also angle con-
straints and information about planar and chiral groups. This geometrical descrip-
tion of the structure can be compared to a construction plan of the protein. In the
second step, starting from random atomic coordinates, the structure is iteratively
rebuilt based on the predefined construction plan, commonly several hundreds of
times. As each run starts from random coordinates, the method does not suffer from
sampling problems like MD simulations and the resulting ensemble covers the
whole conformational space that is available within the predefined constraints.
However, the method does not provide information about the path between two
conformational substates or about timescales and energies (Fig. 12.12).

12.4.3.1 Applications

CONCOORD and the extension tCONCOORD (t stands for transition) (Seeliger
et al. 2007) have been applied to diverse proteins. Adenylate kinase displays a
distinct domain-closing motion upon binding to its substrate (ATP/AMP) or an
inhibitor (see Fig. 12.13 left) with a Ca-RMSD of 7.6 Å between the ligand-bound
and the ligand-free conformation. Two tCONCOORD simulations were carried out
using a closed conformation (PDB 1AKE) as input. In one simulation the ligand
(Ap5A) was removed. Figure 12.13 (right) shows the result of a principal com-
ponents analysis (PCA) applied to the experimental structures. The first eigenvector
(x-axis) corresponds to the domain-opening motion indicated by the arrow in
Fig. 12.13 (left). Every dot in the plot represents a single structure. Red dots
represent the ensemble that has been generated using the closed conformation of
adenylate kinase without ligand as input. Green dots represent the ensemble that has
been generated using the ligand-bound structure as input. Whereas the simulation
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Fig. 12.11 Schematic representation of the CONCOORD method for generating structure
ensembles from a single input structure. In a first step (program dist) a single input structure is
analyzed and turned into a geometric description of the protein. In a second step (program disco)
the structure is rebuilt based on the predefined constraints, starting from random coordinates

416 M.B. Kubitzki et al.



with inhibitor basically samples closed conformations around the ligand-bound
state, the ligand-free simulation samples both, open and closed conformations,
thereby reaching the experimentally determined open conformations with RMSD’s
of 2.4, 2.6, and 3.1 Å for 1DVR, 1AK2, and 4AKE, respectively. In structure-based
drug design, often the reverse problem, predicting ligand-bound structures from
unbound conformations, needs to be addressed. A tCONCOORD simulation
starting with an open conformation (4AKE) as input produced structures that
approach the closed conformations with RMSD’s of 2.5, 2.9, and 3.3 Å for 1DVR,
1AK2, and 1AKE, respectively. Thus, the functional domain-opening motion has
been predicted in both cases, when using a closed, ligand-bound conformation as
input and when using an open, ligand-free conformation as input.

Fig. 12.12 Comparison of the sampling properties of Molecular Dynamics and CONCOORD on
hypothetic energy landscapes. A MD-trajectory (left) “walks” on the energy landscape, thereby
providing information about timescales and paths between conformational substates. The
(non-deterministic) CONCOORD-ensemble (right) “jumps” on the energy landscape, thereby
offering better sampling of the conformational space

Fig. 12.13 Left Overlay of X-ray structures of adenylate kinase. Right principal component
analysis. Two tCONCOORD ensembles are projected onto the first two eigenvectors of a PCA
carried out on an ensemble of X-ray structures. The ensemble represented by red dots has been
started from a closed conformation (1AKE) with removed inhibitor. The generated ensemble
samples both, closed and open conformations. The ensemble represented with green dots has also
been started from a closed conformation (1AKE) but with inhibitor present. The generated
ensemble only samples closed conformations around the ligand bound conformation
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Because of its computational efficiency, CONCOORD can be routinely applied
to extract functionally relevant modes of flexibility for molecular systems that are
beyond the size limitations of other atomistic simulation techniques like molecular
dynamics simulations. An application to the chaperonin GroEL-GroES complex
that contains more than 8000 amino acids revealed a novel form of coupling
between intra-ring and inter-ring cooperativity (de Groot et al. 1999). Each GroEL
ring displays two main modes of collective motion: the main conformational
transition upon binding of the co-chaperonin GroES, and a secondary transition
upon ATP binding (Fig. 12.14 upper right panel). CONCOORD simulations of a
single GroEL ring did not show any coupling between these modes, whereas
simulations of the double ring system showed a strict correlation between the two
modes, thereby providing an explanation for how nucleotide binding is coupled to
GroES affinity in the double ring, but not in a single ring.

Fig. 12.14 Asymmetric GroEL-GroES complex (left), together with CONCOORD simulation
results (right). The GroEL-GroES complex consists of the co-chaperonin GroES (blue), the
trans-ring of GroEL, bound to GroES (red), and the cis-ring (green). A principal component
analysis revealed two main structural transitions per GroEL ring, upon nucleotide binding (vertical
axis in the right panels) and GroES binding (horizontal axis), respectively. In simulations of the
double ring, but not in a single ring, these modes were found to be coupled, suggesting a coupling
between intra-ring and inter-ring cooperativity
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12.5 Summary and Outlook

Computational methods gain growing recognition in structural biology and protein
research. Protein function is usually a dynamic process involving structural rear-
rangements and conformational transitions between stable states. Since such
dynamic processes are difficult to study experimentally, in silico methods can
significantly contribute to the understanding of protein function at atomic resolu-
tion. The most prominent method to study protein dynamics is molecular dynamics
(MD), where atoms are treated as classical particles and their interactions are
approximated by an empirical force field. Newton’s equations of motion are solved
at discrete time steps, leading to a trajectory that describes the dynamical behaviour
of the system. Despite their growing popularity the scope of application for MD
simulations is limited by computational demands. Within the next 10 years the
accessible timescales for the simulation of average sized proteins will, in all like-
lihood, not exceed the low microsecond range for most biomolecular systems.
However, since functionally relevant protein dynamics is usually represented by
collective, low-frequency motions taking place on the micro- to millisecond
timescale, standard MD simulations are ill-suited to be routinely applied to study
conformational dynamics of large biomolecules.

Different methodologies have been developed to alleviate this sampling problem
that standard MD suffers from. One approach is to reduce the number of particles,
either by fusing groups of atoms into pseudo-atoms (coarse-graining), or by
replacing explicit solvent molecules with an implicit solvent continuum model. In
both cases the number of particles is significantly reduced, facilitating much longer
time scales than in all-atom simulations using explicit solvent. However, the loss of
“resolution” inherent to both methods may limit their accuracy and hence, their
applicability. Other approaches retain the atomistic description and pursue different
sampling strategies.

Generalized ensemble algorithms such as Replica Exchange (REX) make use of
the fact that conformational transitions occur more frequently at higher tempera-
tures. In standard temperature REX, several copies (replicas) of the system are
simulated with MD at different temperatures, with frequent exchanges between
replicas. Thereby, low-temperature replicas utilize the enhanced barrier-crossing
capabilities of high-temperature replicas. Although dynamical information gets lost
in this setup, each replica still represents a Boltzmann ensemble at its corresponding
temperature, providing valuable information about thermodynamics and thus the
stability of different conformational substates. Although often used in the context of
protein folding, REX simulations at full atomic resolution quickly become com-
putationally very demanding for systems comprising more than a few thousand
atoms.

Whereas REX is an unbiased sampling method, several other methods exist that
bias the system in order to enhance sampling predominantly along certain collective
degrees of freedom. Functionally relevant protein motions often correspond to those
eigenvectors of the covariance matrix of atomic fluctuations having the largest
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eigenvalues. If these eigenvectors are known from a principal component analysis
(PCA), either using experimental data or previous simulations, they can be used in
simulation protocols like Conformational Flooding or Essential Dynamics (ED).
However, in both methods the enhancement in sampling is paid for by losing the
canonical properties of the resulting trajectory.

The recently developed TEE-REX protocol combines the favourable properties
of REX with those resulting from a specific excitation of functionally relevant
modes (as e.g. in ED), while at the same time avoiding the aforementioned
drawbacks of each method. In particular, approximate canonical integrity of the
reference ensemble is maintained and sampling along the main collective modes of
motion is significantly enhanced. The resulting reference ensemble can thus be used
to calculate equilibrium properties of the system which allows comparison with
experimental data.

Although significant progress has been made in the development of enhanced
sampling methods, computational demands of MD based methods are still sub-
stantial. For many questions in structural biology it is already beneficial to have an
idea about possible protein conformations and functional modes without the need to
get detailed information about energetics and timescales. In this respect, elastic
network models offer a cheap way to get an estimate of possible functional protein
motions. Although drastic assumptions are made and no atomistic picture is
obtained the predicted collective motions are often in qualitatively good agreement
with experimental results. Another computational efficient way which retains the
atomistic description of protein structures is the CONCOORD method where a
protein is described with geometrical constraints. Based on a construction plan
derived from a single input structure, an ensemble of structures is generated which
represents an exhaustive sampling of conformational space that is available within
the predefined constraints. However, no information about timescales or energies is
obtained.

Right now there is no single method that is routinely applicable to predict
functionally relevant protein motions from a given three-dimensional structure.
However, there are a large number of methods available, capturing different aspects
of the problem and contributing to our understanding of protein function. Thus,
combinations of existing methods will presumably be the most straightforward way
of enhancing the predictive power of in silico methods.
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Chapter 13
Integrated Servers for Structure-Informed
Function Prediction

Roman A. Laskowski

Abstract No single method for predicting a protein’s function from its
three-dimensional structure is perfect; some methods work well in some cases,
whereas other methods perform better in others. Consequently, it makes sense to
apply a number of different predictive methods to a given protein structure and
obtain either a consensus or the most likely prediction from them all. In this chapter
we describe two web servers, ProKnow (http://proknow.mbi.ucla.edu) and ProFunc
(http://www.ebi.ac.uk/profunc), that use a cocktail of methods for predicting
function from 3D structure.

Keywords Function prediction � ProKnow � ProFunc � 3D structure � Motifs �
Homology � Fold-matching � Protein interactions � 3D templates

13.1 Introduction

For a protein of unknown function, can knowledge of its 3D structure help identify
its function? The structure undoubtedly holds clues to what the protein does, but the
problem is how to identify those clues, discarding any red herrings, and arrive at a
reliable prediction of the protein’s biochemical, or even biological, function.

This topic became particularly significant in the early 2000s with the birth of the
various Structural Genomics (SG) initiatives (Burley 2000; Blundell and Mizuguchi
2000; Chandonia and Brenner 2006; Norvell and Berg 2007). Before then,
experimentalists would already know much about their protein before embarking on
determination of its 3D structure and would have selected it for its biological
interest. Much of the point of solving the structure was to gain an insight into how
the protein achieved its biological function at the atomic level. The motivation of
the SG groups, with their high-throughput structure determination methods, differed

R.A. Laskowski (&)
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge
CB10 1SD, UK
e-mail: roman@ebi.ac.uk

© Springer Science+Business Media B.V. 2017
D.J. Rigden (ed.), From Protein Structure to Function with Bioinformatics,
DOI 10.1007/978-94-024-1069-3_13

427

http://proknow.mbi.ucla.edu
http://www.ebi.ac.uk/profunc


markedly. Now a protein would be solved if it belonged to a family with no
structural representatives, or was expected to have a novel fold, or was relevant to
some disease. Knowledge of its function no longer came into it.

Consequently, many structures started to emerge of proteins of unknown func-
tion. Indeed, about a third of the SG structural models were of proteins of unknown
or uncertain function (Lee et al. 2011). This rather limited their usefulness. No
longer did the models explain how the protein’s function is achieved as the pro-
tein’s function was not in fact known.

Although the thrust of the SG projects has largely shifted away from solving
structures merely to plug missing gaps in structural knowledge, the prediction of
protein function from structure remains of interest for annotation purposes. A recent
review (Nadzirin and Firdaus-Raih 2012) found that 2549 non-redundant entries in
the PDB were categorized as of “unknown function”, although in truth only 1084
(42.5%) of them were genuinely unknown, the remainder being cases where their
PDB entries had not been updated with newer functional information.

So, to what extent can function be determined from protein structure? The
history of structural biology demonstrates that 3D structure can explain function, in
terms of a protein’s interactions, catalytic residues, trans-membrane regions, etc.
Indeed, virtually every structure solved before the advent of SG helped explain
some biological or biochemical process. So, given a structure, out should pop the
function.

Sadly, few things in life—or in bioinformatics—are that simple. Structure may
explain a function, but only if the function is known already. Despite the avail-
ability of the many diverse methods discussed earlier in this book, it is surprisingly
difficult to determine the function from structure alone.

13.1.1 The Problem of Predicting Function from Structure

Why is it difficult to get function from structure? Firstly, if one has a protein of
unknown function it means that, not only is there no experimental information
about its function, but also that the standard sequence methods for functional
annotation have failed. These methods, particularly the various profile methods
such as the Hidden Markov Model (HMM) methods, have become quite sophis-
ticated in recent years and can detect similarity of function at quite low levels of
sequence identity (Soding 2005). So if these methods have failed we really are
relying on the 3D structure alone.

The structure can provide clues to function at various levels and in varying
degrees of reliability as the preceding chapters have described. Chap. 9 showed
how, at the global level, a protein’s fold can very often give a clue to its function as
some folds are strongly associated with certain functions. So the first step in
identifying function from structure is invariably to find a protein of known function
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with a similar fold. There are a large number of fold comparison servers on the web
that will do this, and these have been compared in several reviews (Sierk and
Pearson 2004; Novotny et al. 2004). However, you need to bear in mind that a
similarity of fold does not necessarily imply a similarity of function. For example,
the so-called superfolds (Orengo et al. 1994), such as the TIM-barrel family, can
support large numbers of different functions (Nagano et al. 1999; Anantharaman
et al. 2003). Indeed, even proteins with highly similar sequences can perform
different functions if key functional residues have evolved for a different purpose.
Furthermore, if the protein has a completely novel fold—formerly a successful
outcome in the eyes of many SG projects—there will be no fold match at all.

More locally, the surface of the protein, particularly its clefts and pockets, can
hold important clues to function (Chap. 10) as can specific local arrangements of
residues, such as those involved in catalysis, DNA recognition, etc. (Chap. 11). So
you may be able to identify, say, a possible ATP-binding site. This would be an
important clue to function, but not the full story. Of course, the sensitivity of
predictions from these so called “functional motifs” depends on how well the
sequence or structure of these motifs are evidenced in sequence alignment or
substructural clustering. Using structure-derived sequence signatures offers another
way of enhancing the predictions and using newer motifs provides clues to function
(Das et al. 2014).

Plus there are various spanners that can jam the works. Firstly, it is often difficult
to solve the whole intact protein. In these cases the best one can get is a structural
model for part of the protein—say, just a single domain. On its own this domain
may say little about the protein’s function. Secondly, even if the whole protein is
solved, it may be just one component of a multi-protein complex. Again, the
structure gives only part of the story. More dastardly still are the so-called
moonlighting proteins which can actually have more than one function, depending
on their context: cellular location, environment, and so on (Jeffery 1999, 2009).
And some proteins can alter their function according to which alternatively spliced
variant is expressed at any given time (Stamm et al. 2005).

Another problem with function prediction is the difficulty of assessing the
success or failure of a given prediction method and, indeed, even defining what is
meant by function. Function can be described at many levels, ranging from bio-
chemical function through biological processes and pathways, all the way up to the
organ or organism level (Shrager 2003). Consequently, a given protein may be
annotated at several different levels of functional specificity: for example, ubiquitin-
like domain, signalling protein, predicted serine hydrolase, probable eukaryotic D-
amino acid tRNA deacetylase, and so on. Thus it is difficult to judge the accuracy of
any such assignment, especially if the assignment is one of the more vague ones.

A common strategy for assessing function prediction methods is to use the Gene
Ontology (GO) (Ashburner et al. 2000; Gene Ontology Consortium 2015). This is
an open source scheme for functional annotation of protein sequences. It is a
machine-readable ontology based on a controlled vocabulary of functional
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descriptors and many function prediction methods couch their results in terms of
GO codes. Although not strictly hierarchical, the GO functional descriptors range
from the truly unspecific (e.g. enzyme) down to the highly precise (e.g.
1-pyrroline-4-hydroxy-2-carboxylate deaminase).

More recently, there has been an effort to move beyond static information (i.e.
sequence and structure snapshots) by using long time-scale coarse grained structural
dynamics to obtain clues to protein function (Bhadra and Pal 2014). Highly mobile
protein segments identified from dynamics can be matched for dynamics-function
correlation using a combination of inputs from root-mean-square fluctuations and
auto-correlation vector profiles. The method is able to identify moonlighting
functions of proteins and match function between proteins that have poor sequence
identity.

13.1.2 Structure-Function Prediction Methods

As the previous chapters show, there are very many different methods for predicting
function from structure. Several reviews have described them and considered their
usefulness (Kim et al. 2003; Watson et al. 2005; Rigden 2006; Lee et al. 2007).
None of the methods is perfect and none can hope to be successful in all situations.
For example, some methods are only suitable for enzymes—and so cannot help at
all if the protein in question is not an enzyme. Other methods rely strongly on some
match—whether of the fold, or a motif, or a binding site, etc.—to a protein of
known structure. So if no match can be found, or the match is merely to another
hypothetical protein, such a method effectively returns a blank.

Consequently, a sensible approach is to throw a large number of these predictive
methods at the protein structure and see what drops out. The two servers described
in this chapter do just that. They are ProKnow from UCLA at http://proknow.mbi.
ucla.edu, and ProFunc from the European Bioinformatics Institute (EBI) at http://
www.ebi.ac.uk/profunc. Both use a cocktail of sequence-based as well as
structure-based predictions and are largely automated: the user uploads a
PDB-format file and waits patiently for the results.

To illustrate the two methods we use as an example the structure of a putative
acetyltransferase from Vibrio cholerae, solved in 2005 by the Midwest Center for
Structural Genomics (MCSG). It was released by the PDB as entry 2fck on 28
February 2006 (Cuff et al. 2007). The function of this protein was only tentatively
known at the time; its sequence had over 50% identity to a ribosomal-protein-serine
acetyltransferase and contained several sequence motifs characteristic of acetyl-
transferase activity. Once its structure was known, these tentative functional
assignments were greatly strengthened as it revealed strong structural similarities,
both global and local, to other—distantly related—acetyltransferases. The strongest
similarities occurred at the putative binding site where coenzyme A (coA) is likely
to bind. Some of these similarities will be illustrated below.
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13.2 ProKnow

The first of the two integrated servers is ProKnow (Pal and Eisenberg 2005;
Medrano-Soto et al. 2008) at UCLA (http://proknow.mbi.ucla.edu). The current
version of ProKnow runs six principal prediction methods on any uploaded 3D
structure (Fig. 13.1). In fact, the server can also accept just a protein sequence; in
which case, one of the six methods is dropped. The six features examined include
the protein’s overall fold, various 3D structural motifs (omitted for sequence-only
submissions), sequence similarities, sequence motifs, and functional linkages from
the Database of Interacting Proteins (DIP) and the Prolinks Database. Each method
may provide one or more functional clues, with varying degrees of confidence.
These clues are weighted using Bayes’s theorem and combined to give the most
likely overall function, expressed as GO terms and measures of confidence for each.
A map showing the relationship between the top GO predictions is returned (Fig.
13.2), allowing the user to more confidently interpret the predictions. Also given are
the detailed hits and their scores. The top results for our example structure, 2fck, are
shown in Fig. 13.3. Here, essentially only one hit of significance was returned:
N-acetyltransferase, which is very confidently predicted and agrees with the pro-
tein’s putative function.

Fig. 13.1 Schematic diagram of the sequence- and structure-based methods applied to any protein
3D structure submitted to the ProKnow function prediction server. The sequence-based methods
are PSI-BLAST (Altschul et al. 1997) and PROSITE (Hulo et al. 2004). The structure-based
methods are the LOMETS fold search (Wu and Zhang 2007) and RIGOR structural motif search
(Kleywegt 1999). The final two methods use DIP, the Database of Interacting Proteins (Xenarios
et al. 2002), and the Prolinks Database (Bowers et al. 2004) to identify any interesting functional
linkages for each of the PSI-BLAST hits. The Gene Ontology (GO) functional annotations are
obtained from all the results and combined using Bayesian weighting to arrive at a set of functional
prediction and associated reliability estimates
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13.2.1 Fold Matching

The first stage in ProKnow is the identification of other protein structures having the
same, or most similar, fold to that of the query protein. In fact, this part is not
automated and requires the user to first run the Dali fold-matching program (Holm
and Sander 1998) and then upload the results, in FSSP format, to ProKnow. The
matches obtained from Dali provide the first set of clues used by ProKnow about
the protein’s function.

Fig. 13.2 Gene Ontology map generated for PDB entry 2fck showing the hierarchy of functional
terms, from the general to the specific. Where ProKnow identifies more than one functional
prediction the map returned will show a network of possibilities, each linked to any others that are
similar, with the connections colour-coded by the similarity of the terms
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Interestingly, if only the sequence is submitted, then ProKnow does all the work
itself: it identifies a fold compatible with the sequence and uses that for clues about
function. The potential matching folds are identified using LOMETS (Wu and
Zhang 2007), which itself is a metaserver that runs nine different algorithms,
namely: FUGUE (Shi et al. 2001), HHSEARCH (Soding et al. 2005), PROSPECT2
(Xu and Xu 2000), SAM-T02 (Karplus et al. 2003), SPARKS2 (Zhou and Zhou
2004), SP3 (Zhou and Zhou 2005), and PAINT, PPA-I, PPA-II (Wu and Zhang
2007). Each of the algorithms are run locally on the server and their predicted
templates are used as input for clues to function.

One thing that needs to be remembered when relying on the results of any
fold-recognition, or threading, method is that these methods are something of a
Black Art, and require careful interpretation. Occasionally, they can give approx-
imately the right answer—usually for small, single-domain proteins where a
topologically near-correct model is obtained (Moult 2005); but, in general, accuracy
varies widely. If the sequence is a very long one the chances of success are even
smaller as the protein almost certainly comprises several structural domains, the
boundaries of which would ideally be manually identified. Each domain’s fold has
then to be recognized. Even if these stages are successful, the 3D arrangement of
the domains may be crucial for the protein’s function, and although methods for
predicting domain packing exist (Xu et al. 2014) they will not succeed in all cases.
Nevertheless, using more information for arriving at any answer has a higher
likelihood to succeed compared to a single approach.

Fig. 13.3 a The top ProKnow functional predictions for PDB entry 2fck. The top hit predicts,
with high confidence, the protein to have N-acetyltransferase activity. b Master table of clues used
in each GO term prediction for 2fck. Clicking on any of the numbers in the table shows the details
for the given clue
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13.2.2 3D Motifs

After the fold-matching stage, the protein’s 3D structure is scanned against the
RIGOR database of automatically generated 3D motifs (Kleywegt 1999). The
motifs consist of ‘interesting’ arrangement of residues. RIGOR has three rules for
distinguishing interesting arrangements from uninteresting ones: (a) the protein
contains n sequential residues of the same type (e.g. four consecutive arginine
residues), (b) a set of neighbouring residues are all hydrophobic, or all
polar/charged, or a mixture of hydrophobic and polar/charged, and (c) residues that
all make contact to a single hetero compound. ProKnow uses over 10,000 RIGOR
motifs; associated with each are the GO terms of the corresponding protein chain.

13.2.3 Sequence Homology

The PSI-BLAST program (Altschul et al. 1997) is used to scan the UniProtKB
sequence database (UniProt Consortium 2014) for proteins homologous to the
target protein. Any matches with GO annotations add their functional clues to the
pot.

13.2.4 Sequence Motifs

The target protein’s sequence is then scanned for sequence motifs using the
PROSITE database of functionally-associated motifs (Sigrist et al. 2012). Again,
each motif has a set of associated GO codes.

13.2.5 Protein Interactions

The final set of features extracted by ProKnow relate to protein-protein interactions
taken from the Database of Interacting Proteins, DIP (Salwinski et al. 2004), and
functional annotations from the Prolinks Database (Bowers et al. 2004). Any
sequence matched by the PSI-BLAST search can return a functional linkage if
present in either DIP or Prolinks.
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13.2.6 Combining the Predictions

Once all processes have completed, the functions (i.e. GO terms) associated with
any extracted features that reoccur are combined using Bayes’s Theorem weighting.
This provides an estimate of the significance of any predicted GO term. Only terms
relating to molecular function and biological process are considered—i.e. terms
relating to cellular component are ignored. The significance of any predicted GO
term is reflected by three numbers. The first is the Bayesian weight which represents
the probability, 0.0–1.0, of the predicted GO term being correct. The second is the
evidence rank and relates to how reliable a particular GO assignment is deemed to
be in the first place. GO assignments come from various sources: inferred by the
curator, inferred from direct assay, inferred from sequence or structural similarity,
and so on. These have a range of reliabilities, the most reliable being any that have
direct experimental evidence to support them. The source of the annotation is
recorded by the evidence code in the GO data. In ProKnow, each type of evidence
code is assigned a rank to quantify its reliability, and the ranks from several
predictions are averaged to give the evidence rank. The third measure of signifi-
cance is the clue count which is the number of weights used to calculate the
Bayesian weight and is related to how many of the ProKnow sequence and structure
methods contributed to a given GO prediction.

13.2.7 Prediction Success

Figure 13.3 shows some of the output on our example structure, 2fck. Figure 13.3a
lists the top GO codes returned by the predictions, with the code for
N-acetyltransferase (0008080) on top. Figure 13.3b shows the ‘clues’ (i.e. methods)
that gave rise to these predictions and the ‘evidence score’ for each. In this example,
the DIP, PROSITE and Prolinks searches returned nothing of significance. So the
strongest prediction was the one that appears to be the correct one; namely, that the
protein is an acetyltransferase.

In general, ProKnow performs quite well. Its authors tested it on a
non-redundant data set of proteins of known function and found that around 70% of
the functional annotations were correct (Pal and Eisenberg 2005). Less specific
predictions (e.g. hydrolase) tended to be more accurate than more specific ones (e.g.
leucyl aminopeptidase). The prediction accuracy has been increased slightly by the
recent inclusion of Prolinks, not present in the original version, and should improve
more as the coverage of Prolinks increases.
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13.3 ProFunc

The second integrated server described here is ProFunc (Laskowski et al. 2005a) at
the European Bioinformatics Institute (EBI), http://www.ebi.ac.uk/profunc devel-
oped as part of a collaboration with the Midwest Center for Structural Genomics
(MCSG) . ProFunc allows the user to either upload a protein structural model or to
enter the PDB code of a structure already in the Protein Data Bank. In the latter
case, if ProFunc has already been run on that PDB entry, the results will be
displayed immediately.

When ProFunc runs it applies a number of sequence- and structure-based
methods to the structure, as shown in Fig. 13.4. A processor farm is used, with
different methods sent to different processors. Several of the compute intensive

Fig. 13.4 Schematic diagram of the sequence- and structure-based methods used in ProFunc. The
sequence-scans in the left-hand column include searches against the protein sequences in the PDB
and UniProt databases. The InterProScan search returns any sequence motifs present in the query
protein’s sequence. For each UniProt BLAST hit the Gene Neighbours search locates the gene in
its genome, if available, and identifies all neighbouring genes. The first of the structure-based
searches in the middle column uses SSM to identify structures with the most similar overall fold to
that of the query protein. Surface clefts are computed and can be visualized coloured by residue
type or residue conservation. Nests, which are often found at functionally important locations, are
identified, and finally, in the right-hand column, are the various template methods that find local
3D matches to known protein structures
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method are themselves subdivided to run in parallel on multiple processors.
Processing is usually complete within about an hour.

The results of each method are then summarized, with further details available
for each method. However, the results are not combined in any sophisticated way,
as is done in ProKnow. Rather, there is a summary at the top of the results page
showing the most commonly occurring GO terms and protein names, but this is
meant only as a quick guide. The primary aim of the server is to present the results
in an easily accessible format to enable researchers to interpret them, using their
own expertise and knowledge of the protein in question.

Now, although ProFunc does apply a number of sequence-based methods, using
several well-known search techniques such as FASTA and InterProScan (Jones
et al. 2014), we will only describe the structure-based methods here as most of them
are unique to this server.

13.3.1 ProFunc’s Structure-Based Methods

13.3.1.1 Fold-Matching

The first of the structure-based methods is a search for proteins with similar fold as
the target. The PDBeFold program is used, based on the Secondary Structure
Matching program, SSM (Krissinel and Henrick 2004). It performs a fast
graph-matching procedure to compare the secondary structure elements (SSEs) of
the target structure against those of the structures in the database. Any strong
matches are superposed and an r.m.s.d. for equivalent Cas is calculated together
with a z-score measure of significance and SSM’s own significance measure, called
the Q-score. In ProFunc the top ten hits, ordered by Q-score, are shown and any, or
all, can be viewed superposed on the target structure using the molecular graphics
viewer RasMol (Sayle and Milner-White 1995).

Fig. 13.5 The closest fold to that of 2fck, found by the SSM’s fold-matching program, is PDB
entry 1z9u, an N-acetyltransferase from Salmonella typhimurium. a Overall 3D structure of 2fck
and b overall structure of 1z9u in the same orientation. c The two structure superposed and each
shown as a Ca trace, 2fck in yellow and 1z9u in purple. The matched regions are shown using a
thicker representation of the trace in each structure
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The top fold match to our example structure, 2fck, is shown in Fig. 13.5. The
match is to PDB entry 1z9u, an N-acetyltransferase from Salmonella typhimurium.
The protein forms a homodimer with a large trough at the dimer interface where the
substrate binds. The protein also binds coenzyme A (coA).

13.3.1.2 Surface Clefts

The second method computes all the clefts in the protein’s surface, using the
SURFNET program (Laskowski 1995). The clefts are ranked in order of size and
can be viewed in RasMol. The viewing options allow for the cleft surfaces to be
coloured by specific properties, such as cleft size, residue type or residue conser-
vation score. Cleft size is important as the largest cleft in a protein’s surface tends to
be where the protein’s active site is located (Laskowski et al. 1996). Also important
is residue conservation, as clusters of highly conserved residues, particularly if
located in a large pocket, are highly indicative of a functional site (Lichtarge and
Sowa 2002; Madabushi et al. 2002; Glaser et al. 2003). Like nest analysis (below),
study of the protein’s surface clefts is of most use when the other methods have
failed or have suggested only vague possibilities as it can identify the functionally
important parts of the structure.

In our example structure, the largest cleft does indeed correspond to the protein’s
putative binding site, matching the location of the bound coA in the related
structures identified from the fold-match above and the template methods to be
described shortly.

13.3.1.3 Nests

Next, any nest motifs in the structure are identified. These are frequently associated
with functional sites. A nest is an anion or cation binding site formed by three or
more amino acids in the sequence whose main-chain w-u dihedral angles alternate
between the right- and left-handed helical (a and c) regions of the Ramachandran
plot (Watson and Milner-White 2002a, b). Again, a RasMol view shows the
location of the nest in the context of the whole 3D structure. ProFunc assigns a
score to each nest based on: the number of NH atoms that are accessible to solvent,
the conservation scores of its constituent residues, and whether the nest occurs in
one of the larger clefts on the surface.

The 2fck structure contains several nests, three of which score highly enough to
indicate that they may be functionally significant. And indeed, the top-scoring nest
is in the protein’s likely substrate binding site (based on the similarity identified
above to the 1z9u structure), while nests two and three are found at the entrance to
the coA binding site.
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13.3.1.4 Template Methods

The final ProFunc methods involve four different types of residue template searches
(Laskowski et al. 2005b). The templates are defined as specific 3D conformations
of, typically, three amino acid residues. The template searches are carried out by a
fast 3D search algorithm called Jess (Barker and Thornton 2003), performed in
parallel on the processor farm.

Enzyme templates
The first group of templates are the enzyme active site templates which come

from the manually compiled Catalytic Site Atlas, CSA (Porter et al. 2004). Here
each template consists of two to five residues that are identified in the literature as
being catalytic or are highly-conserved residues in the neighbourhood of the cat-
alytic residues. A strong match (see below) to one of these templates can be highly
suggestive of the protein’s function.

Ligand- and DNA-binding templates
The next two groups of templates are the ligand- and DNA-binding templates.

These are automatically generated once a week so as to be as up-to-date as the PDB.
The ligand templates are generated by considering in turn every type of Het Group
(as defined in the PDB’s Het Group Dictionary) and retrieving a non-homologous
list of structures in the PDB that contain this Het Group. Residues interacting with
the Het Group in each selected structure are marked. Templates are compiled by
selecting groups of 3 residues from each structure’s marked residues. The selection
criteria governing which groups of 3 residues can form a template are as follows:
each of the residues must be within 5 Å of one of the others in the template, each
template can have at most one hydrophobic residue (i.e. Ala, Phe, Ile, Leu, Met, Pro
or Val) to bias the templates towards surface residues, and no two templates from
the same structure can have more than one residue in common. The order in which
the potential templates are considered is biased by their relative importance. Thus a
template containing residues that make several hydrogen bonds to the given Het
Group are more highly valued than those whose residues only interact with the Het
Group via a small number of non-bonded contacts.

The DNA-binding templates are generated in exactly the same way except that
all DNA and RNA molecules are treated as though they were a single Het
Group. As of February 2017, there were 584 CSA templates, 94,055 ligand-binding
templates and 5320 DNA-binding templates in these template databases.

Figure 13.6 shows a template match in 2fck to a coA ligand-binding template
taken from PDB entry 1s7 l, a RimL N(a)-acetyltransferase from Salmonella
typhimurium.

Reverse templates
The fourth group of templates are intended to find any matches that the first three

sets may have missed. They are the reverse templates and are computed from the
target structure itself. The rules for generating them are the same as for the ligand-
and DNA-binding templates except that, firstly, the whole protein structure is
considered, rather than merely the residues in contact with ligand or DNA, and
secondly the weighting of each of the templates is by residue conservation (as
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obtained from a multiple alignment of the sequences returned by a BLAST search
against the UniProtKB sequence database). The templates are selected so that,
ideally, each residue in the protein is present in at least one template, although, if
too many are generated, their number is capped at twice the number of residues in
the sequence.

The top reverse template hit to 2fck is shown in Fig. 13.7. The match is to PDB
entry 3r9f, a microcin c7 self-immunity acetyltransferase from E. coli (Agarwal
et al. 2011).

Template searching and scoring
The template searches can return hundreds, thousands or even tens of thousands

of matches, particularly in the case of the reverse templates. The problem, then, is to
discard fortuitous matches and retain only significant matches, ranked in order of
relevance. ProFunc does this by comparing the environment around the template
residues in their parent structure with the environment around the residues that were
matched. Residues within 10 Å of the template’s geometrical centre in both
structures are paired off according to their degree of similarity and overlap. Where
alternative pairings are possible an optimization procedure is applied to maximize
the numbers of paired identical or similar residues in equivalent 3D positions. The
number of paired residues gives a crude measure of the local similarity of the
matched sites in the two proteins (Figs. 13.6b and 13.7b). However, this crude
measure still lets through too many false positives. Therefore the measure that is
actually used takes into account the relative positions of the paired residues in their
respective amino acid sequences. If the sets of paired residues appear in the same

Fig. 13.6 A match from ProFunc to a ligand-binding template for coenzyme A (CoA). The CoA
is shown in the thinner sticks and is coloured by atom type (carbon grey, nitrogen blue, oxygen
red, sulphur yellow and phosphorus orange). a The template is defined by the three red residues:
Tyr100, Trp101 and Ser143 from PDB entry 1s7l, a RimL N(a)-acetyltransferase from Salmonella
typhimurium. The three blue residues correspond to the residues in the query structure, PDB entry
2fck, that match the template residues. They are: Tyr98, Trp99 and Ser141, respectively. The rmsd
of the 26 matched side chain atoms is 0.72 Å. b As in a, but with additional matching residues
lying within 10 Å of the template’s centre shown. These are residues of identical residue type
which overlap when the query and template structures are superposed on the basis of the template
match in a. The purple residues are from the template structure (1s7l) while the yellow ones are
from the query structure (2fck)
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order in both sequences then the likelihood of the sequences being homologues is
high.

To see why this is so, consider two sequences descended from a common
ancestor protein which have diverged so much that their relationship cannot be
detected by sequence methods. However, if both have retained the same function,
then the region that will have changed least is likely to be the active site as any
significant changes here might have altered the function. The net result will be that
the highest level of similarity between the two proteins will be among the residues
in the vicinity of the active site. These residues will be close in 3D, but may be
scattered along the lengths of the two sequences. That is why the similarity can be

Fig. 13.7 A reverse template match between 2fck and 3r9f, a microcin c7 self-immunity
acetyltransferase from E. coli. a The blue are the template residues from 2fck (Tyr100, Ile134 and
Ser175) which match to the red residues (Tyr105, Ile 139 and Ser180, respectively) in 3r9f with an
rmsd of 0.55 Å for 18 matched atoms. b The equivalent residues of identical type within 10 Å of
the template centre, yellow from 2fck and purple from 3r9f. There are 20 residues in all (out of 43
within 10 Å) giving a local similarity of 46.5%. A further 10 superposed residues (not shown) are
of similar type (e.g. Ile for Val). c Sequence alignment obtained from the structural superposition.
The top row shows the secondary structure of 2fck and the bottom shows that of 3r9f; any helices
are represented by the jagged elements and b-strands by arrows. The three highlighted residues in
the sequence alignment correspond to the template residues. Double dots between the two
sequences identify the residues contained within the 10 Å sphere centred on the template and
hence show which residues were used to drive the alignment. The boxed regions represent
segments of the alignment where the sequence identity of the two sequences exceeds 35%. The
long thin arrows at the bottom show structurally “fittable” regions; that is, segments from both
proteins whose Ca atoms can be structurally superposed with an rmsd of less than 3.0 Å
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detected in 3D, but may be virtually impossible to pick up from comparison of the
sequences.

Figure 13.7c provides an illustration of this. It shows a sequence alignment
between 2fck and its top reverse template hit, 3r9f. The alignment has been driven
by the residues determined to be equivalent in the local matching procedure
described above. The residues are marked by the double dots between the
sequences. (The single dots correspond to residues that have lost their
3D-equivalent partners in the alignment). One can see that the paired residues,
which lie in a compact region in 3D, are spread far apart in both sequences.

More interestingly, while the whole alignment gives a sequence identity of
25.9% between the two proteins, 20 of the 43 residues within 10 Å of the template
centre are identical, giving a local sequence identity of 46.5%. As this region
corresponds to a significant part of the coA binding site in the 3r9f structure it
provides strong structural evidence that 2fck also binds coA. It also covers part of
the putative substrate binding site, but not enough to suggest the substrates of both
proteins are the same nor, indeed, that they perform the same function.

In addition to the local similarity score, various other statistics are quoted by
ProFunc. One of these is an estimated E-value associated with the score. For the
reverse templates these are calculated from the distribution of all scores obtained in
a given search using the same procedure that FASTA uses for computing its E-
values (Pearson 1998). For the other template searches the E-values are calculated
using pre-computed parameters. The hits are ranked by E-value and categorized
into four groups: certain matches (E <10−6), probable matches (10−6 < E <0.01),
possible matches (0.01 < E < 0.1) and long shots (0.1 < E < 10.0).

Also quoted is the overall structural similarity of the structures and the longest
stretch of the two sequences that superposes with an rmsd of 3.0 Å on the Ca
atoms. This latter can be particularly revealing when there is a long overlap, sug-
gesting a significant structural match, even for the long shot cases.

13.3.1.5 PDBsum Structural Analyses

Although not strictly relevant to function prediction, a useful side effect of sub-
mitting a structure to ProFunc is that a set of PDBsum pages are also generated for
it. PDBsum is a largely pictorial protein structure atlas at http://www.ebi.ac.uk/
pdbsum that performs a number of structural analyses on the submitted protein and
illustrates the results using various schematic diagrams (de Beer et al. 2014).
A couple of examples are given in Fig. 13.8.

13.3.2 Assessment of the Structural Methods

How good are the structural methods at predicting protein function? Attempts to
answer this question are described in Chap. 14. Two studies (Watson et al. 2007;

442 R.A. Laskowski

http://www.ebi.ac.uk/pdbsum
http://www.ebi.ac.uk/pdbsum
http://dx.doi.org/10.1007/978-94-024-1069-3_14


13 Integrated Servers for Structure-Informed Function Prediction 443



Lee et al. 2011) showed that the most successful of the structure based methods
were the SSM fold comparison method and the reverse templates. Both had a
success rate of 50–60%.

Of course, the only true way of validating a prediction is to confirm it experi-
mentally. This is difficult, time-consuming and expensive although some progress
has been made towards development of high-throughput functional assays
(Yakunin et al. 2004; Proudfoot et al. 2008).

13.4 Conclusion

Here we have described ProKnow and ProFunc, two integrated servers that use a
combination of structure- and sequence-based matching methods to try to predict
the function of a protein from an uploaded 3D structural model. In most cases, they
are able to offer some suggestions about possible function, although these may
sometimes be rather vague (e.g. DNA-binding activity). In other cases, however, all
their methods draw a blank and they fail completely. The most challenging cases
are structures belonging to uncharacterized protein families possessing a novel fold.
So, all one may be left with is the knowledge that the structure has an
interesting-looking cleft in its surface, lined by highly conserved residues, but with
no hint of what might bind there. For cases such as these, new methods need to be
developed and incorporated into the servers. Of most utility would be methods that
can predict what a given protein’s likely substrate is from an analysis of the
structure alone. That is, the methods should not rely on a match to an existing
structure as, for novel folds, there is by definition no such match. At present, such
methods are very compute-intensive and tend to commence with some idea of class
of substrate at least—e.g. (Hermann et al. 2006). So, for the time being, prediction
of a protein’s function will continue to rely on clever sleuthing and deduction.

Acknowledgements The author would like to thank Debnath Pal for help with ProKnow and for
his useful comments on this chapter.

JFig. 13.8 Example analyses from the PDBsum pages generated when any structure is submitted to
ProFunc. a A schematic diagram of the protein chain showing the protein’s secondary structure
elements (a-helices and b–sheets) together with various structural motifs such as b– and c–turns,
and b-hairpins. In this example residues interacting with bound ligands are indicated by the red
dots above the single-letter amino acid code. In the 2fck structure the ligands are not particularly
interesting or functionally informative, deriving from elements of the crystallization solution, and
comprise 12 nitrate ions and one molecule of glycerol. b Topology diagram of the 2fck protein
chain. The diagram illustrates how the b-strands, represented by the large pink arrows, join up,
side-by-side, to form the domain’s central b-sheet. The diagram also shows the relative locations
of the a-helices, here represented by the red cylinders. The small blue arrows indicate the
directionality of the protein chain, from the N- to the C-terminus. The numbers within the
secondary structural elements correspond to the residue numbering given in the PDB file. The
diagram is generated from the output of the Hera program (Hutchinson and Thornton 1990)
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Chapter 14
Case Studies: Function Predictions
of Structural Genomics Results

James D. Watson, Roman A. Laskowski and Janet M. Thornton

Abstract The various Structural Genomics initiatives around the globe succeeded
in solving several thousand protein structures, many of which were novel folds or
structures of biological interest. Nevertheless, because of the high-throughput
strategies employed, a significant proportion of the proteins were of unknown
function, and remain so to this day. A number of computational methods have been
developed to help ascertain protein function from three dimensional structure, the
approaches ranging from large scale fold comparison to highly specific residue
template matching. Each has its own advantages and disadvantages. Here we look
at various analyses conducted to assess function prediction from structure, with
specific examples of some of the success stories.

14.1 Introduction

Genome sequencing projects around the globe have already provided enormous
amounts of data on the genes that are essential to a number of organisms, and this
information is expanding rapidly with the large-scale metagenomics projects cur-
rently under way (Reddy et al. 2014). By comparison, the amount of protein
structure data available lags far behind. The main aim of the Structural Genomics
projects in the early 2000s was to bridge this gap by solving, in a high-throughput
manner, a large number of novel structures that could be used to model a larger
number of sequences (Fox et al. 2008; Service 2005). A consequence of this
approach was the deposition of large numbers of structures with little or no func-
tional annotation (Watson et al. 2007; Nadzirin and Firdaus-Raih 2012). This was
in direct contrast to traditional structural biology where the function of a protein is
often known in advance and the purpose of solving its 3D structure is to identify the
biochemical mechanisms and unique subtleties of its action.
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Determination of a protein’s function experimentally is a highly resource
intensive process. So, faced with a large number of structures of unknown function,
a major challenge is the accurate and automatic prediction of their function.
A variety of computational methods now exist which aim to do this, many of which
have been discussed in detail in previous chapters, but they effectively fall into two
major categories: those which are predominantly sequence-based and those which
are structure-based.

Sequence analysis is usually the first step in predicting a protein’s function as
significant sequence similarity is still the most reliable way of inferring function.
A number of studies have investigated this and have shown that homologous
proteins sharing over 40% sequence identity are likely to have conserved function
(Todd et al. 2001). However, care must be taken as there are a number of exceptions
where almost identical proteins have been shown to have different functions (Gerlt
and Babbitt 2001; Rost 2002; Tian and Skolnick 2003), and, conversely, where
proteins with almost undetectable sequence similarity have retained the same
function (Whisstock and Lesk 2003). The development of powerful and sensitive
profile- and pattern-based methods has increased our ability to infer functional
similarities through the detection of increasingly distant sequence relationships.
Other methods developed to help gain functional clues involve looking at residue
conservation, phylogenetic profiles (i.e. groups of proteins which are jointly
present/absent in different genomes) and gene location (e.g. within an operon of
functionally related proteins) (Gabaldon and Huynen 2004; Gabaldon 2008).

When the sequence provides few clues to function, or there are no detectable
homologues in the databases, a protein’s structure can often provide further insight.
As elements of a protein’s structure are often conserved for functional reasons,
structure-based approaches can identify more distant relationships than methods
based on sequence (Chothia and Lesk 1986). The methods which have been
developed range from large scale fold (Krissinel and Henrick 2004; Holm and
Rosenstrom 2010) and biological assembly comparisons (Krissinel and Henrick
2007) (see also Chap. 9), down through localised pockets and clefts (Laskowski
1995; Binkowski et al. 2004; Glaser et al. 2006) (also discussed in Chap. 10), to
highly specific three-dimensional clusters of functional residues (Stark and Russell
2003; Laskowski et al. 2005b; Kristensen et al. 2008; Wu et al. 2008; Roy et al.
2012) (see Chap. 11).

No single method is 100% successful and therefore a more prudent approach is
to use as many methods as possible to try to gain functional clues: the more
independent methods that agree on the same putative function, the more likely it is
to be a correct prediction. As a result, a number of servers have been developed that
utilise a range of methods to try to predict function. Some of these resources, such
as the ProKnow server (Pal and Eisenberg 2005), try to make an overall consensus
prediction, whereas others, like the ProFunc server (Laskowski et al. 2005a), pre-
sent the results of a variety of methods for the user to interpret with their expert
insight (see Chap. 13). The question that arises, however, is how successful have all
of the attempts to predict function from structure actually been? In this chapter we
shall review the various analyses that have been made of structure-based function
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prediction, and the difficulties encountered, with reference to case studies from
structural genomics projects.

14.2 Function Prediction Case Studies

There have been a number of attempts to assess the effectiveness of structure-based
function prediction using structural genomics targets.

14.2.1 Teichman et al. (2001)

An early review of 16 hypothetical proteins of known structure and their functional
assignment (Teichmann et al. 2001) provided some glimpses of the quality of
functional assignments that can be made from structure. The structures, in con-
junction with alignments of homologous sequences, were used to find surface
cavities and grooves in which conserved residues indicated an active site. Using
knowledge of any bound co-factors in the structures, together with available
experimental data for the proteins in question or their related sequences, assess-
ments were made as to the depth of functional information that could be obtained.
For the proteins examined, detailed functional information was obtained for a
quarter, some functional information could be obtained for half, and no functional
information could be obtained for the remaining quarter.

14.2.2 Kim et al. (2003)

An analysis of eight protein structures, some solved at the Berkeley Center for
Structural Genomics, others with collaborators, showed how the 3D structures
provided functional or evolutionary insights (Kim et al. 2003). The examples were
classed into one of five categories:

1. Remote homologues. Here function was inferred from structural similarity that
could not be observed through sequence. An example was MJ0882: fold sim-
ilarity suggested this to be a putative methyltransferase, and this was later
verified experimentally (Huang et al. 2002). Figure 14.1 shows the structural
match between the two proteins.

2. Proteins with unexpected bound ligands. Here function was inferred by the
chance binding of a substrate or cofactor in the crystal structure. The first
example, MJ0577 from Methanococcus jannaschii, had a bound ATP—sug-
gesting an ATP hydrolysis function. More detailed analysis of the binding
pocket identified motifs commonly found in nucleotide-binding proteins.
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The sequential arrangement of these motifs was unusual, which explained why
motif-based methods had failed to detect them. Experimental assays confirmed
an ATP hydrolysis function but only in the presence of cell extract, suggesting
the protein is a molecular switch requiring one or more partner proteins to
activate it.
The second example, TM841 from Thermotoga maritima, is a member of the
large DegV Pfam family and belongs to the COG1307 group which has un-
known function. The structure contained a bound palmitate molecule, sug-
gesting a fatty acid binding function. Comparison with other members of the
DegV and COG1307 families indicated a high degree of conservation where the
head group of the palmitate was bound and, conversely, a higher variability
where the tail was bound. This suggests that different members of the protein
family bind different fatty acids with selectivity for tail length.

Fig. 14.1 Structural
superposition between a
protein of unknown function,
MJ0882 (PDB entry 1dus) in
green, and a catechol
O-methyltransferase (1vid) in
yellow. The structures were
superposed using PDBeFold,
and fitted with a Ca r.m.s.d.
of 2.57 Å over an alignment
of 154 residues. The small
molecules shown in stick
representation are ligands
from the 1vid structure and
are S-adenosylmethionine and
3,5-dinitrocatechol. The 1vid
structure also contained a
bound magnesium ion,
represented by the purple
sphere. a Side view and b top
view
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3. “Twilight zone” proteins. Here only weak matches were obtained for both the
protein’s sequence and structure. The structure of MJ0226 had a novel fold but
showed weak similarity to nucleotide binding proteins (Hwang et al. 1999).
Experimental analysis identified the biochemical function as a novel nucleotide
triphosphatase. In conjunction with observed weak similarities to HAM1 protein
(Noskov et al. 1996) the authors suggested a possible role in preventing
mutations through removal of non-standard nucleotide triphosphates. This
prediction was later confirmed through a complementation experiment
(Stepchenkova et al. 2005).

4. New molecular function for known cellular function. Here the overall
function of the protein was known but the biochemical details of its mechanism
of action were revealed by the structure. In MJ0285, from M. jannaschii, the
protein was annotated as being a small heat shock protein induced under cellular
stress. The structure showed that 24 copies of the protein formed a hollow
sphere with 8 triangular “windows” and 6 square “windows” (Kim et al. 1998).
This raised the question of whether it works by trapping partially denatured
proteins inside the sphere or by them becoming attached to its outside surface.
Biochemical experiments strongly suggested the latter was the case, with the
binding to the surface helping to prevent the proteins from aggregating and
becoming inactivated.
A second example was MPN625, a member of the OsmC domain family which
exhibits a wide sequence variety but contains two highly conserved cysteine
residues. The crystal structure revealed that these two cysteines lie in the cleft of
a putative active site similar to that of the 2-cysteine peroxiredoxin family. This
latter family inactivate reactive oxygen species (Schroder et al. 2000), which
suggested that the OsmC family had a similar function, with the wide sequence
variety being responsible for different substrate specificity. A subsequent
experimental study demonstrated that OsmC proteins can indeed reduce both
inorganic and organic peroxides and hence are involved in peroxide metabolism
and protecting mycobacteria against oxidative stress (Saikolappan et al. 2011).

5. Proteins where the function remains unknown. Here the two examples
quoted, Aq1575 from Aquifex aeolicus and MPN314 from Mycoplasma pneu-
moniae, are both hypothetical proteins which are members of Pfam domains of
unknown function. In both cases there is evidence from conserved residues to
suggest a putative active site, but searches of all the motif and functional
databases failed to provide any clues as to their molecular function.

14.2.3 Watson et al. (2007)

The first large-scale analysis of structure-to-function prediction (Watson et al. 2007)
was performed to assess the effectiveness of the ProFunc server (see Chap. 13).
First, all 319 structures solved by the Midwest Center for Structural Genomics
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(MCSG) during the first stage of the NIH/NIGMS Protein Structure Initiative
(PSI-1) were classified into those with known, putative or unknown function. Then
the 93 proteins of known function were submitted to the ProFunc server and the top
scoring matches from each of the server’s sequence- and structure-based method
were retrieved and stored. The results were then ‘backdated’ to each structure’s
deposition date by removing any more recent data. The aim was to get the same
results as would have been obtained at the time of each structure’s solution.

The top hit for each method was then manually compared with the known
function and a judgement made as to whether the prediction was correct.

The results indicated that, of the ProFunc structure-based methods, the fold
recognition and “reverse template” approaches were the most successful with
approximately 60% of the known functions identified correctly. Both of these
methods often identify the same function by matching to the same protein, but in
some cases one method succeeded where the other failed. Differences occur
because fold-matching looks for global similarity whereas the “reverse template”
approach is a local comparison of residue locations.

A major drawback of the study was that it was unable to address the question of
how structure-based approaches compare with sequence-based ones. This is a
generic problem, not adequately addressed in the literature, caused by the difficulty
of ‘rolling back’ to a particular date for the sequence databases and the databases of
motifs, patterns and profiles derived from them. The results suggested that sequence
methods can provide functional annotation in the majority of cases while structure
can come to the rescue in a limited set of cases that are ‘difficult’, though not ‘too
difficult’ (e.g. the protein has a completely novel fold).

An example is that of the BioH protein from Escherichia coli (Sanishvili et al.
2003) which was known to be involved in biotin synthesis but no biochemical
function had been assigned to it. Its structure consisted of a Rossmann fold—a very
common fold adopted by proteins performing a wide variety of functions. Indeed,
fold comparison using Dali (Holm and Rosenstrom 2010) indicated structural
similarity to many different enzymes: bromoperoxidase (EC 1.11.1.10), an
aminopeptidase (EC 3.4.11.5), two epoxide hydrolases (EC 3.3.2.3), two haloalk-
ane dehalogenases (EC 3.8.1.5), and a lyase (EC 4.2.1.39). The sequence identity of
these hits was low, ranging from 15 to 25%. However, ProFunc found an enzyme
template match for the Ser-His-Asp catalytic triad of the lipases, E.C.3.1.1.3 (with
an rmsd of 0.28 Å). Experimental characterisation of the protein revealed it to be a
novel carboxylesterase acting on short acyl chain substrates (Sanishvili et al. 2003).
Figure 14.2 shows the enzyme template match.

A second example is hypothetical protein IsdG from Staphylococcus aureus.
ProFunc’s sequence-based methods revealed a variety of possible functions:
antibiotic biosynthesis monooxygenase, cysteine peptidase, oxidoreductase,
methyltransferase, epimerase, transportation, possible RNA binding, and others.
The top fold matches found by SSM were all hypothetical proteins with no func-
tional annotation. Further down the list, though, were a number of monooxyge-
nases. Of the other structure-based methods, the reverse template scan returned a
large number of matches, mostly to proteins of unknown function, but the first
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significant hit with an assigned function was to a monooxygenase from
Streptomyces coelicolor (PDB entry 1lq9). Taken together these results were sug-
gesting a monooxygenase function. Subsequent experimental analysis characterised
the protein as a haem-degrading enzyme with structural similarity to monooxyge-
nases (Wu et al. 2005). This example shows that structural knowledge can help tip
the balance between several equally confident sequence-based predictions in favour
of the correct functional assignment.

Fig. 14.2 Enzyme template
match for the BioH protein
(PDB entry 1m33). a The
match between the catalytic
residues in Pseudomonas
lipase (PDB entry 2lip),
shown in red, and the three
matching residues from BioH,
in blue, b the corresponding
superposition of the two
structures showing their
similar, yet far from identical,
folds, with the BioH structure
in green and 2lip in yellow
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14.2.4 Lee et al. (2011)

A larger analysis (Lee et al. 2011) was carried out on 1165 structures, relating to
1118 protein targets solved by the MCSG during the first two stages of the Protein
Structure Initiative (Norvell and Berg 2007). The proteins were first categorized
according to whether their function was known (31%), putative (48%), possible
(14%), or unknown (7%). The annotations were manually performed, using data
from the Gene3D database (Lees et al. 2012) which contains all protein sequences
in UniProtKB and most complete genomes. After running ProFunc on all the
structures, the authors focused on the 78 (7%) that were of unknown function.
ProFunc’s reverse template method found a ‘certain’ match (i.e. E-value < 10−6)
for one of these, and ‘probable’ matches (10−6 � E < 10−2) for a further 17,
showing that in cases where sequence methods cannot identify a protein’s function,
structural methods such as the reverse template method can help.

One example was for PDB entry 2aua, the structure of BC2332, an uncharac-
terized protein from Bacillus cereus. The strongest reverse template match was to a
diphtheria toxin (PDB code 1f01), while two other matches gave an exotoxin
(1xk9) and a cholix toxin (3ess). All matches were in the protein’s known substrate
binding site, strongly suggesting it, too, might function as a toxin; Bacillus cereus is
known to produce enterotoxins that cause food poisoning (Granum and Lund
1997), so this could be another such toxin.

14.3 Some Specific Examples

Apart from the few large-scale studies described above, there have been many
interesting analyses of individual proteins, or sets of proteins, where the 3D
structure provided vital clues for some element of functional characterisation.

14.3.1 Adams et al. (2007)

In the first example, the functions of five hypothetical proteins from E. coli were
deduced using a variety of methods, including structural information, operon pre-
diction, related function from other operon members and catalytic residue conser-
vation. Further information was gathered from co-crystallization trials and virtual
ligand screening (Adams et al. 2007).

The first case involved a protein, ChuS, with a novel fold, thought to be involved
in haem uptake and utilisation. Biochemical analysis suggested a haem oxygenase
function—the first to be identified in E. coli. A multiple sequence alignment
highlighted four conserved histidine residues which, when mapped onto the
structure of ChuS, revealed that three are adjacent to, or point into, one of two large
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clefts on opposite sides of the central core. Further structural studies with haem
co-crystallization, and mutagenesis of the conserved histidines, identified a novel
haem coordination, unlike any previously in haem degradation enzymes.

The second example, protein YgiN, showed a fold similarity to ActVA-Orf6, a
monooxygenase from S. coelicolor. Members of this family are involved in the
synthesis of large, polyketide compounds in the antibiotic biosynthetic pathways of
Gram-positive bacteria. Their function is to tailor an antifungal compound, dihy-
drokalafungin, to confer its specific activity (Sciara et al. 2003). As E. coli was not
known to produce this compound, it was expected that the natural substrate of YgiN
would be different. Using information in the literature about previous studies, the
authors were able to suggest that YgiN may be involved in menadione metabolism.
Further experimental work resulted in the structure being co-crystallised with
menadione.

In the third case, the protein YjjX showed a similar fold to a number of nu-
cleotide binding proteins (including the MJ0226 protein—the third of the proteins
discussed above from the paper by Kim et al. 2003). There was significant simi-
larity in the active sites of these structural matches, with a number of residues either
conserved or substituted with functionally equivalent residues. Biochemical anal-
ysis revealed YjjX to be a novel ITPase/XTPase that acts as a housekeeping enzyme
in E. coli during oxidative stress to prevent the accumulation and subsequent
incorporation into nucleic acids of non-canonical nucleotides.

The fourth case was of YhhW, a member of the cupin family. Its fold, as
expected, had a similar core to known cupin structures, while the sequence pointed
to its closest relatives being the pirins. A deep, charged pocket next to a metal
binding site, also seen in one of its homologues, hPirin, suggested a possible active
site. The pocket was found to be similar to that of quercetin 2,3-dioxygenase, and a
biochemical assay confirmed quercetin 2,3-dioxygenase activity—the first enzy-
matic activity determined for any members of the pirin family. This example
illustrates the problems faced when dealing with a large protein superfamily cov-
ering a diverse range of functions; a mere fold match is insufficient to identify a
specific function, with local analysis required to pin it down.

The final example, z3393, was another member of the cupin superfamily. This
time the sequence suggested a close relationship to the gentisate 1,2-dioxygenases,
and this was supported by global structural and local molecular surface compar-
isons. The structure may help understand how the gentisate operon may be asso-
ciated with pathogenic strains of E. coli.

14.3.2 AF0491 Protein

The AF0491 protein from A. fulgidus was solved by the MCSG and deposited as
PDB entry 1p9q (Savchenko et al. 2005). The protein is a homologue of the human
Shwachman-Bodian-Diamond syndrome (SBDS) protein. SBDS is a rare autosomal
recessive disorder caused by mutations in the SBDS gene on chromosome 7 and is
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characterized by abnormal pancreatic exocrine function, skeletal defects, and
haematological dysfunction (Boocock et al. 2003).

The structure revealed three domains (Fig. 14.3) although domain sequence
databases indicate only two. The C-terminal domain is one found in many RNA-
and DNA-binding proteins. The central domain has a winged helix-turn-helix
(wHTH) fold that is commonly involved in DNA binding (Aravind et al. 2005) and
has also been identified in RNA-binding proteins (Schade et al. 1999). However, in
AF0491, the surface of this middle domain does not have a general basic character
for DNA or RNA binding so is not expected to bind nucleic acids but be involved in
protein-protein interactions instead.

The N-terminal domain was thought to be a novel fold and is where most of the
disease-linked mutations are identified in SBDS patients. But it was noticed that the
fold was similar to that of a protein that had been solved as one of the group’s NMR
structural genomics targets: yeast protein YHR087W. This protein was experi-
mentally shown to be involved in RNA processing, although whether the same is
true of the SBDS is not established. However, this example showed that the
structural determination of a bacterial homologue of a human protein has identified
additional homologues in yeast useful for experimental-based inference of function.

Fig. 14.3 Monomer of AF0491 protein from A. fulgidus, a homologue of the human
Shwachman-Bodian-Diamond syndrome (SBDS) protein clearly showing the protein consists of
three structural domains. The domains are coloured red, green and blue in order from the
N-terminus to the C-terminus. Matching domains from the PDB are coloured in pale versions of
these colours. The C-terminal domain is commonly found in RNA- and DNA-binding proteins, the
matching domain here being from feast/famine regulatory protein DM1 (PDB entry 2z4p). The
central domain has a winged helix-turn-helix fold characteristic of DNA binding—as exemplified
by PDB entry 2lkl, an erythrocyte membrane protein. The N-terminal domain’s role is unknown,
but could be involved in RNA processing. Its fold matches yeast protein YHR087W (PDB 2z4p)
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14.3.3 The GxGYxYP Family

The structure of BT2193 protein from B. thetaiotaomicron containing the
GxGYxYP domain (PDB entry 3sgg) provided strong clues to this domain’s
function (Rigden et al. 2014). The domain is found in proteins that are
over-represented in mammalian gut microbiomes, the Bacteroides genus making up
to 30% of the microbiota. The domain occurs in Polysaccharide Utilization Loci
(PULs) which code for different sets of enzymes and other proteins that can col-
lectively digest a specific carbohydrate.

The BT2193 protein was found to contain two structural domains (Fig. 14.4a).
The C-terminal domain, a 7-stranded beta barrel, exhibited many fold matches to
other proteins in the PDB, yet no functional inferences could be drawn from these
matches as the sequence identities were far too low. Structural alignments between
BT2193 and its fold matches failed to identify any residues in BT2193 that might
correspond to the catalytic residues in the PDB proteins. The N-terminal domain
comprised 3 subdomains, structurally similar to one another, but not to any known
structure.

So the domain structures did not point strongly at any function. However, the
large cleft between the two domains held some functional clues. A ‘nest motif’,
involving Asp331–Asp333, was identified within the cleft at a point of high se-
quence conservation. Additionally, a molecule of glycerol from the crystallization
buffer was hydrogen-bonded to Asp333 and Glu272, suggesting a carbohydrate
binding site. A search against catalytic residues from the Catalytic Site Atlas, CSA
(Porter et al. 2004), identified that the three residues Asp333, Asp331 and Glu272
match the catalytic residues of a GH9 bacterial cellulase, PDB entry 1js4
(Fig. 14.4c). The residues are highly conserved, although have changed in some
species, possibly indicating a loss of catalytic function there. Since the folds of the
GxGYxYP domain (Fig. 14.4a) and the cellulase structure (Fig. 14.4b) are com-
pletely different, the similarity could be the result of convergent evolution
(Fig. 14.4).

Additional support for the protein’s glycoside hydrolase activity came from the
fact that there were several solvent-exposed aromatic amino acids in the neigh-
bourhood of the catalytic residues, as is found in other glycosidases. The structure
was analyzed using the THEMATICS method (Wei et al. 2007) which computes
the likely pKa perturbation of each amino acid and consequently identifies those
most likely to have catalytic activity. The method ranked the putative catalytic
residues, Asp333, Asp331 and Glu272, at positions 1, 3 and 5, respectively.

So, the evidence from several sources all seemed to indicate that the GxGYxYP
domain is a new class of glycoside hydrolase. Further experimental work is required
to identify likely substrates to help explain the role of the domain in the gut
microbiome.
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14.4 Community Annotation

One of the criticisms of the early SG projects was that, as the focus was on how
many structures could be solved and deposited, their publication in the literature
became a low priority. Indeed, for many structures, where the function remained
unknown, there was little to report in any case. And, even where the desire to
publish was strong, the process was something of a bottleneck in the
high-throughput structure determination pipelines (Rigden 2006).

For functionally unknown proteins the experimental determination of function
was a particular problem, requiring time, equipment and expertise. One solution
was to collaborate with laboratories specialising in the particular protein being

Fig. 14.4 Comparison of overall structures (a, b) and (putative) catalytic residues (c; cross-eyed
stereo) of BT2193 protein from B. thetaiotaomicron (PDB entry 3sgg; a) and a bacterial cellulase
(PDB entry 1js4; b). Catalytic domains are coloured in a spectrum from blue at the N-terminus to
red at the C-terminus. The three repeat domains of BT2193 are shown in different shades of grey.
(Putative) catalytic residues are shown in a ball-and-stick representation along with some
sequential context and are coloured distinctly as magenta (3sgg) or grey (1js4)
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studied. Another was to use high-throughput experimental screens for, say, enzy-
matic activities (Kuznetsova et al. 2005; Proudfoot et al. 2008; Simon and Cravatt
2010). A recent initiative, funded by the National Institute of General Medical
Sciences (NIGMS), aims to tackle the problem using a community-wide approach.
It is called COMBREX (COMputational BRidge to EXperiments) (Anton et al.
2013, 2014). It has compiled a database of experimentally determined functions of
microbial proteins together with the functional predictions that can be inferred from
them (http://combrex.bu.edu). It also encourages the experimental characterization
of high priority targets, providing funding by way of assistance, to encourage
experimental function determination to cope with the ever-increasing flood of
newly sequenced genomes.

Other community-led approaches to annotation have included a number of
wiki-based databases wherein scientists with expert knowledge in particular fields
can annotate protein structures (Giles 2007; Mons et al. 2008).

One of the first such attempts was TOPSAN (The Open Protein Structure
Annotation Network), initiated by the Joint Centre for Structural Genomics (JCSG)
for the annotation of proteins solved by SG efforts (Ellrott et al. 2011). A wiki
(http://www.topsan.org) allows registered users to annotate the pages of each
structure. The pages themselves are initially filled with automatically generated
data.

On a larger scale was PDBWiki (http://pdbwiki.org), created in August 2007 by
the Structural Proteomics Group at the Max-Planck-Institute for Molecular Genetics
(Stehr et al. 2010) and covering every structure deposited in the PDB. Sadly this
went offline in January 2014, and it is not clear whether it will be reinstated.

A similar, PDB-based wiki, which is still running, is called Proteopedia at http://
www.proteopedia.org (Prilusky et al. 2011). As in PDBWikiiP, each PDB entry has
its own page automatically seeded, the information here coming from OCA (http://
bip.weizmann.ac.il/oca) and other sources. Proteopedia provides a fully interactive
Jmol view of each entry, plus anyone editing a page can create a 3D scene in Jmol
to illustrate the point being made in the text. Every author is fully acknowledged,
with no anonymous edits allowed. A nice feature is that any user can set up their
own visible, but non-editable, areas in the system. This allows for the generation of
topic-based or example pages that remain stable and can therefore be used as a
teaching tool.

14.5 Conclusions

The SG initiatives resulted in a great number of structures solved and deposited in
the PDB, contributing to our treasury of protein 3D structures. According to one
estimate (Khafizov et al. 2014), the past ten years have seen the overall structural
coverage of proteins, both experimentally solved and for which reliable homology
models can be generated, increase from 30 to 40% (in terms of total number of
protein residues). The contribution from SG efforts was *50% of this new
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structural coverage, despite coming from only *10% of all new structures.
However, due to the rapid data release required by these projects, a large proportion
of structures still have little or no functional annotation. The ability to predict a
protein’s function from sequence and structure has been something of a Holy Grail
for bioinformaticians and consequently a wide variety of methods have been
developed over the years. Each of these methods has its own pros and cons and,
currently, no single method shows a 100% success rate.

Thus, as the case studies here have demonstrated, one often needs the clues from
several sources to arrive at a convincing case for a particular function. Experimental
verification is the only way of checking whether the final prediction is correct, but
this is a time-consuming business and requires specialist knowledge and equipment
(and funding). There is an awareness that the difficult business of experimental
determination of function needs to be rationalized, and use of community-wide
initiatives like the COMBREX project seem a very promising start. Similarly the
annotation of proteins can benefit greatly from a community-wide approach,
enabling the experts in each field to contribute to building up the store of functional
information on proteins and so allow deeper biological insights to be gained.
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Chapter 15
Prediction of Protein Function
from Theoretical Models

Daniel J. Rigden, Iwona A. Cymerman and Janusz M. Bujnicki

Abstract Explicit 3D models can be obtained by comparative protein modelling, a
mature and predictable technique, fragment assembly ab initio methods for smaller
novel or unrecognisable folds and contact-based methods for large protein families.
Each modelling method has limitations in model accuracy, which vary further
according to the characteristics of the target: as a result, the performance of
structure-based function prediction algorithms applied to models is variable.
Nevertheless, with care, a wide variety of structure-based methods can be pro-
ductively applied to protein models, frequently facilitating the planning and inter-
pretation of experimental results. This chapter will first survey the literature on
applicability of structure-based methods specifically to models, before discussing a
selection of examples in more detail.

Keywords Model added value � Binding site prediction � Function prediction �
Prediction of specificity � Comparative modelling � Ab initio modelling �
Homology modelling � Protein model databases

15.1 Background

In this era of Big Data, biologists benefit from the exponential growth of both
sequence (UniProt Consortium 2015) and protein structure databases (Rose et al.
2015), growth driven by technological innovations such as pyrosequencing and
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robotised crystal growth and handling. However, the gap between the numbers of
available protein sequences and protein structures remains huge. At the time of
writing, the PDB had just breached 100,000 entries yet UniProt contained around 48
million entries. To bridge that gap the structure prediction methods featured in
Section 1 of this book must play a major role. Currently, ab initio structure prediction
(see Chap. 1) is limited to relatively small proteins while the exciting new area of
contact-driven modelling (Chap. 2) requires large numbers of reasonably diverse
homologous sequences to the target, limiting the number of protein families of
currently unknown structure to which it can be applied (Hopf et al. 2012; Kamisetty
et al. 2013). Thus, the burden falls largely on homology modelling (Chap. 4) which,
where a suitable template can be found, is generally quick, easy and broadly
applicable. Recognising the key role of comparative modelling, Structural Genomics
consortia made a concerted push, especially in the PSI-2 era, to seed protein fold
space with new structures. These structures were chosen to open up the possibility of
homology modelling of large numbers of sequences that were hitherto intractable
(Dessailly et al. 2009). The success of SG initiatives in providing structural novelty
has recently been analysed (Khafizov et al. 2014). The proportion of protein
sequence space that can be mapped to protein structures (in this case, meaning
residues aligned by BLAST with e-value <10−10) increased modestly from 2001 to
2011 from 30 to 40%. However, around half of this expansion was accounted for by
SG-derived structures despite their only accounting for 10% of the new structures
determined in the period. In recent times the interests of SG centres have diversified
but for transmembrane proteins at least a strong interest in improving structural
coverage of fold space is maintained (Pieper et al. 2013). Model organisms of
particular interest tend to be better catered for than average. For example, recent
analysis shows residue-level coverage of the human proteome approaching 60%
(Schwede 2013), a figure demonstrating higher completeness than initially apparent
since around 30% of the proteome is predicted to be intrinsically disordered.

Although the value of homology models for structure-based analysis is undis-
puted, the inevitable errors they contain can ultimately confound predictive meth-
ods. Thus it is important for the user to have a good understanding of the quality of
their model both overall and in terms of local details. Model Quality Assessment
Programs (MQAPs; Kryshtafovych et al. 2011) are available to consider various
aspects of protein structure. Models available in databases and repositories will
generally be accompanied by MQAP analyses and online modelling pipelines such
as HHpred (Soding et al. 2005) often offer this type of analysis. A major source of
error in comparative models lies in the backbone which will generally strongly
resemble that of the template(s) used in model construction. An estimate of the
backbone error of a homology model, sharing a certain % sequence identity with
template(s), can therefore be obtained by considering the backbone
root-mean-square deviation (rmsd) between crystal structures sharing the same %
identity. This relationship was analysed by Chothia and Lesk (1986) showing that
backbone rmsd values for common cores steadily increase from around 0.5 Å for
crystal structures of the same protein to more than 2.0 Å for homologous pairs
sharing less than 20% sequence identity. Of course, this is an optimistic estimate in
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a modelling context since it assumes no alignment errors between target and
template, this in fact being the largest source of error in homology models (Ginalski
2006). Furthermore, the shared cores analysed (Chothia and Lesk 1986) sometimes
comprised only half the protein. Finally, outside the core, deletions and insertions
will be likely less well-modelled since the template provides less information to
guide their construction, and side chains will generally be more poorly modelled
than the backbone, especially at higher divergences between target and template
(Chung and Subbiah 1996). An objective assessment of a protein model, ideally
employing multiple MQAPs, is an essential precursor to structure-based inference
(Schwede 2013).

While the overall quality of homologymodels can be broadly estimated in advance
based on target-template identity, the same cannot be said for fragment-based or
contact-driven methods. By these techniques a single target will be modelled many
times, perhaps thousands of times in the case of fragment assembly methods.
Predicting which fragment assembly model is likely to best represent the unknown
target structure, and with what degree of confidence that can be asserted, is done by
clustering for low-resolution fold predictions (Shortle et al. 1998) and by energy
funnel analysis for themuchmore time-consuming all-atom protocols (e.g. Barth et al.
2007) (see Chap. 1). The QUARK fragment assembly modelling server (Xu and
Zhang 2012) offers a predicted TM-score (Zhang and Skolnick 2004) for its top
returned model, and the same for the best of the top ten models, based on an assess-
ment of the fragments available and how the models clustered (Xu and Zhang 2013).
TM-scores range from 0 to 1 with 1 being a perfect match, 0.17 the average score for
unrelated proteins and 0.5 broadly indicating that the overall fold has been predicted
correctly. Bespoke scoring systems have been developed for contact-based models
and will surely improve in the short term (Marks et al. 2011). In two studies the
top-scoring models gave TM-scores of 0.25–0.70 (Ca rmsd values in the range 2.7–4.
8 Å) for globular proteins (Marks et al. 2011) and 0.40–0.70 (2.8–5.1 ÅCa rmsd) for
transmembrane proteins (Hopf et al. 2012).

15.2 Suitability of Protein 3D Models for Structure-Based
Predictions

As mentioned above, models will vary considerably in their overall accuracy. In
particular, the quality of comparative models depends on the degree of evolutionary
divergence between the modelled target and the template that was used. Broadly,
the higher the sequence identity shared between the two, the lower the expected
structural difference between the two, and so the lower the error likely to be present
in the model built using the template. Bearing this in mind, it is important to ask
how reliably different structural and functional characteristics can be inferred from
model structures of different predicted quality. This section therefore focuses on
published work that explicitly considers the value of modelled structures with
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respect to the methods covered earlier in Section 2 of this book. It is worth
remembering that these studies generally used comparative single-template models.
Thus, the results are representative of the models typically produced by large-scale
fully automated methods. However, in some cases, more elaborate modelling
procedures employing multiple templates and refinement may improve the accuracy
of models and hence of structure-based properties inferred from them. Care must be
taken, however, since use of multiple templates can also degrade model quality in
some circumstances (Hasegawa and Funatsu 2012). Guidelines for choice of tem-
plate in order to maximise the chance of a positive effect on model quality have
been presented (Hasegawa and Funatsu 2012). The comparative modelling proto-
cols of the Rosetta suite also now effectively combine information from multiple
templates with impressive results (Song et al. 2013).

15.2.1 Surface Properties

The functions of most proteins rely on intermolecular recognition, with ligands
ranging from small molecules to multi-protein complexes, so surface properties (see
also Chap. 10) are of particular interest. The accuracy of prediction of these
properties was addressed in large-scale analyses of simple comparative models
performed by Chakravarty et al. (2005). It was shown that the overall accuracy of
all analyzed structural model-derived properties (SDPs) drops as a function of
template-to-target sequence similarity, but that this decrease has different degrees of
impact on the accuracy of different structural features (Table 15.1). For example,
alignment errors have a negligible effect on the correctness of the prediction of
accessible surface area (ASA) while the correctness of the electrostatic potential
prediction is already affected when the sequence identity drops below 50%
(Table 15.1). Knowing how reliable the different model-derived properties are, it is
interesting to investigate what additional information (added value) they carry with
reference to the template structures used for model building. Again, systematic
analysis of the model added value was performed on the large scale only for
single-template models (Chakravarty and Sanchez 2004), but it provides valuable
guidelines as to which particular model-derived properties can be informative
(Table 15.1).

In general, the greater the difference between target and template sequences, the
more significant the added value becomes. This results from the fact that
lower-similarity cases contain less information in the template about the size and
physicochemical properties of particular residues in the target. However, not all
structure-derived properties provide additional information with respect to the
template. For SDPs that depend mostly on position of residues, such as exposure
state, neighbourhood of buried residues and number of surface pockets, models do
not provide added value. It is probably caused by the fact that buried residues are
more conserved than exposed residues, comprising protein cores that are responsible
for protein integrity. For other SDPs, such as neighbourhood of exposed residues
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and total accessible surface area (ASA), models show some added value. This is very
important as residues accessible to the solvent are responsible for interactions with
other molecules, thus determining the biological function of the protein. Finally, for
properties that strongly depend on the physicochemical characteristics of the amino
acids in the sequence, such as composition of pockets and electrostatic potential,
models show large added value. The identification of charged regions is of large
value as they may represent binding or active sites (see Chap. 10).

In summary, the studies performed by Chakravarty et al. demonstrated that, with
the exception of the detection of pockets, most model-derived structural properties
exhibit some level of added value. The more a given property depends on the
sequence of the protein the more useful a model will be in estimating the value of
that property. Encouragingly, depending on the feature, 25–40% sequence identity
between target and template was sufficient to produce a SDP estimate of compa-
rable accuracy to that available from an NMR structure.

A later study (Piedra et al. 2008) specifically examined the quality of modelling
of surface clefts in comparative models, focusing on medium to low quality models
(defined as those based on target-template alignments of 30–60% or <30%,
respectively). Six metrics reporting the reproduction of known benchmark structure
cleft structure by the models were analysed including measurements of rmsd,

Table 15.1 The accuracy and added value of structure-derived properties in single-template
based comparative models (Chakravarty and Sanchez 2004; Chakravarty et al. 2005)

Model-derived
property

Accuracy Added value

All Increases with template-to-target identity Increases when
template-to-target
identity drops

Residue
exposure state

Decreases with the protein size; affected by
alignment errors below 30% sequence identity

No added value

Buried residues
neighbourhood

No clear dependence on protein size, higher than
for exposed residues; affected by alignment
errors below 30% sequence identity

No added value

Exposed
residues
neighbourhood

No clear dependence on protein size, lower than
for buried residues; affected by alignment errors
below 30% sequence identity

Moderate added
value

Accessible
surface area
(ASA)

Error in total ASA increases with protein size,
influence of misalignment is very small

Moderate added
value

Surface pockets
identification

Pocket artefacts; increased number of surface
pockets in comparison to the template and target
structure; alignment errors have no clear effect
on the number of pockets

Negative added value

Surface pockets
composition

High added value

Electrostatic
potential (EP)

Affected by alignment errors below 50%
sequence identity

High added value
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protrusion index and accessible surface area. Some expected factors were confirmed
as important: thus, cleft model quality improves as the sequence identity rises,
improves with accurate alignment of target and template, and is degraded when
residues contributing to the cleft in the model structure are not aligned with
counterparts in the template. Most interestingly, the authors define a threshold of
around 20% sequence identity between target and template, below which there is a
steep drop in the quality of modelled clefts by various metrics (Piedra et al. 2008).
Encouragingly, in the range of 20–30% identity protein clefts are generally suffi-
ciently well-modelled to be of value, although a significant proportion of poor
models are found in this category.

Further work (Zhao et al. 2011) was limited in scope to models based on
target-template alignments of >30% sequence identity, but usefully added measures
capturing the recall of atoms in the surface pockets, in particular the recall of
‘signature’, biologically important atoms i.e. whether key binding determinants in
the native structure were correctly solvent exposed in the modelled structure.
Importantly, the latter ‘signature’ atoms were much better modelled than
cleft-lining atoms on average. Again, even lower quality models contained high
value information: considering models containing clefts contributed by sequence
segments down to only 45% identity between target and template, 77% of true
binding pocket atoms were present in the modelled pocket (Zhao et al. 2011).

15.2.2 Functional Sites

Early work proposed a multi-step procedure that enables identification of protein
functional sites in low-to-moderate resolution models (Fetrow and Skolnick 1998).
Based on the geometry, residue identity, their distances between alpha carbons and
conformation, the active site residues become a three dimensional descriptor termed
Fuzzy Functional Form (FFF) which could be used to screen homology models.
The usefulness of the method was proved by the identification of the novel
members of the disulphide glutaredoxin/thioredoxin protein family in the yeast
(Fetrow and Skolnick 1998) and E. coli genomes (Fetrow et al. 1998), whose
functions could not be identified by sequence comparison methods. The great
advantage of FFF and related approaches is that the method distinguishes protein
pairs with similar active sites from proteins pairs that may have similar folds, but
not necessarily similar active sites. The FFF technology was further developed to
the method called active site profiling (Cammer et al. 2003) and was successfully
combined with experimental procedures to determine new serine hydrolases in
yeast (Baxter et al. 2004). The main advantage of the method is that it does not rely
on residue conservation across an entire family and the key functional residues are
specifically identified regardless of overall global sequence similarity to any other
protein exhibiting the same function. It could therefore be applicable to identifi-
cation and annotation of different functional sites, including enzyme-active sites,
regulatory and cofactor-binding sites.
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A general approach to functional site detection is also implemented in advanced
methods like FINDSITE (Brylinski and Skolnick 2009) and COFACTOR (Roy
et al. 2012), sometimes termed Ligand Homology Modelling (LHM). Putative
binding sites in a protein of interest along with their candidate ligands are first
discovered using, for example, 3D motif matching (see also Chap. 11) or by
matching to templates containing bound compounds. The candidates can be clus-
tered, refined and scored with strong predictions revealing not only a proposed
functional site but also suggested ligand. Importantly, the quality of predictions
degrades only slowly with lower quality starting structures e.g. homology models of
increasing evolutionary divergence from the best available template (Lee and Zhang
2012; Skolnick et al. 2013; Yang et al. 2013). This points the way to the use of
LHM for ligand discovery in a pharmaceutical context (see also Sect. 15.2.4
below), not simply for annotating functional sites. For example, the complete
human kinome was subject to a LHM study involving the construction of homology
models for each kinase. That work concluded that performance at ligand ranking
using modelled structures was at least as good as conventional virtual screening
applied to crystal structures (Brylinski and Skolnick 2010). Indeed, the technique is
viewed as having potential in a number of medicinal areas including the off-target
binding responsible for drug side-effects (Skolnick et al. 2013).

15.2.3 Specific Binding Predictions

Other studies have addressed whether more specific function predictions can be
made as accurately for models as for experimental structures. For metal-binding
sites, the results of the MetSite method that combines sequence and structure
information were encouraging (Sodhi et al. 2004). Although performance with
modelled structures was inferior to that with experimental structures, correct metal
site predictions could be made for around half of reliable
mGenTHREADER-derived models. Notably, these models are backbone-only so
that performance would not be at all affected by errors in side-chain positioning.

Similarly, a method for predicting DNA-binding ability using sequence infor-
mation, structural asymmetry in distribution of some amino acids and dipole
moments, has been benchmarked against both experimental structures and models
(Szilagyi and Skolnick 2006). The method uses Ca-only structures. Performance of
this method vs that obtained for experimental structures, was found to decrease only
very slightly for models of up to 6 Å rms deviation from native structure. Thus, it
will be appropriate to use the method on model structures of all kinds, including the
template-free and fold recognition-derived models for which lower accuracy would
be expected.

A more challenging problem is not just distinguishing DNA-binding proteins
from non-binding structures, but to accurately predict the mode of DNA binding. In
one such study (Gao and Skolnick 2009), models were automatically built using
TASSER excluding any templates that shared >30% sequence identity with the
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target. Remarkably, for the easier cases where threading indicated the availability of
better (though still <30% sequence identical) templates, performance in predicting
DNA binding mode was broadly comparably to that achieved using the apo crystal
structures of the proteins in question (Gao and Skolnick 2009).

Model structures have also been shown to be valuable in detecting proteins that
bind RNA (Li et al. 2014). Even predictions based on the poorest quality models,
built using templates sharing <30% sequence identity, outperformed those made
using sequences alone. Furthermore, good quality models from >90% identical
templates performed comparably to the experimental structures themselves (Li et al.
2014).

15.2.4 Small Molecule Binding

One of the important practical applications of protein models is for in silico
screening against small compound databases in order to pick out likely inhibitors
for development into drug leads (Jacobson and Sali 2004). While not the focus of
this book, such docking employs the same principles and programs as are
increasingly used to predict natural ligands for proteins in a structure-based manner
(see also Chap. 10) (Hermann et al. 2007; Song et al. 2007). It is therefore relevant
here to mention studies that explore the performance of protein models, compared
to experimental structures, in both small molecule docking scenarios.

In early work in the pharmaceutical context, McGovern and Shoichet (2003)
compared enrichment of known ligands vs decoys in docking results for holo, apo
and model structures of nine enzymes. Templates used for model construction
shared 34–87% sequence identity with targets overall, and 45–100% identity in the
region of the binding site. In the best enrichment class were results for eight holo
structure, two apo structures and three models, confirming the general superiority of
experimental structures. Nevertheless, modelled structures as a whole almost
always gave better than random selection of active compounds. There was a ten-
dency for models built using more closely-related templates to perform better, but
small conformational changes in the binding site could sometimes lead to poor
performance even in these cases. Later, Oshiro et al. (2004) compared the
enrichment of known active compounds in docking results for compound databases
of experimental structures and comparative models, several for each, of CDK2 and
factor VIIa. The templates used for model construction shared 37–77% sequence
identity in the vicinity of the binding site. Remarkably, where the local sequence
identity of the model was higher than 50%, performance was similar to that
obtained with an experimental structure. Below 50% binding site identity, perfor-
mance was clearly degraded. Later work introduced the idea of ‘consensus’
enrichment where compounds are ranked according to their binding scores against
multiple comparative models. Strikingly, this approach produced performance
comparable to or even better than that achieved against X-ray structures of the
target in question (Fan et al. 2009). Also importantly, even models built using
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distantly homologous templates sharing as low as 25% sequence identity produce
better enrichment of active compounds than the template itself, demonstrating the
added value of the modelling exercise (Fan et al. 2009). This message was rein-
forced by very recent work using automatically generated homology models built
with I-TASSER (Du et al. 2015). Even restricting the model building to templates
sharing <30% sequence identity to the target, in a majority of cases compound
enrichment approached that achieved with the crystal structure (Du et al. 2015).
Taken together, these papers strongly encourage the use of models for docking
studies where the obviously preferable experimental structures are unavailable.

A different perspective on the accuracy of small molecule docking to protein
models was provided by Bordogna et al. (2011). They asked directly whether the
known, experimentally observed mode of ligand binding was observed when the
small molecule was docked in silico using AutoDock to a model of the protein
receptor. A set of 21 protein-ligand complexes was used to benchmark performance
with a total of 245 models constructed for the receptors using templates sharing a
wide range of % sequence identity. A strong relationship between the
receptor-template sequence identity and accuracy of the best-scoring docking pose
was observed (Bordogna et al. 2011). Where the former was at least 80%, the
top-scoring docking pose generally deviated by less than 2 Å rmsd from the
experimentally observed binding mode. At lower similarities between receptor and
template similarly accurate predictions were still sometimes seen, but the spread of
accuracy became progressively larger and totally inaccurate predictions became
increasingly common. Interestingly, the authors could reliably predict the accuracy
with which retinol could be docked to models of its binding protein, a case not in
their original dataset, using the results of their study (Bordogna et al. 2011).

Recent papers (Wallrapp et al. 2013) have amply demonstrated the value of
homology models for structure-based assignment of function to proteins by the
metabolite docking approach. A particular focus has been enzyme superfamilies in
which substrate specificities of individual families can be confidently predicted. For
example, in the enolase superfamily, homology models of different dipeptide epi-
merases built using a single template, docked and scored against all 400 possible
dipeptide substrates, correctly predicted favoured substrates (Lukk et al. 2012).
Interestingly, this work revealed both families with the same specificity as exper-
imentally characterised groups, but different structural bases of substrate preference,
as well as families with entirely novel specificity. Equally impressive was work
predicting substrate chain length preferences in uncharacterised groups of prenyl-
transferases (Wallrapp et al. 2013). These enzymes synthesise linear allylic
diphosphates with chain lengths ranging from C10 to C50 as building blocks for a
wide variety of isoprenoid metabolites. In blind experiments, homology models
were made, mostly based on templates sharing 30–60% sequence identity with the
protein of interest, and docked with potential substrates containing 5–25 carbon
atoms. Predicted binding energies were used to suggest substrate specificities which
later experiment showed to be correct in 45% of cases (spanning essentially the full
range of target-template sequence identities), differing by only one C5 unit in a
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further 15% and profoundly wrong in only 5%. Subsequent crystal structures
confirmed the broad features of substrate binding modes predicted using homology
models (Wallrapp et al. 2013).

15.2.5 Protein-Protein Interactions

The use of homology models to predict protein-protein interactions on a large scale
has seen rapidly increasing interest recently (see also Chap. 8). Indeed, protein
models have been termed the ‘Grand Challenge’ in the area of protein docking
(Anishchenko et al. 2014). Two broad approaches can be distinguished. The sim-
pler, template-free approach uses regular docking methods to seek favourable
modes of interaction between two protein models. The second, template-based
modelling (Szilagyi and Zhang 2014), is based on finding complex templates from
the PDB that are proposed to represent the mode of interaction of the proteins of
interest. Commonly, but not invariably (e.g. Tuncbag et al. 2012, Zhang et al.
2012), the two proteins of interest will be homologous to the two partners in the
identified complex template. Thus, a crystal structure of proteins X and Y in
complex might be used to model the interaction of proteins A and B where A is
homologous to X and B is homologous to Y. The two approaches have been
usefully compared (Vreven et al. 2014), highlighting strengths, weaknesses and
potential synergies.

Encouragement for the use of homology models in template-free docking came
from the results of a large scale exercise in which protein models of complexed
pairs were systematically constructed with errors over a 1–10 Å rmsd range
(Tovchigrechko et al. 2002). As expected, the accuracy of prediction of interface
formation declined with decreasing model quality but, nevertheless, gross features
of the interaction are frequently present in complexes containing models of up to
around 6 Å rmsd from the experimental structure (Tovchigrechko et al. 2002).
More recently, the accuracy of the binding sites in automatically produced protein
models has been assessed (Kundrotas and Vakser 2010): the quality of these
regions is obviously much more important for successful docking than that of
non-binding regions. In that study only a low-resolution criterion of docking suc-
cess was used but the authors concluded that interface regions in homology models
were predicted well enough for low- or medium-resolution docking in around 50%
of their cases (Kundrotas and Vakser 2010).

It is highly desirable to steer the template-free docking to the known interface
regions where this information is available. A recent study of such
information-driven docking (Rodrigues et al. 2013) demonstrated, most interest-
ingly, that the quality of those restraints is more important for overall docking
accuracy than that of the model that is being docked. Thus, where interface
information was accurate, reasonable quality docking poses (<3 Å interface rmsd)
were obtained for modelled structures built using templates with which they shared
as little as 20% sequence identity. Another key finding was that the quality of the
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docking results could be predicted based simply on the template sequence identity
shared with the protein model being docked (Rodrigues et al. 2013).

Interest in template-based protein docking grew with the publication of a paper
suggesting that templates suitable for modelling essentially all complexes between
structurally characterised proteins are already available in the PDB (Kundrotas et al.
2012) and it has therefore been argued that a near-complete albeit low-resolution
description of the interactome will be achieved soon (Vakser 2013). However, other
work demonstrates that the availability of more interaction templates will be
required to enable better quality modelling of protein interactions in the twilight
zone where interactors share only low sequence identity with proteins in structurally
characterised complexes (Negroni et al. 2014). An exercise incorporating
template-based protein docking on a large scale to probe host-parasite interactions
is discussed in detail below (Davis et al. 2007). More recently, genome-scale
prediction of protein-protein interactions has been done (Zhang et al. 2012).
Homology models were assembled into putative complexes using the
template-based approach and the resulting interfaces assessed against expectations
from known complexes. Overall confidence measures combined these
structure-based scores in a Bayesian framework with other information such as
co-expression. Notably, high confidence predictions were sometimes obtained in
this way even for interactions that were considered low probability in structural
terms alone (Zhang et al. 2012).

15.2.6 Protein Model Databases

Although model databases are not a main focus of this chapter, we hope the
foregoing discussion and the examples that follow will encourage the reader to
explore the use of protein models for function prediction, and so it is worth men-
tioning that actually carrying out the modelling is not always essential: ready-made
models may already be available. This is only generally the case for comparative
models, but accessing these automatically generated models is very easily done
through the Protein Model Portal (http://www.proteinmodelportal.org; PMP; Haas
et al. 2013). The user is greeted by a single search box which accepts database
accessions, sequences or free text queries. A single page of search results contains
links out to two well-established large-scale automated modelling exercises—
ModBase (Pieper et al. 2014b) and SWISS-MODEL Repository (Kiefer et al. 2009)
—as well as to smaller scale resources allied to Structural Genomics Consortia or
devoted specifically to G protein-coupled receptors (Vroling et al. 2011).
Interestingly, where several models for the same protein region are available their
structural variability can be analysed and illustrated. Such variability may result
from genuine conformational properties—two models may have been built on
different templates representing alternative allosteric states—or can be indicative of
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localised uncertainty in the model. The results of specialised Model Quality
Assessment Programs (MQAPs) typically accompany models linked to by the
PMP, but MQAPs may also be run for any structure provided at the PMP. The use
of a model from ModBase for function prediction is illustrated below in Sect. 15.3.
5. Finally, the PMP now also encompasses The Model Archive (http://
modelarchive.org) designed as a repository for community-generated models and
accompanying data (Schwede et al. 2009).

15.3 Function Prediction Examples

Earlier chapters of this book show the many and diverse ways in which structures
may be used to infer function. As outlined above, homology models—and some-
times models deriving from other methodologies—have proved to be eminently
suitable for a variety of structure-based function inference techniques. Specific case
studies are now presented to illustrate the application of many of these methods to
structural information generated by template-free modelling, contact-based mod-
elling, fold recognition or comparative modelling (Chaps. 1–4, respectively).

15.3.1 Fold Prediction with Fragment-Based Ab Initio
Models

Although impressive accuracy has occasionally been achieved using
fragment-based ab initio or de novo modelling in favourable cases (Bradley et al.
2005), a more conservative objective for such modelling has been simply been
prediction of the correct fold rather than highly accurate predictions (see Chap. 1).
This has limited the range of function inference techniques that have be applied, and
means that most predictions in the literature are based mainly on the protein fold
predicted, and its functional correlations (discussed in Chap. 9). Exceptions to this
trend involve functional annotation methods that are comparatively tolerant of
model error such as electrostatic analyses.

In an early large-scale application of ROSETTA, Bonneau et al. (2002) pro-
duced models for 510 Pfam families with average length of less than 150 residues.
These were of unknown structure at the time, but for some a function was known or
suspected. Tentative predictions could be bolstered by the modelling results in
several cases. For example, PF01938, the TRAM domain was suspected at the time
to be a nucleic-acid binding protein, a prediction strongly supported by the
resemblance of its de novo model to structures in a SCOP superfamily containing
diverse nucleic acid binding proteins. The accuracy of the model was subsequently
revealed by crystal structures of the RNA-binding protein RumA (Lee et al. 2004).
An example of function prediction for a completely uncharacterised protein was
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made for what was known at the time as Domain of Unknown Function 37
(PF01809). Its model matched the structure of NK-lysin a haemolytic protein
expressed in natural killer T-cells. Although the structure of PF01809 proteins
remains unknown, the Pfam database has renamed this entry as ‘Haemolytic’ on the
basis of characterisation of a member from Bacillus subtilis as a haemolysin (Liu
et al. 2009).

Interestingly, a de novo model need not match a known fold exactly in order to
offer clues to function; the broad structural class of the model may sometimes be
suggestive. An example of this is the model produced for a mucin-binding domain
(Bumbaca et al. 2007). The favoured model contained a b-sandwich fold, of the
kind strongly associated with carbohydrate binding. At the time of publication, half
the families of carbohydrate-binding domains of known structure folded into
b-sandwich structures of some kind. This would be consistent with the domain
binding to the carbohydrate component, rather than a protein part, of its target, the
highly glycosylated mucin. Subsequent determination of the crystal structure of the
protein confirmed the existence of a b-sandwich fold, although the elongated
immunoglobulin-like architecture revealed was of quite different proportions to the
de novo model (Du et al. 2011).

Another example showed how function suggested by the fold of a de novo
model could be supported by other analyses (Rigden and Galperin 2008). The
SpoVS protein is known as being required for sporulation in sporulating bacteria,
but in fact has a wider distribution. The phenotypic characterisation of SpoVS
mutants says very little about its molecular role. However, the top models produced
by both ROSETTA and I-TASSER matched well to the fold of the Alba archaeal
chromatin protein (Fig. 15.1a). This fold is strongly associated with nucleic acid
binding in various contexts and, furthermore, mapping electrostatic potential on to
the models revealed the pronounced positively-charged region characteristic of
nucleic acid-binding proteins (Fig. 15.1b; see also Chap. 10). Taken together these
analyses suggested that SpoVS is a novel transcription factor that contributes to the
control of intricate gene expression patterns involved in sporulation (Rigden and
Galperin 2008). Subsequent determination of the crystal structure of Thermus
thermophilus SpoVS confirms the accuracy of the fold prediction (Fig. 15.1c).

A large scale application of de novo modelling, in a pipeline also involving
PSI-BLAST and threading-based structure predictions, analysed the yeast genome
(Malmstrom et al. 2007). The authors used a novel strategy to use known functional
information to help pick out correct putative structure-based matches of de novo
models to SCOP superfamilies. To this end, in addition to structural comparisons,
the overlap of Gene Ontology (GO) terms between the target protein and proteins of
the superfamily in question was assessed. These complementary sources of infor-
mation were combined using Bayesian statistics. Figure 15.2 shows an example of
a prediction, that the structure of protein TRS20/YBR254C belongs in the SNARE
superfamily of the SCOP database, that was later confirmed by the determination of
an experimental structure. The match between model and crystal structure is partial
and limited (Fig. 15.2), illustrating the value of including GO information for target
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Fig. 15.1 Analysis of template free models of SpoVS suggests a nucleic acid-binding function
(Rigden and Galperin 2008). a Both ROSETTA (grey) and I-TASSER (black) models of SpoVS
are strongly similar to the structure of Alba, an archaeal chromatin protein (PDB code 1nfj;
coloured in a spectrum from blue N-terminus to red C-terminus). b The electrostatic potential of a
putative SpoVS dimer, based on the ROSETTA model, with blue showing positive regions and red
negative regions. c Comparison of the ROSETTA model (grey) with the unpublished structure of
Thermus thermophilus SpoVS (PDB code 2eh1; coloured in a spectrum from blue N-terminus to
red C-terminus)

Fig. 15.2 A confirmed structure prediction from Malmstrom et al. (2007). The model of
TRS20/YBR254C (a) was matched to the SNARE superfamily in the SCOP database, an
assignment later validated by a later experimental structure (PDB code 1h3q) of a related protein
(b). Colours are used for structurally matched regions, grey elsewhere
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and superfamilies of putatively matched structures. In this case, the target
TRS20/YBR254C is one of the subunits of the transport protein particle (TRAPP)
complex involved in vesicle docking and fusion. Its match with structures from the
SNARE-like superfamily of SCOP was therefore strongly supported since vesicle
trafficking is a strong theme of proteins in that superfamily.

More recently, proteins encoded by the Escherichia coli genome were addressed
by a hybrid pipeline in which conventional template-based modelling for targets
with recognisable folds was supplemented by QUARK ab initio modelling of the
‘hard’ sequences for which fold recognition (see Chap. 3) failed to identify close
homologues (Xu and Zhang 2013). TM-scores vs the unknown native structures
were estimated using a score that drew on quality measures of the original fragments
used as well as the clustering behaviour of the eventual model set. These predicted
TM-scores suggested that fold predictions of 72/495 hard targets were essentially
correct (TM-score >0.5) and a further 321 were partially correct (TM-score >0.35).
Again, comparison of predicted fold to the PDB was used to highlight cases where
structural similarity might be string enough to indicate unexpected homology and
thus, potentially, indicate a function for the target protein by comparison.

15.3.2 Fold Prediction with Contact-Based Models

As a much more recently arrived technique, examples of application of
contact-derived modelling to genuinely unknown protein folds are few: more
typically methods have been developed and benchmarked against known structures.
However, work applying the EVfold method (Marks et al. 2011) to helical trans-
membrane proteins (Hopf et al. 2012) included fold predictions for several families.
In some cases, the inclusion of the target family in a Pfam clan in which other
families had been structurally characterised would have offered a strong advance
indication of the overall fold. This was not the case, however, for the human
adiponectin receptor (Uniprot entry ADR1_HUMAN) which resides in the Pfam
family ‘Haemolysin-III related’ (PF03006). Here the most similar PDB structures to
the highest-ranked adiponectin receptor model produced bore a striking resem-
blance to 7-transmembrane proteins such as bacteriorhodopsin. The topologies of
the model and bacteriorhodopsin are identical (Fig. 15.3) and the structures can be
aligned over the majority of their length with a Ca-rmsd of around 4.5 Å. Although
an unsuspected homology between the two is an obvious plausible explanation for
the similarity, the authors also raise the possibility that the 7-helical fold may be
particularly energetically favourable with each family independently converging on
the fold. Although the examples tackled were all proteins of known function, it is
clear that the performance of contact-based modelling in favourable cases will in
the future allow function annotation by fold prediction for hypothetical proteins,
Domains of Unknown Function and the like.
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As discussed in Chap. 2, modelling based on evolutionary constraints is con-
sidered to produce results in which functionally significant regions of the protein
may be predicted as containing residues implicated in higher than average numbers
of constraints i.e. with high ‘coupling scores’. On the adiponectin receptor model
mentioned above, such residues form a cluster on the cytoplasmic side which
includes both residues already predicted to be involved in catalysis, as well as
others nearby (Fig. 15.3c). Strong support for the significance of the cluster comes
from the independent Consurf analysis mapping sequence conservation (not evo-
lutionary coupling) onto the protein (Fig. 15.3d): the strongly coupled cluster
overlaps a highly conserved area of protein surface.

Fig. 15.3 An EVfold model
of the human adiponectin
receptor a is predicted to have
the 7-transmembrane
topology seen in
bacteriorhodopsin (b; PDB
code 3hao). A functionally
important region in the model
is revealed by mapping of
residues that are highly
involved in evolutionary
couplings (c; purple used for
residues already suspected to
be of functional importance,
magenta for novel
predictions) and by ConSurf
mapping of sequence
conservation (d; coloured on
a scale from blue, highly
conserved to red,
unconserved)
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15.3.3 Plasticity of Catalytic Site Residues

Despite the efforts undertaken by the Structural Genomics initiatives to cover the
protein fold space by providing structural templates for all existing protein families,
there are cases where the sequence similarity criterion is insufficient to assign any
defined functionality to the analyzed family. In many cases, however, the protein
structure can be inferred with the aid of protein fold-recognition methods, alone or
in combination with de novo modelling (Kolinski and Bujnicki 2005) and then used
to pinpoint the potential active site, suggesting a possible function. This can be
exemplified by the published analysis (Feder and Bujnicki 2005) of family of
sequences grouped together in the Clusters of Orthologous Groups (COG) database
(Tatusov et al. 2003) as COG4636 and annotated as “uncharacterized protein
conserved in Cyanobacteria”. The detailed analysis of sequence conservation within
COG4636 family combined with secondary structure prediction revealed a pattern
of a-helices and b-strands associated with conserved carboxylate residues, which
has been previously identified in the PD-(D/E)XK superfamily of nucleases
(Bujnicki 2003).This similarity suggested that members of COG4636 may belong
to the PD-(D/E)XK superfamily (Fig. 15.4a, b). However, the multiple sequence
alignment revealed that only the “PD” half-motif is nearly perfectly conserved,
while a critical Lys residue is missing from the second half-motif “(D/E)XK”.
Specifically, instead of the Lys residue most members of COG4636 possessed a
hydrophobic amino-acid, such as Leu or Val. One possibility was therefore that this
family was not related at all to PD-(D/E)XK proteins. Another possibility was that
they are related to these nucleases, but they lost the active site residue and became
catalytically inactive. A third possibility was that the function of the “missing” Lys
residue was be taken over by another residue, but based only on the sequence
alignment it was not possible to identify which of the other residues could fulfil this
role. Could structure predictions enable the true function of COG4636 to be
determined?

First, a fold-recognition analysis of COG4636 sequence supported the prediction
that they are indeed related to PD-(D/E)XK enzymes. A comparative model was
then built based on a structure of a bona-fide PD-(D/E)XK nuclease and analyzed
for the presence of spatially adjacent conserved residues. Analysis of the model
revealed that in COG4636 the missing Lys residue had been replaced by another
Lys residue that has appeared in a distinct region in the sequence (Fig. 15.4c). The
replacement Lys could place its functional group in the same spatial position as the
catalytic Lys residue of the templates thereby allowing the completion of the PD-
(D/E)XK motif in three dimensions, despite the lack of sequence conservation. This
allowed for a strong prediction, unavailable from purely sequence analyses, that
COG4636 indeed contained active nucleases. Later on the correctness of the pre-
diction of unusual configuration of the active site was confirmed by crystallographic
analysis of another member of the COG4636 family (Fig. 15.4d; PDB code 1wdj)
as well as by identification of other bona fide nucleases with the same spatial
rearrangement of the active site (Tamulaitiene et al. 2006).
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15.3.4 Prediction of Ligand Specificity

One of the most basic function predictions that can be obtained from a protein
model is ligand specificity. Frequently, if the structure of protein A bound to ligand
X is known, it is of interest to predict whether protein B, homologous to A, shares
the same specificity as X, or in fact binds a different ligand Y. These analyses rely
on the assumption that the binding sites of A and B are similarly positioned. This is
usually the case between homologous proteins and the presence of key catalytic
residues nearby, in the case for enzymes, often offers confirmation. A comparative
model is then made B, based on the structure of A. Examination of the modelled B
structure, and in particular its comparison with the template A, should show
whether the binding site appears to have changed. A reduction in size, for example,
would lead to the prediction of a smaller ligand.

Fig. 15.4 Spatial conservation of the PD-(D/E)XK active site. Only the structurally superimposed
common cores are shown, terminal regions and insertions have been omitted for clarity of the
presentation. The upper panels show bona fide PD-(D/E)XK nucleases—a Holliday junction
resolvase Hje (PDB code 1ob8) and b REase Ngo-MIV (PDB code 1fiu). The lower panels present
COG4636 structures—c a theoretical model (Feder and Bujnicki 2005) and d crystal structure of
another member of the family (PDB code 1wdj). The side chains of the typical and variant PD-
(D/E)xK active site are coloured orange except the Lys residues which are coloured blue
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An early example of work in this area was modelling of brain lipid-binding
protein (BLBP), based on the related fatty-acid binding protein structures (Xu et al.
1996). Interactions of known fatty acid ligands of BLBP were modelled in an effort
to discover the molecular basis of the 20-fold tighter binding of docosahexaenoic
acid relative to the shorter oleic and arachidonic acids. The model revealed that the
two extra carbon atoms of the former fatty acid could be accommodated in the
pocket of BLBP, making additional favourable hydrophobic interactions. The
calculated additional binding free energy, based on the size of the additional
hydrophobic contact area, of around 2 kcal/mol correlated nicely with the difference
in affinity. With the model validated in this way, the authors were able to predict
that still larger fatty acids would not be able to make additional contacts and would
therefore not bind any more tightly.

The molecular bases of different specificities may sometimes be surprisingly
simple. Such is the case with the phospho donors of some 6-phosphofructokinases
(PFKs). PFK is a glycolytic enzyme catalysing the transfer of a phospho group from
a donor, which may be ATP, ADP or inorganic pyrophosphate (PPi). The ATP- and
PPi-dependent enzymes share an evolutionary relationship, while ADP-dependent
PFKs belong to a different structural class. It was noticed early on that the
ATP-dependent enzymes from trypanosomatids bore a closer relationship to certain
PPi-dependent enzymes that they did to the better-characterised ATP-dependent
enzymes from bacteria and mammals (Michels et al. 1997). Modelling later
revealed that the basis for ATP or PPi specificity could be pinned down to a single
amino-acid which was Gly in the ATP enzymes but Asp in the PPi enzymes (Lopez
et al. 2002). As shown in Fig. 15.5, an Asp at this position clashes sterically and
electrostatically with the a-phosphate of bound ADP or ATP, reducing the binding
site to a size that can only accommodate PPi as phospho donor. The conversion of a
PPi-dependent enzyme to an ATP-dependent one by the replacement of the Asp at
this position with a Gly confirms the dramatically simple origin of specificity in this
case (Chi and Kemp 2000).

15.3.5 Prediction of Cofactor Specificity Using an Entry
from a Database of Models

As mentioned above, databases such as Swiss-Model Repository (Kiefer et al.
2009) and ModBase (Pieper et al. 2014b) automatically calculate comparative
models of protein sequences periodically. These models eliminate the effort
required of the user even to use a web-service for comparative modelling, much less
to carry out modelling on their own computer. The models are accompanied by
quality indicators and colour coding providing the user with a rapid indication of
their reliability. The user should obviously consider the age of the model: there is
always the possibility that a better template structure, allowing for higher quality
modelling, has emerged since the model was constructed. Nevertheless, the scale of
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these automatic modelling exercises and the ease with which the models are
obtained means that their usefulness for function prediction should be seriously
assessed.

As a test case, we consider here the new family of glucose-6-phosphate dehy-
drogenases (Glc6PDH) that have recently been characterised (Pickl and Schonheit
2015). They form part of a newly identified oxidative pentose phosphate pathway in
archaea. Interestingly, a 6-phosphogluconate dehydrogenase (6PGDH) was readily
identifiable and correctly annotated in the genomes studied, but the novel Glc6PDH
was only identified after purification of the protein and peptide mass fingerprinting.
This led to the identification of HVO_0511, until then misannotated as an
epimerase/dehydratase of the SDR (short-chain dehydrogenase/reductase) super-
family, as the genome locus encoding the Glc6PDH enzyme in Haloferax volcanii.
Conventional Glc6PDH (and 6PGDH) enzymes are NADP+-dependent enzymes,
but assay showed that the archaeal enzyme was specific for NAD+ as a cofactor.
The SDR superfamily encompasses both NAD+ and NADP+-dependent enzymes
(Kavanagh et al. 2008). Could an automatically-generated model have predicted
this preference?

The UniProt entry (UniProt Consortium 2015) for the H. volcanii enzyme
(D4GS48_HALVD) contains a link to a ModBase (Pieper et al. 2014a) search
which reveals the existence of an automatically generated model for residues 5–252
of the 262 residue protein. Colour-coded quality indicators are all green suggesting
that the model would be good enough for structure-based function inference.

Fig. 15.5 Catalytic site of E. coli 6-phosphofructokinase bound to fructose-6-phosphate (F6P)
and adenosine diphosphate (ADP) (PDB code 4pfk). Ligands are shown as coloured sticks (F6P on
left, ADP on right). ATP-dependent enzymes, like that from E. coli, have a Gly at the catalytic site
(not shown). Modelling of an Asp residue at the same position (magenta), as found in
PPi-dependent enzymes, shows that it is responsible for changing the specificity for phospho donor
(see text)
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Figure 15.6 shows a comparison of the cofactor binding sites of NAD+-dependent
uronate dehydrogenase from Agrobacterium tumefaciens (Parkkinen et al. 2011;
PDB code 3rfv; the template used to make the model was the corresponding
cofactor-free form with PDB code 3rft), NADP+-dependent Mycobacterium
tuberculosis MabA reductase (Cohen-Gonsaud et al. 2002; PDB code 1uzn; the
most similar structurally characterised NADP+-dependent enzyme) and the
ModBase model of H. volcanii Glc6PDH. Specific NAD+ and NADP+ recognition
is encoded by hydrogen-bonding and electrostatic interactions between protein and,
respectively, either the unmodified or phosphorylated 2′ OH group of the cofactor
adenine moiety. In addition, the negatively charged Asp residue employed for
recognition of the unmodified 2′ OH group of NAD+ would electrostatically repel
the phospho group borne by NADP+. The model of H. volcanii Glc6PDH contains
the key Asp32 to potentially recognise the unmodified 2′ OH and the phospho
group, although its orientation is not suitable for ideal hydrogen bonding, pre-
sumably because cofactor was not present in the template structure. It appears not to
be capable of making the additional hydrogen bond, as Ser36 does in uronate
dehydrogenase, but Glu34 present at the corresponding position would provide
additional electrostatic repulsion of NADP+. Overall, the model resembles neither
of the comparator structures exactly reinforcing the desirability of a 3D atomic view
rather than relying on a purely sequence-based comparison. According to that
structural analysis, the model’s cofactor binding site would certainly be predicted to
have a preference for NAD+ over NADP+, in accord with the experimental data.

Fig. 15.6 Predicting cofactor specificity of archaeal Glc6PDH enzymes using a ModBase model.
The cofactor-binding sites are shown for a NAD+-dependent Agrobacterium tumefaciens uronate
dehydrogenase (PDB code 3rfv), b NADP+-dependent Mycobacterium tuberculosis MabA
reductase (PDB code 1uzn) and c the ModBase model of H. volcanii Glc6PDH (Uniprot identifier
D4GS48_HALVD). Cofactors are shown as sticks along with key specificity-determining residues.
In the model structure superimposed cofactors from both crystal structures are shown as thin
sticks, along with residues predicted to be important in cofactor specificity
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15.3.6 Mutation Mapping

Rare mutations in important proteins underlie many genetic diseases. Similarly,
allelic variations in drug targets can lead to differential drug binding and hence to
different drug responses by patients. Structural mapping of mutations, a key use of
molecular models, is therefore useful for understanding molecular mechanisms of
disease as well as predicting patient responses as a step towards personalised
medicine.

ATP-sensitive potassium (KATP) channels play key roles in many tissues by
linking cell metabolism to electrical activity. KATP channels are octameric com-
plexes of two different proteins Kir6.2 and SUR. Binding of ATP or ADP to a
KATP channel causes its inhibition. The identification of the number of mutations
in Kir6.2 leading to reduced ATP sensitivity of the channel has turned out to be the
cause of permanent neonatal diabetes (Hattersley and Ashcroft 2005). In pancreatic
ß-cells the inhibited KATP channel causes membrane hyperpolarization which in
turn leads to a reduction in insulin secretion and, consequently, diabetes. The
diagnosis of the genetic etiology of the disease has revolutionized therapy for
patients with neonatal diabetes resulting from Kir6.2 mutations, as those channels
can still be closed by therapeutics such sulfonylureas and glinides and the insulin
treatment could be limited or discontinued. The homology model of Kir6.2 subunit
allowed for the spatial mapping of the residues mutated in the neonatal diabetes and
thus illustrated the molecular mechanism underlying reduced KATP sensitivity
(Hattersley and Ashcroft 2005). Patients carrying mutations in Kir6.2 exhibit
spectrum of phenotypes that are directly correlated to the nature of mutation. For
example patients with neurological symptoms carry the mutations which do not
directly impair ATP binding but markedly bias the channel toward the open state
and thus reduce the ability of ATP to block the channel (ATP stabilizes the closed
state of the channel).

Studies showed that there is a group of patients with permanent neonatal dia-
betes, carrying the L164P mutation in Kir6.2, who are unresponsive to sulfonylurea
therapy (Tammaro et al. 2008). Analysis of the spatial L164 position reveals that
this residue lies deep within the structure, 35 Å away from the ATP-binding site. It
is therefore unlikely that it acts by reducing ATP binding directly. Instead, L164P
probably destabilizes the closed state of the channel, to which sulfonylureas pref-
erentially bind, and which is rarely reached in channels with enhanced channel open
probability. Taken together, these results show that the drug response is dependent
of the nature of particular mutation, but that it can be predicted by detailed analysis
of a protein model.
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15.3.7 Protein Complexes

A full understanding of the complex networks of protein-protein interactions that
exist in cells is essential if systems biology, whereby these and other large-scale
datasets are integrated into a meaningful whole, is ever to become a success. There
is therefore much interest in adding predictions from comparative modelling to the
battery of experimental and computational methods for prediction of protein-protein
interaction (Aloy and Russell 2006). The template-free and template-based
approaches were introduced above in Sect. 15.2.5 (see also Chap. 8).

An interesting large-scale application, incorporating template-based docking into
an integrative approach, has been reported (Davis et al. 2007). In this work pre-
diction of interactions were made for human proteins with proteins from the gen-
omes of ten pathogenic organisms responsible for neglected diseases. The pathogen
and host genomes were first scanned for proteins homologous to those known to
interact. The pipeline proceeded when structural information for the interaction is
not available by employing simple sequence similarity scores. This approach pro-
duced few predictions, however, since strict criteria were necessary in order for
confident interaction prediction by this approach. More interesting and powerful
was the explicit comparative modelling of the potential interaction partners based
on protein complex templates. These modelled complexes were assessed using a
statistical potential with favourable interactions passed on to a further ingenious
filter. This employed known information about (sub-) cellular localization and
function in order to eliminate from consideration interactions which could not occur
in vivo. Thus, only host proteins known to be expressed in skin, lymph node or lung
were considered as possible interaction partners for Mycobacterium leprae proteins.
Pathogen proteins were also required to pass specific biological criteria. For M.
leprae, for example, a protein had to have a relevant GO annotation (e.g. patho-
genesis) or be annotated as being extracellular or surface located. The number of
filtered predictions varied from 0 to 1501 between the pathogens. Rather few
known interactions were available with which to benchmark the technique, but the
method predicted four of the 33 interactions demonstrated at the time. In the
remaining cases there was no available template to model the interaction suggesting
that this lack was consistently responsible for the low coverage of known inter-
actions (Davis et al. 2007). Interestingly, one prediction was experimentally vali-
dated: the method predicted the interaction of falcipain-2 and cystatin (PDB code
1yvb) based on the earlier structure of cathepsin-H bound to stefin A (PDB code
1nb3) (Fig. 15.7). The two enzymes share around 24% sequence identity while the
inhibitors are around 11% identical. The success of the prediction in the face of
these sequence differences and considerable structural variation (Fig. 15.7) illus-
trates the power of the methodology.
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15.3.8 Structure Modelling of Alternatively Spliced Isoforms

Many, if not most, eukaryotic genes are alternatively spliced, dramatically increasing
the diversity of transcripts. It is often difficult to predict from the sequences of
alternatively spliced transcripts whether function is retained or modified. Structure
modelling, where possible, can shed light on the structure-function relationship
among alternatively spliced transcripts from a single gene.

Early work by Furnham et al. (2004), involving 40 splice variant models of 14
proteins, showed that exon loss often involved loss of complete structural units
rather than small regions. The authors showed that deletions were more reliably
modelled, according to structure validation software, than insertions. For four
proteins with biomedical implications the authors could correlate known function
properties of splice variants with their modelled structures. Later Wang et al. (2005)
showed that boundaries of splicing events tend to lie both in coil regions (rather
than within elements of regular secondary structure) and at the protein surface.
Splicing events were generally few in number for a particular gene, 1 or 2, and
small in size, with 60% affecting 50 residues or fewer. These findings suggested
that splicing tends to occur in positions and in ways that perturb only minimally the
protein tertiary structure consistent with most alternative isoforms having folding
properties similar to the original form and thus potential functionality. However, a
later study (Tress et al. 2007), in which fewer transcripts were analysed in structural
terms, revealed that many alternatively spliced isoforms would have to have dra-
matically different structures to determined structures of other isoforms. For fully
49 of 85 transcripts mapped onto homologous structures, the authors inferred that

Fig. 15.7 Modelling-based prediction of protein-protein interactions. A pipeline based on
comparative modelling of protein complexes (Davis et al. 2006) was able to use the structure of
cathepsin A in complex with stefin A (PDB code 1nb3 a) to infer a probable interaction between
falcipain-2 and cystatin, as confirmed by crystallography (PDB code 1yvb b). Enzymes are shown
above, and inhibitors below, in each panel
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isoform and principal sequences would adopt substantially different structures. An
example, taken from Tress et al. (2007) and shown in Fig. 15.8, relates to an
isoform of interleukin 4 lacking exon 2. The structural region encoded by that exon
contributes to both the folding core of the protein and to a disulphide bridge,
showing that the 3D structure of the isoform must be substantially different to the
determined structure of the complete protein. As yet, we have only a very
incomplete larger scale picture of the functional consequences of structural changes
—minor and major—due to alternative splicing. For example, for only four of 214
loci could experimental data illustrating functional differences between splice iso-
forms be found by Tress et al. (2007).

15.3.9 From Broad Function to Molecular Details

Protein function can be considered on different complexity levels—ranging from
the involvement into the cellular processes to the knowledge of the mode of action
on the molecular level. Lysosomal deoxyribonuclease II a (DNase IIa) was one of
the earliest endonucleases identified (1947), with considerable biochemical char-
acterization reported already in the 1960s. This enzyme is indispensable for the

Fig. 15.8 Structure of
interleukin 4 showing the
portion encoded by exon 2.
The experimental structure
(PDB core 1ilt) is shown as
coloured cartoon, with exon
2-encoded protein coloured
magenta. Disulphide bridges
are shown as sticks, with the
bridge contributed to by exon
2-encoded protein shown as
ball-and-stick
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organism development as it is responsible for DNA waste removal and auxiliary
apoptotic DNA fragmentation in higher eukaryotes—the knockout of murine
lysosomal DNase IIa turned out to be lethal. Despite the intensive research for over
50 years and unquestionable importance of DNase IIa no similarity to any other
protein family could be detected, hampering function studies on the molecular level
for this protein. No Fold Recognition method reported any target-template align-
ment with a score above the documented level of significance, but analysis of their
results revealed that several of them reported a similarity to the phospholipase D
(PLD) fold in the region comprising part of the active site—the so called HxK motif
(Cymerman et al. 2005). Known members of the PLD superfamily possess a
bilobed structure, with a single active site composed of two “HxK-Xn-N-Xn-
(E/Q/D)” motifs located at the interface between two domains. Based on the
alignments alone it was not possible to define the remaining residues of the active
site. Analysis of the placement of particular residues in the structural model how-
ever, delivered the essential information and allowed for the selection of amino
acids that potentially could serve for the formation of the catalytic centre
(Fig. 15.9). The finding that DNase IIa is a remote relative of phospholipase D was
later confirmed by experimental studies (Schafer et al. 2007) and explained unusual
features of this nuclease, such as its resistance to EDTA. By similarity to PLD
whose mechanism has been elucidated, it was also possible to infer that the reaction

Fig. 15.9 Structural model of human DNase IIa. The computational analyses enabled the
assignment of DNase IIa as member of PLD family. The enzyme adopts a monomeric structure
with a pseudodimeric architecture. The two HxK motifs in the N (cartoon light blue
representation) and in the C-terminal (cartoon grey representation) domains contain the
catalytically relevant amino acid residues (red and green sticks), which collectively form a single
active site. In addition to the identities of putative catalytic residues, the structural model accounts
for the proximal positions of cysteine residue disulphide bonds (orange and dark blue balls), and
the exposed character of N-glycosylated residues (represented as green balls). Putative
DNA-binding loops are shown in magenta. The identification of the functionally important
residues in the theoretical model can greatly facilitate the process of enzyme engineering
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of phosphodiester bond hydrolysis by DNase IIa will proceed by a covalently
linked reaction intermediate. The case of DNase IIa exemplifies the bioinformatics
can bypass some experimental limitations (DNase IIa is heavily glycosylated
making the enzyme resistant to the crystallization) and thereby allow further
exploration of the protein properties.

15.4 Conclusions

Using homology models to guide experiments or interpret existing biological data
shows no sign of losing importance or popularity. Since 1985 when a single
PubMed entry can be found with the phrases ‘homology model(l)ing’ or ‘com-
parative model(l)ing’ (albeit one in a high-profile journal; Greer 1985) annual
records rise to around 270 at the time of the first edition of this text. Since then they
have risen further, averaging around 450 per year recently. This reflects the gen-
erality of the method, the increasing availability of templates in an expanding PDB
(Rose et al. 2015), and the increasing availability of automated methods of model
construction which facilitate access of novice users to structure-based methods.
Recent innovations under the ambit of the Protein Model Portal (Haas et al. 2013)
—comprising links to model databases, modelling servers and MQAPs as well as
entry level documentation—should encourage uptake still further. At the other end
of the spectrum, we will no doubt see more examples of papers in which homology
models, treated in an integrated manner with diverse experimental data, help yield
insights into complex molecular systems (Bui et al. 2013). For the diminishing set
of folds for which absence from the PDB precludes homology modelling, we can
look forward to ab initio and especially contact-driven modelling filling the gap, as
ever more inexpensive sequencing continues to drive expansion of the protein
databases. A wider availability of protein models in coming years, combined with
an improving understanding of their value but also their limitations, add up to a
bright future for the area.
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