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Homology Modelling, Structure-Based
Pharmacophore Modelling, High-
Throughput Virtual Screening and Docking
Studies of L-Type Calcium Channel
for Cadmium Toxicity
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Abstract Cadmium (Cd) is a heavy metal present in air, water, soils and sedi-

ments. It is well known that long-term exposure to Cd causes various toxic effects

in various organ systems such as cardiovascular, kidneys, liver, brain, lung, bones,

immune/haemopoietic, endocrine and reproductive systems. Cd influx mediates

voltage-gated L-type calcium channels (LCC) in excitable cells including mamma-

lian neurons and also Cd uptake in non-excitable tissues. Therefore, LCC has been

recognized as an attractive metal toxicity target. We construct a homology model of

LCC in addition to the generated pharmacophore models then used to retrieve

50,500 molecules from Zinc database. There are 18 best reliable molecules mapped

with core pharmacophore model of LCC. These hits were retrieved and further

evaluated by molecular dynamics (MD) simulation, molecular docking and

protein–ligand interactions, and binding affinity predictions as well as in silico

ADMET properties were tested. Our work results focus on homology modelling,

structure-based pharmacophore mapping, molecular docking, MD simulation,

protein–ligand interactions and binding affinity predictions which were used in

virtual screening strategy to spot new hits for blockade of LCC. Finally, the

outcome results, priming the five best lead compounds, were expected to be the

potential lead scaffolds for developing novel and potent blockers of LCC against

metal toxicity.
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7.1 Introduction

Cadmium (Cd) is a heavy metal present in air, water, soils and sediments (Kocak

and Akcil 2006). Cd is widely used in pigments, plastic stabilizers, electroplating,

alloys, nickel–Cd batteries and welding industry and is also present in tobacco

(Pappas et al. 2006). It is well known that long-term exposure to Cd causes various

toxic effects in various organ systems such as cardiovascular, kidneys, liver, brain,

lung, bones, immune/haemopoietic, endocrine and reproductive systems (Satarug

et al. 2010). Several efforts are being made to find a substance which can signif-

icantly decrease the magnitude of metal toxicity when present in the biological

system during heavy metal intoxication. Membrane damage caused by the reactive

oxygen species (H2O2 and OH
� ions) generated from the exposure of living tissues

to heavy metals may allow the entry of excess calcium into the cells with a

subsequent biochemical cellular degradation and necrosis. Calcium channel

blockers act on ion-conducting cell membrane channels. The 1,4-dihydropyridine

moiety is commonly useful as calcium channel blockers and is used most frequently

as drugs such as nifedipine, diltiazem, nicardipine and amlodipine (AD), which

have been found as potent cardiovascular agents for the treatment of hypertension.

Hence, this class of agents may be included in the search for protectors with a more

favourable therapeutic index. Therefore, the present study is an attempt to find out

the detoxifying action of calcium channel blockers against cadmium-induced

toxicity in albino rats through computational tools.

In recent years, high-throughput virtual screening has been emerging as a

complementary to high-throughput screening in an attempt to discover novel

potential lead compounds in the process of drug discovery (Lyne 2002). Thus, to

identify new and potent compounds that block the L-type calcium channel (LCC)

model like AD, structure-based pharmacophore modelling and virtual screening

may be considered as an effective approach. This study describes the structure-

based pharmacophore modelling to identify the pharmacophoric features required

for simultaneous inhibition of LCC for Cd toxicity by virtual screening: molecular

docking, protein–ligand interaction fingerprints (PLIFs), binding energy calcula-

tions and binding affinity predictions.

7.2 Material and Methods

7.2.1 Homology Modelling

For unknown protein structures such as membrane proteins, homology modelling

was introduced to construct the three-dimensional structure of a known atomic

resolution model of the protein (target) and related homologous protein (template).
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7.2.1.1 Construction of the Human LCC Model

The structural model of the human LCC was built using the recently reported

3.20 Å crystal structure of KcsA (Shaldam et al. 2014) (PDB entry code 1BL8)

as a structural template. The sequence of the human LCC pore region α1c subunit
(Cav1.2, CAC1C_HUMAN) was retrieved from the Swiss-Prot database (Shaldam

et al. 2014) and aligned as described in the Results and Discussion section

(Fig. 7.1). The construction of the transmembrane region of the model was achieved

by the employment of the modeller 9.13.

The protocol used to develop the LCC model is divided into three phases:

sequence alignment, model construction and model evaluation.

7.2.2 Sequence Alignment

The model was constructed using amino acid sequence of voltage-dependent LCC

subunit alpha-1C (CAC1C HUMAN Q13936) obtained from UniProtKB/Swiss-

Prot sequence database (Reyes et al. 1990; http://www.uniprot.org/unipro/

Q13936). Coordinates of potassium channel KcsA atoms in their closed conforma-

tion were downloaded from the RCSB Protein Data Bank (PDB ID: 1BL8). Amino

acid sequences of S5, S6 and P-loops in between for the four repeats (I–IV)

(271–405, 654–753, 1052–1185 and 1411–1524, respectively) were used for

sequence alignment with the amino acid sequence of KcsA as proposed by Zhorov

et al. (2001) (Fig. 7.1). In order to favour valid superimposition of the residues, the

Fig. 7.1 Pairwise alignment of CAC1C_HUMAN and KcsA sequences. The conserved key

residues used to align the sequences are shown in red boxes. Residues reported to affect DHP

antagonist binding and underscored and highlighted in bold
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sequence of each repeat was organized as S5, S6 and P-loop, allowing for a more

flexible inspection of the results and easier corrections. The amino acid sequence of

repeats I and III has a long extracellular loop which would decrease the quality of

the generated model, so amino acid sequences were excluded from repeats I and III,

respectively.

7.2.3 Construction of the LCC Model

The modelling procedure consisted of two steps: model construction from the

template and refinement of loops. The above described sequence alignment file

was used as input for the MODELLER 9.13 program (Sali et al. 1995) with the

high-resolution NMR structure of potassium channel KcsA available in the RSCB

Protein Data Bank (PDB ID: 1BL8) as a template for the 3D structure. Molecular

modelling studies were performed using the MODELLER 9.13 running on Intel

Core 2 Duo CPU personal computers. The model sequence, template structure and

sequence alignment were used as input files to build the model. Loops can be

defined automatically from the model to a template sequence alignment. The

MODELER Loop Refinement-DOPE-Loop method (Shen and Sali 2006; Shaldam

et al. 2014) was used for initial refinement of the loop conformation after model

generation. The model side-chain conformation was optimized based on systematic

searching of side-chain conformation and CHARMm energy minimization using

the ChiRotor algorithm (Spassov et al. 2007; Shaldam et al. 2014). Five models

were obtained from the first step of molecular modelling. These models were

subjected to a comparison based on the best scores to reveal the differences

among them. The model with the lowest energy and the lowest restraint violation

was selected for the second step. Secondly, the loops between helices were

subjected to refinement while keeping the start and end residues constrained. This

procedure is based on the idea that transmembrane helices are much less flexible

than loops, thus permitting to produce a sounder core alignment if the integrity of

the helices is conserved. The more unpredictable loops can bear the more important

differences. A CHARMm-based protocol (Spassov et al. 2008; Shaldam et al. 2014)

that optimizes the conformation of a contiguous segment (i.e. a loop) of a protein

structure was used for loop refinement. It is based on systematic conformational

sampling of the loop backbone and CHARMm energy minimization. This approach

can be used to refine a loop structure from a homology model as well as to optimize

a segment of the protein experimental structure where the structure is poorly

defined. The homology modelling (HM) phase was followed by the model evalu-

ation phase. The stereochemical quality and structural integrity of the model were

tested by RAMPAGE, ERRAT, MolProbity, ProSA and Verify3D software and

target–template superimposition by PyMol (Eswar et al. 2008) (Fig. 7.2).
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7.2.4 Active Site Identification

The active site of LCCmodel was identified using a CASTp server (Computer Atlas

of Surface Topology of Proteins) (Dundas et al. 2006). A new program, CASTp, for

automatically locating and measuring protein pockets and cavities, is based on

precise computational geometry methods, including alpha shape and discrete flow

theory. CASTp identification, measurements of surface accessible pockets as well

as interior inaccessible cavities by locating, delineating and measuring concave

surface regions on three-dimensional structure of proteins. The measurement

includes the area and volume of pocket or void by solvent-accessible surface

model (Richards’ surface) and by molecular surface model (Connolly’s surface),
calculated analytically. It can also be used to study surface features and functional

regions of proteins.

7.2.5 Generation of Structure-Based Pharmacophore Model

In the present study, the LCC modelled receptor complex with a channel blocker

AD was used as starting structure for the generation of structure-based

pharmacophore models (Abdul et al. 2012). LIGANDSCOUT (LS) is a tool that

allows the automatic construction and visualization of 3D pharmacophore for

structural data of macromolecule/ligand complexes. For the LS algorithm, chemical

features include hydrogen bond donors and acceptors as directed vectors, and

positive and negative ionizable regions as well as lipophilic areas are represented

by spheres. Moreover, to increase the selectivity, the LS model includes spatial

information regarding areas inaccessible to any potential ligand, thus reflecting

possible steric restrictions. In particular, for excluded volume spheres placed in

Fig. 7.2 Superimposition of the LCC model (white) and KcsA (yellow) (PDB: 3BPM). (a) Open
conformation, (b) closed conformation

7 Homology Modelling, Structure-Based Pharmacophore Modelling, High. . . 157



positions that are sterically forbidden, LS may also be used to construct

pharmacophore of varying degrees of sophistication, suitable for export to different

programs. In the present study, Molecular Operating Environment (MOE, version

2008, Chemical Computing Group Inc.)-compatible 3D pharmacophore model was

first developed by LS using default parameters, and then, it was exported and

converted into a MOE, pharmacophore query for virtual screening (http://www.

chemcomp.com). Prior to the screening, it was necessary to make a number of

adjustments, because feature interpretation differs slightly between the two pro-

grams. Those aromatic rings that LS classified simply as hydrophobic groups were

classified as either aromatic or hydrophobic in MOE, using the PPCH_All scheme

(which incorporates directionality of hydrogen bond donors and acceptors and

orientation of aromatic rings). As in LS pharmacophore, the aromatic ring is not

directly classified as such (because of the lack of detection of π–π stacking or

cation–π interactions) but, rather as a set of hydrophobic atoms, can be interpreted

in MOE in a manner that is useful in the prediction of right compounds in virtual

screening.

7.2.6 Pharmacophore-Based Virtual Screening

The Zinc database (http://zinc.docking.org/), which allows the user to download

compounds, structures from a variety of vendors as SDF files based on the structure-

based amlodipine (AD) compound (Query), was used in this preliminary screen.

Using MOE, the database was washed, and the 3D structure of each compound was

built using the MMFF94x force field. Then for each compound, the low-energy

conformers were generated using Conformation Import methodology implemented

in MOE software. After assessing the pharmacophore query, virtual screening was

carried out using the software MOE against the Zinc database. Because some

changes may occur when the pharmacophore is exported from LS to MOE envi-

ronment, therefore, the pharmacophore queries were validated before using it for

virtual screening. To reduce the data of identified hits, they were docked into the

recently identified binding pocket of LCC model, and the PLIFs were developed

using MOE. Binding energies and binding affinities were calculated using LIGX

(Chemical Computing Group, Montreal, Quebec, Canada) implemented in MOE to

prioritize the final hits.

7.2.7 Molecular Docking

Docking is a computational method which predicts the preferred orientation of one

molecule to a second when bound to each other to form a stable complex. Docking

has been widely used to suggest the binding modes of protein inhibitors. Most

docking algorithms are able to generate a large number of possible structures; thus,
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they also require a means to score each structure to identify those that of greatest

interest. Docking was performed using AutoDock in PyRx Virtual Screening tool

(Wolf 2009; Trott and Olson 2010).

Pharmacophoric hit compounds were docked into the active site of the refined

LCC model. Lamarckian genetic algorithm was used as the number of individual

population (150), max number of energy evaluation (25000000), max number of

generation (27000) (Laskowski et al. 1993), gene mutation rate (0.02), crossover

rate (0.8), Cauchy beta (1.0) and GA window size (10.0). The grid was set whole

protein due to the multi-binding pocket at X¼3.42, Y¼�56.23, Z¼98.32 and

dimension (Å) at X¼89.92, Y¼98.56, Z¼98.32 and exhaustiveness 8. The pose

for a given ligands identified on the basis of highest binding energy. Only ligand

flexibility was taken into account and the proteins were considered to be rigid

bodies. The resulting complexes were clustered according to their root mean square

deviation (RMSD) values and binding energies, which were calculated using the

AutoDock scoring function. The PyMol molecular viewer (http://www.pymol.org/)

was employed to analyse the docked structures.

7.2.8 Analysis of Drug Likeness

MolSoft Drug Likeness explorer (http://www.molsoft.com/mprop/) was used to

analyse the drug likeness as per “Lipinski rule of 5” (Lipinski et al. 1997).

According to “Lipinski rule of 5”, a compound is more likely to be membrane

permeable and easily absorbed by the body if its molecular weight is less than

500, its lipophilicity expressed as a quantity known as log P is less than 5, the

number of groups in the molecule that can donate hydrogen atoms to hydrogen

bonds is less than 5 and the number of groups that can accept hydrogen atoms to

form hydrogen bonds is less than 10 (Leeson 2012).

7.2.9 ADMET Properties

The in silico pharmacokinetic properties and ADMET (absorption, distribution,

metabolism, elimination and toxicity) analysis were predicted using OSIRIS prop-

erty explorer (http://www.organic-chemistry.org/prog/peo/; Access date:

September 23, 2014) which uses Chou and Jurs algorithm, based on computed

atom contributions.
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7.3 Results and Discussion

7.3.1 Sequence Alignment

Besides the choice of the reference, the accuracy of the alignment is the most

crucial step in assuring the quality of the homology modelling. An accurate

sequence alignment between the model and the template proteins is essential to

achieve high-quality models. Voltage-gated LCC are members of a gene superfam-

ily of transmembrane ion channel proteins that includes voltage-gated K+ and Na+

channels. LCC share structural similarities with K+ and Na+ channels in that they

possess a pore-forming α1 subunit in four repeats of a domain with six

transmembrane-spanning segments that include the voltage-sensing S4 segment

and the pore-forming (P) region. As no atomic resolution images of calcium

channel structures exist, much has been learnt about their structure since the recent

determination of crystal structures of a number of potassium channels (Jiang et al.

2003; Long et al. 2005; Shaldam et al. 2014). The α1 subunit contains four repeated
domains (I–IV), each of which includes six transmembrane segments (S1–S6) and a

membrane-associated loop (the “P-loop”) between segments S5 and S6. The four

repeated domains are also remarkably similar to those known to form the voltage-

gated potassium channels. However, potassium α1 subunit is homotetramer and

calcium channel is heterotetramer. Potassium channel KcsA (PDB code 1BL8) has

been selected to be the template. Amino acid sequences of S5, S6 and P-loops in

between the four repeats (I–IV) (271–405, 654–753, 1052–1185 and 1411–1524,

respectively) of voltage-dependent LCC subunit alpha-1C (CAC1C HUMAN

Q13936) were used for sequence alignment with the amino acid sequence of

KcsA as proposed by Zhorov et al. (2001), where S6 segments of LCC are aligned

with M2 segments of KcsA in a manner similar to the alignment of the Na+ channel

with KcsA described by Lipkind and Fozzard (2000) and S5s were aligned with the

M1 segment of KcsA as proposed by Huber et al. (2000) and the P-loops were

aligned using MULTALIN server (Corpet 1988; Shaldam et al. 2014) (Fig. 7.1).

Proteins that fold into similar structures can have large differences in the size and

shape of residues at equivalent positions. These changes are tolerated not only

because of replacements or movements in nearby side chains, as explored by

Ponder and Richards, but also as a result of shifts in the backbone (Bowie et al.

1991; Shaldam et al. 2014). For a more flexible inspection, the sequence of each

repeat was organized as S5, S6 and P-loop, allowing easier corrections. The amino

acid sequence of repeats I and III has long extracellular loop which would reduce

the quality of the generated model, so amino acid sequences were excluded from

repeats I and III, respectively. Since the template is 88 residues shorter than the

target protein, gaps were inserted to achieve best sequence similarity and identity

without affecting sequence alignment proposed by Zhorov et al. (2001). The

greatest attention was thus paid to the careful construction of transmembrane

helices S5 and S6 and P-loop as well.

160 M.S. Saddala and A. Usha Rani



7.3.2 Construction of the LCC Model

Although the two proteins have low sequence identity of 9.5% and sequence

similarity of 29.2%, the MODELLER program was applied to generate satisfactory

models. As an integral process of model building, initial refinement of the loop

conformation after model generation was automatically performed by MODELER

Loop Refinement-DOPE-Loop method during the process. The model achieved

from the alignments by Zhorov et al. (2001) was subjected to extensive loop

optimization. This procedure is based on the idea that transmembrane helices are

much less flexible than loops, thus permitting to produce a sounder core alignment

if the integrity of the helices is conserved. On the contrary, the more volatile loops

can bear the more important difference between the coordinates of the reference

and the model. When a homology model is created, there are parts of the model

sequence which are not aligned to any template structures. For these sections, no

homology restraints (such as Cα–Cα distance restraints) can be applied. These parts

of the structure generally have greater errors compared to the regions which are

modelled based on a template structure. In attempts to reduce these errors, a

CHARMm-based protocol that optimizes the conformation of a contiguous seg-

ment (i.e. a loop) of a protein structure called loop refinement was applied (Spassov

et al. 2008; Shaldam et al. 2014). This is based on systematic conformational

sampling of the loop backbone and CHARMm energy minimization. The algorithm

goes through three stages: construction and optimization of loop backbone, con-

struction of loop side chain and optimization of loop followed by reranking of the

conformations. The model was then checked after a thorough energy minimization

designed to reduce the steric clashes of the side chains without modifying the

backbone of the protein to solve these contacts. To avoid modification of the

backbone of the protein, the optimization of the geometry of side chain was

performed with constraining the backbone. After the optimization, models were

checked to assess the quality of their structure.

7.3.3 Model Evaluation

To assess stereochemical quality and structural integrity of the model, RAMPAGE

(Lovell et al. 2003) (Fig. 7.3), ERRAT (Colovos and Yeates 1993; Shaldam et al.

2014), ProSA (Sippl 1993; Wiederstein and Sippl 2007) and Verify3D (Luthy et al.

1992; Shaldam et al. 2014) software were used. For comparison, these methods

were also used to evaluate the template structure, and then each repeat was

examined separately by means of ProSA. RAMPAGE is an offshoot of RAPPER

which generates a Ramachandran plot using data derived by Lovell et al. (2003). It

is recommended that it be used for this purpose in preference to PROCHECK,

which is based on much older data. The Ramachandran diagram plots phi versus psi

dihedral angels for each residue in the protein. The diagram is divided into
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favoured, allowed and disallowed regions, whose contouring is based on density-

dependent smoothing for 81,234 non-glycine, non-proline residues with B <
30 from 500 high-resolution protein structures. Regions are also defined for glycine,

proline and pre-proline as shown in Fig. 7.3.

ERRAT is a protein structure verification algorithm, that is, especially well-

suited for differentiating between correctly and incorrectly determined regions of

protein structures based on characteristic atomic interactions (Colovos and Yeates

1993; Shaldam et al. 2014). Different types of atoms (C, N and O) are distributed

nonrandomly with respect to each other in proteins because of energetic and

geometric effects. Errors in model building lead to more randomized distributions

of the different atom types, which can be distinguished from correct distributions by

statistical methods. The program works by analysing the statistics of nonbonded

interactions between different atom types. A single output plot is produced that

gives the value of the error function versus position of a nine-residue sliding

window. In comparison with statistics from highly refined structures, the error

values have been calibrated to give confidence limits. The program provides an

“overall quality factor” value which is defined as the percentage of the protein for

which the calculated error value falls below the 95% statistical rejection limit. The

ERRAT overall quality factor of the model is given in Table 7.1. This is not

Fig. 7.3 Ramachandran plot. (a) The plot of LCC model shows that 92.3% of residues were found

in the favoured, 7.7% in the allowed and none in the outlier regions. (b) The plot shows general,
glycine, pre-proline and proline for LCC model
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surprising since the model has longer loops than template. This method provides a

useful tool for model building, structure verification and making decisions about

reliability. A more reliable discrimination of incorrect regions would likely be

obtained by combining the present analysis with others (Fig. 7.5).

ProSA and Verify3D are two methods that are sensitive in distinguishing

between overall correct fold and those with an incorrect fold (Bhattacharya et al.

2008; Shaldam et al. 2014). ProSA (Protein Structure Analysis) program is a

diagnostic tool that is based on the statistical analysis of all available protein

structures (Wiederstein and Sippl 2007; Shaldam et al. 2014). It is a tool widely

used to check 3D models of protein structures for potential errors. Its range of

application includes error recognition in experimentally determined structures

(Teilum et al. 2005; Llorca et al. 2006; Shaldam et al. 2014), theoretical models

(Petrey and Honig 2005; Ginalski 2006; Shaldam et al. 2014) and protein engineer-

ing (Beissenhirtz et al. 2006; Mansfeld et al. 2006; Shaldam et al. 2014). The energy

of the structure is evaluated using a distance-based pair potential and a potential that

captures the solvent exposure of protein residues. From these energies, two char-

acteristics are derived and displayed: Z-score and a plot of residue energies. The

Z-score indicates overall model quality and measures the deviation of the total

energy of the structure with respect to an energy distribution derived from random

conformations. Z-scores outside a range characteristic of native proteins indicate

erroneous structures. The overall quality score calculated by ProSA for a specific

structure is displayed in a plot that shows the scores computed from all experimen-

tally determined protein chains currently available in the Protein Data Bank (PDB).

Structures which contain errors are likely to have Z-score outside the range of

values characteristic of native proteins. Table 7.1 lists the Z-score calculated by

ProSA (as average of the four repeats Z-score) for the model and compared against

the template. The Z-scores for the model and template are much closer to the

middle region of scores observed for experimentally determined protein structures

in the PDB including the template structure. The energy plot shows the local model

quality by plotting energies as a function of amino acid sequence. In general,

positive values correspond to problematic or erroneous parts of the model (Fig. 7.4).

Verify3D analyses the compatibility of an atomic model (3D) with its own

amino acid sequence (1D) and hence tests the accuracy of the model (Fig. 7.5).

Each residue is assigned a structural class based on its location and environment.

The environments are described by the area of the residue buried in the protein and

inaccessible to solvent, the fraction of side chain area that is covered by polar atoms

Table 7.1 Assessment scores for the LCC receptor model

S. no. Item Model Comment

1 ProSA �3.89 ProSA Z-score as average of the four repeats

2 ERRAT 79.72 ERRAT overall quality factor

3 Verify3D 67.58%

(W)

Percentage of residues with Verify3D average score > 0.2;

verify3D overall assessment of the structure (P ¼ pass, W¼
warning or F ¼ fail) shown in parentheses

7 Homology Modelling, Structure-Based Pharmacophore Modelling, High. . . 163



(O and N) and the local secondary structure. Based on these parameters, each

residue position is categorized into an environmental class. In this manner, a 3D

protein structure is converted into a 1D string, like a sequence, which represents the
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Fig 7.4 ProSA plot. Each repeat was examined separately. (a) ProSA Z-scores for LCC model;

(b) ProSA Z-scores for template (KcsA) and blue and sky blue dots are Z-scores of PDB structures

determined by X-ray crystallography and NMR, respectively; (c) ProSA energy profiles for LCC

model (four repeats); (d) ProSA energy profiles for template (four repeats). Negative scores

indicate a high-quality model
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environmental class of each residue in the folded protein structure. A collection of

good structures is used as a reference to obtain a score for each of the 20 amino

acids in this structural class. The scores of a sliding 21-residue window are added

and plotted for individual residues. This method evaluates the fitness of a protein

sequence in its current 3D environment. It can be applied to assess the quality of a

theoretical model or to examine the characteristics of an experimental structure

(Luthy et al. 1992; Shaldam et al. 2014). Table 7.1 shows the percentage of residues

that had an average score> 0.2 and the Verify3D assessment of the structure (pass,

warning or fail) for the model and template. Figure 7.5 shows the Verify3D profile

for the model structure. Residues with a score over 0.2 should be considered

reliable and the sequences exhibiting lower scores are those of extracellular loops.

Taken together, all of the above data indicate that the quality of the model is

similar to that of the template. The model can be used for further computer-aided

drug design (CADD) and it can be used in understanding how DHP work at the

molecular level.
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Fig. 7.5 (a) ERRAT score of the LCC model (four repeats). (b) Verify3Dscore profile calculated
for LCC model. Scores over 0.2 indicate a high-quality model
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7.3.4 Generation of Structure-Based Pharmacophore Model

As shown in Fig. 7.6, the pharmacophore model automatically generated by the LS

program includes four features: two hydrogen bond donors (HBD) (green colour)

and three hydrophobic groups (yellow colour). Besides, the program automatically

generated several excluded volumes (grey colour) in the model. The two HBD

feature points are the amino group hydrogen atoms of the ligand towards the

SER-78 and ILE-51, respectively. The three hydrophobic groups are located on

the benzene group, chlorine atom on benzene and carboxy ethyl group of the ligand.

The developed pharmacophore model was exported into MOE. Prior to screening, it

was necessary to make a number of adjustments, as feature interpretation varies

slightly between the two programs. As in LS pharmacophore, the aromatic ring of

the compound in the complex was not classified as aromatic or hydrophobic

features; thus, these were interpreted in MOE, using the PPCH_All scheme. Two

modifications were made on this model to obtain appropriate model for virtual

screening. The first modification is about the chlorobenzyl ring. It is clear that it is

an aromatic group, but the LS could not interpret this ring as an aromatic group

automatically. In MOE, additional features were developed using the MOE

pharmacophore query editor. First, an aromatic feature was developed on the

chlorobenzyl ring, and a hydrophobic feature was developed on the carboxy ethyl

group of the ligand. This modified pharmacophore model was then validated by

screening the test database. In the test database, we kept the compound (i.e. AD)

present in complex structure. First, the AD was extracted, and then, hydrogen atoms

were added and energy minimized by using MOE. The minimized structure of AD

was added to the test database. After screening, the test compound was correctly

mapped by the modified pharmacophore model as shown in Fig. 7.6. The result

verified the validity of our modified pharmacophore model that can be used for the

screening of large databases.

7.3.5 Pharmacophore-Based Virtual Screening

The modified validated pharmacophore model was then used as in silico filter to

screen the Zinc database (http://zinc.docking.org/) of commercially available com-

pounds. The Zinc database compounds in SDF format were loaded into MOE

environment where the 3D structure of each compound was modelled using

MMFF94x force field. The Conformation Import methodology was applied to

generate low-energy conformations for each compound. All these compounds and

their respective conformations were saved in MOE database. The conformers of

each compound were then filtered by the pharmacophore model. To be considered

as hit, the compound has to fit all the features of the pharmacophore. From the

pharmacophore-based virtual screening, 18 hits (Fig. 7.7) were identified that

mapped on the developed pharmacophore model (i.e. having the specified
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Fig. 7.6 (a) Two-dimensional pharmacophore model generated by LIGANDSCOUT from the

complex structure of LCC and AD. The dotted arrows indicated the hydrogen bond donor (HBD)

features. (b) The yellow sphere represented the HBD; the yellow sphere represented the hydro-

phobic feature in the ligand, whereas the grey colour spheres represented the excluded volumes
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Fig. 7.7 The pharmacophore screened 18 hits from Zinc database
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requirements). These initially identified hits were selected for further evaluation

using docking studies.

7.3.6 Molecular Docking

In order to shed light on the molecular basis of the interactions between LCC and its

ligands, docking simulations were undertaken on pharmacophoric hits of DHPs

(dihydropyridines) on LCC model. Such calculations were conducted employing

the automated docking program AutoDock which has proven to be really effective

in reproducing the experimentally found posing of ligands into their binding site.

As shown in Table 7.2, the predicted free energy of binding top five compounds.

Docking of hits into active site of LCC model gave comparable binding solutions

with the dihydropyridine ring fitting in the cleft formed by IIIS6, IIIS5 and IVS6

segments. The Zinc59347487 compounds bound -8.4 binding energy with ILE-360

(IP), SER-393 (IS6), ASN-398 (IS6), ASN-740 (IIS6) and ASN-1517 (IVS6) active

site residues, respectively. The Zinc20267861 compounds bound -8.1 binding

energy with LEU-704 (IIP), ASN-740 (IIS6) and ASN-1517 (IVS6) active site

residues, respectively. The Zinc59486248 compounds bound -7.9 binding energy

with THR-361 (IP) and MET-362 (IP) active site residues, respectively. The

Zinc59494792 compounds bound -7.6 binding energy with THR-361 (IP) and

ASN-740 (IIS6) active site residues, respectively. The Zinc67664832 compounds

bound -7.2 binding energy with THR-361 (IP), ILE-360 (IP), SER-393 (IS6),

ASN-1178 (IIIS6) and ASN-740 (IIS6) active site residues, respectively. The

Zinc19796039 (AD) compounds bound -5.4 binding energy with ILE-360 (IP),

SER-393 (IS6), ASN-1178 (IIIS6) and ASN-740 (IIS6) active site residues, respec-

tively. The LCC model and best five screened compound interaction residues are

shown in Table 7.2 and the graphical representation also shown in Fig. 7.8. The

docking results showed that five compounds have best binding energies than AD

compound (Table 7.2).

Table 7.2 AD and AD analogue compounds along with their respective interaction energies and

their surrounding residues

S. no. Compound

BE

(kcal/

mol) Surrounding residues

1 Zinc59347487 �8.4 ILE-360 (IP), SER-393 (IS6), ASN-398 (IS6),
ASN-740 (IIS6), ASN1517 (IVS6)‘

2 Zinc20267861 �8.1 LEU-704 (IIP), ASN-740 (IIS6), ASN-1517 (IVS6)

3 Zinc59486248 �7.9 THR-361 (IP), MET-362 (IP)

4 Zinc59494792 �7.6 THR-361 (IP), ASN-740 (IIS6)

5 Zinc67664832 �7.2 THR-361 (IP), ILE-360 (IP), SER-393 (IS6),
ASN-1178 (IIIS6), ASN-740 (IIS6)

6 Zinc19796039

(AD) (Query)

�5.4 ILE-360 (IP), SER-393 (IS6), ASN-1178 (IIIS6),
ASN-740 (IIS6)
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7.3.7 Analysis of Drug Likeness

All the compounds were tested for Lipinski “rule of 5”, i.e. “drug-like” molecules

have log P �5, molecular weight �500, number of hydrogen bond acceptors �10

Fig. 7.8 Docked structures of Zinc20267861 (a), Zinc59347487 (b), Zinc59486248 (c),
Zinc59494792 (d), Zinc67664832 (e) and AD (f) in model of LCC. DHPs are displayed as rainbow

sticks, and key binding site residues are shown in green, yellow, red, pink and blue. Hydrogen
bonds as represented with dashed blue lines
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and number of hydrogen bond donors �5 (Table 7.3). Lipinski rule of 5 is a rule of

thumb for evaluating the drug likeness or determining whether a chemical com-

pound with a certain pharmacological or biological activity has properties that

would make it a likely orally active drug in humans. Results showed that five

compounds, i.e. (Zinc59347487), (Zinc20267861), (Zinc59486248),

(Zinc59494792) and (Zinc67664832), satisfied the Lipinski “rule of 5”. Their

respective drug likeness properties are shown in Table 7.3.

7.3.8 ADME Predicting Activity

Although Lipinski “rule of 5” describes the molecular properties important for a

drug’s pharmacokinetics in the human body, including its ADME, it does not

predict if a compound is pharmacologically active. Therefore, pharmacokinetic

properties and toxicities were predicted for all the four compounds using OSIRIS

property explorer. Results of pharmacokinetic properties and toxicity analysis are

shown in Table 7.4. Solubility and partition coefficient were calculated for phar-

macokinetic property, whereas mutagenicity, tumorigenicity, irritation effect and

risk of reproductive effect were predicted for toxicity study. To determine the

hydrophilicity, log P value was predicted. It is suggestive that a high log P value

is associated with poor absorption or permeation and it must be less than 5 (Vyas

et al. 2013). Results showed that all the five compounds confirmed to this limit, and

among the five compounds, Zinc67664832 has a better cLog P value than others

(Table 7.3). In general, a poor solubility is associated with bad absorption, and the

aqueous solubility (log S) of a compound significantly affects its absorption and

distribution characteristics. Results showed that Zinc67664832 has a better log S

value than others (Table 7.3). In order to consider the compound overall potential as

a drug candidate, drug score is calculated which combines drug likeness, cLog P,

TPSA, molecular weight and toxicity risk parameters as shown in Table 7.4. Drug

score showed that the compounds, Zinc59347487 and Zinc20267861, have higher

scores of 0.56 and 0.47 compared to the others.

Table 7.3 Molecular properties of compounds satisfying the Lipinski “rule of 5” by

Zinc ID

log S

(moles/L)

Lipinski “rule of 5”

Molecular weight

�500

log P

�5

HB acceptors

�10

HB donors

�5

Zinc59347487 �4.06 429.10 3.14 5 4

Zinc20267861 �4.18 484.12 3.03 6 2

Zinc59486248 �4.90 423.17 3.61 5 4

Zinc59494792 �4.30 499.19 2.43 5 3

Zinc67664832 �4.24 437.16 2.21 9 3

Amlodipine

(Query)

�4.19 409.15 3.46 7 4
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7.4 Conclusions

The point of present study was to produce a pharmacophore model to recognize

vitally assorted lead hits. The recognized hits may be utilized for creating novel and

strong inhibitors for VP-3. A structure-based pharmacophore was created situated

in light of the complex structure of VP-3 and leupeptin. The created pharmacophore

model was utilized for the screening of PubChem database. The recognized hits

were further assessed by docking, MD simulation and binding energy forecast.

Subsequently, five lead hits were accounted for that satisfied all the criteria for the

outline of compounds that may go about as great leads for advancement of novel,

intense and structurally diverse compounds for VP-3 inhibition. From the binding

mode, anticipated by docking, it was observed that there are some particular groups

that mimic the binding method of leupeptin and fit well to active site area of VP-3.

The five leads likewise demonstrated the best binding energies among screened

compounds. The MD simulations for the VP-3 five lead docking complexes were

performed to comprehend conformational dependability, structural flexibility and

molecular dynamics of the interaction in physiological environmental condition.

RMSD investigation demonstrated that the molecular system was exceptionally

steady in all trajectories. Therefore, five leads are proposed as the best potential

inhibitor to begin with investigation acceptance towards outlining against VP-3

inhibitors.
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