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Translational Bioinformatics and Drug
Discovery

Pramodkumar Pyarelal Gupta

Abstract With drug pipelines running dry and a slew of blockbuster medicines

about to lose patent protection, the voices arguing that the traditional drug devel-

opment process is too expensive and inefficient to survive are getting louder. To

overcome the cost and accelerate the discovery of novel drug, in silico methodol-

ogies have made an enormous contribution. This chapter discusses the paradigm of

bioinformatics and its translational approaches in drug discovery. Public domain

database and efficient data mining approaches are the most optimum criteria for

identification and selection of data, whereas genomic technologies such as micro-

array and next-generation sequencing (NGS) stand for its target identification and

validation process. The use of molecular docking and QSAR techniques under the

structure- and ligand-based discovery helps in screening the chemical data from

nonfunctional to functional ones in terms of activity and toxicity. However, phar-

macokinetic and pharmacodynamic (PKPD) simulation can help produce desired

concentrations and least side effects with an approximately computed dose

regimen.

Keywords Chemical database • Drug discovery • NGS • QSAR • Translational

bioinformatics

2.1 Introduction

2.1.1 Translational Bioinformatics

Translational bioinformatics is the evolution of conventional in silico science that

deals with storage, analysis, and knowledge extraction from voluminous genomic,

proteomic, sequence, and structural data. Translational bioinformatics takes

account of research in the development of novel techniques for the integration of
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clinical and biological data that serves as a source input to designed algorithms and

includes the methodology to transform the biological observations into desired

knowledge that benefits the scientists, clinicians, and patients that we will see in

this chapter. Complicated biological network mechanisms of disease and structure

of molecules involved pose several experimental challenges in the drug discovery

processes. These complications arise from independent operation of the different

parts involved in drug development process with little interaction between clinical

practitioners, academic institutions, and pharmaceutical industries (Portela and

Soares-da-Silva 2015). Specially, the research in drug development is purpose

specific and performed by highly specialized scientists and researchers in their

respective fields considering few inputs from clinicians and medical practitioners in

strategy design for future therapies (Portela and Soares-da-Silva 2015). Transla-

tional research is a road map in which novel therapies will link the experimental

discoveries with computational techniques in delivering the clinical needs to the

market. Theoretical/computational techniques offer valuable visions in experimen-

tal discoveries with pharmacological and pathophysiological mechanisms and

virtual development of new prospects in designing and synthesis of novel and

better molecular entities with time and cost-effectiveness (Raza 2006).

2.2 Supporting Resources

2.2.1 Online Database

Sequence database such as NCBI, EMBL, or UniProt imparts a mammoth contri-

bution to disease, diagnosis, and drug development industry. Structure database

such as Protein Databank incorporates structures evaluated by the 3D crystallogra-

phy, NMR, and hybrid technology and plays a key role in the structural bioinfor-

matics (Berman 2008). SCOP (Hubbard et al. 1999) and CATH (Oreng et al. 1997)

classify the structure on the basis of structural and domain features, whereas

PDBsum describes the graphical overview of the deposited 3D structure in a

more precise form (Laskowski et al. 1997).

Database that handles reaction and kinetics between the genes, proteins,

enzymes, and chemical components with their signal activity is known as metabolic

pathway database. MetaCyc (http://metacyc.org) holds experimentally identified

biochemical pathways which can be used as a reference data set for the metabolism

design and analysis (Zhang et al. 2005). KEGG (http://www.genome.jp/kegg/) is a

database for understanding complex functions of the biological system such as cell,

organism, and ecosystem by combining the knowledge from genomic and molec-

ular information. KEGG executes a computational representation of the biological

system in a wired network diagram (system information) consisting of molecular

building blocks of genes and proteins (genomic information) and chemical sub-

stances (chemical information) (Kanehisa et al. 2002). The BioCyc database data
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sets contain a group of organism-specific pathway/genome databases (PGDBs).

They provide reference to genome and metabolic pathways of a few thousand

organisms (Caspi et al. 2011). BRENDA (BRaunschweig ENzyme DAtabase) is

an enzyme database established in 1987 at the Helmholtz Centre for Infection

Research, formerly known as German National Research Centre for Biotechnology,

and is currently maintained by the Department of Bioinformatics and Biochemistry

at the TU Braunschweig. BRENDA is supplemented by enzyme-specific data

classified by their biochemical reaction (Scheer et al. 2011). Other databases are

also available such as Panther (Thomas et al. 2003), Reactome (Croft et al. 2010),

HumanCyc (Miles et al. 2010), Mint (Licata et al. 2012), etc.

2.2.2 Small Chemical Structure Database

The online free access chemical databases assist the scientific community in

identifying the previous experimental and nonexperimental chemical entities

which can be an auxiliary/further tested for similar or different therapeutic appli-

cations. Online publically available small chemical structure databases such as

PubChem (Bolton et al. 2008), DrugBank (Wishart et al. 2006), ZINC database

(Irwin and Shoichet 2005), eMolecules (https://www.emolecules.com/), etc., listed

in Table 2.1 regularly share their information on the basis of knowledge exposure.

More than thousands of structures are deposited annually in these public databases

with millions of compounds tested for known or unknown activities (http://depth-

first.com/articles/2011/10/12/sixty-four-free-chemistry-databases/).

2.3 Chemical Data Mining Strategies

The exhaustive and fast designed algorithms compete in the identification of

structurally similar compounds. Methodology including structural similarity

searching and clustering of small molecules plays an important role in screening

of compounds with identical or common scaffold in drug discovery pipelines. To

search, analyze, and assemble the diverse compounds from a public database is

critical to enable the full utilization of existing resources. However, most of the

software in this area is only commercially available, and open source is at high

demand with optimum accuracy and precision. The long-term goal of the

ChemmineR project is to narrow this resource gap by providing free access to a

flexible and expandable open-source framework for the analysis of small molecule

data from chemical genomics, agrochemical, and drug discovery screens (Cao et al.

2008). Based on screening data from PubChem BioAssay database, Pouliot et al.

used reported adverse event data with experimental molecular data and generated a

logistic regression model to correlate and predict post-marketing ADRs (Shah and

Tenenbaum 2012; Pouliot et al. 2011). In a similar way, an existing data mining
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algorithm was enhanced by using molecular fingerprints with chemical information

that codifies the structural features or functional groups to augment the ADE signals

generated from adverse event reports (Shah and Tenenbaum 2012; Vilar et al.

2011).

National Cancer Institute (NCI) database is one of the first amalgamated public

efforts in distributing the large data sets according to their bioactivity information

Table 2.1 List of chemical structure database

Sr

no Database Link

1 ChEMBL https://www.ebi.ac.uk/chembl/

2 ChemDB/Chemical Search http://cdb.ics.uci.edu/cgibin/ChemicalSearchWeb.

py

3 ChemSpider http://www.chemspider.com/

4 ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/

5 CoCoCo http://cococo.unibo.it/

6 Comparative Toxicogenomics

Database (CTD)

http://ctdbase.org/

7 DNP (Dictionary of Natural

Products)

http://dnp.chemnetbase.com/intro/index.jsp

8 DrugBank http://www.drugbank.ca/

9 e-Drug3D http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html

10 GLL (GPCR Ligand Library) http://cavasotto-lab.net/Databases/GDD/

11 GLIDA (GPCR-Ligand Database) http://pharminfo.pharm.kyoto-u.ac.jp/services/

glida/

12 Glide Fragment Library http://www.schrodinger.com/Glide/Fragment-

Library

13 Glide Ligand Decoys Set http://www.schrodinger.com/Glide/Ligand-

Decoys-Set

14 KEGG DRUG http://www.genome.jp/kegg/drug/

15 KKB (Kinase Knowledgebase) http://www.eidogen.com/kinasekb.php

16 Ligand Expo http://ligand-expo.rutgers.edu/

17 MMsINC http://mms.dsfarm.unipd.it/MMsINC/search/

18 Mcule database https://mcule.com/pricing/

19 PubChem https://pubchem.ncbi.nlm.nih.gov/

20 PubChem Mobile https://play.google.com/store/apps/details?

id¼com.bim.pubchem

21 SPRESIweb http://www.spresi.com/

22 The Cambridge Structural Database

(CSD)

https://www.ccdc.cam.ac.uk/solutions/csd-system/

components/csd/

23 SuperDrug database http://bioinf.charite.de/superdrug/

24 TCM http://tcm.cmu.edu.tw/

25 Virtual Library Repository http://nbcr.ucsd.edu/wordpress2/

26 ZINClick http://www.symech.it/index.asp?catID¼31&

lang¼en

27 Zinc database http://zinc.docking.org/
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in a searchable database format for the cancer and HIV research community (Voigt

et al. 2001; Ihlenfeldt et al. 2002; Couzin 2003). ChemBank, PubChem, ZINC, and

other public databases have also joined the race in screening the database on the

basis of structure similarity and biological activity. Online and open-sources soft-

ware are useful resources in cheminformatics software development (Girke et al.

2005).

Liu et al. (2012) demonstrated the ability to predict adverse drug reactions

(ADRs) by integrating chemical, biological, and phenotypic properties of drugs.

They showed that data fusion approaches are promising for large-scale ADR pre-

dictions in both preclinical and post-marketing phases (Shah 2012).

2.4 Genomic Technologies

The completion of human (Homo sapiens) and mouse (Mus musculus) genome

sequence projects has increased the number of gene annotations and made it

possible for bioinformaticians to develop new approaches that help experimental

researchers tackle biological problems (Jin et al. 2004).

Microarray technique also known as chip-based technique was launched in the

early 1990s which helped the scientists to monitor the expression of many genes

concurrently, and this technology became a powerful and gold standard tool for

analyzing, studying, and understanding the expression and regulation of a number

of genes in parallel (Tavera-Mendoza et al. 2006). Analyzing multiple genes at the

same time revealed detailed genomic and proteomic information which may lay the

foundation for identification of novel target or receptor. The outputs from the

microarray analysis strengthen the translational research in drug discovery and

development method by generating the results from chip-based technology.

Microarrays have been used to slice up nuclear receptor functions both in normal

and disease states, in tissues, and in cell models. Numerous studies on nuclear

receptor gene regulation for identification of downstream signaling pathways have

been carried out in an experiment (Tavera-Mendoza et al. 2006). In a similar

experiment, activation of PPAR is studied in a high cholesterol context trailed by

microarray studies and results in a potential target gene of triglyceride-lowering

drugs (Tavera-Mendoza et al. 2006; Frederiksen et al. 2004).

2.4.1 Next-Generation Sequencing (NGS)

The main application of sequencing technology is to sequence out biological data

from an organism, including molecular cloning, gene identification comparative

studies, and evolutionary studies. The first-generation sequencing method such as

“Sanger sequencing” has been estimated to cost US$2.7 billion for the Human
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Genome Project (HGP), whereas the identical procedure costs only US$1.5 million

with the next-generation sequencing (NGS) method (Morini et al. 2015).

In the past few years, the NGS-based procedure has expanded its growth and

application by attracting the attention from the most cutting-edge technologies.

Technological advancement and increased automation, in the field of benchtop

sequencing and high-throughput sequencing, have also decreased the cost and

facilitated the use of sequencing technology by laboratories of all sizes involved

in studies ranging from plants to human diseases (Benjamin 2015). NGS refers to

those DNA sequencing methods that came after capillary-based Sanger sequencing

(first generation) back in 2005. Current next-generation DNA and RNA sequencing

companies include Illumina (TruSeq, HiSeq), Life Technologies (Ion Torrent,

SOLiD), Complete Genomics (DNA nanoball sequencing), 454 Sequencing

(pyrosequencing), and Oxford Nanopore Technologies (GridION) (Carlson 2012).

2.4.2 NGS and Personalized Medicine

Sudden cardiac death (SCD) is commonly defined as a natural death from

unexplained cardiac causes. Young athlete’s community is the most affected

group by SCD. The most common factor identified is the adrenergic stress during

the competitive sports activity for arrhythmias and SCD in the presence of inherited

cardiac disease such as cardiomyopathy, primary arrhythmia syndrome, or vascular

diseases. Hence, study and molecular analysis of cardiac channelopathies and

cardiomyopathies would allow early diagnosis and prevention of SCD in a signif-

icant percentage of young individuals. To gain a fruitful result, one should design

an appropriate and well-defined NGS diagnostic protocol and must verify in a

validation phase that all the details such as mutation identified in a previous

group of individuals by Sanger sequencing method must also be detectable by

new advanced sequencing techniques. By contrast, novel variants identified by

NGS must also be confirmed by Sanger sequencing to evaluate the reproducibility

of the NGS approach (Fig. 2.1) (Morini et al. 2015).

Research published in Nature Medicine reports that NGS sequencing has

revealed genomic alterations directly associated with clinically available therapeu-

tics or a relevant clinical trial of a targeted therapy in 72% of 24 non-small cell lung

cancer (NSCLC) tumors and in 52.5% of 40 colorectal cancer (CRC) tumors. Two

novel gene fusions, KIF5B-RET in NSCLC and C2orf44-ALK in CRC, were

among the alterations that might be treated by drugs. The fusion of C2orf44 and

ALK produces an overexpression of anaplastic lymphoma kinase (ALK), the target

of crizotinib (Xalkori), approved for the treatment of ALK-positive NSCLC, which

suggests the possibility that ALK-positive CRC patients may respond to

ALK-inhibitor treatment (Fig. 2.2) (Carlson 2012).
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2.5 Structure-Based Drug Discovery

In recent years, structure-based drug discovery (SBDD) is a rapidly rising method-

ology in overall drug discovery and development industry. The boom of genomic,

proteomic, and related structural data has delivered a number of novel targets and

Fig. 2.1 NGS protocol for sudden cardiac death conditions

Fig. 2.2 Test result for genomic alterations (Carlson 2012)
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future prospects in lead discovery. In early 1980s the capability of rational drug

design with protein structure was an unidentified object to structural biologists. The

first success stories of SBDDwere published in the early 1990s, and it now becomes

an integral and major subject of inquiry in many research and academic organiza-

tions (Amy 2003; Roberts et al. 1990; Erickson et al. 1990; Dorsey et al. 1994).

The iterative process of SBDD principally initiates with identification, cloning,

purification, and 3D structure determination of the target protein or nucleic acid by

any of the following methods: X-ray crystallography, NMR, homology modeling,

or various hybrid technologies. Known or calculated active sites are positioned by

the computer-based algorithms and targeted by known and unknown 3D chemical

compounds, ligands, or drugs identified by specific industry, organization, aca-

demic, and research groups from private and public databases. The generated

complexes are ranked on the basis of binding energy, pharmacophoric interaction

points, and types of interaction such as hydrogen bonding, electrostatic interaction,

van der Waals interaction, etc., given in Eq. 2.1. The optimum-generated com-

plexes are then tested with the suitable biochemical assay and knowledge is

generated for further evaluation. One with the least micromolar inhibition in

in vitro conditions reveals a path to scientists that the compound can be optimized

to increase its potency. A repeated cycle of design, synthesis, testing, and evalua-

tion process to a lead compound may produce a patentable market product in

binding and specificity to the target (Fig. 2.3) (Amy 2003).

Binding energy:

ΔG ¼ VL�L bound� VL�L Unbound
� �þ VP�P bound� VP�P Unbound

� �
þ VP�L bound� VP�L Unbound þ ΔSconf: : : :

� � ð2:1Þ

where P refers to the protein, L refers to the ligand, V represents the pair-wise

evaluations mentioned above, and ΔSconf denotes the loss of conformational

entropy upon binding (Ruth et al. 2007).

In comparative docking analysis between known and unknown compounds with

respect to a common target, ideally, the generated ligand poses (conformations) that

are closest to the experimental or known structure conformation should be ranked

highest. In order, the analysis could be achieved by quantifying the similarity

between a native ligand and a generated ligand pose, where root-mean-square

deviation (RMSD) can be calculated between both the ligand structures (Raschka

2014):

RMSD a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
aix � bixð Þ2 þ aiy � biy

� �2 þ aiz � bizð Þ2
r

ð2:2Þ

where ai refers to the atoms of molecule 1 and bi to the atoms of molecule 2. The

subscripts x, y, and z denote the x-y-z coordinates for every atom.
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2.5.1 Molecular Docking

The molecular docking is a computational technique to model the interaction

between a protein macromolecule known as receptor or target and a small chemical

entity/ligand/drug molecule/a protein macromolecule depending on the type of

study a scientist carries out. It elucidates the behavior of a ligand molecule with

the active site of a receptor protein and its fundamental biochemical process. The

docking process involves two basic steps: prediction of ligand conformation within

the active site of receptor protein and finally the assessment of binding energies

(Meng et al. 2011; McConkey et al. 2002).

Fischer originally proposed a docking mechanism for ligand-receptor binding

studies, which is the lock-and-key model, where a ligand fits into a receptor as a key

and the receptor behaves as a lock. The primary early docking studies were based

on this theory and receptor and ligand were considered as rigid bodies. Koshland

put forward an “induced-fit” theory that takes the lock-and-key model a step further

and suggests that there is a continuous change in the receptor protein conformation

because of the interaction between the ligand and the protein. The theory proposes

to treat both ligand and receptor as a flexible entity during docking that could

describe the binding events more accurately than under rigid conditions (Fischer

1894; Kuntz et al. 1982; Koshland 1963; Hammes 2002).

Structure Based Drug
Discovery

Ligand Based Drug
Discovery

Crystal
Structure

Homology
Modeling,
& Hybrid
Technique

Selected Dug,
Ligand or
chemical entity
from database

Molecular
Docking,
Computational
analysis

Insilico
Toxicity
Prediction

Lead Optimization

Yes

No No

Further evaluation
process

Lead
Identification

SAR,

2D,3D-
QSAR

Active site
identification

Fig. 2.3 Diagrammatic representation of a structure- and ligand-based drug discovery pipeline
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Site-specific docking strategies significantly increase the docking efficiency. In

many conditions the binding site is unknown. One can predict the putative binding

site using commercial software such as SYBYL-X Suite (SYBYL-X-SuiteS: YBYL

8.0), SiteMap – Schrodinger (Halgren 2007), BioPredicta – VLife Molecular

Design Suite (MDS) (www.vlifesciences.com), Discovery Studio (Dassault

Systèmes BIOVIA 2015), FLEXX (Rarey et al. 1996), Molegro Virtual Docker

System (Thomsen and Christensen 2006), ICM-Pro – Molsoft (An et al. 2005), etc.

This can also be performed using online servers, e.g., Cast P (Dundas et al. 2006),

GRID (Goodford 1985; Kastenholz et al. 2000), POCKET (Levitt and Banaszak

1992), SurfNet (Laskowski 1995; Glaser et al. 2006), PASS (Brady and Jr Stouten

2000), and MMC (Mezei 2003). Docking without any assumption about the binding

site is called blind docking.

The main application of molecular docking lies in the structure-based virtual

screening for identification of new active compounds for a particular target protein.

Molecular docking technique takes a path of translational science and combines the

computational output and experimental data in analyzing various biochemical

reactions and interactions to study the biological system (Kubinyi 2006; Kroemer

2007; Venhorst et al. 2003; Williams et al. 2003; Meng et al. 2009).

High-throughput screening (HTS) has low rates of success to identify the

optimum novel inhibitors of DNA gyrase. Boehm et al. applied de novo design

methodology and successfully obtained several new inhibitors (Boehm et al. 2000).

Initially, 3D complex structure of DNA gyrase with known inhibitors, ciprofloxacin

and novobiocin, was analyzed and patterns of common residual interactions were

calculated. Both inhibitors donate one hydrogen bond to Asp 73 and accept one

hydrogen bond from a conserved water molecule. In addition, lipophilic fragments

are required in the molecule to have lipophilic interaction with the receptor protein.

Based on the existing knowledge, LUDI and CATALYST were employed to search

and identify similar chemical structure in the Available Chemical Directory (ACD)

and Roche Compound Inventory (RIC), resulting in 600 compounds. Close struc-

tural analogs of these compounds were considered and 3000 compounds were

tested using biased screening. One hundred fifty compounds were selected and

clustered into 14 classes of which 7 classes were proved to be the novel and true

inhibitor. Succeeding hit optimization was strongly dependent on 3D structures of

the binding site and generated a potent DNA gyrase inhibitor (Boehm et al. 2000).

Retinoblastoma (RB), a cancer of the eye, occurs in young children. Researchers

have reported their lab findings that fatty acid synthase (FASN) is a promising

diagnostic/prognostic and therapeutic target for retinoblastoma. Three inhibitors

that target various domains of FASN and are potential anticancer drugs (i.e.,

cerulenin, triclosan, and orlistat) were considered in the previous studies (Vandhana

et al. 2011; Kuhajda et al. 1994; Steven et al. 2004). The experimental data for

cerulenin, triclosan, and orlistat gave an IC50 of 3.54 μg/ml, 7.29 μg/ml, and

145.25 μM, respectively, with a dose-dependent decrease in the viability of retino-

blastoma cancer cells (Deepa et al. 2010). The crystal structure KS-MAT didomain

of human FASN [PDB ID: 3HHD] was also used for docking with cerulenin

(Pappenberger et al. 2010) and revealed the binding energy of �5.82 kcal/mol.
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As there are no data available for enoyl reductase from human FASN in public

database, the crystallized structure of ER domain [PDB ID: 2VZ8] was considered

as a template for human ER domain. Furthermore, this model was subjected for

docking with triclosan and exhibited a binding energy of �5.73 kcal/mol (Deepa

et al. 2010). Pemble et al. considered crystallized 3D complex structure of the

human TE domain with orlistat (PDB-ID: 2PX6) in his experiment. Based on the

crystal structure, data re-docking was performed using auto dock and binding

energy was found to be �2.97 kcal/mol. All these findings have indicated the

predictive accuracy of the in silico methods adopted (Pemble et al. 2007).

2.6 Ligand-Based Drug Discovery

The identification of new lead molecule from millions of compound via traditional

approach is time consuming and very costly. Since the 1960s, scientists from

diverse life science background have put enormous efforts to identify the quantita-

tive parameters that determine the biological activity, in what is known as QSAR/

QSPR studies (Nantasenamat et al. 2009). The origin of QSAR was long back in

1863 by Cros in the field of toxicology, where he proposed the relationship between

toxicity of primary aliphatic alcohol with their water solubility (Nantasenamat et al.

2009). Crum-Brown and Fraser hypothesized the relationship between chemical

constitution and physiological action in 1968 (Crum-Brown and Fraser 1868). A

separate discovery was led by Richet (1893), Meyer (1899), and Overton (1901)

and showed a linear correlation between lipophilicity (e.g., oil-water partition

coefficients) and biological effects (e.g., narcotic effects and toxicity)

(Nantasenamat et al. 2009). Hammett (1935, 1937) presented a method to account

for substituent effects on reaction mechanisms through the use of an equation which

took two parameters into consideration, namely, (i) the substituent constant and

(ii) the reaction constant (Nantasenamat et al. 2009; Crum-Brown and Fraser 1868).

Hammett quantified the effect of substituents on any reaction by defining an

empirical electronic substituent parameter (σ), which is derived from the acidity

constants, Ka’s of substituted benzoic acids (Fig. 2.4) (https://web.viu.ca/krogh/

chem331/LFER%20Hammett%202012.pdf).

log
KX

KH

� �
¼ ρσ or pKH � pKX ¼ ρσ ð2:3Þ

For the ionization of benzoic acid in pure water at 25 �C (the reference reaction),

the constant ρ is defined as 1.00. Thus, the electronic substituent parameter (σ) is
defined as
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σ ¼ log
KX

KH

� �
ð2:4Þ

The reaction constant is a measure of how sensitive a particular reaction is to

changes in electronic effects of substituent groups (1–5). The reaction constant

depends on the nature of the chemical reaction as well as the reaction conditions

(solvent, temperature, etc.). Both the sign and magnitude of the reaction constant

are indicative of the extent of charge buildup during the reaction progress. Reac-

tions with ρ > 0 are favored by electron-withdrawing groups (i.e., the stabilization

of negative charge). Those with ρ< 0 are favored by electron-donating groups (i.e.,

the stabilization of positive charge). The greater the magnitude of ρ, the more

sensitive the reaction is to electronic substituent effects (Nantasenamat et al. 2009).

In 1956 Taft proposed an approach for separating polar, steric, and resonance

effects of substituents in aliphatic compounds (Nantasenamat et al. 2009). In 1964

Hansch and Fujita put forward their linear Hansch equation using the contributions

of Hammett and Taft that stood as a mechanistic basis of QSAR/QSPR develop-

ment. Hansch et al. in late 1960s identified the nonlinear (parabolic) dependence of

biological activity with log P and gave the following equation:

log 1=Cð Þ ¼ alogP� b logP2
� �þ c ð2:5Þ

where 1/C ¼ measure of biological activity, log P ¼ log of octanol-water partition

coefficient, and a, b, and c ¼ regression coefficients (Nantasenamat et al. 2009;

Corwin and Toshio 1964).

2.6.1 Quantitative Structural Activity Relationship (QSAR)

The discovery of clinically germane inhibitors is a challenging assignment, and the

quantitative structural activity relationship (QSAR) methodology has become a

very expedient and principally widespread technique for ligand-based drug design

Fig. 2.4 The Hammett

equation relates the relative

magnitude of the

equilibrium constants to a

reaction constant ρ and a

substituent constant σ
Eq. 2.3
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and discovery. More than 1000 2D and 3Dmolecular descriptors are discovered and

identified by the scientific community; a few are listed here such as Individual (Mol.

Wt, Volume, H-AcceptorCount, H-DonorCount, RotatableBondCount, XlogP,

slogp, smr, polarizabilityAHC, and polarizabilityAHP), Retention Index (chi),

Atomic valence connectivity index (chiv), Path Count, Chi Chain, Chiv Chain,

Chain Path Count, Cluster, Path Cluster, Kappa, Element Count, Dipole Moment,

Electrostatic, Distance Based Topological, Estate Numbers, Estate Contributions,

Information Theory Index, Semi Empirical, Hydrophobicity XlogpA, Hydropho-

bicity XlogpK, Hydrophobicity SlogpA, Hydrophobicity SlogpK, and Polar Surface

Area (http://www.vlifesciences.com/support/QSAR_Descriptor_Definations_faqs_

Answer.php).

2.6.1.1 Model Development

QSAR is among the most extensively used computational technique for ligand-

based design, and Bohari et al. have recently reviewed the application of a variety

of molecular descriptors like quantum chemical, molecular mechanics, conceptual

density functional theory (DFT), and molecular docking-based descriptors for

predicting biological activity (Bohari et al. 2011). A summary of relevant data

analysis method, regression analysis, and model validation process is provided

below along with some examples.

2.6.1.2 Data Analysis Method

Principal components analysis (PCA) and cluster analysis are two widely used

methods in 2D and 3D QSAR data analysis. PCA was first invented by Karl Pearson

in 1901 and is one of the most popular and primary data reduction techniques. PCA

aims at data transformation from large multidimensions to low-dimensional repre-

sentation, known as data reduction (Pearson 1901; http://www.doc.ic.ac.uk/~dfg/

ProbabilisticInference/IDAPILecture15.pdf). Cluster analysis technique is used to

partition the data set (with typical molecular properties) into class and categories.

2.6.1.3 Regression Method

Regression analysis is a statistical process for estimating the relationships among

dependent and independent variables by the use of modeling techniques

implementing on several variables.

Partial least square (PLS) regression technique is used when the number of

descriptors (independent variables) is greater than the number of compounds

(data points) and/or there are any factors leading to correlations between variables

(Martens and Naes 1989; H€oskuldsson 1988; Eriksson et al. 2001).
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Multiple linear regression (MLR) is an easily interpretable mathematical expres-

sion and primary method to construct QSAR/QSPR models, but it often fails in

modeling highly correlated data sets. A few new methods have been developed

using MLR such as best multiple linear regression (BMLR), heuristic method

(HM), genetic algorithm-based multiple linear regression (GA-MLR), stepwise

MLR, factor analysis MLR, and so on. Other methods such as self-learning and

machine learning algorithms have also been developed to fit the data into the

equations such as neural network (NN), support vector machine (SVM), and its

variants: least square support vector machine (LS-SVM), grid search support vector

machine (GS-SVM), potential support vector machine (P-SVM), and genetic algo-

rithms support vector machine (GASVM) (Liu and Long 2009).

2.6.1.4 2D QSAR (Girgis et al. 2015)

Girgis and his team synthesized a total of 19 dispiro [3H-indole-3,20-pyrrolidine-
30,300-piperidines] (Fig. 2.5) of which 11–19 analogs were screened against HeLa

(cervical). Compounds 13, 14, and 16 reveal higher potency (IC50 ¼ 4.87, 5.75,

and 7.25 μM, respectively) against HeLa (cervical) cell line than the standard

reference cisplatin (IC50 ¼ 7.71 μM) (clinically used against cervical carcinoma).

See Table 2.2.

Structure–activity relationships (SAR) based on the experimental antitumor

activity against HeLa (cervical carcinoma) reveal that the nature of the substituent

attached to the phenyl group at C-40 and consequently the exocyclic olefinic linkage
seem to be a controlling factor governing the antitumor properties. Substitution of

this phenyl group by fluorine atom enhances the observed antitumor properties

more than two chlorine atoms, as exhibited in pairs 11, 13 (IC50 ¼ 16.69, 4.87 μM,

respectively) and 12, 14 (IC50¼ 12.71, 5.75 μM, respectively) (Tables 2.3 and 2.4).

The basic idea behind QSAR is to generate a relationship between the chemical

structure of an organic compound and its physiochemical properties. In the partial

pharmacologically active data set mentioned in the present study, external data

points were also considered. Spiro-alkaloids with similar scaffold are considered as

an external data point and their biological activities were determined, but the same

standard technique is earlier followed in the present study.

For the QSAR model development, compounds 11, 13, 15–17, and 19 were

considered from Table 2.2 in addition to compounds 20–44 from Table 2.3. Thirty-

one derivatives of spiro-alkaloids were used as a training set. The test set (external

data set for validation) from synthesized analogs was considered representing high

and low potent antitumor active agents 12, 14, and 18 (Table 2.2). Selected

compounds geometry is optimized using molecular mechanics force field (MM+),

followed by a semiempirical AM1 method implemented in the Hyperchem. A total

of 728 two-dimensional molecular descriptors were calculated using CODESSA-

Pro software including constitutional, topological, geometrical, charge-related,

semiempirical, molecular-type, atomic-type, and bond-type descriptors for the

training set (Table 2.3) and test set (Table 2.4) data. Log property (1/log) and
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biological activity/IC 50 value were considered for all the training and test sets

against HeLa (cervical) cell lines of the training set compounds for the present

QSAR modeling.

Best multi-linear regression (BMLR) was utilized which performs a stepwise

search for the best n-parameter regression equations (where n stands for the number

of descriptors used), based on the highest R2 (squared correlation coefficient), Rcv
2OO

(squared cross-validation “leave-one-out (LOO)” coefficient), Rcv
2MO

(squared cross-validation “leave-many-out (LMO)” coefficient), Fisher statisti-

cal significance criteria (F) values, and standard deviation (S2). Statistical

characteristics of the QSAR models are presented in Table 2.5.

Fig. 2.5 Synthesized

dispiro [3H-indole-3,20-

pyrrolidine-30,300-

piperidines] derivatives

(Girgis et al. 2015)

Table 2.2 Antitumor properties of the synthesized compounds 11–19 (tested against HeLa)

No R R1 X IC50a at, μg/ml (μM) HeLa

11 2,4-Cl2C6H3 Et H 10.27 (16.69)

12 2,4-Cl2C6H3 Et Cl 8.26 (12.71)

13 4-FC6H4 Et H 2.50 (4.87)

14 4-FC6H4 Et Cl 3.15 (5.75)

15 2-Thienyl Et H 5.33 (10.89)

16 2-Thienyl Et Cl 3.80 (7.25)

17 3-Pyridinyl Me H 9.35 (20.08)

18 3-Pyridinyl Et H 5.16 (10.76)

19 3-Pyridinyl Et Cl 11.58 (22.53)

* Doxorubicin hydrochloride – – 4.19 (7.22)

** Cisplatin – – 4.19 (7.71)
aIC50 ¼ concentration required to produce 50% inhibition of cell growth compared to control

experimental data

Girgis et al. (2015)

* and ** stands for standard drug
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Descriptors enlisted in the table are the chief contributors in the model devel-

opment. Above all Min # HA and # HD molecular-type descriptor explaining the

bioactive agent as hydrogen acceptor/donor is important in governing the QSAR

model with its t-criterion (9.200) and minimum coefficient with (0.247). The

second largest contributing molecular descriptor is FNSA-2 fractional PNSA

(PNSA-2/TMSA), which is a charge-related descriptor with t-criterion (5.546)

Table 2.3 Observed and predicated values of training set compounds 11, 13, 15–17, and 19–44

according to the multi-linear QSAR models

Entry Comp R R1 X

HeLa cervical cell line

Observed IC50

(μM)

Estimated IC50

(μM) Error

1 11 2,4-Cl2C6H3 Et H 16.69 12.26 4.43

2 13 4-FC6H4 Et H 4.87 5.94 1.07

3 15 2-Thienyl Et H 10.89 10.48 0.41

4 16 2-Thienyl Et Cl 7.25 7.86 0.61

5 17 3-Pyridinyl Me H 20.08 26.07 5.99

6 19 3-Pyridinyl Et Cl 22.53 20.89 1.64

7 20 Ph Me H 6.21 5.92 0.29

8 21 Ph Me Cl 5.92 5.41 0.51

9 22 4-ClC6H4 Me H 6.74 6.3 0.44

10 23 4-ClC6H4 Me Cl 5.08 5.72 0.64

11 24 4-ClC6H4 Et Cl 4.96 5.28 0.32

12 25 4-ClC6H4 Me OMe 5.78 5.9 0.12

13 26 4-ClC6H4 Et OMe 5.2 5.43 0.23

14 27 4-FC6H4 Me H 6.51 5.95 0.56

15 28 4-FC6H4 Me Cl 5.15 5.71 0.56

16 29 4-FC6H4 Me OMe 5.44 6.21 0.77

17 30 4-H3CC6H4 Me H 8.64 7.09 1.55

18 31 4-H3CC6H4 Me Cl 6.65 6.71 0.06

19 32 4-H3CC6H4 Et Cl 5.55 7.78 2.23

20 33 4-H3CC6H4 Me OMe 6.96 7.68 0.72

21 34 4-H3COC6H4 Me H 6.45 7.17 0.72

22 35 4-H3COC6H4 Et H 7.22 6.54 0.68

23 36 4-H3COC6H4 Me Cl 11.2 6.53 4.67

24 37 4-H3COC6H4 Et Cl 8.74 6.27 2.47

25 38 4-H3COC6H4 Me OMe 6.1 6.94 0.84

26 39 4-H3COC6H4 Et OMe 5.51 7.84 2.33

27 40 4-Me2NC6H4 Me Cl 24.36 20.24 4.12

28 41 2-Thienyl Me H 8.94 8.18 0.76

29 42 2-Thienyl Me Cl 6.86 7.98 1.12

30 43 2-Thienyl Me OMe 9.65 10.77 1.12

31 44 5-Methyl-2-

furanyl

Me Cl 9.88 8.46 1.42

Girgis et al. (2015)
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and has the highest coefficient value of 0.596 controlling the QSAR model that is

given by

FNSA2 ¼ PNSA2

TMSA
ð2:6Þ

The third and last molecular descriptor of HeLa QSAR is depicted with

t-criterion (4.424), and the second most effective parameter controlling the QSAR

model based on its coefficient (0.426) is HASA-2/SQRT(TMSA), which is also a

charge-related descriptor. The area-weighted surface charge of hydrogen-bonding

acceptor atoms (HASA2) is determined by

HASA2 ¼
X
A

qA
ffiffiffiffiffi
SA

p
ffiffiffiffiffiffiffi
Stot

p AE XH�acceptor ð2:7Þ

2.6.1.5 QSAR Model Validation

The reliability and statistical validity of QSAR model solely depend on the internal

and external validation procedures. In the present QSAR model, the internal

validation is assessed by CODESSA-Pro technique employing both leave one out

(LOO) and leave many out (LMO). The observed correlations from the internal

Table 2.4 Observed and predicated values of external test set compounds 12, 14, and 18 according

to the multi-linear QSAR models

Entry Comp R R1 X

HeLa cervical cell line

Observed IC50

(μM)

Estimated IC50

(μM) Error

1 12 2,4-

Cl2C6H3

Et Cl 12.71 8.99 3.72

2 14 4-FC6H4 Et Cl 5.75 5.64 0.11

3 18 3-Pyridinyl Et H 10.76 23.7 12.94

Girgis et al. (2015)

Table 2.5 Descriptor of the best multi-linear QSAR model for the HeLa (cervical) tumor cell line

active agents

N ¼ 31, n ¼ 3, R2 ¼ 0.815, Rcv
2OO ¼ 0.738, Rcv

2MO ¼ 0.776, F ¼ 39.615, s2 ¼ 0.008

Entry ID Coefficient s T Descriptor

1 0 0.141 0.185 0.763 Intercept

2 D1 0.247 0.027 9.2 Min.(#HA, #HD) (MOPAC PC)

3 D2 0.596 0.107 5.546 FNSA-2 fractional PNSA (PNSA-2/TMSA)

(MOPAC PC)

4 D3 0.426 0.096 4.424 HASA-2/SQRT(TMSA) (Zefirov PC) (all)

Girgis et al. (2015)
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validation are Rcv
2OO ¼ 0.738 and Rcv

2MO ¼ 0.776. The squared correlation

coefficient of the designed QSAR model is R2 ¼ 0.815, the standard deviation of

the regression is S2¼ 0.008, and the Fischer test value is F¼ 39.615 that reflects the

ratio of the variance explained by the model and the variance due to their errors.

The most potent synthesized analog 13, from the training set, exhibited an IC50 of

5.94 μM on the HeLa QSAR model with an experimental value of 4.87 μM and an

error of 1.07. The other compounds from the training data set 16, 20–29, 31, 33–35,

38, and 42 relative to cisplatin standard reference clinically used against cervical

carcinoma (IC50 ¼ 7.71 μM) showed predicted experimental values with an error

range of 0.06–1.12. Compounds 32 and 39 were considered potent analogs against

cervical carcinoma (IC50 ¼ 5.55, 5.51) and had predicted values (IC50 ¼ 7.78,

7.84) with a greater error range of 2.23 and 2.33, respectively. Among the mild

antitumor active agents against HeLa cell line, compounds 15, 30, 37, 41, 43, and

44 (IC50 range ¼ 8.64–10.89 μM) revealed predicted potency (IC50

range ¼ 6.27–10.77 μM) with a relatively larger error range (0.41–2.47) than the

high potent analogs. Among the low potent analogs against HeLa cell lines,

compounds 11, 17, 19, 36, and 40 (IC50 range ¼ 11.20–24.36 μM) revealed large

deviation in the predicted potency (IC50 range ¼ 6.53–26.07 μM) with an error

range of 1.64–5.99 (Table 2.5). From all the above statistical observations, the

attained HeLa QSARmodel can be considered a good predicative model to produce

high potent HeLa antitumor hits compared to those of mild or low potency.

Compounds 12, 14, and 18 were selected for the purpose of validating and

examining the predictive ability. The selected test set exhibited experimentally

high or low potency against the tested cell line. Table 2.4 reveals the experimental

and predicted IC50 values of the test set. Compound 14, considered as high potent

against the HeLa cell line relative to the standard reference (cisplatin), had an

experimental value of IC50 ¼ 5.75 μM and a predicted value of IC50 ¼ 5.64 μM
with a minimum error of 0.11. However, compounds 12 and 18, considered low

potent activity against HeLa cell line, had experimental values of IC50¼ 12.71 and

10.76 μM and predicted IC50 values of 8.99 and 23.70 μM along with much greater

error values of 3.72 and 12.94, respectively.

2.7 Pharmacokinetic and Pharmacodynamic (PKPD)
Simulation (Nielsen and Friberg 2013)

Rowland and Tozer state in 2011 that pharmacokinetic (PK) has been defined as

“how the body handles the drug” and pharmacodynamic (PD) has been defined as

“how the drug affects the body.” PK and PD are the vital mechanisms of the modern

drug development process. Characterization of PKPD effectively suggests that the

concentration that leads to desired effects and least side effects, with an appropriate

dose regimen, can be computed.
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2.7.1 Pharmacokinetics

Being a central part of clinical pharmacology, PK designates the link between drug

dosing and drug concentration-time profile in the body. The determination of drug

concentration (C) in plasma and its change from an initial concentration (C0) with

respect to time (t) is given by an exponential function:

C tð Þ ¼ C0∗e�ke∗t ð2:8Þ

Equation 2.8 describes the single PK model with decline in concentration by

single distribution phase. Considering the elimination rate for a given system, the

change over the time points is directly proportional to the concentration or amount

remaining in the system and elimination rate constant (ke), which is of the first order
and has a unit of per time (h�1):

dc

dt
¼ �ke∗C ð2:9Þ

where ke is the parameter to be estimated based on the data and is inversely related

to half-life (t1/2) of the drug. From Eqs. 2.8 and 2.9, it follows that once ke is known,
the drug concentration can be predicted at any time point for a given C0.

ke is determined by the apparent volume of distribution (Vd) as well as clearance

(CL) that describe the elimination capacity, which is typically governed by liver and

kidney function. For a drug with immediate distribution and a CL value indepen-

dent of concentration, ke can be described as

ke ¼ CL

Vd
ð2:10Þ

Often the nature of a drug is more complex because the distribution of the drug

inside the body is not immediate due to the effect of its surrounding environment.

Hence, the concentration-time course of drug distribution can be better explained

by two or more compartments. The differential equations for a two-compartment

model can be written as

dAc

dt
¼ �CL

Vc
∗Ac � Q

Vc
∗Ac þ Q

Vp
∗Ap ð2:11Þ

dAp

dt
¼ �Q

Vp

∗

Ap þ Q

Vc
∗AC ð2:12Þ

where Ac and Ap are the amounts in the central and peripheral compartments and Vc

and Vp are the corresponding volumes of distribution. Q represents

intercompartmental clearance. An intravenously administered dose would be

given into the central compartment.
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The total exposure is often described as the area under the concentration-time

curve (AUC). AUC is obtained by integrating the drug concentration-time profile

and can also be computed as the systemically available dose over CL. The bio-

availability, F, determines the fraction of an extravascular dose that reaches the

systemic circulation and is thereby a measure of the extent of absorption. The rate

of absorption is often characterized by a first-order rate constant, ka.

2.7.2 Pharmacodynamics

Pharmacodynamics/PD designates the association among concentration and both

the desired and undesirable effects by the given drug. The mathematical function

describing the PKPD relationship is a sigmoidal. Emax model given by

E tð Þ ¼ E0 þ Emax∗C tð Þγ
ECy

50 þ C tð Þγ ð2:13Þ

where Emax is the maximum effect that can be achieved by the drug in the

investigated system and EC50 is the drug concentration that results in half of the

maximum effect. EC50 is inversely related to the potency. γ is the Hill or

sigmoidicity factor that determines the steepness of the relationship but is in

many cases not statistically significant from 1.

However, there are often situations where sufficiently high concentrations can-

not be achieved to estimate Emax, and simplifications can be made to estimate fewer

parameters. When C « EC50, the Emax model collapses to a linear model (γ ¼ 1) or a

power function (γ 6¼ 1) with coefficient slope as shown below:

E tð Þ ¼ E0 þ Slope∗C tð Þγ ð2:14Þ

The underlying E0 is not always constant over the study period. For example, the

effect variable may vary because of an underlying disease, such as fluctuations in

glucose in the event of diabetes or a diurnal rhythm in blood pressure.

2.8 Conclusion

Translational science in bioinformatics and drug discovery provides a powerful

method especially when used as a tool within an armamentarium for discovering

new target, drug leads, and novel approach in diagnostic and treatment for the

betterment of society. Genomic technologies and NGS methods have proven to be

the keystone of advanced research. The identification of genes’ role in disease and

disorder makes it possible to design personalized medicine approach, where a

single or a few genes can be targeted or may act as a biomarker in the diagnosis
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and treatment of disease and disorder. Data from public domain chemical libraries

selected for appropriate target with structure-based and ligand-based discovery can

create a very promising lead which may continue to clinical trials. Simulation study

of pharmacokinetic and pharmacodynamic behavior of a chemical compound helps

us estimate the concentration and dose value in computed form that can signifi-

cantly reduce the overconcentration and dosing effects. As bioinformatics develops

further, it is expected that genomics, proteomics, drug discovery, and computa-

tional power will continuously explode with new advances in therapeutic applica-

tions; new targets and leads may be brought to marketplace more rapidly each year.
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