
Chapter 17

Computation in Medicine: Medical Image
Analysis and Visualization

Adekunle Micheal Adeshina

Abstract Computation in medicine has recently revolutionized those ideal pro-

cedures for translating fundamentally proven mathematical concepts in medical

imaging and analysis into relevant routines of algorithms. Modern computational

techniques, such as CUDA, a parallel computing platform, enabling direct access to

the GPU instruction and parallel processing capability, are currently providing

flexibility in the use of high-performance computational approaches. Similarly

are the other software optimization procedures that assure low-cost and high-

throughput visualization of medical datasets. Without mincing words, significant

impact of such hardware and software optimization algorithms in medical image

analysis and visualization cannot be overemphasized. In the same vein, acquisition

of appropriate clinical datasets plays a great role in the accurate diagnosis of

diseases and therapy management. The use of appropriate datasets and suitable

image modalities are both important in order to successfully prove the effectiveness

of any applied computational approaches in medical image analysis and visualiza-

tion. Moreover, data reconstruction and representation from 2-D to 3-D usually

follow notable mathematical approaches such as Euclidean plane, projective plane,

and Cartesian coordinate systems and involve other interactive properties such as

rotation, scaling, and translation which are also relying on various renderable

concepts of data representation. This chapter documents some of the image pro-

cedures for acquiring morphological and functional information of patients with

more emphasis on mathematical computations of commonly used techniques, such

as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI).

Interestingly, a typical framework for medical imaging and visualization has been

conceptualized in the course of this documentation. Relevant approaches to medical

data representation, restructuring, and modeling procedures such as volume seg-

mentation, classification, shading, gradient computation, interpolation, and

resampling are presented along with all the significant processes required before

generating informative composition of images. In order to facilitate better
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understanding of some of the concepts introduced in this chapter, real-world

examples of CT and MRI datasets in 2-D and in their 3-D correspondence are

showcased to depict the significance of the mapped structures in the 2-D.

Keywords CUDA • GPU • Image analysis • Medical imaging • Visualization

17.1 Introduction

Recent evolvement of translational informatics has been a strong driving force for

translation of laboratories’ data. The term “translation” is seen to involve correlat-

ing genotype with phenotype, which often requires dealing with information at all

structural levels, ranging from molecules and cells to tissues and organs and from

individuals to populations (Chen et al. 2013). A relatively new concept was coined

with translational bioinformatics, introducing profound changes which include the

identification of conviction biology as an informational science; the application of

high-throughput genomic and proteomic platforms for global analyses; the require-

ment to bring computer science, mathematics, and statistics into biology; the use of

model organisms as Rosetta Stones for deciphering biological complexity; and also

the power of comparative genomics for coming to understanding the logic of life

(Hood 2003). Apparently, such conceptual analysis opens up a new dawn in

medicine. Translational bioinformatics involves the development and the use of

computational methods that can reason over the enormous amounts of life science

data being collected and stored for the purpose of creating new tools for medicine

(Butte 2008). This field has been identified as a revolutional domain addressing

some of the hindering computational challenges in medicine. Translational bioin-

formatics is seen as an emerging field addressing the computational challenges in

biomedical research and the analysis of the vast amount of clinical data generated

from it (Butte 2008). Technically, the term “computational” involves certain

specific procedures for translating those ideal and fundamentally proven mathe-

matical concepts into routines of algorithms. However, all the accurate diagnosis,

surgical treatment, and assessment of response to treatment depend on the ability to

see through the affected tissues or organs (Aldrich et al. 2012), and this brings

medical image analysis and visualization forward into play in translational bioin-

formatics, thereby forming both combinatory and an integral part of the revolu-

tionary processes of translational bioinformatics. Those actions requiring the use of

scientific mathematics and execution of algorithms in order to attain significant and

more precise results in medical analysis are deeply rooted in the word computation
in medicine.

Computational approaches in medical image analysis have also gain more

attention due to the recent overwhelming rate of generation of biomolecular data.

This accumulated information explosion is being driven by the development of

low-cost, high-throughput experimental technologies in genomics, proteomics, and

molecular imaging, among others, tying the anticipated success in the life sciences
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to our ability to rationally interpret these large-scale, high-dimensional datasets into

clinically understandable and useful information, which in turn requires us to adopt

advances in informatics (Chen et al. 2013). Overview of medical imaging and

visualization architecture is presented in Fig. 17.1. However, with current align-

ment of computational medicine with high-performance computation, computer

models and efficient software could be leveraged in figuring out, within a consid-

erable interactive speed, how diseases develop and how to thwart it. Invariably,

paramedical research and computational approaches seem inseparable. This chapter

introduces computation in medicine. Medical image acquisition techniques, their

numerical computations, structuring, and data visualization procedures are

presented.

Fig. 17.1 Medical imaging and visualization architecture
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17.2 Acquisition of Medical Image Data

In medical diagnosis and disease therapy management, acquisition of medical

image data is a crucial process immediately after the diagnosis of the concerned

patients. However, in certain circumstances, acquisition of patient images may be

considered a priority, overriding the usual medical doctors’ preexamination and

interpretation of the health situation of patients. Such cases could be in the case of

emergency situation either as a result of severe injury especially when handling

unconscious patients. Nevertheless, in clinical practices, medical image data could

be acquired for diagnosis, therapy planning, intraoperative navigation, or postop-

erative monitoring (Preim and Bartz 2007). According to Dhawan et al. (2008),

medical imaging could be seen as a process of collecting information about a

specific physiological structure (an organ or tissue) using a predefined characteristic

property that is displayed in the form of an image. Such predefined characteristic

property may be physical properties such density, absorbance, or conductivity.

Image acquisition technique required in any case largely depends on the intended

information from patient medical examination. Image modalities such X-ray,

computed tomography (CT), and magnetic resonance imaging (MRI) are useful

in extracting “morphological information” from the patient. Other specialized MRI

techniques include MR spectroscopy, MR angiography, and MR microscopy.

However, in order to obtain physiological or functional information from patients,

positron emission tomography (PET) and single-photon emission computerized

tomography (SPECT) are appropriate. Diffusion tensor imaging (DTI) also plays

significant roles in diagnosis procedures that require measuring of the diffusion of

water and in tracking of the brain’s nerve fibers, the white matter. Apparently,

suitability of image modalities solemnly depends on the required medical exami-

nation, and thus, image modalities are seen to be complementary to each other in

the medical diagnosis and disease and therapy management procedures (Adeshina

et al. 2012). This section briefly discusses the X-ray, computed tomography, and

magnetic resonance imaging being the most commonly used image modalities.

17.2.1 X-Ray

In 1895, Wilhelm Conrad R€ontgen (or “Roentgen” in anglicized typography)

discovered X-ray (Roentgen 1898) as a high-voltage discharge between electrodes

in a gas at very low pressure producing a penetrating radiation which causes certain

materials to fluoresce visible light. X-ray is a medical imaging technique that

utilizes the radiation that is partly transmitted and partly absorbed through irradi-

ated objects. The X-ray photons are a form of electromagnetic radiation produced

following the ejection of an inner orbital electron and subsequent transition of

atomic orbital electrons from states of high to low energy (Jenkins 2000). X-ray is

widely used in projection of images based on absorption and scattering with very
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high spatial resolution, and it has been seen to be greatly useful in imaging fractured

bones, such as a broken arm or wrist, often used by surgeons during therapeutic

procedures, such as a coronary angioplasty, to help guide equipment to the area

being treated and in highlighting a lung infection, such as pneumonia. Meanwhile,

X-rays can only produce 2-D images; it exposes patients to radiation and not

suitable for imaging soft tissues. According to Bingham (1998), considering the

following assumptions, the inside structures of an object could be investigated:

1. There exists an object with n-dimensional space where n is fixed as 2.

2. f(x) is the X-ray attenuation coefficient at point X 2  where the attenuation

coefficinet depends on the material through which the ray passes. Therefore, f is
expected to give information about object.

3. Suppose the object is contained in a ball of radiusRwith the center at the origin

and that the X-ray attenuation coefficient f is zero outside the object.

4. If the object is x-rayed in a direction θ E Sn� 1 from a point a E A : ¼ Sn� 1(0, R),
the attenuation of the X-ray intensity I at each point a+ tθ, t� 0.

According to assumption (iii), we can have Eq. (17.1):

supp f � B 0;Rð Þ ð17:1Þ

and then Eq. (17.2):

⟺dI ¼ f aþ tθð Þ Idt ð17:2Þ

By solving this differential equation, we see that the intensity of the X-ray

measured by a detector situated behind the object is as Eq. (17.3):

Imeas ¼ I0 exp ⟺

Z 1

0

f aþ tθð Þ dt
� �

ð17:3Þ

Therefore, we can derive formulae for reconstructing f(x) from the measure-

ments Imeas or equivalently from Eq. (17.4):

Z 1

0

f aþ tθð Þdt ¼ ln
IO
Imeas

� �
ð17:4Þ

The above equation could be seen as cases of having different combinations of

a E A and θ2 Sn� 1.

17.2.2 Computed Tomography

X-ray imaging techniques follow the same scenario of allowing radiation to pass

through different parts of the patients’ body. Such passage of X-rays is dependent
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on the amount of X-rays that could be absorbed or exit the body of the patients,

which in turn determines the radiation dose of the patient. Computed tomography

(CT) is not exceptional to this; however, in CT multiple X-ray images are taken

from different directions producing cross-sectional images or “slices” of patients’
anatomy. The cross-sectional images could be used in medical diagnosis and

disease therapy. CT entails the reconstruction of a function f from a finite number

of line integrals f (Faridani and Ritman 2000). With such understanding, it becomes

apparent that the goal of CT is to recover an approximation to f(x) from CT datasets

over a finite number of lines.

X-rays from a located source travel and pass through the patient. However, some

energy of rays are attenuated, and rays with less energy eventually reach the

detector. Rays of CT are able to produce a map of gray values representing a

close resemblance of the insides of the patient. This situation can be understood

either through a monochromatic beam or polychromatic beam considering the

intensity Iin at distance x ; Iout, the intensity at the detector’ s end ; and μ, the
attenuation coefficient or absorption coefficient. If we consider a situation whereby

the radiation passes through a body with the same property at every point, a

homogeneous body, we expect the intensity of radiation passing through the body

to decrease exponentially with distance; hence, we have Eq. (17.5):

I xð Þ ¼ Iinexp �μxð Þ ð17:5Þ

Therefore, if we differentiate Eq. (17.5),

dI

dx
¼ �μI ð17:6Þ

However, for a nonhomogeneous body where the absorption coefficient varies

with distance x,

I xð Þ ¼ Iin exp �
Z

udx

� �
ð17:7Þ

Similarly, we can consider a specific interval a, b where a and b have values

between 0 and n in order to get a more specific approximation, thus Eq. (17.8):

In ¼ I nð Þ ¼ Iinexp �
Z b

a

μdx

� �
ð17:8Þ

If we know In, the total absorption, At, could be calculated:

At ¼
Z b

a

μdx ¼ �log
In
Iin

� �
¼ log

Iin
In

ð17:9Þ

However, even if we know Iin and In, we still cannot clearly say the distribution

of the material within the interval a, b as being illustrated. Resolution of this was
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first attempted by Radon (1917). Similarly, the absorption coefficient could be

analyzed following a related approach based on a number of assumptions

established for computed tomography (Faridani 2003):

1. f(x) ¼ density of the cross-section at x 2 2

2. L ¼ the line of X-rays

3. I(x) ¼ the intensity of X-rays at x2 L

Apparently, in theoretical physics, I(x) decreases proportional to f(x); thereby,
we can have Eqs. (17.10) and (17.11):

dI=dx ¼ �f xð ÞI xð Þ ð17:10Þ

dI=I ¼ �f xð Þdx ð17:11Þ

Therefore we can have the measured data calculated as,

meas ¼ Iin
Iout

¼ eRF Lð Þ ð17:12Þ

where the total attenuation along L,

RF Lð Þ ¼
Z
x2L

f xð Þds ð17:13Þ

Radon (1917) referred to the expression in Eq. (17.8) as the total “material”

along L. To construct the absorption coefficient μ (x, y) as a function of position

using Radon approach, we assume:

1. Projection is a line integral.

2. Projection p (s, ∅) at angle∅ , s is coordinate on detector.

The Radon transform (RT) of a distribution f(x; y) is given by Eq. (17.14):

p s;∅ð Þ ¼
Z1
�1

Z1
�1

f x; yð Þ:δ x cos∅þ y sin∅� sð Þdxdy ð17:14Þ

where δ is the Dirac delta function and x, y, ∅ , and s are respective coordinates .
The Radon transform of an off� center point source is a sinusoid ; hence, the

function p(s, ∅) is usually being referred to as a sinogram.

17 Computation in Medicine: Medical Image Analysis and Visualization 415



17.2.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an application of nuclear magnetic resonance

(NMR) which is a subtle quantum mechanical phenomenon that has played a major

role in medical imaging revolution over the last 30 years. Hydrogen in water

molecules possesses an inherent ability referred to as spin which gives it potential

to act as magnet. Nuclear magnetic resonance is a phenomenon which occurs when

the nuclei of certain atoms are immersed in a static magnetic field and exposed to

second oscillating magnetic field (Hornak 1997). The spin property in proton makes

the nucleus that produces NMR signal. Mathematical description of NMR could be

better presented using 2-D Fourier transform, a standard Fourier transformation of

two variables f x; yð Þ, wave forms e2πi kxð xþ kyyÞ and k� space kxky
� �

:For f 2 L2

R2
� �

, the Fourier transformation of f is presented in Eq. (17.15):

F fð Þ kx; ky
� � ¼ Z 1

�1

Z 1

�1
f x; yð Þe�i2π kxxþkyyð Þ dxdy ð17:15Þ

In the same vein, we can re-represent Eq. (17.15) to portray a reverse approach to

Fourier transformation as in Eq. (17.16):

F�1 fð Þ x;ð Þ ¼
Z 1

�1

Z 1

�1
f x; yð Þe�i2π kxxþkyyð Þ dkxdky ð17:16Þ

MRI is the most suitable and widely used imaging technique for brain and other

soft tissues. It is capable of producing detail image of patients in any plane. MRI is

highly flexible to use and it provides better spatial resolution with higher discrim-

ination, making it very relevance in contrasting soft tissue. Moreover, unlike X-ray

and CT, MRI has no ionizing radiation.

17.3 Medical Data Visualization

17.3.1 Reconstruction and Data Representation

Projective plane is seen as a geometric structure with extended concept of a plane.

However, in ordinary Euclidean plane, unless the line crosses each other and

intersects, parallel lines do not intersect. Meanwhile a projective plane with any

two lines intersect in one and only one point called vanishing point, a point where

parallel lines that are not parallel to the image plane appear to converge, which

could be better interpreted with projective plane.

In the development of medical imaging and visualization framework, using

homogeneous coordinate principle, a point x, y of 2�D slice in the Euclidean

plane is represented in the projective plane (3�D) by adding a third
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coordinate 1 at the end, x, y, 1 . This is based on the fundamental Euclidean theorem

which states that a point in an n� dimensional Euclidean space is

represented as appoint in an (n+ 1)-dimensional projective space. However, overall

scaling is not important.

The MRI slices are abstractly represented as stack of images as in Fig. 17.2. It is

assumed that there are points Ui with Ui¼ 1, 2, 3, 4 arranged parallel in line with

plane π . Since there exist suchmany slices, we assume the slices aremoved up a dis-

tance Z as shown in Fig. 17.2. With such moved distance of the slices, there will be

a formation of new sets of points Ui0 with i0 ¼ 1, 2, 3, 4 leaning on a new plane π0:
The first issue to address is estimation of the new points Ui0 automatically which

can be done by estimating directly from the first plane π.
At this point, it can be assumed that U1 and U3 are known ; hence, U2 and U4 can

be estimated and computed by applying intrinsic properties of the vanishing points.

Figure 17.2 shows the point estimation of 2-D slices. The vanishing point of the

parallel lines leaning on plane π could be computed as in Eq. (17.17):

V ¼ U1 � U2ð Þ � U3 � U4ð Þ ð17:17Þ

However, based on projective geometry, which describes the physical charac-

teristics of the virtual camera and the relationships between the images, the

projection of a point Xw in the object space to a point Ui in the image space using

projective camera is expressed in terms of a direct linear mapping in homogeneous

coordinates as in Eq. (17.18):

λUi ¼ PXw ¼ P1 P2 P3 P4½ �
X
Y
Z
1

2
64

3
75 ð17:18Þ

Fig. 17.2 Point estimation

of 2-D slices
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where λ is the scale factor due to projective equivalency of (kx ; ky ; k)¼ (x; y; 1),
P is a 3∗4 camera projection matrix, and Pi is the ith column of P.

As earlier discussed, with homogeneous coordinate representation, value 1 in the

last row of the vector denotes that the defined point leans on the image plane .

However, if the point in the object space leans on ground plane Z¼ 0, hence the

linear mapping will change to Eq. (17.19):

sU ¼ HX0
w ¼ P1 P2 P4½ �

X
Y
1

2
4

3
5 ð17:19Þ

H is the homography matrix mapping points lying on a plane in the object space

across different images ; s introduced scaling factor in the mapping equation stems

from setting Z to 0.

In order to establish relationship between Ui and U
0
i, we can restate Eq. (17.18)

above as (17.20):

λUi ¼ P1 P2 P4½ �
Xi

Yi

1

2
4

3
5þ P3Z ð17:20Þ

where P3 corresponds to the vanishing point in the direction of Z axis or the normal

of the ground plane.

The main target is to project the lines and points that made up the 2-D slices in

3-D. The Euclidean formula for s line is ax+ ay+ c¼ 0; this is regarded as nonzero

scaling factor, and since the equation is unaffected by scaling, we can however

arrive at the following:

qX þ rY þ sZ ¼ 0

where q, r, and s are the homogeneous coordinates of points (x, y) in the line:

tTP ¼ PTt ¼ 0

t ¼ q, r, s½ �T representing the line

p ¼ X Y Z½ �Trepresenting the point

Substituting Vz for P3 in Eq. (17.20) and combining the result with Eq. (17.19),

we have

λiUi ¼ siUi þ Vz Z ð17:21Þ

λi and si are the unknowns from this equation, though they were both defined

earlier in Eq. (17.18) and Eq. (17.19). We can estimate the respective values by

using Eq. (17.22):
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λi
si

� �
¼ Aj

TAi

� ��1
AT

ibi ð17:22Þ

Ai ¼ Ui j � Ui½ � ð17:23Þ
bi ¼ Vz Z and Vz ¼ P3

Since si is estimated, we can continue setting different values for Z in

order to estimate any other image point along the lines . Hence, we can equally

estimate U2 and U4 as follows:

U2 ¼ U2 � Vzð Þ � U1 � Vð Þ ð17:24Þ
U4 ¼ U4 � Vzð Þ � U3 � Vð Þ ð17:25Þ

17.3.1.1 Renderable Representation

Memory system architecture of medical image analysis and visualization frame-

work is typically concerned with making the data available for its optimal archi-

tectural use. It is at this stage that series of the original data slices are stacked,

shaped, and positioned for flow. Properties such as rotation, scaling, and transla-
tion are likewise necessary in the data for better value distribution. Coordinate
system is greatly useful for the success of data preparation; hence, medical image

analysis and visualization framework is usually developed to use the model, world,
view, and display coordinate systems.

The model coordinate system is typically a local Cartesian coordinate system.
As the name model implies, it is the coordinate system in which model is defined.

This type of coordinate system is locally defined by the modeler. We can refer to

this as an inherent coordinate system based on the decision of the person that

generates it. The units used in its definition may be meters, inches, or feet and its

axis might be arbitrary; these are based on discretion of the modeler.

The world coordinate system is the 3-D space where actors are positioned.

Unlike model coordinate system, which is a typical local Cartesian coordinate

system, world coordinate system is the only standard coordinate system where all

actors locally defined coordinate systems are converted to. The world coordinate

system is the coordinate system where all the actors are scaled, rotated, and
translated into. Moreover, the position and orientation of cameras and light are

specified in the world coordinate system.

The view coordinate system is directly referenced to the camera; it represents
what is visible to the camera. It consists of x, y, z values . The x and y specify

location of the image plane and it ranges from� 1, 1, while z is the depth coordi-
nate that represents the distance or ranges from the camera . In order to convert from

the world coordinates to view coordinates, a four by four (4∗4) coordinate trans-
formation matrix is applied, introducing the perspective effects of a camera.
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The usual way to represent element in three dimensions is through Cartesian
vector x, y, z . However, in order to project 2�D image to 3�D plane, vanishing

point must be included in the projection ; hence, homogeneous coordinate system is

needed . Unlike cartesian vector with three (3)elements x, y, z, homogeneous

coordinate has four element vectors represented as X, Y, Z, W as earlier explained

in the previous section. The conversion from Cartesian coordinates to homogeneous

coordinates is presented in Eqs. (17.26), (17.27), and (17.28):

x ¼ X

W
ð17:26Þ

y ¼ Y

W
ð17:27Þ

z ¼ Z

W
ð17:28Þ

Four by four (4∗4)matrix is used for the performance of translation, scaling,

and rotation through repeatedmultiplication ofmatrix . We can create a transforma-

tion of matrix that translates a point x, y, z in Cartesian space by vector tx, ty, tz as in
Eq. (17.29). Figure 17.3 illustrates translation:

TT ¼
1 0 0

0 1 0

0 0 1
0 0 0

tx
ty
tz
1

2
64

3
75 ð17:29Þ

where TT is the matrix for translation.

The created translated matrix needs to be post-multiplied with homogeneous

coordinate X, Y, Z, W .Meanwhile, we have to construct the homogeneous coordi-

nate from the Cartesian coordinate before such multiplication ; hence, if

we set W¼ 1 representing finite point, X, Y, Z will yield X, Y, Z, 1 . In the same

vein, we pre�multiply the current position by the transformation matrix TT in

order to determine the translated point X
0
, Y

0
, Z

0
for yielding the translated coordi-

nate. Hence, we have Eq. (17.30):

x0

y0
z0

w0

2
64

3
75 ¼

1 0 tx
0 1 ty
0

0

0

0

tz
1

2
664

3
775 ∙

x
y
z
1

2
64

3
75 ð17:30Þ

Using the general pattern of conversion back to Cartesian coordinates as in

Eqs. (17.26), (17.27), and (17.28), we have Eqs. (17.31), (17.32), and (17.33):
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x0 ¼ xþ tx ð17:31Þ
y0 ¼ yþ ty ð17:32Þ
z0 ¼ zþ tz ð17:33Þ

Equations (17.32) and (17.33) are the procedure to translate an object. Similar

procedure can be employed for scaling or rotating of an object. Using the transfor-

mation matrix as Eq. (17.34) where Ts is the transformation matrix for scaling, sx,
sy, sz represent the scale factors along x, y, z axes, respectively. Figure 17.4

illustrates scaling about the origin:

Ts ¼
sx 0 0

0 sy 0
0

0

0

0

sz
0

0

0
0

1

2
664

3
775 ð17:34Þ

In the same vein, we can do rotation around x, y, and z axes by angle θ as

illustrated in Figs. 17.5, 17.6, and 17.7 to produce TRx
, TRy

, and TRz
, respectively.

Rx θð Þ: y0 ¼ y cos θ � z sin θ

z0 ¼ y sin θ þ z cos θ

x0 ¼ x

Fig. 17.3 Translation
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TRx
¼

1 0 0

0 cos θ � sin θ
0

0

sin θ
0

cos θ
0

0

0
0

1

2
64

3
75 ð17:35Þ

Illustration of rotation about y axis is given in Fig. 17.6.

Ry θð Þ: z0 ¼ z cos θ � x sin θ

x0 ¼ z sin θ þ x cos θ

y0 ¼ y

TRy
¼

cos θ 0 sin θ
0 1 0� sin θ
0

0

0

cos θ
0

0

0
0

1

2
64

3
75 ð17:36Þ

Similarly, Fig. 17.7 illustrates rotation about z axis producing TRz
.

Fig. 17.4 Scaling about the

origin

Fig. 17.5 Rotation about

x axis
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Rz θð Þ: x ¼ x0 cos θ � y sin θ

y0 ¼ x sin θ þ y cos θ

z0 ¼ z

TRz
¼

cos θ � sin θ 0

sin θ cos θ 0
0

0

0

0

1

0

0

0
0

1

2
64

3
75 ð17:37Þ

However, during the rotation of the object, we might need to transform the object

from one coordinate axes to another, from x� y� z to x
0 � y

0 � z
0
. In order to do this,

we need to first derive a transformation matrix by assuming the following:

1. The unit x
0
axis makes the angle θx

0
x, θx

0
y, θx

0
z around x� y� z axis.

2. The unit y
0
axis makes the angle θy

0
x, θy

0
y, θy

0
z around x� y� z axis.

3. The unit z
0
axis makes the angle θz

0
x, θz

0
y, θz

0
z around x� y� z axis.

where (θx
0
x, θx

0
y, θx

0
z), (θy

0
x, θy

0
y, θy

0
z), and (θz

0
x, θz

0
y, θz

0
z) are the directional

cosines.

Fig. 17.6 Rotation about

y axis

Fig. 17.7 Rotation about

z axis
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Hence, placing the directional cosines along the rows of the transformation

matrix will produce Eq. (17.38) which is referred to as the resulting rotation matrix

TR:

TR ¼
cos θx0x cos θx0y cos θx0z
cos θy0x cos θy0y cos θy0z
cos θz0x

0

cos θz0y
0

cos θz0z
0

0

0
0

1

2
64

3
75 ð17:38Þ

To rotate around the center of the object, which is usually more convenient, we

must first translate from the center of the object to the origin, and then we apply

rotations followed by translating the object back to its center. However, in order to
achieve the translation, rotation, and scaling of the object using the transformation

matrix, the order of the multiplication is important.

In display coordinate system, the coordinates are actual x, y pixel locations on

the image plane, though display coordinate uses the same basis as view coordinates

except it does not use �1, 1 range . The view coordinates determine window
size and view point .Display coordinates determine how the nega-

tive one� to� one (�1, 1) of view coordinates is mapped into pixel locations of
display .With view port, it is possible to divide the port which ranges from 0,

1 for x and y axes and depth value representation with z axis. This is particularly
useful in cases where one needs to render two different scenes but display them in

the same window. The analysis and justifications for the preparation of datasets in

its more suitable renderable form are also in line with the explanations of Schroeder

et al. (2002).

17.3.2 Data Restructuring and Modeling

The prepared dataset has to be filtered thoroughly in order to enhance its pixel

intensities. Similarly, the specified focused data should be geometrically mapped

for better image quality. Modeling of the camera focus point in medical image

analysis and visualization framework is likewise significant, often aligned with the

physical laws of optics which could be better described by modeling the transport

theory of light with specific attention on geometrical optics lights. Meanwhile,

factors such as the wave character of light, possible light polarization states,

diffraction, and interference are usually neglected.

If x is the radiant field at any point in the direction of the radiant

energy n and around υ, the radiant energy could be defined as R(x . n . υ) . Therefore,
if θ is the angle between the direction n and the normal on da for time dt, the

traveling radiant energy δE can be respresented in Eq . (39) provided that there

is a specified frequency interval dυ around υ through a solid angle dΩ:

424 A.M. Adeshina



δE ¼ R x:n:υð Þ cos θdadΩdυdt ð17:39Þ

However, we can also define radiant energy using photon number density ψ(x .
n . υ) . If x denotes the position of the photons per unit volume, dυ represents the

frequency interval around υ along the direction n and travels into an element of

solid angle dΩ . Then, the number of photon Ň per unit volume could be represented
in Eq. (17.40).

Ň ¼ ψ x:n:υð ÞdΩdυ ð17:40Þ

Equation (17.40) could be extended for calculation of the number of photons

Ň by representing surface da with time dt and traveling velocity c in Eq. (17.41):

Ň ¼ ψ cos θdað Þ cdtð Þ dΩdυð Þ ð17:41Þ

Nevertheless, if the energy carried by each photon is considered as hυ in

accordance to the constant expressed in Planck – Einstein relation where h is the

Planck’s constant, hence, a new relationship could be established for radiant energy

using photon number density:

δE ¼ chυψ x:n:υð Þ cos θdadΩdυdt ð17:42Þ

Apparently, since we have clearly defined radiant energy in Eqs. (17.39) and

(17.40), we can therefore equate these equations:

R x:n:υð Þ cos θdadΩdυdt ¼ chυψ x:n:υð Þ cos θdadΩdυdtð Þ

R x:n:υð Þ ¼ chυψ x:n:υð Þ ð17:43Þ

Equation (17.43) shows clear similarity between radiance and photon number

density as in Eq. (17.43). Therefore, in order to record all the focused points in an

image, it becomes reasonable if we compute R(x . n . υ) for all the focused points.

Some of these concepts are documented in Adeshina et al. (2012) and more

elaborately in Hege et al. (1996).

17.3.3 Volume Segmentation and Classification

Volume or image segmentation entails partitioning of image or volume into mean-

ingful region representation. Segmentation improves the analysis of an image

establishing a reasonable correspondence between the image pixel properties and

the type of tissue to facilitate the successful manipulation of data for medical

visualization, while classification focuses on labeling the pixels of an image
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corresponding to a specific type of tissue or anatomical structure usually with color

and opacity. Apparently at the end of a successful volume segmentation and

classification, specific objects within the image would be separated, and regions

that have similar pixel properties would be identified along a specified

predetermined boundaries. All these create rooms for a more detail image or

volume analysis. In volume rendering, depicting region of interest based on color

and transparency mappings of respective scalar values to the corresponding regions

of volume is achieved using transfer function. Image point processing scale is

presented in Fig. 17.8.

Transfer function could be established using image point ranging from 0 to

255 scale. Point processing image enhancement techniques is based on the intensity

of individual pixels in the image. Hence, based on Eq. (17.44), intensity transfer

function could be represented through 255 output pixels and 255 input pixels as in
Fig. 17.8:

O ¼ T Ið Þ ð17:44Þ

where O represents the output pixel, T is the transform, and I is the input pixel.
Feature enhancement is extremely important in order to distinguish normal

tissues distinctly from abnormal tissues especially when intensities of abnormal

tissues match with the intensities of normal ones. Despite the fact that brain tumor

might sometimes be large, space occupying, it could still exist in the same intensity

as the normal tissues making it difficult to distinguish.

Transfer function was utilized in mapping data value to “renderable quantities”

as the output value. The two (2) main transfer functions usually designed are the

opacity transfer function and the color transfer function. The opacity transfer
function maps intensities of volume elements (voxels) in the data sample to the

corresponding opacity value based on the framework intensity scale and selectively

makes some voxels transparent enough to be seen through the assigned opacity

value in order to show the interior of the data sample. Meanwhile, color transfer
function uses coloration for its classification procedures. It maps intensities of

Fig. 17.8 Image point

processing approach
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voxels to corresponding color values using lookup table and likewise does selective

painting of voxels with different colors such that voxels of different intensity values

are presented with appropriate corresponding color variances. However, in order to

have better clarities of the output images, contrast enhancement transfer function,

referred to as the contrast transfer function (CTF), could be applied in 3-D

reconstruction procedures.

17.3.4 Shading and Gradient Computation

The ambient coefficient, the diffuse coefficient, and the specular coefficient are the
three parameters that are usually modeled for illumination. Ambient lighting, the

background illumination, is represented in equation (17.45):

Rc ¼ LcOc ð17:45Þ

where Rc is the resulting intensity curve, Lc is the light intensity curve, and Oc is the

color curve of object.

Ambient light has no direction and is independent of light position, orientation of

the object, and observer’s position. With this in mind, ambient is simply seen as the

approximate contributions of light to the scene which is irrespective of the location

of object and light. Figure 17.9 illustrates that.

Diffuse lighting is the non-shiny illumination and shadows. It has no dependence

on camera angle. Diffuse lighting is illustrated in Fig. 17.10 and represented as

Eq. (17.46). In order to determine diffuse’s contribution to the surface, surface

normal and the direction of the incoming rays are important:

Rc ¼ LcOc cos θ ð17:46Þ

where Lc is the light color, Oc is the object color, and cos θ is the product of the

vector of light source (a negative value) and the vector of surface normal value to

the object.

Specular lighting is the bright and shiny reflections which has no dependence on

object color. Specular lighting is represented as Eq. (17.47) and illustrated in

Fig. 17.11.

Rc ¼ LsKs cos αð Þn ð17:47Þ

Lc represents the light color, Ks is the reflection constant, and Rc is the color
curve . The product of the vector of light source, which is a negative value, and the

vector of surface normal value to the object is cos α . However, specular power is
denoted as n resulting from different n values of specular light. Equation (17.48)

presents the integration of the three parameters that are usually modeled for

illumination:
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Rc ¼ Wa þWd þWs ð17:48Þ

where Wa, Wd, and Ws are the relative weights of ambient, diffuse, and specular,
respectively.

Moreover, in order to achieve quality image output, medical image analysis and

visualization framework could be configured to select either flat, Gouraud, Phong
shading, or their combination for better shading of images with respect to the level

of pixels in the datasets. Flat shading is the earliest shading method which requires

shading the polygons in the data samples with single color. However, because

sometimes resulting interpolation color could be needed during shading to have a

better image coloration, Gouraud shading was introduced. With Gouraud shading,

polygons are shaded by interpolating color that are computed at the vertices of the

image. Unfortunately, Gouraud shading usually produces specular highlights, a
bright spot of light that appears on shining objects when illuminated. Phong shading

produces better shading results compared to Gouraud shading by fixing the issue of

specular highlights. However, despite the shortcomings in flat and Gouraud shad-

ing, using all in combination will contribute to obtaining better-shaded image.

Fig. 17.9 Ambient lighting

Fig. 17.10 Diffuse lighting

Fig. 17.11 Specular

lighting
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17.3.5 Interpolation and Resampling

Interpolation is very important in medical visualization. Interpolation and

resampling usually become necessary particularly whenever we perform scaling

operations on digital images, for instance, a 3 by 3 image with its pixels represented

in xy coordinates as illustrated in Fig. 17.12.

bxby
� �

¼ sx 0

0 sy

� �
x
y

� �
ð17:49Þ

In the scaling operation presented in Eq. (17.49), Sx, 0ð Þ and�
0, S

y
� respresent the transformation matrix, -

xy is the coordinate of the pixel in the original image, and the bx and by are -

the coordinates of the pixels in the transform:The original 3 -

by 3 image has 3 pixels in the horizontal direction-

and 3 pixels in the vertical direction:-
However, after performing scaling operation by -

a factor of 3 in both axes, the final image size has 9 pixels in the horizontal and-

9 pixels in the vertical direction, leaving many pixels not-

filled up: If we have a 1 dimensional signal-

f tð Þ and sampled signal as f s tð Þ, we could therefore see the sample values f s tð Þ
represented accordingly at discrete locations in the Fig. 17.13. However, since we

do not have information of the positions at the intermediate locations as in

Fig. 17.13, we need to do interpolation for all the values of t and subsequently do

resampling in order to fill up those positions.

It is important to ensure that the interpolation operations follow the following

properties:

1. The interpolation function should have a finite region of support, i.e., the

interpolation operations should be carried out based on local information of

the sample values and not on global information.

2. The interpolation function should be very smooth without introducing any

discontinuity in the signal.

3. The interpolation function should be shift invariant; when the signal is shifted

through operations such as translation, the same operation should be performed.

Fig. 17.12 A 3 by 3 image

sample
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The stated properties are commonly satisfied with B-spline function

(Prochazkova 2005). B-spline function is represented in Eq. (17.50):

x tð Þ ¼
Xn
i¼0

PiBi,k tð Þ ð17:50Þ

where n + 1 is the number of approximated samples, Pi are the control points that

determine the smooth curve in B� spline functions, and Bi, k is the normal-

ized B� spline of order of k.
In order to produce smoother images with less artifacts, trilinear interpolation

approach is usually being considered. Meanwhile this also comes with other over-

heads as computation of trilinear interpolation usually takes longer time. Therefore,

optimization procedures should also be designed to reduce the computational

overheads associated with interpolation and resampling procedures.

17.4 Compositing and Algorithm Performances

There are a number of notable volume rendering techniques (also referred to as the

direct volume rendering) such as splatting, shear warping, texture mapping, and the

ray casting, the Levoy’s historic method of rendering. The commonly used

compositing functions are the maximum intensity projection (MIP) and the local

maximum intensity projection (LMIP). Apparently, LMIP is an extension of MIP.

The image in MIP is created by selecting the maximum value along an optical ray

that corresponds to each pixel of the 2-D MIP image, while the image of LMIP is

created by tracing an optical ray traversing 3-D data from the viewpoint in the

viewing direction and then selecting the first maximum value encountered that is

larger than a preselected threshold value (Sato et al. 1998). Hence, MIP deals with

maximum sampled values, while LMIP involves first local maximum above pre-

scribed threshold and thus approximates occlusion. LMIP is considered faster and

therefore better than MIP.

Due to the sensitivity nature and huge data cases in medical visualization, a

robust, quality, high-fidelity, and high-performance rendering algorithm is impor-

tant. Meanwhile, with the advent of high-performance computing architectures,

Fig. 17.13 Signals in

discrete and intermediate

locations
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integrating medical application into fast and parallel hardware has been seen as a

viable alternative. Various acceleration approaches have been previously proposed

for image composting and medical image visualization at large in order to reduce

the usual associated computational cost. Apart from the huge number of graphic

processing units (GPU) recently available, Compute Unified Device Architecture

(CUDA) framework has been lately seen as a heel of high-performance computing

which has been leveraged in many circumstances from the clinical data acquisition

phase to the results analysis. With a firm design of algorithm, the computational

complexities in some of the processes are handled by the high-performance graphic

components. Compositing procedures and some of the previously proposed algo-

rithms, although most of them mainly rely on different acceleration approaches, are

intensively documented in Cabral et al. (1995), Fang and Chen (2000), R€ottger et al.
(2000), Engel et al. (2001), Aluru and Jammula (2014), and Leeser et al. (2014) and

specifically with CUDA (Adeshina et al. (2012, 2013, 2014), Liu et al. (2014),

Adeshina and Hashim (2015), and Kalms (2015). Sample 2-D slices of brain MRI,

2-D CT slices of human pelvic region, and the obtained 3-D correspondents after a

series of translational and visualization procedures are presented in Fig. 17.14.

17.5 Conclusion

Modern medicine is greatly benefiting from the fundamentals of mathematics and

algorithmic approaches. The evolvement of high-performance algorithms also

opened up more growth opportunities in traditional medicine, revolutionalizing

the way medical image analysis and visualization are carried out for effective

disease diagnosis and therapy management.

X-ray, CT, MRI, PET, SPECT, and other related techniques are used for

acquiring morphological or functional information of patients. Apparently, each

of the image modalities has its peculiar advantages over another making them

somehow complementary rather than being a complete replacement; hence, each

of the techniques may be used in various appropriate circumstances. Moreover, in

certain decisions such as consideration on the level of exposure to radiation and in

certain circumstances, acquisition time could also be considered by the physician

while deciding the suitable image acquisition modalities to engage.

Data representation plays a significant role in achieving a reliable visualization

results. In some cases, cross-sectional 2-D images in form of slices might need to be

stacked. The stacked data needs to be properly enhanced in order to improve its

pixel accuracy for effective segmentation and classifications. This chapter has

presented some significant stages in data representation, data reconstruction, and

modeling.

Compositing approaches and most of the stages in medical visualization could

be accelerated using computational techniques such as CUDA, a parallel computing

platform allowing programmers to have direct access to the GPU instruction and

parallel computational elements. Such acceleration procedures drastically reduce
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computational overheads, thereby saving some of the associated computational

cost. In the same vein, potential users (doctors) could spend less time in the disease

and diagnosis procedures, thereby saving more lives.
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