
Chapter 15

Bioinformatics Applications in Clinical
Microbiology

Chao Zhang, Shunfu Xu, and Dong Xu

Abstract The human body is believed to house over 100 trillion microbes. These

microbial communities have a tremendously influential impact on their human

hosts. Although increasing evidence indicated a key role for the specific microbial

species in carcinogenesis, such as Helicobacter pylori (H. pylori), Epstein-Barr
virus, Human papillomavirus, and Hepatitis C virus, the underlying roles of human

microbiome in cancers are still unclear. Using the bioinformatics algorithms and

tools to integrate the microbiological data and clinical data could be very helpful to

better understand the mechanisms of diseases. During the past decade, we have kept

working on microbiome research and utilized bioinformatics methods to discover

host-pathogen interactions, relationships between microbiome dynamics and dis-

eases, and correlations between bacterial sequence variation and clinical outcomes.

In this chapter, we use H. pylori as an example to demonstrate the procedure of

related data integration, virulence classification, and prognosis model construction.

Keywords Microbiome • Helicobacter pylori • CagA • Gastric cancer •

Bioinformatics • SVM

15.1 Introduction

As the most abundant domain of all living organisms on earth, bacteria are

estimated to have more than five nonillion (1030) individuals worldwide (Whitman

et al. 1998), and these small single-cell organisms can be found everywhere. They
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are playing very important roles in our life, and we actually benefit from the

microorganisms in many cases, e.g., food production, human health (Turnbaugh

et al. 2009), environmental biotechnologies (Dinsdale et al. 2008), and chemical

industry (Lorenz and Eck 2005). On the other hand, pathogenic bacteria are one of

the most serious threats to human life. For example, tuberculosis, the most common

fatal bacterial disease, kills about two million people every year (Andries et al.

2005).

In the past, analysis of microbial communities was a complicated task due to

their high diversity and inaccessibility via culturing. The emerging next-generation

sequencing technologies provide a potential way for doing this analysis on a routine

basis (Petrosino et al. 2009). The Human Microbiome Project (Turnbaugh et al.

2007) undoubtedly provides new insight into many aspects of complex microbial

communities, such as metabolic capabilities of microorganisms, coevolution of

bacteria and host, interactions among microbial cells, and so on (Medini et al.

2008). Meanwhile, the unprecedented amount of genome data also poses major

challenges for computational analysis, which is an essential tool for microbial

genomics. In fact, computational methods for massive genomic sequence analysis

have become a bottleneck of microbial genomics. In our previous study, we

reviewed the major computational methods on metagenomic/genomic analyses

and the future computational challenges on general microbial identification

(Zhang et al. 2012a, 2015), and we will focus on bioinformatics applications in

clinical microbiology in this chapter.

Immediately after birth, humans undergo a lifelong process of colonization by

foreign microorganisms. Although we benefit from some host-bacterial associa-

tions, bacterial pathogens have long been known to play important roles in the

development of many diseases (Hacker et al. 2003) including cancer (Ullman and

Itzkowitz 2011). The host-bacteria interactions include many complicated mecha-

nisms, and discovering associations between bacteria and diseases in a clinical

setting is even more challenging. Due to the explosion of metagenomic/genomic

data, DNA sequence-based identification and classification are becoming more and

more important in exploring microbial diversity in clinical research. For example,

Bradyrhizobium enterica was discovered in cord colitis syndrome with shotgun

DNA sequencing of biopsy specimens (Bhatt et al. 2013). Recently we also found

that theHelicobacter pylori (H. pylori) infection can change the gastric microbiome

according to whole genome sequencing (WGS) on endoscopic biopsy. WGS gives a

much more accurate identification on H. pylori infection than traditional methods,

such as ELISA test and C-13 breath test. Besides H. pylori infection identification,

we also spent much effort on discovering the molecular mechanisms that underlie

different gastroduodenal diseases caused by H. pylori infection.
In this chapter, we use H. pylori as the example to describe how we utilized

computational methods to discover the relationships between H. pylori virulence
factor and diseases and built a potential model for clinical diagnosis or prognosis.

At first, we collected and curated the data from public databases, and then through

studying the distribution and polymorphism of EPIYA motif in CagA sequences,

we attempted to better understand the function of EPIYA motif, especially the role
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of EPIYAmotif during the interaction process betweenH. pylori and hosts. We also

constructed a computational model to access gastric cancer risk by using detected

important residues in CagA intervening sequences.

15.2 Public Data Collection and Curation

H. pylori is a Gram-negative helix-shaped bacterium inhabiting the human stomach

for possibly more than thousands of years. By far as one of the oldest known human

pathogens, it infects more than half of the world’s population (Suerbaum and

Michetti 2002). H. pylori has shown a strong correlation with all gastroduodenal

diseases, including duodenal ulcers (Covacci et al. 1993), gastric ulcers (Ernst and

Gold 2000), and chronic gastritis, especially being an important risk factor for

developing gastric cancer (Uemura et al. 2001). H. pylori is becoming more and

more important not only for gastroenterologists and pathologists but also for

phylogenists who use it as the evidence to study human’s origin and migration

(Linz et al. 2007).

As one of the most important model bacteria, the data of H. pylori have been

increasing dramatically in recent years. As of January 2014, 399 genome-

sequencing projects are almost complete or “in progress.” 37,304 nucleotide

sequences, 65,684 protein sequences, 61 primers, and 9953 publications were

collected from several major databases, e.g., NCBI databases (http://www.ncbi.

nlm.nih.gov), EBI databases (http://www.ebi.ac.uk), DDBJ (http://www.ddbj.nig.

ac.jp), and PDB (http://www.pdb.org). We searched the above databases with the

keywords “Helicobacter pylori” and “H. pylori” and then verified all results based

on the taxonomy information. References were collected from PubMed (http://

www.ncbi.nlm.nih.gov/pubmed).

As we know, geographical diversity and disease diversity are two most signif-

icant features and hottest topics on H. pylori research. Without these types of

information, the sequences of H. pylori are not very useful for studying the

underline mechanisms of H. pylori causing gastric diseases. Based on our research

experience, collecting H. pylori data from various sources is laborious and difficult,

and currently no database/website can provide the corresponding accurate infor-

mation, and collecting comprehensive information of H. pylori specifically for a

particular country or disease is even more time-consuming. We manually curated

the information not only based on the records from the above major databases but

also by reviewing related literature.
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15.3 Data Deposit

Based on the information we collected and curated, a web-based database, HPbase

(www.hpbase.org) has been built for providing a one-stop shop for H. pylori data
from multiple sources together with multiple embedded search/analysis tools for

querying the database. This website is not only for depositing collected public data

but also for providing curated information, new data generated by users, and other

features derived from original experimental data. By continuously accumulating

and updating the data, we anticipate that HPbase will serve as an important resource

for studying H. pylori and gastroduodenal diseases.

15.3.1 Implementation

The web interface is constructed using PHP, CSS, and the JavaScript jQuery

framework for a flexible user interaction with the system. The HPbase database is

implemented through a MySQL relational database as the backend data storage

system. A Java-based tool was developed to periodically synchronize data with

major sources, and it is also used to import related manually curated diseases and

geographical information into the MySQL database.

15.3.2 Other Information

Besides the basic information we collected from other sources, we generated

sequence profiles for all 65,684 protein sequences by running PSIBLAST (Altschul

et al. 1997) (2007 release version) three rounds against nonredundant

(NR) database (as of 2013) with the e-value cutoff of 0.001, and then we predicted

secondary structures by using PSIPRED (McGuffin et al. 2000) with the sequence

profiles generated above. We also predicted 3D structures for most of proteins,

including all major ones, e.g., CagA and VacA, by using our in-house software

MUFOLD (Zhang et al. 2010), which integrates whole and partial template infor-

mation to cover both template-based and ab initio predictions in the same package.

The predicted secondary and tertiary structural information could help users to

better understand the interaction between human proteins and H. pylori proteins.

15.3.3 Browsing Data

Users can search H. pylori data by different entries, such as GI number, accession

number, strain ID, keywords, disease type, geographical information, and so on
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(Fig. 15.1a). After submission of the search condition, the results will be displayed

in a new page as a list of records with some brief information, including GI number,

accession number, definition, strain ID, keywords, corresponding diseases, and

geographical information. As shown in Fig. 15.1b, users can simply pick all

sequence records or part of them in search results to download in the FASTA or

Genbank/GenPept format for further analyses provided by HPbase, e.g., BLAST

and multiple sequence alignment (MSA) as in Fig. 15.1c and e. Furthermore, users

can also navigate detailed information of any particular nucleotide/protein record in

Fig. 15.1 Screenshots and basic workflow of HPbase. (a) Dialog for entering search criteria. (b)
Table for displaying searching results. (c) Input dialog for BLAST. (d) Table for displaying

BLAST results. (e) Input dialog for sequence alignment. (f) Dialog for displaying alignments

between different sequences. (g) Page for displaying detail information of one particular protein/

DNA sequence
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the result page by clicking on the corresponding “locus” link, and it will redirect to

the nucleotide/protein detail page as shown in Fig. 15.1g. It not only provides the

brief information as other major databases do but also includes manually curated

information, e.g., disease-related and geographical information and computational

information, e.g., PSIBLAST sequence profiles, secondary structures, and 3D

structures for proteins. In this page, the sequence will be displayed with several

formats. PSIBLAST sequence profile is represented as a sequence logo, and it is

generated by using the WebLogo (Crooks et al. 2004) for the top 100 alignments of

the last PSIBLAST round with no gap in the query sequence. Protein secondary

structures are colored with the FASTA format. Jmol (http://www.jmol.org) is used

as a viewer for displaying protein 3D structures. Users are also encouraged to add

their own comments to each nucleotide/protein record and use the reference voting

function to improve the correlation between each sequence record and its refer-

ences, which could be helpful for others to better understand H. pylori.

15.3.4 Other Tools

Some further functions have also been embedded into the HPbase website to

improve the power of search and data analysis. As shown in Fig. 15.1c, a BLAST

utility was integrated as one useful feature, and two different BLAST programs

have been included, e.g., BLASTn and BLASTp. By selecting gene entries from

search results or uploading a protein/nucleotide sequence, users can retrieve iden-

tical or similar nucleotides/peptides in the database through BLAST according to

user-defined parameters, which can be freely chosen including E-value, number of

alignments, mutation matrix, and so on. As shown in Fig. 15.1d, a typical result

page contains the collected information including GI number, accession, definition,

length of sequence, E-value, identity, score, and alignment. Users can download

records and further execute BLAST for database search or MUSCLE (Edgar 2004)

for MSA by selecting records of their own interest from the BLAST results. Users

can also upload their own sequences to perform multiple sequence alignment. In

addition, the entire sequence data can be downloaded directly in the FASTA or

Genbank/GenPept format. Users can also download data for one particular “strain,”

“disease,” or “country.” Some statistical analysis of the most important virulence

factor – CagA from our previous work (Zhang et al. 2012b) – is also included in the

website, including the relations between CagA sequence subtypes and diseases, the

geographical diversity of CagA sequences, and the geographical diversity of dif-

ferent diseases.
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15.4 Computational Model for CagA

15.4.1 Motivation

As one of the most important virulence markers of H. pylori, the cytotoxin-

associated gene A (CagA) has been revealed to be related to the gastric disease

occurrence. H. pylori strains carrying the CagA gene increase the risk factor of

gastroduodenal diseases by threefold over CagA-negative strains (Blaser et al.

1995). CagA contains 1142–1320 amino acids, and at the C-terminal region, it

has a variable region in which various short sequences (EPIYA motif) repeat 1–7

times. After colonizing on the surface of the gastric epithelium, H. pylori
translocated into the gastric epithelial cell through type IV secretion system.

Once injected into the host cell, CagA could localize to the plasma membrane.

Src family tyrosine kinases can phosphorylate CagA on the specific tyrosine

residues of a five-amino-acid (EPIYA) motif (Odenbreit et al. 2000). Then

tyrosine-phosphorylated CagA binds specifically to SHP-2 tyrosine phosphatase

(Higashi et al. 2002) to activate a phosphorylase, which causes the cascade effect

that interferes with the signal transduction pathway of the host cell, leading to a

restructuring of the host cell cytoskeleton and formation of hummingbird pheno-

type (Argent et al. 2004). At the same time through activating mitogen-activated

protein kinase (MAPK), extracellular signal-regulated kinase (ERK) (Fu et al.

2009), and focal adhesion kinase (FAK), CagA also can cause cell dissociation

and infiltrative tumor growth (Amieva et al. 2003).

CagA protein carries two unique features. One is the geographical diversity.

There are some different intervening sequences between those EPIYA motifs. One

copy of EPIYA plus intervening sequence is identified as an EPIYA segment. Four

unique types of EPIYA segments have been found in CagA, defined as EPIYA-A,

EPIYA-B, EPIYA-C, and EPIYA-D (Higashi et al. 2002). Among them, EPIYA-D

motif only can be found from the East Asian subtype, and for the CagA from

Western countries, EPIYA-D is replaced by EPIYA-C. EPIYA-D has stronger

phosphorylation motif binding activity which leads to greater morphological

changes than what the EPIYA-C motif can cause in infected cells (Higashi et al.

2002). And it explains the higher incidence of gastric cancer in East Asian countries

(Jones et al. 2009).

Another feature of CagA is the variation in the number of EPIYA motif copies.

Many studies attempted to reveal the relations between number of EPIYA motif

repeats and clinical diseases (Lai et al. 2003). Although increasing of number of

EPIYA motif copies will affect biological activities, due to the sample size limita-

tion and geographic limitations of studies, none of the studies can draw a statisti-

cally significant conclusion about the relation.

Aside from the number of the EPIYA motif repeats, the sequence difference of

strains in variable regions could also cause a significant difference of virulence,

which might relate to the different pathogenic abilities of H. pylori (Naito et al.

2006). We speculate not only the number of EPIYA motif repeats, but also
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polymorphism of CagA sequences will affect the virulence of H. pylori and then

cause the different diseases. In this study, we focused on identifying the informative

residues, quantifying information of these selected residues, and then using it to

design a classifier that can predict whether a new sequence belongs to the cancer

group or the noncancer group. This method not only sheds light on the relations

between CagA sequences and gastric diseases but also may provide a potentially

useful tool for gastric cancer diagnosis or prognosis.

15.4.2 Data Preprocessing

According to our collected data, 535 strains of H. pylori CagA protein with disease

information will be used for this study. Among them, 287 strains belong to the East

Asian subgroup, and the rest 248 are Western strains. In the East Asian subtype

group, 47 out of 287 strains are from gastric cancer patients, and the rest are from

other diseases. In the Western subtype group, there are 37 strains from the gastric

cancer patients, and the remainders are from other diseases or the normal controls,

including 24 strains from volunteers whose health (disease) status was unknown.

Due to the significant difference between two subgroups, the East Asian subtype

and the Western subtype were treated as two independent groups and analyzed

within each group individually.

CagA sequences of each subtype were put into the corresponding disease groups,

and then the multiple sequence alignments were applied for each group individually

by using Clustal X version 2.0.3 (Larkin et al. 2007). Based on the aligned

sequences, for each column of multiple alignments, we computed the background

entropy Bi and the combinatorial entropy Ci based on the disease groups for each

column i as follow:

Ci ¼
X

k

ln
Nk!Q

α¼1:::20

Nα, i,k!

Bi ¼
X

k

ln
Nk!Q

α¼1:::20

eNα, i,k!

eNα, i,k ¼ NkNα, i=N

where Nk represents the number of sequences in group k, Nα , i , k indicates the

number of residues of type α in the column i of group k, Nα , i is the number of

residues of type α in the column i, and N represents the total number of aligned

sequences. Then the entropy difference between the combinatorial entropy and the

background entropy was calculated as feature values:
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ΔE ¼ Ci � Bi

Figure 15.2 illustrates the entropy concept using three extreme cases for a given

column of residues from sequence alignment. Case P1 is the so-called randomly

distributed or uniformly distributed, and the amino acids are “randomly distributed”

over all groups and without significantly conserved pattern. Case P2 represents a

“globally conserved” pattern, and all the amino acids are all almost same across

different groups. In “locally conserved” case P3, some specific amino acids are only

conserved in particular groups, and different groups have different conserved

pattern.

According to the calculation results of the entropy difference for the above three

cases, the combinatorial entropy is Ci¼ 0 for both “globally conserved” and

“locally conserved” cases. For “randomly or uniformly distributed” case, Ci gets

the maximum value. “Conserved” and “randomly distributed” cases can be distin-

guished based on the value of combinatorial entropy, but it won’t help pick “locally
conserved” case from all “conserved” cases. Then we look at the value of back-

ground entropy, Bi gets the maximum value, 0 and medium value for the “randomly

and uniformly distributed” case, “globally conserved” case, and “locally con-

served” case, respectively. Finally, “locally conserved” case could be selected

based on the differences between combinatorial entropy and the background

entropy. The value of differences for the above three cases are ΔE1¼ 0, ΔE2¼ 0,

and ΔE3 gets the minimum value.

15.4.3 Modeling

The training/identification procedure has been implemented based on the workflow

shown as follows (Fig. 15.3):

Fig. 15.2 An example to

present different cases for

the entropy calculation
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• Select one strain as the test strain.

• Apply a bootstrap procedure to the rest of the strains to get the training strains.

• Calculate the feature entropy for the test strain based on training strains and save

it as the test data.

• Calculate the feature entropy for each strain in the training strain set based on

training strains and save them as the training data.

• Generate classification model by using the training data.

• Classify the test data according to the classification model.

• Repeat this procedure five times, and then calculate the average as the final

result.

A bootstrapping procedure was applied to avoid the classification bias, since the

extremely unbalanced number of cases from different disease group. Usually

gastric cancer cases will be much less frequent than other diseases, such as ulcer

or gastritis. So we used all samples from noncancer group, and stains from the

cancer group were continuously drawn on a random basis until getting the same

number of samples as noncancer group. We also repeated this process five times to

generate five independent training sets for each test strain, and the final decision is

based on the average of five independent classification results. Due to the same

reason, traditional n-fold cross validation won’t fit our data. Then a leave-one-out

(LOO) cross validation procedure was performed. This is not only an assessment of

Pick 1 strain

Bootstrapping
the rest strains

Generate
training set

Train a
classification model

by using SVM

Classify the test
set

Generate test
set

Fig. 15.3 Workflow of

classification/prediction

procedure for one specific

CagA sequence
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the classifier performance on training/test data but also an estimate of prediction

power for novel cases.

SVMLight package V6.02 (http://svmlight.joachims.org/) (Joachims 1999) has

been employed as the classifier, and radial basis function (RBF) has been chosen as

kernel function. Two parameters were tuned to obtain the optimal F-vlaue by using

grid search with above-generated training data. The feature values of each test stain

were then fed into the optimized model to get the classification decision. Overall

classification performances were evaluated by using the following measurements

accuracy (Acc), sensitivity (Sn), specificity (Sp), Matthews correlation coefficient

(MCC), and F-value:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN

Sp ¼ TN

FPþ TN

Sn ¼ TP

TPþ FN

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þp

F ¼ 2 Sp� Snð Þ
Spþ Sn

where a true positive (TP) is a cancer-related sequence classified as such, while a

false positive (FP) is a noncancer-related sequence classified as cancer related, a

false negative (FN) is a cancer-related sequence classified as noncancer related, and
a true negative (TN) is a noncancer-related sequence classified as noncancer related.

15.4.4 Comparison with Other Methods

Two popular identification methods, BLAST (Altschul et al. 1990) and HMMER

(Eddy 1998), were selected as the representative methods for comparison. We

applied the same evaluation procedure and measurements to above two tools as

our method, such as LOO cross validation. The default parameters have been used

for both BLAST and HMMER. Comparing the results for three methods, our

method achieved 76% and 71% classification accuracy for Western and East

Asian subtypes, respectively, which performed significantly better than the rest of

the two methods (Table 15.1).
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15.4.5 Discussion

It was found that CagA multimerizes in mammalian cells (Ren et al. 2006). This

multimerization is independent to the tyrosine phosphorylation, but it is related to

the “FPLxRxxxVxDLSKVG” motif, which is named CM motif following EPIYA-

C motif. The CM motif plays an important role in CagA-positive H. pylori-medi-

ated gastric pathogenesis, since the multimerization is a prerequisite for the CagA-

SHP-2 signaling complex and subsequent deregulation of SHP-2. With multiple

CM motifs, H. pylori strains are much likely associated with severe gastroduodenal

diseases (Lu et al. 2008), but this observation cannot explain why different gastro-

duodenal diseases can be developed with the exact same number of CMmotifs. Our

study detected two residues in the CM motif, which might lead to the change of

multimerization, thus changing the virulence of CagA. This is in consistent with a

previous discovery (Sicinschi et al. 2010) that the sequence difference between the

East Asian CM and the Western CM determines the binding affinity between CagA

and SHP-2.

However, we also found that there is no simple relation between any single

residue and cancer occurrence, and hence, it is not possible to just use one single

residue to be the marker for identifying cancer. We speculate that one special

combination of all or partial important residues could have a high correlation

with one particular disease. The classification result strongly supports our hypoth-

esis, i.e., the information of the selected residues in intervening regions can be used

to classify the relation between CagA sequences and gastric cancer, although the

difference between the profiles of cancer and noncancer groups is not very strong.

15.5 Summary

We described the procedures for collecting, curating, and depositing public data

into a web-based database. With a user-friendly interface, those data could be easily

downloaded, browsed, and searched by different entries. Some computational

information (PSIBLAST sequence profile, protein secondary structures, and 3D

Table 15.1 Classification performances of different methods

Subtype

No. of

cancer

cases

No. of

noncancer

cases Method Sn Sp Accuracy

F-

value MCC

Western 37 211 Entropy 0.86 0.74 0.76 0.80 0.45

BLAST 0.22 0.77 0.69 0.34 �0.01

HMMER 0.94 0.005 0.14 0.009 �0.16

East

Asian

47 240 Entropy 0.74 0.71 0.71 0.73 0.35

BLAST 0.17 0.75 0.65 0.28 �0.07

HMMER 1 0.003 0.19 0.05 0.06
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structures) have also been integrated into the database. This database is not only

useful for our research but also could benefit the H. pylori and gastroduodenal

disease research community.

Based on the curated CagA data, an entropy-based calculation was used to detect

key residues of CagA intervening sequences as the gastric cancer biomarker. For

each residue, both combinatorial entropy and background entropy were calculated,

and the entropy difference was used as the criterion for feature residue selection.

The feature values were then fed into SVM with the RBF kernel, and two param-

eters were tuned to obtain the optimal F-value by using a grid search. Two other

popular sequence classification methods, the BLAST and HMMER, were also

applied to the same data for comparison. Our study indicates that small variations

of amino acids in those important residues might lead to the virulence variance of

CagA strains resulting in different gastroduodenal diseases. This study provides not

only a useful tool to predict the correlation between the novel CagA strain and

diseases but also a general new framework for detecting biological sequence bio-

markers in population studies.
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