
Chapter 12

Methods for Microbiome Analysis

Kalibulla Syed Ibrahim and Nachimuthu Senthil Kumar

Abstract Metagenomics is gaining importance as an invaluable tool as it attempts

to determine directly the whole collection of genes and analyze from microbes in a

particular environment where they interact with each other by exchanging nutrients,

metabolites, and signaling molecules. The development of affordable next-

generation sequencers has led to democratization of sequencing, but their ever-

growing throughput is making data analysis increasingly complex. This has intro-

duced a plethora of challenges with respect to design of experiments, bioinformat-

ics, and downstream processing. This chapter aims to provide an overview of the

currently available methodologies and tools for performing every individual step of

a typical metagenomic data set analysis and expected to serve as a useful resource

for microbial ecologists and bioinformaticians.
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12.1 Introduction

Microorganisms make up only 1 to 2% of the mass of the body of a healthy human,

but they are suggested to outnumber human cells by 10 to 1 and to outnumber

human genes by 100 to 1. The majority of microbes were identified to inhabit the

gut and have profound influence on human well-being (Bäckhed et al. 2005). It has

been recognized that microbes play major roles in maintaining health and causing

illness, but relatively little is known about the role that microbial communities play

in human health and disease (Cho and Blaser 2012; Lampe 2008). The knowledge

about the human microbiome that we currently possess is from culture-based

approaches using the 16S rRNA technology. However, it has to be noted around

20–60% of the microbiome associated with human is uncultivable (Peterson et al.

K.S. Ibrahim • N.S. Kumar (*)

Department of Biotechnology, Mizoram University, Aizawl, Mizoram 796 004, India

e-mail: syedibrahim.k@gmail.com; nskmzu@gmail.com

© Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business

Media Dordrecht 2017

D.-Q. Wei et al. (eds.), Translational Bioinformatics and Its Application,
Translational Medicine Research, DOI 10.1007/978-94-024-1045-7_12

269

mailto:syedibrahim.k@gmail.com
mailto:nskmzu@gmail.com


2009). Projects such as Human Microbiome Project and MetaHIT (Qin et al. 2010)

were launched with an intention to generate resources to enable a comprehensive

characterization of the human microbiota and analysis of its role in human health

Fig. 12.1 Overall workflow of human microbiome analysis
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and disease. Figure 12.1 provides an overview of the methods involved in human

microbiome analysis.

Metagenomics, the term coined by Handelsman et al. (1998), made it possible

for direct genetic analysis of species that are refractory to culturing methods. Using

metagenomics, several types of ecosystems including extreme environments and

low-diversity environments have been studied so far (Oulas et al. 2015). Decoding

the metagenome and its comprehensive genetic information can also be used to

understand the functional properties of the microbial community besides studying

population ecology. This has provided an infinite capacity for bioprospecting that

allowed the discovery of novel compounds of biotechnological commercialization

(Segata et al. 2011). Initially metagenomics was used mainly to identify novel

biomolecules from environmental microbial assemblages (Chistoserdova 2010).

But the advent of next-generation sequencing techniques at affordable costs has

allowed for more comprehensive examination of microbial communities such as

comparative community metagenomics, metatranscriptomics, and metaproteomics

(Simon and Daniel 2010).

In order to disentangle complex ecosystem functions of the microbial commu-

nities and fulfill the promise of metagenomics, the comprehensive data sets derived

from the next-generation sequencing technologies require intensive analyses

(Scholz et al. 2011). This demand has created the need for more powerful tools

and software that have unprecedented potential to shed light on ecosystem func-

tions of microbial communities and evolutionary processes.

12.2 Sequence Processing

Compared to conventional Sanger sequencing, several next-generation sequencing

platforms provide huge data at much lower recurring cost. Though these technol-

ogies include a number of methods like template preparation, sequencing and

imaging, and data analysis in common, it is the unique combination of specific

protocols that distinguishes one technology from another. Besides that, it also

determines the type of data produced from each platform, posing challenges

when comparing platforms based on data quality and cost. As these new sequencing

technologies produce hundreds of megabases of data at affordable costs,

metagenomics is within the reach of many laboratories. The metagenomic analysis

workflow begins with sampling and metadata collection and then proceeds with

DNA extraction, library construction, sequencing, read preprocessing, and assem-

bly. Either for reads, contigs, or both, binning is applied. Community composition

analysis is made using databases. Some details of the workflow will be different in

different sequencing facilities.

One has to take greater care when processing sequences of metagenomic data

sets than when processing genomic data sets because in the later there is no fixed

end point and lacks many of the quality assurance procedures (Kunin et al. 2008).
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12.2.1 Preprocessing

Preprocessing of sequence reads is a critical and largely overlooked aspect of

metagenomic analysis. Preprocessing comprises the base calling of raw data com-

ing off the sequencing machines, vector screening to remove cloning vector

sequence, quality trimming to remove low-quality bases (as determined by base

calling), and contaminant screening to remove verifiable sequence contaminants.

Errors in each of these steps can have greater downstream consequences in

metagenomes.

12.2.2 Sources of Bias and Error in 16S rRNA Gene
Sequencing and Reducing Sequencing Error Rates

Irrespective of the technologies used, the scientist needs to understand the quality of

their data and how to reduce errors that affect downstream analyses. Two main

categories of errors that are commonly observed with 16S sequencing are due to

misrepresentation of the relative abundances of microbial populations in a sample

(bias) and misrepresentation of an actual sequence itself due to PCR amplification

and sequencing (error) (Schloss et al. 2011). Misrepresentation of the relative

abundances might be due to DNA extraction method (Miller et al. 1999), PCR

primer and cycling conditions, 16S rRNA gene copy number, and the actual

community composition in the original sample (Hansen et al. 1998). On the other

hand, error due to misrepresentation of an actual sequence is due to PCR poly-

merases that typically have error rates of one substitution per 105–106 bases (Cline

et al. 1996), risk of chimera formation (Haas et al. 2011), and errors introduced by

sequencers (Margulies et al. 2005). Because of their relative rates, sequencing

errors and chimeras are of the most concern (Schloss et al. 2011).

Sequencing errors can be reduced by the following ways: removing sequence

associated with low-quality scores, removing ambiguous base calls, removing

mismatches to the PCR primer, or removing sequences that were shorter or longer

than expected. Besides these, using denoising and removing sequences that cannot

be taxonomically classified are also followed. But the later generally reduce the

number of spurious OTUs and phylotypes and do not minimize the actual error rate.

Laehnemann et al. (2015) has reported an extensive survey of the errors that are

generated during sequencing by the commonly used high-throughput sequencing

platforms.
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12.2.3 Base Calling and Quality Trimming

Base calling involves identifying DNA bases from the readout of a sequencing

machine. Popular base caller widely used is Phred (Ewing et al. 1998). The quality

score, q, assigned to a base is related to the estimated probability, p, of erroneously
calling the base by the following formula: q ¼ �10 � log10( p). Thus, a Phred

quality score of 20 corresponds to an error probability of 1%. Paracel’s TraceTuner
(www.paracel.com) and ABI’s KB (www.appliedbiosystems.com) are the other

two frequently used base callers, which behave very similar to Phred by converting

raw data into accuracy probability base calls. Since metagenomic assemblies have

lower coverage than genomes, errors are more likely to propagate to the consensus.

Some post-processing pipelines ignore base quality scores associated with reads

and contigs, and few take positional sequence depth into account as a weighting

factor for consensus reliability. Because of this, for an average user, low-quality

data will be indistinguishable from the rest of the data set. When poor-quality read

that inadvertently passed through to gene prediction it may pass into public

repositories. Hence, quality trimming is highly recommended.

12.2.4 Denoising

Denoising is a computationally intensive process that removes problematic reads

and increases the accuracy of the taxonomic analysis. This is critically important for

16S metagenomic data analysis as it may give rise to erroneous OTUs, and it is

sequencing platform-specific too. Illumina require less denoising than others.

Though generally a considerable number of sequences is lost, it usually results in

high-quality sequences (Gaspar and Thomas 2013) at certain level of stringency

(Bakker et al. 2012). Notable software packages that are commonly used to correct

amplicon pyrosequencing errors include Denoiser (Reeder and Knight 2010),

AmpliconNoise (Quince et al. 2011), Acacia (Bragg et al. 2012), DRISEE (dupli-

cate read inferred sequencing error estimation) (Keegan et al. 2012), JATAC

(Balzer et al. 2013), and CorQ (Iyer et al. 2013). Denoiser uses frequency-based

heuristics rather than statistical modeling to cluster reads and makes more accurate

assessments of alpha diversity when combined with chimera-checking methods.

AmpliconNoise is highly effective but is computationally intensive and applies an

approximate likelihood using empirically derived error distributions to remove

pyrosequencing noise from reads. These two tools do not modify individual

reads; rather they both select an “error-free” read to represent reads in a given

cluster. Acacia, on the other hand, is an error-correction tool, reduces the number

and complexity of alignments, and uses a quicker but less sensitive statistical

approach to distinguish between error and genuine sequence differences. DRISEE

assess sequencing quality and provides positional error estimates that can be used to

inform read trimming within a sample. JATAC algorithm identifies duplicate reads
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based on the flowgram that has been shown to be superior for noise removal in

metagenomics amplicon data and also allows for a more effective removal of

artificial duplicates. CorQ corrects homopolymer and non-homopolymer insertion

and deletion (indel) errors by utilizing inherent base quality in a sequence-specific

context.

12.2.5 Reducing Chimerism

Chimeras are fusion products that are formed between multiple parent sequences.

These are falsely interpreted as novel organisms. These are not sequencing errors as

they are not derived from a single reference sequence to which it can be mapped.

Few commonly used programs for combating chimerism are Bellerephon, Pintail

(Ashelford et al. 2005), ChimeraSlayer (Haas et al. 2011), Perseus (Quince et al.

2011), and Uchime (Edgar et al. 2011). The two algorithms most widely used for

16S chimera detection are Pintail and Bellerophon. The former is used by the

databases like the RDP (Cole et al. 2009) and SILVA (Pruesse et al. 2007) and

the latter is used by the GreenGenes 16S rRNA sequence collection (DeSantis et al.

2006). Pintail is generally visualized as 16S anomaly detection tool rather than a

chimera detection tool. But interestingly most anomalies detected by Pintail were

chimeras (Ashelford et al. 2005). Perseus, unlike Pintail and Bellerophon, does not

use a reference database, but does require a training set of sequences similar to the

sequences for characterization. Uchime outperformed ChimeraSlayer, especially in

cases where the chimera has more than two parents and its performance was

comparable to that of Perseus.

12.3 Sequence Assembly

The shotgun sequencing generates sequences for multiple small fragments sepa-

rately which are then combined into a reconstruction of the original genome using

computer programs called genome assemblers. These programs assemble shorter

reads first into contigs, and these are then oriented into scaffolds that provide a more

compact and concise view of the sequenced community. New challenges for the

assembly process are posed by recent advances in genome sequencing technologies

in terms of volume of data generated, length of the fragments, and new types of

sequencing errors especially in metagenomics (Pop 2009). Earlier metagenomic

data assemblies used tools that were originally designed for conventional whole-

genome shotgun sequence (WGS) projects with minor parameter modifications

(Wooley and Ye 2009). But recent ones have evolved as more robust specifically

in handling samples containing multiple genomes. The assembly process can be

approached either as reference-based assembly or as de novo assembly.
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12.3.1 Reference-Based Assembly

In reference-based assembly, contigs are created by mapping on one or more

reference genomes that belong to a particular species or genus, or sequences from

closely related organism would have already been deposited in online data repos-

itories and databases. Reference-based assembly tools are not computationally

intensive and can perform well when metagenomic samples are derived from the

areas that are extensively studied. Tools like GS Reference Mapper (Roche), MIRA

4 (Chevreux et al. 2004) or AMOS, and MetaAMOS (Treangen et al. 2013) are

commonly used in metagenomics applications. The assemblies can be visualized

using tools such as Tablet (Milne et al. 2009), EagleView (Huang and Marth 2008),

and MapView (Bao et al. 2009). Gaps in the query genome(s) of the resulting

assembly indicate that the assembly is incomplete or that the reference genomes

used are too distantly related to the community under investigation.

12.3.2 De Novo Assembly

On the other hand, de novo assembly is a computationally expensive process

requiring hundreds of gigabytes of memory and has long execution times, which

assembles the contigs based on the de Bruijn graphs without any reference genome

(Miller et al. 2010). Though tools such as EULER (Pevzner et al. 2001),

FragmentGluer (Pevzner et al. 2004), Velvet (Zerbino and Birney 2008), SOAP

(Li et al. 2008), ABySS (Simpson et al. 2009), and ALLPATHS (Maccallum et al.

2009) were built for assembling a single genome, even today they are used for

metagenomics applications. EULER and ALLPATHS attempt to correct errors in

reads prior to assembly, while Velvet and FragmentGluer deal with errors by

editing the graphs. These often underperform when used for metagenome assem-

blies due to problems coming from variation between similar subspecies and

genomic sequence similarity between different species. Besides that, difference in

abundance for species in a sample was also affected by different sequencing depths

for individual species. Tools like Genova (Laserson et al. 2011), MAP (Lai et al.

2012), MetaVelvet (Namiki et al. 2012), MetaVelvet-SL (Afiahayati and

Sakakibara 2014), and Meta-IDBA (Peng et al. 2011) managed to create more

accurate assemblies especially from data sets containing a mixture of multiple

genomes by making use of k-mer frequencies to detect kinks in the de Bruijn

graph. Using k-mer thresholds, they decompose the graph into subgraphs and

further assemble contigs and scaffolds based on the decomposed subgraphs. The

IDBA-UD algorithm (Peng et al. 2012) additionally address the issue of

metagenomic sequencing technologies with uneven sequencing depths by making

use of multiple depth-relative k-mer thresholds in order to remove erroneous

k-mers in both low-depth and high-depth regions.
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12.4 Analyzing Community Biodiversity

12.4.1 The Marker Gene

Microbial community fundamentally is a collection of individual cells, with distinct

genomic DNA. In order to describe the community, it is impractical to fully

sequence every genome in every cell. Hence, microbial ecology has defined a

number of unique tags to distinct genomes called molecular markers. A marker is

a small segment of DNA sequence that identifies the genome that contains it,

eliminating the need to sequence the entire genome. Despite its numerous varieties,

there are some which are desirable for properties for a good marker like it should be

present in every member of a population and discriminate individuals with distinct

genomes and, ideally, should differ proportionally to the evolutionary distance

between distinct genomes.

By far the most ubiquitous and significant (Lane et al. 1985) is the small or 16S

ribosomal RNA subunit gene (Tringe and Hugenholtz 2008) as the preferred target

marker gene for bacteria and archaea. But in case of fungi and eukaryotes, the

preferred marker genes are the internal transcribed spacer (ITS) and 18S rRNA

gene, respectively (Oulas et al. 2015). The gold standard (Nilakanta et al. 2014) for

the 16S data analysis is QIIME (Caporaso et al. 2010). Yet another popular tool is

Mothur (Schloss et al. 2009) which provides the user with a variety of choices by

incorporating software such as DOTUR (Schloss and Handelsman 2005), SONS

(Schloss and Handelsman 2006a), Treeclimber (Schloss and Handelsman 2006b),

and many more algorithms. Other tools include SILVAngs (Quast et al. 2012) and

MEGAN (Huson et al. 2007). These marker gene analyses generally involve

searching a reference database to find the closest match to an OTU from which a

taxonomic lineage is inferred. Some widely utilized databases for 16S rRNA gene

analysis include GreenGenes (DeSantis et al. 2006) and Ribosomal Database

Project (Cole et al. 2007; Cole et al. 2009). Besides 16S, SILVA (Pruesse et al.

2007) also supports analysis of 18S in case of fungi and eukaryotes. Unite (Koljalg

et al. 2013) can be used for analyzing ITS.

Unfortunately, not much databases are available for analyzing extremely diverse

protists and viruses for which considerably less sequence information is available

compared to bacteria. Humans are not only reported to carry viral particles

consisting mainly of bacteriophages (Haynes and Rohwer 2011) but also a substan-

tial number of eukaryotic viruses (Virgin et al. 2009). Like bacterial microbiota,

viromes show similar patterns in different stages of human (Caporaso et al. 2011;

Koenig et al. 2010), but the effects of these patterns in the human virome are mostly

not understood, although certain bacteriophages in other animals are beneficial to

the host (Oliver et al. 2009). The lack of a universal gene that is present in all virus

makes amplicon-based studies difficult for characterizing the virome in its totality.
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12.5 Analyzing Functional Diversity

This generally involves identifying protein coding sequences from the

metagenomic reads and comparing the coding sequence to a database (for which

some functional information is identified) to infer the function based on its simi-

larity to sequences in the database. Besides picturing the functional composition of

the community (Looft et al. 2012) or functions that associate with specific envi-

ronmental or host-physiological variables (Morgan et al. 2012), they may also

reveal the presence of novel genes (Nacke et al. 2011) or provide insight into the

ecological conditions associated with those genes for which the function is cur-

rently unknown (Buttigieg et al. 2013). Functional annotation of metagenome

involves two non-mutually exclusive steps: gene prediction and gene annotation.

12.5.1 Gene Prediction

This can be done on assembled or unassembled metagenomic sequences.

Metagenomic reads/contigs are scanned for identifying protein coding genes

(CDSs), as well as CRISPR repeats, noncoding RNAs, and tRNA. Predicting

CDSs from metagenomic reads is a fundamental step for annotation. Gene predic-

tion for metagenomic sequences can be performed in three ways: first, by mapping

the metagenomic reads or contigs to a database of gene sequences; second, based on

protein family classification; and, third, by de novo gene prediction.

Mapping the metagenomic reads or contigs to a database of gene sequences is a

straightforward method of identifying coding sequences in a metagenome. This

method of gene prediction can simultaneously provide functional annotation, if

functional annotation of the gene is available. It comes under high-throughput gene

prediction procedure as the mapping algorithms assess rapidly whether a genomic

fragment is nearly identical to a database sequence or not. This method is generally

useful for cataloging the specific genes present in the metagenome but not appro-

priate from predicting novel or highly divergent genes due to underrepresentation

of genomes in sequence databases.

The second method is the most frequently used gene prediction procedure where

each metagenomic read is translated into all six possible protein coding frames and

each of the resulting peptides is compared to a database of protein sequences. Tools

like transeq (Rice et al. 2000), USEARCH (Edgar 2010), RAPsearch (Zhao et al.

2011), and lastp (Kielbasa et al. 2011) translate reads prior to conducting protein

sequence alignment. On the other hand, algorithms like blastx (Altschul et al.

1997), USEARCH with the ublast option, or lastx (Kielbasa et al. 2011) translate

nucleic acid sequences on the fly. As this also relies on database, it can reveal only

diverged homologues of known proteins and not useful for identifying novel types

of proteins. Common functional databases includes SMART (Schultz et al. 1998),

SEED (Overbeek et al. 2005), NCBI nr (Pruitt et al. 2011), the KEGG Orthology
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(Kanehisa and Goto 2000), COGs (Tatusov et al. 1997), MetaCyc (Caspi et al.

2012), eggNOGs (Powell et al. 2011), and PFAM (Punta et al. 2011). Integrated

pipelines with integrated functional annotation like MG-RAST (Meyer et al. 2008),

MEtaGenome ANalyzer (MEGAN) (Huson et al. 2007), and HUMAnN

(Abubucker et al. 2012) are also available to automate these tasks.

Contrary to the above two methods, de novo gene prediction does not rely on a

reference database for identifying sequence similarity. Rather, gene prediction

systems are trained by evaluating various properties of microbial genes like length

of the gene, codon usage, GC bias, etc. Hence this method can potentially identify

novel genes, but it is difficult to determine if the predicted gene is real or spurious.

Tools like MetaGene (Noguchi et al. 2006), MetaGeneAnnotator (Meyer et al.

2008), Glimmer-MG (Kelley et al. 2011), MetaGeneMark (Zhu et al. 2010),

FragGeneScan (Rho et al. 2010), Orphelia (Hoff et al. 2009), and MetaGun (Liu

et al. 2013) can be used for de novo gene prediction. Yok and Rosen (2011)

recommended that gene prediction in metagenomes can be improved when multiple

methods are applied to the same data like following a consensus approach. Though

time-consuming, this method tends to be more discriminating than 6-frame trans-

lation while annotating (Trimble et al. 2012).

RNA genes (tRNA and rRNA) can be predicted using tools like tRNAscan

(Lowe and Eddy 1997). Predictions of tRNA predictions are quite reliable, but

not the rRNA genes. Other types of noncoding RNA (ncRNA) genes can be

detected by comparison to covariance models (Griffiths-Jones et al. 2005) and

sequence-structure motifs (Macke et al. 2001). These methods are computationally

intensive and take long time for metagenomic data sets. Predicting ncRNAs are

usually excluded from downstream analyses because of the complexity due to lack

conservation and reliable “ab initio” methods even for isolated genomes.

Errors in gene prediction mainly occur due to chimeric assemblies or frameshifts

(Mavromatis et al. 2007). Hence, the quality of the gene prediction normally relies

on the quality of read preprocessing and assembly. Though gene prediction can be

performed with both assembled reads (contigs) and unassembled reads, it is advised

to perform gene calling on both reads and contigs. It was observed that gene

prediction methods used on accurately assembled sequences predicted more than

90% when compared to predictions made on unassembled reads which exhibited

lower accuracy (~70%) (Mavromatis et al. 2007).

12.5.2 Functional Annotation

Functional annotation of metagenomic data sets are made by comparing predicted

genes to existing, previously annotated sequences or by context annotation.

Metagenomic data will have complications when predicted proteins are short and

lack homologues. Databases that are used for comparing protein sequences include

alignment of profiles from the protein families in TIGRFAMs (Selengut et al.

2007), PFAM (Finn et al. 2008), COGs (Tatusov et al. 1997), and RPS-BLAST
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(Markowitz et al. 2006). PFAMs allow the identification and annotation of protein

domains. TIGRFAM database include models for both domain and full-length

proteins. Though COGs also allow the annotation of the full-length proteins, it is

not frequently updated like PFAMs and TIGRFAMs. It is also recommended not to

assign protein function solely based on BLAST results as there is a potential for

error propagation through databases (Kyrpides and Ouzounis 1999). Context-based

annotation methods include genomic neighborhood (Overbeek et al. 1999), gene

fusion (Marcotte et al. 1999b), phylogenetic profiles (Pellegrini et al. 1999), and

coexpression (Marcotte et al. 1999a). It was observed that neighborhood analysis

was performed on metagenomic data, which, combined with homology searches,

inferred specific functions for 76% of the metagenomic data sets (83% when

nonspecific functions are considered) (Harrington et al. 2007) and is expected to

be used in predicting protein function in metagenomic data in the future.

12.6 Metatranscriptomic Analysis

Metatranscriptome sequencing has been recently employed to identify RNA-based

regulation and expression in human microbiome (Markowitz et al. 2008).

Accessing metatranscriptome of the microbiome through metatranscriptomic shot-

gun sequencing (RNAseq) has led to the discovery and characterization of new

genes from uncultivated microorganisms under different conditions. Few investi-

gations (Bikel et al. 2015; Franzosa et al. 2014; Gosalbes et al. 2011; Jorth et al.

2014; Knudsen et al. 2016) have been performed on metatranscriptomics combined

with metagenomics. Several technical issues affecting large-scale application of

metatranscriptomics are discussed by Bikel et al. (2015). Though metagenomic and

metatranscriptomic data provide extensive information about microbiota diversity,

gene content, and their potential functions, it is very difficult to say whether DNA

comes from viable cells or whether the predicted genes are expressed at all and, if

so, under what conditions and to what extent (Gosalbes et al. 2011).

The bioinformatics pipeline for analyzing the data obtained from a

metatranscriptomic experiment is similar to the one used in metagenomics. Basi-

cally this is also divided in two strategies: mapping sequence reads to reference

genomes or pathways to identify the taxonomical classification of active microor-

ganism and the functionality of their expressed genes and de novo assembly of new

transcriptomes. For de novo assembly, there are several programs like

SOAPdenovo (Li et al. 2009), ABySS (Birol et al. 2009), and Velvet-Oases (Schulz

et al. 2012) that have been reported to be successfully applied to the

metatranscriptome assembly (Ghaffari et al. 2014; Ness et al. 2011; Schulz et al.

2012; Shi et al. 2011). A program specially developed for de novo transcriptome

assembly from short-read RNAseq data, Trinity (Haas et al. 2013), is one of the

most used bioinformatics tools to assemble de novo transcriptomes of different

species. It is a very efficient and sensitive in recovering full-length transcripts and

isoforms (Ghaffari et al. 2014; Luria et al. 2014).
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Metatranscriptome analyses involves stepwise approach for detecting the differ-

ent RNA types, such as rRNAs, mRNAs, and other noncoding RNAs, facilitating

the researchers to study them individually. The reads can be then compared against

the small subunit rRNA reference database (SSUrdb), and later, the remaining

unassigned reads can be analyzed with the large subunit rRNA reference database

(LSUrdb)—the databases compiled from SILVA (Pruesse et al. 2007) or RDP II

(Cole et al. 2009). The non-rRNA representation can be then identified from

subtracting the LSU rRNA and SSU rRNA reads from the total reads obtained.

The non-rRNAs are finally carried forward for functional analyses.

The functional diversity of the microbiome can be predicted by annotating

metatranscriptomic sequences with known functions. cDNA sequences with no

significant homology with any of the rRNA databases can be searched against the

NCBI nr protein database using BLASTX (Altschul et al. 1997). The sequence

reads that contain protein coding genes are identified, and their sequences are

compared to the coding sequences of protein databases like the Kyoto Encyclopedia

of Genes and Genomes (KEGG), protein family annotations (Pfam), gene ontol-

ogies (GO), and clusters of orthologous groups (COG). Thus, the function of the

query sequence is assigned based on its homology to sequences functionally

annotated in all the above mentioned databases.

Pipelines for combined metatranscriptomics with metagenomics include

INFERNAL, a powerful tool for predicting small RNA in the metagenomic data

(Nawrocki and Eddy 2013). HUMAnN is another automated pipeline, an offline

platform, to determine the presence/absence and abundance of microbial pathways

and gene families in a community directly from metagenomic sequence. This is

done by converting sequence reads into coverage and abundance and finally

summarizes the gene families and pathways in a microbial community (Abubucker

et al. 2012). Other offline platforms used to analyze metagenomic data include

MEGAN (Huson et al. 2007), IMG/M server (Markowitz et al. 2008), RAST

(MG-RAST) (Meyer et al. 2008), and JCVI Metagenomics Reports (METAREP)

(Goll et al. 2010).

12.7 Statistical Analysis in Metagenomics

Statistical analysis plays critical role in analyzing and interpreting metagenomic

data. Even simple metagenomic analysis like estimate of species diversity seems

not so straightforward and obviously needs statistical attention due to the artifacts

created during the sequencing (discussed earlier).

Often critical statistical analysis precedes with normalization (i.e., normalization

to a reference sample), a step that reduces the systematic variance and improves the

overall performance for downstream statistical analysis. These include methods

like centering, autoscaling, pareto scaling, range scaling, vast scaling, log transfor-

mation, and power transformation. Appropriate selection of data pretreatment

methods and its significance have been by van den Berg et al. (2006).

280 K.S. Ibrahim and N.S. Kumar



Robust data processing algorithms for wide range of analysis are mostly created

using repositories available from the open-source R-project (http://www.R-project.

org) and the R-based bioconductor project (https://www.bioconductor.org/). These

are widely considered to be the most complete collection of up-to-date statistical

and machine learning algorithms (Xia et al. 2009). Common statistical analysis

includes missing value estimation, diversity analysis, and univariate and multivar-

iate analysis like directions of variance, cluster analysis, etc.

Missing value exclusion, missing value replacement, and missing value impu-

tation can be identified by probabilistic PCA (PPCA), Bayesian PCA (BPCA), and

singular value decomposition imputation (SVDImpute) (Stacklies et al. 2007;

Steinfath et al. 2008). Univariate analysis includes three commonly used

methods—fold-change analysis, t-tests, and volcano plots. The t-test attempts to

determine whether the means of two groups are distinct. With t-value, P-value can
be calculated which can be used to determine whether the distinction is statistically

significant or not. The volcano plots compare the size of the fold change to the

statistical significance level (Xia et al. 2009). Directions of maximum variance can

be determined by principal component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA). PCA is an unsupervised method aiming to find the

directions of maximum variance in a data set (X) without referring to the class

labels (Y), and PLS-DA is a supervised method that uses multiple linear regression

technique to find the direction of maximum covariance between a data set (X) and

the class membership (Y). In both PCA and PLS-DA, the original variables are

summarized into much fewer variables using their weighted averages called scores.

Diversity analysis can be performed by estimating the alpha diversity, which pro-

vides a summary statistic of a single population, or beta diversity, which gives

organismal composition between populations. Chao1 (Chao 1984), abundance-

based coverage estimator (ACE) (Chao et al. 1993), and Jackknife (Heltshe and

Forrester 1983) measure alpha diversity, species richness, and evenness (species

distribution) expected within a single population. These results in collector’s or

rarefaction curves (Colwell and Coddington 1994). Alpha diversity is often quan-

tified by the Shannon Index (Shannon 1948) or by Simpson Index (Simpson 1949).

Beta diversity can be measured by simple taxa overlap or quantified by the Bray-

Curtis dissimilarity (Bray and Curtis 1957) or UniFrac (Lozupone and Knight

2005). Two major approaches of clustering analysis include Hierarchical clustering

and partitional clustering. Hierarchical, which is also called as agglomerative

clustering, begins with each sample considered as separate cluster and then pro-

ceeds to combine them until all samples belong to one cluster. The result of

hierarchical clustering is usually presented as a dendrogram or as a heat map,

which displays the actual data values using color gradients. Clustering methods

include average linkage, complete linkage, single linkage, and Ward’s linkage. A
dissimilarity measure includes Euclidean distance, Pearson’s correlation, and

Spearman’s rank correlation. On the other hand, partitional clustering attempts to

directly decompose the data set into a user-specified number of disjoint clusters.

This uses methods like k-means clustering and self-organizing map (SOM).

k-Means clustering create k clusters such that the sum of squares from points to
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the assigned cluster centers’ is minimized. SOM is an unsupervised neural network

based around the concept of a grid of interconnected nodes, each of which contains

a model.

Demands for new statistical methods to support emerging trends in

metagenomics applications have resulted in more efficient implementations and

better data visualization to lodge the tremendous increase in data analysis work-

loads. Web-based server with its user-friendly interface, comprehensive data

processing options, wide array of statistical methods, and extensive data visualiza-

tion and analysis support are playing key role. Servers like GEPAS (Herrero et al.

2003) and CARMAweb (Rainer et al. 2006), MG-RAST (Meyer et al. 2008),

MEGAN (Huson et al. 2007), QIIME (Caporaso et al. 2010), Mothur (Schloss

et al. 2009), and MetaboAnalyst (Xia et al. 2015) are few worth mentioning.

Table 12.1 summarizes some the commonly used tools in microbiome analysis

and their internet resources.

12.8 Analysis of Human Microbiome

Since birth, continuous exposure to microbial challenges has shaped the human

microbiome and whose perturbation affects both human health and disease (Segal

and Blaser 2014). In recent years, the knowledge about composition, distribution,

and variation of bacteria in the human body has dramatically increased. Besides

external factors like air, food, and environment, routine activity, habit, and phys-

iology create selective pressure of each organism. In order to understand the

influence of human microbiome, several studies have assessed the microbial com-

positions in different locations like stool, nasal, skin, vaginal, and oral of health and

unhealthy individuals (Kraal et al. 2014). Thus, determining the extent of the

variability of the human microbiome is therefore crucial for understanding the

microbiology, genetics, and ecology of the microbiome. Besides that, it is useful

for practical issues in designing experiments and interpretation of clinical studies

(Zhou et al. 2014).

Study demonstrating the feasibility of using the composition of the gut

microbiome to detect the presence of precancerous and cancerous lesions (Zackular

et al. 2014), ethnic relation to significant differences in the vaginal microbiome

(Fettweis et al. 2014), and discovery closely related oligotypes, differing sometimes

by as little as a single nucleotide, showing dramatic different distributions among

oral sites and among individuals (Eren et al. 2014), a less robustly interrogated

placental microbiome by Aagaard et al. (2014), altered interactions between intes-

tinal microbes, and the mucosal immune system resulting in inflammatory bowel

disease (IBD) (Kostic et al. 2014) have taken us to the next level of understanding

the human microbiome. Other studies like understanding of the etiology and

pathogenesis of reflux disorders and esophageal adenocarcinoma (Yang et al.

2014) and altered microbiome on pulmonary responses (Segal and Blaser 2014)

will be definitely be critical and open door for future investigations.
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Table 12.1 Selected tools and their resources for microbiome analysis

Software Brief description URLs

Preprocessing

FASTX-Toolkit A collection of command line tools

for short-read FASTA/FASTQ files

preprocessing

hannonlab.cshl.edu/fastx_toolkit

FastQC A quality-controlled tool for high-

throughput sequence data

www.bioinformatics.babraham.

ac.uk/projects/fastqc

SolexaQA Calculates sequence quality statis-

tics and creates visual representa-

tions of data quality for second-

generation sequencing data

http://solexaqa.sourceforge.net/

Lucy 2 Raw DNA sequence trimming and

visualization tool based on the

command-line tool Lucy1

http://www.complex.iastate.edu/

download/Lucy2/index.html

CutAdapt Removal of adapter sequences from

high-throughput sequencing data

https://code.google.com/p/

cutadapt/

NGS QC Toolkit Perl-based stand-alone program

package for the quality control

(QC)

www.nipgr.res.in/ngsqctoolkit.

html

Trimmomatic Employed in trimming tasks for

illumina paired-end and single

ended data

http://www.usadellab.org/cms/?

page¼trimmomatic

ngsShoRT Commonly used preprocessing

algorithms in PERL

research.bioinformatics.udel.edu/

genomics/ngsShoRT/

QC-Chain A fast, accurate, and holistic NGS

data quality-controlled method

http://www.

computationalbioenergy.org/qc-

chain.html

Meta-QC-Chain A tool that combines multiple QC

functions like identifying potential

errors, quality trimming filters for

poor sequencing quality bases and

reads, and contamination screening

that identifies higher eukaryotic

species, which are considered as

contamination for metagenomic

data

http://computationalbioenergy.

org/meta-qc-chain.html

PathoQC A streamlined toolkit for

preprocessing next-generation

sequencing data

http://sourceforge.net/projects/

PathoScope/

PRINSEQ Provides summary statistics of

FASTA (and QUAL) or FASTQ

files

http://prinseq.sourceforge.net/

Denoising

AmpliconNoise A collection of programs for the

removal of noise from

454 sequenced PCR amplicons

https://code.google.com/p/

ampliconnoise/

(continued)
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Table 12.1 (continued)

Software Brief description URLs

DADA Algorithm for fast and accurate

removal errors from PCR-amplified

sequence data

http://sites.google.com/site/

dadadenoiser

Acacia Error corrector for pyrosequenced

amplicon reads

http://sourceforge.net/projects/

acaciaerrorcorr

Chimera detection

UCHIME Detects very low-divergent chi-

meras with a reference database

http://drive5.com/usearch/man

ual/uchime_algo.html

ChimeraSlayer A chimeric sequence detection

utility, compatible with near-full-

length Sanger sequences and

shorter 454-FLX sequences

http://microbiomeutil.

sourceforge.net/

DECIPHER Chimeric sequence detection utility

developed using the R statistical

programming language

http://decipher.cee.wisc.edu

Reference-based assembly

Newbler (Roche) Assembling sequence data gener-

ated by the 454 GS-series of

pyrosequencing platforms sold by

454 Life Sciences, a Roche Diag-

nostics company

http://swes.cals.arizona.edu/

maier_lab/kartchner/documenta

tion/index.php/home/docs/

newbler

MIRA 4 A multi-pass DNA sequence data

assembler/mapper for whole-

genome and EST/RNASeq projects

http://mira-assembler.

sourceforge.net/docs/

DefinitiveGuideToMIRA.html

AMOS A consortium committed to the

development of open-source

whole-genome assembly software

http://amos.sourceforge.net/wiki/

index.php/AMOS

MetAMOS An integrated assembly and analy-

sis pipeline for metagenomic data

http://www.cbcb.umd.edu/soft

ware/metamos

Bowtie 2 Ultrafast and memory-efficient tool

for aligning sequencing reads to

long reference sequences

http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

De novo assembly

EULER A suite of programs for correcting

errors in short reads (454 and

Illumina) and assembling them

http://euler-assembler.ucsd.edu/

Velvet de Bruijn graph-based single-

genome assembler for short reads

https://www.ebi.ac.uk/~zerbino/

velvet/

SOAPdenovo The program is specially designed

to assemble Illumina GA short

reads for the human-sized genomes

http://soap.genomics.org.cn/

soapdenovo.html

Abyss A de novo, parallel, paired-end

sequence assembler that is designed

for short reads

http://www.bcgsc.ca/platform/

bioinfo/software/abyss

MetaVelvet Modified and extended de Bruijn

graph-based single-genome

http://metavelvet.dna.bio.keio.ac.

jp/
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Table 12.1 (continued)

Software Brief description URLs

assembler, Velvet, for de novo

metagenomic assembly

MetaVelvet-SL An extended Velvet assembler for

detecting chimeric nodes by using

supervised machine learning

metavelvet.dna.bio.keio.ac.jp/

Meta-IDBA An iterative de Bruijn graph de

novo short-read assembler specially

designed for de novo metagenomic

assembly

http://i.cs.hku.hk/~alse/hkubrg/

projects/metaidba/

Genovo A tool for de novo metagenomic

assembly and handle reads with

length>1000

http://cs.stanford.edu/group/

genovo/

Trinity Assembles transcript sequences

from Illumina RNAseq data

https://github.com/trinityrnaseq/

trinityrnaseq/wiki

Binning tools

TETRA To calculate how well

tetranucleotide usage patterns in

DNA sequences correlate

http://www.megx.net/tetra/index.

html

PhylopythiaS Taxonomic assignment of

metagenome sequences among

from three different models

http://phylopythias.cs.uni-

duesseldorf.de/index.php?

phase¼wait

TACOA Predicting the taxonomic origin of

genomic fragments from

metagenomic data sets by combin-

ing the advantages of the k-NN

approach with a smoothing kernel

function

http://www.cebitec.uni-bielefeld.

de/index.php/2-uncategorised/99-

tacoa?

highlight¼WyJ0YWNvYSJd

ESOM A suite of programs to perform data

mining tasks like clustering, visu-

alization, and classification

http://databionic-esom.

sourceforge.net/

ClaMS A sequence composition-based

classifier for metagenomic

sequences

http://clams.jgi-psf.org/

MetaPhyler Taxonomic classifier for

metagenomic shotgun reads

http://metaphyler.cbcb.umd.edu/

SOrt-ITEMS A similarity-based binning method http://metagenomics.atc.tcs.com/

binning/SOrt-ITEMS/

PhymmBL Hybrid classifier tool which com-

bines analysis from both Phymm

and BLAST and produces even

higher accuracy

http://www.cbcb.umd.edu/soft

ware/phymm/

MetaCluster Binning and annotating short

paired-end reads

http://i.cs.hku.hk/~alse/

MetaCluster/

OTU clustering

UCLUST An algorithm that divides a set of

sequences into clusters

http://www.drive5.com/usearch
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Table 12.1 (continued)

Software Brief description URLs

CD-HIT-OTU Fast and accurate in identifying true

OTUs and produces much fewer

spurious OTUs

http://weizhong-lab.ucsd.edu/cd-

hit-otu

TBC Algorithm for defining operational

taxonomic units (OTUs) without

multiple sequence alignment

http://www.ezbiocloud.net/sw/tbc

16S databases

RDP A database that provides quality-

controlled, aligned, and annotated

bacterial and archaeal 16S rRNA

sequences, fungal 28S rRNA

sequences, and a suite of analysis

tools to the scientific community

http://rdp.cme.msu.edu/index.jsp

SILVA A comprehensive online resource

for quality-checked and aligned

ribosomal RNA sequence data

http://www.arb-silva.de

GreenGenes A collection of tools for choosing

phylogenetically specific probes,

interpreting microarray results, and

aligning/annotating novel

sequences

http://greengenes.lbl.gov

EzTaxon A database that covers uncultured

species often found in microbial

ecological studies

http://www.ezbiocloud.net/

eztaxon

ITS database

UNITE A platform for sequence-borne

identification of ectomycorrhizal

asco- and basidiomycetes

http://unite.ut.ee

Sub-cellular localization

CoBaltDB Predicting prokaryotic protein

localizations

http://www.umr6026.univ-

rennes1.fr/english/home/research/

basic/software/cobalten

PSLpred To predict the subcellular location

for Gram-negative bacteria proteins

http://www.imtech.res.in/raghava/

pslpred/

CELLO Predicting subcellular localization

of proteins for Gram-negative bac-

teria by support vector machines

based on n-peptide compositions

http://cello.life.nctu.edu.tw/

PSORT-B To predict the subcellular location

for Gram-positive or Gram-

negative bacterial proteins

Functional annotation databases

BLAST nr Basic Local Alignment Search Tool

against nonredundant database

http://blast.ncbi.nlm.nih.gov/

Blast.cgi

SWISSPROT Manually annotated and reviewed

section of the UniProt

Knowledgebase (UniProtKB)

http://www.uniprot.org/
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Table 12.1 (continued)

Software Brief description URLs

KEGG Kyoto Encyclopedia of Genes and

Genomes

http://www.genome.jp/kegg/

SEED A resource that provide consistent

and accurate genome annotations

across thousands of genomes

http://pubseed.theseed.org/

EggNOG A database of orthologous groups

and functional annotation

http://eggnogdb.embl.de/#/app/

home

COG/KOG EuKaryotic Orthologous Groups

(KOG) is a eukaryote-specific ver-

sion of the Clusters of Orthologous

Groups (COG) tool for identifying

ortholog and paralog proteins

http://genome.jgi.doe.gov/Tuto

rial/tutorial/kog.html

PFAM Collection of protein families, each

represented by multiple sequence

alignments and hidden Markov

models (HMMs)

http://pfam.xfam.org/

TIGRFAMs A resource consisting of curated

multiple sequence alignments, hid-

den Markov models (HMMs) for

protein sequence classification, and

associated information designed to

support automated annotation of

(mostly prokaryotic) proteins

http://www.jcvi.org/cgi-bin/

tigrfams/index.cgi

MetaBioMe A web resource to find novel

homologues for known commer-

cially useful enzymes (CUEs) in

metagenomic data sets and com-

pleted bacterial genomes

http://metasystems.riken.jp/

metabiome/

TSdb The transporter substrate database

(TSdb)—a central repository of

formatted substrate information of

transporters as well as their

annotation

http://tsdb.cbi.pku.edu.cn/

TCDB Functional and phylogenetic clas-

sification of membrane transport

proteins

http://www.tcdb.org/

CAZy A specialist database dedicated to

the display and analysis of geno-

mic, structural, and biochemical

information on carbohydrate-active

enzymes (CAZymes)

http://www.cazy.org/

dbCAN A database for carbohydrate-active

enzymes

http://csbl.bmb.uga.edu/dbCAN/

Annotation of metagenomics sequences

MetaGeneMark For gene prediction in

metagenomes

http://exon.gatech.edu/meta_

gmhmmp.cgi

MetaGeneAnnotator A gene-finding program for pro-

karyote and phage

http://metagene.nig.ac.jp/
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Table 12.1 (continued)

Software Brief description URLs

Prodigal A gene-finding program developed

at Oak Ridge National Laboratory

and the University of Tennessee

http://prodigal.ornl.gov/

Orphelia A metagenomic ORF finding tool

for the environmental DNA

sequences with unknown phyloge-

netic origin

http://orphelia.gobics.de/

FragGeneScan Software for predicting prokaryotic

genes in incomplete assemblies or

complete genomes

http://sourceforge.net/projects/

fraggenescan/

PILER-CR Software for finding CRISPR

repeats

http://www.drive5.com/pilercr/

tRNAscan-SE A web server for predicting tRNAs http://lowelab.ucsc.edu/

tRNAscan-SE/

WebMGA A web server for rapid

metagenomic data analysis using

fast and effective algorithms

http://weizhong-lab.ucsd.edu/

metagenomic-analysis/

METAREP An open-source tool to view, query,

browse, and compare

metagenomics annotation profiles

from short reads or assemblies

http://jcvi.org/metarep/

STAMP A software package for analyzing

taxonomic or metabolic profiles

http://kiwi.cs.dal.ca/Software/

STAMP

CoMet A web server for fast comparative

functional profiling of

metagenomes

http://comet.gobics.de/

RAMMCAP Analysis and comparison of very

large metagenomes with fast clus-

tering and functional annotation

http://weizhong-lab.ucsd.edu/

rammcap/cgi-bin/rammcap.cgi

Analytical pipelines for 16S

CARMA Software pipeline for characteriz-

ing the taxonomic composition and

genetic diversity of short-read

metagenomes

http://www.cebitec.uni-bielefeld.

de/index.php/2-uncategorised/47-

carma?highlight¼WyJjYXJtYSJd

IMG/M Integrated Microbial Genomes with

Microbiome

http://img.jgi.doe.gov/m/doc/back

ground.html

MG-RAST An automated analysis platform for

metagenomes

http://metagenomics.anl.gov/

Mothur An open-source software for

microbial ecology community

analysis

http://www.mothur.org

QIIME An open-source bioinformatics

pipeline for performing

microbiome analysis from raw

DNA sequencing data

http://qiime.org

SILVAngs A data analysis service for ribo-

somal RNA gene (rDNA) amplicon

https://www.arb-silva.de/ngs/

(continued)
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http://prodigal.ornl.gov
http://orphelia.gobics.de
http://sourceforge.net/projects/fraggenescan/
http://sourceforge.net/projects/fraggenescan/
http://www.drive5.com/pilercr/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://weizhong-lab.ucsd.edu/metagenomic-analysis/
http://weizhong-lab.ucsd.edu/metagenomic-analysis/
http://jcvi.org/metarep/
http://kiwi.cs.dal.ca/Software/STAMP
http://kiwi.cs.dal.ca/Software/STAMP
http://comet.gobics.de
http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/rammcap.cgi
http://weizhong-lab.ucsd.edu/rammcap/cgi-bin/rammcap.cgi
http://www.cebitec.uni-bielefeld.de/index.php/2-uncategorised/47-carma?highlight=WyJjYXJtYSJd
http://www.cebitec.uni-bielefeld.de/index.php/2-uncategorised/47-carma?highlight=WyJjYXJtYSJd
http://www.cebitec.uni-bielefeld.de/index.php/2-uncategorised/47-carma?highlight=WyJjYXJtYSJd
http://www.cebitec.uni-bielefeld.de/index.php/2-uncategorised/47-carma?highlight=WyJjYXJtYSJd
http://img.jgi.doe.gov/m/doc/background.html
http://img.jgi.doe.gov/m/doc/background.html
http://metagenomics.anl.gov
http://www.mothur.org
http://qiime.org
https://www.arb-silva.de/ngs/


12.9 Conclusion

Human microbiota includes microorganisms living on the surface and inside the

body. They are important for the host’s health. These are highly dynamic and can be

influenced by a number of factors such as age, diet, and physiology. Studies have

shown that most of the human adult microbiota lives in the gut and follows specific

microbial signatures but with high intraindividual variability over time. Any alter-

ations of the human gut microbiome can play a role in disease development. Thus,

exploring microbiome could make themselves as potent target for diagnostic and

therapeutic applications. Since early microbial studies were bases on the direct

cultivation and isolation of microbes, clinical applications posed several limitations

especially growth conditions. Studies have shown that not all microbes are cur-

rently uncultivable. Methods to study cultivable organisms are also not suitable for

the study of entire microbiome. Metagenomics helped in the direct genetic analysis

of genomes contained within an environmental sample without the need for culti-

vating. Metagenomic studies using NGS-based methods can be approached by

amplifying 16S rRNA genes using specific primers or through whole-genome

shotgun sequencing. 16S sequences identified can be used to describe their com-

munity relative abundance and/or their phylogenetic relationships by clustering into

operational taxonomic units (OTUs) using databases of previously annotated

sequences. In whole-genome shotgun sequencing approach, where random primers

Table 12.1 (continued)

Software Brief description URLs

reads from high-throughput

sequencing

MEGAN Tool for studying the taxonomic

content from short-read

metagenomes

http://ab.inf.uni-tuebingen.de/soft

ware/megan5/

WATERS From 16S rDNA contigs to biolog-

ical interpretation and analysis

http://code.google.com/p/

waters16s

RDPipeline For processing large rRNA

sequence libraries (single-strand

and paired-end reads) obtained

through high-throughput sequenc-

ing technology

https://pyro.cme.msu.edu

VAMPS A collection of tools for visualiza-

tion and analyze data for microbial

population structures and

distributions

http://vamps.mbl.edu

Genboree A web-based platform for multi-

omic research and data analysis

using the latest bioinformatics tools

http://genboree.org

SnoWMan Pipeline for analysis of microbiome

data

https://snowman.genome.tugraz.

at/snowman
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http://ab.inf.uni-tuebingen.de/software/megan5/
http://ab.inf.uni-tuebingen.de/software/megan5/
http://code.google.com/p/waters16s
http://code.google.com/p/waters16s
https://pyro.cme.msu.edu
http://vamps.mbl.edu
http://genboree.org
https://snowman.genome.tugraz.at/snowman
https://snowman.genome.tugraz.at/snowman


are used for amplifying all microbial genes, the relative abundances of genes and

pathways can be determined by comparing the sequences to functional databases.

Next-generation sequencing (NGS) technologies not only increased the through-

put of bases sequenced/run but also reduced sequencing costs. This had a major

impact on the field of metagenomics where a specific microbiome can be qualita-

tively and quantitatively characterized in depth without the selection bias and

constraints associated with cultivation methods. Continuous advancements in

sequencing technologies have not only allowed address more complex habitats

but also have imposed growing demands on bioinformatic data post-processing.

Analyzing the huge amount of data by these technologies has become the bottle-

neck especially in case of larger metagenome projects. From assembly to analysis,

bioinformatic post-processing requires dedicated data integration pipelines, some

of which have yet to be developed.
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Latorre A, Moya A. Metatranscriptomic Approach to Analyze the Functional Human Gut

Microbiota. PLoS One. 2011;6(3):e17447.

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating

non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33(Database issue):D121–4.

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D,

Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren

BW. Chimeric 16S rRNA sequence formation and detection in Sanger and

454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,

Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R,

William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A. De novo transcript

sequence reconstruction from RNA-seq using the Trinity platform for reference generation and

analysis. Nat Protoc. 2013;8(8):1494–512.

Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the

chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5

(10):R245–9.

Hansen M, Tolker-Nielsen T, Givskov M, Molin S. Biased 16S rDNA PCR amplification caused

by interference from DNA flanking the template region. FEMS Microbiol Ecol.

1998;26:141–9.

Harrington ED, Singh AH, Doerks T, Letunic I, von Mering C, Jensen LJ, Raes J, Bork

P. Quantitative assessment of protein function prediction from metagenomics shotgun

sequences. Proc Natl Acad Sci U S A. 2007;104(35):13913–8.

Haynes M, Rohwer F. Metagenomics of the Human Body Springer. New: York; 2011.

292 K.S. Ibrahim and N.S. Kumar



Heltshe J, Forrester N. Estimating species richness using the jackknife procedure. Biometrics.

1983;39:1–11.

Herrero J, Al-Shahrour F, Diaz-Uriarte R, Mateos A, Vaquerizas JM, Santoyo J, Dopazo

J. GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic

Acids Res. 2003;31(13):3461–7.

Hoff KJ, Lingner T, Meinicke P, Tech M. Orphelia: predicting genes in metagenomic sequencing

reads. Nucleic Acids Res. 2009;37(Web Server issue):W101–5.

Huang W, Marth G. EagleView: a genome assembly viewer for next-generation sequencing

technologies. Genome Res. 2008;18(9):1538–43.

Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res.

2007;17(3):377–86.

Iyer S, Bouzek H, Deng W, Larsen B, Casey E, Mullins JI. Quality score based identification and

correction of pyrosequencing errors. PLoS One. 2013;8(9):e73015.

Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the

human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.

2000;28(1):27–30.

Keegan KP, Trimble WL, Wilkening J, Wilke A, Harrison T, D’Souza M, Meyer F. A platform-

independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS

Comput Biol. 2012;8(6):e1002541.

Kelley DR, Liu B, Delcher AL, Pop M, Salzberg SL. Gene prediction with Glimmer for

metagenomic sequences augmented by classification and clustering. Nucleic Acids Res.

2011;40(1):e9.

Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence

comparison. Genome Res. 2011;21(3):487–93.

Knudsen BS, Kim HL, Erho N, Shin H, Alshalalfa M, Lam LL, Tenggara I, Chadwich K, Van Der

Kwast T, Fleshner N, Davicioni E, Carroll PR, Cooperberg MR, Chan JM, Simko

JP. Application of a clinical whole-transcriptome assay for staging and prognosis of prostate

cancer diagnosed in needle core biopsy specimens. J Mol Diagn. 2016; pii: S1525–1578(16)

00051–9. doi:10.1016/j.jmoldx.2015.12.006.

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley

RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl

Acad Sci U S A. 2010;108(Suppl 1):4578–85.

Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD,

Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M,

Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD,

Lucking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U,

Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott JA, Senes C, Smith ME, Suija A,

Taylor DL, Telleria MT, Weiss M, Larsson KH. Towards a unified paradigm for sequence-

based identification of fungi. Mol Ecol. 2013;22(21):5271–7.

Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status

and the future ahead. Gastroenterology. 2014;146(6):1489–99.

Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains

in the human microbiome: a resource for experimental efforts. PLoS One. 2014;9(5):e97279.

Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician’s guide to

metagenomics. Microbiol Mol Biol Rev. 2008;72(4):557–78. , Table of Contents

Kyrpides NC, Ouzounis CA. Whole-genome sequence annotation: ‘going wrong with confidence’.
Mol Microbiol. 1999;32(4):886–7.

Laehnemann D, Borkhardt A, McHardy AC (2015) Denoising DNA deep sequencing data-high-

throughput sequencing errors and their correction. Brief Bioinform

Lai B, Ding R, Li Y, Duan L, Zhu H. A de novo metagenomic assembly program for shotgun DNA

reads. Bioinformatics. 2012;28(11):1455–62.

12 Methods for Microbiome Analysis 293

http://dx.doi.org/10.1016/j.jmoldx.2015.12.006


Lampe JW. The Human Microbiome Project: getting to the guts of the matter in cancer epidemi-

ology. Cancer Epidemiol Biomark Prev. 2008;17(10):2523–4.

Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal

RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 1985;82(20):6955–9.

Laserson J, Jojic V, Koller D. Genovo: de novo assembly for metagenomes. J Comput Biol.

2011;18(3):429–43.

Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinfor-

matics. 2008;24(5):713–4.

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K,Wang J. SOAP2: an improved ultrafast tool for

short read alignment. Bioinformatics. 2009;25(15):1966–7.

Liu Y, Guo J, Hu G, Zhu H. Gene prediction in metagenomic fragments based on the SVM

algorithm. BMC Bioinf. 2013;14(Suppl 5):S12.

Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B,

Cole JR, Hashsham SA, Tiedje JM, Stanton TB. In-feed antibiotic effects on the swine

intestinal microbiome. Proc Natl Acad Sci U S A. 2012;109(5):1691–6.

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in

genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.

Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communi-

ties. Appl Environ Microbiol. 2005;71(12):8228–35.

Luria N, Sela N, Yaari M, Feygenberg O, Kobiler I, Lers A, Prusky D. De-novo assembly of

mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment.

BMC Genomics. 2014;15:957.

Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J, McKernan K,

Ranade S, Shea TP, Williams L, Young S, Nusbaum C, Jaffe DB. ALLPATHS 2: small

genomes assembled accurately and with high continuity from short paired reads. Genome

Biol. 2009;10(10):R103.

Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R. RNAMotif, an RNA

secondary structure definition and search algorithm. Nucleic Acids Res. 2001;29(22):4724–35.

Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein

function and protein-protein interactions from genome sequences. Science. 1999a;285

(5428):751–3.

Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. A combined algorithm for

genome-wide prediction of protein function. Nature. 1999b;402(6757):83–6.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS,

Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S,

Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza

JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE,

McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT,

Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer

GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in

microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

Markowitz VM, Ivanova N, Palaniappan K, Szeto E, Korzeniewski F, Lykidis A, Anderson I,

Mavromatis K, Kunin V, Garcia Martin H, Dubchak I, Hugenholtz P, Kyrpides NC. An

experimental metagenome data management and analysis system. Bioinformatics. 2006;22

(14):e359–67.

Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen IM, Grechkin Y,

Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC. IMG/M: a data

management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:D534–8.

Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I,

Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P,

Kyrpides NC. Use of simulated data sets to evaluate the fidelity of metagenomic processing

methods. Nat Methods. 2007;4(6):495–500.

294 K.S. Ibrahim and N.S. Kumar



Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A,

Stevens R, Wilke A, Wilkening J, Edwards RA. The metagenomics RAST server – a public

resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf.

2008;9:386.

Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction

and purification procedures for soil and sediment samples. Appl Environ Microbiol. 1999;65

(11):4715–24.

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Geno-

mics. 2010;95(6):315–27.

Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D. Tablet – next generation

sequence assembly visualization. Bioinformatics. 2009;26(3):401–2.

Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA,

LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower

C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.

Genome Biol. 2012;13(9):R79.

Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R. Identification and characteriza-

tion of novel cellulolytic and hemicellulolytic genes and enzymes derived from German

grassland soil metagenomes. Biotechnol Lett. 2011;34(4):663–75.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of Velvet assembler to

de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012;40(20):

e155.

Nawrocki EP, Eddy SR. Computational identification of functional RNA homologs in

metagenomic data. RNA Biol. 2013;10(7):1170–9.

Ness RW, Siol M, Barrett SC. De novo sequence assembly and characterization of the floral

transcriptome in cross- and self-fertilizing plants. BMC Genomics. 2011;12:298. [936]

Nilakanta H, Drews KL, Firrell S, Foulkes MA, Jablonski KA. A review of software for analyzing

molecular sequences. BMC Res Note. 2014;7:830.

Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome

shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30.

Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for

protection in a symbiotic mutualism. Science. 2009;325(5943):992–4.

Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G,

Arvanitidis C, Iliopoulos I. Metagenomics: tools and insights for analyzing next-generation

sequencing data derived from biodiversity studies. Bioinf Biol Insight. 2015;9:75–88.

Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer

functional coupling. Proc Natl Acad Sci U S A. 1999;96(6):2896–901.

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V,

Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A,

Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B,

McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD,

Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O,

Vonstein V. The subsystems approach to genome annotation and its use in the project to

annotate 1000 genomes. Nucleic Acids Res. 2005;33(17):5691–702.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions

by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S

A. 1999;96(8):4285–8.

Peng Y, Leung HC, Yiu SM, Chin FY. Meta-IDBA: a de Novo assembler for metagenomic data.

Bioinformatics. 2011;27(13):i94–101.

Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and

metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28(11):1420–8.

Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE,

Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD,

Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C,

12 Methods for Microbiome Analysis 295



Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H,

Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer

M. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc

Natl Acad Sci U S A. 2001;98(17):9748–53.

Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res.

2004;14(9):1786–96.

Pop M. Genome assembly reborn: recent computational challenges. Brief Bioinform. 2009;10

(4):354–66.

Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I,

Doerks T, Jensen LJ, von Mering C, Bork P. eggNOG v3.0: orthologous groups covering 1133

organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2011;40(Database issue):

D284–9.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. SILVA: a

comprehensive online resource for quality checked and aligned ribosomal RNA sequence

data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current

status, new features and genome annotation policy. Nucleic Acids Res. 2011;40(Database

issue):D130–5.

Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G,

Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD. The Pfam

protein families database. Nucleic Acids Res. 2011;40(Database issue):D290–301.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F,

Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J,

Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB,

Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y,

Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O,

Parkhill J, Weissenbach J, Bork P, Ehrlich SD. A human gut microbial gene catalogue

established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA

ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic

Acids Res. 2012;41(Database issue):D590–6.

Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced

amplicons. BMC Bioinf. 2011;12:38.

Rainer J, Sanchez-Cabo F, Stocker G, Sturn A, Trajanoski Z. CARMAweb: comprehensive R- and

bioconductor-based web service for microarray data analysis. Nucleic Acids Res. 2006;34

(Web Server issue):W498–503.

Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-

abundance distributions. Nat Methods. 2010;7(9):668–9.

Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic

Acids Res. 2010;38(20):e191.

Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite.

Trends Genet. 2000;16(6):276–7.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM,

Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan

SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA,

Jones SJ, Hoodless PA, Birol I. De novo assembly and analysis of RNA-seq data. Nat Methods.

2010;7(11):909–12.

Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational

taxonomic units and estimating species richness. Appl Environ Microbiol. 2005;71(3):1501–6.

Schloss PD, Handelsman J. Introducing SONS, a tool for operational taxonomic unit-based

comparisons of microbial community memberships and structures. Appl Environ Microbiol.

2006a;72(10):6773–9.

296 K.S. Ibrahim and N.S. Kumar



Schloss PD, Handelsman J. Introducing TreeClimber, a test to compare microbial community

structures. Appl Environ Microbiol. 2006b;72(4):2379–84.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley

BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber

CF. Introducing mothur: open-source, platform-independent, community-supported software

for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75

(23):7537–41.

Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing

artifacts on 16S rRNA-based studies. PLoS One. 2011;6(12):e27310.

Scholz MB, Lo CC, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the

current state of metagenomic data analysis. Curr Opin Biotechnol. 2011;23(1):9–15.

Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool:

identification of signaling domains. Proc Natl Acad Sci U S A. 1998;95(11):5857–64.

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across

the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.

Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac

Soc. 2014;11(Suppl 1):S21–7.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic

biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson WC, Richter AR,

White O. TIGRFAMs and Genome Properties: tools for the assignment of molecular function

and biological process in prokaryotic genomes. Nucleic Acids Res. 2007;35(Database issue):

D260–4.

Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423. ,

623–656

Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan

XC. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for

major metabolic pathways of tea-specific compounds. BMC Genomics. 2011;12:131.

Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol.

2010;77(4):1153–61.

Simpson E. Measurement of diversity. Nature. 1949;163:688.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for

short read sequence data. Genome Res. 2009;19(6):1117–23.

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods – a bioconductor package

providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7.

Steinfath M, Groth D, Lisec J, Selbig J. Metabolite profile analysis: from raw data to regression

and classification. Physiol Plant. 2008;132(2):150–61.

Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science.

1997;278(5338):631–7.

Thomas T, Gilbert J, Meyer F. Metagenomics – a guide from sampling to data analysis. Microb

Info Exp. 2012;2(1):3.

Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM,

Pop M. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline.

Genome Biol. 2013;14(1):R2.

Trimble WL, Keegan KP, D’Souza M, Wilke A, Wilkening J, Gilbert J, Meyer F. Short-read

reading-frame predictors are not created equal: sequence error causes loss of signal. BMC

Bioinf. 2012;13:183.

Tringe SG, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol.

2008;11(5):442–6.

van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling,

and transformations: improving the biological information content of metabolomics data.

BMC Genomics. 2006;7:142.

Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009;138(1):30–50.

12 Methods for Microbiome Analysis 297



Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational challenges. J Comput Sci

Technol. 2009;25(1):71–81.

Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data

analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60.

Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0 – making metabolomics more

meaningful. Nucleic Acids Res. 2015;43(W1):W251–7.

Yang L, Chaudhary N, Baghdadi J, Pei Z. Microbiome in reflux disorders and esophageal

adenocarcinoma. Cancer J. 2014;20(3):207–10.

Yok NG, Rosen GL. Combining gene prediction methods to improve metagenomic gene annota-

tion. BMC Bioinf. 2011;12:20.

Zackular JP, Rogers MA, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool

for colorectal cancer. Cancer Prev Res (Phila). 2014;7(11):1112–21.

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.

Genome Res. 2008;18(5):821–9.

Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for

next-generation sequencing data. Bioinformatics. 2011;28(1):125–6.

Zhou Y, Mihindukulasuriya KA, Gao H, La Rosa PS, Wylie KM, Martin JC, Kota K, Shannon

WD, Mitreva M, Sodergren E, Weinstock GM. Exploration of bacterial community classes in

major human habitats. Genome Biol. 2014;15(5):R66.

Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences.

Nucleic Acids Res. 2010;38(12):e132.

298 K.S. Ibrahim and N.S. Kumar


	Chapter 12: Methods for Microbiome Analysis
	12.1 Introduction
	12.2 Sequence Processing
	12.2.1 Preprocessing
	12.2.2 Sources of Bias and Error in 16S rRNA Gene Sequencing and Reducing Sequencing Error Rates
	12.2.3 Base Calling and Quality Trimming
	12.2.4 Denoising
	12.2.5 Reducing Chimerism

	12.3 Sequence Assembly
	12.3.1 Reference-Based Assembly
	12.3.2 De Novo Assembly

	12.4 Analyzing Community Biodiversity
	12.4.1 The Marker Gene

	12.5 Analyzing Functional Diversity
	12.5.1 Gene Prediction
	12.5.2 Functional Annotation

	12.6 Metatranscriptomic Analysis
	12.7 Statistical Analysis in Metagenomics
	12.8 Analysis of Human Microbiome
	12.9 Conclusion
	References


