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Preface

It was May 2015 when I was invited to join the editorial team of the “Translational

Medicine Publication Project.” I proposed to edit a book entitled Translational
Bioinformatics (TBI). I was happy to have invited a few colleagues from China and

the USA who are experts in the field to join me as coeditors, Profs. Yilong Ma,

William C.S. Cho, and Fengfeng Zhou. Prof. Qin Xu from my research team and

my PhD student Huiyuan Zhang spent much time in managing the project. It has

been many years since I started to collaborate with Springer. Our proposal was

approved quickly as a collaboration project with the Shanghai Jiao Tong University

Press.

TBI is an emerging field in the study of health informatics, focused on the

convergence of molecular bioinformatics, biostatistics, statistical genetics, medical

imaging, and clinical or medical informatics. Its focus is on applying sound

informatics methodology to the increasing amount of biomedical and genomic

data to formulate knowledge, disease models, and medical tools, which can be

utilized by scientists, clinicians, and patients. TBI employs data mining and ana-

lytical biomedical informatics in order to generate clinical knowledge for a wide

array of applications. Furthermore, it involves cross-disciplinary biomedical

research to improve human health through the use of computer-based information

systems. This new field has achieved great success in the recent decade by synergic

integration of the molecular and genetic footprints in tissue cultures, animal

models, and patients with various diseases.

Our book tries to cover, but not limited to, the following topics:

Biomedical knowledge integration

Data-driven view of disease biology

Biological knowledge assembly and interpretation

Human microbiome analysis

Pharmacogenomics

Mining electronic health records in the genomics era

Small molecules and disease
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Protein interactions and disease

Network biology approach to complex diseases

Structural variation and medical genomics

Analyses using disease ontologies

Mining genome-wide genetic markers

Genome-wide association studies

Cancer genome analysis

Medical bioinformatics: biomarkers and medical imaging

Neuroinformatics of neurological and psychiatric disorders

Neuroimaging genetics

It is a challenging task that these topics are quite diversified and involved

scientists with various expertise. Finally, we tried our best to summarize these

diverse topics into five Parts, as in the Contents, with the chapters 2, 6, 10, 14, 16

and 17 edited by Yilong Ma, the chapters 3, 8, 11 and 13 edited by William C.S.

Cho, the chapters 5, 6 and 7 edited by Qin Xu, as well as the chapters 1, 4, 9, 11, 12,

14, 15 and 16 edited by Fengfeng Zhou. My assistants Mrs. Ruili Zhao and

Ms. Qiuyuan Hu made great efforts in soliciting manuscripts. Mrs. Becky Jinan

Zhao from Springer and Mrs. Min Xu and Zhufeng Zhou from the Shanghai Jiao

Tong University Press give us a lot of help in formulating this book and applying for

funding.

In 2015, we enter the era of “precision medicine,” which integrates two major

contemporary developments including various omics (e.g., genomics, proteomics

and metabolomics) and Big Data. I believe the TBI would play an important role in

the endeavor for precision and personalized medicine.

Shanghai, China

2016-11-13

Dong-Qing Wei
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Computer-Aided Drug Discovery



Chapter 1

Drug Discovery

Geetha Ramakrishnan

Abstract An understanding of the process of drug discovery is necessary for the

development of new drugs and put into clinical practice, to alleviate the diseases

prevalent in modern era. This chapter covers the basic principles of how new drugs

can be discovered with emphasis on target identification, lead optimization based

on computer-aided drug design methods and clinical trials. The drug design prin-

ciples in the pharmaceutical industry are explained based on the target and chosen

ligand using molecular docking, pharmacophore modelling and virtual screening

methods. The drug design is illustrated with specific examples. The clinical trials

are necessary to introduce the drugs into market after due validation.

Keywords Lead compound • Computer-aided drug design • Molecular docking •

Scoring functions • Virtual screening • Pharmacophore modelling • Quantitative

structure-activity relationship (QSAR) • Clinical trials

1.1 Introduction

Drug discovery process deals with the root cause of the disease finding relevant

genetic/biological components (i.e. drug targets) to discover lead compounds.

Currently specialists in various fields, such as medicine, biochemistry, chemistry,

computerized molecular modelling, pharmacology, microbiology, toxicology,

physiology and pathology, contribute their research capability to achieve this

goal. The drug discovery process (Fig. 1.1) in general is divided into three parts,

namely, target identification, lead discovery and clinical trials.

The target identification will normally require a detailed assessment of the

pathology of the disease and in some cases basic biochemical research such as

study of the basic processes of life, body biochemistry and the use of metabolic

analogues; study and exploitation of differences in molecular biology, differential

G. Ramakrishnan (*)
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cytology, biochemistry and endocrinology; and study of the biochemistry of dis-

eases which will be necessary before initiating a drug design investigation.

The lead compound design is the most decisive step in the process of drug

discovery. Methods used in lead compound design include folk/ethno-pharmacy

and therapeutics, massive pharmacological screening, modification of bioactive

natural products, exploitation of secondary or side effects of drugs, an approach

through the molecular mechanism of drug action, drug metabolism and chemical

delivery systems (Drews 1999, Bodor 1982, 1987). Numerous methods have been

invented for the quantification of electronic, hydrophobic and steric effects of

functional groups (Franke 1984). Statistical methods, pattern recognition/principal

components analysis and cluster analysis can lead to the prediction and optimiza-

tion of activity and ultimately to the design of newer drugs.

The structure of the proposed lead compound allows the medicinal/organic

chemist to prepare the sample by synthetic route, and the lead compound undergoes

initial pharmacological and toxicological testing. The selected lead compounds are

given to animals for preclinical trials. When the lead compound has been found to

be effective and safe in animal testing, it is used for human clinical trials. The lead

compound is required to pass three phase clinical trials in human beings. In phase I,

studies on healthy subjects are conducted to confirm safety. In phase II, studies are

conducted on patients to confirm efficacy. Finally in phase III, large studies on

patients are conducted to gather information about safety and efficacy at the

population level.

The results of these tests enable the team to decide whether it is profitable to

continue development by preparing a series of analogues, measure their activity and

correlate the results to determine the drug with optimum activity.

Because of the strict prerequisites of drug authorities, which are becoming ever

more demanding, the cost of drug discovery is steadily increasing. Thus, rational

Target Lead compound Drug
Identification                         Discovery                            Development 

New gene/New New Target Lead compound New 
drug
Function 

Functional 
Genome

Drug 
Target

Target 
Validation

Lead 
Discovery

Lead 
Optimize

Pre-
Clinical

Clinic Market

Fig. 1.1 Drug discovery process
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drug design becomes the main objective of medicinal chemistry today. Based on

rational design, new structures can be developed with a high probability of

possessing the required properties and biological activity.

1.1.1 Need for Drug Design

Drug discovery is a time-consuming and costly process. The process takes

12–15 years to release a new drug into market, and average cost for the develop-

ment of a new drug is about 600–800 million dollars (Adams and Brantner 2006).

Among 10,000 drugs that are applied on animals, only ten of them are tested for

human clinical trials, in which one or two of the drugs only are put into the market

(Hughes 2009). In order to reduce the research timeline and cost, various compu-

tational methods were used. The computer-aided drug design process is fast,

automatic and less expensive with high success rate and fruitful with respect to

intellectual property rights. The problems encountered for this procedure with

possible solutions (Kubinyi 1999) are given in Table 1.1.

The strategies to be followed in the drug design include structure-based design

of ligands with affinity and selectivity using molecular docking, virtual screening of

favourable drug properties and bioavailability and pharmacophore modelling.

1.2 Target Identification

This process involves identification of relevant molecular target based on the

known pathology of the disease due to an enzyme, receptor, ion channel or

transporter. The next step is to determine the responsible DNA and protein

sequence with their function and its mechanism of action (Ryan et al. 2000;

Silverman 2004). The mechanism of action can be obtained by the earlier study

done on animals as proof and a suitable choice for the target from earlier investi-

gations. Based on the mechanism of drug action, the associated disease and status of

the drug are given in Table 1.2.

1.3 Computer-Aided Drug Design

Computer-aided drug design (CADD) is a specialized discipline that uses compu-

tational knowledge-based methods to aid the drug discovery process. It is estimated

that the computational methods could save up to 2–3 years and $300 million (Price

waterhouse coopers 2005). There are several areas where CADD plays an important

role in the traditional drug discovery. Genomics and bioinformatics support genetic

methods of target identification and validation. Cheminformatics enables

1 Drug Discovery 5



researchers to process virtual screening for selection of lead compounds for syn-

thesis and screening. This allows researchers to make fast decision on lead com-

pound identification and optimization. In silico ADMET (absorption, distribution,

metabolism, excretion and toxicology) modelling aids researchers to identify a

bioavailable drug with suitable drug metabolism properties.

CADDmethods offer significant benefits for drug discovery. One of them is time

and cost savings for lead identification, optimization and ADMET predictions for

implementing experimental research. Only the most promising drug candidates will

be tested based on the results of CADD. CADD provides deep insight to drug-

receptor interactions. Molecular models of drug compounds can reveal intrinsic,

Table 1.1 Problems faced by drug industry with its possible solutions

Sl.No. Problems Possible solutions

1. Target search Genome information

2. Target validation Knockouts, RNA silencing

3. Lead search In vitro test models, high-throughput screening

4. Lead optimization Parallel syntheses, chemogenomics

5. Absorption, permeability Lipinski rules, Caco cells, prodrugs

6. Metabolism Liver microsomes

7. Toxicity Ames test, hERG models

8. Drug-drug interactions CYP inhibition/induction

Table 1.2 Targets with their mechanism, associated disease and status of the drug

Sl.

No. Drug targets Mechanisms of drug action Disease Status of the drug

1. Enzymes Reversible and irreversible

inhibitors

Angiotensin-

converting

enzyme

Renin-Ang system Hypertension Launched

Tryptase Phagocytosis Inflammation,

asthma

Clinical phase III

Cathepsin K Bone resorption Osteoporosis Clinical phase I

2. Receptors Agonists and antagonists Chronic pain Dopamine, epi-

nephrine,

morphine-known

drugs

3. Ion channels Blocker and opener Ca+2, Na+

and K+ channel blockers, K+

channel openers

Renal

Problems

Cyclosporine –

launched

4. Transporters Uptake inhibitors H+/K+-

ATPase (pro-

ton pump)

Omeprazole – as

known drug

5. DNA Alkylating agents, minor groove

binders, intercalating agents

DNA duplica-

tion, tumours

Distamycin A,

netropsin as known

drugs
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atomic scale binding properties that are difficult to envisage. It is classified as

structure-based drug design and ligand-based drug design.

1.3.1 Structure-Based Drug Design (SBDD)

The preliminary step in structure-based drug design is to determine the three-

dimensional structure of a target molecule (usually protein). This can be achieved

by X-ray crystallography or NMR spectroscopy experiments or by approximated

computational methods such as comparative modelling (homology modelling uses

previously solvated structure as starting point to determine the three-dimensional

structure of protein) and ab initio modelling (this method seeks to build three-

dimensional protein models based on physical principles rather than previously

solved model). The next step in this process is to identify the location of the binding

site of a target molecule (receptor). The actual binding site can be located by

comparing with known protein-ligand complexes or homology comparisons to

related complexes. With well-defined binding site, a ligand (lead) can be deter-

mined. Usually, leads can be determined either through de novo design or through

large database search for a molecule that matches the binding site. Docking

methods are then used to evaluate the quality of ligand.

The molecular docking process mainly involves three steps:

Characterizing the binding site

Positioning the ligand into the binding site

Evaluating the strength of interaction for a specific ligand-receptor complex

Structure-based drug design includes molecular docking methods as a main tool,

and certain researchers employ molecular dynamics also, if drug action is known.

1.3.1.1 Molecular Docking

When the structure of protein and its binding site are available, molecular docking

techniques are used to identify lead compound. This technique is also used in lead

optimization, when modification to known active molecule structure can quickly be

tested by CADD before compound synthesis.

Molecular docking is useful in the identification of low-energy binding mode of

a molecule or ligand in the active binding site of protein or receptor. A molecule or

ligand which binds strongly through hydrogen bonds, van der Waal bonds or any

possible electrostatic attractions with receptor or protein associated with disease

may inhibit the function and thus acts as a drug. Hydrogen bonds are local

electrostatic interaction between the atoms which plays a significant role in recog-

nition of ligand binding with the target. Calculating the accurate protein-ligand

interactions is the key principle behind structure-based drug discovery (Cramer

et al. 1988).

1 Drug Discovery 7



1.3.1.2 Types of Docking

Three options for docking are available.

Rigid docking – where a suitable position for the ligand in receptor environment is

obtained while maintaining its rigidity

Flexible docking – where a favoured geometry for receptor-ligand interaction is

obtained by changing internal torsions of ligand into the active site while

receptor remains fixed

Full flexible docking – where the ligand is freely rotated via its torsion angles and

the side chain of active site residues (selected active site residues within a user-

specified radius around the ligand) is freely rotatable.

Most of the docking methods used at the present moment in academic and

industrial research employ a rigid target/protein. The algorithms used in docking

are given in Appendix I.

The two components of molecular docking are:

(i) Prediction of binding conformation of the ligand in the binding site

(ii) Binding free energy prediction of the ligand (Leach A.R. and Gillet V.J., 2003)

1.3.1.3 Scoring Functions

There are mathematical methods used to predict the strength of the non-covalent

interaction called binding affinity between two molecules after docking. The

scoring functions have also been developed to predict the intermolecular interaction

between two proteins, protein-DNA and protein-drug. The objective of any scoring

function is to estimate the free energy change of binding for a ligand in a given

binding pose. This can be expressed by the fundamental thermodynamic Eq. (1.1):

ΔG ¼ ΔH � TΔS ð1:1Þ

where ΔG is the free energy change of binding, ΔH is the enthalpy change, T is the

temperature of the system in Kelvin and ΔS is the entropy change.

Scoring functions are categorized into (i) force field and (ii) empirical (Stahl and

Rarey 2001; Perola et al. 2004) (Table 1.3).

Force field scoring functions rely on the molecular mechanics methods. In this

method it calculates both the protein-ligand interaction energy and ligand internal

energy by van der Waals energy and electrostatic interactions. Advantages of force

field-based scoring functions include accounting of solvent, and disadvantages

include overestimation of binding affinity and arbitrarily choosing of non-bonded

cutoff terms (Kitchen et al. 2004; Moitessier et al. 2008).

Empirical scoring functions – Empirical scoring functions weigh contributions

from the different energetic terms in order to make a binding affinity prediction.

These terms may include hydrogen bonding using geometric measures as well as

force field-based physical potentials. However, the linear weighing of the terms is

8 G. Ramakrishnan



derived from regression methods that fit binding affinity terms to experimental

affinities using experimental data and structural information (Teramoto and

Fukunishi 2007).

1.3.1.4 Limitations and Challenges

Some key challenges in molecular docking and scoring are discussed based on

protein flexibility and role of solvent and scoring function.

Protein flexibility: Docking programmes usually use protein as rigid and ligand

as flexible; in this case receptor has one conformation, while the ligands have

different conformations. The fundamental goal of virtual screening is to identify

molecules with the proper complement of shape, hydrogen bonding and electro-

static and hydrophobic interactions for the target receptor; the complexity of the

problem is far greater in reality. For example, the ligand and receptor may exist in

different conformations when in free solution, which is different from the confor-

mation when ligand is bound to protein (Koh 2003).

Role of solvent and scoring function: Protein and ligands are surrounded by

solvent molecules, usually water. If the water mediation is ignored during docking,

then the calculated interaction energy may be low, and favourable interactions with

water may be lost (Moitessier et al. 2008). Several methods are now available to

predict the binding energy accurately by accounting entropic and solvation effects

(Reynolds et al. 1992; Zhang et al. 2001). These methods need greater amount of

computational time and inappropriate to use in screening large databases. The

molecular docking process is shown in Fig. 1.2.

1.3.2 Ligand-Based Drug Design (LBDD)

The ligand-based drug design starts with a database containing set of ligands with

known activity interaction with the same receptor. The first step in this process is to

Table 1.3 Major docking tools utilized in industrial and academic research institutes

Docking tool Algorithm/method (Appendix I) Scoring function

FlexX Incremental construction Boehm empirical scoring function

FlexX-Pharm Incremental construction Boehm empirical scoring function

Auto Dock Genetic algorithm Force filed-based empirical scoring

Dock Incremental construction Force filed-based scoring

ICM Simulated annealing Force filed-based scoring

GOLD Genetic algorithm Empirical knowledge-based scoring

Surflex-Dock Incremental construction Empirical Hammerhead scoring

Glide Simulated annealing/incremental search Empirical knowledge-based scoring

LigandFit Shape matching Empirical knowledge-based scoring
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divide the set of ligands into training and test set, and the second step in this process

is molecular modelling. Ligand-based approach commonly considers descriptors

based on chemistry, shape and electrostatic and interaction points

(e.g. pharmacophore points) to assess similarity. A pharmacophore is an explicit

geometric hypothesis of the critical features of a ligand (Leach and Gillet 2003).

Features usually include hydrogen-bond donors and acceptors, charged groups and

hydrophobic patterns. The hypothesis can be used to screen databases for candidate

compounds and also can be used to refine existing leads. Another method in ligand-

Ligand                                                         Protein/Receptor

Ligand conformations in binding cavity

Docked complex (protein-ligand)

Fig. 1.2 Molecular docking flow chart using a benzamide derivative (MS-275) with HDAC2

protein (Naresh Kandakatla and Geetha Ramakrishnan 2014a, b)
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based drug design is quantitative structure-activity relationship (QSAR) modelling

method and used for identifying a lead molecule and optimization. The concept of

QSAR is based on the fact that the biological properties of a compound can be

expressed as functions of its physicochemical parameters. The goal of the QSAR

model is to predict the activity of the new molecules (optimized leads). The third

step in ligand-based design involves identification of the most promising molecule

as lead compound for further experimental investigation.

1.3.2.1 Pharmacophore Modelling

A pharmacophore describes a set of interactions required to bind given receptor.

The pharmacophore is usually derived from three-dimensional computed confor-

mations of a molecule and is an abstract representation of the molecule.

Common pharmacophore feature types are hydrophobic, hydrogen-bond accep-

tor, hydrogen-bond donor, aromatic rings and positively ionizable and negatively

ionizable groups. The pharmacophore features describe the target binding site,

e.g. a hydrophobic feature corresponds to hydrophobic region in the protein and

hydrogen-bond acceptor feature as hydrogen bond donating counterpart in the

protein. Hydrogen-bond acceptor and donor features usually have direction as

parameter. The spatial relationship between the pharmacophore features is defined

by interpoint distances between the features.

Pharmacophore modelling is widely used in drug design for identifying novel

scaffolds or leads for various targets. Pharmacophore model is classified into two

categories as (i) structure-based pharmacophore modelling and (ii) ligand-based

pharmacophore modelling.

Structure-Based Pharmacophore Modelling

Structure-based pharmacophore modelling uses a 3D structure of protein

co-crystallized with ligand or 3D structure of protein. The structure-based

pharmacophore model is further subdivided into two types as protein-ligand com-

plex and protein/receptor without ligand contribution. The protein-ligand-based

approach locates the ligand binding sites of the protein target and determines the

key interaction points between the protein and ligand. Automated tools for the jobs

are LigandScot, Pocket v.2 and GBPM (Wolber and Langer 2005; Chen and Lai

2006; Ortuso et al. 2006). For protein-based approach, Discovery Studio (LUDI)

was employed, where LUDI converts the interaction points in the binding site into

catalyst pharmacophore features such as H-bond acceptors, H-bond donors and

hydrophobe (Bohm 1992). In general structure-based pharmacophore, the gener-

ated interaction points consist of a large number of unprioritized pharmacophore

features, which complicate further virtual screening process. To overcome this

problem, a fast knowledge-based approach, hotspot-guided receptor-based

pharmacophores (HS-Pharm) and Apo protein-based approach were used. Hotspot
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analysis is employed to identify the binding sites, where the ligand forms strong

interactions (Barillari et al. 2008). In the second approach, the binding cavity

embedded in a GRID and molecular interaction fields of GRID node and protein

is calculated using a set of probes; the minimum energy found can be converted into

pharmacophore feature (Tintori 2008; Goodford 1985).

Ligand-Based Pharmacophore Modelling

Ligand-based pharmacophore modelling is a key computational strategy in drug

discovery in the absence of 3D structure of protein. Pharmacophore model gener-

ation extracts common chemical feature from a set of known molecules (usually

training set) as a representative of essential interaction between the ligand and

target protein of interest. This method involves two steps: the first step involves

conformational analysis of training set molecules that allows conformational flex-

ibility of each molecule, and the second step is alignment – aligning of training set

molecules to determine the essential common chemical feature to construct

pharmacophore models. Currently various commercial and academic computa-

tional softwares are available for pharmacophore model development – such as

Hip Hop (Barnum et al. 1996), HypoGen (Li et al. 2000) (Accelrys Inc., http://

www.accelrys.com), PHASE (Dixon et al. 2006) (Schordinger Inc., http://www.

schrodinger.com), MOE (Chemical Computing Group, http://www.chemcomp.

com), DISCO (Martin 2000), GASP (Jones and Willet 2000) and GALAHAD

(Tripos Inc., http://www.tripos.com). Challenges to overcome are conformational

ligand flexibility and molecular alignment. Conformational ligand flexibility prob-

lem is solved by computing multiple conformers for each molecule and creating a

database. The second method is on-the-fly method, in which the conformational

analysis is carried out in the pharmacophore modelling process; it does not need

mass storage but requires higher CPU time (Poptodorov et al. 2006). A good

conformer should satisfy low-energy configuration which interacts with the recep-

tor. Molecular alignment is another challenging issue in ligand-based

pharmacophore modelling. Alignment method can be classified into two categories

as point-based and property-based approaches (Wolber et al. 2008). In point-based

approach, pair of atoms or fragments or chemical feature points is superimposed

using least square fitting. The biggest problem in this approach is to identify anchor

points in dissimilar ligands. Property-based approach makes use of molecular

descriptors to generate alignment.

Once pharmacophore model is generated, it can be used for virtual screening of

small or large databases. Many tools such as ligand-based pharmacophore mapping,

search 3D database (Accelrys Inc., http://www.accelrys.com), PHASE

(Schordinger Inc., http://www.schrodinger.com), ChemDBS (VLife MDS., http://

www.vlifesciences.com/), etc. are available for virtual screening. The full frame-

work of pharmacophore modelling is illustrated in Fig. 1.3.
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1.3.2.2 Virtual Screening

In silico screening of chemical compound database for identification of novel

chemotype is termed as virtual screening. Virtual screening is generally performed

on the commercial, public or privately available 2D/3D chemical structural data-

bases. Virtual screening is employed to reduce the number of compounds to be

tested in experimental laboratories, thereby focussing on more reliable entities for

lead discovery and lead optimization (Rester 2008). The costs and time associated

with virtual screening of chemical compounds are significantly lower when

Ligand based Receptor based

Virtual De novo design

Screening

PHARMACOPHORE MODELING

APPLICATONS

Chemical 
Database

Fig. 1.3 The full framework of pharmacophore modelling
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compared to screening of compounds in experimental laboratories. Thus virtual

screening reduces the size of the haystack by selecting compounds or libraries that

are either lead-like or drug-like properties with the potential of oral bioavailability.

Virtual screening is divided into two types as (a) ligand-based virtual screening

(LBVS) and (b) structure-based virtual screening (SBVS) (refer to Appendix II).

Lipinski Rule

The selection criteria of lead compounds using the rule are referred to as Lipinski

analysis (Lipinski et al. 1997).The use of upper and/or lower bounds on quantities

such as molecular weight (MW) or logP helps to vary the in vivo properties of

drugs. The rule of 5 developed by Lipinski predicts that good cell permeation or

intestinal absorption is more probable when there are less than 5 H-bond donors,

10 H-bond acceptors, MW is less than 500 and the calculated logP is lower than 5.
Property ranges for lead-like compounds can be defined: 1–5 rings, 2–15 rotatable

bonds, MW less than 400, up to 8 acceptors, up to 2 donors and a logP range of 0.0

to 3.0. The average differences in comparisons between drugs and leads include

2 less rotatable bonds, MW 100 lower and a reduction in logP of 0.5 to 1.0 log units.
Thus, one of the key objectives in the identification of lead-like compounds for

screening, either by deriving subsets of corporate, or commercial, compound banks

or through the design of libraries, is the need for smaller, less lipophilic compounds

that, upon optimization, will yield compounds that still have drug-like properties.

Figure 1.4 gives the different approaches used in virtual screening process. Further

using Lipinski bioavailability rules, neural nets (e.g. drug-like character),

pharmacophore analyses, similarity analyses, scaffold hopping and docking and

scoring functions, lead compounds can be selected. The example given for selecting

the compounds based on the virtual screening method of data bases is illustrated in

Sect. 1.3.3.

1.3.2.3 Quantitative Structure-Activity Relationship (QSAR)

In ligand-based drug design, a computational model is needed for further identifi-

cation of promising molecule as a lead molecule for further experimental investi-

gation. QSAR modelling techniques are used for further lead optimization. It is a

mathematical relationship between a biological activity of a molecular system and

its geometric and chemical characteristics. QSAR attempts to find consistent

relationship between biological activity and molecular properties, so that these

“rules” can be used to evaluate the activity of new compounds.

The concept of QSAR was first introduced in 1968 (Selassie et al. 2003), and the

model of QSAR is related by the following equation (Crum-Brown and Fraser

1968):
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δ ¼ f Cð Þ ð1:2Þ

where the physiological activity δ was expressed as a function of the chemical

structure.

Later quantitative approaches combine different physicochemical parameters in

a linear additive manner. Free andWilson proposed structure-activity dependencies

by equation

AB ¼ uþ Σiaixi ð1:3Þ

where AB is the biological activity, u is the average contribution of the unsaturated

parent molecule of a particular series (training set compounds), the ai values are
contributions of various structural features and the xi values denote the presence or
absence of particular fragments (Free and Wilson 1964). Since then QSAR has

remained a thriving research area in drug design.

More recently developed QSAR modelling approaches include HQSAR (Lowis

1997), inverse QSAR (Cho et al. 1998) and binary QSAR (Gao et al. 1999). The

accuracy of QSAR modelling is greatly improved by using sophisticated statistical

and machine learning methods, for example, partial least square (PLS) (Dunn and

Rogers 1996) and support vector machines (SVM).

QSAR models are regression models used in the chemical and biological

sciences; QSAR regression relates a set of physicochemical properties or theoret-

ical molecular descriptors of chemicals to the potency of the biological activity

(most often expressed by logarithms of equipotent molar activities) of chemicals. It

is a technique that quantifies the relationship between structure and biological data

and is useful for optimizing the groups that modulate the potency of the molecule

and also predict the activity of newly designed molecules (Hansch 1990).

There are different types of computational methods in QSAR depending upon

the data complexity. They are two-dimensional (2D), three-dimensional (3D) and

higher methods (Livingstone 2004). 2D QSAR is insensitive to the conformational

Ligand Based VS Structure Based VS

Pharmacophore based 
Methods

Similarity based Methods

Structure based 
Pharmacophore Methods

Docking based Methods

VIRTUAL SCREENING (VS)

Fig. 1.4 Different approaches to virtual screening process
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arrangement of atoms in space, while in 3D QSAR needs information on the

position of the atoms in three spatial dimensions. In 4D QSAR for each molecule,

a set of automatically docked orientations and conformations are developed by

genetic algorithms. Induced-fit scenarios of ligands upon binding to the active site

and solvation models can be thought of as the fifth (protein flexibility) and sixth

(entropy) dimensions in 5D and 6D QSAR, respectively.

The QSAR model development generally is divided into three stages: data

preparation, data analysis and model validation. The development of good quality

QSAR model depends on many factors like data set and their biological data,

selection of descriptors, statistical methods and model validation. The process of

QSAR development was given in the flow chart (Fig. 1.5).

Training and Test set
Conformers
Alignment

2D/3D Descriptors

By hand
Genetic algorithm

Multiple Linear Regressions
Principle Component Analysis
Partial Lean Square

Preparing data set for 
QSAR study

Descriptor calculations 
for Training set

Select descriptors

Model development 
using training set

Model Validation

Fig. 1.5 Various stages of

QSAR model development
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The developed models were useful in prediction of untested compounds. In

QSAR model development, the main challenge is the selection of data set and

group of descriptors, which describes structural physicochemical features associ-

ated with the biological activity. The developed QSAR models were validated by

(i) cross-validation, (ii) randomization, (iii) bootstrapping and (iv) external valida-

tion. The validation methods are needed to establish the predictiveness of a model

on unseen data and to help determine the complexity of an equation that the amount

of data justifies. The internal validation uses data set that creates model and a

separate data set for external validation. Internal methods for validation of models

are least square fit (R2), cross-validation (Q2), adjusted R2 (R2adj), root mean-

squared error (RMSE), bootstrapping and scrambling (Y-randomization). The

external validation is a best method to validate the model, such as evaluating

QSAR model on a test set of compounds. These are statistical methods used to

select the best QSAR model.

1.3.3 Illustrated Examples Using CADD

HDAC proteins have been associated with basic cellular events and disease states,

including cell growth, differentiation and cancer formation because of their role in

gene expression. Several HDAC inhibitors (HDACi) are in clinical trials, namely,

benzamide derivatives (Fig. 1.6), hydroxamic acids, cyclic peptides and short-chain

fatty acids (Wagner et al. 2010). SAHA (suberoylanilide hydroxamic acid or

vorinostat (Zolinza®)) which is structurally similar to trichostatin A (TSA) was

the first HDACi approved for the treatment of refractory cutaneous T-cell lym-

phoma by the Food and Drug Administration (FDA) in October 2006 (Walkinshaw

and Yang 2008). SAHA compound inhibits all zinc-dependent HDACs in the low

nanomolar range, and recent studies suggested that it has weak inhibitory effect on

the class IIa HDACs (Bradley et al. 2009).

Entinostat (SNDX-275, MS-275) belongs to benzamide class HDACi and

inhibits HDAC1 and 2, 3 and 9 and has low effect against HDAC4, 6, 7 and

8 (Khan et al. 2007). Entinostat is in phase II clinical trial for treatment of

Hodgkin’s lymphoma and advanced breast cancer (in combination with aromatase

inhibitors) and metastatic lung cancer (in combination with erlotinib). Mocetinostat

(MGCD0103) is class I selective HDAC inhibitor and is undergoing phase I and II

clinical trials for hematologic malignancies and solid tumours (Blum et al. 2009).

The crystal structure of the HDAC2 protein (PDB ID: 3 MAX) was downloaded

from the protein data bank (http://www.rcsb.org/pdb). The crystal structure of

histone deacetylase 2 (HDAC2) protein has three chains, which are A, B and

C. The reference compounds SAHA and MS-275 (Entinostat) were docked into

active sites of all three chains using LigandFit programme in Discovery Studio; out

of three chains, chain A has given the best docking score and higher H-bond

interactions than chains B and C. The docking score of all three chains with

SAHA and Entinostat was shown in Table 1.4. Chain A was selected as active
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chain, and the optimized benzamide compounds were docked into active site of

3MAX-A. The docking score along with binding orientations and hydrogen bonds

were considered for choosing the best pose of the docked compounds. The docking

score of the SAHA compound was 40.8 with three hydrogen-bonding interactions

with Arg39(2), Gly305 and Gly142(2), and for Entinostat the docking score was

42.6, with four hydrogen-bonding interaction with Arg39, Cys156, Gly305 and

His183 and the configurations are given in Fig. 1.7. The designed compounds that

scored docking score above than reference compounds with greater interaction with

the crucial amino acids were considered as effective HDAC2 inhibitors.

Virtual screening studies were used to find potential lead molecules with

increased inhibitory activity against HDAC2 inhibitors. The pharmacophore model

Hypo1 (Fig. 1.8) from benzamide compounds was used as 3D query in database

screening of the National Cancer Institute (NCI) database containing 265,242

molecules and Maybridge database containing 58,723 molecules. Ligand

pharmacophore mapping protocol was used with flexible search option to screen

the database. Hit compounds from the database with estimated activity less than

0.1 μM were selected, and further screening of compounds using Lipinski rule of

five compounds has (i) molecular weight less than 500, (ii) hydrogen donors less

than 5, (iii) hydrogen acceptors less than 10 and (iv) an octanol/water partition

coefficient (Log P) value less than 5.

The pharmacophore model development was performed with Discovery Studio

(DS) and Schrodinger softwares. Benzamide pharmacophore model was developed

by HypoGen algorithm in DS. Hypo1 of HBD, HBA, RA and HY pharmacophore

features were selected based on cost difference and correlation coefficient

Trichostatin A (TSA) Suberoyl anilide hydroxamic acid (SAHA)

Entinostat (MS-275) Mocetinostat

Fig. 1.6 Chemical structures of benzamide HDACi
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(Fig. 1.8). The pharmacophore model can be validated by three methods, such as

cost analysis, test set prediction and Fisher’s randomization test.

A total of 6130 compounds from NCI and 1379 from Maybridge were mapped

using the features of Hypo1. The biological activity IC50 (inhibitory concentration

Table 1.4 The docking score of SAHA and MS-275 with HDAC2 protein

HDAC2

(3MAX) Chain A Chain B Chain C

Docking

score

H-bond

interaction

Docking

score

H-bond

interaction

Docking

score

H-bond

interaction

SAHA 40.8 ARG39(2),

GLY305,

GLY142(2)

22.66 Tyr308,

His146,

Gly142,

Ala141

39.96 Arg39,

Gly142

MS-275

(Entinostat)

42.65 Arg39,

Cys156,

Gly305,

His183

39.07 Tyr308, tyr29 36.9 Tyr308,

tyr29

Fig. 1.7 Binding mode of reference compounds SAHA and MS-275

Fig. 1.8 The best pharmacophore model (Hypo1) of HDAC2 inhibitors generated by the

HypoGen module: (a) the best pharmacophore model Hypo1 represented with distance constraints

(Å), (b) Hypo1 mapping with one of the active compounds, and (c) Hypo1 mapping with one of the

least active compound. Pharmacophoric features are coloured as follows: hydrogen-bond acceptor

(green), hydrogen-bond donor (magenta), hydrophobic (cyan) and ring aromatic (orange) (Naresh
Kandakatla and Geetha Ramakrishnan 2014a, b)

1 Drug Discovery 19



for 50% in μM) was converted to negative logarithmic dose in moles (pIC50) for

analysis. The pIC50 values of the molecules spanned a wide range from 5 to 8. A

total of 1198 and 440 compounds from NCI and Maybridge showed HypoGen

estimated value of less than 1 μM for their biological activity and were considered

for further studies, and these compounds were screened for Lipinski rule of 5. A

total of 625 (382 NCI, 243 Maybridge) compounds obeyed the rule and were

subjected to molecular docking studies. The flow chart in Fig. 1.9 was a schematic

representation of virtual screening process.

A total of 625 compounds with estimated activity less than 1 μM and favourable

Lipinski rule were chosen from NCI and Maybridge databases, and 571 compounds

from natural database were subjected to molecular docking studies using LigandFit

and LibDock docking programmes. Based on docking score and H-bond interac-

tions, 30 hits were selected from three databases (Naresh Kandakatla and Geetha

Ramakrishnan 2014b), and the structure of few of the lead compounds with the

respective codes (NSC108392, NSC127064, MFCD01935795, MFCD00830779,

ZINC4089202, ZINC4000330) was selected based on structural diversity and

stability. These novel compounds can be used for experimental studies for the

inhibition of HDAC2 with suitable pharmaceutical formulation.

1.4 Clinical Trials

For a bioactive compound to succeed as a drug, it should pass many selective filters

during development like toxicity and in the body including metabolism, uptake,

excretion and distribution.

NCI Database         -

2,53,368               -
58,723

Pharmacophore Mapping
-

Maybridge
6130 -

1379

Estimated Activity <1
-

Maybridge
1, 198               -

440

Lipinski rule of five
-

Maybridge
382               -

243

Molecular Docking using Ligand 

Fig. 1.9 Schematic

representation of virtual

screening process

implemented in the

identification of HDAC2

inhibitors
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1.4.1 Preclinical Trials

After a lead compound is identified, the medicinal chemist/organic chemist has due

interest to prepare them and put into clinical trials. The ability to predict absorption,

distribution, metabolism, excretion and toxicology (ADMET) properties from

molecular structure has a tremendous impact on the drug discovery process both

in terms of cost and the amount of time required to bring a new compound to

market. For example, different stereoisomers will exhibit differences in

physiochemical properties, such as absorption, metabolism and elimination.

Toxicologists use experimental animals to identify hazardous substances for

humans. The main disadvantage is the need for large amounts of substance, several

years for the animal studies and relatively expensive. This type of study is of limited

value in mechanistic understanding of toxicity. This type of research accounts for

60–65% of the total cost of introduction of a drug into the market. In a nut shell the

preclinical activities in the order follows six different sequences as listed below.

Synthesis and purification of the new drug

Pharmacology of the new drug

Pharmacokinetics: absorption, distribution, metabolism, excretion and half-life

Pharmacodynamics: mechanism of action and estimates of therapeutic effects

Toxicology including carcinogenicity, mutagenicity and teratogenicity

Efficacy studies on animals

1.4.2 Human Clinical Trials

To be able to estimate the hazardous risk of humans, additional studies on the

mechanism of action, species extrapolation and effects in the low and human-

relevant dose range need to be followed. Generally, dose-dependent studies are

done for production volume greater than 1000 tons per year in the chemical

industry. But drug safety evaluation of pharmaceutical agents is complex as drug

exposure to humans is intentional and mechanism of toxicity should be pursued.

An assessment of toxicity requires a broad and interdisciplinary research and

development strategy, which includes system biology and case studies on the liver,

kidney, cardiovascular, endocrine and in vitro teratogenicity. Further

haemotoxicity and peripheral blood cell studies and investigations are done to

find their consequences in the drug-induced toxicity (Jurger Borlak 2005).
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1.4.3 Types of Clinical Trials

Phase I Trial

In this procedure, how well a drug or procedure can be tolerated in humans acting as

healthy volunteers, aged between 18 and 55 years, males and females (however, no

females who could be or could become pregnant) of normal weight, no smokers and

no alcohol (ab)use will be assessed. The volunteers are given the drug taken with

150 ml water accompanied by standard food, no other therapy and no intake of fruit

juices or illegal drugs. The outcome will be to determine a reasonable dose or

technique.

Phase II Trial

The phase II trial includes estimation of biological activity or effect (efficacy) and

to assess rate of adverse events (toxicity).

Phase III Trial

The phase III trial finds out the effectiveness in comparison to standard treatment or

placebo.

Phase IV Trial

Phase IV trial includes long-term surveillance (monitoring) and assesses long-term

morbidity and mortality.

Clinical trials provide a systematic framework within which scientific research in

human subjects can be carried out efficiently and ethically.

Experimental conclusions are reached in a manner that is statistically defensible.

1.5 Conclusions

Drug discovery process involves target identification, lead compound design and

clinical trials. Target identification involves identification of the root cause of the

disease. In the case of lead compound selection, virtual screening is a powerful tool

to enrich libraries and compound collections. A proper preprocessing of the com-

pound database is of utmost importance in drug design. Further experimental data

and theoretical investigations are needed for better pKa estimations and better

scoring functions. Stepwise procedures (filters, pharmacophore searches, docking

and scoring, visual inspection) are most efficient in drug designing. Fragment-based

approaches are a promising new strategy in lead structure search and optimization.

The new opportunities in medicinal formulations include genotyping of drug

targets and metabolic enzymes which enables cost savings in drug development

through better design of clinical trials. The selection of the best drug for a certain

patient with individual dose ranges (variance in target sensitivity reduced or

increased metabolism) and fewer toxic side effects and drug-drug interactions.
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Appendices

Appendix I

Docking Algorithms

Prediction of correct bound conformation of both protein and ligand is challenging,

and this can be achieved by giving proper bound conformation of the protein and

prediction of proper bound conformation of the ligand and complex. The problem is

the focus of the large majority of docking algorithms though a few incorporate a

sampling of receptor conformation as well as optimize the predicted complex

coordinates.

Docking algorithms of SBDD have been classified into three types as

(a) searching the conformation space during docking, (b) searching conformation

space before docking and (c) incremental docking.

The first type of algorithm performs conformation of small molecules and its

orientation in the active site. For large chemical databases, it is difficult to do;

hence, stochastic algorithms are employed (Taylor et al. 2002).

Monte Carlo (MC) – This method is widely used in stochastic optimization

techniques, and it uses sampling technique to generate low-energy conformations.

MC simulation makes the ligand position within the binding site through a number

of random translational and rotational changes. The standard MC methods generate

configuration of system through random Cartesian changes. Each change to the

system is evaluated and then rejected or accepted based on a Boltzmann probability.

Molecular docking programmes using MC method are AutoDock, ProDock, ICM,

MCDOCK, DockVision, QXP and Affinity (Metropolis et al. 1953).

(a) Genetic Algorithm (GA) – GA is one example of evolutionary programming

(EP) algorithm. EP is a computational model that takes name and concept from

biological process. GA and EP are quite suitable for solving the docking

problems because of their usefulness in solving complex optimization prob-

lems. In GA, each binding pose of the ligand including its conformations is

expressed as a string of values (termed chromosomes). Crossovers are used to

generate the new chromosomes, and a complex set of scoring functions are then

used to select members within each round of selection. DOCK, GOLD,

AutoDock, DIVALI and DARWIN programmes use GA algorithm (Ziemys

et al. 2004).

(b) Second-class algorithm – In this method a conformational analysis is carried

out first, and all relevant low-energy conformational are then placed in the
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binding site. Only the remaining six rotational and translational degrees of

freedom of the rigid conformer must be considered. Slide and Fred docking

programmes use this docking methodology.

(c) Incremental construction algorithms – The ligand is split in rigid fragments by

cutting its rotatable bonds. One of these fragments is termed base fragment, and

these fragments are docked rigidly at various positions in the binding site. The

largest section is usually selected as the starting fragment and is docked to the

receptor. The docked orientation of this fragment is kept and other fragments

are added at various orientations and scored. This process is repeated until the

entire ligand is assembled. DOCK, FlexX, Hammerhead and HOOK docking

programmes use this algorithm.

Taylor RD, Jewsbury PJ, Essex JW. J Comput Aided Mol Des. 2002;16:151–66.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller EJ. Chem Phys.

1953;21:1087–92.

Ziemys A, Rimkute L, Kulys J. Nonlinear analysis: modelling and control.

2004;9:373–83.

Appendix II

Virtual Screening Methods: Appendix II

(a) Ligand-Based Virtual Screening (LBVS) – In the absence of the 3D structure of

receptor information and when one or more active molecules are available,

ligand-based virtual screening is used. A common assumption in drug design is

that two compounds with similar chemical property also exhibit similar bio-

logical effect. This is the main principle and motivation of ligand-based virtual

screening. Different methods of LBVS include:

(i) Pharmacophore-based virtual screening (PBVS): When one or more bio-

active molecules (usually training set) are available, pharmacophore vir-

tual screening is performed. Developed pharmacophore model from active

molecules is taken as template to screen chemical database of unknown

compounds for finding compounds with similar chemical features that

interact with the target. The hits from the VS are similar to known active

molecules, but some might be entirely novel scaffold. The screening

process involves two steps as conformational flexibility of molecules and

identification of pharmacophore pattern. The conformational flexibility of

molecules is handled by either pre-enumerating or on-the-fly method

similar to those used in pharmacophore modelling.

(ii) Similarity search: Similarity search is performed when single bioactive

compound is available. The basic principle behind this search is that

similar molecules have similar bioactivities. Similarity search uses one-,
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two- and three-dimensional chemical and physical descriptors of molecule

to screen chemical database.

LBVS are more limited than SBVS since it uses the properties of known

molecule for a given target.

(b) Structure-Based Virtual Screening (SBVS) – In the presence of structural

information of the target protein, structure-based method is a widely used

method to screen the chemical databases. SBVS uses the knowledge of the

target protein structure to select the lead compound with which it is likely to

interact.

The SBVS workflow involves the following steps:

Step 1 Selection: Selection of the target protein and availability of X-ray crystal

structure or NMR structure, if not homology model, chemical compound

database and molecular docking software

Step 2 Preparation of target: If the selected target protein is bound with ligand,

then it requires preparing binding site of protein by taking ~8–10 Å
´
from

the co-crystallized ligand, taking care of significant amino acids for the

activity that are included in the binding site.

Step 3 Screening: Screening of chemical databases using molecular docking

studies.

Step 4 Results analysis: Results based on the docking score and binding mode of

the compound inside the binding cavity.

Step 5 Selection: Visualization of interesting protein-ligand complexes and final

selection of compounds for experimental testing.

Glossary

Ligand Any molecule that binds to a biological macromolecule.

Enzyme Endogenous biocatalyst; converts one or several substrate/s into one or

several product/s.

Inhibitor Ligand that prevents the binding of a substrate to its enzyme, either in a

direct (competitive) or indirect (allosteric) manner, reversibly or irreversibly.

Receptor A membrane-bound or soluble protein or protein complex, which exerts

a physiological effect (intrinsic effect), after binding of an agonist, via several

steps.

Agonist A receptor ligand that mediates a receptor response (intrinsic effect).

Antagonist A receptor ligand, which prevents the action of an agonist, in a direct

(competitive) or indirect (allosteric) manner.

Partial Agonist A (high-affinity) antagonist, which itself has more or less pro-

nounced intrinsic activity.

Ion channel A pore, formed by proteins, that allows the diffusion of certain ions

through the cell membrane along a concentration gradient; the channel opening

is either ligand- or voltage-controlled.
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Transporter A protein, which transports molecules or ions through the cell

membrane, against a concentration gradient, under energy consumption.

Pharmacophore A pharmacophorepharmacophore is the ensemble of steric and

electronic features that is necessary to ensure the optimal supramolecular inter-

actions with a specific biological target structure to trigger (or to block) its

biological response.

ADMET Absorption, distribution, metabolism, excretion and toxicology.

SAHA Suberoylanilide hydroxamic acid.

QSAR Quantitative structure-activity relationship.

CADD Computer-aided drug design.
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Chapter 2

Translational Bioinformatics and Drug
Discovery

Pramodkumar Pyarelal Gupta

Abstract With drug pipelines running dry and a slew of blockbuster medicines

about to lose patent protection, the voices arguing that the traditional drug devel-

opment process is too expensive and inefficient to survive are getting louder. To

overcome the cost and accelerate the discovery of novel drug, in silico methodol-

ogies have made an enormous contribution. This chapter discusses the paradigm of

bioinformatics and its translational approaches in drug discovery. Public domain

database and efficient data mining approaches are the most optimum criteria for

identification and selection of data, whereas genomic technologies such as micro-

array and next-generation sequencing (NGS) stand for its target identification and

validation process. The use of molecular docking and QSAR techniques under the

structure- and ligand-based discovery helps in screening the chemical data from

nonfunctional to functional ones in terms of activity and toxicity. However, phar-

macokinetic and pharmacodynamic (PKPD) simulation can help produce desired

concentrations and least side effects with an approximately computed dose

regimen.

Keywords Chemical database • Drug discovery • NGS • QSAR • Translational

bioinformatics

2.1 Introduction

2.1.1 Translational Bioinformatics

Translational bioinformatics is the evolution of conventional in silico science that

deals with storage, analysis, and knowledge extraction from voluminous genomic,

proteomic, sequence, and structural data. Translational bioinformatics takes

account of research in the development of novel techniques for the integration of
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clinical and biological data that serves as a source input to designed algorithms and

includes the methodology to transform the biological observations into desired

knowledge that benefits the scientists, clinicians, and patients that we will see in

this chapter. Complicated biological network mechanisms of disease and structure

of molecules involved pose several experimental challenges in the drug discovery

processes. These complications arise from independent operation of the different

parts involved in drug development process with little interaction between clinical

practitioners, academic institutions, and pharmaceutical industries (Portela and

Soares-da-Silva 2015). Specially, the research in drug development is purpose

specific and performed by highly specialized scientists and researchers in their

respective fields considering few inputs from clinicians and medical practitioners in

strategy design for future therapies (Portela and Soares-da-Silva 2015). Transla-

tional research is a road map in which novel therapies will link the experimental

discoveries with computational techniques in delivering the clinical needs to the

market. Theoretical/computational techniques offer valuable visions in experimen-

tal discoveries with pharmacological and pathophysiological mechanisms and

virtual development of new prospects in designing and synthesis of novel and

better molecular entities with time and cost-effectiveness (Raza 2006).

2.2 Supporting Resources

2.2.1 Online Database

Sequence database such as NCBI, EMBL, or UniProt imparts a mammoth contri-

bution to disease, diagnosis, and drug development industry. Structure database

such as Protein Databank incorporates structures evaluated by the 3D crystallogra-

phy, NMR, and hybrid technology and plays a key role in the structural bioinfor-

matics (Berman 2008). SCOP (Hubbard et al. 1999) and CATH (Oreng et al. 1997)

classify the structure on the basis of structural and domain features, whereas

PDBsum describes the graphical overview of the deposited 3D structure in a

more precise form (Laskowski et al. 1997).

Database that handles reaction and kinetics between the genes, proteins,

enzymes, and chemical components with their signal activity is known as metabolic

pathway database. MetaCyc (http://metacyc.org) holds experimentally identified

biochemical pathways which can be used as a reference data set for the metabolism

design and analysis (Zhang et al. 2005). KEGG (http://www.genome.jp/kegg/) is a

database for understanding complex functions of the biological system such as cell,

organism, and ecosystem by combining the knowledge from genomic and molec-

ular information. KEGG executes a computational representation of the biological

system in a wired network diagram (system information) consisting of molecular

building blocks of genes and proteins (genomic information) and chemical sub-

stances (chemical information) (Kanehisa et al. 2002). The BioCyc database data
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sets contain a group of organism-specific pathway/genome databases (PGDBs).

They provide reference to genome and metabolic pathways of a few thousand

organisms (Caspi et al. 2011). BRENDA (BRaunschweig ENzyme DAtabase) is

an enzyme database established in 1987 at the Helmholtz Centre for Infection

Research, formerly known as German National Research Centre for Biotechnology,

and is currently maintained by the Department of Bioinformatics and Biochemistry

at the TU Braunschweig. BRENDA is supplemented by enzyme-specific data

classified by their biochemical reaction (Scheer et al. 2011). Other databases are

also available such as Panther (Thomas et al. 2003), Reactome (Croft et al. 2010),

HumanCyc (Miles et al. 2010), Mint (Licata et al. 2012), etc.

2.2.2 Small Chemical Structure Database

The online free access chemical databases assist the scientific community in

identifying the previous experimental and nonexperimental chemical entities

which can be an auxiliary/further tested for similar or different therapeutic appli-

cations. Online publically available small chemical structure databases such as

PubChem (Bolton et al. 2008), DrugBank (Wishart et al. 2006), ZINC database

(Irwin and Shoichet 2005), eMolecules (https://www.emolecules.com/), etc., listed

in Table 2.1 regularly share their information on the basis of knowledge exposure.

More than thousands of structures are deposited annually in these public databases

with millions of compounds tested for known or unknown activities (http://depth-

first.com/articles/2011/10/12/sixty-four-free-chemistry-databases/).

2.3 Chemical Data Mining Strategies

The exhaustive and fast designed algorithms compete in the identification of

structurally similar compounds. Methodology including structural similarity

searching and clustering of small molecules plays an important role in screening

of compounds with identical or common scaffold in drug discovery pipelines. To

search, analyze, and assemble the diverse compounds from a public database is

critical to enable the full utilization of existing resources. However, most of the

software in this area is only commercially available, and open source is at high

demand with optimum accuracy and precision. The long-term goal of the

ChemmineR project is to narrow this resource gap by providing free access to a

flexible and expandable open-source framework for the analysis of small molecule

data from chemical genomics, agrochemical, and drug discovery screens (Cao et al.

2008). Based on screening data from PubChem BioAssay database, Pouliot et al.

used reported adverse event data with experimental molecular data and generated a

logistic regression model to correlate and predict post-marketing ADRs (Shah and

Tenenbaum 2012; Pouliot et al. 2011). In a similar way, an existing data mining
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algorithm was enhanced by using molecular fingerprints with chemical information

that codifies the structural features or functional groups to augment the ADE signals

generated from adverse event reports (Shah and Tenenbaum 2012; Vilar et al.

2011).

National Cancer Institute (NCI) database is one of the first amalgamated public

efforts in distributing the large data sets according to their bioactivity information

Table 2.1 List of chemical structure database

Sr

no Database Link

1 ChEMBL https://www.ebi.ac.uk/chembl/

2 ChemDB/Chemical Search http://cdb.ics.uci.edu/cgibin/ChemicalSearchWeb.

py

3 ChemSpider http://www.chemspider.com/

4 ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/

5 CoCoCo http://cococo.unibo.it/

6 Comparative Toxicogenomics

Database (CTD)

http://ctdbase.org/

7 DNP (Dictionary of Natural

Products)

http://dnp.chemnetbase.com/intro/index.jsp

8 DrugBank http://www.drugbank.ca/

9 e-Drug3D http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html

10 GLL (GPCR Ligand Library) http://cavasotto-lab.net/Databases/GDD/

11 GLIDA (GPCR-Ligand Database) http://pharminfo.pharm.kyoto-u.ac.jp/services/

glida/

12 Glide Fragment Library http://www.schrodinger.com/Glide/Fragment-

Library

13 Glide Ligand Decoys Set http://www.schrodinger.com/Glide/Ligand-

Decoys-Set

14 KEGG DRUG http://www.genome.jp/kegg/drug/

15 KKB (Kinase Knowledgebase) http://www.eidogen.com/kinasekb.php

16 Ligand Expo http://ligand-expo.rutgers.edu/

17 MMsINC http://mms.dsfarm.unipd.it/MMsINC/search/

18 Mcule database https://mcule.com/pricing/

19 PubChem https://pubchem.ncbi.nlm.nih.gov/

20 PubChem Mobile https://play.google.com/store/apps/details?

id¼com.bim.pubchem

21 SPRESIweb http://www.spresi.com/

22 The Cambridge Structural Database

(CSD)

https://www.ccdc.cam.ac.uk/solutions/csd-system/

components/csd/

23 SuperDrug database http://bioinf.charite.de/superdrug/

24 TCM http://tcm.cmu.edu.tw/

25 Virtual Library Repository http://nbcr.ucsd.edu/wordpress2/

26 ZINClick http://www.symech.it/index.asp?catID¼31&

lang¼en

27 Zinc database http://zinc.docking.org/
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in a searchable database format for the cancer and HIV research community (Voigt

et al. 2001; Ihlenfeldt et al. 2002; Couzin 2003). ChemBank, PubChem, ZINC, and

other public databases have also joined the race in screening the database on the

basis of structure similarity and biological activity. Online and open-sources soft-

ware are useful resources in cheminformatics software development (Girke et al.

2005).

Liu et al. (2012) demonstrated the ability to predict adverse drug reactions

(ADRs) by integrating chemical, biological, and phenotypic properties of drugs.

They showed that data fusion approaches are promising for large-scale ADR pre-

dictions in both preclinical and post-marketing phases (Shah 2012).

2.4 Genomic Technologies

The completion of human (Homo sapiens) and mouse (Mus musculus) genome

sequence projects has increased the number of gene annotations and made it

possible for bioinformaticians to develop new approaches that help experimental

researchers tackle biological problems (Jin et al. 2004).

Microarray technique also known as chip-based technique was launched in the

early 1990s which helped the scientists to monitor the expression of many genes

concurrently, and this technology became a powerful and gold standard tool for

analyzing, studying, and understanding the expression and regulation of a number

of genes in parallel (Tavera-Mendoza et al. 2006). Analyzing multiple genes at the

same time revealed detailed genomic and proteomic information which may lay the

foundation for identification of novel target or receptor. The outputs from the

microarray analysis strengthen the translational research in drug discovery and

development method by generating the results from chip-based technology.

Microarrays have been used to slice up nuclear receptor functions both in normal

and disease states, in tissues, and in cell models. Numerous studies on nuclear

receptor gene regulation for identification of downstream signaling pathways have

been carried out in an experiment (Tavera-Mendoza et al. 2006). In a similar

experiment, activation of PPAR is studied in a high cholesterol context trailed by

microarray studies and results in a potential target gene of triglyceride-lowering

drugs (Tavera-Mendoza et al. 2006; Frederiksen et al. 2004).

2.4.1 Next-Generation Sequencing (NGS)

The main application of sequencing technology is to sequence out biological data

from an organism, including molecular cloning, gene identification comparative

studies, and evolutionary studies. The first-generation sequencing method such as

“Sanger sequencing” has been estimated to cost US$2.7 billion for the Human
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Genome Project (HGP), whereas the identical procedure costs only US$1.5 million

with the next-generation sequencing (NGS) method (Morini et al. 2015).

In the past few years, the NGS-based procedure has expanded its growth and

application by attracting the attention from the most cutting-edge technologies.

Technological advancement and increased automation, in the field of benchtop

sequencing and high-throughput sequencing, have also decreased the cost and

facilitated the use of sequencing technology by laboratories of all sizes involved

in studies ranging from plants to human diseases (Benjamin 2015). NGS refers to

those DNA sequencing methods that came after capillary-based Sanger sequencing

(first generation) back in 2005. Current next-generation DNA and RNA sequencing

companies include Illumina (TruSeq, HiSeq), Life Technologies (Ion Torrent,

SOLiD), Complete Genomics (DNA nanoball sequencing), 454 Sequencing

(pyrosequencing), and Oxford Nanopore Technologies (GridION) (Carlson 2012).

2.4.2 NGS and Personalized Medicine

Sudden cardiac death (SCD) is commonly defined as a natural death from

unexplained cardiac causes. Young athlete’s community is the most affected

group by SCD. The most common factor identified is the adrenergic stress during

the competitive sports activity for arrhythmias and SCD in the presence of inherited

cardiac disease such as cardiomyopathy, primary arrhythmia syndrome, or vascular

diseases. Hence, study and molecular analysis of cardiac channelopathies and

cardiomyopathies would allow early diagnosis and prevention of SCD in a signif-

icant percentage of young individuals. To gain a fruitful result, one should design

an appropriate and well-defined NGS diagnostic protocol and must verify in a

validation phase that all the details such as mutation identified in a previous

group of individuals by Sanger sequencing method must also be detectable by

new advanced sequencing techniques. By contrast, novel variants identified by

NGS must also be confirmed by Sanger sequencing to evaluate the reproducibility

of the NGS approach (Fig. 2.1) (Morini et al. 2015).

Research published in Nature Medicine reports that NGS sequencing has

revealed genomic alterations directly associated with clinically available therapeu-

tics or a relevant clinical trial of a targeted therapy in 72% of 24 non-small cell lung

cancer (NSCLC) tumors and in 52.5% of 40 colorectal cancer (CRC) tumors. Two

novel gene fusions, KIF5B-RET in NSCLC and C2orf44-ALK in CRC, were

among the alterations that might be treated by drugs. The fusion of C2orf44 and

ALK produces an overexpression of anaplastic lymphoma kinase (ALK), the target

of crizotinib (Xalkori), approved for the treatment of ALK-positive NSCLC, which

suggests the possibility that ALK-positive CRC patients may respond to

ALK-inhibitor treatment (Fig. 2.2) (Carlson 2012).
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2.5 Structure-Based Drug Discovery

In recent years, structure-based drug discovery (SBDD) is a rapidly rising method-

ology in overall drug discovery and development industry. The boom of genomic,

proteomic, and related structural data has delivered a number of novel targets and

Fig. 2.1 NGS protocol for sudden cardiac death conditions

Fig. 2.2 Test result for genomic alterations (Carlson 2012)
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future prospects in lead discovery. In early 1980s the capability of rational drug

design with protein structure was an unidentified object to structural biologists. The

first success stories of SBDDwere published in the early 1990s, and it now becomes

an integral and major subject of inquiry in many research and academic organiza-

tions (Amy 2003; Roberts et al. 1990; Erickson et al. 1990; Dorsey et al. 1994).

The iterative process of SBDD principally initiates with identification, cloning,

purification, and 3D structure determination of the target protein or nucleic acid by

any of the following methods: X-ray crystallography, NMR, homology modeling,

or various hybrid technologies. Known or calculated active sites are positioned by

the computer-based algorithms and targeted by known and unknown 3D chemical

compounds, ligands, or drugs identified by specific industry, organization, aca-

demic, and research groups from private and public databases. The generated

complexes are ranked on the basis of binding energy, pharmacophoric interaction

points, and types of interaction such as hydrogen bonding, electrostatic interaction,

van der Waals interaction, etc., given in Eq. 2.1. The optimum-generated com-

plexes are then tested with the suitable biochemical assay and knowledge is

generated for further evaluation. One with the least micromolar inhibition in

in vitro conditions reveals a path to scientists that the compound can be optimized

to increase its potency. A repeated cycle of design, synthesis, testing, and evalua-

tion process to a lead compound may produce a patentable market product in

binding and specificity to the target (Fig. 2.3) (Amy 2003).

Binding energy:

ΔG ¼ VL�L bound� VL�L Unbound
� �þ VP�P bound� VP�P Unbound

� �
þ VP�L bound� VP�L Unbound þ ΔSconf: : : :

� � ð2:1Þ

where P refers to the protein, L refers to the ligand, V represents the pair-wise

evaluations mentioned above, and ΔSconf denotes the loss of conformational

entropy upon binding (Ruth et al. 2007).

In comparative docking analysis between known and unknown compounds with

respect to a common target, ideally, the generated ligand poses (conformations) that

are closest to the experimental or known structure conformation should be ranked

highest. In order, the analysis could be achieved by quantifying the similarity

between a native ligand and a generated ligand pose, where root-mean-square

deviation (RMSD) can be calculated between both the ligand structures (Raschka

2014):

RMSD a; bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
aix � bixð Þ2 þ aiy � biy

� �2 þ aiz � bizð Þ2
r

ð2:2Þ

where ai refers to the atoms of molecule 1 and bi to the atoms of molecule 2. The

subscripts x, y, and z denote the x-y-z coordinates for every atom.
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2.5.1 Molecular Docking

The molecular docking is a computational technique to model the interaction

between a protein macromolecule known as receptor or target and a small chemical

entity/ligand/drug molecule/a protein macromolecule depending on the type of

study a scientist carries out. It elucidates the behavior of a ligand molecule with

the active site of a receptor protein and its fundamental biochemical process. The

docking process involves two basic steps: prediction of ligand conformation within

the active site of receptor protein and finally the assessment of binding energies

(Meng et al. 2011; McConkey et al. 2002).

Fischer originally proposed a docking mechanism for ligand-receptor binding

studies, which is the lock-and-key model, where a ligand fits into a receptor as a key

and the receptor behaves as a lock. The primary early docking studies were based

on this theory and receptor and ligand were considered as rigid bodies. Koshland

put forward an “induced-fit” theory that takes the lock-and-key model a step further

and suggests that there is a continuous change in the receptor protein conformation

because of the interaction between the ligand and the protein. The theory proposes

to treat both ligand and receptor as a flexible entity during docking that could

describe the binding events more accurately than under rigid conditions (Fischer

1894; Kuntz et al. 1982; Koshland 1963; Hammes 2002).

Structure Based Drug
Discovery

Ligand Based Drug
Discovery

Crystal
Structure

Homology
Modeling,
& Hybrid
Technique

Selected Dug,
Ligand or
chemical entity
from database

Molecular
Docking,
Computational
analysis

Insilico
Toxicity
Prediction

Lead Optimization

Yes

No No

Further evaluation
process

Lead
Identification

SAR,

2D,3D-
QSAR

Active site
identification

Fig. 2.3 Diagrammatic representation of a structure- and ligand-based drug discovery pipeline
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Site-specific docking strategies significantly increase the docking efficiency. In

many conditions the binding site is unknown. One can predict the putative binding

site using commercial software such as SYBYL-X Suite (SYBYL-X-SuiteS: YBYL

8.0), SiteMap – Schrodinger (Halgren 2007), BioPredicta – VLife Molecular

Design Suite (MDS) (www.vlifesciences.com), Discovery Studio (Dassault

Systèmes BIOVIA 2015), FLEXX (Rarey et al. 1996), Molegro Virtual Docker

System (Thomsen and Christensen 2006), ICM-Pro – Molsoft (An et al. 2005), etc.

This can also be performed using online servers, e.g., Cast P (Dundas et al. 2006),

GRID (Goodford 1985; Kastenholz et al. 2000), POCKET (Levitt and Banaszak

1992), SurfNet (Laskowski 1995; Glaser et al. 2006), PASS (Brady and Jr Stouten

2000), and MMC (Mezei 2003). Docking without any assumption about the binding

site is called blind docking.

The main application of molecular docking lies in the structure-based virtual

screening for identification of new active compounds for a particular target protein.

Molecular docking technique takes a path of translational science and combines the

computational output and experimental data in analyzing various biochemical

reactions and interactions to study the biological system (Kubinyi 2006; Kroemer

2007; Venhorst et al. 2003; Williams et al. 2003; Meng et al. 2009).

High-throughput screening (HTS) has low rates of success to identify the

optimum novel inhibitors of DNA gyrase. Boehm et al. applied de novo design

methodology and successfully obtained several new inhibitors (Boehm et al. 2000).

Initially, 3D complex structure of DNA gyrase with known inhibitors, ciprofloxacin

and novobiocin, was analyzed and patterns of common residual interactions were

calculated. Both inhibitors donate one hydrogen bond to Asp 73 and accept one

hydrogen bond from a conserved water molecule. In addition, lipophilic fragments

are required in the molecule to have lipophilic interaction with the receptor protein.

Based on the existing knowledge, LUDI and CATALYST were employed to search

and identify similar chemical structure in the Available Chemical Directory (ACD)

and Roche Compound Inventory (RIC), resulting in 600 compounds. Close struc-

tural analogs of these compounds were considered and 3000 compounds were

tested using biased screening. One hundred fifty compounds were selected and

clustered into 14 classes of which 7 classes were proved to be the novel and true

inhibitor. Succeeding hit optimization was strongly dependent on 3D structures of

the binding site and generated a potent DNA gyrase inhibitor (Boehm et al. 2000).

Retinoblastoma (RB), a cancer of the eye, occurs in young children. Researchers

have reported their lab findings that fatty acid synthase (FASN) is a promising

diagnostic/prognostic and therapeutic target for retinoblastoma. Three inhibitors

that target various domains of FASN and are potential anticancer drugs (i.e.,

cerulenin, triclosan, and orlistat) were considered in the previous studies (Vandhana

et al. 2011; Kuhajda et al. 1994; Steven et al. 2004). The experimental data for

cerulenin, triclosan, and orlistat gave an IC50 of 3.54 μg/ml, 7.29 μg/ml, and

145.25 μM, respectively, with a dose-dependent decrease in the viability of retino-

blastoma cancer cells (Deepa et al. 2010). The crystal structure KS-MAT didomain

of human FASN [PDB ID: 3HHD] was also used for docking with cerulenin

(Pappenberger et al. 2010) and revealed the binding energy of �5.82 kcal/mol.
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As there are no data available for enoyl reductase from human FASN in public

database, the crystallized structure of ER domain [PDB ID: 2VZ8] was considered

as a template for human ER domain. Furthermore, this model was subjected for

docking with triclosan and exhibited a binding energy of �5.73 kcal/mol (Deepa

et al. 2010). Pemble et al. considered crystallized 3D complex structure of the

human TE domain with orlistat (PDB-ID: 2PX6) in his experiment. Based on the

crystal structure, data re-docking was performed using auto dock and binding

energy was found to be �2.97 kcal/mol. All these findings have indicated the

predictive accuracy of the in silico methods adopted (Pemble et al. 2007).

2.6 Ligand-Based Drug Discovery

The identification of new lead molecule from millions of compound via traditional

approach is time consuming and very costly. Since the 1960s, scientists from

diverse life science background have put enormous efforts to identify the quantita-

tive parameters that determine the biological activity, in what is known as QSAR/

QSPR studies (Nantasenamat et al. 2009). The origin of QSAR was long back in

1863 by Cros in the field of toxicology, where he proposed the relationship between

toxicity of primary aliphatic alcohol with their water solubility (Nantasenamat et al.

2009). Crum-Brown and Fraser hypothesized the relationship between chemical

constitution and physiological action in 1968 (Crum-Brown and Fraser 1868). A

separate discovery was led by Richet (1893), Meyer (1899), and Overton (1901)

and showed a linear correlation between lipophilicity (e.g., oil-water partition

coefficients) and biological effects (e.g., narcotic effects and toxicity)

(Nantasenamat et al. 2009). Hammett (1935, 1937) presented a method to account

for substituent effects on reaction mechanisms through the use of an equation which

took two parameters into consideration, namely, (i) the substituent constant and

(ii) the reaction constant (Nantasenamat et al. 2009; Crum-Brown and Fraser 1868).

Hammett quantified the effect of substituents on any reaction by defining an

empirical electronic substituent parameter (σ), which is derived from the acidity

constants, Ka’s of substituted benzoic acids (Fig. 2.4) (https://web.viu.ca/krogh/

chem331/LFER%20Hammett%202012.pdf).

log
KX

KH

� �
¼ ρσ or pKH � pKX ¼ ρσ ð2:3Þ

For the ionization of benzoic acid in pure water at 25 �C (the reference reaction),

the constant ρ is defined as 1.00. Thus, the electronic substituent parameter (σ) is
defined as
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σ ¼ log
KX

KH

� �
ð2:4Þ

The reaction constant is a measure of how sensitive a particular reaction is to

changes in electronic effects of substituent groups (1–5). The reaction constant

depends on the nature of the chemical reaction as well as the reaction conditions

(solvent, temperature, etc.). Both the sign and magnitude of the reaction constant

are indicative of the extent of charge buildup during the reaction progress. Reac-

tions with ρ > 0 are favored by electron-withdrawing groups (i.e., the stabilization

of negative charge). Those with ρ< 0 are favored by electron-donating groups (i.e.,

the stabilization of positive charge). The greater the magnitude of ρ, the more

sensitive the reaction is to electronic substituent effects (Nantasenamat et al. 2009).

In 1956 Taft proposed an approach for separating polar, steric, and resonance

effects of substituents in aliphatic compounds (Nantasenamat et al. 2009). In 1964

Hansch and Fujita put forward their linear Hansch equation using the contributions

of Hammett and Taft that stood as a mechanistic basis of QSAR/QSPR develop-

ment. Hansch et al. in late 1960s identified the nonlinear (parabolic) dependence of

biological activity with log P and gave the following equation:

log 1=Cð Þ ¼ alogP� b logP2
� �þ c ð2:5Þ

where 1/C ¼ measure of biological activity, log P ¼ log of octanol-water partition

coefficient, and a, b, and c ¼ regression coefficients (Nantasenamat et al. 2009;

Corwin and Toshio 1964).

2.6.1 Quantitative Structural Activity Relationship (QSAR)

The discovery of clinically germane inhibitors is a challenging assignment, and the

quantitative structural activity relationship (QSAR) methodology has become a

very expedient and principally widespread technique for ligand-based drug design

Fig. 2.4 The Hammett

equation relates the relative

magnitude of the

equilibrium constants to a

reaction constant ρ and a

substituent constant σ
Eq. 2.3
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and discovery. More than 1000 2D and 3Dmolecular descriptors are discovered and

identified by the scientific community; a few are listed here such as Individual (Mol.

Wt, Volume, H-AcceptorCount, H-DonorCount, RotatableBondCount, XlogP,

slogp, smr, polarizabilityAHC, and polarizabilityAHP), Retention Index (chi),

Atomic valence connectivity index (chiv), Path Count, Chi Chain, Chiv Chain,

Chain Path Count, Cluster, Path Cluster, Kappa, Element Count, Dipole Moment,

Electrostatic, Distance Based Topological, Estate Numbers, Estate Contributions,

Information Theory Index, Semi Empirical, Hydrophobicity XlogpA, Hydropho-

bicity XlogpK, Hydrophobicity SlogpA, Hydrophobicity SlogpK, and Polar Surface

Area (http://www.vlifesciences.com/support/QSAR_Descriptor_Definations_faqs_

Answer.php).

2.6.1.1 Model Development

QSAR is among the most extensively used computational technique for ligand-

based design, and Bohari et al. have recently reviewed the application of a variety

of molecular descriptors like quantum chemical, molecular mechanics, conceptual

density functional theory (DFT), and molecular docking-based descriptors for

predicting biological activity (Bohari et al. 2011). A summary of relevant data

analysis method, regression analysis, and model validation process is provided

below along with some examples.

2.6.1.2 Data Analysis Method

Principal components analysis (PCA) and cluster analysis are two widely used

methods in 2D and 3D QSAR data analysis. PCA was first invented by Karl Pearson

in 1901 and is one of the most popular and primary data reduction techniques. PCA

aims at data transformation from large multidimensions to low-dimensional repre-

sentation, known as data reduction (Pearson 1901; http://www.doc.ic.ac.uk/~dfg/

ProbabilisticInference/IDAPILecture15.pdf). Cluster analysis technique is used to

partition the data set (with typical molecular properties) into class and categories.

2.6.1.3 Regression Method

Regression analysis is a statistical process for estimating the relationships among

dependent and independent variables by the use of modeling techniques

implementing on several variables.

Partial least square (PLS) regression technique is used when the number of

descriptors (independent variables) is greater than the number of compounds

(data points) and/or there are any factors leading to correlations between variables

(Martens and Naes 1989; H€oskuldsson 1988; Eriksson et al. 2001).
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Multiple linear regression (MLR) is an easily interpretable mathematical expres-

sion and primary method to construct QSAR/QSPR models, but it often fails in

modeling highly correlated data sets. A few new methods have been developed

using MLR such as best multiple linear regression (BMLR), heuristic method

(HM), genetic algorithm-based multiple linear regression (GA-MLR), stepwise

MLR, factor analysis MLR, and so on. Other methods such as self-learning and

machine learning algorithms have also been developed to fit the data into the

equations such as neural network (NN), support vector machine (SVM), and its

variants: least square support vector machine (LS-SVM), grid search support vector

machine (GS-SVM), potential support vector machine (P-SVM), and genetic algo-

rithms support vector machine (GASVM) (Liu and Long 2009).

2.6.1.4 2D QSAR (Girgis et al. 2015)

Girgis and his team synthesized a total of 19 dispiro [3H-indole-3,20-pyrrolidine-
30,300-piperidines] (Fig. 2.5) of which 11–19 analogs were screened against HeLa

(cervical). Compounds 13, 14, and 16 reveal higher potency (IC50 ¼ 4.87, 5.75,

and 7.25 μM, respectively) against HeLa (cervical) cell line than the standard

reference cisplatin (IC50 ¼ 7.71 μM) (clinically used against cervical carcinoma).

See Table 2.2.

Structure–activity relationships (SAR) based on the experimental antitumor

activity against HeLa (cervical carcinoma) reveal that the nature of the substituent

attached to the phenyl group at C-40 and consequently the exocyclic olefinic linkage
seem to be a controlling factor governing the antitumor properties. Substitution of

this phenyl group by fluorine atom enhances the observed antitumor properties

more than two chlorine atoms, as exhibited in pairs 11, 13 (IC50 ¼ 16.69, 4.87 μM,

respectively) and 12, 14 (IC50¼ 12.71, 5.75 μM, respectively) (Tables 2.3 and 2.4).

The basic idea behind QSAR is to generate a relationship between the chemical

structure of an organic compound and its physiochemical properties. In the partial

pharmacologically active data set mentioned in the present study, external data

points were also considered. Spiro-alkaloids with similar scaffold are considered as

an external data point and their biological activities were determined, but the same

standard technique is earlier followed in the present study.

For the QSAR model development, compounds 11, 13, 15–17, and 19 were

considered from Table 2.2 in addition to compounds 20–44 from Table 2.3. Thirty-

one derivatives of spiro-alkaloids were used as a training set. The test set (external

data set for validation) from synthesized analogs was considered representing high

and low potent antitumor active agents 12, 14, and 18 (Table 2.2). Selected

compounds geometry is optimized using molecular mechanics force field (MM+),

followed by a semiempirical AM1 method implemented in the Hyperchem. A total

of 728 two-dimensional molecular descriptors were calculated using CODESSA-

Pro software including constitutional, topological, geometrical, charge-related,

semiempirical, molecular-type, atomic-type, and bond-type descriptors for the

training set (Table 2.3) and test set (Table 2.4) data. Log property (1/log) and
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biological activity/IC 50 value were considered for all the training and test sets

against HeLa (cervical) cell lines of the training set compounds for the present

QSAR modeling.

Best multi-linear regression (BMLR) was utilized which performs a stepwise

search for the best n-parameter regression equations (where n stands for the number

of descriptors used), based on the highest R2 (squared correlation coefficient), Rcv
2OO

(squared cross-validation “leave-one-out (LOO)” coefficient), Rcv
2MO

(squared cross-validation “leave-many-out (LMO)” coefficient), Fisher statisti-

cal significance criteria (F) values, and standard deviation (S2). Statistical

characteristics of the QSAR models are presented in Table 2.5.

Fig. 2.5 Synthesized

dispiro [3H-indole-3,20-

pyrrolidine-30,300-

piperidines] derivatives

(Girgis et al. 2015)

Table 2.2 Antitumor properties of the synthesized compounds 11–19 (tested against HeLa)

No R R1 X IC50a at, μg/ml (μM) HeLa

11 2,4-Cl2C6H3 Et H 10.27 (16.69)

12 2,4-Cl2C6H3 Et Cl 8.26 (12.71)

13 4-FC6H4 Et H 2.50 (4.87)

14 4-FC6H4 Et Cl 3.15 (5.75)

15 2-Thienyl Et H 5.33 (10.89)

16 2-Thienyl Et Cl 3.80 (7.25)

17 3-Pyridinyl Me H 9.35 (20.08)

18 3-Pyridinyl Et H 5.16 (10.76)

19 3-Pyridinyl Et Cl 11.58 (22.53)

* Doxorubicin hydrochloride – – 4.19 (7.22)

** Cisplatin – – 4.19 (7.71)
aIC50 ¼ concentration required to produce 50% inhibition of cell growth compared to control

experimental data

Girgis et al. (2015)

* and ** stands for standard drug

2 Translational Bioinformatics and Drug Discovery 43



Descriptors enlisted in the table are the chief contributors in the model devel-

opment. Above all Min # HA and # HD molecular-type descriptor explaining the

bioactive agent as hydrogen acceptor/donor is important in governing the QSAR

model with its t-criterion (9.200) and minimum coefficient with (0.247). The

second largest contributing molecular descriptor is FNSA-2 fractional PNSA

(PNSA-2/TMSA), which is a charge-related descriptor with t-criterion (5.546)

Table 2.3 Observed and predicated values of training set compounds 11, 13, 15–17, and 19–44

according to the multi-linear QSAR models

Entry Comp R R1 X

HeLa cervical cell line

Observed IC50

(μM)

Estimated IC50

(μM) Error

1 11 2,4-Cl2C6H3 Et H 16.69 12.26 4.43

2 13 4-FC6H4 Et H 4.87 5.94 1.07

3 15 2-Thienyl Et H 10.89 10.48 0.41

4 16 2-Thienyl Et Cl 7.25 7.86 0.61

5 17 3-Pyridinyl Me H 20.08 26.07 5.99

6 19 3-Pyridinyl Et Cl 22.53 20.89 1.64

7 20 Ph Me H 6.21 5.92 0.29

8 21 Ph Me Cl 5.92 5.41 0.51

9 22 4-ClC6H4 Me H 6.74 6.3 0.44

10 23 4-ClC6H4 Me Cl 5.08 5.72 0.64

11 24 4-ClC6H4 Et Cl 4.96 5.28 0.32

12 25 4-ClC6H4 Me OMe 5.78 5.9 0.12

13 26 4-ClC6H4 Et OMe 5.2 5.43 0.23

14 27 4-FC6H4 Me H 6.51 5.95 0.56

15 28 4-FC6H4 Me Cl 5.15 5.71 0.56

16 29 4-FC6H4 Me OMe 5.44 6.21 0.77

17 30 4-H3CC6H4 Me H 8.64 7.09 1.55

18 31 4-H3CC6H4 Me Cl 6.65 6.71 0.06

19 32 4-H3CC6H4 Et Cl 5.55 7.78 2.23

20 33 4-H3CC6H4 Me OMe 6.96 7.68 0.72

21 34 4-H3COC6H4 Me H 6.45 7.17 0.72

22 35 4-H3COC6H4 Et H 7.22 6.54 0.68

23 36 4-H3COC6H4 Me Cl 11.2 6.53 4.67

24 37 4-H3COC6H4 Et Cl 8.74 6.27 2.47

25 38 4-H3COC6H4 Me OMe 6.1 6.94 0.84

26 39 4-H3COC6H4 Et OMe 5.51 7.84 2.33

27 40 4-Me2NC6H4 Me Cl 24.36 20.24 4.12

28 41 2-Thienyl Me H 8.94 8.18 0.76

29 42 2-Thienyl Me Cl 6.86 7.98 1.12

30 43 2-Thienyl Me OMe 9.65 10.77 1.12

31 44 5-Methyl-2-

furanyl

Me Cl 9.88 8.46 1.42

Girgis et al. (2015)
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and has the highest coefficient value of 0.596 controlling the QSAR model that is

given by

FNSA2 ¼ PNSA2

TMSA
ð2:6Þ

The third and last molecular descriptor of HeLa QSAR is depicted with

t-criterion (4.424), and the second most effective parameter controlling the QSAR

model based on its coefficient (0.426) is HASA-2/SQRT(TMSA), which is also a

charge-related descriptor. The area-weighted surface charge of hydrogen-bonding

acceptor atoms (HASA2) is determined by

HASA2 ¼
X
A

qA
ffiffiffiffiffi
SA

p
ffiffiffiffiffiffiffi
Stot

p AE XH�acceptor ð2:7Þ

2.6.1.5 QSAR Model Validation

The reliability and statistical validity of QSAR model solely depend on the internal

and external validation procedures. In the present QSAR model, the internal

validation is assessed by CODESSA-Pro technique employing both leave one out

(LOO) and leave many out (LMO). The observed correlations from the internal

Table 2.4 Observed and predicated values of external test set compounds 12, 14, and 18 according

to the multi-linear QSAR models

Entry Comp R R1 X

HeLa cervical cell line

Observed IC50

(μM)

Estimated IC50

(μM) Error

1 12 2,4-

Cl2C6H3

Et Cl 12.71 8.99 3.72

2 14 4-FC6H4 Et Cl 5.75 5.64 0.11

3 18 3-Pyridinyl Et H 10.76 23.7 12.94

Girgis et al. (2015)

Table 2.5 Descriptor of the best multi-linear QSAR model for the HeLa (cervical) tumor cell line

active agents

N ¼ 31, n ¼ 3, R2 ¼ 0.815, Rcv
2OO ¼ 0.738, Rcv

2MO ¼ 0.776, F ¼ 39.615, s2 ¼ 0.008

Entry ID Coefficient s T Descriptor

1 0 0.141 0.185 0.763 Intercept

2 D1 0.247 0.027 9.2 Min.(#HA, #HD) (MOPAC PC)

3 D2 0.596 0.107 5.546 FNSA-2 fractional PNSA (PNSA-2/TMSA)

(MOPAC PC)

4 D3 0.426 0.096 4.424 HASA-2/SQRT(TMSA) (Zefirov PC) (all)

Girgis et al. (2015)
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validation are Rcv
2OO ¼ 0.738 and Rcv

2MO ¼ 0.776. The squared correlation

coefficient of the designed QSAR model is R2 ¼ 0.815, the standard deviation of

the regression is S2¼ 0.008, and the Fischer test value is F¼ 39.615 that reflects the

ratio of the variance explained by the model and the variance due to their errors.

The most potent synthesized analog 13, from the training set, exhibited an IC50 of

5.94 μM on the HeLa QSAR model with an experimental value of 4.87 μM and an

error of 1.07. The other compounds from the training data set 16, 20–29, 31, 33–35,

38, and 42 relative to cisplatin standard reference clinically used against cervical

carcinoma (IC50 ¼ 7.71 μM) showed predicted experimental values with an error

range of 0.06–1.12. Compounds 32 and 39 were considered potent analogs against

cervical carcinoma (IC50 ¼ 5.55, 5.51) and had predicted values (IC50 ¼ 7.78,

7.84) with a greater error range of 2.23 and 2.33, respectively. Among the mild

antitumor active agents against HeLa cell line, compounds 15, 30, 37, 41, 43, and

44 (IC50 range ¼ 8.64–10.89 μM) revealed predicted potency (IC50

range ¼ 6.27–10.77 μM) with a relatively larger error range (0.41–2.47) than the

high potent analogs. Among the low potent analogs against HeLa cell lines,

compounds 11, 17, 19, 36, and 40 (IC50 range ¼ 11.20–24.36 μM) revealed large

deviation in the predicted potency (IC50 range ¼ 6.53–26.07 μM) with an error

range of 1.64–5.99 (Table 2.5). From all the above statistical observations, the

attained HeLa QSARmodel can be considered a good predicative model to produce

high potent HeLa antitumor hits compared to those of mild or low potency.

Compounds 12, 14, and 18 were selected for the purpose of validating and

examining the predictive ability. The selected test set exhibited experimentally

high or low potency against the tested cell line. Table 2.4 reveals the experimental

and predicted IC50 values of the test set. Compound 14, considered as high potent

against the HeLa cell line relative to the standard reference (cisplatin), had an

experimental value of IC50 ¼ 5.75 μM and a predicted value of IC50 ¼ 5.64 μM
with a minimum error of 0.11. However, compounds 12 and 18, considered low

potent activity against HeLa cell line, had experimental values of IC50¼ 12.71 and

10.76 μM and predicted IC50 values of 8.99 and 23.70 μM along with much greater

error values of 3.72 and 12.94, respectively.

2.7 Pharmacokinetic and Pharmacodynamic (PKPD)
Simulation (Nielsen and Friberg 2013)

Rowland and Tozer state in 2011 that pharmacokinetic (PK) has been defined as

“how the body handles the drug” and pharmacodynamic (PD) has been defined as

“how the drug affects the body.” PK and PD are the vital mechanisms of the modern

drug development process. Characterization of PKPD effectively suggests that the

concentration that leads to desired effects and least side effects, with an appropriate

dose regimen, can be computed.
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2.7.1 Pharmacokinetics

Being a central part of clinical pharmacology, PK designates the link between drug

dosing and drug concentration-time profile in the body. The determination of drug

concentration (C) in plasma and its change from an initial concentration (C0) with

respect to time (t) is given by an exponential function:

C tð Þ ¼ C0∗e�ke∗t ð2:8Þ

Equation 2.8 describes the single PK model with decline in concentration by

single distribution phase. Considering the elimination rate for a given system, the

change over the time points is directly proportional to the concentration or amount

remaining in the system and elimination rate constant (ke), which is of the first order
and has a unit of per time (h�1):

dc

dt
¼ �ke∗C ð2:9Þ

where ke is the parameter to be estimated based on the data and is inversely related

to half-life (t1/2) of the drug. From Eqs. 2.8 and 2.9, it follows that once ke is known,
the drug concentration can be predicted at any time point for a given C0.

ke is determined by the apparent volume of distribution (Vd) as well as clearance

(CL) that describe the elimination capacity, which is typically governed by liver and

kidney function. For a drug with immediate distribution and a CL value indepen-

dent of concentration, ke can be described as

ke ¼ CL

Vd
ð2:10Þ

Often the nature of a drug is more complex because the distribution of the drug

inside the body is not immediate due to the effect of its surrounding environment.

Hence, the concentration-time course of drug distribution can be better explained

by two or more compartments. The differential equations for a two-compartment

model can be written as

dAc

dt
¼ �CL

Vc
∗Ac � Q

Vc
∗Ac þ Q

Vp
∗Ap ð2:11Þ

dAp

dt
¼ �Q

Vp

∗

Ap þ Q

Vc
∗AC ð2:12Þ

where Ac and Ap are the amounts in the central and peripheral compartments and Vc

and Vp are the corresponding volumes of distribution. Q represents

intercompartmental clearance. An intravenously administered dose would be

given into the central compartment.
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The total exposure is often described as the area under the concentration-time

curve (AUC). AUC is obtained by integrating the drug concentration-time profile

and can also be computed as the systemically available dose over CL. The bio-

availability, F, determines the fraction of an extravascular dose that reaches the

systemic circulation and is thereby a measure of the extent of absorption. The rate

of absorption is often characterized by a first-order rate constant, ka.

2.7.2 Pharmacodynamics

Pharmacodynamics/PD designates the association among concentration and both

the desired and undesirable effects by the given drug. The mathematical function

describing the PKPD relationship is a sigmoidal. Emax model given by

E tð Þ ¼ E0 þ Emax∗C tð Þγ
ECy

50 þ C tð Þγ ð2:13Þ

where Emax is the maximum effect that can be achieved by the drug in the

investigated system and EC50 is the drug concentration that results in half of the

maximum effect. EC50 is inversely related to the potency. γ is the Hill or

sigmoidicity factor that determines the steepness of the relationship but is in

many cases not statistically significant from 1.

However, there are often situations where sufficiently high concentrations can-

not be achieved to estimate Emax, and simplifications can be made to estimate fewer

parameters. When C « EC50, the Emax model collapses to a linear model (γ ¼ 1) or a

power function (γ 6¼ 1) with coefficient slope as shown below:

E tð Þ ¼ E0 þ Slope∗C tð Þγ ð2:14Þ

The underlying E0 is not always constant over the study period. For example, the

effect variable may vary because of an underlying disease, such as fluctuations in

glucose in the event of diabetes or a diurnal rhythm in blood pressure.

2.8 Conclusion

Translational science in bioinformatics and drug discovery provides a powerful

method especially when used as a tool within an armamentarium for discovering

new target, drug leads, and novel approach in diagnostic and treatment for the

betterment of society. Genomic technologies and NGS methods have proven to be

the keystone of advanced research. The identification of genes’ role in disease and

disorder makes it possible to design personalized medicine approach, where a

single or a few genes can be targeted or may act as a biomarker in the diagnosis
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and treatment of disease and disorder. Data from public domain chemical libraries

selected for appropriate target with structure-based and ligand-based discovery can

create a very promising lead which may continue to clinical trials. Simulation study

of pharmacokinetic and pharmacodynamic behavior of a chemical compound helps

us estimate the concentration and dose value in computed form that can signifi-

cantly reduce the overconcentration and dosing effects. As bioinformatics develops

further, it is expected that genomics, proteomics, drug discovery, and computa-

tional power will continuously explode with new advances in therapeutic applica-

tions; new targets and leads may be brought to marketplace more rapidly each year.
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Chapter 3

Translational Research in Drug Discovery

and Development

Neha Arora, Pawan Kumar Maurya, and Puneet Kacker

Abstract Translational research facilitates the application of basic scientific dis-

coveries in clinical and community settings to prevent and treat human diseases.

The translation of knowledge and innovations from basic laboratory experiments to

point-of-care patient applications; production of new drugs, devices, and healthcare

products; and promising treatments for patients is referred to as benchside to

bedside transition. Numerous opportunities encompass translational research. How-

ever, there are several obstacles involved in the process that make the translational

journey quite challenging. The major challenges that hamper the growth of trans-

lational research include insufficient resources, inadequate funding and infrastruc-

ture, shortage of qualified researchers, and lack of sufficient experience in essential

techniques. Translational drug discovery and development is an exceedingly diffi-

cult, expensive, time-consuming, and risky process. Despite thousands of pharma-

ceutical companies working to develop and get new drugs to market, and billions of

dollars spent every year, only a few new molecular entities (NMEs) receive

marketing approval from the FDA per year. Translational drug discovery demands

both the need for cooperation between clinical and pharmacological research and

the significance of the role of academia in target identification and drug discovery,

design, and development. This chapter highlights an overview of translational

research in a drug discovery and development perspective. We further discussed

associated opportunities and challenges, as well as possible strategies that could be

used to overcome the challenges. Certain strategies like prioritizing research area,
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clearer vision on the project, committed team of researchers, established infrastruc-

ture, sufficient funding, and meaningful collaborations could be highly beneficial in

accelerating the hunt to discover new drugs and for the establishment of successful

translational drug discovery process.

Keywords Translational research • Drug discovery and development •

Opportunities • Challenges • Drug repurposing

List of Abbreviations

BrIDGs Bridging Interventional Development Gaps

FASEB Federation of American Societies for Experimental Biology

FDA Food and Drug Administration

GWAS Genome-wide association study

ITHS Institute of Translational Health Sciences

MHRA Medicines and Healthcare Products Regulatory Agency

NCATS National Center for Advancing Translational Science

NCI National Cancer Institute

NIH National Institutes of Health

TRWG Translational Research Working Group

CRC Colorectal cancer

ALL Acute lymphoblastic leukemia

3.1 Translational Research

Translational research is basically translating knowledge obtained from laboratory

science into clinical practice in order to improve human health. It involves the

process of applying ideas, insights, and discoveries unveiled through basic scien-

tific researches for the welfare of mankind. The knowledge acquired, mechanisms

devised, and techniques developed using basic science researches are effectively

translated into new approaches for prevention, diagnosis, and treatment of diseases

(Fang and Casadevall 2010). The applications of such basic scientific discoveries in

clinical and community settings thereby are instrumental in bridging the gap

between biomedical science and medical practice (Zerhouni 2005).

3.1.1 How Is It Different from Traditional Research?

Basic and translational research can be considered as complementary areas of

human endeavor that differ primarily in integration and practicality, respectively.

Whereas basic science contributes in deriving deeper knowledge in the desired
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field, the significance of translational science lies entirely in its practicality

(Koshland 1993; Selep 2013). Some of the differences in approach and goals of

the two kinds of researches are summarized in Table 3.1.

3.1.2 Translation Continuum from Benchside to Bedside

Since basic and translational researches are complementary to each other, they

assist each other in their further development. While basic research takes up the

task of unveiling promising novel ideas for their use in translational research, the

translational research on the other hand raises new questions for the researchers of

basic sciences to address. Thus, basic research generally plays the part of generating

new ideas, and applied research conveys these ideas in the more refined and

applicable form to the market so as to be implemented for the betterment of the

population (Drolet and Lorenzi 2011). This translation of the nurtured research

ideas going long way till their application in more elaborate, productive, valuable,

profitable, and promising manner to enhance human health and well-being is often

referred to as benchside to bedside transition (Keramaris et al. 2008). Translational

research helps turn early-stage innovations starting from basic laboratory experi-

ments progressing through the several rounds of clinical trials to point-of-care

patient applications (Tufts 2015); production of new drugs, devices, and healthcare

products; and promising treatments for patients, thereby advancing the innovation

to make it attractive for further development and commercialization by the medical

industry or healthcare sectors (Woolf 2008).

Table 3.1 Difference between basic and translational research

Terms of

comparison Basic research Translational research

Research

orientation

Also referred to as traditional research

wherein the motivation lies in acquir-

ing knowledge. This type of research is

mostly exploratory and often leads to

great discoveries

Also referred to as advanced research

wherein the motivation is to get

results. This research is more of prac-

tical approach that refines the discov-

eries into useful products

Scientific

approach

It is the style of scientific inquiry which

is bottom-up

The scientific inquiry is top-down

Organization It is generally performed by academia

constituting scientists and biologists

involved in benchwork

Generally performed largely by engi-

neers employed by industries and/or

by government organizations

Type of

invention

Basic research is revolutionary Translational research is evolutionary

Research

application

The results and findings of basic

research are sometimes shelved with-

out an obvious immediate use

As this type of research is goal ori-

ented, its results are of immediate use

to be used outside of academia
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3.1.3 Translational Research Phases

Translational research has often been described in phases of translation, also known

as “T-phases” that revolve around the development of evidence-based guidelines.

The Institute of Translational Health Sciences (ITHS) has adopted a model of five

phases (T0–T4), which is adapted from the Khoury et al.’s (2007) description of four
phases. T0 phase is characterized by the identification of opportunities and

approaches to health problems that need to be addressed, whereas T1 phase attempts

to translate basic discovery into a candidate health application. T2 phase assesses

the value of application for health practice leading to the development of evidence-

based guidelines which are moved into health practice through dissemination and

diffusion research in T3 phase. The final evaluation of the health outcomes of the

health practice is then performed in T4 phase. An outline of the transformation of

basic research from benchside to translational research till bedside progressing

through different research phases is illustrated in Fig. 3.1.

3.1.4 Translational and Clinical Science

Biomedical research community in today’s world has taken up the task of translat-

ing the remarkable scientific innovations into health benefits. For realizing this

objective and developing the ideas and strategies, the US National Institutes of

Health (NIH) initiated a series of consultations with the research community in

order to define major scientific trends collectively, with the goal of identifying

thematic areas that the whole of the NIH needed to address. This initiative led to the

development of the NIH road map for medical research, which is based on three

fundamental themes (Zerhouni 2003):

(i) New Pathways to Discovery: This theme is aimed at the identification of the

need to stimulate the development of novel approaches to unravel the com-

plexity of biologic systems and their regulation. Implementation groups in this

area are Molecular Libraries and Imaging; Building Blocks, Biological Path-

ways, and Networks; Structural Biology; Bioinformatics and Computational

Biology; and Nanomedicine.

(ii) Research Teams of the Future: Under this theme, the main objective is to

explore out ways to reduce the cultural and administrative barriers that often

hamper the research which is done at the interface of preexisting disciplines

and to invoke an era in which scientists can cooperate in new and different

ways. NIH also developed an innovative program called as the Pioneer Award,

wherein unprecedented intellectual freedom is provided to highly creative

thinkers who are engaged in investigating problems of biomedical and behav-

ioral importance. Implementation groups in this area are Interdisciplinary

Research; Interdisciplinary Health Research Training: Behavior, Environment
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and Biology; High-Risk Research; NIH Director’s Pioneer Award (NDPA);

and Public/Private Partnerships.

(iii) Reengineering the Clinical Research Enterprise: There have been concerns to
bring together the basic, translational, and clinical researchers for better and

fruitful interactions. Moreover, the new investigators are lesser interested in

clinical research which is preventing the scientists to go on for patient-oriented

research. This has called for an immediate need for instigating renovations in

translational and clinical science by the NIH, which is the main objective of

this theme. Implementation groups in this area are Harmonization of Clinical

Research Regulatory Processes, Integration of Clinical Research Networks

Clinical Research Informatics: National Electronic Clinical Trials and

Research System (NECTRS), Regional Translational Research Centers,

Enabling Technologies for Improved Assessment of Clinical Outcomes, and

Dynamic Assessment of Patient-Reported Chronic Disease Outcomes.

3.1.5 Reengineering Translational Science

Due to immense economic stresses and patent expirations, pharmaceutical compa-

nies are turning down their investments in research (Wilson 2011). Furthermore,

biotechnology companies are finding it very difficult to obtain venture capital for

projects that need many years of support for achieving long-term profitability (Ernst

and Young 2010). Realizing the need to pursue opportunities for disruptive

Fig. 3.1 Translation of basic science from benchside to bedside
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translational innovation and reengineering the process of developing diagnostics,

devices, and therapeutics across a wide range of human diseases through transla-

tional research, the NIH has established a National Center for Advancing Transla-

tional Science (NCATS). The mission of this center is to catalyze the generation of

innovative methods and technologies for the development and implementation of

diagnostics and therapeutics (Ferrell 2009). The long timelines, steep costs, and

high failure rates in the translational pathway compel the initiation of revolution-

izing the science of translation through comprehensive, systematic, and creative

approach. NIH aims to shape and sharpen this new vision through a transparent

scientific environment, via NIH-based online resources, thereby ensuring the proper

and wider dispersal of complete information about the successes and failures in

research swiftly to all the stakeholders (Zerhouni 2003). NCATS aims to offer

unparalleled opportunities to researchers for intense focus on the reengineering of

the translational process, beginning from the initial target identification to first-in-

human application of small molecules, biologics, diagnostics, and devices (Collins

2011). Besides NCATS, there are various other research institutes and centers all

over the world that are dedicated toward performing translational research in

different fields of scientific advancement (Table 3.2).

3.1.6 Opportunities in Translational Research

Translational research is a new area of investigation that involves the integrated

application of advanced technologies that include multiple disciplines of science

like physiology, pathophysiology, natural history of disease, genetics, and proof-of-

concept studies of drugs and devices (Zerhouni 2005). Recent research break-

throughs, most importantly, completion of the Human Genome Project, offer a

pool of nonending opportunities for basic investigators to work and make further

advancements in these areas. Other accomplishments like advances in information

technology; biocomputing; high-throughput technologies for screening, identify-

ing, and studying compounds of interest; and novel imaging capabilities also tend to

provide direct and immediate rewards for individual investigators and the institu-

tions that support their work (Hobin et al. 2012).

3.1.6.1 Opportunities for Researchers

For basic researchers, engaging in translational research benefits them in contrib-

uting to the understanding and treatment of human diseases and participating in the

development of solutions to medical and public health problems that serves as a

source of intellectual inspiration and stimulation. On personal front, translational

research provides opportunities to researchers to develop their own science and

learn new methods that paves way for initiating new projects, gives directions for

existing projects, and increases publication rates. Furthermore, it helps in
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Table 3.2 Partial list of dedicated translational research institutes and centers across the globe

Institute Weblink Country Comments

Translational Research

Institute Australia

www.tri.edu.au/ Australia Aims at comprehensive

medical research and

biopharmaceutical

facility. The institute

currently hosts four

flagship programs:

(1) immunotherapy,

(2) diagnostic imaging,

(3) microbiome, and

(4) gynecological

cancer

The Centre for Drug

Research and

Development

www.cdrd.ca/ Canada Alliance of Transla-

tional Research Centres

established to accelerate

global drug develop-

ment. Their project

portfolio includes

13 technologies com-

mercialized till date in

the wider area of immu-

notherapy, neurosci-

ence, anti-infective,

oncology, fibrosis,

inflammation, and

regenerative medicines

National Research

Center for Transla-

tional Medicine

www.natureindex.com/institu

tion-outputs/china/national-

research-center-for-transla

tional-medicine/

556d6532140ba05c398b4570

China First of five institutions

meant to bridge the gap

between basic research

and clinical application

by putting researchers,

doctors, and patients

under one roof

Translational Health

Science and Technol-

ogy Institute

www.thsti.res.in/ India The emphasis is on fast-

tracking healthcare

solutions that would

meet the needs of a rap-

idly developing econ-

omy in need of

healthcare intensity for

its large population

Translational Research

Informatics Center

www.tri-kobe.org/ Japan The center is supported

by the Ministry of Edu-

cation, Culture, Sports,

Science and Technol-

ogy. The center’s aim is

to develop methods for

improved prognosis in

important disease areas

(continued)
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Table 3.2 (continued)

Institute Weblink Country Comments

European Infrastruc-

ture for Translational

Research (representa-

tive organization)

www.eatris.eu/ Multiple

European

countries

One-stop access to over

70 academic research

centers in Europe. Their

research services are

focused around the fol-

lowing technologies:

(1) ATMP and bio-

logics, (2) biomarkers,

(3) imaging and tracing,

(4) small molecules, and

(5) vaccines

Centre for Transla-

tional Research and

Diagnostics

https://www.csi.nus.edu.sg Singapore The center is equipped

with three major facili-

ties: (1) the NUHS Tis-

sue Repository, (2) the

Translational Interface

molecular pathology

facility, and (3) the

Diagnostic Molecular

Oncology Centre with

excellence in clinical

sample and data man-

agement, translational

research and clinical

trial support, and the

development and

deployment of novel

diagnostics into the

clinic

National Center for

Advancing Transla

tional Sciences

www.ncats.nih.gov/ USA Centers at the NIH;

established to transform

the translational process

so that new treatments

and cures for disease

can be delivered to

patients faster

Center for Compara-

tive Medicine and

Translational Research

https://cvm.ncsu.edu/

research/centers/ccmtr/

USA Promotes scientific dis-

covery and facilitates its

clinical application to

achieve the goal of

improving the health of

animals and humans

Translational Research

Institute for Metabo-

lism and Diabetes

http://www.tri-md.org/ USA Joint venture between

Florida Hospital and

Sanford-Burnham Med-

ical Research Institute;

dedicated to the study of

obesity, metabolism,

diabetes, and the

(continued)
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Table 3.2 (continued)

Institute Weblink Country Comments

metabolic origins of

cardiovascular disease

Center for Transla-

tional Injury Research

http://cetir-tmc.org/ USA The goal of the center is

to lead research and

development of next-

generation medical

technologies in the areas

of hemostasis, resusci-

tation, and computer-

ized decision support

for trauma patients

Translational Geno

mics Research Institute

https://www.tgen.org/ USA Primary focus is to dis-

cover the genetic cause

of disease. The insti-

tute’s thrust areas
include disorders in the

areas of oncology,

neurogenomics, and

metabolic diseases

Center for Transla-

tional Medicine, the

University of Texas

Southwestern Medical

Center

http://www.utsouthwestern.

edu/research/translational-

medicine/index.html

USA CTM is a member of the

national Clinical and

Translational Science

Award (CTSA) consor-

tium, a group of

62 medical research

institutions, funded by

the National Institutes

of Health (NIH), that

work together to

improve the way bio-

medical research is

conducted across the

country, to reduce the

time it takes for labora-

tory discoveries to

become treatments for

patients, to engage

communities in clinical

research efforts, and to

train a new generation

of clinical and transla-

tional researchers

The Institute for

Translational Medicine

and Therapeutics

http://www.itmat.upenn.edu/ USA ITMAT includes fac-

ulty, basic research

space, and the Clinical

and Translational

Research Center

(CTRC), which now

includes the former

(continued)
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promoting interdisciplinary collaborations between clinicians, clinical researchers,

and basic investigators that can provide exposure to new areas of science and also

can generate new ideas. The basic researchers in this way also can mentor clinical

colleagues in basic science methods.

Table 3.2 (continued)

Institute Weblink Country Comments

General Clinical

Research Center

(GCRC) of both Penn

and the Children’s Hos-
pital of Philadelphia

(CHOP). It supports

research at the interface

of basic and clinical

research focusing on

developing new and

safer medicines

Duke Translational

Medicine Institute

https://www.dtmi.duke.edu/

what-we-do/translational-

medicine-at-duke/

USA DTMI strives to over-

come the obstacles to

developing discoveries

into devices, drugs, or

therapies to improve

health. The major areas

of research are as

diverse as ophthalmol-

ogy, cancer screening,

and a device for screen-

ing blood for

transfusions

Center for Transla-

tional Medicine, the

University of

Minnesota

http://www.researchservices.

umn.edu/services-name/cen

ter-translational-medicine/

USA The center solicits and

evaluates promising

research leads; identifies

necessary resources;

provides expertise for

the preclinical evalua-

tion and testing of novel

reagents, GMP manu-

facture of clinical prod-

ucts, and IND/IDE

development and sub-

mission; and supports

phase I clinical trial

design and

implementation
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3.1.6.2 Opportunities for Institutions

Besides researchers, the institutions facilitating and encouraging translational

research also benefit from these programs. They have ample opportunities to

provide unique training experiences to undergraduates, graduate students, and

postdoctoral fellows, thereby motivating them and encouraging new talent to

enter biomedical research. Moreover, due to the promotion of the development of

new drugs, devices, and other medical interventions, they are able to accomplish

their biomedical research missions, attract more and more patients, and enhance

their status and repute. Translational research opportunities help institutions and

organizations to facilitate their investigators with easy and affordable access to

resources, collaborators, and expensive shared equipment and facilities. They are

also able to attract public-private partnerships, leverage federal and nonfederal

resources, and attain support from funding agencies in new and lucrative projects.

3.1.7 Challenges in Translational Research

Although there are numerous opportunities encompassing translational research,

there are several obstacles as well involved in the process that makes the transla-

tional journey more and more challenging. The major challenges that limit profes-

sional interest and hamper the translational enterprise are insufficient resources,

inadequate funding and infrastructure for developing research programs, shortage

of qualified investigators, and lack of sufficient experience with essential methods

and techniques as well as with complex regulatory requirements (Hait 2005). Other

issues that have been repeatedly debated include academic cultural differences

between basic scientists and clinicians that hinder collaboration. These differences

arise due to communication gap, differences in education and training, and different

goals and targets. The culture of valuing clinical care over research sidelines the

basic researchers who tend to show little interest in the research.

Moreover, lack of incentives and rewards for the researchers discourage them to

take initiative in novel research. Regulatory and ethical issues that are involved in

human research, tissue banking, intellectual property rights, and toxicology and

manufacturing regulations have become more gruesome with expanding work in

the fields of cell and gene therapies and tissue engineering. Getting approvals from

regulatory agencies like the Food and Drug Administration (FDA) and Medicines

and Healthcare Products Regulatory Agency (MHRA) has become much more

difficult and complicated. All of these issues contribute to several checkpoints in

translational research phases including the “valley of death” that exists between

preclinical research and clinical trials (Butler 2008). The Federation of American

Societies for Experimental Biology (FASEB) has made recommendations to deal

with these challenges by emphasizing upon the roles and responsibilities of
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institutions, professional societies, funding organizations, and individual scientists

(http://www.faseb.org/Portals/0/PDFs/opa/TranslationalReportFINAL.pdf).

3.1.8 Controversies in Translational Research

Since the establishment of the NCATS, there have been a lot of controversies within

the research community on the purpose, structure, and funding of the center. The

mission of this center is to experiment with innovative approaches to reduce,

remove, or bypass the bottlenecks often associated with the translational pipeline.

Although efficient implementation of the translational research process is an

important step in the emergence of an advanced research scenario, however many

basic research scientists raised the concerns on the development of NCATS as it

would take off the focus away from basic research entirely to the translational

research (McClure 2012). This debate by the basic researchers is apt and reasonable

as advances in the treatments that are being made at present are the result of

enormous efforts made by the basic researchers over the decades that laid the

foundation for further discoveries. Therefore, this calls for an understanding of

the significance of the basic research and considering the investments made in basic

research, for all intents and purposes, as an investment in translational research.

3.2 Translational Drug Discovery

The past decade has witnessed an increased emphasis on laboratory-based transla-

tional research which has been instrumental in enabling clearer understanding of

the disease mechanisms and in the development of novel approaches to varied

scientific areas like in gene therapy, RNA interference, and stem cells (Littman

et al. 2007). The increasing adoption of translational research is leading to novel

integrated discovery nexuses that may change the landscape of drug discovery.

Drug discovery is the first step in the creation of new drugs that takes place in

academic institutions, biotech companies, and large pharmaceutical organizations.

These sectors, though, used to operate independently with minimal collaboration

between those at the forefront of discovery research and those with experience in

developing drugs, but with the emergence of translational research, have come

closer for seeking collaboration to pool the expertise required to generate new

therapies by linking laboratory discoveries directly to unmet clinical needs

(Fishburn 2013). However, despite the huge investments made in drug discovery

process in the past decade, there still remains a shortage of new drugs. The reasons

behind this could be attributed to the continued existence of a standard drug

development model that has not attuned to changes in science and public perception
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of drug companies. Furthermore, the pace of drug development process lags behind

in the USA due to a high profit margin that prevents reform in the absence of

economic pressures (Fitzgerald 2005). The World Health Organization report on

“Priority Medicines for Europe and the World” (WHO Geneva 2004) specifies

several “high-burden” diseases for which no active treatment is currently available,

including infectious diseases, a range of chronic diseases of the central nervous

system and the cardiovascular system, autoimmune disorders, and cancer. The

number of patients with these chronic diseases is continually growing in the

aging population.

Translational drug discovery covers the entire spectrum from target identifica-

tion to the evaluation of the efficacy and safety of novel medicines in clinical

practice. It requires data generated from molecular investigations, healthcare, and

clinical research. A vast and diverse amount of data thus produced pose various

challenges like integrating fragmented databases, facilitating secondary usage of

patient data in clinical research, and generating information systems for easy and

immediate use to clinicians and biomedical researchers. Hence, for the manage-

ment and integration of clinical and molecular data, a large number of web-based

user-friendly databases and tools are being designed that are available online

(Table 3.3).

Translational drug discovery demands both the need for cooperation between

clinical and pharmacological research and the significance of the role of academia

in target identification and drug discovery, design, and development. In the past

decade, an important trend has been observed wherein an increasing proportion of

innovative new drugs emerge from small biotech companies typically working in

close collaboration with academia. An example of one such drug is the peptide

vaccine for HPV-induced cervical cancer.

Discovery and development of safe and effective new drugs is an exceedingly

difficult, expensive, and time-consuming process. Despite thousands of pharma-

ceutical companies working to develop and get new drugs to market, and approx-

imately $50 billion spent every year, only 23 new molecular entities (NMEs) per

year (on average) have received marketing approval from the FDA during the last

10 years. The most concerning fact is that, while expenditures have increased

steadily since the mid-1990s, the number of drugs reaching the market has declined

to a relatively low plateau (Fishburn 2011).

Although the developmental process of new drugs has been slow, the overall

research and development investment has yielded important breakthroughs in basic

cellular and molecular biology and in producing novel technologies to advance

drug development. These advancements include the identification of all the genes in

the human genome (the Human Genome Project), the use of microchip-based

robotics for rapidly testing large numbers of potential new drug compounds, and

the creation of cell-based systems for large-scale synthesis of protein and antibody

therapeutics. The mismatch between scientific progress and poor productivity of

drugs has led many scientists to reexamine the existing strategies for creating new
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Table 3.3 Partial list of databases and tools dedicated for accelerating translational research in

drug discovery

Databases

Name Contents References

Neuroblastoma

patients

(NeuPAT)

An intranet-based

database integration

for neuroblastoma

patients

Villamon et al. (2013)

Diet, Genomics,

and Immunol-

ogy Laboratory

(DGIL) Porcine

Contains functional

information on

genes commonly

studied in humans,

pigs, and rodents

http://www.ars.usda.gov/Main/docs.htm?docid¼6065

Stanford Trans-

lational

Research Inte-

grated Database

Environment

(STRIDE)

A Stanford project

which consists of

three components:

clinical data ware-

house, research data

management appli-

cations, and

biospecimen data

management system

Lowe et al. (2009)

Cancer Survi-

vors Against

Radon

(canSAR)

Database that inte-

grates data from

biology, chemistry,

pharmacology,

structural biology,

cellular networks,

and clinical annota-

tions. A tool is also

built that applies

machine learning

methods for several

useful drug discov-

ery predictions

Bulusu et al. (2014)

Repository of

Molecular Brain

Neoplasia Data

(Rembrandt)

A cancer clinical

genomic database

and a web-based

data mining and

analysis platform

aimed at facilitating

discovery by

connecting the dots

between clinical

information and

genomic characteri-

zation data

Madhavan et al. (2009)

(continued)
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drugs. Presently, it takes an average of 12–15 years to bring a new drug to the

market because the process involves sequential stages of discovery, preclinical

development, clinical trials (phases I, II, III), and FDA review (Fishburn 2011).

Moreover, the successful development of a single drug often starts with the

synthesis and testing of thousands of different candidate drug molecules.

Table 3.3 (continued)

Research Elec-

tronic Data

Capture

(REDCap)

It is a free

web-based applica-

tion designed to

support data capture

for research studies.

It is a metadata-

driven EDC soft-

ware solution and

workflow methodol-

ogy for designing

clinical and transla

tional research

databases

Harris et al. (2009)

Tools

Name Purpose Reference

PRISYM

CLINTRIAL

Clinical trial man-

agement and patient

stratification system

http://www.prisymid.com/solutions/clinical-trials/

prisym-clintrial/

GenetRx Patient stratification

based on gene

expression

biomarker

http://www.genebiomarkers.com/applications/

patient-stratification.php/

HLA Twin It is a dual-algorithm

genotyping software

http://www.omixon.com/hla-twin/

RANDI2 It is a web-based

application that sup-

ports many random-

ization algorithms,

free configurable

patient properties,

stratification, and

definition of inclu-

sion criteria for easy

management of

multicenter clinical

trials

Schrimpf et al. (2010)

HERMES It is a free simulation

software used for

taking the key deci-

sions of minimiza-

tion or stratification

using various

modeling

parameters

Fron Chabouis et al. (2014)
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3.2.1 Translational Drug Development for Diseases

Drug development is the process of bringing a new pharmaceutical drug to the

market once a lead compound has been identified during drug discovery process.

Across all diseases, translational drug discovery and development are lengthy,

costly, and risky processes. The average cost for the development of new drug

has been estimated to be greater than $1 billion. There are several challenges in

neuroscience drug development such as target identification and validation, signif-

icant disillusionment with the use of animal model to evaluate efficacy, lacking

biomarkers, and stratification of populations for clinical trials (Lally and MacCabe

2015). Various challenges in drug discovery and development for diseases are

summarized in Fig. 3.2 and Table 3.4.

3.2.1.1 Nervous System Disorders

The prevalence and burden of neurological disorders impel the leadership within

industry, academia, and government to take initiative for curing these disorders.

Despite intensive research over many years, the treatment of brain disorders

remains a major health issue (Morinet 2014). In spite of high prevalence, enormous

contributions to disability worldwide, and substantial economic burden, there are

no disease-altering therapies for neurodegenerative disorders (Karnati et al. 2015).

Compared with other disease areas, failure rates in late-stage clinical trials are

disproportionately high for neurodegenerative disorders. Many drug companies

Fig. 3.2 Some of the major

challenges in drug

discovery and development
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Table 3.4 List of important diseases and challenges associated with their drug discovery and

development projects

Disease Major challenges References

Alzheimer’s
disease (AD)

Exact cause for AD onset is still unknown Gu et al. (2015)

Limited effectiveness of the cognitive tests Wesnes and Edgar (2014)

Problems associated with blood-brain bar-

rier (BBB) penetration of drugs and its

pharmacokinetic properties

Butini et al. (2013)

Schizophrenia

(SZ)

Limitation in identifying, validating,

developing, and clinically deploying new

treatments

Millan et al. (2015)

First- and second-generation antipsychotic

drugs based upon the dopamine hypothesis

are limited

Winchester et al. (2014)

Bipolar disease

(BD)

Limitation in clinically deploying new

treatments

Millan et al. (2015)

Challenges in improving methods and

tools to generate, integrate, and analyze

high-dimensional data

Hoertel et al. (2013)

Technical challenges related to the identi-

fication and validation of candidate genes

and peripheral biomarkers

Le-Niculescu et al. (2011)

Major depres-

sive disorder

(MDD)

Limited efficacy and a pronounced delay

to onset of action and provoke distressing

side effects

Millan (2006)

Cancer The sequencing of increasingly larger

numbers of cancer genomes

McDermott et al. (2011) and

Sellers (2011)

Identification of key driver mutations and

matching drug therapies

Greaves and Maley (2012)

Heterogeneous populations in cancers are

likely to include drug-resistant stem cells

and a range of host cells that are involved

in tumor progression

Jordan et al. (2006) and De

Palma and Hanahan (2012)

Selecting and validating the best targets Benson et al. (2006)

Druggability gap Verdine and Walensky (2007)

and Paul et al. (2010)

Diabetes Safety concerns of GLP1 analogues Drucker et al. (2010)

Failure of antidiabetic medications like

troglitazone, rosiglitazone, and

pioglitazone

Henney (2000, Nissen and

Wolski (2007) and Hillaire-

Buys et al. (2011)

Cardiovascular

disease (CVD)

Failure of translating good preclinical data

into a safe and effective medicine (e.g.,

CETP inhibitor torcetrapib and

vasopeptidase inhibitor omapatrilat)

Tall et al. (2007) and Ferdinand

et al. (2001)

Lower efficacy of the thrombolytic drugs

(e.g., streptokinase and accelerated tissue

plasminogen activator [tPA])

White and Van de Werf (1998)

Lesser opportunities for young biotech

companies

Katherine (2007)
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have divested themselves almost entirely from neuroscience research program to

other therapeutic areas.

Since pathophysiology of brain disorders is poorly understood, it is difficult to

identify promising molecular targets and its validation (Feustel et al. 2012). It is

also difficult to choose an animal model, because of poor understanding of disease

mechanism. Brain disorders are associated with defect in synaptic communication

and functional connectivity. Target identification is a critical factor in the drug

discovery and development. Target validation is an iterative process of increasing

confidence in a target, which can be conceptualized as continuing through phase III

clinical trials. Along with target validation, it is critical to establish the therapeutic

levels of a drug that can be reliably delivered to the brain and those levels at which

the drug binds its target, thereby modifying the disease pathway in the desired

direction. In the absence of this information, clinical trials are not eligible for

testing the target validation hypothesis. Furthermore, failure of animal models to

predict accurately the efficacy of drugs with new mechanism for neurological

disorders has been a central problem in drug development. Owing to differences

between animals and humans in cell types, transmitter function, and anatomy, the

usage of animal models is not reliable.

Developing and integrating new approaches that utilize combination of animal

and nonanimal models of disease mechanisms, along with new tools, technologies,

and techniques, might illuminate the underlying biological mechanism of disease

and improve target identification, validation, and therapeutic development. Current

research paradigm might need to change, particularly for clinical studies. For the

development of drugs, better understanding of disease mechanisms and improved

ability to translate such discoveries into biomarkers and therapeutics is required.

Several opportunities in translational drug discovery are illustrated in Fig. 3.3.

3.2.1.2 Psychiatric Disorders

Innovation is important for the identification and novel pharmacological therapies

to meet the treatment needs of patients with psychiatric disorders including schizo-

phrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD)

(Maurya et al. 2016). The process of drug discovery encompasses a period of

intense research and development efforts that typically take 13–15 years. It involves

search for target, optimization to allow candidate drug selection, and human testing

to achieve proof of mechanism, principle, and concept, followed by regulatory

approval. In the last decade, large-scale candidate gene and genome-wide associ-

ation studies have generated a growing list of “risk” genes for psychiatric illness

(Hess et al. 2016). Multiple risk genes were identified, each making a small

contribution to such disorders. These human genome-based approaches of under-

standing the location and function of specific gene products and their relevance to

disease pathophysiology have rewarded the field of biological psychiatry with some

novel target ideas. New drug candidates can act in psychiatric disorders to show

their effects by modifying certain pathways in the biological system, including
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inflammatory pathway, cell-mediated immune (CMI) pathway, oxidative and

nitrosative stress (O&NS) processes, antioxidant system (enzymatic and

nonenzymatic), mitochondria, and neuroprogression (Table 3.5).

3.2.1.3 Cancer

Despite advances in diagnosis and therapies, cancer is still the leading cause of

death worldwide. Genome-wide studies have been extensively used over the past

decades as a powerful tool in defining the signature of different cancers and in

predicting outcome and response to therapies.

MicroRNAs (miRNAs) are a contemporary class of tiny noncoding endogenous

RNA molecules, only 18–25 nucleotides long. In human genome, the expression of

each gene is tightly regulated to control the function and environment of each cell.

In the nucleus, the template for genetic information is encoded in DNA segments,

which are transcribed into RNA molecules. These molecules are transported from

the nucleus to the cytoplasm, where they are translated into proteins. The activity of

genes is controlled at the level of DNA, RNA, and protein. Different RNAs have

different degrees of stability due to their unique interaction with cellular degrada-

tion machinery, which is regulated by cellular signals. The recent discovery of

miRNAs, which alter RNA stability, ignited a growing interest in gaining further

knowledge of gene regulation at the RNA level. About 5300 human genes have

been implicated as targets for miRNAs, making them one of the most abundant

classes of regulatory genes in humans. miRNAs recognize their target mRNAs

Fig. 3.3 Figure showing

open opportunities with

translational research in

drug discovery
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based on sequence complementarity and act on þregion of miRNA, important for

mRNA target recognition, which is located at the end of the mature miRNA

sequence from bases 2 to 8. This is often referred to as the “seed sequence” (Bartel

2004). Given the importance of miRNAs in regulating cellular differentiation and

proliferation, it is not surprising that their misregulation is linked to cancer. In

cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor

suppressors. Amplification or overexpression of miRNAs can downregulate tumor

suppressors or other genes involved in cell differentiation, thereby contributing to

tumor formation by stimulating proliferation, angiogenesis, and invasion. Simi-

larly, miRNAs can downregulate different proteins with oncogenic activity; i.e.,

they act as tumor suppressors. MicroRNA genes are evolutionarily conserved and

are located within the introns or exons of protein-coding genes, as well as in

intergenic areas. miRNA genes are transcribed by RNA polymerase II or III into

pri-miRNAs. Pri-miRNAs are next cleaved into approx. 70 nucleotide-long precur-

sor miRNAs (pre-miRNAs) by the nuclear microprocessor complex formed by the

RNase III Drosha and DiGeorge syndrome critical region gene 8 (DGCR8). The

average human pre-miRNA contains a 33-base-pair hairpin stem, a terminal loop,

and two single-stranded flanking regions upstream and downstream of the hairpin.

Pre-miRNAs are next transported by the exportin-5/Ran GTPase complex into the

Table 3.5 Various drug candidates that can be used for psychiatric disorders in different modified

pathways

S. No. Pathways Name of drugs (antidepressants) References

1. Inflammatory Celecoxib, eicosapentaenoic acid

(EPA), statins, acetylsalicylic

acid, minocycline, interleukin-1

receptor antagonist (IL-1RA),

etanercept, ketamine, curcumin

Maes et al. (2012), Najjar

et al. (2013) and Lotrich

et al. (2014)

2. Oxidative and

nitrosative pro-

cesses, antioxidant

defense

Zinc, N-acetylcysteine (NAC),

coenzyme Q10, curcumin,

liquiritin

Maes et al. (2011) and

Doboszewska et al. (2016)

3. Mitochondria Minocycline, statins, celecoxib,

eicosapentaenoic acid (EPA),

N-acetylcysteine (NAC), coen-

zyme Q10, curcumin, resveratrol

Morel and Singer (2014),

Pandya et al. (2013) and

Ungvari et al. (2011)

4. Cell-mediated

immune (CMI)

pathway

Indoleamine-2,3-dioxygenase

(IDO) blockade, minocycline

Munn and Mellor (2013)

and Dean et al. (2014)

5. Neuroprogression Neuronal cell adhesion molecule

(NCAM), vascular endothelial

growth factor (VEGF), vascular

growth factor (VGF), fibroblast

growth factor receptor (FGFR),

minocycline, ginseng,

N-acetylcysteine (NAC), zinc,

coenzyme Q10, curcumin

Nowacka and Obuchowicz

(2012), Wędzony et al.

(2013), Elsayed et al.

(2012) and Berk et al.

(2012)
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cytoplasm, where miRNAs undergo maturation. In the cytoplasm, pre-miRNAs are

cleaved by RNase III Dicer into B22 nucleotide-long miRNA duplex and are

unwound by helicase. The passenger strand is degraded, and the selected guide

strand together with Ago protein activates RISC (RNA-induced silencing com-

plex), resulting in mRNA degradation or translational inhibition, depending on the

percentage of sequence complementarity between the miRNA 50-seed and mRNA

30-UTR element.

Over the past few years, cancer death rates have shown an overall decrease

compared with previous years. This trend is largely due to the development and

implementation of improved cancer screening methods and treatment strategies

(Gilliland et al. 2016; Matter 2015). Drug discovery is a risky, costly, and time-

consuming process depending on multidisciplinary methods to create safe and

effective medicines. Although considerable progress has been made by high-

throughput screening methods in drug design, the cost of developing contemporary

approved drugs did not match that in the past decade (Zhou et al. 2016). Despite

these steps toward improving survival and reducing mortality rates, breast cancer

still remains the leading cause of death among women younger than 85 years. As

with many cancers, progress in early breast cancer detection has been inadequate,

and methods for determining diagnosis and prognosis of breast cancer are still

limited to invasive procedures, such as tissue biopsies for histological examination.

Advances in understanding the cancer cell at the molecular level have enabled

development of several targeted therapies that have advanced the treatment of

relevant patient subgroups. In colorectal cancer (CRC), miRNAs have evolved in

the regulation of chemoresistance to various CRC treatments and the stemness of

CRC stem cells (CRSCs), sequentially modulating the sensitivity of CRC cells to

anticancer treatments. Targeting miRNAs thus may be a novel plan for eradicating

CRSCs, resensitizing drug-resistant cells to anticancer agents, improving drug

competence, and developing novel biological agents for CRC treatments (Liu

et al. 2016). Genomics-based predictors of drug response have the potential to

improve outcomes associated with cancer therapy. Oncoproteomics is an important

innovation in the early diagnosis, management, and development of personalized

treatment of acute lymphoblastic leukemia (ALL). As inherent factors are not

completely known, radiation exposure, benzene chemical exposure, certain viral

exposures such as infection with the human T-cell lymphoma/leukemia virus-1, as

well as some inherited syndromes may raise the risk of ALL – each ALL patient

may modify the susceptibility of therapy. Shotgun proteomic strategies to unravel

ALL aberrant signaling networks nowadays are very promising (López Villar et al.

2015). Osteosarcoma (OS), the most common primary bone cancer in dogs, is

commonly treated with adjuvant doxorubicin or carboplatin following amputation

of the affected limb. Literature shows that intra- and interspecies gene expression

models can successfully predict response in canine OS, which may improve

outcome in dogs and serve as preclinical validation for similar methods in human

cancer research (Fowles et al. 2016). Solid tumors account for approximately 30%

of all childhood cancers. An increased efflux rate of the antineoplastic drugs from
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cancer cells by action of members of the ATP-binding cassette (ABC) transporters

is one of the most important mechanisms of multidrug resistance (Fruci et al. 2016).

Epidemiological studies indicate that natural products are also used as anticancer

agents. Agents targeting the genetic and/or epigenetic machinery offer potential for

the development of anticancer drugs (Cho 2010). Accumulating evidence has

demonstrated that some common natural products [such as epigallocatechin-3-

gallate (EGCG), curcumin, genistein, sulforaphane (SFN), and resveratrol] have

anticancer properties through the mechanisms of altering epigenetic processes

[including DNA methylation, histone modification, chromatin remodeling,

microRNA (miRNA) regulation] and targeting cancer stem cells (CSCs). These

bioactive compounds are able to revert epigenetic alterations in a variety of cancers

in vitro and in vivo. They exert anticancer effects by targeting various signaling

pathways related to the initiation, progression, and metastasis of cancer (Wang et al.

2013).

The National Cancer Institute (NCI) has initiated the prioritization of cancer

antigens so as to pave a way to a well-vetted, priority-ranked list of cancer vaccine

target antigens based on predefined and pre-weighted objective criteria. By doing

this, NCI also aims to test the new approach for prioritizing translational research

opportunities based on an analytic hierarchy process. The elucidation and

weighting of criteria for assessing cancer antigens would enable the immunologists

to determine the characteristics and provide them with the experimental data

needed to select the most promising antigens for further development and testing

in clinical trials (Cheever et al. 2009). The NCI embarked on this new approach of

identification, prioritization, and funding of translational cancer research due to the

recommendations of the Translational Research Working Group (TRWG) (Old

2008). The focus is on evaluation of a method to select cancer antigens for

subsequent development through the immune response modifier pathway, which

is one of the six TRWG pathways leading from basic laboratory discoveries to final

testing in clinical trials (Hawk et al. 2008; Cheever et al. 2008).

3.3 Strategies to Accelerate Translational Research

in Drug Development

With the ever-increasing number of unmet medical needs, researchers all around

the world are striving for the cure. Not only the diseases that are coming to the

scientific knowledge are new but also are complex. Many a times, these new

diseases come as outbreaks and spread epidemically in no time (Stadler et al.

2003; Gostin et al. 2014). In such vulnerable situations, well-strategized transla-

tional research efforts can provide immediate hope for the cure. A prioritized

research area, clear vision on the project, well-established infrastructure, strong

team of committed researchers, sufficient funding, meaningful collaboration that

can address the demand for extended project activity, and use of new scientific
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methods can characterize successful translational research strategies (Khanna

2012). Some of the components of a good strategy helpful in accelerating the

translational research in drug discovery and development are highlighted in

Fig. 3.4.

3.3.1 Prioritizing Area of Research and Objectives

It is nearly impossible for any single organization to find a cure for every human

disease known at any moment of time. Therefore, it is extremely important to

prioritize the thrust area and the objectives. A loosely defined objective stating the

definition of translational research will certainly not be helpful to lead an organi-

zation to a set destination (Sugarman and McKenna 2003). Objectives must be

concise and focused to research area and must clearly address the research need

with tentative road map and millstones. Understanding the importance of focused

research, many centers around the world have been dedicated for specific diseases

of the kidney, metabolic disorders, cancer, etc. Such dedicated centers have not

only become the models for other scientific organizations but also have enhanced

the scientific knowledge in terms of their contribution (Andrews 2013).

3.3.2 Meaningful Collaboration

Collaboration is the integral part of any drug discovery project. Many of the

collaborations are actually seen based on their names or brand value (Butler

2008). However, in translational research, collaboration is the most important

Fig. 3.4 Figure showing

some of the strategies that

could be employed in

translational drug discovery
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thing. Collaboration should be made to further progress the discovery from one

phase to another (Ioannidis 2004). If an organization is good in basic research

(identification of new drug targets), then a fruitful collaboration with an organiza-

tion competent in developing the new chemical moieties, which can synthesize and

test the compounds against the target, would be beneficial (Watson et al. 2008).

Small pharmaceutical companies should decide their limit of expanding research

because at many times, with one or more lead discoveries, they invest a lot in

clinical trials and such huge expenditures in a new assignment lead their initial

discovery processes to suffer. Therefore, collaboration not only improves scientific

research through knowledge sharing but also helps in maintaining the risk associ-

ated with any drug discovery project. A right collaboration in a drug discovery

project is the best strategy in translational research (Pober et al. 2001).

3.3.3 Technology Upgradation

For successful translation of drug discovery project, it has to be ensured that quality

and speed must go hand in hand. It is important to include the latest technology to

produce high-quality results with speed and accuracy. One of the major bottlenecks

in translational drug discovery is the limited extrapolation of results generated from

preclinical studies as predicted clinical outcome. Therefore, in such instances, it is

difficult to get confidence with the data produced with such preclinical experiments

(Huh et al. 2010). Drug discovery phases, where the use of the latest technology

such as tissue-on-a-chip and organ-on-a-chip could be beneficial to a greater extent,

should be encouraged to produce reliable results speedily in a cost-effective manner

(Ioannidis 2004).

3.3.4 Bridging Interventional Development Gaps (BrIDGs)
Scheme

This is a special scheme under NIH-NCATS program (https://commonfund.nih.

gov/raidoverview). The idea behind this unique concept is that certain critical

resources are needed for the development of new therapeutic agents and it is

difficult for an initial discovery to attract private sector partner to advance project

with significant commercial potential. This is due to high risk associated with not-

so-common disorders. Under BrIDGs, the investigator gets the chance to receive

access to NIH experts and contractors who conduct preclinical studies free of cost

for the investigator. At present, four services – synthesis, formulation, pharmaco-

kinetic, and toxicology services – are available under this scheme. The success of

this scheme is very encouraging as can be seen from data of 2014 published on the
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BrIDGs website. Out of 15 supported projects, five BrIDGs-supported candidates

have gone as far as phase II human clinical trials.

3.3.5 Drug Repurposing

Finding a novel indication for an existing drug is called drug repurposing (Issa et al.

2013; Law et al. 2013; Oprea et al. 2011; Buchan et al. 2011; Padhy and Gupta

2011; Ashburn and Thor 2004). This approach is gaining greater interest among the

scientist around the world due to its direct market applicability and comparatively

low financial risk. In this approach, since the starting point is mostly a molecule

passed in clinical phase I, the risk associated with the toxicity becomes negligible.

Drug repurposing approaches can be highly useful for orphan diseases and diseases

for developing countries where pharmaceutical companies show lesser interest due

to low financial returns. There are many instances where drug repurposing

approaches have been successfully applied. A number of methods have been used

to find alternative indication based on the same target or an alternative target

(Sardana et al. 2011).

3.3.5.1 Computational Chemistry

Wide combinations of computational approaches can be utilized for identification

of nonobvious indications for a given compound (Ekins et al. 2011; Hurle et al.

2013; Achenbach et al. 2011; Sanseau and Koehler 2011). Broadly, all these

approaches can be divided into two methods: (1) ligand based (Gregori-Puigjane

and Mestres 2008; Gong et al. 2013) and (2) structure based (Kharkar et al. 2014;

Blondeau et al. 2010; Issa et al. 2015). Ligand-based methods are based on the

notion that if compound C1 of target T1 significantly matches with a known

compound C2 of target T2, then compound C1 could also work for target T2. A

variety of sub-methods such as 2D fingerprint-based similarity, 3D shape similarity,

scaffold matching, and comparison of ligand pharmacophore or atomic property

fields can be utilized. The structure-based methods require the structural informa-

tion of the target and its compound. Sub-methods such as high-throughput virtual

target screening (Gfeller et al. 2014; Santiago et al. 2012), interacting

pharmacophore (Liu et al. 2010), and active site similarity have been explored

under this category (Haupt et al. 2013). A graphical overview of two computational

chemistry methods is given in Fig. 3.5.

3.3.5.2 Literature Mining

A large amount of scientific findings are recorded in the form of publications. There

are more than 25 million articles indexed alone in PubMed. It is practically
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Fig. 3.5 Computational chemistry methods for drug repurposing. (a) An overview of four

approaches. (b) 2D or 3D shape-based similarity method for drug repurposing. (c) High-

throughput virtual target screening (HT-VTS) method for the identification of potential alternative

target
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impossible to manually scan all the articles related to a drug, disease, concept, or

their associated combination. Therefore, a large number of literature mining tech-

niques aiming to effectively extract the relation between keywords and present the

biomedical interrelation have evolved (Frijters et al. 2010). In particular, ontologies

have been extensively utilized in the biomedical domain either as controlled

vocabularies or to provide the skeleton for mapping relations between concepts in

biology and medicine (Andronis et al. 2011).

3.3.5.3 Genome-Wide Association Study (GWAS)

GWAS studies are not only limited to curate the biology of diseases but also

provide translational opportunities for drug discovery and development through

drug repurposing. In this approach, disease association for a given target gene is

looked by means of single-nucleotide polymorphism (SNP) (Sanseau et al. 2012).

Curated databases are available where information related to SNP and their asso-

ciation to pathologies is indexed. One of the extensively used databases is provided

by the National Human Genome Research Institute (http://www.genome.gov/

gwastudies/). Using this resource, Sanseau et al. (2012) performed an analysis to

unveil potential new indications for protein targets through GWAS. The underlying

concept behind the approach is that the association between a SNP and a trait from a

GWAS can be extrapolated as a relation between a gene and a disease.

Other than the abovementioned methods, adverse events (Yang and Agarwal

2011), electronic health records (Xu et al. 2015), and web semantics (Chen et al.

2012) are also reported as useful methods for finding alternative indications.

3.4 Conclusion

Translational research, in recent years, has gained wide attention among the

scientists across the globe. Traditionally, the industries were mostly considered as

“product-driven” and academics as “knowledge-driven” centers. However, with the

increasing burden of unmet medical needs, it becomes difficult and unfair for

industries to be held responsible to sought solutions for all such medical urgencies.

Therefore, understanding the need, governments across the globe have initiated to

open nonprofit centers to conduct translational research. These centers have brought

opportunities for professionals from multiple disciplines to come together, collab-

orate, exchange ideas, and focus their efforts to achieve the goal of having a

disease-free world. However, like any other discipline, the field of translational

research also comes with several challenges. Some of these challenges include wide

coverage of chemical space around active ingredient to protect intellectual prop-

erty, poor knowledge of disease pathophysiology, unknown differences in disease

progression in animal vs. human, and regulatory delays, to name a few. The

exceptionally large amount of scientific data are being generated on day-to-day
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basis and being stored in central repositories such as databases and publications,

which, in turn, again are accessed from all corners of the globe and have opened

several avenues to retrieve data, develop tools, build analytics, and generate

meaningful hypothesis to facilitate translational research. However, one has to

understand that the tools and techniques being utilized conventionally have now

become obsolete to process such data. High-end technology – driven by intelligent

algorithms such as machine learning and natural language processing – is now

being utilized not only to mine deeper into the information stack but also to

establish scientifically meaningful relationship in a complex physiological network.

Thanks for the enhancement of technology, several opportunities can also be seen

to attain high success rate in translational research. Organ-on-chip is one of such

technologies being used to reduce attrition at later stages of drug discovery cam-

paign. Accurate knowledge of patient stratification would be a key in clustering the

patient population and to ensure that investigational new therapy should be deliv-

ered to the right patient and produce optimum benefits. Pre-Investigational New

Drug (IND) meeting can ease the understanding of the technicalities associated

with lengthy documentation and therefore reduce the time for later revisions. Not

limited to this, the strategies such as drug repurposing, more strategic collabora-

tions could be highly beneficial in accelerating the hunt to discover new drugs. The

field of translational research is still an evolving discipline which not only needs

dynamic workforce but also requires significant amount of monetary investment to

put the right and advanced technology in place. The challenges in finding new and

better therapies would never be less, but courage of facing such challenges has

certainly strengthened with translational research. The continuous rise of diseases

and their outbreaks and complexity have made the translational research as a

necessity and not mere a scientific concept. With the hope that translational

research will come as a ray of hope by bringing better and more effective therapies

to millions of patients in the form of novel and highly efficient drugs, we all wish to

live in a better future in the years to come.
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Chapter 4

Exploring the Potential of Herbal Ligands

Toward Multidrug-Resistant Bacterial

Pathogens by Computational Drug Discovery

Sinosh Skariyachan

Abstract The emergence of multidrug resistance (MDR), extensive drug resis-

tance (XDR), and pan-drug resistance (PDR) has become a critical issue worldwide.

The available drugs are no longer effective therapeutic remedy against such bacte-

rial pathogens. This necessitates alternative therapy remedies. Computational drug

discovery plays a central role in designing novel phytotherapeutics against drug-

resistant bacterial pathogens. This chapter initially describes the recent issues and

concerns associated with bacterial extreme resistance. Further, it demonstrates the

utility of herbal-based compounds as probable lead molecules against various drug

targets of multidrug-resistant bacteria by molecular docking approaches.

Keywords Multidrug resistance • Probable lead molecules • Therapeutic remedy •

Molecular docking • Phytotherapeutics • Probable lead molecules • Extreme

resistance • Drug targets

4.1 Introduction

The development of multidrug resistance is a major healthcare burden in the

treatment of pathogenic bacteria by distinct antimicrobial agents. Moreover, it is

not just an issue confined only to bacteria but all microorganisms that have the

efficiency to mutate and deliver the new drugs unsuccessful (Carlet 2014). Most of

the pathogenic strains have become drug resistant, and some have become resistant

to multiple conventionally used antibiotics and chemotherapeutic agents; they

emerged as multidrug-resistant (MDR) strains or superbugs (Nikaido 2009; Carlet

2014). Recent studies revealed that antibiotics have lost their status as the “miracle
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drug,” and “treatment failure” is a new and often observed situation (Schjørring and

Krogfelt 2011; Gowrishankar et al. 2013). Since the bacteria became resistant to

many conventional antibiotics, there is a necessity to identify probable drug targets

and screen for alternative therapeutic substances. One promising method is to

prevent such drug-resistant pathogens by novel therapeutic compounds that are

not based on existing synthetic antimicrobial agents. There is also a need for a

deeper understanding of the mechanisms by which bacteria gain resistance to

antibiotics which will aid in identifying novel targets for drugs or treatment.

There are reports suggesting that several herbs produce bioactive compounds

which are effective therapeutic agents (Nair et al. 2005). These medicinal plants

are well studied and their bioactive compounds have been separated (Briskin 2000).

Moreover, the bioactivity assay, modes of action, and inhibitory properties against

various drug targets for many herbal-derived compounds are studied. Molecular

docking-based studies pave new insight to screen natural herbal ligands which have

ideal drug likeliness and pharmacokinetic properties (Bharath et al. 2011).

Computational drug discovery is the fundamental concept of structure-based

drug design that uses a variety of computational methods to screen novel lead

molecules with selectivity, efficacy, and safety (Lionta et al. 2014). The study of

receptor-ligand interaction is the main focus of rational drug design, and the

prediction of such interactions by computational approaches has profound scope

and applications. Molecular docking is the prime component in computer-assisted

molecular design. Molecular docking plays a vital role to understand the binding

mechanism of herbal ligands toward various drug targets and inhibition of the

pathways or any other means. Both rigid-body docking and flexible-body docking

are playing vital roles in this dimension. The utility of best docking program,

simulations and scoring, ranking, and docked conformations helps to hypothesize

the probable mechanism. This provides profound scope and insight to further

experimental analysis and screening of novel natural therapeutic substances (Lionta

et al. 2014).

This chapter focuses the recent concerns and issues associated with multidrug

resistance of bacterial pathogens and scope of molecular docking-based approaches

for the discovery of novel herbal therapeutics against multidrug-resistant strains.

The main strategy to achieve application for phytomedicine toward MDR is

molecular docking-based studies and further in vitro and in vivo evaluation for

the proposed approach.

4.2 Recent Issues Associated with MDR Bacteria

The increase in multidrug resistance poses a foremost healthcare threat. In the

context of an almost complete absence of new chemotherapeutic drugs in progress,

antibiotic resistance (ABR) has become one of the main healthcare implications

(Boucher et al. 2009). According to Margret Chan, director general of World Health

Organization, Post antibiotic era is almost upon us. Similarly, David Cameron,
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prime minister, UK, recently called for a global action to tackle the growing threat
of resistance to antibiotics. Antibiotics are a unique class of therapeutic remedy

because of their major impact in society. The application of an antibiotic in a person

can select for ABR that can spread across human populations, animals, and the

environment, making an antibacterial used in one person unproductive for many

others. As bacteria acquire resistance mechanisms, the altered bacterial genetic

material coding for resistance can be transferred between bacterial populations,

expanding the reach and coverage of bacterial resistance. Treatment failures

because of multidrug-resistant (MDR) bacteria arise very commonly in hospitals,

in particular in the intensive care unit, and increasingly spreading in the other areas

such as food, water, and air. Methicillin-resistant Staphylococcus aureus (MRSA)

infections, especially due to community-acquired MRSA (DeLeo et al. 2010), are

tremendously widespread in many European countries (European Center for Dis-

eases Control and Prevention, EARSS-Net database. http://www.ecdc.europa.eu),

the USA, South America, and Asia (Morcillo et al. 2015). MRSA infection

accounts for 44% of all hospital-associated infections in the USA, and as many as

92% of persons hospitalized for MRSA have community-acquired MRSA

(CA-MRSA) (Gould et al. 2008). There are newly developed agents that are active

against vancomycin-resistant MRSA, such as linezolid and quinupristin/

dalfopristin known as vancomycin-resistant enterococci (VRE). These bacteria

are also very common, with large variations between countries ranging from 1 to

>50% (Mutters et al. 2015). The predominance of Escherichia coli and Klebsiella
pneumoniae harboring extended-spectrum β-lactamases is widespread across the

world reaching 50–70% for E. coli in some European or Asian countries (Lowe

et al. 2012). One of the study revealed that prevalence of K. pneumoniae with

carbapenemases was going from 1 to>50% (Nordmann et al. 2009). Furthermore, a

serious threat may be the emergence of Gram-negative bacteria that are resistant to

all classes of the available chemotherapeutic agents referred to as pan resistance

(Enani 2015). The emergence of “pan-resistant strains,” mainly belonging to

Pseudomonas aeruginosa and Acinetobacter baumannii, occurred in the recent

past, after most of the major pharmaceutical industries stopped the development

of new chemotherapeutic agents against bacterial infections (Nikaido 2009). One of

the main global health concerns is the emergence and spread of drug-resistant

tubercle bacilli across the world. The high burden of multidrug-resistant tubercu-

losis (MDR-TB) and the emergence and rise of advanced forms of drug resistance

such as extensively drug-resistant TB (XDR-TB) and extremely drug-resistant TB

(XXDR-TB) are some of the major concerns in the global healthcare sectors (Dalal

et al. 2015).

In addition to clinical and hospital-associated cases, the multidrug resistance is

spread across the environmental sectors. The lake, river, water storage tanks, etc.

have become a cesspool of antibiotic-resistant bacteria (Thevenon et al. 2012). Due

to massive accumulation of organic and industrial effluents especially sewage from

hospitals and pharmaceutical industries, the natural status of the water bodies

changed in terms of nutritional contents, dissolved oxygen, temperature, pH, and

other physiochemical parameters. These create an ideal environment for the
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growth, survival, adaptation, and rapid proliferation of many pathogenic microor-

ganisms especially bacterial coliforms. Along with the rapid multiplication, bacte-

ria acquire many additional features due to the sudden changes in their

chromosomes; an important concern is the acquisition of drug-resistant genes.

These ingested coliforms are able to transfer drug resistance to other sensitive

coliforms or enteric pathogens (Truman et al. 2014). The prevalence of

carbapenem-resistant E. coli that harbored NDM-1 gene in drinking water and

sewage samples in New Delhi, India, was recently reported (Walsh et al. 2012).

The superbugs carried various drug resistance genes in tap and springwaters in

coastal region of Turkey (Ozgumus et al. 2007), and drinking water biofilms in

Mainz, Germany, were also reported (Schwartz et al. 2003). Further, the prevalence

of many pathogenic bacteria and their genes responsible for multidrug resistance

toward β-lactam, amoxicillin/ampicillin (blaTEM), streptomycin/spectinomycin

(aadA), tetracycline (tet), chloramphenicol (cmlA), methicillin (mec), and vanco-

mycin (van) in various aquatic ecosystems was also reported (Thevenon et al.

2012). Similarly, the prevalence of sulfonamide resistance genes in many aquatic

environments in Tianjin, China (Gao et al. 2012), and cefotaxime and ciprofloxacin

resistance genes in hospital-associated wastewater samples in Madhya Pradesh,

India, were also reported (Diwan et al. 2012). A multidrug-resistant strain of

Salmonella serovar typhimurium definitive type 104 (DT104) (resistant to sulfa-

methoxazole, tetracycline, streptomycin, chloramphenicol, and ampicillin)

emerged across the USA during the 1990s (Glynn et al. 1998). In 2000, the Center

for Disease Control and Prevention and several state health departments have

identified a surge in the incidence of Salmonella serovar Newport (known as

Newport-MDRAmpC), particularly multiple drug-resistant strains. These strains

were also resistant to sulfamethoxazole, tetracycline, streptomycin, chloramphen-

icol, and ampicillin. Moreover, Newport-MDRAmpC isolates were resistant to

cefoxitin, amoxicillin/clavulanic acid, ceftiofur, and cephalothin and showed

decreased sensitivity to ceftriaxone (Gupta et al. 2003).

The infections due to MDR pathogens require very complex associations of high

doses of old and new antibiotics, and mortality rate is very high. It is expected that

at a minimum 25,000 patients in Europe and 23,000 in the USA die each year from

infections caused by resistant bacteria (CDC, ECDC). The cost of ABR is incred-

ible, whether measured as the personal and societal burden of illness, death rates, or

healthcare costs. The WHO theme for the year 2011 was antimicrobial resistance

(AMR), prioritizing the enhanced threat of a return to the pre-antibiotic era, when

millions of lives were lost annually due to the MDR pathogens. In the European

Union (EU), drug-resistant infections are estimated to generate healthcare costs of

1.5 billion euros per annum. In 2009, the EU has declared November 18 as

“European Antibiotic Awareness Day,” on each year to promote the cautious use

of antimicrobial drugs (Gyles 2011).
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4.3 Mechanism of Antibiotic Resistance: Recent

Perspective

The expansion of bacterial resistance to antibiotics that had been available in nature

prior to antibiotics was considered in chemotherapy. It has been reported that most

pathogenic bacteria acquire resistance genes from the natural environments espe-

cially soils and water. The entire molecular and genetics cascade responsible for

multidrug resistance (antibiotic resistome) has been superior to provide the basic

framework for understanding the ecology of resistance. The antibiotic resistome

comprises a set of all antibiotic resistance genes including those distributing in

pathogenic bacteria, antibiotic producers, and benign nonpathogenic organisms

found either free living or commensals of other organisms (Tavares et al. 2013).

Most of the antibiotic producers live in soils and water, and as an ecological

consequence, most of the susceptible bacteria in their locality, including human

and animal pathogens, vanish, but some build up resistance to these natural habitats

thought to manage the microbial population (Cox and Wright 2013).

The bacteria have become multidrug resistant by natural means or by acquired

resistance. The natural resistance (intrinsic resistance) is due to some genes respon-

sible for resistance to its own antibiotics. Acquired resistance is due to the mutation

in bacterial chromosomes or the acquisition of mobile genetic elements (plasmid or

transposons) which harbor the drug resistance genes (Martinez 2008). The resis-

tance can be transferred between bacteria by horizontal gene transfer via transfor-

mation, transduction, or conjugation. Many drug resistance genes present in

plasmids, facilitating their transfer, and develop multidrug-resistant bacteria.

Thus, antibiotic resistance genes may be shared among different bacteria. Common

biochemical and genetic aspects of antibiotic resistance mechanism are illustrated

in Fig. 4.1. Further in detail, the probable mechanisms of antibiotic resistance that

are reviewed by Nikaido (2009) are explained below.

4.3.1 Alteration of the Target Protein by Mutation

The bacteria can become resistant through mutations that make the target protein

less susceptible to antibiotics. In the case of fluoroquinolone, the resistance is

probably due to mutations in DNA topoisomerases, one of the target enzymes

(Hooper 2000). The resistance of this antibiotic that is easily transferred to other

cells on plasmids depends on the mode of action of the drug. The transfer of the

drug-resistant enzyme gene is unable to make the bacteria completely resistant, and

the mutated target gene will be transferred. This will be more prevalent in the

presence of selective pressure by clonal selection. Similarly, the resistance acquired

from target modification is conferred by the erm gene, which is responsible for the

resistance toward macrolide (such as erythromycin), lincosamide, and

streptogramin B. The erm gene is a plasmid-encoded gene which produces the

4 Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant. . . 93



methylation of adenine at position 2058 of the 50S rRNA (Weisblum 1995).

Furthermore, the sulfa drugs select drug-resistant mutants of the respective

enzymes. The production of drug-resistant target enzymes from plasmids can

make the bacteria resistant, and the resistant genes is widespread on plasmids in

the case of sulfa drugs (Huovinen et al. 1995).

4.3.2 Inactivation of the Drug by Various Enzymes

This is the most common mechanism for natural resistance by bacteria. The

antibiotic groups such as β-lactams (penicillins, cephalosporins, and carbapenems

such as imipenem) inactivated via enzymatic hydrolysis by β-lactamases and

aminoglycosides (amikacin, kanamycin, tobramycin, etc.) by enzymatic phosphor-

ylation by aminoglycoside phosphoryltransferase (APH), adenylation by

aminoglycoside adenyltransferase or nucleotidyltransferase, and acetylation by

aminoglycoside acetyltransferase (AAC). The encoded genes for these inactivating

enzymes can easily produce resistance as additional genetic components on

plasmids.

4.3.3 Gene Acquisition for Less Susceptible Target Proteins
from Other Species

This concept is based on the sequence data of penicillin-binding proteins (PBPs) or

DD-transpeptidase, major penicillin target, which revealed that penicillin resistance

observed in Streptococcus pneumoniae and Neisseria meningitidis was due to the

production of mosaic proteins, parts of which came from other bacterial species

(Spratt 1994, pp. 388–393). Similarly, methicillin-resistant Staphylococcus aureus
contains a methicillin-resistant penicillin-binding protein (PBP), called PBP-2A or

Fig. 4.1 Biochemical and genetic mechanism behind the evolution of drug resistance in bacteria
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20, whose expression is induced by methicillin and other semisynthetic penicillin.

The gene for this new PBP is located in a 30–60-kb large segment of DNA, which

apparently came from other bacterial species and also contains other antibiotic

resistance genes (de Lencastre et al. 2007).

4.3.4 Target Bypassing

The antibiotic vancomycin has an unusual mode of action. Instead of inhibiting an

enzyme, vancomycin binds to a substrate, the lipid-linked disaccharide pentapep-

tide, a precursor of cell wall peptidoglycan. Studies revealed that the end of the

pentapeptide, D-Ala-D-Ala, where vancomycin binds, was replaced in the resistant

strain by an ester structure, D-Ala-D-lactic acid, which is not bound by vancomycin

(Courvalin 2006). Production of this altered structure requires the involvement of

many imported genes. Vancomycin resistance is common among enterococci.

Since the enterococci are naturally resistant to aminoglycosides, β-lactams, tetra-

cycline, and macrolides, these vancomycin-resistant strains of enterococci become

predominant in a hospital environment, colonize the patients, and cause infections

that are difficult to treat.

4.3.5 Declining Drug Access to Targets

The drug entrances can be reduced by an active efflux process especially by

decreasing the influx across the outer membrane barrier. The main mechanisms

are (i) local inhibition of drug access, (ii) drug-specific efflux pumps, and (iii)

nonspecific inhibition of drug access.

4.3.6 Local Inhibition of Drug Access

Tet(S) or Tet(M) proteins, produced by Gram-positive bacteria, bind to ribosomes

with high affinity and change the conformation of ribosomes, thereby preventing

the association of tetracyclines to ribosomes (Connell et al. 2003). Similarly, Qnr

proteins are thought to protect DNA topoisomerases from fluoroquinolones

(Robicsek et al. 2006).

4.3.6.1 Drug-Specific Efflux Pumps

Drug resistance due to active efflux was discovered with TetA, the tetracycline

resistance protein in Gram-negative bacteria. This protein catalyzes a proton-
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motive-force-dependent outward pumping of Mg-tetracycline complex (Tamura

et al. 2003).

4.3.6.2 Nonspecific Inhibition of Drug Access

Reports suggested that porin, a membrane protein, mutants are found in some of the

bacteria as a means of last-line resistance to the recent version of β-lactams that

withstand inactivation by β-lactamases. Mutations within the coding sequences of

the porin probably reduce the permeation rates of β-lactams without disturbing

those of smaller molecules in the nutrient medium (Achouak et al. 2001).

4.4 Need for an Alternative Therapy

The antibiotic resistance became sustainable in the environment as already resistant

bacteria emerged as new dominant population and evolved as superbugs

(Schjørring and Krogfelt 2011; Gowrishankar et al. 2013). Since the bacteria

became resistant to many conventional antibiotics, there is a necessity to identify

probable drug targets and screen for alternative therapeutic substances. One prom-

ising method is to prevent such drug-resistant pathogens by novel therapeutic

compounds that are not based on existing synthetic antimicrobial agents (Chah

et al. 2006). The new approaches which have to be implemented include identifi-

cation of novel molecular markers, screening of novel lead molecules for drug

development, identification of novel treatment methods, and identification of a

sample bacteria and its susceptibility to antibiotic treatment. There is also a need

for a deeper understanding of the mechanisms by which bacteria gain resistance to

antibiotics which will aid in identifying novel targets for drugs or treatment

(Daniels 2011). Studying the genetic variation among plasmids from different

bacterial species or strains is a key step toward understanding the mechanism of

virulence and their evolution. Understanding their virulence helps in designing

more effective drugs against the antibiotic-resistant microorganisms. The recent

availability of new sequencing technologies provides the capability for rapid and

cost-effective sequencing of small genomes (Siegel et al. 2006). Drug discovery

and development are complex, laborious, and interdisciplinary approaches. For the

pharmaceutical industry, the time span required to introduce a new drug to market

is approximately 12–14 years and costing up to $1.2–$1.4 billion. For every 10,000

compounds that are tested in animal models, around 10 will qualify for clinical

trials in order to get one drug on the market (Pandey et al. 2010).

By considering all the socio-environmental issues, there is a pressing need for

screening novel lead molecules. The new approaches which have to be

implemented include identification of new molecular markers, identification of

novel lead molecules for drug development, identification of novel treatment

methods, and identification of a sample bacteria and its susceptibility to antibiotic
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treatment. There is also a need for a deeper understanding of the mechanisms by

which bacteria gain resistance to antibiotics which will aid in identifying novel

targets for drugs or treatment (Daniels 2011). Advanced drug discovery process has

been revolutionized with the advent of computational biology, genomics, proteo-

mics, combinatorial chemistry, high-throughput screening, and structure-based

design. The important aspects of computation in drug developments are virtual

screening, de novo design, in silico ADMET prediction, and determination of

receptor-ligand interactions. In silico ADMET prediction, screening is performed

alongside of the in vitro data generated, for analyzing the target structures for

possible binding conformation, generating bioactive conformation, checking the

drug likeliness of ligands, docking these molecules with the target, ranking them

according to their binding affinities, and further optimizing the molecules to

improve the binding characteristics. Computational biology tools provide the

advantage of delivering new therapeutic agents with ideal drug likeliness and

pharmacophoric properties. High-performance computing and data management

tools are enabling the access of large amount of complex biological data into

executable knowledge in advanced drug discovery process.

4.5 Scope of Computer-Assisted or Structure-Based Drug

Discovery

The screening and characterization of lead molecule showing therapeutic property

against a biological target and standardization of the druggish properties and

efficiency of these molecules are the initial stages of drug screening. For this

purpose, many pharmaceutical industries have adopted the experimental screening

of large chemical libraries against a therapeutically appropriate target (high-

throughput screening or HTS) to discover new lead compounds. Through HTS,

bioactive compounds, drug-resistant genes, or toxins, which amend a particular

metabolic pathway, can be identified; these provide an initial insight for drug

discovery and for knowing the role of a particular biochemical process in biological

sciences. Even though HTS remains as the main attraction for drug discovery in the

pharmaceutical industry, the various demerits of this approach that include the high

capital cost, time, and the ambiguity of the mode of action of the bioactive lead

molecules have turned to the increasing service of rational, structure-based drug

design (SBDD) with the use of computational biology approaches. The important

stages of structure-based drug discovery are illustrated in Fig. 4.2 (Lionta et al.

2014).

Computer-assisted drug discovery (CADD) is now being used for the identifi-

cation of active drug candidates and selection and optimization of lead molecules

which transform biologically active compounds into suitable drugs by improving

their pharmacokinetic and drug likeliness properties. Computer-aided virtual

screening is used to screen novel lead molecules from various chemical scaffolds
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by searching chemical structure databases and other resources (Kapetanovic 2008).

CADD is the fundamental concept of structure-based drug design that uses a variety

of computational methods to screen novel lead molecules with selectivity, efficacy,

and safety. The study of receptor-ligand interaction is the main focus of rational

drug design, and the prediction of such interactions by computational approaches

has profound scope and applications (Lyskov and Gray 2008).

At present, structure-based drug discovery (SBDD) is the vital approach to the

resourceful development of various therapeutic leads and to the understanding of

metabolic processes especially the molecular-level mechanisms. SBDD is a well-

established approach than the traditional way of drug discovery process to demon-

strate the molecular mechanisms of a disease and utilizes the understanding of the

three-dimensional (3D) structure of the biological target in the process. By the

application of various bioinformatics approaches and the 3D structural information

of the target protein, it is possible to explore the molecular interactions concerned

with the protein-ligand binding and thus deduce the experimental results in molec-

ular level. The utility of computer science and information technology in drug

discovery provides the additional benefit of delivering novel drug candidates cost-

effectively and quickly (Lionta et al. 2014).

The main concepts behind structure-based drug design methods are virtual

screening (VS) and de novo drug design; these approaches serve as an alternative

efficient approach to HTS. The main concept of virtual screening includes large

libraries of drug-like molecules that are commercially obtainable and are screened

computationally against probable targets of known structure, and those that are

predicted to have better binding potential are validated experimentally (Lavecchia

and Di Giovanni 2013). However, virtual screening does not offer molecules that

are structurally “novel” as these molecules have been previously synthesized by

various medicinal chemists. In the de novo drug design process, the information

obtained from the 3D cavity of the receptor is used to design structurally relevant

Fig. 4.2 Various stages of structure-based virtual screening ranging from receptor and library

preprocessing to docking, scoring, and post-processing of top-scoring hits (Lionta et al. 2014)
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molecules that have not been synthesized previously by chemical intuition or any

other methods (Jorgensen 2004).

Computer-assisted drug screening has recently had an important accomplish-

ment: novel biologically active molecules have been predicted along with their

receptor-bound conformation, and in quite a few cases, the success rates have been

greater than with conventional high-throughput screening (Lavecchia and Di

Giovanni 2013; Benod et al. 2013). Furthermore, though it is unusual to deliver

lead molecules in the nanomolar (nM) concentration through virtual screening,

several recent studies have demonstrated that the identification of nM leads from

virtual screening approaches (Heifetz et al. 2013). Hence, computational biology

methods play a vital role in the drug discovery and development process in the

pharmaceutical sectors.

Computational biology became increasingly important in various areas such as

gene and protein prediction, comparative or homology modeling, functional site

location, characterization of active site for binding, docking of lead molecules into

receptor-binding sites, protein-protein interactions, and molecular simulations. The

outcome of computational studies yields information that is sometimes beyond

current experimental possibilities and can be used to guide and improve a vast array

of experiments (Gago 2004). Studies emphasize that the recognition of remote

protein homologies is a major aspect of the structural and functional annotation of

newly determined antibiotic resistance genes. PSI-BLAST is used for genome

annotation using the widely used homology-searching program (Muller et al. 1999).

The primary necessity of computer-aided drug design is the three-dimensional

structure of the resistant gene products or other drug targets such as toxins.

However, the three-dimensional structures of most of the targets are not available

in native forms. Hence, there is a need for an accurate three-dimensional model.

This can be achieved by comparative modeling or homology modeling. Compara-

tive modeling of proteins is a predictive technique to build high-resolution atomic

model for a given amino acid sequence based on the structures of templates that

have been experimentally determined. The ultimate goal of this modeling is to

predict a structure from its sequence with an accuracy that is comparable to the best

results achieved experimentally (Marti-Renom et al. 2000).

4.5.1 Scope of Molecular Docking Studies

A lead molecule is usually a small organic molecule, also known as ligand that

binds to the target protein or receptors and changes the physiological function of the

receptor, thus, leading to a therapeutic impact. Molecular docking or computer-

assisted docking is an exceptionally useful means to achieve the understanding of

receptor-ligand interactions which is a fundamental concept behind structure-based

drug discovery. Computational docking is the method of computationally

predicting the interaction and binding affinity of the lead molecule or inhibitor in

the binding cavity of the protein. Molecular docking methods depend on search
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algorithms which determine the interaction of ligand in the binding cavity and a

scoring function which calculates the binding efficiency, how perfectly the ligand

interacts with the receptor (Dhanik and Kavraki 2012). The main forces that

stabilized the receptor-ligand interactions are weak interactions such as hydrogen

bonds, hydrophobic interactions, van der Waals forces, and electrostatic interac-

tion. Hence, the main parameters required to evaluate a stable docked complexes

are number of hydrogen bonding, extent of electrostatic interactions, and negative

binding energy (kcal/mol). There are various methods that have been developed to

explain the principles and concepts behind computational docking problems; some

of the main concepts of molecular docking are:

• Molecular docking methods play a vital role in the drug discovery and devel-

opment process.

• The docking methods identify the interaction of a ligand molecule in the binding

cavity of receptor and determine the binding efficiency.

• There are two main important approaches for docking studies: (i) rigid-body

docking and (ii) flexible body docking. The rigid-body docking approaches

consider both the receptor and ligand as rigid bodies. However, flexible-body

docking approaches consider the ligand as a flexible molecule, and flexible

receptor approaches consider both the ligand and the protein as flexible mole-

cules. In most of the cases, the docking programs consider the ligand as a flexible

molecule and protein as a rigid molecule.

• The fundamental concepts involved in the docking studies are conformation

search (by algorithm) and a scoring function that evaluate the binding capacity

and efficiency.

• The flexibility of the protein is an essential component to determine the accuracy

of various docking programs.

• There are various efforts that have been made to demonstrate the flexibility of

protein in molecular docking studies; however, more studies need to be

carried out.

Molecular docking has been an ideal option for the modeling of three-

dimensional structure of the protein-ligand complex and evaluating the stability

that estimates the specific biological recognition. However, there are few issues

associated with these approaches: primarily, investigating the conformational space

of ligands that interact with the receptor, and, secondly, ranking the conformations

according to their estimated binding affinities (scoring) (Koehler and Villar 2000).

More clearly, with the help of scoring function, the conformation of ligand is

generated and compared to the previous conformations. The present conformation

is further considered or discarded on the basis of the total score for that conforma-

tion. Furthermore, a new conformation is generated, and the search process con-

tinues until it covers all possible conformations. Hence, searching conformation

and scoring can be coupled in docking process (Shoichet et al. 2002). Hence, it is

very essential to identify better scoring functions so that the maximum rank ordered

conformation would have higher experimental binding affinity with the receptor.
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The overview of molecular docking is illustrated in Fig. 4.3. The docking

algorithm utilizes various approaches for conformational search in order to search

conformational space of the ligand. The main approaches are:

(a) Systematic torsion exploration, which places the small molecules in the

predicted binding pocket after considering the possible degrees of freedom

(b) Stochastic or random torsion exploration about rotatable bonds, such as genetic

algorithms or Monte Carlo method to “achieve” new minimum energy

conformers

(c) Molecular dynamics simulation approach and energy minimization for explor-

ing the stable energy landscape of a compound (Lionta et al. 2014)

Scoring function is another critical step in docking process. The estimation of

binding affinity between the receptor and ligands is the main logic of scoring

function. The scoring functions have two main responsibilities. First, these func-

tions serve as an objective function to distinguish between various poses of a single

ligand in the receptor-binding pocket. Second, the scoring functions are essential to

determine binding capabilities of various receptor-ligand complexes and to rank

them as per the binding energies. The main factors that influence the receptor-

ligand interactions are hydrogen bonding, van der Waals and dispersion interac-

tions, hydrophobic effects, steric and electrostatic interactions, and solvation effects

Fig. 4.3 Overview of molecular docking shows the steps involved in searching function and

scoring function
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which are directed by various kinetic and thermodynamic principles (Reddy et al.

2007). The various approaches of scoring functions include shape and chemical

complementary scoring, force field scoring, empirical scoring functions, and

knowledge-based scoring functions. These methods are more or less combinations

of ensemble-averaged terms and comprise a compromise between real and compu-

tational effort. The most effective search algorithm stops functioning in the absence

of an ideal scoring function. The popular scoring functions currently available are

grouped as (a) force field-based, (b) empirical-based, (c) knowledge-based, and

(d) consensus-based scoring functions (Perola et al. 2004). A comprehensive list of

various docking software available for public domains for the effective protein-

ligand docking studies is reviewed in Table 4.1.

Table 4.1 List of the most popular protein-ligand docking programs available as of the middle

of 2015

Docking software/

program

Year of

establishment

Country of

origin References

DOCK 1988 USA Ewing et al. (2001)

AutoDock 1990 USA Morris et al. (1998)

SOFTDocking 1991 USA Jiang and Kim (1991)

DockVision 1992 Canada Hart and Read (1992)

LUDI 1992 Germany Bohm (1992, pp. 61–78)

ADAM 1994 Japan Mizutani et al. (1994)

FLOG 1994 USA Miller et al. (1994)

SYSDOC 1994 USA Luty et al. (1995)

DIVALI 1995 USA Clark (1995, pp. 1210–1226)

GOLD 1995 UK Jones et al. (1997)

FlexX 1996 Germany Kramer et al. (1999)

Hammerhead 1996 USA Welch et al. (1996)

LIGIN 1996 Israel/Germany Sobolev et al. (1996)

FTDOCK 1997 UK Gabb et al. (1997)

ICM-Dock 1997 USA Totrov and Abagyan (1997)

QXP 1997 USA McMartin and Bohacek

(1997)

PRO LEADS 1998 UK Baxter et al. (1998)

SANDOCK 1998 UK Burkhard et al. (1998)

MCDOCK 1999 USA Liu and Wang (1999)

PRODOCK 1999 USA Trosset and Scheraga (1999)

SFDOCK 1999 China Rodinger and Pomes (2000)

DARWIN 2000 USA Taylor and Burnett (2000)

EUDOC 2001 USA Pang et al. (2001)

FLEXE 2001 Germany Claussen et al. (2001)

FDS 2003 UK Taylor et al. (2003)

FRED 2003 USA/UK McGann et al. (2003)

LigandFit 2003 USA Venkatachalam et al. (2003)

(continued)
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Table 4.1 (continued)

Docking software/

program

Year of

establishment

Country of

origin References

PhDOCK 2003 USA Joseph-McCarthy et al.

(2003)

Surflex 2003 USA Jain (2003, pp. 499–511)

iGEMDOCK 2004 Taiwan Yang and Chen (2004)

Glide 2004 USA Halgren et al. (2004)

ProPose 2004 Germany Seifert et al. (2004)

YUCCA 2005 USA Choi (2005, pp. 1517–1524)

eHiTS 2006 Canada/UK Zsoldos et al. (2007)

MolDock 2006 Denmark Thomsen and Christensen

(2006)

PLANTS 2006 Belgium/

Germany

Korb et al. (2006)

PSI-DOCK 2006 China Pei et al. (2006)

EADock 2007 Switzerland Grosdidier et al. (2007)

FLIPDock 2007 USA Zhao and Sanner (2007)

MDock 2007 USA Huang and Zou (2007)

ParDOCK 2007 India Gupta et al. (2007)

PSO@AUTODOCK 2007 Germany Namasivayam and Gunther

(2007)

SODOCK 2007 Taiwan Chen et al. (2008)

Lead finder 2008 Russia/Canada Stroganov et al. (2008)

MS-DOCK 2008 France Sauton et al. (2008)

Q-Dock 2008 USA Brylinski and Skolnick

(2008)

MADAMM 2009 Portugal Cerqueira et al. (2009)

AutoDock Vina 2010 USA Trott and Olson (2010)

AADS 2011 India Singh et al. (2011)

BetaDock 2011 South Korea Kim et al. (2011)

LigDockCSA 2011 South Korea Shin et al. (2011)

PythDock 2011 South Korea Chung et al. (2011)

VoteDock 2011 Poland Plewczynski et al. (2011)

idTarget 2012 Taiwan Wang et al. (2012)

EpiDOCK 2013 Atanasova et al. (2013)

rDock 2013 UK Ruiz-Carmona et al. (2014)

FIPSDock 2013 China Liu et al. (2013)

DINC 2013 USA Dhanik et al. (2013)

iStar 2014 UK Li et al. (2014)

PharmDock 2014 USA Hu and Lill (2014)

MoDock 2015 China Gu et al. (2015)
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4.6 Herbal Bioactive Compounds as Novel Therapeutics

Against MDR Bacteria

There are reports suggesting that several herbs produce bioactive compounds which

are effective therapeutic agents (Nair et al. 2005). These medicinal plants are well

studied and their bioactive compounds have been separated. Their structural and

functional mechanisms have also been established. Moreover, the bioactivity assay,

modes of action, and inhibitory properties against various drug targets for many

herbal-derived compounds are well studied (Briskin 2000). Computer-aided drug

design (CADD) is an effective platform to screen several herbal lead molecules

with better pharmacokinetic features and bioavailability (Bharath et al. 2011).

There are many databases which host the complete information of various lead

molecules. The three-dimensional structures of most of the ligands are elucidated

experimentally and can be retrieved from various databases. The most popular

small molecule databases are ZINC (Irwin and Shoichet 2005), NCBI PubChem

(Wang et al. 2012), Chemspider (Little et al. 2012), Drug Bank (Wishart et al.

2008), KEGG (Kanehisa 2002), etc.

There are many reports revealing the utility of computer-aided virtual screening

toward the screening of novel therapeutic agents with better pharmacokinetic

properties. Recent reports revealed the inhibitory properties of bioactive com-

pounds screened from essential oils toward various drug targets of Streptococcus
mutans (Galv~ao et al. 2012) by computational virtual screening. Similar reports

showed that phytochemical compounds screened from few medicinal plants have

significant inhibitory properties against various drug targets of multidrug-resistant

clinical isolates (Dahiya and Purkayastha 2012). Similarly, the inhibitory activity of

kurarinone, a bioactive flavonoid isolated from Sophora flavescens, against drug
targets of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Strep-
tococcus sps., and Streptococcus mutans was also reported (Chen et al. 2005).

Recently, it has been suggested that novel herbal inhibitors screened by computa-

tional virtual screening demonstrated good inhibitory properties against

streptolysin-O of MDR Streptococcus pyogenes (Skariyachan et al. 2014). Simi-

larly, a study also suggested that the herbal leads screened by in silico approach

were found to have better inhibitory activities against the MDR gene products of

Vibrio cholerae, Salmonella typhi, and Staphylococcus aureus (Skariyachan et al.

2013). Furthermore, previous studies have identified many novel lead molecules

against virulent toxins of many superbugs (Skariyachan et al. 2012).

The computational redesign of bacterial biotin carboxylase inhibitors using

structure-based virtual screening was recently reported (Brylinski and Waldrop

2014). Further, the identification of novel inhibitors of the glyoxylate shunt in

MDR Gram-negative pathogens was also reported (Fahnoe et al. 2012). In silico

discovery and virtual screening of multi-target inhibitors for various drug targets in

Mycobacterium tuberculosis were recently reported (Chung et al. 2013). Similarly,

another report revealed the utility of polyphosphate kinase (PPK) as a novel

antimicrobial drug target and its high-throughput virtual screening toward MDR
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E. coli isolates (Saha and Verma 2013). The inhibitory properties of novel lead

candidates toward bacterial serine protease from various MDR isolates by compu-

tational virtual screening were also recently reported (Mandal et al. 2014). Further-

more, recent study demonstrated that herbal-based compounds such as nimbolide

and isomargololone showed an appreciable IC50 value and significant binding

properties toward New Delhi metallo-beta-lactamase 1 (blaNDM) in comparison

with 14 β-lactam antibiotics. The docking result of the antibacterial herbal com-

pounds demonstrated that nimbolide (1.34 μM), isomargolonone (1.25 μM),

margolone (5.25 μM), margolonone (5.34 μM), acetyl aleuritolic acid

(0.2772 μM), and harmane (4.32 μM) had IC50 value lower than β-lactam antibi-

otics; this implies the therapeutic potential of herbal-based ligands over conven-

tional drugs (Thakur et al. 2013). Similarly, lanatoside C and daidzein, two natural

herbal leads, were identified as natural compound inhibitors against multidrug

efflux pumps of Escherichia coli and Pseudomonas aeruginosa using computer-

assisted virtual screening and in vitro validation (Aparna et al. 2014).

4.6.1 Relevance of Computational Discovery of Novel Herbal
Therapeutics Toward MDR Bacterial Targets

The study of receptor-ligand interactions plays a vital role in understanding the

screen novel therapeutic agents against multidrug-resistant pathogens. Molecular

docking is the fundamental approach to study such kind of interactions for

structure-based drug discovery. The following sections will explain how the

docking studies are useful screen novel herbal therapeutic agents against various

MDR pathogens.

The binding properties of various phytoligands toward the probable drug targets

of multidrug-resistant Salmonella typhi and Vibrio cholerae and methicillin- and

vancomycin-resistant Staphylococcus aureus were explored by molecular docking

studies (Skariyachan et al. 2013). The genes responsible for multidrug properties of

these organisms were screened. The selection of the genes was based on literature

studies (Chen et al. 2010; Martı́nez 2012; Reimer et al. 2011; Hiramatsu et al. 1992;

Weigel et al. 2003). Aminoglycoside phosphotransferase (aph; Uniprot ID:

E2D0Y8), virulent protein for kanamycin resistance (Chen et al. 2010), and

dihydrofolate reductase (dhfr; Uniprot ID: A7DY50), responsible factor for tri-

methoprim resistance of Salmonella typhi (Martı́nez 2012), were selected. Simi-

larly, dihydrofolate reductase type I (dfrA1; Uniprot ID: G7TU76) and virulent

factor for trimethoprim resistance from Vibrio cholerae (Reimer et al. 2011) were

selected. Methicillin-resistant gene (Mec1; Uniprot ID: P68261) (Hiramatsu et al.

1992) and vancomycin-resistant gene (VanH; Uniprot ID: Q7BWD8) from Staph-
ylococcus aureus (Weigel et al. 2003) were also selected.

Molecular docking studies suggested that baicalein, a type of flavonoid, com-

monly present in the root of Scutellaria baicalensis, and luteolin, another flavonoid
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present in Terminalia chebula, showed the best interactions with aminoglycoside

phosphotransferase (aph, drug-resistant gene for kanamycin resistance) of Salmo-
nella typhi. The binding energy of aph-baicalein docked complex was estimated to

be �6.39 kcal/mol, and the interactions were stabilized by two hydrogen bonds

(Thr 98, Thr 99) (Fig. 4.4a). Similarly, the binding energy of aph-luteolin was

estimated to be �6.42 kcal/mol, and the interactions were stabilized by two

hydrogen bonds (Asn 88 and Ser 10) (Fig. 4.4b). From this study, it is clear that

these phytoligands have significant binding and inhibitory properties toward

kanamycin-resistant protein. Resveratrol, a natural phytoalexin commonly present

in Vitis vinifera (grape), and wogonin, an O-methylated flavone found in

Scutellaria baicalensis (baikal skullcap), showed significant inhibitory activities

against dihydrofolate reductase (dhfr, gene product responsible for trimethoprim

resistance) of Salmonella typhi. From the docking studies, it is clear that the binding

energy of resveratrol toward dhfr was identified as �7.58 kcal/mol, and the

Fig. 4.4 Binding efficiency of phytoligand toward various drug targets of MDR pathogenic

bacteria. Interaction between aph of Salmonella typhi and (a) baicalein and (b) luteolin. Interac-

tion between dhfr of Salmonella typhi and (c) resveratrol and (d) wogonin. Interaction between

dfrA1 of Vibrio cholerae and (e) herniarin and (f) pyrocide. Interaction between mec1 of

methicillin Staphylococcus aureus and taraxacin (g). Interaction between vanH of vancomycin-

resistant Staphylococcus aureus and (h) apigenin and (i) luteolin
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interaction was stabilized by two hydrogen bonds (Glu 23, Ser 92) (Fig. 4.4c). The

binding energy of wogonin against dhfr was estimated to be �7.28 kcal/mol

(Fig. 4.4d). The interactions were stabilized by two hydrogen bonds (Ala 3, Gly

93). The antimicrobial effects of resveratrol and wogonin against various bacterial

pathogens and their toxins have been studied (Schrader 2010, pp. 1676–1689; Chan

2002, pp. 99–104), which revealed that these phytochemicals have significant

inhibitory properties toward virulent factors of many MDR pathogens. Herniarin,

a natural chemical compound found in Herniaria glabra (smooth rupturewort), and

pyrocide, a common flavone present in Daucus carota (carrot), showed the best

binding activity toward dihydrofolate reductase (dfrA1, trimethoprim-resistant pro-

tein) of Vibrio cholerae. The docking studies suggested that the docked complex of

dfrA1 herniarin was stabilized by two hydrogen bonds (Ser 97, Gly 98) with binding
energy of �8.06 kcal/mol (Fig. 4.4e). Studies on the antifungal and antibacterial

activities of various herniarin derivatives revealed that these phytoligands showed

good inhibitory activities against various enteric bacterial pathogens (Céspedes

et al. 2006). Similarly, the interaction between pyrocide and dfrA1 was stabilized

by a hydrogen bond (Tyr 103) with binding energy of �8.93 kcal/mol (Fig. 4.4f).

Though pyrocide exhibits better binding energies (�8.93 kcal/mol), the number of

interactions with receptor is only Tyr 103 residue. Hence, better simulation studies

are essential to screen this ligand, and present data pave significant insight for such

studies. Luteolin and taraxacin, a sesquiterpene guaianolide present in Taraxacum
officinale (weber), showed better binding properties towardmecI protein (gene code
for methicillin resistance) of Staphylococcus aureus. The molecular docking stud-

ies revealed that the docked complex of mecI and luteolin were stabilized by two

hydrogen bonds (Ala 101, Tyr 102) with binding energy of �7.58 kcal/mol.

Similarly, taraxacin binds with mecI by the formation of two hydrogen bonds

(Trp 13 and Lys 89) with the binding energy of �7.28 kcal/mol (Fig. 4.4g). This

study depicts that Gly, Lys, His, and Thr are the main conserved residues which

play a major functional role in the receptor (Kahlon et al. 2012). From this study, it

is clear that these phytochemicals have significant inhibitory properties toward

probable drug targets of MDR pathogens. Many studies revealed the inhibitory

properties of taraxacin and luteolin (Ahmad et al. 2000) against various pathogenic

microorganisms by different mechanisms. Apigenin, a flavone found in Coffea
arabica (coffee), and luteolin were found to interact against vanH (gene responsible

for vancomycin resistance) protein. The docked complex of vanH–apigenin was

stabilized by two hydrogen bonds (Tyr 102, Leu 200; binding energy �6.07 kcal/

mol) (Fig. 4.4h). Similarly, luteolin interacted with vanH by three hydrogen bonds

(Gln 35, Asp 198, and Asp 64; binding energy �6.32 kcal/mol), and the main

residues present in the active sites are Gln 35, Ser 36, Asp 64, Asp 67, Asp 198, Asp

216, and Arg 219 (Fig. 4.4i) (Skariyachan et al. 2013). The antimicrobial activities

of all these lead molecules are well studied. A significant inhibitory property of

apigenin toward drug-resistant Enterobacter cloacae was recently reported in

comparison with the known chemotherapeutic agent, ceftazidime (Eumkeb and

Chukrathok 2013). The current study identified various phytoligands which showed

effective binding and conformational changes in drug targets. The binding

4 Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant. . . 107



efficiency of these phytoligands toward various drug-resistant proteins paves better

understanding of the inhibitory mechanism of herbal leads, and such studies have

high relevance in clinical and preclinical trials.

In another study, the author suggested that afzelin and gallocatechin, two

important herbal ligands, demonstrated good binding affinities toward blaTEM
(gene products responsible for β-lactam resistance) of multidrug-resistant bacteria.

Afzelin is a flavonol glycoside commonly present in the medicinal herb Nymphaea
odorata (fragrant water lily). The molecular docking studies suggested that afzelin

binds to blaTEM with an energy of �7.44 kcal/mol, and the interaction is stabilized

with three hydrogen bonds (Fig. 4.5a). Similarly, gallocatechol or gallocatechin is a

flavanol commonly present in Camellia sinensis (green tea). It was found to be a

noncarcinogenic compound to both rat and mouse models. The molecular docking

suggested that the phytoligand binds blaTEM with three hydrogen bonds by the

binding energy of �6.36 kcal/mol (Fig. 4.5b). The antibacterial potential of Azelin

(azelaic acid) against various clinical pathogens is reported (Fluhr and Degitz

2010). Similarly, the inhibitory potential of gallocatechin against drug targets of

various multidrug-resistant isolates was also reported (Radji et al. 2013).

The in silico data provides significant insights for further experimental valida-

tion of novel inhibitors against the drug targets of MDR pathogens. A recent study

reported by Wang et al. (2015) revealed the discovery of novel New Delhi

metallo-β-lactamase-1 inhibitors by multistep virtual screening and docking studies

(Wang et al. 2015). The NDM-1 enzyme provides bacterial resistance against the

β-lactam ring of antibiotics by its hydrolytic activity. Inhibition of NDM-1may stop

the hydrolysis of β-lactam ring and plays a vital role against antibacterial resistance.

The study focused the screening of potential NDM-1 inhibitors by multistep virtual

screening and molecular docking simulations. The study demonstrated that they

have screened 2,800,000 lead-like molecules from the ZINC database and gener-

ated 298 compounds, and the binding efficiency was studied by molecular docking

Fig. 4.5 Receptor-ligand interaction between (a) afzelin and blaTEM and (b) gallocatechin and

blaTEM studied by molecular docking
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with NDM-1. The best lead molecules obtained from virtual screening and docking

analysis were experimentally validated. Three novel NDM-1 inhibitors with

IC50 μM values were validated. Among the tested molecules, VNI-41 showed

better inhibitory properties against NDM-1 with an IC50 of 29.6 � 1.3 μM. Molec-

ular dynamic simulation based on the docking studies revealed that VNI-41

interacted with the active site (Fig. 4.6) (Wang et al. 2015). This study clearly

demonstrated the possibility of applying virtual screening especially molecular

docking studies in discovering novel and potential inhibitors against NDM-1, a
metallo-β-lactamase of various multidrug-resistant bacterial pathogens.

Similar studies conducted by Thakur et al. (2013) suggested that molecular

docking studies pave significant insight to design novel natural compounds against

NDM-1 gene products of various MDR pathogens. They have used molecular

docking approach to design novel natural inhibitors against NDM-1 receptor of

MDR pathogens. The study suggested that lead molecules from botanicals such as

nimbolide and isomargololone, bioactive compounds derived from Azadirachta
indica (Neem tree), demonstrated good IC50 value as well as significant binding

potential toward NDM-1. The study further suggested that the natural compounds

expressed better binding affinity to NDM-1 in comparison with conventional β-
lactam antibiotics (Thakur et al. 2013).

Fig. 4.6 The docked conformation showing the interaction between the active site of NDM-1 and
VNI-41. VNI-41 and adjacent NDM-1 residues shown in stick representation, and the binding

cavity is shown as molecular surface (Wang et al. 2015)
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4.7 Conclusion

As many bacteria emerged as extreme drug-resistant strains, designing of alterna-

tive remedies has prime scope and therapeutic relevance. Thus, there is a priority to

screen new leads. The exploration of phytomedicine through molecular docking-

based approaches serves as ultimate platforms to discover novel inhibitors against

these drug targets, and present concepts offer outstanding landmarks for further

in vitro and in vivo studies.

4.8 Future Perspectives

Molecular docking approaches are an effective platform to discover novel lead

molecules against various drug targets of multidrug-resistant bacteria when con-

ventional therapies seem to have failed. Molecular docking provides a comprehen-

sive profile of the receptor-ligand interaction which is the fundamental concept of

structure-based drug discovery. However, further experimental analysis is required

to appreciate the hypothesis. Hence, the herbal bioactive compounds hypothesized

needed to be isolated and characterized. The purified lead molecules need to be

tested in vitro and in vivo to validate the proposed hypothesis-based molecular

docking studies. The current approach has profound scope and applications in the

development of future therapies against multidrug-resistant pathogens.
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Chapter 5

The Progress of New Targets of Anti-HIV
and Its Inhibitors

Ke Z. Wu and Ai X. Li

Abstract HIV-1 virus is the largest genetic variation in human pathogens, with a

high reproduction, high mutation, and high reorganization. At present, commonly

prescribed drugs of anti-AIDS mainly contain nucleoside analogue reverse tran-

scriptase inhibitor, non-nucleoside reverse transcriptase inhibitor, protease inhibi-

tor, and integrase inhibitor. With rapid development in biotechnology during the

latest decades, it has gradually uncovered not only the details of fusion and

endocytosis between HIV and the host cells but also the necessary enzymes of

HIV-1 during the whole life cycle, which brings about great progress in the field of

anti-AIDS drugs development. In this article, we focus on some crucial proteins and

cofactors correlated with the virus or the human defense function. The cofactor

CCR5 and the viral envelope protein gp120 are significant in the initial process of

fusion between HIV-1 and the host cells. Both of them become important targets of

anti-HIV, and numerous inhibitors have been developed in which some have

entered various stages of clinical trials or even been approved for marketing.

Besides, the target of virus infectivity factor (Vif) and TRIM5-α protein is corre-

lating with the host defense system. The inhibition of the former and the expression

of the latter will increase the ability of response to the viral invasion. Both of them

are still at the experimental stage. New targets and some corresponding inhibitors

have been referred in this review; it is hoped that it can provide some clues for the

drug development of anti-HIV.
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5.1 Introduction

Acquired immune deficiency syndrome (AIDS), caused by human immunodefi-

ciency virus (HIV), is a worldwide serious infectious disease. Up to the end of 2013,

there have been 78,000,000 HIV patients over the world, and more than 3,900,000

people have died from AIDS. Heretofore, 26 anti-HIV drugs have been approved by

FDA mainly distributing in six targets with different mechanisms including those

well-known zidovudine and indinavir (Rower et al. 2012; Geng et al. 2010).

Belonging to a reverse transcription virus, the viral nucleic acid is RNA and is

enclosed by protein capsid in cubical symmetry which then recognizes the mem-

brane of the host cell. This virus has no necessary genetic materials from the human

body for its reproduction (Hollox and Hoh 2014). The biotechnology, rapidly

developing during the latest decades, has gradually uncovered not only the details

of fusion and endocytosis between HIV and the host cells but also the necessary

enzymes of HIV during the whole life cycle that brings about great progress in the

field of anti-AIDS drugs development then. Normally, according to the mechanism

of infection process, the targets of anti-HIV can be divided into protease, reverse

transcriptase, integrase, and so on. Unfortunately, during the drug therapy (highly

active antiretroviral therapy, HAART) for AIDS, more and more drug-resistant

virus emerge, and many HIV sufferers have to face the embarrassment of no cure

for certain conditions. Therefore, searching for new targets and developing effec-

tive inhibitors of anti-AIDS have practical significance now.

Through overall documents consulting, this article mainly concerned about the

new targets and corresponding inhibitors in recent years which aim to raise rational

drug therapy strategies of anti-AIDS.

5.2 Research Situation

5.2.1 The Target CCR5 and Its Inhibitors

CC chemokine receptor 5 (CCR5) (Fig. 5.1), one of the coreceptors of HIV-1, is a

new target of anti-HIV therapy (Lucia 2010). Experiments have shown that HIV-1

infects the human body by combining with the CD4 cell which is one of the most

important immune cells in the human immune system. But subsequent studies have

also found that the invasion of HIV-1 will not be successful only mediated by the

CD4 cells, and one or more coreceptors are necessary during the initial process.

Thus, a series of coreceptors of HIV-1 including CXCR4, CCR5, and integrin α4β7
have been discovered in laboratory (Aiamkitsumrit et al. 2014). As members of G

protein-coupled receptors (GPCR) superfamily, CCR5 is analogous in the structural

features to most other chemokine receptors which are essentially composed of

seven transmembrane regions and three extracellular loops (Tan et al. 2013).

From the view of pathology, the interaction between gp120 and CCR5 can be
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divided into two steps. Firstly, the N-terminal region of CCR5 recognizes and

combines with gp120 in a rational conformation. Secondly, as result of the confor-

mation change of the two molecules, the interaction between the extracellular loops

of CCR5 and the V3 region of gp120 finally causes the membrane fusion and the

genetic materials’ inner flow (Berro et al. 2012).

As an ideal target of anti-HIV, the inhibitors of CCR5 block the combination

between HIV-1 and the cell membrane receptor by changing the conformation of

CCR5 that disturbs the recognition of gp120 or the internalization of it

(Kaqiampakis et al. 2011). The virus invading to the host cells may be interrupted

with the combination of CCR5 and result in the declines in HIV infection rates.

Nowadays, there are several kinds of CCR5 inhibitors including CCR5 derivatives,

synthetic compounds, and peptide compounds.

5.2.1.1 Derivatives of CCR5

As the natural ligands of CCR5, β-RANTES such as MIP-1α (Mikawa et al. 2005)

and MIP-1β (Kim et al. 2001) (Fig. 5.2a) certainly is the antagonist of HIV-1

receptors which protects the host cells by inducing the endocytosis of CCR5 to

some extent. However, it is not suitable for the β-RANTES to become real drugs on

account of their short half-life period (less than 10 min) and potential inflammatory

response of these natural compounds. Researches show that CC-RANTES in a high

concentration can help slow disease progression, while some different studies

proposed that the high concentration may also activate cells to worsen the HIV-1

infection (Trkola et al. 1999). Thus, the Chemotactic Factor RANTES becomes

more aggressive than the natural ligands because the former ones hinder the

internalization of the receptor while not inducing the signaling pathways.

CC-chemokine RANTES (3–68) (Schols et al. 1998) (Fig. 5.2b), missing two

NH2-terminal residues, has been isolated from leukocytes and tumor cells. It has

been proved to be an effective CCR5 receptor antagonist. RANTES (9–68) (Polo

et al. 2000) is another CCR5 inhibitor which missed eight amino acids of the NH2-

Fig. 5.1 CC chemokine

receptor 5 (slab ribbon) and
its inhibitor maraviroc

(green)
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terminal, and the experimental data shows a lower inhibitory activity than the

RANTES (3–68). Besides, other RANTES-based modified derivatives, such as

AOP-RANTES, MET-RANTES, and PSC-RANTES (Lobritz et al. 2013), are

also effective CCR5 antagonists. The derivatives are able to reduce the CCR5

expression level on the cell surface to realize the antiviral purpose.

5.2.1.2 Peptide Compounds

Peptide compounds specially recognize the particular extracellular region of CCR5

that has less poisonous side effect but will not be easily digested and degraded by

the host (Wu et al. 2012). Appeared on the market in 2003, T20 is a peptide CCR5

inhibitor belonging to the HIV-1 fusion inhibitors which are derived from

sequences 643–678 of transmembrane protein gp140. Peptide T (Maria et al.

2005) is another derivative of gp120 that is derived from the 185–192 amino acid

sequences, and it has been proved to be nontoxic with inhibitory activities against

HIV-1. There are also some polypeptides like peptide S, cDDR-MAP derived from

CCR5 structure itself which possesses the ability of blocking the binding between

gp120 and CCR5. Besides, a dodecapeptide (sequence: AFDWTFVPSLIL)

screened from the peptide database by phage display has shown specific binding

to CCR5 whose binding domain may belong to the ECL2 of it.

5.2.1.3 Non-peptide Compounds

Now, the non-peptide compounds are predominant in the developing of CCR5

inhibitors. This kind of antagonists, without potential inflammatory response effect,

has advantages of low-cost production contrasting to the peptide compounds which

also can be injected intravenously. There are several kinds of non-peptide inhibitors

including TAK-779 (Ni et al. 2009), SCH-351125, maraviroc, etc. (Fig. 5.3).

TAK-779, a small molecule antagonist of CCR5, has been developed by Takeda

Fig. 5.2 The derivative

inhibitors of CCR5. (a)
MIP-1β. (b) CC-chemokine

RANTES (3–68)
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Company in Japan and mainly used for the CCR5 receptor. As the first CCR5 drug,

maraviroc has been approved for marketing in 2007, and it has been advised in the

drug-combined therapy with the antiretroviral drugs. SCH-351125 (Marjan et al.

2007) is another high specific CCR5 antagonist with oxime piperidine structure

which changes the conformation of extracellular domain by combining with the

1, 2, 3, and 7 transmembrane domains of CCR5. It is the first non-peptide CCR5

antagonist in the clinic that the side effect of prolonging the heart QT interval at

high concentration prevents it from going further in clinical practice. But the

structure reformation based on SCH-351125 has been proven to be successful. A

series of derivatives have been received, in which SCH-417690 was testified to be

enhanced by ten times in activity as its predecessor. Besides, without the cardio-

vascular side effect, SCH-417690 processed the advantage in pharmacokinetic

parameters which has entered phase III clinical trial stage now.

5.2.2 The Target gp120 and Its Inhibitor

During the process of HIV-1 infecting the host cell, the viral envelope protein

named gp120 primarily mixes together with the target cell membrane (Zhou et al.

2007). For this reason, the virus infection can be inhibited in the initial stage if the

fusion process is blocked, which is also believed to be a promising drug therapy

strategy.

HIV gp120, a member of glycoprotein, is composed of five variable regions

(V1–V5) and another five relatively conservative regions (C1–C5) (Kwon et al.

2012). Researches show that there are four heparin sulfate binding sites on the

surface of gp120 including V2, V3, C-terminal, and CD4 binding sites. After

combining with CD4 at the last site, the other binding sites are exposed to the

coreceptors like CX, CR4, or CCR5 and are easily recognizable (Schnur et al.

2011). The crystal structure of natural gp120 has been resolved in 2005, although

that was from the simian immunodeficiency virus (SIV) rather than the HIV-1.

Fig. 5.3 The non-peptide inhibitors of CCR5. (a) Structure of TAK-779. (b) Structure of

SCH-351125
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Compared with the structure binding with CD4, the natural gp120 is never found to

have the bridge piece layer structure between the inner and the outer domains. The

conformation of gp120 will significantly change while it combines with CD4

molecule, and a bridge piece layer structure forms between the V1/V2 and β20/
β21 domains after then which commonly construct the binding site for the

coreceptor in the next step (Shrivastava et al. 2012). Researches have shown that

a stable α2-helix structure domain (Tan and Rader 2009) (Resides 335–352)

locating on the outer region of gp120 binding with CD4 would be a target for

developing new anti-HIV drugs.

5.2.2.1 Polypeptide Inhibitors

Gp120 exists in tri-polymer commonly between which the distances of any two

CD4 binding pockets are 3–6 nm (Fig. 5.4). Based on this, a series of polypeptides

simulating the tri-polymer CD4 have been designed in which a polypeptide G1

(ARQPSFDLQCGF) (Choi et al. 2001) simulates the Phe43 and β-folding of CD4

with good gp120 inhibiting activity. On this basis, several similar polypeptides

have been synthesized after structure modification to G1, one of which even has an

IC50 1 μmol/L.

Another polypeptide (12p1) composed of 12 amino acids (RINNIPWSEAMM)

has anti-HIV activity in vitro. It is able to combine with gp120 to prevent the

binding between gp120 and CD4. Studies have demonstrated that 12pl inhibits CD4

binding with gp120 through allosteric effect rather than competitively inhibiting the

binding of CD4 (Biorn et al. 2004). Recently, some researchers made a dimeric

compound linked by 12pl and Nostoc ellipsosporum of Cyanobacteria (Zappe et al.
2008) which embodied stronger antiviral activity than the 12pl monomer.

5.2.2.2 Macromolecular Inhibitors

Researches indicated that solvable CD4 significantly reduced the virus load of

HIV-1 in laboratory, but when it applied in clinical trials, it was weak to inhibit

the viral strain. Further studies have found that some derivatives of solvable CD4

inhibit various HIV strains of which the half-time period in vivo remarkably

extended. A recombinant fusion protein CD4-IgG2 designed by Progenics Phar-

maceuticals Company could effectively reduce the viral load after clinical exper-

iments (Alexandre et al. 2011). Furthermore, the induced allergic reaction and other

side effects were not found that may have a good clinical application value.

The gp120 targeting broad-spectrum neutralizing antibody (Solanki et al. 2014)

is another breakthrough in the research field of anti-HIV recently. These antibodies

usually combine with the HIV envelope protein to prevent the virus from entering

into the target cell; besides, they also clear the HIV particles and infected host cells

through complement activation and other methods. Burton et al. isolated two broad-

spectrum neutralizing antibodies PG9 and PG16 (Doores and Burton 2010) from
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the infected B-cells which neutralize two HIV subtype strains. Both of them are

able to neutralize 127 and 119 plants, respectively, from the total 162 viral strains at

a low concentration less than 1 mg/L which are confirmed to bind with the variable

loops of conservative V1/V2 and V3 of gp120 in the next researches. Corti et al.

separated another neutralizing antibody HJ16 that recognizes the binding domain of

nearby CD4 (Corti et al. 2010). Experimental data showed that this antibody

neutralized various subtypes of 92 HIV virus strains at a ratio of 36%. And the

binding site recognized by HJ16 located in the conservative region of gp120

between the joint part of internal and external domains which may prove to be an

important target for drug and vaccine design.

5.2.2.3 Small Molecular Inhibitors

The polypeptide inhibitors are the primary infusion inhibitors so far which have

some shortcomings of low bioavailability and expensive cost restricting for use in

clinical practice. Thus, the developing of small molecular inhibitors is necessary to

increase the choices for patients. And the current developed inhibitors mainly block

the binding between gp120 and CD4 or targeting to the phe43 binding pocket whose

chemical structures include BMS-378806, NBD-556 [(Liu et al. 2014), (Zhao et al.

2005)], and their analogues (Fig. 5.5).

5.2.3 The Target Vif and Its Inhibitors

Innate immunity plays an important part in defending the HIV infection of human

bodies, one of which called APOBEC3G (A3G) belonging to the apolipoprotein B

Fig. 5.4 HIV-1 gp120

forming timers on the

surface of the viral

membrane
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mRNA-editing enzyme catalytic polypeptide protein (APOBEC) inhibits the repli-

cation of HIV-1 by cytosine deaminase mechanism (Zhou et al. 2014). Meanwhile,

the virus infectivity factor (Vif) combines with A3G to induce the degradation of it

that increases the risk of infection for 100 times. It is no doubt that the interaction

between A3G and Vif becomes the hotspot of anti-HIV.

The structure of Vif, composed of 192 amino acid residues, contains four

domains, that is, N-terminal, HCCH domain, SLQYLA, and PPLP sequence

motif. The N-terminal region is a critical section of Vif in which amino acid

residues 40–44 and 85–99 are the binding sites of A3G, and residues 1–21, which

are highly conservative, are the tryptophan-rich domains which play an important

part in recognizing and inhibiting A3G. HCCH domain contains residues H108,

C114, C113, and H139 and a chelating Zn2+ forming a zinc finger that mediates the

combining with Cullin5 (Cul5) (Wang et al. 2014). Moreover, 144SLQYLA149

motif induces the interaction between Vif and ElonginC.

5.2.3.1 The Pharmaceutical Research Strategy Based on the Target

Vif-A3G

Vif collects Cul5, ElonginC, and Rbxl to form a Skpl-cullin-F-box complex to

inhibit the virus replication through A3G degradation by ubiquitin-protease way

(Wang et al. 2011). There are two methods at present to reach this goal: to prevent

the degradation of A3G directly or to increase the package quantity of A3G.

Based on knowledge in the region of interaction between Vif and A3G, Straska

et al. screened a compound RN-18 (Nathans et al. 2008) that degraded Vif to

improve the A3G level, and Shan et al. also screened IMB-26/35 (Cen et al.

2010) (Fig. 5.6) from an 8634 compound database which competitively inhibited

the combining of Vif and A3G. Another approach to prevent the degradation by

Vif-mediated protease way lies in the structure modification of A3G whose tiny

change will significantly reduce the sensibility of Vif. Researches showed that a

Fig. 5.5 Small molecular inhibitors of gp120. (a) Structure of NBD-556. (b) Structure of

BMS-378806
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site-directed mutation D128K of A3G hindered the binding with Vif that the A3G

was protected finally. Li et al. (2008) merged A3G and UBA2 together to form a

fusion protein which would not be degraded by the ubiquitin. That is, the pathway

of ubiquitin protease degradation has been blocked up.

Enhancing the ability of entering the progeny virus of A3G is another method to

express its activity as possible. Green et al. built a Nef7-A3G fusion protein in

which the Nef mutant called Nef7 increased the targeting transport efficiency of

A3G while did not destroy the antiviral ability of it.

5.2.4 The Target TRIM5-α

Although HIV-1 is capable to infect numerous kinds of mammalian cells including

human beings, it cannot infect some primates such as Macaca rhesus. The subse-

quent studies have found that there is a new protein in these primates’ body named

TRIM5-α which can effectively inhibit the replication of HIV-1 in vivo. As a

critical inhibiting factor of the primate immune system to inhibit the retrovirus

infection, it provides a new way for the treatment of AIDS.

5.2.4.1 Mechanism of TRIM5-αProtein Preventing the HIV-1 Infection

Researchers have found that TRIM5-α protein may package the HIV-1 capsid to

hold back the genetic materials released that finally control the replication of HIV-1

in vivo (Zhang et al. 2013). After HIV-1 invading the host cells, the capsid and

particle of the virus separate. Then, TRIM5-α protein seeks the released viral capsid
for binding. And with the function of E3 ubiquitin-protein ligase in the RING

domain (Lienlaf et al. 2011; Roa et al. 2012), it accelerates the degradation of the

capsid to inhibit the replication of HIV-1 effectively. However, the existence of

similar TRIM5-α protein was also confirmed in the cells of mankind whose activity

of inhibiting HIV-1 was much sparser compared with the one in the monkey cells. It

Fig. 5.6 Structure of Vif inhibitors RN-18 (a) and IMB-26 (b)
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may attribute to the reason of genetic variation between different species that the

powers of TRIM5-α protein in diverse individuals are not the same.

5.2.4.2 The Prospect of TRIM5-αProtein for Treating AIDS

Gene therapy (Anderson 2013) opens up board prospect for HIV-1 infection by

which the TRIM5-α gene can be put into the target cells and then integrate with the

genetic materials of the host. With the expression products of it, the uninfected host

cells will be protected. Scientists are trying to crack the gene code of TRIM5-α,
after then it could be transferred into the microorganism or the in vitro cells to

produce abundant TRIM5-α proteins. Based on the new protein, other ways are to

develop new medicines and vaccines by genetic engineering techniques or the new

animal infection models prepared by TRIM5-α proteins.

5.3 Conclusion

At present, specific drugs and targets of anti-HIV have been developed, however,

human beings are still having a hard time to eradicate the risk of this virus. The

reason lies in its high reproduction, high mutation, and high reorganization. Thus,

we urgently need to find new targets and more effective drugs of anti-HIV for the

sake of human health. Based on the recent researches, several new targets including

CCR5, gp120, Vif, and TRIM5-α have been found, and some corresponding

inhibitors have been gradually used in the clinic.

With more binding sites on CCR5 receptor to combine, polypeptide inhibitors

may also overcome the resistance produced by the small molecular inhibitors. For

this reason, the polypeptide inhibitors may be the main research directions that will

cover the shortages of the later ones. On the contrary, the polypeptide inhibitors of

gp120 is low in bioavailability with expensive price, so the development of some

small molecular entry inhibitors will be necessary. As the crystal structures of

gp120 antigen/antibody complex have been resolved, the virtual screening may

be effective technological means for searching new small molecular inhibitors of

gp120. While the inhibition mechanisms have been elucidated, both Vif and

TRIM5-α are hot new anti-HIV targets in recent years toward which some potential

active compounds have been designed or screened. It is believed that the main tasks

of anti-HIV in the future would be to find effective special targets so as to develop

more powerful, high sensitive, and low side effect inhibitors.
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Chapter 6

Recent Studies on Mechanisms of New Drug
Candidates for Alzheimer’s Disease
Interacting with Amyloid-β Protofibrils
Using Molecular Dynamics Simulations

Huai-Meng Fan, Qin Xu, and Dong-Qing Wei

Abstract Alzheimer’s disease (AD) is the most common form of dementia. The

aggregation and deposition of amyloid-β (Aβ) peptide in the brain is one of its

characteristic hallmarks. In order to inhibit or even destabilize Aβ fibrils, a number

of candidate molecules have been proposed in recent years. Although experiments

have suggested their interactions with Aβ peptides, the molecular details are gener-

ally unclear. The determination of a three-dimensional model of Aβ protofibril

boosted the exploration of the details at the atomic level, such as the binding sites,

the critical residues, and the key interactions for such compounds to bind or to

degrade Aβ protofibril using molecular dynamics (MD) simulations. Focused on

this emerging strategy, this review looks through a bunch of Aβ-interacting com-

pounds. In particular, the MD simulations on one of the novel drug candidates,

wgx-50, identified by our group recently are described in more details so as to

show a typical work flow of these studies. The structural features of these compounds

revealed by MD simulations may provide new macroscopic translational information

for the structure-based drug design for Alzheimer’s disease.

Keywords Alzheimer’s disease • Amyloid-β peptide • Anti-aggregation •

Molecular dynamics simulations • Structure-based drug design

6.1 Introduction

The aggregation of amyloidogenic proteins is associated with many severe neuro-

degenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease

(PD), Huntington’s disease (HD), and type II diabetes (Temussi et al. 2003;
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Cohen and Kelly 2003; Dobson 2003; Chiti and Dobson 2006; DeToma et al. 2012;

Eisenberg and Jucker 2012). Among these diseases, AD is the most common one,

which is associated with aggregation of amyloid-β (Aβ) peptide into amyloid

plaques (Monsonego et al. 2003). Identifying candidates including short peptides

or small molecules that targeting Aβ is an attractive strategy for treating AD.

Aβ is a 39- to 43-residue-long peptide, generated by sequential cleavage of β-
and γ-secretases from the amyloid precursor protein (APP). The predominant

components of the fibrillar deposits in the brains of AD patients are 40- and

42-residue-long Aβ peptides (Aβ40 and Aβ42), with Aβ42 considered to be more

neurotoxic than Aβ40 (Haass and Selkoe 2007; Mucke et al. 2000; Jarrett and

Lansbury 1993; Selkoe 1999). However, both of them may have a common

structural motif of strand-loop-strand, which is aligned into two stacked β-sheets
and further assembled into cross-β structures in several hypothetical ways. One of

the major challenges to identify binding sites on Aβ is the lack of high-resolution

crystal structures of the Aβ aggregates, which make the molecular details of the

interactions between the inhibitors and the Aβ peptide unknown. This situation has

gradually been improved by progress in determinations of the structural models of

Aβ fibrils, with the help of the newly developed NMR spectroscopy, especially after

a three-dimensional structure of a pentameric protofibril was determined in 2005

(Luhrs et al. 2005) (Fig. 6.1). In this structure, the disordered N-terminal residues

1–16 of each peptide monomer were missing; only residues 17–42 were included,

since they form a strand-loop-strand motif, which is expected to contribute to the

stability of Aβ fibril most. Each U-shape peptide consisted of an N-terminal

β-strand (β1) including residues V18-S26, a C-terminal β-strand (β2) including

residues I31-A42, and a loop (residues N27-A30) linking them. Five identical

peptides of residues 17–42 were aligned into two antiparallelly stacked β-sheets,
where the directions of backbone hydrogen bonds were parallel to the fibril axis and

the β-strands were perpendicular to it.

Recent in vitro studies have suggested that some polyphenolic compounds from

red wine and green tea may bind to Aβ, inhibit Aβ aggregation, and destabilize

preformed fibrils (Ono et al. 2003; Hamaguchi et al. 2006). In vivo experiments on

the Alzheimer’s mouse model found lowered level of amyloid plaque and improved

memory and cognitive ability after feeding of red wine (Ho et al. 2009; Wang et al.

2008). Inspired by these results, Riviere et al. proposed a hypothesis that the

interactions between resveratrol derivative and Aβ could shift the equilibration of

Aβ polymorphism from β-sheets into disordered monomers (Riviere et al. 2009).

Following this hypothesis, many compounds were found to be capable of

interacting with Aβ, as listed in Table 6.1. and described with more details in the

second section below.

Because of the polymorphism of Aβ oligomers or their higher-order polymers,

many obstacles were encountered with traditional experimental methods in the

studies on details of binding mechanism, interaction dynamics, and structural

alterations of Aβ peptides by the potential drug candidates. Complementary to

experimental studies, computational methods like molecular docking and all-atom

molecular dynamics (MD) simulations can provide atomic-level information on the
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interactions between amyloid peptides and small compounds. These novel methods

have been successfully employed in exploring the mechanisms of many Aβ aggre-

gation inhibitors in recent years. In the third section of this article, more details of

the MD simulations and analyses on novel drug candidate wgx-50 are provided as

an example.

6.2 Recent Progresses on Compounds Binding to Amyloid-
β Protofibrils

In recent years, many compounds have been found to bind to the Aβ protofibrils

(Table 6.1.). Unraveling the mechanisms of these compounds to interact with Aβ
would be quite useful in development of drugs degrading Aβ aggregation and treat

Alzheimer’s disease. More details about these compounds are summarized below.

6.2.1 EGCG

(-)-Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of

green tea (Bieschke et al. 2010; Guo et al. 2010), has been found to directly bind

to the Aβ42 and to redirect the aggregation of the peptide to a disordered

off-pathway reaction resulting in unstructured, nontoxic aggregates (Ehrnhoefer

et al. 2008). However, it seems unlikely that experimental approaches can provide

valuable information on the molecular interactions between Aβ and EGCG. Liu

et al. (Liu et al. 2011) investigated the molecular mechanism of the inhibition effect

Fig. 6.1 A typical structure of Aβ pentamer as a unit for higher-order aggregation. The residues

important to the stabilization of the fibril are shown in sticks, with the hydrophobic residues in

cyan, the negative D23 in red, and the positive K28 in blue. The motif of the two layers of β strands
and the loop are also labeled
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of EGCG on the conformational transition of Aβ42 using a series of MD simula-

tions and the MM-PBSA method. The conformational transition of the peptide at

different EGCG concentrations, the favorite interactions between the peptide and

EGCG, and the driving force were all explored. In addition, the key residues of the

peptide were classified according to the energy contribution of each residue using

the MM-PBSA method. The results of free energy decomposition calculated by this

method indicate that the nonpolar term contributes major binding free energy of the

EGCG-Aβ42 complex, while polar interactions play a minor role. It has been

recognized that the nonpolar interactions are mainly provided by the hydrophobic

residues, while polar interactions are mainly formed by the main chain of Aβ42.
These observations are helpful in understanding the inhibition mechanism of

EGCG on the conformational transition of Aβ42 and useful for exploring more

effective agents for the inhibition of Aβ42 aggregation.

Table 6.1 Possible compounds interacting with Aβ protofibril with the key references exploring

atomic-scale mechanisms by simulations

Compounds Type Main binding sites Key MD references

EGCG Polyphenolic compo-

nent of green tea

Surface(F19_F20,K28,

L34–37,I41)

Liu, JPCB 2011

Ibuprofen Nonsteroidal anti-

inflammatory drug

Edge Raman, Biophy J 2009;

Takeda, JPCB 2010;

Chang, Biophys J, 2010

[Ru

(bpy)2dppz]
2+

Fluorescent dye Surface(V18_F20); Edge Cook, JACS, 2013

O4 Orcein-related small

organic molecule

Surface(V18_A21,

V24_N27,I31_V39)

Sun, JPCB, 2015

ThCT and

ThNT

β-sheet breakers Edge Autiero, Molecular

bioSystems, 2013a, b

DMF Water-soluble fuller-

ene derivative

Surface(L17_A21,

N27_I31,I31_I41)

Zhou, JPCB, 2014

ThT and PIB Fluorescent dye Surface(V18_F20,

I31_M35,V24_S26);

Inside(D23,K28,I32,L34);

Edge

Wu, JMB 2008, Biophys.

J 2011, 2012

Morin Polyphenolic com-

pounds from food

products

Inside(D23,K28,I32,L34);

Edge

Lemkul, Biochemistry,

2010

Wgx-50 Compounds from nat-

ural flavoring vegeta-

tion, Sichuan pepper

Surface(V18_F20,

I31_M35); Inside(D23,

K28,I32,L34)

Fan, JPCB, 2015

Abbreviation or alternative name: ThT thioflavin-T, PIB Pittsburgh compound B, [Ru(bpy)2dppz]
2+

[Ru(2,20-bipyridine)2dipyrido[3,2-a:20,30-c]-phenazine]
2+, ThCT, Ac-LPFFD-Th; ThNT Th-succinyl-

LPFFD-NH2,DMF 1,2-(dimethoxymethano)fullerene, O4 8-bis(2,4-dihydroxyphenyl)-7-hydroxy-
phenoxazin-3-one, EGCG (�)-epigallocatechin-3-gallate, Wgx-50 N-[2-(3,4-dimethoxyphenyl)

ethyl]-3-phenyl-acrylamide. The two-dimensional structures of some of these compounds are

shown in Fig. 6.2
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6.2.2 Ibuprofen

The nonsteroidal anti-inflammatory drug ibuprofen is considered one of the prom-

ising candidates to reduce Aβ aggregation (Xia 2003). Biomedical studies suggest

that treatment with ibuprofen reduces the amount of Aβ deposits and improves

memory in mice models, decreases the amount of Aβ oligomers in mice brain

(McKee et al. 2008), and lowers the risk of AD in humans (Vlad et al. 2008), but the

mechanism of this drug against AD is unclear. Experimental in vitro studies have

shown that ibuprofen reduces accumulation of Aβ fibrils by interrupting fibril

elongation and at least partially dissociate preformed Aβ fibrils (Hirohata et al.

2005). Despite the experimental progress, the interaction between Aβ and ibuprofen
is still not well understood at the molecular level. The Klimov group studied

ibuprofen by implicit-solvent molecular dynamics and replica exchange simula-

tions, suggesting that ibuprofen may bind to the ends of amyloid fibrils to prevent

fibril growth by a competitive mechanism. They found that concave (CV) fibril

edge has significantly higher binding affinity for ibuprofen than the convex edge

(Raman et al. 2009; Takeda et al. 2010; Chang et al. 2010).

6.2.3 [Ru(bpy)2dppz]
2

Recent studies have revealed that molecules capable of binding on the surface of Aβ
fibrils might be able to restrict Aβmonomers to its surface, inhibiting the formation

of Aβ (Cohen et al. 2013). It was found that ruthenium dipyridophenazine com-

plexes can bind to Aβ fibrils, increasing the photoluminescence intensity remark-

ably (Cook et al. 2011). Different from most dyes for Aβ detection, these ruthenium
dyes are not planar and are easy to modify, making them potential parent complexes

capable of inhibiting Aβ aggregation or reducing the production of toxic species

induced by Aβ fibrils. Even so, this still requires understanding of the detailed

interactions between ruthenium dipyridophenazine complexes and Aβ. Recently,
Cook has combined biophysical and computational studies to elucidate the binding

modes of [Ru(bpy)2dppz]
2+ (bpy¼2,20-bipyridine; dppz¼dipyrido[3,2-a:20,3-

0-c]-phenazine) to Aβ40 fibrils. Ruthenium dipyridophenazine metal complexes

have been widely used in a variety of applications including cell viability studies

(Jimenez-Hernandez et al. 2000), DNA detection (Erkkila et al. 1999), solubiliza-

tion of carbon nanotubes (Jain et al. 2011), and cell imaging (Puckett and Barton

2008) but have hardly been used for peptide research. The computations combining

molecular docking (both rigid and flexible) and all-atom molecular dynamics

(MD) simulations predicted the plausible binding site in the hydrophobic cleft

formed on the surface of Aβ fibrils between Val18 and Phe20, which could also

clarify the enhancement in photoluminescence upon binding. In contrast to the

binding site of these complexes in DNA, this binding site was parallel to the fibril

axis. The result was confirmed by binding studies in an Aβ fragment (Aβ25–35) that
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lacked the necessary residues for the binding site which showed low

photoluminescence response. The agreement between the experimental and com-

putational studies suggests a valuable method for studying the interaction of

amyloid-binding molecules to Aβ (Cook et al. 2013).

6.2.4 O4

Recently, Bieschke et al. have reported that the orcein-related small molecule 8-bis

(2,4-dihydroxyphenyl)-7-hydroxyphenoxazin-3-one (termed O4) is capable of

reducing the concentration of small toxic Aβ oligomers by promoting Aβ
fibrillization. In the presence of O4, the inhibition of long-term potentiation caused

by Aβ oligomers in hippocampal rat brain slices was greatly controlled (Bieschke

et al. 2012). This suggested that the small molecule O4 stabilizes the Aβ protofibrils
by binding to two hydrophobic regions of Aβ, accelerating Aβ fibrillization. Sun

et al. studied the structural stability of the fibril-like Aβ (17–42) trimer by

performing atomistic molecular dynamics simulations. They found that the Aβ
(17–42) trimer is unstable without O4, whereas the stability of its structure is

greatly enhanced with O4. Four promising binding sites were found around residues

of F20, S26, and M35: the CHC site, the turn site, and two hydrophobic-groove

sites. The binding of O4 at the CHC site is mostly stabilized by hydrophobic

interactions. Hydrogen-bonding interaction between O4 and S26 is important in

the turn site. The two hydrophobic grooves near M35 also assist binding of O4 by

hydrophobic interaction (Sun et al. 2015).

6.2.5 ThCT and ThNT

The β-sheet breakers (BSB) are promising therapeutic strategies, aimed at

preventing the deposition of insoluble protein fibrils in Alzheimer’s disease (Bieler
and Soto 2004). Although various experimental studies have supported the hypoth-

esis of such ligands preventing the formation of soluble Aβ oligomers or inhibiting

the accumulation of Aβ peptides, their interaction mechanism has not yet been

precisely elucidated. Many efforts have been made in the development of BSB

based on a peptide scaffold homologous to the hydrophobic core region (HCR) of

Aβ1–42, residues 17–20, which is the region mainly targeted by BSB ligands,

containing critical elements for Aβ self-assembly, as experimentally demonstrated

by inhibition of aggregation induced by mutations of V18, F19, and F20 (Hilbich

et al. 1992; Esler et al. 1996). This drives the binding through a self-recognition

mechanism, involving additional binding layers at the end of the oligomer (Lowe

et al. 2001; Zhang et al. 2003). Appending polar groups to the peptide scaffold

significantly improves the BSB affinity for Aβ oligomers and enhances the binding

(Cairo et al. 2002; Reinke and Gestwicki 2011). The trehalose-conjugated peptides
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Ac-LPFFD-Th (ThCT) and Th-succinyl-LPFFD-NH2 (ThNT)(Bona et al. 2009)

were designed to combine a polar group with the peptide portion LPFFD, the well-

known BSB Soto’s peptide (Soto et al. 1998), which were proposed as effective Aβ
inhibitors by binding to the ends of the growing fibril. The all-atom molecular

dynamics (MD) simulations suggested that the binding on the two protofibril ends

occurs through different binding modes. Particularly, binding on the odd edge

(chain A) guided by a hydrophobic cleft entailed a significant structure destabili-

zation, deducing (inducing?) a partial β structure loss. The energetically favored

hydrophobic cleft perceived on the odd edge may signify a new window for

designing new molecules with improved anti-aggregating features (Autiero et al.

2013a, b).

6.2.6 DMF

The process of Aβ aggregation is associated with many factors such as metal ions,

membranes, or nanoparticles (NPs) (Miller et al. 2010; DeToma et al. 2012;

Cabaleiro-Lago et al. 2010; Cabaleiro-Lago et al. 2008). The carbon-based NPs,

including fullerenes (C60, 58) and carbon nanotubes (CNTs) (Linse et al. 2007),

have attracted increasingly more attention in AD. However, the poor solubility of

carbon NPs has been a major obstacle in the potential biomedical applications.

Thus, the water-soluble derivatives of C60 fullerenes have been synthesized and are

shown to be effective in the treatment of neurodegenerative diseases (Dugan et al.

1997, 2001). In vitro studies reported that 1,2-(dimethoxymethano)fullerene

(DMF), a fullerene derivative, strongly inhibits the Aβ peptide aggregation at the

early stage. Other water-soluble fullerene C60 derivatives were also reported to be

capable of inhibiting amyloid fibrillation and reducing the cytotoxicity of Aβ
peptides (Podolski et al. 2007). Zhou et al. have recently investigated the detailed

interaction of DMF molecule with full-length Aβ42 using multiple all-atom

explicit-solvent molecular dynamics (MD) simulations. Starting from different

initial states of DMF molecule, the simulations showed that the DMF binds to the

Aβ protofibril in three dominant binding sites: the central hydrophobic core (CHC)

site (17LVFFA21), the turn site (27NKGAI31), and the C-terminal β-sheet site
consisting of hydrophobic residues (31IIGLMVGGVVI41). The importance of

π-stacking interactions and hydrophobic interactions was revealed by binding

energy analyses. Particularly, the binding of DMF to the turn region can disrupt

the D23�K28 salt bridge which is important for the Aβ fibrillation. These results

provide better understanding of the binding mechanism and fibril inhibition effect

of fullerene derivatives and may offer help in the therapeutic drug design using

fullerene derivatives against AD (Zhou et al. 2014).
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6.2.7 ThT and PIB

Thioflavin-T (ThT) is one of the most commonly used fluorescent dyes to detect the

presence of amyloid fibrils. ThT exhibits a red shift in its excitation and an emission

enhancement when bound to amyloid fibrils (Furumoto et al. 2007). Although ThT

offers a reliable method of visualizing amyloid aggregates in vitro, it is weakly

hydrophobic and does not readily enter the brain, and its binding affinity to fibrils is

low. Thus many derivatives of ThT have been developed over the past few years

(Raji et al. 2008). Among them, the Pittsburgh compound B (PIB), developed by

Mathis et al. (Mathis et al. 2003), was the most promising candidate. This dye is

currently being assessed clinically in many positron emission tomography (PET)

centers all around the world for direct visualization of amyloid plaques in the brains

of AD patients. The resulting PIB molecule shows increased binding affinity,

improved brain clearance abilities, and increased lipophilicity over ThT. It is

interesting that the modifications made in PIB led to slight changes in the fluores-

cence properties, and the uncharged derivative does not demonstrate the red shift in

excitation and the emission enhancement upon binding to amyloid fibrils (Klunk

et al. 2001). The detail of the binding sites of PIB on Aβ amyloid fibrils is not well

known at atomic resolution. Using molecular dynamics simulations, Wu and

coworkers characterized the binding sites of ThT and PIB on protofibrils of both

Aβ9–40 and Aβ17–42. Simulations showed that they both bind to the grooves formed

by hydrophobic or aromatic residues on the β-sheet surface along the fibril axis. The
lack of the charge and two methyl groups in PIB not only improves its hydropho-

bicity but also allows it to insert more deeply into aromatic/hydrophobic grooves.

This significantly increases the steric, aromatic, and hydrophobic interactions,

leading to stronger binding (Wu et al. 2008, 2011, 2012).

6.2.8 Morin

Recent in vitro experiments have suggested that polyphenolic compounds (flavo-

noids) from food products such as green tea and red wine may be effective in

targeting Aβ (Ono et al. 2003). Among these flavonoids, morin was found to be

remarkably effective in inhibiting Aβ aggregation suggesting a direct physical

interaction between these molecules and Aβ. Additionally, in vivo oral administra-

tion of red wine or polyphenolic extracts reduced amyloid plaque burden and

concomitantly improved memory and cognitive ability in Alzheimer’s mouse

model (Ho et al. 2009; Wang et al. 2008). Riviere et al. (Riviere et al. 2009)

demonstrated that the resveratrol derivative piceid was able to destabilize Aβ
oligomers and fibrils. Although the therapeutic potential of polyphenols has been

shown both in vitro and in vivo, the exact mechanism of these compounds remains

obscure. Lemkul and Bevan identified the mechanism of Aβ destabilization by

morin, an effective anti-aggregation flavonoid, employing atomistic explicit-
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solvent molecular dynamics (MD) simulations. They found that morin bound to the

ends of Aβ17–42 to block further combination of incoming peptides and also entered

into the hydrophobic core to disrupt interior interactions like D23-K28 salt bridges

and backbone H-bonds (Lemkul and Bevan 2010).

6.2.9 Wgx-50

N-[2-(3,4-Dimethoxyphenyl)ethyl]-3-phenyl-acrylamide or named as wgx-50 (ear-

lier as gx-50) was designed by Dongqing Wei et al. (Gu et al. 2009) using structure-

based drug design method and was found to be an ingredient of a natural flavoring

vegetation, Sichuan pepper (Zanthoxylum bungeanum) (Fig. 6.1). Based on a series
of biological experiments, this novel drug candidate was suggested to be an

effective therapeutic agent for Alzheimer’s disease (AD). In vitro experiments

demonstrated that wgx-50 could reduce neuronal calcium toxicity and inhibit

Aβ-induced neuronal apoptosis; in vivo experiments revealed that wgx-50 could

pass through the blood-brain barrier, decrease the accumulation of Aβ in the

cerebral cortex, and improve the cognitive abilities of mice (Tang et al. 2013).

Found in natural food products, nontoxic in clinically relevant doses, able to cross

the blood-brain barrier (Ho et al. 2009; Wang et al. 2008), and effective in

inhibiting Aβ aggregation, all these unique properties give wgx-50 many advan-

tages to be an attractive therapeutic candidate. In a recent MD simulation, wgx-50

was found to be inserted into the hydrophobic interior of the Aβ protofibril

spontaneously, which may provide more hints to design drug candidates to interact

with Aβ. More details of this study are described below in the third section as an

example of MD simulations to reveal molecular details of the interactions between

the compounds and Aβ protofibrils.

6.2.10 Structure Features of the Compounds

The design of drug candidate compounds to interact with the Aβ fibril and to relieve
Alzheimer’s disease is still in very early stage, and the results from experiments and

simulations are still too diverse and hard to be developed into some common rules.

However, comparisons between the structures of these compounds could possibly

provide some hints for structure-based drug design for Aβ anti-aggregation:

(1) Hydrophobic aromatic group is a common character in many of the Aβ-binding
compounds, and hydrophobic interaction is a key reason for these compounds to

bind with the Aβ fibril, no matter on the β-sheet surface, on the fibril edge, or inside
the double sheet. (2) The size of the compounds is another key feature to determine

the binding site of these compounds. Only the smaller molecules in Fig. 6.2b can

penetrate into the interior of the cross-β subunit and deform the protofibril signif-

icantly. Those huge compounds in Fig. 6.2a, as well as the peptide derivatives
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Fig. 6.2 Diagrams of several compounds possibly binding to Aβ protofibril on surface or edges

(a) or in the interior (b)
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(ThCT and ThNT) and the polymer DMF, are only possible to bind to the surface or

edge of Aβ protofibril to compete with the incoming peptides and inhibit growth of

Aβ aggregation. (3) Polar groups in the compounds might be helpful to destabilize

the D23-K28 salt bridge when bound, but their effect might be a double-edged

sword. In some cases they could be an advantage. For example, the hydroxyl of PIB

results in stronger binding than ThT, and in MD simulations of morin, the disrup-

tion of the salt bridges was attributed to the abundant hydroxyls. However, in the

case of wgx-50, without the hydroxyls, the hydrophobic groups of wgx-50 are

enough to make it spontaneously insert into the double sheets and deform the cross-

β subunit mainly by steric clashes, although partial disruption of the salt bridges

was also observed as a consequence of the deformation. On the other hand, the

small molecule ibuprofen was not reported to be inserted into the hydrophobic

interior of the protofibril, possibly because its strong polar carboxyl group would

keep it out in the solution. In addition, the too hydrophilic surface of the compounds

might be a disadvantage for them to get through the blood-brain barrier. (4) Derived

from natural products, the compounds EGCG, morin, and wgx-50 might be easier to

be developed into clinical drugs in the future.

6.3 Reveal the Molecular Mechanisms Using Molecular
Dynamics Simulations: An Example from Wgx-50

Using all-atom molecular dynamics simulations to explore the detailed mechanism

at atomic level of the drug candidates to bind or to destabilize the Aβ protofibril is

realized ever since the determination of the solid-state NMR structure of Aβ
protofibril by Luhrs et al. (PDB entry 2BEG) (Luhrs et al. 2005). The work flow

of these simulations is similar, as shown in Fig. 6.3.

Here is an example of the simulations to destabilize the Aβ protofibril with a

wgx-50 molecule. The models of Aβ protofibrils for simulations were constructed

based on the resolved NMR structure mentioned above, with the disordered

N-terminal residues 1–16 missing. This protofibril models were solvated in a

water box composed by ~11,000 TIP3P (Jorgensen et al. 1983) water molecules

so that the sides of box be more than 11 Å away from the model. Several simulation

systems were then set up with or without the compound wgx-50 added, in addition

to positive sodium ions that neutralize the system. Under periodic boundary con-

ditions on the simulation box, each system was first minimized by the steepest

descent method, then equilibrated with positional restraints on peptide heavy atoms,

and at last simulated for 150 ns with all the positional restraints released. The

molecular dynamics (MD) simulations were under NPT conditions at 300 K (as well

as 320 K) and 1 atm pressure, using the GROMACS package (Spoel et al. 2005) and

the AMBER ff03 force field (Duan et al. 2003). Binding free energies between the

compounds and the protofibril, as well as the interchain interactions, were calcu-

lated by molecular mechanics-generalized born surface area (MM-GBSA) in the
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AMBER package (Kollman et al. 2000). In addition, there were a series of struc-

tural analyses to help describe the deformation of the protofibril, such as the

traditional RMSD of backbone, RMSF of Cα atoms of the peptides, fluctuations

of the D23-K28 salt bridge, average intra-chain and interchain distances, as well as

hydrophobic interactions between the compound and the protofibril.

Three possible binding sites were found in four 150 ns simulations at 300 K.

Two exterior binding sites A and B are in the V18-F20 groove on the β1 sheet layer
and the I31-M35 groove on the β2 sheet layer, respectively. These two grooves are

composed of side chains of hydrophobic/aromatic residues and favor the hydro-

phobic wgx-50 to bind. Earlier simulations also supported that hydrophobic/aro-

matic and steric interactions are stabilizing forces for binding of several ligands

(Wu et al. 2011). Site C is in the interior of the pentamer, against the side chains of

I32 and L34 and the salt bridge between D23 and K28. All the three binding sites

were also detected in simulations on other Aβ-ligand complexes, although not at the

same time. Cook predicted the hydrophobic cleft between V18 and F20 as a

promising binding site for [Ru(bpy)2dppz]
2+ (Cook et al. 2013). Both surface

sites were characterized in the study of binding ThT and its derivatives to Aβ fibril
(Wu et al. 2011). Interior site similar to the partial insertion of morin into the

hydrophobic core was also founded in Lemkul’s simulations (Autiero et al. 2013a).

The major hydrophobic interaction is between the aromatic rings of wgx-50 and the

side chains of I32 and L34 on the β2 portion, which may be a crucial stabilization

element in aggregation and elongation of Aβ-aggregates (Masman et al. 2009;

Buchete and Hummer 2007).

However, only insertion of wgx-50 into the interior site caused significant

destabilization of the protofibril. The aromatic ring of wgx-50 was packed against

the side chains of I32 and L34 on β2, partially disrupted the salt bridges of D23-K28
which are crucial to the stabilization of the loop region (Fig. 6.4). The insertion also

Fig. 6.3 A common work flow to explore atomic-level mechanisms of compounds to bind or to

degrade Aβ protofibril using molecular dynamics simulations. The key techniques are in

red rounded squares, with the working objects in black squares. The important translational

information obtained is illustrated in the blue frames
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increased the distances of two β-sheet layers which are characteristics of the stacked
β-strand-loop-β-strand motifs. The disruption of the compact cross-β subunit weak-
ened the interactions between the peptide chains: the interchain binding energies

were lowered, the number of interchain backbone hydrogen bonds was decreased,

and the average distances between the peptide chains were increased, resulting in

destabilization of the protofibril aggregates. Merge up: The results above were

confirmed by simulations repeated at 320 K, where deeper insertion of wgx-50

molecule into the pentamer was detected.

6.4 Conclusion and Perspective

In this review, we summarized and compared several drug candidate compounds

for Alzheimer’s disease binding to amyloid-β peptide fibrils, especially those

studied recently by molecular dynamics simulations. Different with the compounds

([Ru(bpy)2dppz]2+, ibuprofen, ThCT and ThNT, DMF, O4, EGCG), which only

bind to the surface or edge of the Aβ to inhibit its further growth, ThT, PIB, morin,

and wgx-50 are capable of binding to the interior of Aβ and may destabilize the Aβ
aggregation. The molecular size might be an important reason for this difference.

And, the composition of hydrophobic and hydrophilic groups in these compounds

may also affect the pattern of binding. The molecular dynamics simulations of these

compounds provide more details of the mechanism at atomic level for these novel

drug candidates to interact with the Aβ protofibril and to inhibit Aβ aggregations,

such as the binding sites, the critical residues, and the key interactions, which might

be useful to future structure-based drug design for Alzheimer’s disease. Although
the current results of structural analyses are quite limited and too complicated to be

summarized into accurate rules, some hints are still quite inspiring, such as the

indispensability of hydrophobic aromatic rings, effect of composition of polar

Fig. 6.4 The insertion of the wgx-50 into the interior of a pentameric Aβ protofibril after 150 ns

molecular dynamics simulations at 300 K, shown from the top view (a) and the alternate view (b).
The compound wgx-50 is shown in ball and stick. The side chains of the important residues D23,

K28, I32, and L34 are shown in stick
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groups, and the influence of molecular size. With the accumulation of more results,

these structural features might be summarized into some quantitative structure-

activity relationship (QSAR) models or be utilized to train statistically meaningful

prediction program, which may be powerful in high-throughput drug screening and

lead optimizations. This computer-aided prescreening would help greatly reduce

costs in experiments and times even long before the drug candidates reach the stage

of clinic trials.
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Chapter 7

Homology Modelling, Structure-Based
Pharmacophore Modelling, High-
Throughput Virtual Screening and Docking
Studies of L-Type Calcium Channel
for Cadmium Toxicity

Madhu Sudhana Saddala and A. Usha Rani

Abstract Cadmium (Cd) is a heavy metal present in air, water, soils and sedi-

ments. It is well known that long-term exposure to Cd causes various toxic effects

in various organ systems such as cardiovascular, kidneys, liver, brain, lung, bones,

immune/haemopoietic, endocrine and reproductive systems. Cd influx mediates

voltage-gated L-type calcium channels (LCC) in excitable cells including mamma-

lian neurons and also Cd uptake in non-excitable tissues. Therefore, LCC has been

recognized as an attractive metal toxicity target. We construct a homology model of

LCC in addition to the generated pharmacophore models then used to retrieve

50,500 molecules from Zinc database. There are 18 best reliable molecules mapped

with core pharmacophore model of LCC. These hits were retrieved and further

evaluated by molecular dynamics (MD) simulation, molecular docking and

protein–ligand interactions, and binding affinity predictions as well as in silico

ADMET properties were tested. Our work results focus on homology modelling,

structure-based pharmacophore mapping, molecular docking, MD simulation,

protein–ligand interactions and binding affinity predictions which were used in

virtual screening strategy to spot new hits for blockade of LCC. Finally, the

outcome results, priming the five best lead compounds, were expected to be the

potential lead scaffolds for developing novel and potent blockers of LCC against

metal toxicity.
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7.1 Introduction

Cadmium (Cd) is a heavy metal present in air, water, soils and sediments (Kocak

and Akcil 2006). Cd is widely used in pigments, plastic stabilizers, electroplating,

alloys, nickel–Cd batteries and welding industry and is also present in tobacco

(Pappas et al. 2006). It is well known that long-term exposure to Cd causes various

toxic effects in various organ systems such as cardiovascular, kidneys, liver, brain,

lung, bones, immune/haemopoietic, endocrine and reproductive systems (Satarug

et al. 2010). Several efforts are being made to find a substance which can signif-

icantly decrease the magnitude of metal toxicity when present in the biological

system during heavy metal intoxication. Membrane damage caused by the reactive

oxygen species (H2O2 and OH
� ions) generated from the exposure of living tissues

to heavy metals may allow the entry of excess calcium into the cells with a

subsequent biochemical cellular degradation and necrosis. Calcium channel

blockers act on ion-conducting cell membrane channels. The 1,4-dihydropyridine

moiety is commonly useful as calcium channel blockers and is used most frequently

as drugs such as nifedipine, diltiazem, nicardipine and amlodipine (AD), which

have been found as potent cardiovascular agents for the treatment of hypertension.

Hence, this class of agents may be included in the search for protectors with a more

favourable therapeutic index. Therefore, the present study is an attempt to find out

the detoxifying action of calcium channel blockers against cadmium-induced

toxicity in albino rats through computational tools.

In recent years, high-throughput virtual screening has been emerging as a

complementary to high-throughput screening in an attempt to discover novel

potential lead compounds in the process of drug discovery (Lyne 2002). Thus, to

identify new and potent compounds that block the L-type calcium channel (LCC)

model like AD, structure-based pharmacophore modelling and virtual screening

may be considered as an effective approach. This study describes the structure-

based pharmacophore modelling to identify the pharmacophoric features required

for simultaneous inhibition of LCC for Cd toxicity by virtual screening: molecular

docking, protein–ligand interaction fingerprints (PLIFs), binding energy calcula-

tions and binding affinity predictions.

7.2 Material and Methods

7.2.1 Homology Modelling

For unknown protein structures such as membrane proteins, homology modelling

was introduced to construct the three-dimensional structure of a known atomic

resolution model of the protein (target) and related homologous protein (template).
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7.2.1.1 Construction of the Human LCC Model

The structural model of the human LCC was built using the recently reported

3.20 Å crystal structure of KcsA (Shaldam et al. 2014) (PDB entry code 1BL8)

as a structural template. The sequence of the human LCC pore region α1c subunit
(Cav1.2, CAC1C_HUMAN) was retrieved from the Swiss-Prot database (Shaldam

et al. 2014) and aligned as described in the Results and Discussion section

(Fig. 7.1). The construction of the transmembrane region of the model was achieved

by the employment of the modeller 9.13.

The protocol used to develop the LCC model is divided into three phases:

sequence alignment, model construction and model evaluation.

7.2.2 Sequence Alignment

The model was constructed using amino acid sequence of voltage-dependent LCC

subunit alpha-1C (CAC1C HUMAN Q13936) obtained from UniProtKB/Swiss-

Prot sequence database (Reyes et al. 1990; http://www.uniprot.org/unipro/

Q13936). Coordinates of potassium channel KcsA atoms in their closed conforma-

tion were downloaded from the RCSB Protein Data Bank (PDB ID: 1BL8). Amino

acid sequences of S5, S6 and P-loops in between for the four repeats (I–IV)

(271–405, 654–753, 1052–1185 and 1411–1524, respectively) were used for

sequence alignment with the amino acid sequence of KcsA as proposed by Zhorov

et al. (2001) (Fig. 7.1). In order to favour valid superimposition of the residues, the

Fig. 7.1 Pairwise alignment of CAC1C_HUMAN and KcsA sequences. The conserved key

residues used to align the sequences are shown in red boxes. Residues reported to affect DHP

antagonist binding and underscored and highlighted in bold
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sequence of each repeat was organized as S5, S6 and P-loop, allowing for a more

flexible inspection of the results and easier corrections. The amino acid sequence of

repeats I and III has a long extracellular loop which would decrease the quality of

the generated model, so amino acid sequences were excluded from repeats I and III,

respectively.

7.2.3 Construction of the LCC Model

The modelling procedure consisted of two steps: model construction from the

template and refinement of loops. The above described sequence alignment file

was used as input for the MODELLER 9.13 program (Sali et al. 1995) with the

high-resolution NMR structure of potassium channel KcsA available in the RSCB

Protein Data Bank (PDB ID: 1BL8) as a template for the 3D structure. Molecular

modelling studies were performed using the MODELLER 9.13 running on Intel

Core 2 Duo CPU personal computers. The model sequence, template structure and

sequence alignment were used as input files to build the model. Loops can be

defined automatically from the model to a template sequence alignment. The

MODELER Loop Refinement-DOPE-Loop method (Shen and Sali 2006; Shaldam

et al. 2014) was used for initial refinement of the loop conformation after model

generation. The model side-chain conformation was optimized based on systematic

searching of side-chain conformation and CHARMm energy minimization using

the ChiRotor algorithm (Spassov et al. 2007; Shaldam et al. 2014). Five models

were obtained from the first step of molecular modelling. These models were

subjected to a comparison based on the best scores to reveal the differences

among them. The model with the lowest energy and the lowest restraint violation

was selected for the second step. Secondly, the loops between helices were

subjected to refinement while keeping the start and end residues constrained. This

procedure is based on the idea that transmembrane helices are much less flexible

than loops, thus permitting to produce a sounder core alignment if the integrity of

the helices is conserved. The more unpredictable loops can bear the more important

differences. A CHARMm-based protocol (Spassov et al. 2008; Shaldam et al. 2014)

that optimizes the conformation of a contiguous segment (i.e. a loop) of a protein

structure was used for loop refinement. It is based on systematic conformational

sampling of the loop backbone and CHARMm energy minimization. This approach

can be used to refine a loop structure from a homology model as well as to optimize

a segment of the protein experimental structure where the structure is poorly

defined. The homology modelling (HM) phase was followed by the model evalu-

ation phase. The stereochemical quality and structural integrity of the model were

tested by RAMPAGE, ERRAT, MolProbity, ProSA and Verify3D software and

target–template superimposition by PyMol (Eswar et al. 2008) (Fig. 7.2).
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7.2.4 Active Site Identification

The active site of LCCmodel was identified using a CASTp server (Computer Atlas

of Surface Topology of Proteins) (Dundas et al. 2006). A new program, CASTp, for

automatically locating and measuring protein pockets and cavities, is based on

precise computational geometry methods, including alpha shape and discrete flow

theory. CASTp identification, measurements of surface accessible pockets as well

as interior inaccessible cavities by locating, delineating and measuring concave

surface regions on three-dimensional structure of proteins. The measurement

includes the area and volume of pocket or void by solvent-accessible surface

model (Richards’ surface) and by molecular surface model (Connolly’s surface),
calculated analytically. It can also be used to study surface features and functional

regions of proteins.

7.2.5 Generation of Structure-Based Pharmacophore Model

In the present study, the LCC modelled receptor complex with a channel blocker

AD was used as starting structure for the generation of structure-based

pharmacophore models (Abdul et al. 2012). LIGANDSCOUT (LS) is a tool that

allows the automatic construction and visualization of 3D pharmacophore for

structural data of macromolecule/ligand complexes. For the LS algorithm, chemical

features include hydrogen bond donors and acceptors as directed vectors, and

positive and negative ionizable regions as well as lipophilic areas are represented

by spheres. Moreover, to increase the selectivity, the LS model includes spatial

information regarding areas inaccessible to any potential ligand, thus reflecting

possible steric restrictions. In particular, for excluded volume spheres placed in

Fig. 7.2 Superimposition of the LCC model (white) and KcsA (yellow) (PDB: 3BPM). (a) Open
conformation, (b) closed conformation
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positions that are sterically forbidden, LS may also be used to construct

pharmacophore of varying degrees of sophistication, suitable for export to different

programs. In the present study, Molecular Operating Environment (MOE, version

2008, Chemical Computing Group Inc.)-compatible 3D pharmacophore model was

first developed by LS using default parameters, and then, it was exported and

converted into a MOE, pharmacophore query for virtual screening (http://www.

chemcomp.com). Prior to the screening, it was necessary to make a number of

adjustments, because feature interpretation differs slightly between the two pro-

grams. Those aromatic rings that LS classified simply as hydrophobic groups were

classified as either aromatic or hydrophobic in MOE, using the PPCH_All scheme

(which incorporates directionality of hydrogen bond donors and acceptors and

orientation of aromatic rings). As in LS pharmacophore, the aromatic ring is not

directly classified as such (because of the lack of detection of π–π stacking or

cation–π interactions) but, rather as a set of hydrophobic atoms, can be interpreted

in MOE in a manner that is useful in the prediction of right compounds in virtual

screening.

7.2.6 Pharmacophore-Based Virtual Screening

The Zinc database (http://zinc.docking.org/), which allows the user to download

compounds, structures from a variety of vendors as SDF files based on the structure-

based amlodipine (AD) compound (Query), was used in this preliminary screen.

Using MOE, the database was washed, and the 3D structure of each compound was

built using the MMFF94x force field. Then for each compound, the low-energy

conformers were generated using Conformation Import methodology implemented

in MOE software. After assessing the pharmacophore query, virtual screening was

carried out using the software MOE against the Zinc database. Because some

changes may occur when the pharmacophore is exported from LS to MOE envi-

ronment, therefore, the pharmacophore queries were validated before using it for

virtual screening. To reduce the data of identified hits, they were docked into the

recently identified binding pocket of LCC model, and the PLIFs were developed

using MOE. Binding energies and binding affinities were calculated using LIGX

(Chemical Computing Group, Montreal, Quebec, Canada) implemented in MOE to

prioritize the final hits.

7.2.7 Molecular Docking

Docking is a computational method which predicts the preferred orientation of one

molecule to a second when bound to each other to form a stable complex. Docking

has been widely used to suggest the binding modes of protein inhibitors. Most

docking algorithms are able to generate a large number of possible structures; thus,
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they also require a means to score each structure to identify those that of greatest

interest. Docking was performed using AutoDock in PyRx Virtual Screening tool

(Wolf 2009; Trott and Olson 2010).

Pharmacophoric hit compounds were docked into the active site of the refined

LCC model. Lamarckian genetic algorithm was used as the number of individual

population (150), max number of energy evaluation (25000000), max number of

generation (27000) (Laskowski et al. 1993), gene mutation rate (0.02), crossover

rate (0.8), Cauchy beta (1.0) and GA window size (10.0). The grid was set whole

protein due to the multi-binding pocket at X¼3.42, Y¼�56.23, Z¼98.32 and

dimension (Å) at X¼89.92, Y¼98.56, Z¼98.32 and exhaustiveness 8. The pose

for a given ligands identified on the basis of highest binding energy. Only ligand

flexibility was taken into account and the proteins were considered to be rigid

bodies. The resulting complexes were clustered according to their root mean square

deviation (RMSD) values and binding energies, which were calculated using the

AutoDock scoring function. The PyMol molecular viewer (http://www.pymol.org/)

was employed to analyse the docked structures.

7.2.8 Analysis of Drug Likeness

MolSoft Drug Likeness explorer (http://www.molsoft.com/mprop/) was used to

analyse the drug likeness as per “Lipinski rule of 5” (Lipinski et al. 1997).

According to “Lipinski rule of 5”, a compound is more likely to be membrane

permeable and easily absorbed by the body if its molecular weight is less than

500, its lipophilicity expressed as a quantity known as log P is less than 5, the

number of groups in the molecule that can donate hydrogen atoms to hydrogen

bonds is less than 5 and the number of groups that can accept hydrogen atoms to

form hydrogen bonds is less than 10 (Leeson 2012).

7.2.9 ADMET Properties

The in silico pharmacokinetic properties and ADMET (absorption, distribution,

metabolism, elimination and toxicity) analysis were predicted using OSIRIS prop-

erty explorer (http://www.organic-chemistry.org/prog/peo/; Access date:

September 23, 2014) which uses Chou and Jurs algorithm, based on computed

atom contributions.
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7.3 Results and Discussion

7.3.1 Sequence Alignment

Besides the choice of the reference, the accuracy of the alignment is the most

crucial step in assuring the quality of the homology modelling. An accurate

sequence alignment between the model and the template proteins is essential to

achieve high-quality models. Voltage-gated LCC are members of a gene superfam-

ily of transmembrane ion channel proteins that includes voltage-gated K+ and Na+

channels. LCC share structural similarities with K+ and Na+ channels in that they

possess a pore-forming α1 subunit in four repeats of a domain with six

transmembrane-spanning segments that include the voltage-sensing S4 segment

and the pore-forming (P) region. As no atomic resolution images of calcium

channel structures exist, much has been learnt about their structure since the recent

determination of crystal structures of a number of potassium channels (Jiang et al.

2003; Long et al. 2005; Shaldam et al. 2014). The α1 subunit contains four repeated
domains (I–IV), each of which includes six transmembrane segments (S1–S6) and a

membrane-associated loop (the “P-loop”) between segments S5 and S6. The four

repeated domains are also remarkably similar to those known to form the voltage-

gated potassium channels. However, potassium α1 subunit is homotetramer and

calcium channel is heterotetramer. Potassium channel KcsA (PDB code 1BL8) has

been selected to be the template. Amino acid sequences of S5, S6 and P-loops in

between the four repeats (I–IV) (271–405, 654–753, 1052–1185 and 1411–1524,

respectively) of voltage-dependent LCC subunit alpha-1C (CAC1C HUMAN

Q13936) were used for sequence alignment with the amino acid sequence of

KcsA as proposed by Zhorov et al. (2001), where S6 segments of LCC are aligned

with M2 segments of KcsA in a manner similar to the alignment of the Na+ channel

with KcsA described by Lipkind and Fozzard (2000) and S5s were aligned with the

M1 segment of KcsA as proposed by Huber et al. (2000) and the P-loops were

aligned using MULTALIN server (Corpet 1988; Shaldam et al. 2014) (Fig. 7.1).

Proteins that fold into similar structures can have large differences in the size and

shape of residues at equivalent positions. These changes are tolerated not only

because of replacements or movements in nearby side chains, as explored by

Ponder and Richards, but also as a result of shifts in the backbone (Bowie et al.

1991; Shaldam et al. 2014). For a more flexible inspection, the sequence of each

repeat was organized as S5, S6 and P-loop, allowing easier corrections. The amino

acid sequence of repeats I and III has long extracellular loop which would reduce

the quality of the generated model, so amino acid sequences were excluded from

repeats I and III, respectively. Since the template is 88 residues shorter than the

target protein, gaps were inserted to achieve best sequence similarity and identity

without affecting sequence alignment proposed by Zhorov et al. (2001). The

greatest attention was thus paid to the careful construction of transmembrane

helices S5 and S6 and P-loop as well.
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7.3.2 Construction of the LCC Model

Although the two proteins have low sequence identity of 9.5% and sequence

similarity of 29.2%, the MODELLER program was applied to generate satisfactory

models. As an integral process of model building, initial refinement of the loop

conformation after model generation was automatically performed by MODELER

Loop Refinement-DOPE-Loop method during the process. The model achieved

from the alignments by Zhorov et al. (2001) was subjected to extensive loop

optimization. This procedure is based on the idea that transmembrane helices are

much less flexible than loops, thus permitting to produce a sounder core alignment

if the integrity of the helices is conserved. On the contrary, the more volatile loops

can bear the more important difference between the coordinates of the reference

and the model. When a homology model is created, there are parts of the model

sequence which are not aligned to any template structures. For these sections, no

homology restraints (such as Cα–Cα distance restraints) can be applied. These parts

of the structure generally have greater errors compared to the regions which are

modelled based on a template structure. In attempts to reduce these errors, a

CHARMm-based protocol that optimizes the conformation of a contiguous seg-

ment (i.e. a loop) of a protein structure called loop refinement was applied (Spassov

et al. 2008; Shaldam et al. 2014). This is based on systematic conformational

sampling of the loop backbone and CHARMm energy minimization. The algorithm

goes through three stages: construction and optimization of loop backbone, con-

struction of loop side chain and optimization of loop followed by reranking of the

conformations. The model was then checked after a thorough energy minimization

designed to reduce the steric clashes of the side chains without modifying the

backbone of the protein to solve these contacts. To avoid modification of the

backbone of the protein, the optimization of the geometry of side chain was

performed with constraining the backbone. After the optimization, models were

checked to assess the quality of their structure.

7.3.3 Model Evaluation

To assess stereochemical quality and structural integrity of the model, RAMPAGE

(Lovell et al. 2003) (Fig. 7.3), ERRAT (Colovos and Yeates 1993; Shaldam et al.

2014), ProSA (Sippl 1993; Wiederstein and Sippl 2007) and Verify3D (Luthy et al.

1992; Shaldam et al. 2014) software were used. For comparison, these methods

were also used to evaluate the template structure, and then each repeat was

examined separately by means of ProSA. RAMPAGE is an offshoot of RAPPER

which generates a Ramachandran plot using data derived by Lovell et al. (2003). It

is recommended that it be used for this purpose in preference to PROCHECK,

which is based on much older data. The Ramachandran diagram plots phi versus psi

dihedral angels for each residue in the protein. The diagram is divided into
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favoured, allowed and disallowed regions, whose contouring is based on density-

dependent smoothing for 81,234 non-glycine, non-proline residues with B <
30 from 500 high-resolution protein structures. Regions are also defined for glycine,

proline and pre-proline as shown in Fig. 7.3.

ERRAT is a protein structure verification algorithm, that is, especially well-

suited for differentiating between correctly and incorrectly determined regions of

protein structures based on characteristic atomic interactions (Colovos and Yeates

1993; Shaldam et al. 2014). Different types of atoms (C, N and O) are distributed

nonrandomly with respect to each other in proteins because of energetic and

geometric effects. Errors in model building lead to more randomized distributions

of the different atom types, which can be distinguished from correct distributions by

statistical methods. The program works by analysing the statistics of nonbonded

interactions between different atom types. A single output plot is produced that

gives the value of the error function versus position of a nine-residue sliding

window. In comparison with statistics from highly refined structures, the error

values have been calibrated to give confidence limits. The program provides an

“overall quality factor” value which is defined as the percentage of the protein for

which the calculated error value falls below the 95% statistical rejection limit. The

ERRAT overall quality factor of the model is given in Table 7.1. This is not

Fig. 7.3 Ramachandran plot. (a) The plot of LCC model shows that 92.3% of residues were found

in the favoured, 7.7% in the allowed and none in the outlier regions. (b) The plot shows general,
glycine, pre-proline and proline for LCC model
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surprising since the model has longer loops than template. This method provides a

useful tool for model building, structure verification and making decisions about

reliability. A more reliable discrimination of incorrect regions would likely be

obtained by combining the present analysis with others (Fig. 7.5).

ProSA and Verify3D are two methods that are sensitive in distinguishing

between overall correct fold and those with an incorrect fold (Bhattacharya et al.

2008; Shaldam et al. 2014). ProSA (Protein Structure Analysis) program is a

diagnostic tool that is based on the statistical analysis of all available protein

structures (Wiederstein and Sippl 2007; Shaldam et al. 2014). It is a tool widely

used to check 3D models of protein structures for potential errors. Its range of

application includes error recognition in experimentally determined structures

(Teilum et al. 2005; Llorca et al. 2006; Shaldam et al. 2014), theoretical models

(Petrey and Honig 2005; Ginalski 2006; Shaldam et al. 2014) and protein engineer-

ing (Beissenhirtz et al. 2006; Mansfeld et al. 2006; Shaldam et al. 2014). The energy

of the structure is evaluated using a distance-based pair potential and a potential that

captures the solvent exposure of protein residues. From these energies, two char-

acteristics are derived and displayed: Z-score and a plot of residue energies. The

Z-score indicates overall model quality and measures the deviation of the total

energy of the structure with respect to an energy distribution derived from random

conformations. Z-scores outside a range characteristic of native proteins indicate

erroneous structures. The overall quality score calculated by ProSA for a specific

structure is displayed in a plot that shows the scores computed from all experimen-

tally determined protein chains currently available in the Protein Data Bank (PDB).

Structures which contain errors are likely to have Z-score outside the range of

values characteristic of native proteins. Table 7.1 lists the Z-score calculated by

ProSA (as average of the four repeats Z-score) for the model and compared against

the template. The Z-scores for the model and template are much closer to the

middle region of scores observed for experimentally determined protein structures

in the PDB including the template structure. The energy plot shows the local model

quality by plotting energies as a function of amino acid sequence. In general,

positive values correspond to problematic or erroneous parts of the model (Fig. 7.4).

Verify3D analyses the compatibility of an atomic model (3D) with its own

amino acid sequence (1D) and hence tests the accuracy of the model (Fig. 7.5).

Each residue is assigned a structural class based on its location and environment.

The environments are described by the area of the residue buried in the protein and

inaccessible to solvent, the fraction of side chain area that is covered by polar atoms

Table 7.1 Assessment scores for the LCC receptor model

S. no. Item Model Comment

1 ProSA �3.89 ProSA Z-score as average of the four repeats

2 ERRAT 79.72 ERRAT overall quality factor

3 Verify3D 67.58%

(W)

Percentage of residues with Verify3D average score > 0.2;

verify3D overall assessment of the structure (P ¼ pass, W¼
warning or F ¼ fail) shown in parentheses
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(O and N) and the local secondary structure. Based on these parameters, each

residue position is categorized into an environmental class. In this manner, a 3D

protein structure is converted into a 1D string, like a sequence, which represents the
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Fig 7.4 ProSA plot. Each repeat was examined separately. (a) ProSA Z-scores for LCC model;

(b) ProSA Z-scores for template (KcsA) and blue and sky blue dots are Z-scores of PDB structures

determined by X-ray crystallography and NMR, respectively; (c) ProSA energy profiles for LCC

model (four repeats); (d) ProSA energy profiles for template (four repeats). Negative scores

indicate a high-quality model
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environmental class of each residue in the folded protein structure. A collection of

good structures is used as a reference to obtain a score for each of the 20 amino

acids in this structural class. The scores of a sliding 21-residue window are added

and plotted for individual residues. This method evaluates the fitness of a protein

sequence in its current 3D environment. It can be applied to assess the quality of a

theoretical model or to examine the characteristics of an experimental structure

(Luthy et al. 1992; Shaldam et al. 2014). Table 7.1 shows the percentage of residues

that had an average score> 0.2 and the Verify3D assessment of the structure (pass,

warning or fail) for the model and template. Figure 7.5 shows the Verify3D profile

for the model structure. Residues with a score over 0.2 should be considered

reliable and the sequences exhibiting lower scores are those of extracellular loops.

Taken together, all of the above data indicate that the quality of the model is

similar to that of the template. The model can be used for further computer-aided

drug design (CADD) and it can be used in understanding how DHP work at the

molecular level.
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Fig. 7.5 (a) ERRAT score of the LCC model (four repeats). (b) Verify3Dscore profile calculated
for LCC model. Scores over 0.2 indicate a high-quality model
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7.3.4 Generation of Structure-Based Pharmacophore Model

As shown in Fig. 7.6, the pharmacophore model automatically generated by the LS

program includes four features: two hydrogen bond donors (HBD) (green colour)

and three hydrophobic groups (yellow colour). Besides, the program automatically

generated several excluded volumes (grey colour) in the model. The two HBD

feature points are the amino group hydrogen atoms of the ligand towards the

SER-78 and ILE-51, respectively. The three hydrophobic groups are located on

the benzene group, chlorine atom on benzene and carboxy ethyl group of the ligand.

The developed pharmacophore model was exported into MOE. Prior to screening, it

was necessary to make a number of adjustments, as feature interpretation varies

slightly between the two programs. As in LS pharmacophore, the aromatic ring of

the compound in the complex was not classified as aromatic or hydrophobic

features; thus, these were interpreted in MOE, using the PPCH_All scheme. Two

modifications were made on this model to obtain appropriate model for virtual

screening. The first modification is about the chlorobenzyl ring. It is clear that it is

an aromatic group, but the LS could not interpret this ring as an aromatic group

automatically. In MOE, additional features were developed using the MOE

pharmacophore query editor. First, an aromatic feature was developed on the

chlorobenzyl ring, and a hydrophobic feature was developed on the carboxy ethyl

group of the ligand. This modified pharmacophore model was then validated by

screening the test database. In the test database, we kept the compound (i.e. AD)

present in complex structure. First, the AD was extracted, and then, hydrogen atoms

were added and energy minimized by using MOE. The minimized structure of AD

was added to the test database. After screening, the test compound was correctly

mapped by the modified pharmacophore model as shown in Fig. 7.6. The result

verified the validity of our modified pharmacophore model that can be used for the

screening of large databases.

7.3.5 Pharmacophore-Based Virtual Screening

The modified validated pharmacophore model was then used as in silico filter to

screen the Zinc database (http://zinc.docking.org/) of commercially available com-

pounds. The Zinc database compounds in SDF format were loaded into MOE

environment where the 3D structure of each compound was modelled using

MMFF94x force field. The Conformation Import methodology was applied to

generate low-energy conformations for each compound. All these compounds and

their respective conformations were saved in MOE database. The conformers of

each compound were then filtered by the pharmacophore model. To be considered

as hit, the compound has to fit all the features of the pharmacophore. From the

pharmacophore-based virtual screening, 18 hits (Fig. 7.7) were identified that

mapped on the developed pharmacophore model (i.e. having the specified
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Fig. 7.6 (a) Two-dimensional pharmacophore model generated by LIGANDSCOUT from the

complex structure of LCC and AD. The dotted arrows indicated the hydrogen bond donor (HBD)

features. (b) The yellow sphere represented the HBD; the yellow sphere represented the hydro-

phobic feature in the ligand, whereas the grey colour spheres represented the excluded volumes
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Fig. 7.7 The pharmacophore screened 18 hits from Zinc database
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requirements). These initially identified hits were selected for further evaluation

using docking studies.

7.3.6 Molecular Docking

In order to shed light on the molecular basis of the interactions between LCC and its

ligands, docking simulations were undertaken on pharmacophoric hits of DHPs

(dihydropyridines) on LCC model. Such calculations were conducted employing

the automated docking program AutoDock which has proven to be really effective

in reproducing the experimentally found posing of ligands into their binding site.

As shown in Table 7.2, the predicted free energy of binding top five compounds.

Docking of hits into active site of LCC model gave comparable binding solutions

with the dihydropyridine ring fitting in the cleft formed by IIIS6, IIIS5 and IVS6

segments. The Zinc59347487 compounds bound -8.4 binding energy with ILE-360

(IP), SER-393 (IS6), ASN-398 (IS6), ASN-740 (IIS6) and ASN-1517 (IVS6) active

site residues, respectively. The Zinc20267861 compounds bound -8.1 binding

energy with LEU-704 (IIP), ASN-740 (IIS6) and ASN-1517 (IVS6) active site

residues, respectively. The Zinc59486248 compounds bound -7.9 binding energy

with THR-361 (IP) and MET-362 (IP) active site residues, respectively. The

Zinc59494792 compounds bound -7.6 binding energy with THR-361 (IP) and

ASN-740 (IIS6) active site residues, respectively. The Zinc67664832 compounds

bound -7.2 binding energy with THR-361 (IP), ILE-360 (IP), SER-393 (IS6),

ASN-1178 (IIIS6) and ASN-740 (IIS6) active site residues, respectively. The

Zinc19796039 (AD) compounds bound -5.4 binding energy with ILE-360 (IP),

SER-393 (IS6), ASN-1178 (IIIS6) and ASN-740 (IIS6) active site residues, respec-

tively. The LCC model and best five screened compound interaction residues are

shown in Table 7.2 and the graphical representation also shown in Fig. 7.8. The

docking results showed that five compounds have best binding energies than AD

compound (Table 7.2).

Table 7.2 AD and AD analogue compounds along with their respective interaction energies and

their surrounding residues

S. no. Compound

BE

(kcal/

mol) Surrounding residues

1 Zinc59347487 �8.4 ILE-360 (IP), SER-393 (IS6), ASN-398 (IS6),
ASN-740 (IIS6), ASN1517 (IVS6)‘

2 Zinc20267861 �8.1 LEU-704 (IIP), ASN-740 (IIS6), ASN-1517 (IVS6)

3 Zinc59486248 �7.9 THR-361 (IP), MET-362 (IP)

4 Zinc59494792 �7.6 THR-361 (IP), ASN-740 (IIS6)

5 Zinc67664832 �7.2 THR-361 (IP), ILE-360 (IP), SER-393 (IS6),
ASN-1178 (IIIS6), ASN-740 (IIS6)

6 Zinc19796039

(AD) (Query)

�5.4 ILE-360 (IP), SER-393 (IS6), ASN-1178 (IIIS6),
ASN-740 (IIS6)
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7.3.7 Analysis of Drug Likeness

All the compounds were tested for Lipinski “rule of 5”, i.e. “drug-like” molecules

have log P �5, molecular weight �500, number of hydrogen bond acceptors �10

Fig. 7.8 Docked structures of Zinc20267861 (a), Zinc59347487 (b), Zinc59486248 (c),
Zinc59494792 (d), Zinc67664832 (e) and AD (f) in model of LCC. DHPs are displayed as rainbow

sticks, and key binding site residues are shown in green, yellow, red, pink and blue. Hydrogen
bonds as represented with dashed blue lines
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and number of hydrogen bond donors �5 (Table 7.3). Lipinski rule of 5 is a rule of

thumb for evaluating the drug likeness or determining whether a chemical com-

pound with a certain pharmacological or biological activity has properties that

would make it a likely orally active drug in humans. Results showed that five

compounds, i.e. (Zinc59347487), (Zinc20267861), (Zinc59486248),

(Zinc59494792) and (Zinc67664832), satisfied the Lipinski “rule of 5”. Their

respective drug likeness properties are shown in Table 7.3.

7.3.8 ADME Predicting Activity

Although Lipinski “rule of 5” describes the molecular properties important for a

drug’s pharmacokinetics in the human body, including its ADME, it does not

predict if a compound is pharmacologically active. Therefore, pharmacokinetic

properties and toxicities were predicted for all the four compounds using OSIRIS

property explorer. Results of pharmacokinetic properties and toxicity analysis are

shown in Table 7.4. Solubility and partition coefficient were calculated for phar-

macokinetic property, whereas mutagenicity, tumorigenicity, irritation effect and

risk of reproductive effect were predicted for toxicity study. To determine the

hydrophilicity, log P value was predicted. It is suggestive that a high log P value

is associated with poor absorption or permeation and it must be less than 5 (Vyas

et al. 2013). Results showed that all the five compounds confirmed to this limit, and

among the five compounds, Zinc67664832 has a better cLog P value than others

(Table 7.3). In general, a poor solubility is associated with bad absorption, and the

aqueous solubility (log S) of a compound significantly affects its absorption and

distribution characteristics. Results showed that Zinc67664832 has a better log S

value than others (Table 7.3). In order to consider the compound overall potential as

a drug candidate, drug score is calculated which combines drug likeness, cLog P,

TPSA, molecular weight and toxicity risk parameters as shown in Table 7.4. Drug

score showed that the compounds, Zinc59347487 and Zinc20267861, have higher

scores of 0.56 and 0.47 compared to the others.

Table 7.3 Molecular properties of compounds satisfying the Lipinski “rule of 5” by

Zinc ID

log S

(moles/L)

Lipinski “rule of 5”

Molecular weight

�500

log P

�5

HB acceptors

�10

HB donors

�5

Zinc59347487 �4.06 429.10 3.14 5 4

Zinc20267861 �4.18 484.12 3.03 6 2

Zinc59486248 �4.90 423.17 3.61 5 4

Zinc59494792 �4.30 499.19 2.43 5 3

Zinc67664832 �4.24 437.16 2.21 9 3

Amlodipine

(Query)

�4.19 409.15 3.46 7 4

7 Homology Modelling, Structure-Based Pharmacophore Modelling, High. . . 171



T
a
b
le

7
.4

In
si
li
co

A
D
M
E
T
p
re
d
ic
ti
o
n
b
y
O
S
IR
IS

p
ro
p
er
ty

ex
p
lo
re
r

P
ro
p
er
ti
es

Z
in
c5
9
3
4
7
4
8
7

Z
in
c2
0
2
6
7
8
6
1

Z
in
c5
9
4
8
6
2
4
8

Z
in
c5
9
4
9
4
7
9
2

Z
in
c6
7
6
6
4
8
3
2

A
m
lo
d
ip
in
e

M
u
ta
g
en
ic

�
+

�
�

�
�

T
u
m
o
ri
g
en
ic

�
+

�
�

�
�

Ir
ri
ta
n
t

�
�

�
�

�
�

R
ep
ro
d
u
ct
iv
e
ef
fe
ct
iv
e

�
+

�
�

�
�

cL
o
g
P

1
.1
8

1
.7
1

2
.4
3

0
.9
8

1
.9
9

2
.0
7

S
o
lu
b
il
it
y

�3
.0
8

�3
.1
0

�3
.6
8

�3
.5
3

�3
.1
8

�3
.3
0

M
W

4
2
9
.0

4
8
5
.0

4
2
2
.0

4
9
5
.0

4
3
8
.0

4
0
8
.0

T
P
S
A

9
9
.8
8

1
0
2
.9

9
9
.8
8

1
3
5
.2
0

1
2
3
.0

9
9
.8
8

D
ru
g
li
k
en
es
s

�7
.9

�5
.5
4

�4
.6
0

�2
.1
4

�4
.9
4

�6
.2

D
ru
g
sc
o
re

0
.5
6

0
.4
7

0
.3
7

0
.3
8

0
.3
8

0
.3
9

172 M.S. Saddala and A. Usha Rani



7.4 Conclusions

The point of present study was to produce a pharmacophore model to recognize

vitally assorted lead hits. The recognized hits may be utilized for creating novel and

strong inhibitors for VP-3. A structure-based pharmacophore was created situated

in light of the complex structure of VP-3 and leupeptin. The created pharmacophore

model was utilized for the screening of PubChem database. The recognized hits

were further assessed by docking, MD simulation and binding energy forecast.

Subsequently, five lead hits were accounted for that satisfied all the criteria for the

outline of compounds that may go about as great leads for advancement of novel,

intense and structurally diverse compounds for VP-3 inhibition. From the binding

mode, anticipated by docking, it was observed that there are some particular groups

that mimic the binding method of leupeptin and fit well to active site area of VP-3.

The five leads likewise demonstrated the best binding energies among screened

compounds. The MD simulations for the VP-3 five lead docking complexes were

performed to comprehend conformational dependability, structural flexibility and

molecular dynamics of the interaction in physiological environmental condition.

RMSD investigation demonstrated that the molecular system was exceptionally

steady in all trajectories. Therefore, five leads are proposed as the best potential

inhibitor to begin with investigation acceptance towards outlining against VP-3

inhibitors.
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Chapter 8

Natural Compounds Are Smart Players

in Context to Anticancer Potential

of Receptor Tyrosine Kinases: An In Silico

and In Vitro Advancement

Pushpendra Singh, Shashank Kumar, and Felix Bast

Abstract Cancer is the ruling cause of mortality worldwide. Chemotherapeutic

toxicity and drug resistance have provided impulsion for the formulation of new

anticancer agents. Receptor tyrosine kinases (RTKs) are the most activated cell

surface receptors for copious polypeptide growth factors, cytokines, and hormones

that play a considerable role in cancer initiation, promotion, and progression.

Natural products are a prime source of new anticancer drugs and their leads. The

objective of computer-aided drug design (CADD) is to enhance the set of com-

pounds with prudent active drug-like properties and eliminate inactive, toxic, poor

absorption, distribution, metabolism, and excretion toxicity (ADME/T) com-

pounds. In the present chapter, in silico advancement of anticancer natural com-

pounds and molecular mechanisms of action of flavonoids, viz., genistein,

myricetin, quercetin, luteolin, morin, kaempferol, catechin, and epigallocatechin

gallate (EGCG), on RTK and PI3K signaling pathway attributing to their potential

anticancer activity have been discussed.
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8.1 Natural Products: Promising Resource for Cancer

Drug Discovery

Cancer is the ruling cause of mortality worldwide, especially breast and prostate

cancer. They are regarded as the most frequent cancer in women and men, respec-

tively, second to skin cancer (Jakowlew 2006). The toxicity associated with drug

resistance and poor prognosis in the current chemotherapeutics has provided the

much-needed impulsion for the formulation of new anticancer agents (Biswas et al.

2006; Martin et al. 2011). Natural products are a prime source of new anticancer

drugs and their leads. Anticancer drug development of natural origin including

plants (vincristine, vinblastine, etoposide, and paclitaxel), marine organisms

(cytarabine and aplidine), and microorganisms (dactinomycin and doxorubicin)

added a new concept for drug discovery. Furthermore, various compounds recog-

nized from fruits and vegetables have been used as anticancer therapy. Moreover,

curcumin, resveratrol, genistein, and diallyl sulfide had a most promising anticancer

activity in the different model and entered into the clinical trial. Traditional

medicines owe their capability to exhibit various biological activities including

anticancer potential. Furthermore, synthetic analogs of natural compounds with

improved potency and safety might be prepared, thus portraying them as the beacon

for cancer drug discovery. In fact, natural products are an inspiration for the

majority of US Food and Drug Administration (FDA)-approved drugs. Another

remarkable character is that natural products can also be prepared by synthesis and

have played a mid-role in the drug development by providing challenging synthetic

targets. Plants have large reservoir of potent, novel, and highly varied structures

that are dubious to be synthesized in laboratories. Over the past many years, plants

have been known to be a cornucopia of biologically active compounds including

cocaine, digitalis, quinine, and muscarine (Kumar et al. 2013). Many of these active

compounds are useful drugs such as anticancer agent paclitaxel (Taxol) from the

yew tree and antimalarial agent artemisinin from Artemisia annua. Flavonoids
comprise a significant group of polyphenolic compounds, which are primarily

benzo-α-pyrone (phenyl chromone) derivatives, structurally diverse low molecular

mass molecules (Kumar and Pandey 2013). Bioactive flavonoids have been found

to be indispensable for the growth and development of plants, additionally provid-

ing the physical environment that proves to be essential for plant survival under

stress circumstances. Among the various natural products, flavonoids have attracted

more attention owing to their remarkable spectrum of pharmacological activities

such as antioxidant, antiangiogenic, anti-inflammatory, and anticancer activity

(Mishra et al. 2013; Kumar et al. 2014).

Lim et al. (2008) reported seven Aspidosperma indole alkaloids (jerantinine A to

G) that were extracted from the Tabernaemontana corymbosa leaf (Lim et al.

2008). Jerantinine A has been reported for its potent cytotoxic activity against

vincristine-resistant nasopharyngeal carcinoma cells and has the capability to

inhibit cell cycle at G2M stage and polymerization of tubulin (Raja 2015; Raja

et al. 2014). Furthermore, jerantinine B and E are also reported for their potent
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anticancer activity with a variety of mechanisms including disruption of microtu-

bule organization and induction of apoptosis in different human cancer cell lines

(Frei et al. 2013, Qazzaz et al. 2016). Jerantinine B, δ-tocotrienol, and combined

low-dose treatments induced a dose-dependent growth inhibition against U87MG

and HT-29 cells indubitably disrupted the microtubule networks (Abubakar et al.

2016).

Astragalus membranaceus is an adaptogenic herb that belongs to Leguminosae

family originating in Northern China and has been used to treat a range of disorders

including chronic illnesses, metabolic disorders, compromised immunity, inflam-

mation, and cancer. Furthermore, treatment with A. membranaceus supplemented

injection with current chemotherapy was found to hamper the tumor growth,

decrease the unavoidable side effect of chemotherapy, restore the impaired T cell

functions, and improve the drug sensitivity of tumor cells (Cho and Chen 2009; Zou

and Liu 2003). Moreover, A. membranaceus injection might efficiently encourage

the immune response of tumor-bearing host that led to improve the anti-metastasis

activity of dendritic cells in vivo (Dong and Dong 2005). Further, it was also

reported that A. membranaceus-based medicine might augment the usefulness of

platinum-based chemotherapy for advanced non-small cell lung cancer (McCulloch

et al. 2006). A polysaccharide isolated from the radix of A. membranaceus was

reported to increase tumor sensitivity and reduce chemotherapeutic toxicity. Fur-

ther, it was reported that treatment of A. polysaccharide integrated with vinorelbine
and cisplatin had appreciably enhanced QOL in patients with advanced NSCLC

compared with vinorelbine and cisplatin alone (Guo et al. 2012). Cho and Leung

(2007a, b) reported that administration of A. membranaceus root fraction in tumor-

bearing mice and cyclophosphamide-treated mice (in vivo) could reestablish the

depressed immune functions. Thus, A. membranaceus could reveal

immunomodulating and immune-restorative effects, both in vitro and in vivo

(Cho and Leung 2007a, b, c). Furthermore, it was reported that the root of

A. membranaceus was proficient to induce monocytic differentiation of both human

andmurine cells. Moreover, in vivo administration ofA. membranaceus fraction could
reestablish the depressed mitogenic response in tumor-bearing mice. Moreover, roots

of this plant have polysaccharides (UV-absorbing compounds) which may have

potential in protecting against solar-induced skin damage (Curnow and Owen 2016).

Identification and development of anticancer agents from the natural product by

computer-aided high-throughput virtual screening (HTVS) and extra precision

(XP) molecular docking has been well documented. In silico screening approach

is the primary technique for identification of natural products as inhibitors of target

protein and predicting their interactions. Examples of natural compounds that have

been reported as anticancer properties identified by using HTVS and XP molecular

docking are represented in Table 8.1.
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8.2 RTK Signaling Inhibitors as Promising Anticancer

Agent

RTKs play a prominent role in blood cancer and solid tumors as they are the most

activated cell surface receptors for numerous growth factors, cytokines, and hor-

mones (Robinson et al. 2000). They have been shown not just to be the key

regulators of normal cellular processes but additionally to play a critical role in

the growth and development of various cancers (Singh and Bast 2014a). There are

two types of RTK family, first containing the transmembrane domain and second

not possessing transmembrane domains (Hubbard and Till 2000). Overexpression

of RTKs has been reported in numerous cancers, including non-small cell lung

cancer and breast and prostate cancers. RTKs comprise of many protein molecules

including EGFR, insulin receptor (IR) and insulin-like growth factor 1 (IGF1R),

and vascular endothelial growth factor receptors (VEGFR). They have covalently

bound heterotetramer protein consisting of two extracellular α-subunits and two

transmembrane β-subunits.
Ligand-receptor interactions induce conformational changes that led to activate

autophosphorylation of a cascade of tyrosine residues, ultimately resulting in

activation of the PI3K pathway and rat sarcoma (RAS) pathway that is participated

Table 8.1 Anticancer natural compounds identified by HTVS and XP

Agents Targets References

Wortmannin Wild-type and mutant

PIK3CA

Kuete et al. (2015) and Dan et al. (2010)

Noscapine

derivatives

Microtubule Santoshi et al. (2014) and Naik et al. (2012)

Hinokiflavone MMP-9 Kalva et al. (2014)

Combretastatin Microtubule-destabilizing Do et al. (2014) and Abolhasani et al.

(2015)

Xanthone

derivatives

DNA topoisomerase IIα Alam and Khan (2014) and Verbanac et al.

(2012)

Camptothecin RAD9 (Prasad et al. (2013) and Yamazaki et al.

(2004)

Linarin CDK4 Meshram et al. (2012)

Violacein Estrogen receptor Meshram et al. (2012)

Hydroxycinnamic

acid

MMP-2 and MMP-9 Wang et al. (2012a)

S-

Adenosylmethionine

S-Adenosylmethionine Taylor et al. (2009)

De novo drug design c-Met tyrosine kinase Chen (2008)

Sulfobenzoic acid Transformylase Xu et al. (2004)

Genistein Acetylcholinesterase Fang et al. (2014)

Quercetin Inducible nitric oxide

synthase

Singh and Konwar (2012)

Rutin and myricetin α-Glucosidase Hee and JuSung (2014)
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in cellular growth and metabolism. PI3K, Akt, PDK1, and mTOR are activated by a

number of cellular processes including expression of oncogenes and inactivation of

tumor suppressor genes, tyrosine kinase receptors, and G-protein coupled receptors

(Frasca et al. 2008). Numerous anticancer natural compounds that have been

reported as inhibitors of RTK signaling proteins demonstrated by using CADD

are given in Table 8.2.

Flavonoids exhibit anticancer activity by synchronizing the expression of EGFR,

VEGF, and matrix metalloproteinases (MMPs) in addition to inhibiting NF-κβ and

PI3K signaling pathways (Gu et al. 2013). VEGFR activation led to angiogenesis

which is closely linked to the development of cancer including prostate, breast,

lung, and hepatocellular carcinoma (Chu et al. 2013; Folkman 2002; Hicklin and

Ellis 2005; Huang et al. 2011; Tanno et al. 2004). Encouraging strategy for

combating cancer by inhibiting abnormal angiogenesis and employing monoclonal

antibodies, ribozymes, and TRK inhibitors are currently in clinical trials (Arora and

Scholar 2005; Ferrara et al. 2004; Saini and Hurwitz 2008). Oral tyrosine kinase

inhibitors, namely, sorafenib, sunitinib, and pazopanib, have been endorsed by the

USFDA for the treatment of diverse cancer (Wang et al. 2012b). Various in vitro,

in vivo, and preclinical findings convincingly proclaim the use of dietary products

in the prevention and treatment of cancer also (Amin et al. 2009).

Cancer is an extremely heterogeneous malignancy, with its signal pathways

evince a complex array of cross signaling pathways. Appropriately, when blocking

the key signal transduction pathways, the single-targeted drugs can also activate the

other pathways that led to increasing cell proliferation. Therefore, multitargeted

drugs have the better option for future drug discovery. RTK inhibitors have played

an increasingly significant role in the treatment of various cancers. Recently,

published phase clinical III trials have exposed potential efficacies of these drugs.

Multitargeted TKIs have been regarded as promising agents for various cancers due

to their potential antitumor mechanisms. Single-targeted drugs have poor efficien-

cies for most cancer patients, while they may be highly productive in certain cancer

Table 8.2 Examples of anticancer natural compounds as inhibitors of RTK signaling proteins

Natural compounds Targets References

Cyclopentyl-pyrimidine IGF1R Aware et al. (2015)

Oxindole-based inhibitors FGFR1

Platycodin D VEGFR2 Luan et al. (2014)

ZINC natural database VEGFR2 Li et al. (2014)

Genistein EGFR Yuan et al. (2008)

Quercetin PDK1, PI3K, and mTOR Singh and Bast (2014b)

Quercetin EGFR and mutated EGFR Singh and Bast (2014a)

Curcuminoid analogs HER2 Yim-Im et al. (2014)

Alkaloids/flavonoids PI3K Jackson and Setzer (2013)

Curcumin derivatives STAT3 Kumar and Bora (2012)

Natural compounds STAT3 Liu et al. (2014)

Morin, myricetin, and

EGCG

STAT3, IR, EGFR, and

AR/ER

Singh and Bast (2014a, b and

2015a, b, c)
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patients. Thus, it is imperative to identify populations that are suitable for TKIs

(Zhou 2012). Moreover, synergistic action by multi-targeting compounds produces

a new strategy for discovering anticancer drugs for cancer drug resistance (Zhang

et al. 2014a). In this context, obstruction of many essential kinases at the level of

receptors or downstream serine/threonine kinases may assist to optimize the most

anticancer therapeutic sake.

8.3 Multidrug Resistance Development in Cancer

Different critical factors are responsible for the development of cancer multidrug

resistance such as (1) mutations in target proteins, (2) augmented action of drug

efflux pumps (ATP-binding cassette superfamily), (3) decreased drug influx, and

(4) distorted expression of apoptosis and (5) anti-apoptotic proteins (Costantino and

Barlocco 2013). ABC transport molecules are expressed on the membranes of

cellular vesicles and affect the biochemical and biophysical properties, i.e.,

ADME/T of chemotherapeutics. Mechanism such as insensitivity to drug-induced

apoptosis and induction of drug detoxification perhaps play a vital role in earning of

anticancer drug resistance. Overactivity of ABC transporters in cancer cells mod-

ulates anticancer drug resistance. In this context, an ongoing effort to succeed

therapies could either block or inactivate these transporters. This may lead to

increase the anticancer drug concentration within the cells. Bioactive flavonoids

have been found to be indispensable for the growth and development of plants,

additionally providing the natural environment that proves to be essential for plant

survival under stress condition. Among the various natural products, flavonoids

have attracted more attention owing to their remarkable spectrum of pharmacolog-

ical activities such as antioxidant, antiangiogenic, anti-inflammatory, and antican-

cer activity.

8.4 CADD

It is broadly accepted that drug discovery and development are risky, costly, and

time- and resource-consuming processes. A variety of cancer drugs are small

compounds designed to bind and modulate the biological action of the receptors.

Molecular docking inheres in three key consecutive goals: pose prediction, virtual

screening, and binding affinity evaluation. There is an ever improved endeavor to

apply the computational method for drug design, development, and optimization in

the field of chemical and biological sciences. In the modern arena, computer-aided

or in silico molecular drug development is being utilized to accelerate and facilitate

hit identification and optimization of the absorption, distribution, metabolism,

excretion, and toxicity profile. Recently, researchers are dynamically involved in

the development of more sophisticated computational tools that will ameliorate
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potency and efficiency of the drug development process, decrease the use of

animals, and increase accuracy of pose predictability. The rapid expansion of

CADD by the advancement of computational software (AutoDock, DOCK,

GOLD, and Maestro), identification of molecular targets, and an expanded database

of the publicly accessible target crystal structure of the protein provided the

preeminent environment for drug discovery. CADD is being exploited to identify

hits, pick leads, and optimize leads, i.e., transform biologically active compounds

into good drugs by enhancing their physicochemical, pharmaceutical, and ADME/T

properties. HTVS is used to discover novel agents from different chemical scaffolds

by searching commercial, public, and private databases. It is deliberated to reduce

the size of chemical space and thereby allow cornerstone on more promising

candidates for lead discovery and optimization. The aim of CADD is to enhance

the set of compounds with drug-like properties and eliminate compounds with

inactive, toxic, poor ADME/T. In other words, in silico modeling is used noticeably

to minimize time and resource necessities of chemical synthesis and biological

in vitro and in vivo testing (Guedes et al. 2014; Kapetanovic 2008).

Natural products are a significant source of bioactive compounds for drug

breakthrough. However, their utilization in drug discovery has somehow dimin-

ished because of barriers to the screening of natural products against anticancer

targets. In another study, Kapetanovic (2008) reported that the estimated time and

cost of new drug bringing to market differ, by 7–12 years and $ 1.2 billion. Also,

5 out of 40,000 compounds experimentally validated in animals reach primary

human testing. Furthermore, only one of five compounds achieves approval for

clinical studies (expected). Taking in these barriers for drug development, here we

discuss the strategies for in silico screening of natural compounds that strap up the

current technology that may help to abridge these barriers (Harvey et al. 2015).

Commonly used computational approaches for screening of natural products

against anticancer targets include (1) target identification and validation (reverse

docking, protein structure prediction, target druggability, probe design, and chem-

ical sensing) and (2) lead discovery and optimization (molecular docking, de novo

design, designs virtual library based on pharmacophore, quantitative structure-

activity relationship models, and sequence-based method for phosphorylation site

prediction). Approaches used for target identification, validation, lead discovery,

and optimization are depicted in Fig. 8.1.

1. Target identification and validation

• Reverse docking

Due to increased number of well-known protein structures (NMR and 3D

crystallographic), a new molecular docking method called reverse docking comes

in a picture, in which docking is carried out by probing a protein database instead of

a compound database. Reverse docking is proving to be an influential tool for

identification and validation of small molecules into a set of target proteins, in

addition to the lead discovery and optimization stages of the drug development

cycle (Chen and Ung 2001), for example, Indock, a reverse docking platform to

study drug toxicity, and TarFisDock, used to identify drug targets (Li et al. 2006).
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• Protein structure prediction

Over the past genomic decade, the whole genome sequencing projects have

produced a huge quantity of protein sequence data, which led to fill the gap between

protein sequence and structure. Furthermore, in vitro experimental determination of

a protein structure and function is rigorous, time-consuming, and expensive. There-

fore, the use of computational tools for conveying structure to a protein represents

the most proficient option for experimental methods (Neerincx and Leunissen

2005). To overcome this problem, a plethora of computerized methods are acces-

sible (online servers and software) to predict protein primary, secondary, and

tertiary structure from the amino acid sequence (Fischer 2006; Pavlopoulou and

Michalopoulos 2011). A variety of protein databases provided information regard-

ing amino acid sequences derived from nucleotide databases such as GenPept,

RefSeq, the protein information resource, and the UniProt knowledgebase (Bairoch

et al. 2005; Pruitt et al. 2007; Wu et al. 2002).

• Druggability

Druggability is the property of target molecules (proteins and nucleic

acids) that elicits a positive clinical response when bind with a compound. It is

known that best drug target should have the following properties: approving

capability for high-throughput screening and capability to change a disease

physiology and differential expression of target molecules (Bakheet and Doig

2009). Due to the lack of knowledge about the molecular mechanism of disease

and target identification, experimentally an assessment of proteins for their

druggability is a discouraging job and makes the convoluted situation. In

Fig. 8.1 Outline of CADD-based drug designing and development
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this context, with the aid of progress information such as protein-protein interaction

and metabolic and gene regulatory networks, computational models can predict

drug targets with high sensitivity and in lesser time (Costa et al. 2010; Kandoi et al.

2015).

• Chemical probes

Chemical probes (fluorescence resonance energy transfer-based probes and MRI

probes) are crucial tools for evaluation of biochemical processes and detection of

hazardous compounds in cells. Therefore, the development of chemical probes

provided a lot of information regarding appreciation of disease marker. Recently,

fluorescent-based probes have the best consideration because they are easy and

more sensitive to predict protein targets (Jun et al. 2011; Kikuchi 2010).

2. Lead discovery and optimization

• Molecular docking

The discovery of potent drug targets has regular increases in the last few decades

due to the expansion of genomic and proteomics techniques. Experimental and

computational tools are dynamically applied to lead identification and optimization.

The lead molecules are capable of modulating the biological function of the target

proteins. Various molecular docking techniques such as HTVS, XP, and induced

molecular docking technology prompt identification of drug-like leads.

• Designs virtual library based on pharmacophore

Pharmacophore models are a geometrical description of the chemical function-

alities and can be generated using two different approaches depending on the input

data employed for model construction (Güner and Bowen 2014). (1) Structure-

based modeling and the interaction pattern of a molecule and its targets are

extracted from experimentally determined ligand-protein interactions (Kaserer

et al. 2015). (2) In the case of ligand-based modeling, 3D structures of two or

more known compounds are aligned, and pharmacophore character is shared among

these training set molecules.

• De novo design

Biochemical and organic model builder is used to develop molecules by adding

layers of substituents to a core molecule that has been positioned in a binding site.

• Quantitative structure-activity relationship (QSAR)

The aims of quantitative structure-activity relationship (QSAR) analysis are

(1) to predict biological activity (biological/toxicological) and physicochemical

properties of compounds (2) and to rationalize the mechanisms of action within a

series of chemicals employing the interdisciplinary information of chemistry,

mathematics, and biology. Numerous studies have attempted to correlate mathe-

matically the property of molecules using different computationally derived
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quantitative parameters termed as descriptors. There are two types of QSAR used in

drug discovery: (1) 2D-QSAR and (2) 3D-QSAR (Divakar and Hariharan 2015).

• Sequence-based method for phosphorylation site prediction

Kinase-mediated phosphorylation is one of the imperative posttranslational

modifications. Cell signaling defects linked with protein phosphorylation are asso-

ciated with cancer initiation and progression. Therefore, identification of protein

phosphorylation sites is essential for studying disease finding. However, experi-

mental recognition of phosphorylation sites is costly and labor intensive. Compu-

tational methods are helpful tools for phosphorylation site identification (sequence-

based method for serine, threonine, and tyrosine phosphorylation site) and afford

information regarding cell signaling (He et al. 2012; Trost and Kusalik 2011).

• ADME/T modeling for drug design

In recent decades, in silico absorption, distribution, metabolism, excretion

(ADME), and toxicity modeling are used as a tool for computer-aided drug design

in pharmaceutical research. Recently, various ADME/T-related prediction models

have been reported by many software and online predictors. Due to easy compound

screening, low-cost nature of these models permits more rationalized drug identi-

fication and their structural optimization in addition to the parallel investigation of

bioavailability and activity. However, the modern in silico approaches still need

additional progress (Wang et al. 2015).

8.5 Flavonoids: Molecular Mode of Action

8.5.1 Genistein

Genistein is a phytoestrogen soy product belonging to the class of isoflavones

predominantly found as glycosylated form in plants. Its effect has been reported

for copious biological processes such as growth and development that were found

to result in metabolic alterations at the cellular level. Furthermore, it was

established that ingestion of dietary genistein also led to changes in metabolic

hormones including insulin, leptin, thyroid, adrenocorticotropic, cortisol, and cor-

ticosterone (Takeda et al. 1997; Zhou et al. 2014). Experimental evidences col-

lected over the past few decades have upheld the information that inhibition of

cancer cell growth by genistein is conciliated via the inflection of RTK signaling

pathways that result in control of cell cycle and apoptosis (Chen et al. 2013; Chung

et al. 1997; Niu et al. 1999; Shim et al. 2010; Siddiqui et al. 2004; Walker et al.

2000). Consequently, it has been observed that antiproliferative activity of daidzein

and genistein may be linked with the oncogene products such as estrogen receptor α
and TK c-erbB-2 expression in breast cancer cells. As evident in several reports,
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genistein impedes the activation of PI3K and MAPK signaling molecules which are

known to perpetuate a homeostatic equilibrium between cell growth and apoptosis

in nasopharyngeal carcinoma cells (Ding et al. 2003; Kerns and Di 2010;

Mechoulam and Pierce 2005). It is reported that genistein effectively inhibits the

activity of downstream targets such as Src, Akt, and glycogen synthase kinase-3β
(Müller et al. 2001). Molecular structures of active multitargeted RTK signaling

inhibitor flavonoid are represented in Fig. 8.2.

8.5.2 Quercetin

Quercetin belongs to flavonoids that play an important role in cancer prevention.

Quercetin inhibited EGFR cell signaling with an activation of a forkhead family of

transcription factor FOXO1 activation. Many reports confirm that quercetin is an

efficient anticancer agent that induces apoptosis and decreases cell proliferation in

oral cancer cells overexpressing EGFR (Huang et al. 2013). Furthermore, it was

also observed that quercetin may induce apoptosis and reduce cell proliferation in

HeLa cells via the AMPK-induced HSP70 and downregulation of EGFR (Jung et al.

2010). In vitro and in vivo experiments revealed that quercetin could inhibit the

proliferation and induce apoptosis in cancer cells (Huang et al. 2013; Lyne 2002).

Moreover, quercetin is observed to arrest the cell cycle at the G0/G1 phase and

induce apoptosis in PC3 cells via intrinsic apoptotic stimuli that led to DNA

damage (Liu et al. 2012a, b).

Genistein, quercetin, luteolin, morin, and kaempferol anticancer properties in

different cancer cells are represented in Table 8.3.

Phenyl moiety

Fig. 8.2 Molecular structure of flavonoids
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8.5.3 Morin

Morin is a flavone that exhibits antiproliferative, antioxidant, and anti-

inflammatory activity by modulating NF-κβ signaling pathway. It has been

observed to inhibit the NF-κβ-dependent gene expression activated by tumor

necrosis factor (TNF) and the p65 subunit of NF-κβ. It enhances apoptosis and

reduced invasion via downregulation of MMP2 and MMP9. These effects were

correlated with enhancement of apoptosis induced by TNF and chemotherapeutic

agents (Wang et al. 2009). Furthermore, in vitro and in vivo findings indicate

that morin possesses anti-inflammatory, anti-angiogenesis, and antiproliferative

activity by supporting suppression of diethylnitrosamine-induced hepatocellular

carcinoma cells via downregulation of MMP2 and MMP9 (Masuda et al.

2003). It was also observed that morin induces apoptosis in HL-60 and hepat-

ocellular cells by activation of the cysteine-aspartic acid protease-3 (caspase-3)

(Kuo et al. 2007; Luo et al. 2001; Sivaramakrishnan and Devaraj 2010).

Table 8.3 Genistein, quercetin, luteolin, morin, and kaempferol anticancer properties in different

cancer cells

Agents Tumors References

Genistein Breast cancer Parra et al. (2016)

Breast cancer Fang et al. (2016)

Colorectal cancer Qin et al. (2015)

Pancreatic cancer Suzuki et al. (2014)

Breast cancer Xie et al. (2014)

Quercetin Liver cancer cells Wu et al. (2014)

Liver cancer cells Olayinka et al. (2014)

Anticancer Pandey et al. (2015)

Anticancer Brito et al. (2015)

Colon cancer Refolo et al. (2015)

Morin Colon cancer Hyun et al. (2015)

Leukemia cell Karimi et al. (2013)

Anticancer Neves and Kwok (2015)

Leukemia cell Park et al. (2014a)

Osteoblast and breast tumor Naso et al. (2013)

Luteolin Head and neck cancer Majumdar et al. (2014)

Anticancer Lin et al. (2008)

Lung cancer cells Ma et al. (2015)

Gastric cancer Lu et al. (2015)

Anticancer Sak (2014)

Kaempferol Cervical cancer Tu et al. (2016a, b)

Esophageal cancer Tu et al. (2016a, b)

Anticancer Kadioglu et al. (2015)

Lung cancer Park et al. (2014b)

Anticancer Batra and Sharma (2013)
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It has been suggested that morin prevents acute liver damage by inhibiting the

production of the pro-inflammatory cytokine (Park et al. 2010).

8.5.4 Luteolin

Luteolin is one of the most widespread naturally occurring flavonoids present in

edible plants. It has been reported that luteolin suppresses VEGF-induced phos-

phorylation of VEGF2R in prostate cancer cells (Liu et al. 2012a, b). Luteolin

exhibited cyclin-dependent kinase cell cycle arrest in breast cancer cells. Further, it

has been reported that luteolin down-regulate the EGFR mRNA expression

followed by the inhibiting MAPK activation (Morales and Haza 2012). Luteolin

exhibited cyclin-dependent kinase cell cycle arrest in breast cancer cells. Further, it

has been reported that luteolin down-regulate the EGFR mRNA expression

followed by the inhibition of MAPK activation (Azevedo et al. 2015; Kim et al.

2012; Lin et al. 2008; Lopez-Lazaro 2009; Maggioni et al. 2014; Phillips et al.

2011; Sak 2014; F. Sun et al. 2012; Xu et al. 2013; Zhang et al. 2010, 2014a, b,

2015). Luteolin could sensitize cancer cells to inhibit cell proliferation and induce

apoptosis and cell cycle arrest through suppressing cell survival pathways such as

PI3K and MAPK in colon cancer cell, epithelioid cancer, pancreatic cancer cells,

hepatoma cells, breast cancer cells, lung cancer xenograft models, and gastric

carcinoma xenografts in nude mice (Azevedo et al. 2015). Luteolin also inhibited

hypoxia-induced cell proliferation, motility, and adhesion via inhibiting the expres-

sion of integrin β1 and focal adhesion kinase (Wang et al. 2014).

8.5.5 Kaempferol

Kaempferol is a yellow crystalline solid, slightly water-soluble natural polyphenol

belonging to the group of antioxidant flavonoids. Moreover, numerous studies

showed that consumption of kaempferol containing foods led to reduced risk of

cancer and cardiovascular diseases. Furthermore, numerous preclinical studies have

demonstrated that kaempferol and some glycosides of kaempferol have extensive

pharmacological activities including antioxidant, anti-inflammatory, anticancer,

neuroprotective, antidiabetic, analgesic, and antiallergic (Prasad et al. 2013). More-

over, the cytotoxicity and resistance of anticancer drugs that conjugate with gluta-

thione may be influenced by long-term intake of kaempferol (Sivashanmugam et al.

2013). It is reported that oxidative stress induced by kaempferol in chronic mye-

logenous leukemia cells (K562) and promyelocytic leukemia cells (U937, K562,

and U937) affects the inactivation of PI3K signaling pathways which may lead to

cell death. Kaempferol has been reported to induce apoptosis via endoplasmic

reticulum stress and mitochondria-dependent pathway in osteosarcoma U2OS

cells. In vivo efficacy of kaempferol was assessed in BALB/nu/nu mice inoculated
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with U2OS cells and indicated inhibition of tumor growth by reducing cell prolif-

eration and inducing apoptosis. Furthermore, it inhibits the growth of human

osteosarcoma cells both in vivo and in vitro (Meshram et al. 2012; Prasad et al.

2013). Kaempferol and quercetin were known to induce apoptosis and cell cycle

arrest in various oral cancer cell lines including SCC1483, SCC-25, and SCC-QLL1

via caspase-3-dependent activity. Kaempferol induces apoptosis through oxidative

stress and induces G2/M cell cycle arrest in glioblastoma, HeLa, and leukemic cell

lines (Taylor et al. 2009; Xu et al. 2004). Kaempferol is known to reduce cell

proliferation through downregulation of oncoprotein c-Myc and promoting apopto-

sis and cell cycle arrest in ovarian cancer cells (Luo et al. 2010).

8.5.6 Green Tea

Green tea is a wonderful beverage with potential health benefits made from the

leaves of Camellia sinensis via minimum oxidation processing with abundant

polyphenols, including epigallocatechin gallate (EGCG), epicatechin gallate

(ECG), epigallate catechin (EGC), and epicatechin (EC) targeting multiple signal-

ing pathways that lead to anti-oxidative and anticarcinogenic potential (Kadioglu

et al. 2014; Khan et al. 2006). Multitargeted anticancer activities of EGCG have

been demonstrated by using in silico, in vitro, and in vivo study represented in

Table 8.4.

EGCG affect numerous molecular targets involved in cancer cell proliferation

and survival; however, polyphenolic catechins such as EGCG exhibit poor oral

bioavailability. The consumption of green tea has been recommended for

chemoprotective activity. Previous studies have established that active anticancer

constituent in green tea is EGCG with the anticancer activity highlighted in various

in vitro and in vivo studies. The anticancer activity of EGCG may be accredited to

the combinatory effects on multiple targets that are determinant for cell prolifera-

tion and apoptosis (Alam and Khan 2014; Dennler et al. 2002; Kalva et al. 2014;

Kuete et al. 2015; Santoshi et al. 2014; Xu et al. 2004). A number of reports confirm

that green tea reduces cell proliferation and sensitizes the cell to apoptosis, ulti-

mately leading to cancer cell growth inhibition in diverse cancer cells including

colorectal and hepatocellular carcinoma, SW480 colon cancer, SV40 virally

transformed WI38 human fibroblasts (WI38VA), prostate cancer, and Ishikawa

cells (Li et al. 2014; Liu et al. 2014; Mayer and Gustafson 2004, 2008; Sun et al.

2014; Yim-Im et al. 2014). Interestingly, green tea showed anticancer property in

colorectal and hepatocellular carcinoma cells via regulating the activation of

tyrosine kinase EGFR (Khan et al. 2006; Shimizu et al. 2011; Shimizu et al.

2008). Furthermore, it was reported that EGCG has potential inhibitory effects on

tumor angiogenesis, induced by IGF1 in non-small cell lung cancer cells via

downregulation of HIF-1α and VEGF expression. EGCG inhibiting tumor invasion

and angiogenesis underlines the role of green tea as a cancer chemopreventive

agent (Jackson and Setzer 2013). EGCG treatment was found to inhibit UV-induced
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epidermal lipid peroxidation, decrease antioxidant enzyme glutathione peroxidase

activity, and increase catalase activity against exposures to UV light in the human

skin (Kumar and Bora 2012). Catechin induces apoptosis and cell cycle arrest and

reduces cell proliferation via deviated antioxidant parameters including superoxide

dismutase, catalase, and lipid peroxidation in HepG2 cells (Amaral et al. 2014).

8.5.7 Myricetin

Myricetin is a naturally occurring phenolic flavonol found in red wine, fruits,

vegetables, and herbs possessing antioxidant and anti-inflammatory activity. In

vitro investigations demonstrate that in high concentrations, it can improve lipo-

proteins such as low-density lipoprotein cholesterol. Myricetin was observed to

ameliorate inoperative insulin signaling via β-endorphin signaling in the skeletal

muscles of fructose-fed rats. It enhances the secretion β-endorphin, followed by

peripheral μ-opioid receptor activation which leads to amelioration of impaired

insulin receptor signaling (Lee et al. 2004; Yamaguchi et al. 1995). JAK1/STAT3

pathway activated by cytokine and growth factor including insulin, IGF1, and EGF

has been recommended to play a significant role in cell proliferation, differentia-

tion, and cell migration (Simon et al. 1998; Vela et al. 2015). It was reported that

myricetin directly binds to JAK1/STAT3 molecules to inhibit cell transformation in

EGF-activated mouse JB6P+ cells (Kumamoto et al. 2009). The multitargeted

anticancer activity of myricetin has been demonstrated by using in silico, in vitro,

and in vivo study represented in Table 8.5.

Table 8.4 EGCG anticancer properties in different cancer cells

Agent Tumors and tumor cells References

(�)-EGCG Nasopharyngeal carcinoma cells Fang et al. (2015)

(�)-EGCG Lung cancer Zhang et al. (2015)

(�)-EGCG Squamous cell carcinoma Irimie et al. (2015)

(�)-EGCG HL-60 promyelocytic leukemia cells Saiko et al. (2015)

(�)-EGCG Head and neck tumor Masuda et al. (2003)

(�)-EGCG Mouse embryonic fibroblast cells Yagiz et al. (2007)

(�)-EGCG Human osteogenic sarcoma (HOS) cells Ji et al. (2006)

(�)-EGCG Laryngeal squamous carcinoma cells X. Wang et al. (2009)

(�)-EGCG Nasopharyngeal carcinoma cells Luo et al. (2001)

(�)-EGCG Renal cell carcinoma Gu et al. (2009)

(�)-EGCG Hypopharyngeal carcinoma cells Park et al. (2010)

(�)-EGCG Pancreatic cancer cells Z. Wang et al. (2008)
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8.6 Conclusions and Outlook

Insulin, IGF, EGF, and VEGF growth factors are crucial to the growth and regu-

lation of cancer cells. Receptors for these growth factors are a striking target to

combat cancer. Moreover, binding of ligands to receptor molecules induces

conformational changes and activates autophosphorylation of a cascade of tyrosine

residues of small protein molecules such as STAT3. PI3K pathway is one of the

most habitually activated signal transduction pathways distant from RAS that plays

a significant role in cellular growth and metabolism. PI3K, Akt, PDK1, and mTOR

are activated by a number of biological processes including expression of onco-

genes and inactivation of tumor suppressor genes.

A vast scientific data has accumulated, elucidating the molecular mechanisms of

cancer development and the action of anticancer agents in cancer prevention. These

research findings have provided the basis for the identification of molecular mech-

anisms for cancer prevention and treatment. Notably, these discoveries have iden-

tified key molecular targets for screening and testing novel natural anticancer drugs

that have fewer adverse side effects. However, despite increasing advances in drug

discovery and preclinical testing, anticancer drug development remains a laborious,

time-consuming process with limited success. This suggests a critical need to

differentiate at an earlier stage of development between promising candidates and

those less likely to be effective. Even though progress has been made in identifying

important molecular targets and potential nontoxic anticancer agents, transitioning

preclinical results into the clinic has been extremely challenging. Unfortunately

very few compounds have shown real promise in clinical trials. The combination of

two or more compounds that target multiple pathways simultaneously is a strategy

that is rapidly gaining widespread acceptance. Researchers suggested that combi-

nations of drugs that could block heterogeneous cancers by inhibiting multiple

signaling pathways have also been revealed beneficial in clinical trials.

Table 8.5 Myricetin anticancer potential in different cancer cells

Agent Tumors and tumor cells References

Myricetin Esophageal carcinoma Wang et al. (2014)

Myricetin breast cancer Zhang et al. (2014a, b)

Myricetin Lung cancer Zhang et al. (2014a, b)

Myricetin Colon cancer cells Kim et al. (2014)

Myricetin Squamous cell carcinoma Maggioni et al. (2014)

Myricetin Prostate cancer cells Xu et al. (2013)

Myricetin Pancreatic cancer cells Phillips et al. (2011)

Myricetin Hepatocellular carcinoma Zhang et al. (2010)

Myricetin Gastric and ovarian cancers Sak (2014)

Myricetin Leukemia Morales and Haza (2012)

Myricetin Bladder cancer Sun et al. (2012)

Myricetin Glioblastoma cells Siegelin et al. (2009)
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Furthermore, combinations of agents with natural compounds will probably require

a lower dose of each compound which led to less toxicity and fewer side effects. In

silico screening uses molecular docking programs that target molecules into the

active site and then ranks molecules by their aptitude to interact with the target

protein. Such computer-identified drug targets can be validated in vitro and in vivo

using cell-based biochemical assays and animal studies as well.
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Chapter 9

Genome-Wide Association Studies: A
Comprehensive Tool to Explore Comparative
Genomic Variations and Interactions

Aruni Wilson

Abstract In the recent past, significant advances in sequencing technologies have

led to genome-wide association studies (GWASs) that had revealed substantial

insight into the genetic architecture of human phenotypes. The technique involves

rapid scanning of markers across the whole genome of many people in order to find

genetic variants that can be attributed to a particular disease condition. The enor-

mous contributions of genetic information to common disease conditions and newer

algorithms have set a stage for rapid and efficient screening of the data. Such

information in the future will enable a tailor-made disease prevention program

through selection of treatment options. An archive of data from genome-wide

association studies on a variety of diseases and conditions already can be accessed

through an NCBI Web site, called the Database of Genotype and Phenotype

(dbGaP) located at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼gap.

Keywords GWAS • PheWAS • Genome bioinformatics • Microbiome variations

9.1 Introduction

Rapid development of sequencing technology and computational methods has now

paved the way for GWAS that has now become a powerful tool to detect natural

variations underlying complex traits. The GWAS methodology became well

established in human genetics during a decade. This method of study follows an

approach that involves rapidly scanning markers across the entire set of DNA in

comparison with many subjects to find genetic variations associated with a particular
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disease or trait or to study variations in the environmental influence. Currently, over

1000 GWASs have been published linking nearly 4000 statistically significant loci to

over 500 human traits and diseases (Hindorff et al. 2013). GWAS has identified

thousands of statistically significant genetic variants that are associated with a

number of human conditions; however, the main drawback is that most GWASs do

not identify clinically significant associations. Furthermore, identification of biolog-

ically significant variants by GWAS also presents a significant challenge. While

GWAS is a phenotype–genotype approach, an alternative is to study the genotype–

phenotype approach that is currently called the “phenome-wide association studies

(PheWASs) (Hebbring et al. 2013). Millions of SNPs were identified in human

populations by which a high-density haplotype map of human genome could be

constructed (Abecasis et al. 2012). Furthermore, many commercial arrays designed

for large-scale genotyping has led to the use of this technique in identifying genes

involved in human disease (2118). The HapMap Project showed that common but

minute variations in human DNA occur about once in very 1000 base pairs of DNA

across the human genome, which contains about three billion base pairs. These

variations, called single nucleotide polymorphisms (SNPs), can be used to identify

genetic contributions to common diseases. Recent GWASs have identified about

500,000 of these SNPs in each individual. The advent of genome-wide association

(GWA) technology has transformed the landscape of human genetic research. It has

enabled those in the field to move beyond the limitations of small-scale candidate

gene studies, and well over 200 loci influencing a wide range of complex phenotypes

have now been identified. The National Center for Biotechnology Information

(NCBI), a part of NIH’s National Library of Medicine, is developing databases for

use by the research community. An archive of data from genome-wide association

studies on a variety of diseases and conditions already can be accessed through an

NCBI Web site, called the Database of Genotype and Phenotype (dbGaP), located at

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼gap.

Three of the major diseases in which there has been the greatest yield of novel

complex trait-susceptibility genes from GWA studies include metabolic/cardiovas-

cular, autoimmune, and cancer.

Over 50 novel loci now known to modify individual risk of type 2 diabetes and

cardiovascular disease have been described to influence circulating levels of lipids

or to alter energy balance and thereby body mass index and potential for obesity

(Mohlke et al. 2008). There has been a similar explosion in respect of autoimmune

diseases, and Chen and Shapiro (2015) summarize how the total numbers of loci

implicated in predisposition to celiac disease, inflammatory bowel disease, multiple

sclerosis, rheumatoid arthritis, lupus, or type 1 diabetes have more than quadrupled

in the past 3 years, with several of those loci predisposing to more than one

autoimmune disease. GWASs into cancer predisposition tell the same story: Easton

(Abecasis et al. 2012) documents over 20 new loci for breast cancer, prostate

cancer, colorectal cancer, or melanoma discovered in the last 2 years. The findings

in cancer also provide an early glimpse of the possible complexity of susceptibility

loci, with multiple alleles at the same 8q24 locus influencing the risk of different

combinations of cancers.
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9.2 Background

The primary purpose of GWAS is to identify single nucleotide polymorphisms

(SNPs) that are associated with phenotypic traits, typically those associated with a

particular disease. Nearly half of the disease-associated SNPs from published

GWAS are not located in or near genes (Welter et al. 2014). Therefore, despite

the fact that significant associations are often found between complex traits and

SNPs in gene deserts (i.e., genomic regions of> 500 kb that lack annotated genes or

protein-coding sequences, the possibility of the SNPs within such genomic regions

regulating the unlinked genes lies within the twists and turns that form when 3 m of

human DNA (chromosomes) is packaged within a roughly spherical nucleus that is

only approximately 10 μm in diameter (Schierding et al. 2014). Within the hierar-

chy of folding necessary to package the genome within the eukaryotic nucleus,

regions of each chromosome contact other chromosomes to form an intricate three-

dimensional DNA network. Therefore, while two regions of DNA (loci) may be

distant on a linear scale, DNA folding provides a mechanism for these two loci to

become spatially close together. Implicit in this concept is the idea that all genetic

functions (regulation, reading, repair, and replication) are influenced by this three-

dimensional architecture, generating the cell’s morphology and function (Misteli

2001). Intracellular DNA structure cannot be divorced from its functions. There-

fore, it is possible that intergenic SNPs associated with diseases are indeed involved

in the regulation of genes and pathways through spatial associations with different

genes.

9.3 GWAS in Human Disease Study

GWAS approach is through studying the phenotype to genotype variations

(Fig. 9.1a). While there is every effort to catalog human variation, the most recent

versions of dbSNP and the human gene mutation database contain 38,072,522

validated variants (Sherry et al. 2001) and ~100,000 mutations in nuclear genes

(Stenson et al. 2014) that are associated with complex human traits, respectively.

However, the associations between common variants (SNPs) and phenotypic traits

or diseases held in these databases, and others like them, only describe a small

fraction of the overall heritability of complex disease traits (Frazer et al. 2009).

Thus, our ability to elucidate functional pathways related to these SNPs has been

limited. Also, it is important to determine if SNPs located outside of genes

contribute to disease phenotypes through alterations to spatial regulatory

interactions.

One caveat to the study of SNPs within non-genic regions is that while it is

known that common SNPs explain a substantial portion of heritability, not all SNPs

contribute equally to the heritability of a trait. Despite this, it remains possible that

SNPs located outside of coding regions represent a new class of regulatory SNPs

that make an important contribution toward explaining heritability.
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Recently, many methods that try to explain the roles of these SNPs in the context

of 3D structure have recently been developed. A recently developed database

provides functional annotations of SNPs using actual long-range interaction data

sets (Wang et al. 2012). By going beyond conservation information and incorpo-

rating information from multiple different sources (e.g., HapMap, ENCODE), the

GWAS 3D database has branded itself as an efficient solution to interpret the

regulatory role of genetic variation in the noncoding regions, associating SNPs

with 3D structure changes.

9.4 Planning and Executing GWAS

GWASs are fast becoming the default study design to study and discover new

genetic variants that may influence an expressed trait or a phenotype. The major

planning and execution of GWAS rely upon a proper ethical consideration, a well-

balanced study design, selection of a phenotype or phenotypes, power analysis of

the sample size, sample tracking and storage of big data, and genotyping product

selection. Furthermore, more importantly, due consideration is given to DNA

quantity and preparation, genotyping methods, quality control and checking the

genotype data and above all analysis part through in silico genotyping (imputing),

study of the test of association, and replication of association signals.

The major ethical considerations and consent documents and sharing of GWAS

data under biobank policies are available at http://grants.nih.gov/grants/gwas/, and

the deposition of data could be retrieved from the NIH database of genotype and

Fig. 9.1 Illustrative representation of GWAS (a) and PheWAS (b)
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phenotype (dbGaP) (Tryka et al. 2014). However, it is always best to consult local

experts in ethics and genetics on their local review board.

Although GWAS uses a family design, the resulting data can be analyzed under

the test of association of familial traits (Martin et al. 2000; Chen and Abecasis

2007). However, many of the earlier GWASs have originated from case–control

study designs. This is advantageous in independent sampling units and ease of

analysis. Also, such approach could contribute to power of tests of common genetic

variants that contribute only moderate to low relative risk groups. Nevertheless,

matching of samples is more important in this approach to avoid biases.

It has been earlier shown that many studies have demonstrated the utility of

genotyping a common set of population controls for analyses of multiple traits. The

Wellcome Trust Case Control Consortium (WTCCC) (Wellcome Trust Case Con-

trol Consortium 2007) genotyped 500,000 SNPs in a common set of 3000 controls

drawn from the 1958 British birth cohort and the UK Blood Services collection and

has used these for a number of disease-based GWAS. Tests of association using a

Cochran–Armitage additive trend statistic showed a high degree of concordance of

the separately ascertained, but ethnically matched, UK controls. The use of previ-

ously genotyped population controls ascertained from an independent study can

result in a considerable cost saving or increase in power (Zondervan and Cardon

2007), but the population must be substantially free of the disease or phenotype

under investigation and must be ethnically well matched. Many of the related issues

have been reviewed previously (Zondervan and Cardon 2007; McCarthy et al.

2008; Cooper et al. 2008; Amos 2007).

One of the most neglected aspects of GWAS is the choice of phenotype

definition and method of measurement of primary phenotypes and their potential

cofounders. Hence, a large-scale study such as a well-designed prospective cohort

is often advantageous. Given the need for a large-scale study, often international

and collaborative efforts to establish replication or identify alleles could help in

developing standardized phenotypic protocols. Such studies will facilitate compa-

rable cross analyses and analysis of metadata.

The power to detect association is a function of the effect sample size (number of

cases and controls or families) and the tested association disease model. These

factors are influenced by the prevalence of the disease, disease allele frequency, and

the genotypic relative risk (GRR). For a typical study design that plans to genotype

1000 cases and 1000 controls for 300,000 markers, a disease-predisposing variant

with GRR¼ 1.415 under a multiplicative model, with prevalence 0.1 and risk allele

frequency 0.5, can be detected with 80% power (Klein 2007; Mukherjee et al.

2011). To reduce the high cost of genotyping, a two-stage design has been proposed

where a proportion of samples are genotyped on every marker in stage 1, and a

proportion of these markers are later followed up by genotyping them on the

remaining samples in stage 2 (Nguyen et al. 2009). For the above example, nearly

the same power (77%) can be achieved with only 34% as many genotypes by using

30% of samples in stage 1 and 5% markers in stage 2. Software packages such as

CaTS and other statistical packages (Table 9.1) can be used to plan the sample size

and power for their studies (Skol et al. 2006).
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Table 9.1 Bioinformatics tools in GWAS

Function Tool PubMed reference/Tool url

Quality control Quality control of data sets is the important prerequisite for GWAS analysis

and analysis of metadata

GTOOL http://www.well.ox.ac.uk/~cfreeman/

software/gwas/gtool.html

GWAtool box http://www.ncbi.nlm.nih.gov/

pubmed/22155946

http://www.eurac.edu/en/research/

health/biomed/services/Pages/

GWAtoolbox.aspx

PhenoMan http://www.ncbi.nlm.nih.gov/

pubmed/24336645

https://code.google.com/p/

phenoman/

QCGWAS http://www.ncbi.nlm.nih.gov/

pubmed/24395754

http://cran.r-project.org/web/pack

ages/QCGWAS/

QCTOOL http://www.well.ox.ac.uk/~gav/

qctool/#overview

Association

mapping

The analysis relies upon detection of linkage disequilibrium (LD) between

genetic markers and genes controlling the phenotype of interest through

exploring recombination events that have accumulated over generations

PLINK http://www.ncbi.nlm.nih.gov/

pubmed/17701901

http://pngu.mgh.harvard.edu/~pur

cell/plink/

EMMA (efficient mixed-model

association)

http://www.ncbi.nlm.nih.gov/

pubmed/18385116

http://mouse.cs.ucla.edu/emma/

GAPIT (genome association and pre-

diction integrated tool)

http://www.maizegenetics.net/#!

gapit/cmkv

GenABEL http://www.ncbi.nlm.nih.gov/

pubmed/17384015

http://www.genabel.org/packages/

GenABEL

GLOGC (genome-wide LOGistic

mixed model/score) set

http://www.ncbi.nlm.nih.gov/

pubmed/22522135

http://www.bioinformatics.org/~stan

hope/GLOGS/

GWAPP http://www.ncbi.nlm.nih.gov/

pubmed/23277364

http://gwapp.gmi.oeaw.ac.at/index.

html#!homePage

GWASpi http://www.ncbi.nlm.nih.gov/

pubmed/21586520

http://www.gwaspi.org/
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Table 9.1 (continued)

Function Tool PubMed reference/Tool url

Matapax http://www.ncbi.nlm.nih.gov/

pubmed/22353578

http://matapax.mpimp-golm.mpg.de/

Software engineering the mixed

model for genome-wide association

studies on large samples

http://www.ncbi.nlm.nih.gov/

pubmed/19933212

http://www.ncbi.nlm.nih.gov/

pubmed/19933212

TASSEL http://www.ncbi.nlm.nih.gov/

pubmed/17586829

http://www.maizegenetics.net/#!tas

sel/c17q9

Complex trait

prediction

The success of genome-wide association studies (GWASs) has led to

increasing interest in making predictions of complex trait phenotypes,

including disease, from genotype data. Rigorous assessment of the value of

predictors is crucial before implementation

ATHENA (analysis tool for heritable

and environmental network

association)

http://www.ncbi.nlm.nih.gov/

pubmed/24149050

http://ritchielab.psu.edu/software/

athena-downloads

GCTA (genome-wide complex trait

analysis)

http://www.ncbi.nlm.nih.gov/

pubmed/21167468

http://www.complextraitgenomics.

com/software/gcta/

GVCBLUP http://www.ncbi.nlm.nih.gov/

pubmed/25107495

http://animalgene.umn.edu/gvcblup_

win/index.html

MultiBLUP http://www.ncbi.nlm.nih.gov/

pubmed/24963154

http://dougspeed.com/multiblup/

Regulatory

SNP prediction

Genome-wide association studies revealed that most disease-associated single

nucleotide polymorphisms (SNPs) are located in regulatory regions within

introns or in regions between genes. Regulatory SNPs (rSNPs) are such SNPs

that affect gene regulation by changing transcription factor (TF) binding

affinities to genomic sequences. Identifying potential rSNPs is crucial for

understanding disease mechanisms

Is-Rsnp (In silico regulatory SNP

detection)

http://www.ncbi.nlm.nih.gov/

pubmed/20823317

http://bioinformatics.research.nicta.

com.au/software/is-rsnp/

AtSNP ( affinity testing for regulatory

SNPs)

http://www.ncbi.nlm.nih.gov/

pubmed/26092860

https://github.com/chandlerzuo/atsnp

Bayes PI-BAR (Bayesian method for

protein–DNA interaction with bind-

ing affinity ranking)

http://doi.org/10.1093/nar/gkv733

http://folk.uio.no/junbaiw/BayesPI-

BAR/
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Table 9.1 (continued)

Function Tool PubMed reference/Tool url

SNP trait asso-

ciation

database

Genome-wide association studies (GWASs) have identified numerous single

nucleotide polymorphisms (SNPs) that are associated with development of

multifactorial diseases, such as coronary artery disease, rheumatoid arthritis,

type 2 diabetes mellitus, and cancers

DbGaP (database of genotypes and

phenotypes)

http://www.ncbi.nlm.nih.gov/

pubmed/24297256

http://www.ncbi.nlm.nih.gov/gap

GRASP (Genome-Wide Repository

of Associations between SNPs and

Phenotypes)

http://www.ncbi.nlm.nih.gov/

pubmed/25428361

http://apps.nhlbi.nih.gov/Grasp/Over

view.aspx

GWAS central http://www.ncbi.nlm.nih.gov/

pubmed/24301061

http://www.gwascentral.org/

HuGE Navigator http://www.ncbi.nlm.nih.gov/

pubmed/18227866

http://www.hugenavigator.net/

HuGENavigator/home.do

LincSNP http://www.ncbi.nlm.nih.gov/

pubmed/24885522

http://210.46.85.180:8080/LincSNP/

NHGRI GWAS catalog http://www.ncbi.nlm.nih.gov/

pubmed/24316577

http://www.genome.gov/gwastudies/

Rare variant

association

analysis

Although genome-wide association studies have been successful in detecting

associations with common variants, there is currently an increasing interest in

identifying low frequency and rare variants associated with complex traits

EPACTS (Efficient and Parallelizable

Association Container Toolbox)

http://genome.sph.umich.edu/wiki/

EPACTS

FamFLM http://www.ncbi.nlm.nih.gov/

pubmed/26111046

http://mga.bionet.nsc.ru/soft/

famFLM/

FamLBL (family-triad-based logistic

Bayesian Lasso)

http://www.ncbi.nlm.nih.gov/

pubmed/24849576

http://www.stat.osu.edu/~statgen/

SOFTWARE/LBL/

FARVAT (family-based rare variant

association test)

http://www.ncbi.nlm.nih.gov/

pubmed/25075118

http://healthstat.snu.ac.kr/software/

farvat/

SCORE-Seq http://www.ncbi.nlm.nih.gov/

pubmed/21885029

http://dlin.web.unc.edu/software/

SCORE-Seq/
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Table 9.1 (continued)

Function Tool PubMed reference/Tool url

VAT (variant association tools) http://www.ncbi.nlm.nih.gov/

pubmed/24791902

http://varianttools.sourceforge.net/

Association/HomePage

Linkage dis-

equilibrium

software tools

Assessing linkage disequilibrium (LD) across ancestral populations is a pow-

erful approach for investigating population specific genetic structure as well as

functionally mapping regions of disease susceptibility

Haploview http://www.ncbi.nlm.nih.gov/

pubmed/15297300

http://www.broadinstitute.org/scien

tific-community/science/programs/

medical-and-population-genetics/

haploview/haploview

SNAP (SNP annotation and proxy

search)

http://www.broadinstitute.org/mpg/

snap/

Pathway anal-

ysis software

tools

Genome-wide association (GWA) studies have typically focused on the anal-

ysis of single markers, which often lacks the power to uncover the relatively

small effect sizes conferred by most genetic variants. Recently, pathway-based

approaches have been developed, which use prior biological knowledge on

gene function to facilitate more powerful analysis of GWA study data sets.

These approaches typically examine whether a group of related genes in the

same functional pathway are jointly associated with a trait of interest

PLINK http://www.ncbi.nlm.nih.gov/

pubmed/17701901

http://pngu.mgh.harvard.edu/~pur

cell/plink/

ALIGATOR http://www.ncbi.nlm.nih.gov/

pubmed/19539887

http://x004.psycm.uwcm.ac.uk/

~peter/

EW_dmGWAS http://www.ncbi.nlm.nih.gov/

pubmed/25805723

http://bioinfo.mc.vanderbilt.edu/

dmGWAS/

GenGen http://www.ncbi.nlm.nih.gov/

pubmed/17966091

http://www.openbioinformatics.org/

gengen/

GESBAP http://www.ncbi.nlm.nih.gov/

pubmed/19502494

Unclassified

GWAS tools

Birdsuite http://www.ncbi.nlm.nih.gov/

pubmed/18776909

http://www.broadinstitute.org/scien

tific-community/science/programs/
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A known potential source of error for any GWAS is sample handling within the

laboratory. A number of sample tracking and evaluation steps can be put in place to

reduce the potential for sample mishandling or mislabeling. The National Cancer

Institute’s Office of Biorepositories and Biospecimen Research (http://

biospecimens.cancer.gov/) is a useful resource for best practices and policies for

biospecimen storage and tracking and has also developed a suite of informatics

tools available through the cancer Biomedical Informatics Grid (caBIG). A most

effective way of sample tracking and monitoring could be through the generation of

a “mini-fingerprint” of highly polymorphic genetic variants (SNPs or

microsatellites) on all incoming samples which can serve as a more specific sample

reference.

The Illumina Infinium assay (Illumina Inc., San Diego, CA) (Steemers et al.

2006) and other genotyping platforms are available for GWAS for genotyping. The

most commonly used alternative is the Affymetrix platform (Affymetrix Inc., Santa

Clara, CA) and Illumina BeadChip.

The main factors for genotyping success are DNA quality and quantity. The

260/280 nm ratio, although a good measure of nucleic acid contamination of

protein, is a poor measure of DNA contamination by protein. DNA of 400 ng for

“Duo” products that process two samples per BeadChip, or 200 ng for “Quads”

(four DNAs per BeadChip), has been shown by earlier workers to be efficient (Sale

et al. 2009).

Illumina’s Infinium assay (Steemers et al. 2006) is capable of multiplexing

approximately 6000 to 1 million SNPs/CNVs, either using fixed content products

for GWAS or customizable focused-content products (termed iSelect). At present,

fixed content products for GWAS in humans range from approximately 370,000 to

over 1 million markers per sample. In brief, Illumina’s Infinium assay (Steemers

et al. 2006) consists of four modular components: (a) a single-tube whole-genome

amplification step, (b) an array-based hybridization capture step, (c) an “on array”

enzymatic single-base extension (SBE) step, and (d) an amplified-signal detection

step. SBE uses a single 50 bp probe designed to hybridize adjacent to the SNP query

site. After hybridization of target DNA to the BeadChip (a microelectromechanical

systems (MEMS)-patterned substrate on silica slides), the SNP locus-specific

primers, attached to 3-micron silica beads, are extended in the presence of

Table 9.1 (continued)

Function Tool PubMed reference/Tool url

medical-and-population-genetics/

birdsuite/birdsuite

Genome track analyzer http://www.ncbi.nlm.nih.gov/

pubmed/25627242

http://ancorr.eimb.ru/

PrediXcan http://dx.doi.org/10.1101/020164

https://github.com/hakyimlab/

PrediXcan
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hapten-labeled dideoxynucleotides. Biotin-labeled ddCTP, 2,4-dinitrophenol

(DNP)-labeled ddATP and ddUTP are efficiently incorporated planning and exe-

cuting a genome-wide association study 409 by polymerases and allow detection

with a dual-color, orthogonal, multilayer immunohistochemical sandwich assay.

Biotin and DNP are simultaneously detected by staining with a combination of

Alexa555-labeled streptavidin (SA) and Alexa647-labeled rabbit primary antibody

against DNP, counterstaining with biotinylated anti-SA and DNP-labeled goat anti-

rabbit secondary antibody (Sale et al. 2009).

Rigorous quality control is a crucial component of any GWAS since subtle

biases in raw data can lead to hundreds or thousands of false positive results,

confounding efforts to validate lead SNPs at the replication stage (Sale et al.

2009). Quality control steps to reject SNPs or samples are necessarily a trade-off

between stringency to prevent type 1 error against loss of data, reducing power. The

thresholds used in the individual steps reflect common values that are currently in

use but can be modified to be more or less tolerant of type 1 error. This decision will

depend on study design, availability, and size of replication study samples and

willingness to include downstream manual steps to review cluster patterns of many

SNP loci that appear to show significant association (Skol et al. 2006).

Although a variety of approaches can be used to analyze a GWAS, some widely

used applications, as well as a method uniquely capable of handling multivariate

data, are available as open source and also as standalone software (Table 9.1). For

example, PLINK, a GWAS analysis software (Skol et al. 2006), has been developed

specifically for the analysis of GWAS data for single SNP analyses in case–control

data sets. Also, a multivariate trait GWA algorithm has been implemented the

software package Ghost (people.virginia.edu/wc9c/ghost/). This implementation

can help systematically identify genetic variants that are responsible for multiple

traits. More elaborate reviews on GWAS planning and execution could be seen

(Zondervan and Cardon 2007; Sale et al. 2009; Distefano and Taverna 2011).

9.5 GWAS for Bacteria

In the recent past, the application of GWAS approach explored the horizon to study

the bacterial host preference, antibiotic resistance, and virulence (Chen and Shapiro

2015). The study also threw light on the bacterial and human genome dynamics.

GWASs in bacteria had boomed in the recent years and provide a genetic basis for

bacterial phenotypes. Hence, any measurable bacterial phenotype can be dissected

with this approach. An extension of such conventional GWASs has now shown to

explore the environmentally and industrially relevant phenotypes. The two primary

requirements for GWAS are genotypic and phenotypic measurements from a

sample of organisms. Such phenotypes should be measurable that can be related

to genotypic measurement through high-throughput screening. At the genotypic

level, the bacterial genomes can be broken to core and accessory genome that are

composed of elements that are more commonly present in the strains and the genes
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individually involved in a given trait such as environmental adaptation (Lapierre

and Gogarten 2009; Vernikos et al. 2015). Hence, this may be a genetic variant of

the core by either presence or absence of a polymorphism such as SNP or a

variation on a large piece of genome including gene clusters or operons. Since

many GWASs to date have either used SNPs or the presence of gene or its absence

as the basic criterion, recent methods using DNA–“mer” counts as the basic unit of

association to study the core and flexible genome are emerging (Sheppard et al.

2013). Since bacterial genome diversity is influenced by population stratification

which is nothing but the close relationship of related subgroups than the wider

population (Balding 2006), studies to explore the impact of clonal frames and

population stratification using GWAS on mycobacterium tuberculosis genomes

compared to phylogenetic convergence studies have shownM. tuberculosis possess
an extensive linage disequilibrium and strong population structure making them

challenging subjects for traditional GWAS (Farhat et al. 2013). Bacteria such as

Streptococcus pneumoniae that have an extensive recombining efficiency have less

long-range linkage disequilibrium (LD) and are more localized blocks that facilitate

GWAS (Chewapreecha et al. 2014). Thus, the important first step before

performing a bacterial GWAS is to characterize the linkage disequilibrium.

Hence the major key obstacles of bacterial genome GWAS being the long-range

LD within the clonal frame and extensive bacterial population stratification which

reduces the ability to zero in on the causal mutations with confidence. However, the

relative strength of positive selection provides an opportunity for increased resolu-

tion in bacterial GWAS hits. Hence, the success of bacterial genome GWASs

focuses on performing the genome-wide selection scanning of specific genomes

that are putatively under positive selection and, also, performing a targeted associ-

ation study on these positive selection genomic regions.

To date, there are no genome-wide studies that attempt to characterize specific

genes and pathways in the human genome that shape the composition of the

microbiome. Human Microbiome Studies in relation to human host have also

shown a clear evidence for the influence of environmental factors that support

host genetic components in structuring of these human microbial communities

(Spor et al. 2011). SNPs in the MEFV genes are associated with changes in gut

bacterial communities (Khachatryan et al. 2008). Furthermore, irritable bowel

syndrome (IBS) risk loci are associated with changes in the gut microbiome

composition (Li et al. 2012). Many new findings such as the loss of function

polymorphism and its relation to Crohn’s disease through gene FUT2 and NOD2

risk allele count correlation with increase in the relative abundance of

Enterobacteriaceae (Knights et al. 2014) were some of the findings through

extensive GWASs.

In addition to candidate gene approaches, researchers have also used host

genome-wide genetic variation to find important interactions with the human

microbiome. In a study using 416 twin pairs to assess the heritability of the

microbiome, microbial taxa for which relative abundance is more similar in mono-

zygotic compared to dizygotic twins are identified (Goodrich et al. 2014). In the

laboratory mouse, quantitative trait locus (QTL) mapping approaches have found
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multiple loci associated with gut microbial community composition, some of which

overlap genes involved in immune response (Benson et al. 2010). Furthermore, it is

shown that host mitochondrial DNA haplogroups are correlated with the structure

of microbiome communities (Ma et al. 2014). Genome-wide analysis study to

identify human genes and correlate pathways with microbiome composition was

carried out using data generated by the Human Microbiome Project (HMP) as HMP

has sampled and cataloged the microbial diversity across multiple body sites in a

few hundred individuals (Human Microbiome Project Consortium 2012). A more

elaborate review can be found by Chen et al. (Chen and Shapiro 2015).

9.6 Phenome-Wide Association Studies (PheWASs)

Over the past decade, GWASs have been used to identify thousands of statistically

significant variants that are associated with many human conditions including the

more complex immunological etiologies such as rheumatoid arthritis, multiple

sclerosis, Alzheimer’s disease, etc. However, unfortunately most of the GWASs

fail to identify the clinical significance of association. Hence, identifying such

biologically significant variants always poses a challenge through GWAS. As a

complementary alternative approach to GWAS, many studies have begun to exploit

the genotype-to-phenotype approach through the phenome-wide association studies

(PheWASs) (Fig. 9.1b). With its fast improvements of this technique, it has already

demonstrated its capacity to rediscover many human diseases and their relations.

Furthermore, PHeWAS has been shown to be capable of exploring the genetic

variants with pleotropic properties. With its first publication (Denny et al. 2010),

this study associated only five genetic targets to curate the phenome that was later

refined with clinical expertise. The international classification of disease version

9 (ICD9) spectrum was used to define the phenome in PheWAS (Denny et al. 2010).

In another study, curated phenome using the Electronic Medical Records and

Genomics (eMERGE) network (McCarty et al. 2011). In this study, GWAS was

used to inform PheWAS within the same cohort. One of the significant findings was

the common SNP near FOXE1 (rs965513) associated with risk of hypothyroidism.

ICD9 codes that define hypothyroidism were significantly associated with this

rs965513 genotype by PheWAS (Denny et al. 2011). Recently, this concept of

GWAS-informed PheWAS approach has also been applied to the study of platelet

phenotypes. Using a similar eMERGE population as described above, this study

identified 81 GWAS-significant SNPs including 56 SNPs associated with platelet

count, 29 SNPs associated with platelet volume, and four SNPs associated with

both. Many of these SNPs validate previously published GWAS results. Each of the

81 SNPs was then individually associated with the phenome. Similar to GWAS

PheWAS is a hypothesis-generating approach that is challenged by multiple com-

parison testing (Hebbring 2014). While there are inherent limitation to PheWAS,

like GWAS, differences across populations may affect the ability to validate

findings. At the SNP level, it is more likely to see very different GWAS results.

9 Genome-Wide Association Studies: A Comprehensive Tool to Explore. . . 217



For example, from a population with European ancestry compared with a popula-

tion with African ancestry could result due to significant differences in the linkage

disequilibrium structure and allele frequencies between the two populations. In a

genetically driven PheWAS, there is often one SNP associated across the phenome.

If the SNP genotyped is not the functional variant, and/or observed in multiple

populations, replicating PheWAS results could be difficult.

On the contrary the advantages of PheWASs are more, and the selection of a

phenotype for GWAS is important for the success of any GWAS. So far, the

PheWASs focusing on genetic targets have concentrated on SNPs that were already

identified by GWAS (Denny et al. 2010; Shameer et al. 2014). Even with the

complex challenges described above, PheWAS has demonstrated its capacity to

identify expected associations when going in the opposite direction compared with

GWAS. More exemplified advantages and limitations of PheWAS can be found by

Hebbings et al. (Hebbring 2014).

9.7 Bioinformatics Tools in GWAS Analysis

The genetic complexity of studying the genetic variants through GWAS underpin-

ning the correlation for most of the common diseases remains largely unexplained.

Traditional GWAS focuses on one single nucleotide polymorphism at a time and

has failed to account for the complexity of many genotype–phenotype relationships

that are very heterogeneous due to gene–gene and gene–environment interactions.

Bioinformatics tools are necessary to uncover nonlinear genetic predictors of these

common diseases. These data mining and machine learning methods increase the

power of discovering genetic predictors of common diseases. Furthermore, filter

and wrapper algorithms are necessary to limit the number of examined attributes

making the analysis more powerful, and hence computations can become practical.

However, prior biological knowledge can improve the analysis and interpretation of

GWAS data. Many powerful and intuitive software packages exist (Table 9.1 pro-

vides some of the commonly used software) for effective interrogation and analysis

of the GWAS data through crunching the complex data sets to more useful

information.

With more variable approaches to methodology, PheWAS is always limited by

how well the phenome can be defined. Efforts to reliably define phenotypes using

electronic medical record (EMR) data have been limited to specific phenotypes

(McCarty et al. 2011). Although these disease-specific methods can discriminate

between cases and controls, they often do not necessarily provide a high-throughput

mechanism to define the thousands of phenotypes within a phenome such as the

genome. Automated medical informatics tools capable of reliably defining the

phenotypes within a phenome will be always required to refine the PheWAS

potential.
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9.8 Future Directions

A catalog of published GWAS can be seen at the National Human Genome

Research Institute Web site (http://www.genome.gov/gwastudies/).
As the sequencing technology becomes cheaper, there is an explosion of targeted

gene sequencing studies looking for rarer risk. Recent advances such as the second

generation of GWAS performed using new chips targeting variants throughout the

genome at ever-lower frequencies are becoming popular. This could lead to a

complete blend of whole-genome sequencing of hundreds to thousands of disease

patients and controls.
GWAS and its recent variants along with PheWAS will have a harvest of rare

disease-associated variants with much stronger effects on risk than the common

variants. This will lead to new insights into disease pathways and more importantly

predicts individual risk. Hence, the emergence of these variants will make personal

genomics vastly more useful for health predictions.

The future of the study lies on the fact that this will be an invaluable tool to study

the role on the effect of one gene over other modifier genes in a combined genetic

background that arise due to interactions between or within them. Hence, under-

standing the roles of “epistasis” (gene–gene interactions) involves studying both

“functional epistasis,” which will address the molecular interactions that proteins

(and other genetic elements) have with one another and will convey whether they

operate within the same pathway or consist of proteins who directly complex with

one another, and “compositional epistasis” intended to study the blocking of one

allelic effect by an allele at another locus (Boone et al. 2007). Furthermore, GWAS

and their variants will be used to study the gene–environment interactions, copy

number variants, and epigenetic phenomena which are anticipated to provide

additional insights into our understanding of complex human disorders through

genome-wide studies taking into consideration other variables such as environment

and epigenetic modifications.
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Chapter 10

A Survey of Bioinformatics-Based Tools

in RNA-Sequencing (RNA-Seq) Data

Analysis

Pallavi Gaur and Anoop Chaturvedi

Abstract The capability of next-generation sequencing can be understood by one

of its techniques like RNA sequencing (RNA-Seq) that deals with the transcriptome

complexity in a powerful and cost-effective way. This technique has emerged as a

revolutionary tool with high sensitivity and accuracy over old techniques. Addi-

tionally, this technique also gives unprecedented ability to detect novel mRNA

transcripts as well as ncRNAs and analyze alternative splicing. Being a high-

throughput sequencing technique, it poses a great demand for bioinformatics-

based analysis of the generated data. Here, we explain how RNA-Seq data can be

analyzed, discuss its challenges, and provide an overview of the data analysis

methods/tools. We discuss strategies for quality check, mapping, and differential

expression in transcriptomic data along with discussions on lately developed

strategies for alternative splicing and isoform quantification. We also mention

some useful R/Bioconductor packages for aforementioned tasks.

Keywords RNA-Seq • Mapping • Differential expression • Bioconductor • Galaxy

10.1 Introduction

RNA-Seq is one of the most advanced techniques which use the platform of high-

throughput sequencing (HTS) also called the next-generation sequencing (NGS)

technologies to decipher the transcriptome. Transcriptome comprises the complete

set of transcripts in a tissue, organism, or a specific cell for a given physiological
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condition. Transcripts include protein-coding messenger RNA (mRNA) and non-

coding RNA like ribosomal RNA (rRNA), transfer RNA (tRNA), and other

ncRNAs (Lindberg and Lundeberg 2010; Okazaki et al. 2002). RNA-Seq basically

helps us in looking at the regions of genome being transcribed in a sample and

quantifying the expression of such transcripts. Transcriptome has the tendency to

vary with different physiological conditions that make transcriptomics a significant

field of study, thus turning RNA-Seq a powerful tool for dissecting and understand-

ing many biological phenomena like underlying mechanism and pathways control-

ling disease initiation, development, and progression.

Over the years, several technologies have come to the existence to study

transcriptome, but lately developed RNA-Seq has the ability to characterize the

transcriptome in a more global and relatively better way than microarrays and other

traditional strategies. RNA-Seq uses cDNA sequencing, from RNA sample of

interest (Wilhelm et al. 2008). Basically, RNA-Seq starts by library construction,

followed by sequencing on a specific NGS platform and subsequent bioinformatic

analysis. In a nutshell, library construction requires isolation of RNA which is

randomly fragmented into smaller pieces, followed by reverse transcription.

Reverse transcription converts RNA fragments into cDNA with ligation of adapter

sequences to either one or both ends for amplification. Fragmentation of RNA can

be done prior to reverse transcription, or reverse transcription can be done first

followed by cDNA fragmentation (Roberts et al. 2011; Wang et al. 2009). This

choice plays an important role because it mostly causes a bias in final results.

Especially, cDNA fragmentation generates an under-representation of the 50 of the
transcripts, while RNA fragmentation allows a better representation of the tran-

script body although somehow may end up in delivering depleted transcript end

(Mortazavi et al. 2008). Basic steps and strategy executed by RNA-sequencing

experiment are almost the same for every platform which is shown in Fig. 10.1.

Fragment size selection and priming the sequence reaction along with the above

steps can vary with the implementation of the protocol and introduce some techni-

cal biases in the resulting data. The final sequencing step relies on the NGS platform

like 454 pyrosequencing system (a subsidiary of Roche), the AB SOLiD system

(Life Technologies), and the Illumina Genome Analyzer (Illumina) (Liu et al. 2012;

Marguerat and Bahler 2010; Ansorge 2009), each having its own library construc-

tion method. Both the 454 and the SOLiD systems employ an innovative emulsion

polymerase chain reaction (emulsion PCR) method for clonal amplification. In

emulsion PCR, the cDNA fragments from a library are attached to beads followed

by compartmentalization in the aqueous droplets called water-in-oil emulsion. This

way, each droplet contains a single DNA molecule as well as the segregated

template fragments. These fragments are then amplified in very small emulsified

aqueous droplets (Dressman et al. 2003).

The Illumina Genome Analyzer (GA) utilizes the strategy of “bridge PCR”

amplification where the adapter-linked single-stranded fragments of cDNA are

immobilized on a glass slide by oligonucleotide hybridization in a bridging way,

followed by clonal PCR amplification (Fedurco et al. 2006). A population of

identical templates is resulted from clonal amplification, but it may introduce a
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bias in the RNA-Seq result due to PCR artifacts. That is why performances on

different biological replicates are needed to determine whether the same short reads

are present in different replicates (Wang et al. 2009). Different NGS platforms use

different sequencing strategies (Metzker 2009), and several reviews can be found

Fig. 10.1 A basic layout of RNA-sequencing experiment
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describing details including mechanisms and comparisons of these NGS technolo-

gies (Liu et al. 2012a; Metzker 2009; Shendure and Ji 2008; Ansorge 2009).

Sequencing can produce single-end or paired-end reads. In paired-end sequencing,

a fragment is sequenced from both ends, while in single-end sequencing, only one

end is used. Having the advantage of sequencing from both ends, paired-end

sequencing generates data of comparatively high quality.

Since the advent of RNA-Seq in 2008, it has emerged as a superior technique to

study transcriptome over traditional methods which were either hybridization

(microarray) or sequence based (SAGE, CAGE). Being superior in resolution at

the single-base level, this technique can effectively measure the expression level of

thousands of genes simultaneously in addition to information on alternative splic-

ing, unannotated exons, allele-specific expression (Heap et al. 2010), microRNAs,

variants like SNPs (Quinn et al. 2013), and novel transcripts (gene or noncoding

RNAs). Additionally, many significant phenomena such as detection of differential

alternative splicing and isoform abundance can be studied in detail with RNA-Seq

technique (Park et al. 2013).

Although RNA-Seq is clearly more informative and advantageous, the data

produced by this technique are still complex and huge. NGS platforms generate

high-throughput data in the form of millions of short sequences termed as “reads.”

These reads are associated with their base-call quality scores that indicate the

reliability of each base call. The length of these short reads depends on the type

of NGS platform used for sequencing, but generally they fall within a length of

25–450 bp. The resulting reads are categorized into three types: exonic reads, exon–

intron junction reads, and poly(A) reads (Wang et al. 2009). The analysis of this

kind of data is not a straightforward task and is usually a bottleneck to deal with.

Fortunately, continuous progress in the area of bioinformatics has eased the way to

deal with RNA-Seq data. There are now various bioinformatic tools/software, web

servers, as well as whole pipelines to tackle and analyze RNA-Seq data. Also,

various strategies applicable to RNA-Seq data analysis can be implemented in

Bioconductor (Huber et al. 2015; Gentleman et al. 2004) through statistical lan-

guage “R” (https://www.r-project.org). Bioconductor is free, is open-source, and

can deal with analysis of not only RNA-Seq data but other high-throughput

genomic data as well. Bioconductor basically works on the basis of different

“packages” dedicated to different types of tasks. There are many Bioconductor

packages dedicated to the whole RNA-Seq data analysis executable with even a

little proficiency in R. Many tools can be combined for analysis of RNA-Seq data,

and researchers may form their own custom data analysis pipelines according to

their objectives.

Bioinformatic analysis of RNA-Seq data can be divided into several stages. The

very first step is experiment/technology dependent, and choice of the methods for

downstream analysis is made on the basis of the type of experiment. During

sequencing only, the first step of bioinformatic analysis gets started with the

transformation of fluorescent measurements into associated nucleotide bases with

their quality scores. Base quality score is usually a value representing the confi-

dence of the called bases. The final output of this base-calling step is the short reads

(raw data) in FASTQ (FAST-All with quality score) format. The next task is to map
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these short reads to reference genome (or transcriptome in case of transcriptomic

data) in case it’s already available or otherwise firstly assemble them de novo. After

mapping, further downstream analysis may proceed according to research goals,

though a usual work flow of bioinformatics-based analysis associated with

RNA-Seq data is shown in the flowchart (Fig. 10.2). During the analysis, different

tools/software or strategies may be applied at different steps.

It would not be inappropriate to say that RNA sequencing has a variety of

different applications and data analysis strategies depending on the organism

under study and research objectives. RNA-Seq has the power of identifying tran-

scripts and quantifying gene expression which is the key to decipher more knowl-

edge on the relationship between genome and proteome. Elucidating RNA isoform

expression, alternative splicing, and ncRNA levels are other applications of

RNA-Seq having great importance in molecular biology.

10.2 Data Format, Quality Check, and Preprocessing

Raw reads (FASTQ format) obtained after the base-calling step contain nucleotides

associated with quality scores. Although different NGS platforms have their own

methods of base calling (base-calling software) to evaluate base quality, various

Fig. 10.2 A usual flow chart of bioinformatics-based analysis of RNA-Seq data
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third party groups have also put efforts in developing base-calling methods. The

most profitable and notable example is the enhanced ABI base caller, Phred, which

played an important role in the Human Genome Project (Ewing and Green 1998;

Ewing et al. 1998). Nowadays, most NGS platforms provide the user with a Phred-

like score value (Ewing et al. 1998) for base quality evaluation which is based on a

logarithmic scale encoding the probability of error in the corresponding base call.

This base-calling step is particularly important because its accuracy affects the

downstream analysis. The resulting format of base-calling algorithm, i.e., FASTQ,

is a FASTA (FAST-All) standard format of biological sequences like format but

comes with associated quality score for each nucleotide, usually Phred score.

Reads may be represented in other formats like FASTA and standard flowgram

format (SFF) that may be converted to one another, but generally FASTQ format is

the most frequent one that can be used as input in many applications. FASTQ files

may be so huge in size and also consist of contaminations that need to be eliminated

before downstream analysis because contaminated input directly affects the out-

come. Preprocessing of data is thus a very important and necessary step before

jumping onto the downstream analysis. Preprocessing includes steps like checking

the Phred scores, length of reads per base, and read quality and trimming the reads

to remove adapters, low-quality sequences, duplicate sequences, and Ns (means no

base assigned during the base call). Various available preprocessing tools may be in

the form of stand-alone software or accessed with different whole data analysis

pipelines, web servers like Galaxy (https://galaxyproject.org/), language platforms

like R/Bioconductor, or simply based on command lines.

Some popular tools for quality check and preprocessing of RNA-Seq data are

FastQC (Andrews 2010) (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc), FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit), Cutadapt

(https://cutadapt.readthedocs.org/en/stable) (Martin 2011), and Trimmomatic

(http://www.usadellab.org/cms/index.php?page¼trimmomatic) (Bolger et al.

2014). These tasks are also achievable through some R/Bioconductor packages

like “ShortRead” (Morgan et al. 2009). We present a list of some recently devel-

oped tools for data quality check and preprocessing (Table 10.1).

10.3 Mapping

Mapping is the most important step in way of analyzing any NGS data. “Mapping”

makes each read correspond to a particular position in genome/transcriptome. Since

RNA-Seq data may produce reads either from single exon without accessing the

exon-exon boundary (unspliced) or from a pair of exon where a read would span the

intronic region (spliced), the mapping strategy demands a deeper lookout. If we

empirically align the RNA-Seq reads using methods like Burrows–Wheeler trans-

form, we have to consider both the aligned and unaligned reads. Fully aligned reads

may be unspliced, but the reads which fail to align may be truly spliced reads

spanning an intron. Today, we have many aligners for NGS data using different
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Table 10.1 List of recently developed tools/software for data QC and preprocessing

Tool/package A brief introduction Input References

Category: data QC

AuPairWise Implemented in R scripts.

Measures RNA-Seq repli-

cability by modeling the

effects of noise

Expression data Ballouz and

Gillis (2016)

ClinQC Analysis pipeline. Ana-

lyzes both; Sanger and

NGS data

Raw reads in any native

file format of their

sequencing platforms

Pandey et al.

(2016)

SinQC Software tool. Detects

technical artifacts in

single-cell RNA-seq.

Python and R based. R

package – ROCR

Gene expression patterns Jiang et al.

Jiang et al.

(2016)

TIN (transcript

integrity number)

Based on python. Mea-

sures RNA degradation

RNA-Seq datasets Wang et al.

(2016)

dupRadar R package for plotting and

analyzing duplication rates

dependent on expression

levels

BAM file with mapped

and duplicate marked

reads and a gene model in

GTF format

Sayols and

Klein (2015)

HTSeq Python script-based tool FASTQ, BAM Anders et al.

(2015)

mRIN Perl- and R-based package.

Assess mRNA integrity

directly from RNA-Seq

data

Coverage profile Feng et al.

(2015)

NOISeq Bioconductor package.

Includes modeling noise

distribution of count

Raw and mapped data Tarazona et al.

(2015)

Qualimap 2 Java- and R-based GUI as

well as command line

interface. Supports multi-

sample QC

BAM/SAM, GTF/GFF/

BED and read counts

table

Okonechnikov

et al. (2015)

Rcorrector Corrects error for Illumina

RNA-Seq reads

(k-mer-based method).

Written in C, C++, and

Perl

k-mers based on input

reads and counts

Song and

Florea (2015)

deepTools Galaxy-based server BAM, SAM Ramirez et al.

(2014)

FIXSEQ R based. Corrects over-

dispersed read-count

distribution

Read counts Hashimoto

et al. (2014)

QuaCRS An integrated quality con-

trol pipeline for RNA-Seq

data. Command line

interface

FASTQ, BAM, additional

metadata

Kroll et al.

(2014)

BlackOPs Blacklist mismapping in

RNA-Seq. Written in Perl

Aligned data Cabanski et al.

(2013)

(continued)
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Table 10.1 (continued)

Tool/package A brief introduction Input References

GeneScissors Detects and corrects spuri-

ous transcriptome features

leading misalignment.

Written in C++, Python,

and BamTools

Can be added to any stan-

dard pipeline before

mapping

Zhang et al.

(2013)

HTQC Toolkit implemented in C+

+. For graphics – Perl is

used

FASTQ Yang et al.

(2013)

IDCheck RNA-Seq sample identity

check

BAM Huang et al.

(2013)

Kraken Tool package. Pipeline

written in Perl and R

FASTQ Davis et al.

(2013)

SEECER Command line interface.

Uses HMMs. Applicable to

de novo RNA-Seq

Raw reads Le et al. (2013)

BM-Map Software package. Allo-

cates multireads in

RNA-Seq data. C++ based

SAM Yuan et al.

(2012)

RSeQC Python-script-based pack-

age. Visualization facili-

tated through genome

browsers like UCSC, IGB,

IGV and also using R

scripts

SAM, BAM, FASTA,

BED or chromosome size

file

Wang et al.

(2012)

RNA-SeQC Java based (no installation

required). Also integrated

in “GenePattern” web

interface

One/more BAM Deluca et al.

(2012)

ArrayExpressHTS/

AEHTS

R/Bioconductor-based

pipeline

Raw reads Goncalves

et al. (2011)

BIGpre Stand-alone/integrated in

Galaxy

FASTQ Zhang et al.

(2011)

NGSQC Cross platform QC analy-

sis pipeline

FASTQ (IlluQC) or

FASTA (454QC)

Dai et al.

(2010)

SAMStat C language-based tool

package

SAM, BAM, FASTA,

FASTQ

Lassmann et al.

(2010)

Category: Trimmers and adapter removers

ADEPT Written in Perl5.8. Com-

mand line based

One or more FASTQ files Feng et al.

(2016)

Cookiecutter k-mer-based algorithm.

Command line based.

Implemented in C++

One or more FASTQ files

and a list of k-mers (user

provided or cookiecutter

generated from FASTA)

Starostina

et al. (2015)

NxTrim For Illumina Nextera Mate

Pair (NMP) reads, Com-

mand line interface

Raw reads O’Connell
et al. (2015)

(continued)
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approaches like seed based (e.g., SHRiMP2;David et al. 2011) , BFAST (Homer

et al. 2009), SeqMap (Jiang and Wong 2008), CUSHAW3 (Liu et al. 2014), SOAP

(Li et al. 2008a), MAQ (Li et al. 2008b), STAMPY (Lunter and Goodson 2011) or

hash based (e.g., MOSAIK; Lee et al. 2014), and HIVE hexagon (Santana et al.

2014). Additionally, a popularly used algorithm in data compression technique, the

Burrows–Wheeler transform (BWT), also contributes in providing some excellent

mapping tools like BWA (Li and Durbin 2009d), SOAP2 (Li et al. 2009a), and

Bowtie (Langmead 2010). Several tools such as TopHat (Trapnell et al. 2009),

STAR (Dobin et al. 2013), SpliceMap (Au et al. 2010), and MapSplice (Wang et al.

2010) are available today that perform mapping while considering both the exonic

and splicing events.

Mapping refers to locating the short reads onto reference genome/transcriptome

which is comparatively feasible with the availability of a reference genome/

transcriptome; otherwise a de novo assembly is required to proceed further. With-

out a reference genome or transcriptome, mapping is not feasible as in such case a

de novo assembly of RNA-Seq reads would be required to generate full transcript

sequences (Robertson et al. 2010). De novo assembly is usually complex in nature

that involves construction of de Bruijn graphs using k-mers. There are many tools

for de novo assembly for RNA-Seq data like Trinity (Haas et al. 2013), Velvet

(Zerbino and Birney 2008), Bridger (Chang et al. 2015), SOAPdenovo (Li et al.

Table 10.1 (continued)

Tool/package A brief introduction Input References

PEAT Specifically for paired-end

sequencing. Command line

interface

FASTQ, no adapter

sequence required

Li et al.

(2015b)

leeHom Based on Bayesian maxi-

mum a posteriori probabil-

ity approach. Command-

line-based package

One or more FASTQ files,

unaligned BAM, adapter

sequence

Renaud et al.

(2014)

ngsShoRT Software package written

in Perl

FASTQ or Illumina’s
native QSEQ format

Chen et al.

(2014)

QTrim Stand-alone command line

based (python version) as

well as a web interface

FASTQ or a FASTA file

with its associated quality

file (.qual)

Shrestha et al.

(2014)

Skewer “Bit-masked k-difference

matching algorithm” based

FASTQ Jiang et al.

(2014)

AlienTrimmer Command line based One or more FASTQ files Criscuolo and

Brisse (2013)

NGS QC Toolkit Implemented in Perl.

Command line based, web

based

FASTQ, FASTA Patel and Jain

(2012)

Most of the tools shown in table are attributed to RNA-Seq data, but some lately developed tools

for NGS data QC and preprocessing are also included in the table. Many data QC tools given in the

table are not only limited to raw data QC but to advance stages also like mapping. A brief about

basic property of each tool is also included in the table

10 A Survey of Bioinformatics-Based Tools in RNA-Sequencing. . . 231



2010), and Trans-ABySS (Simpson et al. 2009). Here we discuss some useful

assemblers for de novo assembly and mappers that are very efficient in RNA-Seq

reads mapping.

10.3.1 Trinity

Trinity (Haas et al. 2013) is the first method designed specifically for transcriptome

assembly and works on the basis of de Bruijn graphs. It comprises three indepen-

dent software modules, Inchworm, Chrysalis, and Butterfly, which are used sequen-

tially to produce transcripts. Inchworm assembles the RNA-Seq data into transcript

sequences, Chrysalis clusters the Inchworm contigs and constructs complete de

Bruijn graphs for each cluster, and then Butterfly processes the individual graphs in

parallel to trace the paths of reads within the graph, ultimately reporting full-length

transcripts.

10.3.2 Bridger

Bridger is a newer framework for de novo transcript assembly (Chang et al. 2015).

It is so named as if to build a bridge between the basic keys of two popular

assemblers: Cufflinks (the reference-based assembler (Trapnell et al. 2012)) and

Trinity (the de novo assembler (Haas et al. 2013)). It has some advantages over

other de novo aligners like it allows the use of different k-mer lengths for different

data, while trinity has a fixed k-mer length of 25. It also has a lower false-positive

rate and uses less memory and run time compared with Trinity.

On the other hand, the presence of reference genome/transcriptome makes

mapping process relatively faster and easier to implement with some web-based/

command-line-based tools. In mapping, the problem of multimapping is also

usually seen and needs to be taken care of. Generally, mapping utilizes a heuristic

first step to find likely candidates followed by local alignment, but alignment is not

sufficient for mapping moderate- to large-sized genomes. Thus, the strategy used by

most of the aligners/mappers is to somehow enable a fast heuristic method so that

the smaller number of local alignments has to be performed. As aforementioned,

RNA-Seq mappers should be able to consider the spliced alignment problem, i.e.,

they should be able to place spliced read across introns and correctly determine

exon–intron boundaries. In the present scenario of RNA-Seq research, many

aligners work well in this kind of mapping, among which Bowtie2 (Langmead

et al. 2009) is a popular one. We discuss a few other tools that have proven their

worth.

232 P. Gaur and A. Chaturvedi



10.3.3 TopHat

TopHat is a program that aligns RNA-Seq reads to a genome/transcriptome while

considering splice junction mapping (Trapnell et al. 2009). It uses the ultrahigh-

throughput short read aligner Bowtie and then analyzes the mapping results to

identify splice junctions between exons. Using this initial mapping information

from Bowtie, TopHat builds a database of possible splice junctions and then again

maps the reads against these junctions to confirm them. It runs on Linux andMacOS

X and was originally designed to work with reads produced by the Illumina

Genome Analyzer, although it is successfully applied with reads from other tech-

nologies as well. It also can be implemented in R using some Bioconductor

packages as well as on Galaxy server. Moreover, mapping can be visualized

through Integrated Genome Viewer (https://www.broadinstitute.org/igv/) (Robin-

son et al. 2011).

Before performing further downstream analysis, it is also recommended to check

the quality of mapping as it greatly influences the downstream analysis. A list of

data QC and preprocessing tools capable of checking and processing the data at

many stages (including mapping) of data analysis is provided in Table 10.1. Tools

like SAMStat (Lassmann et al. 2010) and dupRadar (Sayols and Klein 2015)

(R package for QC) are easily accessible and very useful in checking and dealing

with mapping quality issues.

10.3.4 STAR

STAR (Spliced Transcripts Alignment to Reference) (Dobin et al. 2013) is one of

the important alignment tools that are capable of identifying the alternative splicing

junctions in RNA-Seq reads. It is a free, open-source software (under GPLv3

license) that can be downloaded from http://code.google.com/p/rna-star/. It works

by indexing the reference genome first, followed by producing a suffix array index

to accelerate the alignment step in further processing. STAR has high accuracy like

TopHat with comparatively less time consumption. While it can fairly handle

single- or paired-end reads, it also increases its accuracy if provided with an

annotation (.gtf) file. Advantageously, STAR was not developed as an extension

of a short read mapper but a stand-alone C++ code. Being capable of running

parallel threads on multi-core systems, STAR is faster in comparison with other

tools.

Visualization of mapped reads in a graphical or preferably and advantageously

in interactive mode is necessary to closely look at the mapped regions and other

factors. There are various tools/software packages such as “SAMtools tview”

(Li et al. 2009b), “MapView” (Bao et al. 2009), “Tablet” (Milne et al. 2013),

“IGV” (Thorvaldsdóttir et al. 2013), and “Bambino” (Edmonson et al. 2011) that

enable the visualization of mapped reads.
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In NGS data analysis, the factor of quality control is significant at every single

step. Since mapping is the basis for further analysis of data, it is mandatory to check

the quality of mapped files to assure the error-free results. Among already available

NGS data manipulators like Picard (http://picard.sourceforge.net.) and SAMtools

(Li et al. 2009b), some lately developed powerful tools like RseQC and QoRTs

assist in quality control, data processing, and management to an excellent level.

These tools are included in a package of various utilities that handle the data at

different levels.

QoRTs (Hartley and Mullikin 2015) is a fast and portable multifunction toolkit

that easily handles cross-comparison of replicates (biological/experimental) and

detection of errors, artifacts, and biases. Additionally it can produce count data that

can be used in Bioconductor package such as DESeq, DESeq2, and edgeR.

On the other hand, RSeQC (Wang et al. 2012), a comprehensive package of

python programs, provides a number of modules to evaluate RNA-Seq data from

different aspects. Quality check of raw reads for properties like sequence quality,

PCR bias, nucleotide composition bias, and GC bias can be checked with its “basic

modules,” while “RNA-Seq specific modules” evaluate the quality/status of

sequencing saturation of both splice junction detection and expression estimation.

RSeQC is written in Python and C and is freely available at http://code.google.com/

p/rseqc/.

Mapping is also fundamental in many versatile applications of RNA-Seq like

transcript identification and characterization, gene expression quantification, detec-

tion of alternatively spliced isoforms, detection of allele-specific expression (ASE),

and differential gene expression. Programs like HTSeq-count (Anders et al. 2015)

and featureCounts (Liao et al. 2014) use the raw counts of mapped reads for gene

quantification. Gene quantification also utilizes a gene transfer format (GTF) file

containing the genome coordinates of exons and genes. The number of reads

mapped to transcript reference is also the most important information in estimating

gene and transcript expression. For expression analysis, only read counts are not

sufficient because of other factors like sequence biases, number of reads, and

transcript length. These factors are handled by various normalization methods

like RPKM (reads per kilobase per million mapped reads) (Mortazavi et al.

2008), FPKM (fragments per kilobase of transcript per million mapped reads)

(Trapnell et al. 2010), and TPM (transcripts per million) which are elaborated

later in other sections. “Cufflinks” (Trapnell et al. 2012) is a widely used program

for estimating transcript level expression from mapping using an EM (expectation–

maximization) approach while taking into account biases like nonuniform distri-

bution of reads along the gene length.

The power of identification and quantification of an overall expression of RNAs

in a sample is facilitated by RNA-Seq by enabling the genome-wide studies of

alternative pre-mRNA splicing which is an important factor to understand the

differential expression. Since alternative splicing produces multiple isoforms by

skipping or differential joining of exons or introns within a pre-mRNA transcript

during transcription (Fig. 10.3), it delivers functional diversity of a gene during

posttranscriptional processing and affects gene regulation.
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Analyzing expression of transcripts at the isoform level is very important in

order to understand differential expression. Since many genes may have multiple

isoforms, deciphering isoform-specific expression is definitely not straightforward

because it is not simple to assign some reads to a particular isoform. The basic

approach for dealing with this difficult task was to quantify the transcript isoforms

using only those sequences which were unique to particular isoforms (Filichkin

et al. 2010). This approach worked on the basis of some already known or predicted

transcript isoforms for a given gene that were used to form a set of sequences which

in turn could differentiate one isoform from others. Then the mapping of reads to

such a set of sequences elaborated the corresponding isoform expression precisely.

Similarly ALEXA-seq (Griffith et al. 2010) method used only those reads that

mapped uniquely to one isoform to estimate isoform-specific expression, but these

kinds of approaches usually are limited. This is because many isoforms are mostly

nonunique or may have minor sequence differences, and also these approaches

demand a prior knowledge of precise annotation of splice variants.

The tools related to isoform identification, quantification, abundance estimation,

pre-mRNA alternative splicing discovery, and mapping/alignment are already

widespread, and the development of new methods is progressing at a very acceler-

ating speed. We present a list (Table 10.2) consisting some recently developed

methods/tools dedicated to these tasks along with a brief description of each tool.

Lately, some algorithms like Sailfish, Kallisto, and Salmon have come into

existence that use an alignment-free approach to deal with gene/isoform quantifi-

cation task. These algorithms are considered to be lightweight algorithms that are

faster than traditional mapping steps. A succinct overview of all three algorithms is

briefed below.
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Fig. 10.3 A graphical illustration of alternative splicing event that eventually results in isoforms
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10.3.5 Sailfish

Sailfish (Patro et al. 2014) is a free and open-source software, available at http://

www.cs.cmu.edu/~ckingsf/software/sailfish. It is a much faster in silico method

facilitating the quantification of RNA-isoform abundance by totally avoiding the

time-consuming mapping step. Instead of mapping, it inspects k-mers in reads to

observe transcript coverage that results in a fast processing of reads. It also

maintains the accuracy up to the mark by incorporating an EM procedure that

brings a statistical coupling between k-mers. It discards k-mers that overlap inac-

curate bases to handle sequencing errors. Overall, it has only a single explicit

parameter the k-mer length to rely on. Longer k-mers tend to resolve their origin

easier than short k-mers but may be more affected by errors for which Sailfish has

implemented an error handling EM procedure. Process wise, Sailfish first builds an

index from a FASTA reference transcript file and a chosen k-mer length. Data

structures like minimal perfect hash function 9 in the index file play an important

role in mapping each k-mer in reference transcript to an identifier in such a way that

no two k-mers share an identifier. There is no need to change or rebuild the index

unless the reference or the choice of k changes. Next to building index files, the step

of quantification is proceeded that takes index and a set of RNA-Seq reads as input

Table 10.2 Recently developed methods/tools for isoform discovery, quantification, abundance

estimation, alternative splicing discovery, assembling transcriptome, and alignment of RNA-Seq

reads

Tool A brief description of utility URL References

CIDANE Transcript reconstruction, isoform

discovery, and abundance estimation

http://ccb.jhu.edu/

software/cidane/.

Canzar et al.

(2016)

CLASS

CLASS2

Transcriptome assembly. Alternative

splicing discovery

http://sourceforge.

net/projects/

Splicebox

Song and Florea

(2013), Song

et al. (2016)

Rail-RNA A cloud-enabled spliced aligner. Ana-

lyzes many samples at once. For many

samples, Rail-RNA is more accurate

than annotation-assisted aligners

http://rail.bio Nellore et al.

(2015)

Rockhopper 2 De novo assembly of bacterial

transcriptomes

http://cs.wellesley.

edu/~btjaden/

Rockhopper

McClure et al.

(2013), Tjaden

(2015)

JAGuaR An alignment protocol for RNA-Seq

reads. Does not detect novel junctions

http://www.bcgsc.ca/

platform/bioinfo/soft

ware/jaguar

Butterfield et al.

(2014)

MaLTA Simultaneous transcriptome assembly

and quantification from Ion Torrent

RNA-Seq data

http://alan.cs.gsu.

edu/NGS/?q¼malta

Mangul et al.

(2014)

HSA An effective spliced aligner of

RNA-Seq reads. Better call rate and

efficiency but little less accurate at

some attributes

https://github.com/

vlcc/HSA

Bu et al. (2013)
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to estimate the isoform abundance, measured in RPKM, KPKM (k-mers per

kilobase per million mapped k-mers), and TPM. Sailfish can also be used for

non-model organisms in de novo mode. Since Sailfish has an overall parameter of

the k-mer counts, it is also computationally efficient that can effectively exploit

many CPU cores.

10.3.6 Kallisto

Kallisto (Bray et al. 2016) was developed by Pachter lab with the same lightweight

algorithm approach as Sailfish to quantify transcript abundance but improves it with

a “pseudoalignment” process. It is a fast software program written mainly in C++. It

is considered to be near optimal in speed along with accuracy and tested success-

fully by its developers in analyzing 30 million unaligned paired-end RNA-Seq

reads in less than 5 min on a standard desktop. This software is widely popular

because of its accuracy as compared to those of the already existing tools. It does

not work on the basis of position in transcript where a read aligns but the compat-

ibility of read with a particular transcript that takes a lot less time than the

traditional alignment process.

10.3.7 Salmon

Salmon (Patro et al. 2015) is an open-source software under the GPL v3 license and

available at http://combine-lab.github.io/salmon/. Its developers call it a wicked-

fast transcript quantification software that requires a set of target transcripts for

quantification task and may be run in two modes: the quasi-mapping-based mode

and the alignment-based mode. The quasi-mapping-based mode like Sailfish incor-

porates two phases, indexing and quantification, while the alignment-based mode

uses the alignment file (SAM/BAM) provided by the user along with reference

transcript FASTA file and does not require indexing.

10.4 Differential Expression

An important application of RNA-Seq technique is to identify genes that change in

abundance between conditions, i.e., they differ in counts in different conditions.

Differential expression (DE) is simply to compare expression levels of genes

between two conditions, e.g., stimulated versus unstimulated or wild type versus

mutant or normal versus treated. If there is a statistically significant difference or

change in read counts between two conditions, a gene can be affirmed as a

differentially expressed gene. The aforementioned steps of data preprocessing
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and mapping are mandatory for analysis of differential expression. Also, for

differential expression, it is necessary to analyze read-count distributions, typically

represented as a matrix N of n � m where Nij is the number of reads assigned to

gene in sequencing experiment/condition j. Bioconductor has many packages to

support DE analysis of RNA-Seq data. Many packages like DESeq2 (Love et al.

2014), edgeR (Robinson et al. 2010), limma (Ritchie et al. 2015), and baySeq

(Hardcastle 2012) have whole RNA-Seq data analysis pipelines which can be of

great use. Most of the packages for DE analysis expect input data in the form of

matrix of integer values. To prepare the count matrix, SAM/BAM alignment file

along with a file specifying the genomic features, e.g., a GFF3 or GTF, can be used.

For this, we may use other packages of Bioconductor like Rsubread (Liao et al.

2013) and GenomicAlignments (Lawrence et al. 2013).

Two most popular packages for DE analysis are DESeq2 (Love et al. 2014) and

edgeR (Robinson et al. 2010). They are modular in nature that means there are

many entry points in the package from where the package can be used. They often

give freedom to use an alternative aligner or a different strategy or tool to obtain

read counts and then use the package for rest of the analysis. Since there is not any

universal standard for DE analysis, it may somewhat be objective oriented and

heavily dependent on external data like reference assemblies and annotation. Thus,

we can’t expect that two different analysis strategies of the same data will end up

with the same results, similarity is still expected though.

It is also worth mentioning about the importance of normalization which is a

very significant step in the analysis of DE. Normalization is necessary to correct for

biases which can arise from technical biases like between-sample differences that

denote library size and within-sample gene-specific effects that may be related to

gene length and GC-content (Oshlack and Wakefi 2009). There are various nor-

malization methods for DE analysis including Total Count (TC), Upper Quartile

(UQ), Median (Med), the DESeq normalization implemented in the DESeq

Bioconductor package, Trimmed Mean of M values (TMM) implemented in the

edgeR Bioconductor package, Quantile (Q), and RPKM normalization. FPKM

normalization is also a popular method and is used by tools like cufflinks (Trapnell

et al. 2010). FPKM is analogous to RPKM but does not use read counts.

This overview of DE analysis is superficial and descriptive of basics only used in

DE analysis. There are actually a huge number of parameters in each step that can

change results. Every step including preprocessing and mapping affects the analysis

of subsequent steps. Like other tasks of RNA-Seq data analysis where newer

algorithms and tools are making a mark, task of differential expression has also

opened up the way for the development of newer and different algorithms/tools.

BitSeq (Hensman et al. 2015; Glaus et al. 2012), deGPS (Chu et al. 2015), NOISeq

(Tarazona et al. 2015), and XBSeq (Chen et al. 2015) are some of the recently

developed tools which are really different in their algorithm and performance and

give a broader spectrum to differential expression analysis in RNA-Seq data.

Although in this chapter we elaborate on different approaches and tools for

analysis of RNA-Seq data, continuous research in this field has provided us some

great whole analysis pipelines to also deal with RNA-Seq data. Since RNA-Seq
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technique has unprecedented ability to study transcriptome to a much greater extent

than previous technologies, the analyses of ncRNAs have also become more

accessible and feasible. Here we succinctly present a list of recently developed

pipelines dedicated to RNA-Seq data and also some tools/pipelines dedicated to

analyses of ncRNAs obtained through RNA-Seq technique (Table 10.3).

Table 10.3 List of some popular and recently developed pipelines dedicated to whole RNA-Seq

and ncRNA data (obtained through RNA-Seq technique) analysis

Tool A brief introduction of utility URL References

Category: RNA-Seq data analysis pipelines

CANEapp GUI and an automated server-

side analysis pipeline for

RNA-Seq

http://psychiatry.med.

miami.edu/research/labora

tory-of-translational-rna-

genomics/CANE-app

Velmeshev

et al. (2016)

QuickRNASeq A pipeline for large-scale

RNA-Seq data analyses and

visualization

http://sourceforge.net/pro

jects/quickrnaseq/

Shanrong

Zhao et al.

(2016)

TRAPLINE Pipeline for RNA sequencing

data analysis, evaluation, and

annotation

https://usegalaxy.org/u/

mwolfien/w/rnaseq-wolfien-

pipeline

Wolfien

et al. (2016)

BioWardrobe Integrated pipeline. Analyzes

epigenomics and

transcriptomic data

https://biowardrobe.com/ Kartashov

and Barski

(2015)

QuickNGS Pipeline that analyzes data

from multiple NGS projects at

a time. Parallel computing

resources

http://bifacility.uni-koeln.

de/quickngs/web/

Wagle et al.

(2015)

RAP A cloud-computing web appli-

cation for RNA-Seq analysis

https://bioinformatics.

cineca.it/rap/

D’Antonio
et al. (2015)

RNAMiner A multilevel bioinformatics

protocol and pipeline for

RNA-Seq

http://calla.rnet.missouri.

edu/rnaminer/index.html

Li et al.

(2015a)

Category: ncRNA analysis tools/pipelines

isomiR-SEA Details miRNAs, isomiRs, and

conserved miRNA: mRNA

interaction. Specialized align-

ment algorithm

http://eda.polito.it/isomir-

sea/

Urgese et al.

(2016)

Chimira An online tool (pipeline) for

analyzing large amounts of

small RNA-Seq data

http://wwwdev.ebi.ac.uk/

enright-dev/chimira/

Vitsios and

Enright

(2015)

iSRAP A one-touch integrated small

RNA analysis pipeline

http://israp.sourceforge.net/ Quek et al.

(2015)

miRA ncRNA identification tool.

Identifies miRNA precursors in

plants

https://github.com/

mhuttner/miRA

Evers et al.

(2015)

mirPRo A stand-alone pipeline that

quantifies known miRNAs and

predicts novel miRNAs

http://sourceforge.net/pro

jects/mirpro/

Shi et al.

(2015)

(continued)
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Table 10.3 (continued)

Tool A brief introduction of utility URL References

miRge Ultrafast, small RNA-Seq

solution pipeline. Decreases

computational requirements

http://atlas.pathology.jhu.

edu/baras/miRge.html

Baras et al.

(2015)

Oasis Fast and flexible web applica-

tion. Facilitates online analysis

of small-RNA-Seq (smRNA-

Seq) data

https://oasis.dzne.de/ Capece et al.

(2015)

segmentSeq Bioconductor package. Iden-

tifies robust sets of siRNA

precursors

http://www.bioconductor.

org/packages/release/bioc/

html/segmentSeq.html

Hardcastle

(2015),

Hardcastle

et al. (2012)

sRNAtoolbox smRNA analysis pipeline.

Collection of small RNA

research tools

http://bioinfo5.ugr.es/

srnatoolbox

Rueda et al.

(2015)

SMiRK Automated pipeline for

miRNA analysis

https://github.com/

smirkpipeline/SMiRK

Milholland

et al. 2015

Tailor Read aligner for small silenc-

ing RNAs. Also captures the

tailing events directly from the

alignments without extensive

post-processing

https://github.com/jhhung/

Tailor

Chou et al.

(2015)

tDRmapper t-RNA derived RNA annota-

tion tool. Maps and quantifies

tRNA-derived RNAs (tDRs).

Includes graphical visualiza-

tion that facilitates the discov-

ery of novel tRNA.

https://github.com/

sararselitsky/tDRmapper

Selitsky and

Sethupathy

(2015)

YM500v2 A small RNA sequencing

(smRNA-Seq) database for

human cancer miRNome

research

http://ngs.ym.edu.tw/

ym500v2/index.php

Cheng et al.

(2015),

Cheng et al.

(2013)

BioVLAB-

MMIA-NGS

A whole software pipeline for

microRNA-mRNA integrated

analysis using high-throughput

sequencing data

http://epigenomics.snu.ac.

kr/biovlab_mmia_ngs/

Chae et al.

(2014)

CAP-miRSeq Whole pipeline for microRNA

sequencing data

http://bioinformaticstools.

mayo.edu/research/cap-

mirseq/

Sun et al.

(2014)

MAGI Fast microRNA-Seq data anal-

ysis in a GPU infrastructure

http://elgar.ucsd.edu/soft

ware/magi/

Kim et al.

(2014)

mrSNP Predicts the impact of a SNP in

a 3UTR on miRNA binding

http://mrsnp.osu.edu/ Deveci et al.

(2014)

piClust Finds piRNA clusters and

transcripts from small

RNA-Seq data

http://epigenomics.snu.ac.

kr/piclustweb/

Jung et al.

(2014)
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10.5 Summary

Today, RNA-Seq is the mainstream tool for analysis of transcriptomes that are so

rich in information and progressing day by day. This technique has its wide

applications in various areas like clinical diagnostics, pharmacogenomics, and

drug development. It can find novel transcripts and identify drug-related genes

and microRNAs. Although RNA-Seq technology is still in progressive and devel-

opmental stage, yet it has made substantial contributions to our understanding of

many transcriptomes from those of simple unicellular organisms to complex mam-

malian cells, as well as in tissues in normal and disease states. Still, the data from

RNA-Seq is complex to analyze and very sensitive to technical biases. This chapter

focused mainly with some tools/software for RNA-Seq data analysis and some

interesting platforms like R/Bioconductor and Galaxy web server where many of

these tools can be accessed and data can be analyzed. It is worth noting that many

Table 10.3 (continued)

Tool A brief introduction of utility URL References

CoRAL ncRNA identification tool.

Predicts the precursor class of

small RNAs present in

RNA-sequencing dataset

http://wanglab.pcbi.upenn.

edu/coral/

Leung et al.

(2013)

ISRNA Software pipeline designed for

storage, visualization, and

analysis of small RNA

sequencing data

http://omicslab.genetics.ac.

cn/resources.php

Luo et al.

(2014)

iMir A modular pipeline for com-

prehensive analysis of small

RNA-Seq data

http://www.labmedmolge.

unisa.it/inglese/research/

imir

Giurato et al.

(2013)

miReader Detects mature miRNAs

directly from next-generation

sequencing read data, without

any need of reference/genomic

sequences

http://scbb.ihbt.res.in/2810-

12/miReader.php

Jha and

Shankar

(2013)

miRDeep An integrated application tool

for miRNA identification from

RNA sequencing data

http://sourceforge.net/pro

jects/mirdeepstar/

An et al.

(2013)

ShortStack Processes and analyzes small

RNA-Seq data with respect to a

reference genome and outputs

a comprehensive and informa-

tive annotation of all discov-

ered small RNA genes

http://axtell-lab-psu.weebly.

com/shortstack.html

Axtell

(2013)

SHRiMP2 Software package for aligning

genomic reads against a target

genome. Works great with

small RNA mapping

http://compbio.cs.toronto.

edu/shrimp/

David et al.

(2011)
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tools mentioned in this chapter are not restricted only to RNA-Seq data and may be

used for other kinds of NGS data as well. Also, there are several other tools,

software, whole analysis pipeline, and statistical strategies for analyzing

RNA-Seq data, but they are not discussed here. Still, bioinformatics-based tools

are progressing rapidly, and there is a wide opportunity of building new tools and

strategies for analyzing RNA-Seq data as well as data derived from other NGS

technologies. As NGS technologies are continuously evolving, we can hope for

RNA-Seq having more technical and analytical developments with lower cost in the

near future.
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Chapter 11

Epigenetics and Its Role in Human Cancer

Utkarsh Raj and Pritish Kumar Varadwaj

Abstract Cancer is often associated with heritable epigenetic changes, which are

characterized by the change in gene expression profile without changing the

underlying DNA sequence. The most prominent epigenetic modification is meth-

ylation of DNA, which to a large extent is connected to modifications of histone

proteins. Epigenetic modifications resulting in a normal gene are reversible, thus

endow functional flexibility and diversity to the genome, and these modifications

can be cured with selective epigenetic target inhibitors. The role of epigenetics in

human cancer has been vastly studied and reported in recent decade with emerging

evidences about the significance of epigenetic alterations to comprehend various

cellular mechanisms. The cellular mechanisms which are crucial for controlling the

growth and progression were seen to be impaired by epigenetic changes, which

result into development of various human cancer diseases. Although several targets

for cancer epigenetics have been identified and annotated in recent past, the

development of novel anticancer treatments for these targets is still in nascent

stage. By recognizing the spectrum of cancer epigenetics, an array of new drug

discoveries has been possible these days. In this chapter, we presented an overview

of such epigenetic modifications which occurs and resulted into human cancer and

the relationship between those epigenetic enzyme classes and cancer types, with a

note on preclinical utilizations of inhibitors for the treatment of such cancer types.

This chapter focuses on the practical understanding of human cancer epigenetics

and its perspective use for drug designing.
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11.1 Introduction

The essential role of epigenetics in various cellular processes of normal and

cancerous cells has drawn considerable attentions in recent years. It has been

reported that the selective expression of gene resulted due to epigenetic modifica-

tions was instrumental in deciding the fate of proteins involved in binding of

chromatin and the related machinery of transcription. These findings had revealed

critical infection-related epigenetic components and pathways which are crucial for

discovery of novel therapeutics. A major fraction of such reported cases comprised

of epigenetic misregulation related to human cancer. Cancer epigenetics is the

investigation of epigenetic alterations to the genome of tumor cells that don’t
essentially include a change or variation in the nucleotide succession.

The earliest indications of an epigenetic connection to cancer were resultant of

various studies on gene expression and methylation of DNA. The quantum of such

studies was well discussed elsewhere in a survey article by Feinberg enumerating

the historical backdrop of growth of epigenetics (Feinberg and Tycko 2004). The

International Cancer Genome Consortium (ICGC) has significantly strengthened

these early observations. The whole genome sequencing in an immeasurable cluster

of cancers has given an index of recurrent somatic mutations in several epigenetic

controllers (Forbes et al. 2011; Stratton et al. 2009). Epigenetic data is contained in

the cell in various forms that incorporate methylation of DNA, modification of

histones (methylation, phosphorylation, acetylation, and so forth), positioning of

nucleosome, and microRNA expression; these data together constitute the

epigenome (Campbell and Tummino 2014). All these modifications in the chroma-

tin structure lead to the activation or silencing of the expression of genes (Herceg

and Ushijima 2010; Baylin 2008; Jones and Baylin 2007; Kouzarides 2007a; Kelly

et al. 2010). Although an exhaustive understanding of epigenomic dysregulation in

specific type of cancer has not been clarified yet, there exists a comprehension of

tumor-specific types of modification which occurs in human cancer (Baylin and

Jones 2011a; Croce 2009). The remodeling of chromatin is carried out with the help

of two important mechanisms: the cytosine residue methylation in DNA and an

array of posttranslational modifications (PTMs) occurring at the N-terminal ends of

histone proteins. These PTMs comprise of methylation, acetylation, ubiquitylation,

phosphorylation, glycosylation, sumoylation, ADP-ribosylation, citrullination,

biotinylation, and carbonylation (Sidoli et al. 2012; Gardner et al. 2011). Among

all such PTMs, the lysine amino acid residues of histone tails are reported to be

methylated, acetylated, or ubiquitylated; also the arginine amino acid residues are

found to be methylated, whereas threonine and serine amino acid residues were

seen to undergo phosphorylation (Cosgrove et al. 2004; Cruickshank et al. 2010;

Imhof 2006; Weake and Workman 2008; De Koning et al. 2007). These covalent

alterations have the propensity to bring cross talk, which is known as the histone

code that can be positively or negatively associated with specific states of tran-

scription or chromatin organization (Cruickshank et al. 2010; Sippl and Jung 2010;

Chi et al. 2010). Human tumors are considered fundamentally to be a disease of
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genetic level, where several genes get mutated or abnormally proliferated during

the formation of cancer (Martin 2004; Vogelstein and Kinzler 2004). In the

meantime, epigenetic modifications such as methylation of DNA, histone modifi-

cations, and microRNAs (miRNAs) lead to abnormal expression of genes (Chen

et al. 2014), which induce instability of genome as explained in Fig. 11.1. Hence, an

epigenetic can be safely characterized as a steadily inherited phenotype resulting

out of progressions in a chromosome without apparent modifications in the DNA

arrangement. In fact, all the various cellular pathways contributing to the neoplastic

phenotype are affected by epigenetic genes in cancer (Jiang et al. 2015; Fornaro

et al. 2016; Delpu et al. 2013). They are being investigated as biomarkers in clinical

use for early detection of disease, tumor classification, and response to treatment

with classical chemotherapy agents, target compounds, and epigenetic drugs (Mack

et al. 2015; Andreol et al. 2013). These sorts of subtle adjustments are fundamental

for ordinary cell physiology and function, aiding in the initiation or restraint of

essential qualities in different phases of advancement. There are occurrences,

however, in which the changes can be modified to actuate sporadic transcription

of gene. In these cases, the results can incite different types of tumors in humans,

with two key zones of modification, viz., methylation of DNA sequences and

changes on the histones encompassing DNA. Since the disclosure of their associ-

ation in the change of expression of the gene, modification of histones and meth-

ylation of DNA have been involved in sicknesses other than malignancy. One

paramount part of epigenetic methylation is its reversibility; this key property has

made a guaranteeing field of epigenetic treatment, which has prompted the

Fig. 11.1 Oncogenic mutation in normal cells due to epigenetic modifications
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improvement of a few FDA sanction drugs for treatment of tumors. It has likewise

produced a few new and energizing thoughts for future ways of treatment.

11.2 Epigenetics and Cancer Types

In this segment, we portray the present understanding about different types of

cancer with their associated epigenetic enzyme classes, taking into account that

established cause-consequence might not so much specific that these receptor

targets can be accepted for anticancer drug discovery. In Table 11.1, we enumerated

the associations between the major types of cancer and diverse epigenetic targets

classes, which can be so much informative to fetch relevant drug discovery infor-

mation (Andreol et al. 2013).

11.2.1 Breast Cancer

Epigenetic modifications including methylation of DNA and remodeling of chro-

matin play an important role in the development of breast cancer. In the similar

manner, altered expression of microRNAs has also been reported to control impor-

tant genes in the breast cancer development and progression (Veeck and Esteller

2010). Besides, various synthetic drugs based on epigenetic therapy which can

decrease hypermethylation of DNA and deacetylation of histones are currently in

preclinical and clinical trials (Lustberg and Ramaswamy 2010).

Table 11.1 Cancer types with their associated epigenetic enzyme classes

Epigenetic enzymatic

classes Cancer type

Methyltransferases Breast cancer, colorectal cancer, leukemia, ovarian cancer, liver

cancer, prostate cancer

Deacetylases Breast cancer

Deacetylases (classes I,

II, and IV)

Colorectal cancer, leukemia, ovarian cancer, gastric cancer, prostate

cancer, liver cancer

K and R

methyltransferases

Breast cancer, leukemia, myeloma, ovarian cancer, prostate cancer

Acetyltransferases Leukemia, prostate cancer

Demethylases Kidney cancer

miRNAs regulating

proteins

Breast cancer, colorectal cancer, leukemia, myeloma, lung cancer,

ovarian cancer, liver cancer

Kinases/phosphatases Liver cancer

Epigenetic enzyme classes shown as bold characters are validated targets for the associated cancer

types, whereas epigenetic enzyme classes shown as normal characters are partially validated

targets
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11.2.2 Ovarian Cancer

Epigenetic alterations, viz., aberrant methylation of DNA and unregulated distinct

microRNAs expression, have resulted in altered expression of gene favoring sur-

vival of cells (Asadollahi et al. 2010). With reference to other cancerous diseases,

the therapeutic improvement went for turning around oncogenic chromatin abnor-

malities which have been principally examined with DNA methyltransferase and

histone deacetylase inhibitors. Moreover, the examination of various epigenetic

events in which there is posttranscriptional gene regulation by small noncoding

microRNAs has also been done (Ahluwalia et al. 2001).

11.2.3 Colorectal Cancer

Modification or extensive loss of DNA methylation patterns at several steps

involved in the progression of colorectal cancer contributes fundamentally to

epigenetic dysregulation (Kim and Deng 2007). In addition to this, epigenetically

miRNAs modification has also been established to perform an important part in

colorectal cancer (Grady and Markowitz 2002). Since major pathways of colorectal

carcinogenesis are closely linked with changes in epigenetics, emerging evidence

demonstrates that the risk of colorectal cancer can be impacted by lifestyle and

factors affecting environment (Nystr€om 2009).

11.2.4 Prostate Cancer

In this cancer, epigenetic modifications come into view earlier and more frequently

than the mutations occurring at genetic level. The identification of the silencing of

multiple genes due to epigenetic alterations has been done (Chin et al. 2011).

Preclinical confirmation including the epigenome as a key go-between in this

cancer type involved preliminary clinical tests with epigenetic drugs, viz., histone

deacetylase inhibitors (Kim and Deng 2007).

11.2.5 Leukemia

DNA and histone posttranslational modifications have been exhibited to be

connected with a few changes in epigenetic targets for distinctive hematologic

malignancies (Bishton et al. 2007). Biological players that are being used for

clinical applications comprise deacetylases (Altucci and Minucci 2009), histone

and DNA methyltransferases (Rodrı́guez-Paredes and Esteller 2011), and miRNA
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(Florean et al. 2011). In this type of cancer, the function of different epigenetic

enzyme classes is being studied primarily for acute promyelocytic leukemia (Petrie

et al. 2009) and acute myeloid leukemia (Florean et al. 2011).

11.2.6 Gastric Cancer

The abnormal changes that occurred due to acetylation of histones which is

regulated by histone acetyltransferases and histone deacetylases have been associ-

ated with gastric cancer (W-jian et al. 2012). Despite the fact that different

connections between gastrointestinal malignancy and histone acetyltransferases

and histone deacetylases have been distinguished, contrasting with other cancers,

fewer advances have been accounted for to treat gastrointestinal carcinogenesis

with epigenetic drugs.

11.2.7 Myeloma and Lymphomas

The importance in the modulation of epigenetic enzymes has been significantly

raised for the treatment of myelomas and lymphomas, mainly as combination

therapies (Mahadevan and Fisher 2011). For example, histone deacetylase inhibi-

tors and DNA methyltransferase inhibitors are being already investigated for the

cure of non-Hodgkin’s lymphomas (Cotto et al. 2010; Yoshimi and Kurokawa

2011).

11.2.8 Liver Cancer

Methylation of DNA and RNA interference, as well as several modifications in

histones, has been established as epigenetic events which contribute to the progres-

sion of hepatocellular carcinoma (Herceg and Paliwal 2011; Tischoff 2008). At

present only histone deacetylase inhibitors have been studied for the treatment of

such type of carcinoma (Lachenmayer et al. 2010).

11.2.9 Lung Cancer

Epigenetic changes, viz., methylation of DNA and covalent modifications of

histone and chromatin with the help of epigenetic enzymes and miRNAs, are

involved in the silencing of tumor suppressor genes and in enhancing the oncogene

expression level (Yang 2011; Heller et al. 2010; Herman 2004). The restoration in
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the expression level of silenced genes involved in epigenetics with novel targeted

strategies and combined therapy with entinostat and azacitidine, as well as DNA

methyltransferase inhibitors and histone deacetylase inhibitors, was examined in

phase I/II clinical trials for the treatment of non-small-cell lung carcinoma (Heller

et al. 2010).

11.2.10 Kidney Cancer

The modifications occurring due to methylation of DNA at an early stage of cancer

may expose renal tissue to various changes taking place both at the epigenetic and

genetic level, producing more cancerous growth (Dressler 2008). Currently, there

are some clinical trials of phase I/II for testing inhibitors involved in deacetylation

of histones which can lead to advanced renal cell carcinomas (Gan et al. 2009).

Most of the structural information about the enzyme classes involved in cancer

epigenetics is well known and is used in the application of targetable molecules as

mentioned in Table 11.2. First-generation epigenetic inhibitors such as histone

deacetylase inhibitors and DNA methyltransferase inhibitors have as of now been

affirmed for treatment of cancer. Extensive efforts have been made in current drug

development that mainly focused to investigate more selective inhibitors which can

be useful in multi-targeted approach therapy for the treatment of cancer.

11.2.11 Mechanisms of Epigenetic Regulation of Cancer

There are numerous chemical alterations that influence DNA, as well as RNA and

proteins, and make diverse epigenetic layers. Out of these alterations, DNA meth-

ylation is the most well-studied epigenetic modification; in any case, it turns out to

be progressively acknowledged that DNA methylation does not work alone yet

rather is connected to different alterations, for example, histone modifications. As

evident from Fig. 11.2, studies focusing on the methylation of the DNA cover

almost half of the cancer epigenetic research (Razvi 2013). miRNA studies also

become an integral part of the epigenetic research as nearly a quarter of the research

community working on cancer epigenetics focuses on it.

11.2.11.1 DNA Methylation

Methylation of DNA is a prevalent alteration in bacteria, plants, and mammals.

DNA methylation which occurs during the replication of DNA is a stable gene-

silencing mechanism. It involves the addition of a –CH3 group to 50 end of the CpG
dinucleotide of the cytosine ring. Catalyzation of this reaction is being carried out

by the DNA methyltransferase (DNMT) family, which comprises of DNMT1,
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DNMT3A, and DNMT3B. Methylation of DNA is performed by DNMT3A and

DNMT3B, which further results in the formation of 5-methylcytosine from cytosine

residues of CpG dinucleotides during the formation of embryo, while DNMT1 is

involved in maintaining the status of methylation during the process of embryo
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Histone Methylation %

Histone Acetylation %
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Large non-coding RNAs (e.g. XIST) %
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Fig. 11.2 Breakout of epigenetic research on the basis of epigenetic modifications

Table 11.2 Information about epigenetic enzyme classes and their connections with drug dis-

covery for the cancer treatment

Epigenetic enzyme classes

Structural

data

Clinical

trials

Approved

drugs

Known

ligands

DNA methyltransferases ✓ ✓ ✓ ✓

Histone acetylation

Deacetylases class I, II, IV ✓ ✓ ✓ ✓

Deacetylases class III ✓ ✓

Acetyltransferases ✓ ✓ ✓

Histone ADP-ribosylation

Mono-ADP-ribosyltransferases ✓ ✓

Poly-ADP-ribosyltransferases ✓ ✓ ✓

Histone biotinylation

Biotin ligase ✓

Histone citrullination

Deiminases ✓ ✓

Histone glycosylation

Glycosyltransferases/glycosidase ✓ ✓

Histone methylation

K and R methyltransferases ✓ ✓ ✓

Demethylases ✓ ✓ ✓

Histone phosphorylation

Kinases/phosphatases ✓

Histone ubiquitination and

sumoylation

E1, E2, and E3 enzymes ✓ ✓

microRNA expression

miRNA-regulating proteins ✓ ✓
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formation. Conversion of 5-hydroxymethyl-20-deoxycytidine from

5-methylcytosine is further carried out by the ten-eleven translocation (TET) family

enzymes (Tahiliani et al. 2009). CpG islands are referred to the regions of DNA in

the genome of human normally ranging from 0.5 to 5 kb in size and frequently

occur in the promoter region of genes. Although the process of methylation of DNA

in 50 promoter region has been thoroughly investigated in various studies and has

exhibited suppression of gene expression, the significance of 5-hydroxymethylation

is still unclear and under investigation. Recent studies reported that the methylation

of DNA occurs downstream in the promoter region (both intra- and intergenic) of

genes as well as in regions with low CpG density neighboring CpG islands

(Maunakea et al. 2010; Hansen et al. 2011). The following is the list of some

DNA methylation genes that get altered in different human cancer types as men-

tioned in Table 11.3.

11.2.11.2 Histone Modification

The fundamental structure of nucleosome is comprised of histones, namely, H2A,

H2B, H3, and H4, which together form the histone octamer around it (Luger et al.

1997). The N-terminals of histones protrude outward from the core of the nucleo-

some, whereas an array of covalent modifications, viz., methylation, acetylation,

phosphorylation, sumoylation, ubiquitination, etc., occurs in the amino acid resi-

dues of this terminal. These covalent modifications can change the structure of

chromatin from an open to a closed, condensed form and vice versa. The mono-, di-,

or trimethylation of histones occurs at the E-NH2 group of lysine amino acid

residues, followed by mono- or dimethylation at arginine amino acid residues. In

addition to other abovesaid covalent modifications, histone protein methylations are

thought to represent an epigenetic code by the creation of binding interfaces for

Table 11.3 Aberrant DNA-methylated genes with associated cancer types

Gene Cancer type

DNA methyltransferase

DNMT 1 Ovarian and colorectal cancer

DNMT3b Colon, colorectal, breast, ovarian, squamous cell carcinoma,

esophageal cancers

Methyl-CpG-binding
proteins

MBD1 Prostate, lung, and colon cancer

MBD2 Prostate, lung, and colon cancer

MBD3 Colon and lung cancer

MBD4 Stomach, colon, endometrium cancers

MeCP2 Rett syndrome and prostate cancer

Kaiso Lung, intestinal, and colon cancer

These genes can be overexpressed or silenced and cause cancer when their methylation activity is

affected
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proteins involved in the regulation of chromatin (Sharma et al. 2010; Suzuki and

Bird 2008).

The modifications of histones have a great impact on several biological pro-

cesses, viz., transcriptional repression, activation of genes, and repair of DNA, with

the exception of the packaging of chromatin. Based on the function, there are three

classes of histone interacting proteins: (i) the writers which place the modification

of histones, (ii) the erasers which remove these histone alterations, (iii) and the

readers that recognize these alterations and may provide histone, nucleosome, or

DNA-modifying enzymes (Kouzarides 2007b). The following is the list of a few

histone-modified genes which get altered in different types of human cancers as

mentioned in Table 11.4.

Table 11.4 Aberrant histone-modified genes and their cancer-causing diseases (these histone-

modifying genes can also be silenced or overexpressed by aberrant activity to cause cancer)

Gene Cancer

SIRT1 Colon cancer

SIRT2 Glioma and gastric cancer

SIRT3 Breast cancer

SIRT4 Acute myeloid cancer

SIRT5 Breast cancer

SIRT6 Prostate, breast cancer

SIRT7 Thyroid carcinoma, breast cancer

HDAC1 Colorectal, cervical dysplasia, gastric, colon, stromal sarcomas, and prostate

cancer

HDAC2 Colon and multiple gastric carcinomas

HDAC3 Prostate, colon cancer

HDAC4 Breast, prostate, and colon cancer

HDAC5 Acute myeloid cancer, colon cancer

HDAC6 Breast and acute myeloid cancer

HDAC7 Colon cancer

HDAC8 Colon cancer

HDAC9 Breast, lung cancer

HDAC10 Gastric cancer

P300 Ovarian, breast, oral, colorectal, hepatocellular cancers

CBP Breast, colon, acute myeloid cancer, ovarian cancer

MOZ Neurogenic progenitors, hematopoietic, leukemia cancer

PCAF Colon cancer

MORF Uterine, leiomyomata

Tip60 Prostate, colorectal cancer

DOT1L Mixed lineage leukemia

MLL1 Cervical tumor

EHMT1,

EHMT2

Esophageal squamous cell carcinoma
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Some other posttranslational modifications are as follows:

Phosphorylation: Phosphorylation of histone plays an important role in DNA repair,

gene silencing, cell cycle control, signal transduction pathway, cellular differ-

entiation, and chromatin structure. It basically occurs on threonine, serine, and

tyrosine amino acid residues.

ADP-ribosylation: ADP-ribosylation is the process in which one or more

ADP-ribose molecules are added to a protein. It has been observed that histone

protein is described to be mono-and poly-ADP ribosylated; thus they have a

connection between codes. It is involved in different processes like cell signal-

ing, gene regulation, and DNA repair; thus improper functioning causes disease

like cancer.

Biotinylation: It is the process of attachment of biotin to a protein, nucleic acid, or

other kind of molecule. This process is described in various histone variants and

involved in various biological processes like cellular response to damage DNA,

gene silencing, and cell proliferation.

Acetylation and Deacetylation: Acetylation and deacetylation of histone are the

processes in which lysine residues of N-terminal tail of the nucleosome are

acetylated or deacetylated, and it takes part in gene regulation. These processes

are essential for gene regulation and catalyzed by enzymes like HDACs and

HATs. Increased activity or overexpression of these enzymes can lead to for-

mation of metastasis and tumor (cancer).

Citrullination/Deimination: This is the process of conversion of arginine residue in

a protein into citrulline. In this process primary ketimine group (¼NH) is

replaced by a ketone group (¼O) by the activity of enzymes like PADs

(petideylarginine deiminases).

Carbonylation: It is the process in which RCS (reactive carbonyl species) cova-

lently modifies cysteine residues in histone. RCS are produced with the help of

enzymes like tyrosine kinases/phosphatases, transcription factors like p53, Nrf2,

NFkB, and peroxiredoxins by redox signaling process. There is also a worse

condition that some abnormal changes in redox signaling process can lead to the

formation of malignant cells or cancerous cells.

Ubiquitination/Sumoylation: Ubiquitination and sumoylation are two very impor-

tant PTM processes that play their roles in protein trafficking, cell survival, DNA

damage response, signaling regulation, and cancer. Deregulation of these two

processes causes abnormal activity of proteins; thus it contributes to disease like

cancer.

Other PTMs: There are also kinds of posttranslational modifications such as histone

proline isomerization and histone tail clipping. Histone tail clipping process

removes N-terminal tail of histone molecule during transcription process and in

other process which involve process like chromatin remodeling. Proline isom-

erization is a specific posttranslational modification that does not include cova-

lent modifications, but it does include isomerization of proline residue.
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11.2.11.3 microRNAs

microRNAs are short, endogenous, and noncoding RNAs normally 19–25 nucleo-

tides in length and are conserved throughout evolution. These miRNAs mainly

belong to the 30 untranslated regions (30 UTR) of target mRNA to control the

expression of genes in two ways: (i) silencing of posttranscriptional process

(ii) and target mRNA degradation (Rouhi et al. 2008). The relationship between

several epigenetic mechanisms and these miRNAs is a quite convoluted and

complex regulatory network (Iorio et al. 2010). miRNA expression is tissue specific

and is controlled by various epigenetic changes, viz., methylation of DNA and

alterations of histones (Friedman et al. 2009). miRNAs can also have an effect on

epigenetic mechanisms which control the transcription of genes and the capability

to target posttranscriptional silencing of genes (Kasinski and Slack 2011). Con-

vincing proof now demonstrates that miRNAs are liable to both hypo- and

hypermethylation in a tumor as well as tissue-specific manner (Wee et al. 2014).

Recent studies also suggest that hypermethylation can mimic small chromosomal

deletions or loss of heterozygosity with the help of long-range epigenetic silencing

(Malkhosyan et al. 1996; Duval et al. 2001). The concept of long-range epigenetic

silencing is no longer “one methylated CpG island – one silent gene” but rather

involves large regions which may include several genes (Perucho 1996).

11.2.12 Identification Methods for Epigenetic Modifications
Involved in Cancer

Earlier, the profiles associated with epigenetics were restricted to individual genes

only, but these days, the researchers have adopted a whole genomic approach in

order to find out an entire genomic profile for cancer cells versus normal cells.

Prominent methodologies for measuring CpG methylation in cells consist of:

• Bisulfite sequencing: This type of sequencing involves the use of bisulfite

treatment of DNA to determine its methylation patterns. Treatment of DNA

with bisulfite converts cytosine residues to uracil but leaves 5-methylcytosine

residues unaffected. Subsequently, bisulfite treatment brings about specific

changes in the sequence of DNA that rely on upon the methylation status of

individual cytosine residues, yielding single-nucleotide determination data

about the methylation status of a DNA segment.

Different investigations can be performed on the altered sequence to retrieve this

information. The target of this examination is consequently reduced to differen-

tiating between single-nucleotide polymorphisms (cytosines and thymidine)

coming about because of bisulfite conversion.

• MethyLight: It is a highly sensitive assay, equipped for recognizing methylated

alleles within the sight of a 10,000-fold excess of unmethylated alleles. The test

is likewise exceedingly quantitative and can very precisely decide the relative
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prevalence of a particular pattern of methylation of the DNA. The most striking

point of interest of MethyLight, when contrasted with existing procedures, is its

capability to permit the fast screening of hundreds to thousands of samples.

• Pyrosequencing: It is a strategy for DNA sequencing (determining the order of

nucleotides in DNA) based on the “sequencing by synthesis” principle. It

contrasts from Sanger sequencing, in that it depends on the detection of pyro-

phosphate release on nucleotide incorporation, rather than chain termination

with dideoxynucleotides.

• Arbitrary primed PCR: A deoxyribonucleic acid (DNA) fingerprinting technique

in which one short arbitrary primer is used to amplify multiple DNA fragments

of different length, which yield a fingerprint after separation in gel electropho-

resis. It is also known as random amplification.

• Combined bisulfite restriction analysis (COBRA): A molecular biology tech-

nique that takes into account the sensitive quantification of levels of DNA

methylation at a specific genomic locus on a DNA sequence in a small sample

of genomic DNA. This method is a modification of bisulfite sequencing, which

combines bisulfite conversion-based polymerase chain reaction with restriction

digestion.

• Restriction landmark genomic scanning: It is a genome investigation technique

that takes into consideration fast concurrent visualization of thousands of land-

marks or restriction sites. By utilizing a combination of restriction enzymes,

some of which are specific to modifications of DNA, the method can be used to

visualize differences in the levels of methylation across the genome of a given

organism.

• Chromatin immunoprecipitation (ChIP): An immunoprecipitation experimental

technique used to investigate the interaction between proteins and DNA in the

cell. It intends to figure out whether specific proteins are associated with specific

genomic regions, such as transcription factors on promoters or other

DNA-binding sites and potentially characterizing cistromes. It also aims to

determine the specific location in the genome where various histone modifica-

tions are linked with, demonstrating the target of the histone modifiers.

• HELP assay (Hpall tiny fragment enrichment by ligation-mediated PCR): This is

one of a few procedures utilized for figuring out if DNA has been methylated.

The system can be adjusted to look at DNA methylation within and around

individual genes, or it can be extended to inspect methylation in a whole

genome.

• Methylated DNA immunoprecipitation: MeDIP or mDIP is a large-scale (chro-

mosome- or genome-wide) purification technique which is used to enrich for

methylated DNA sequences. It consists of isolating methylated DNA fragments

via an antibody raised against 5-methylcytosine (5mC). In any case, compre-

hension of the methylome stays simple; its study is entangled by the way that, as

other epigenetic properties, patterns vary from cell type to cell type.

• Profiling of the expression of genes using DNA microarray: Comparing mRNA

levels from diseased cell lines prior and then afterward treatment with a

demethylating agent.
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In view of the fact that bisulfite sequencing is an important marker strategy to

measure CpG methylation, when one of alternate methods is utilized, results are

normally affirmed utilizing this technique. The bisulfite conversion kits to study the

methylation of DNA cover around 30% of the epigenetic research market as clear

from the Fig. 11.3. The ChIP utilizing antibodies specific for methyl-CpG-binding

domain proteins also occupies around 13% of the research based on the cancer

epigenetics (Razvi 2013). The well-known methodologies for determining profiles

of histone modification in healthy versus cancerous cells comprise of the two

techniques, i.e., mass spectrometry and chromatin immunoprecipitation assay.

11.2.13 Clinical Use of Epigenetics

Currently, there are two noteworthy zones of interest for the clinical use of

epigenetics, to be specific, biomarkers and therapeutics.

1. Cancer Biomarkers: The methylated genomic DNA has a wide range of prop-

erties, which makes it an alluring molecule for biomarker utility. Initially, it is

steady in biofluids, for example, blood, saliva, and urine. Secondly, in most of

the cases, methylation in CpG is obtained amid malignant transformation and

hence specific to neoplasia. Lastly, the systems utilized for detection of meth-

ylated DNA are promptly manageable to automation.

2. Cancer Therapeutics: Both epigenetic proteins and protein markers are great

focuses for the improvement of new anticancer medications. The verification of

idea for epigenetic treatments is the FDA and EMEA approval of demethylating

agents and histone acetylase (HDAC) inhibitors for the treatment of MDS,

AML, and certain types of lymphomas, respectively. In any case, we ought not

to overlook that these agents are nonselective without having their side effects

clearly known.
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Fig. 11.3 Segmentation of the epigenetic research on the basis of deployment of assay classes
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11.2.14 Future Perspective for Cancer Epigenetics Therapy

Various reported studies on genome-wide mapping suggested the information about

how normal genomes are developed significantly illuminating our perspective of

epigenetic variations in cancer. From a period that started with recognizing cancer-

specific abnormalities in the methylation of DNA, both gains and losses, we now

comprehend that these must not just be connected to characterize key-related

changes in chromatin but also viewed in the perspective that all genomic regions

are not equal for susceptibility to these modifications (Baylin and Jones 2011b;

Berman et al. 2012). An important example is the disclosure that both the gains and

losses of methylation of DNA in cancer can be biased to different genomic regions

associated with nuclear lamin, late-replicating DNA, i.e., enriched for

low-transcription developmental genes with bivalent chromatin in the promoter

region (Hegi et al. 2009). In both the embryonic and adult stem cells, such

chromatin is necessary for maintenance of the state of stem cells and appears

susceptible to evolve epigenetic variations during progression of tumor. This

susceptibility may seriously include stresses, viz., increased ROS that intensely

shifts a complex of proteins, comprising DNA methyltransferases and polycomb

proteins into CpG islands. The confinement of such proteins may lead to aberrant

methylation of DNA. Several stimulating examples of the effectiveness of such

methodologies have emerged, and these will without a doubt increment signifi-

cantly in the near future.

The use of epigenetic drugs with an intention to reestablish sensitivity to

hormonal as well as cytotoxic drugs is a big challenge in cancer therapy. The

restoration of the hormonal sensitivity in breast cancer is of highest medical

significance and has come under serious consideration in various reported studies

of the most recent decades (Baylin and Jones 2011b; Berman et al. 2012). Alto-

gether 25% of breast cancers have the repressed estrogen receptor alpha (ERalpha)

because of hypermethylation of the ER promoter and don’t react to endocrine

treatment. Recent reported studies established that decitabine and histone

deacetylase inhibitors, viz., trichostatin A, entinostat, and scriptaid, can restore

ER mRNA expression (Raha et al. 2011).

Striking advancement has been made in the last few years on the methylation of

DNA and modifications of histones involved in the transcription of genes; however,

the significance of these phenomena in epigenetic regulation of cancer has not been

fully clarified. On the other hand, a lot of research advancement has been made in

context to improve drugs associated with cancer epigenetics which can target

chromatin and enzymes taking part in the modification of histones. Numerous

epigenetic medications, comprising a histone deacetylase inhibitor and two DNA

methyltransferase enzyme inhibitors, have been sanctioned by the FDA as viable

medications for the treatment of cancer. In the meantime, different inhibitor drugs,

for example, SAHA (Marks 2007), MS-275 (Bracker et al. 2009), and FK228 (Saijo

et al. 2012), have as of now been the prime focus and are in step III clinical tests.
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Therefore, more specific and potent inhibitors should be developed to diminish

undesirable side effects. Studies on understanding of the impact of epigenetic

changes occurring in cancer and tumor pathology are likely to improve the capa-

bility to detect and treat cancer (Mack et al. 2015; Wu et al. 2016).

11.3 Conclusion

The utmost challenge for researchers working on cancer therapy is to integrate the

available data to understand the translational prospective of specific expression

profile. However, various studies on epidemiology have acknowledged both the

environmental and dietary factors as also related with cancer; animal models are

capable to recognize the mechanisms as well as correlation between these environ-

mental factors and carcinogenesis. In spite of the fact that the viability of epigenetic

treatment for cancer therapy remains unproven till now, there is a strong urge to

consider the use of epigenetic agents, perhaps informed by epigenetic profiling of

individual patient, which may facilitate the therapeutic window for personalized

medication. In addition, such studies will also facilitate the identification of specific

subtypes of cancer which are more prone to chemotherapy (Lv et al. 2015; Cho

2011). This will also help in effective use of various epigenetic target inhibitors,

comprising DNA-demethylating agents, histone deacetylase inhibitors, or several

other promising therapies which are undergoing preclinical and clinical tests. The

plethora of genetic modifications in epigenetic regulators offers numerous conceiv-

able focuses for drug discovery and will probably draw in the consideration of the

pharmaceutical business. Therefore, the characterization of the progression of

tumor at the molecular level, involving both genetic and epigenetic profiles, is

considered to be an important step in assessment of the progress of individualized

treatment modalities as well as personalized therapies available for such cancers.
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Chapter 12

Methods for Microbiome Analysis

Kalibulla Syed Ibrahim and Nachimuthu Senthil Kumar

Abstract Metagenomics is gaining importance as an invaluable tool as it attempts

to determine directly the whole collection of genes and analyze from microbes in a

particular environment where they interact with each other by exchanging nutrients,

metabolites, and signaling molecules. The development of affordable next-

generation sequencers has led to democratization of sequencing, but their ever-

growing throughput is making data analysis increasingly complex. This has intro-

duced a plethora of challenges with respect to design of experiments, bioinformat-

ics, and downstream processing. This chapter aims to provide an overview of the

currently available methodologies and tools for performing every individual step of

a typical metagenomic data set analysis and expected to serve as a useful resource

for microbial ecologists and bioinformaticians.

Keywords 16S • Analysis pipeline • Bioinformatics • Genome annotation •

Human microbiome • Metagenomics • Metatranscriptomics • Next-generation

sequencing

12.1 Introduction

Microorganisms make up only 1 to 2% of the mass of the body of a healthy human,

but they are suggested to outnumber human cells by 10 to 1 and to outnumber

human genes by 100 to 1. The majority of microbes were identified to inhabit the

gut and have profound influence on human well-being (Bäckhed et al. 2005). It has

been recognized that microbes play major roles in maintaining health and causing

illness, but relatively little is known about the role that microbial communities play

in human health and disease (Cho and Blaser 2012; Lampe 2008). The knowledge

about the human microbiome that we currently possess is from culture-based

approaches using the 16S rRNA technology. However, it has to be noted around

20–60% of the microbiome associated with human is uncultivable (Peterson et al.
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2009). Projects such as Human Microbiome Project and MetaHIT (Qin et al. 2010)

were launched with an intention to generate resources to enable a comprehensive

characterization of the human microbiota and analysis of its role in human health

Fig. 12.1 Overall workflow of human microbiome analysis
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and disease. Figure 12.1 provides an overview of the methods involved in human

microbiome analysis.

Metagenomics, the term coined by Handelsman et al. (1998), made it possible

for direct genetic analysis of species that are refractory to culturing methods. Using

metagenomics, several types of ecosystems including extreme environments and

low-diversity environments have been studied so far (Oulas et al. 2015). Decoding

the metagenome and its comprehensive genetic information can also be used to

understand the functional properties of the microbial community besides studying

population ecology. This has provided an infinite capacity for bioprospecting that

allowed the discovery of novel compounds of biotechnological commercialization

(Segata et al. 2011). Initially metagenomics was used mainly to identify novel

biomolecules from environmental microbial assemblages (Chistoserdova 2010).

But the advent of next-generation sequencing techniques at affordable costs has

allowed for more comprehensive examination of microbial communities such as

comparative community metagenomics, metatranscriptomics, and metaproteomics

(Simon and Daniel 2010).

In order to disentangle complex ecosystem functions of the microbial commu-

nities and fulfill the promise of metagenomics, the comprehensive data sets derived

from the next-generation sequencing technologies require intensive analyses

(Scholz et al. 2011). This demand has created the need for more powerful tools

and software that have unprecedented potential to shed light on ecosystem func-

tions of microbial communities and evolutionary processes.

12.2 Sequence Processing

Compared to conventional Sanger sequencing, several next-generation sequencing

platforms provide huge data at much lower recurring cost. Though these technol-

ogies include a number of methods like template preparation, sequencing and

imaging, and data analysis in common, it is the unique combination of specific

protocols that distinguishes one technology from another. Besides that, it also

determines the type of data produced from each platform, posing challenges

when comparing platforms based on data quality and cost. As these new sequencing

technologies produce hundreds of megabases of data at affordable costs,

metagenomics is within the reach of many laboratories. The metagenomic analysis

workflow begins with sampling and metadata collection and then proceeds with

DNA extraction, library construction, sequencing, read preprocessing, and assem-

bly. Either for reads, contigs, or both, binning is applied. Community composition

analysis is made using databases. Some details of the workflow will be different in

different sequencing facilities.

One has to take greater care when processing sequences of metagenomic data

sets than when processing genomic data sets because in the later there is no fixed

end point and lacks many of the quality assurance procedures (Kunin et al. 2008).

12 Methods for Microbiome Analysis 271



12.2.1 Preprocessing

Preprocessing of sequence reads is a critical and largely overlooked aspect of

metagenomic analysis. Preprocessing comprises the base calling of raw data com-

ing off the sequencing machines, vector screening to remove cloning vector

sequence, quality trimming to remove low-quality bases (as determined by base

calling), and contaminant screening to remove verifiable sequence contaminants.

Errors in each of these steps can have greater downstream consequences in

metagenomes.

12.2.2 Sources of Bias and Error in 16S rRNA Gene
Sequencing and Reducing Sequencing Error Rates

Irrespective of the technologies used, the scientist needs to understand the quality of

their data and how to reduce errors that affect downstream analyses. Two main

categories of errors that are commonly observed with 16S sequencing are due to

misrepresentation of the relative abundances of microbial populations in a sample

(bias) and misrepresentation of an actual sequence itself due to PCR amplification

and sequencing (error) (Schloss et al. 2011). Misrepresentation of the relative

abundances might be due to DNA extraction method (Miller et al. 1999), PCR

primer and cycling conditions, 16S rRNA gene copy number, and the actual

community composition in the original sample (Hansen et al. 1998). On the other

hand, error due to misrepresentation of an actual sequence is due to PCR poly-

merases that typically have error rates of one substitution per 105–106 bases (Cline

et al. 1996), risk of chimera formation (Haas et al. 2011), and errors introduced by

sequencers (Margulies et al. 2005). Because of their relative rates, sequencing

errors and chimeras are of the most concern (Schloss et al. 2011).

Sequencing errors can be reduced by the following ways: removing sequence

associated with low-quality scores, removing ambiguous base calls, removing

mismatches to the PCR primer, or removing sequences that were shorter or longer

than expected. Besides these, using denoising and removing sequences that cannot

be taxonomically classified are also followed. But the later generally reduce the

number of spurious OTUs and phylotypes and do not minimize the actual error rate.

Laehnemann et al. (2015) has reported an extensive survey of the errors that are

generated during sequencing by the commonly used high-throughput sequencing

platforms.
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12.2.3 Base Calling and Quality Trimming

Base calling involves identifying DNA bases from the readout of a sequencing

machine. Popular base caller widely used is Phred (Ewing et al. 1998). The quality

score, q, assigned to a base is related to the estimated probability, p, of erroneously
calling the base by the following formula: q ¼ �10 � log10( p). Thus, a Phred

quality score of 20 corresponds to an error probability of 1%. Paracel’s TraceTuner
(www.paracel.com) and ABI’s KB (www.appliedbiosystems.com) are the other

two frequently used base callers, which behave very similar to Phred by converting

raw data into accuracy probability base calls. Since metagenomic assemblies have

lower coverage than genomes, errors are more likely to propagate to the consensus.

Some post-processing pipelines ignore base quality scores associated with reads

and contigs, and few take positional sequence depth into account as a weighting

factor for consensus reliability. Because of this, for an average user, low-quality

data will be indistinguishable from the rest of the data set. When poor-quality read

that inadvertently passed through to gene prediction it may pass into public

repositories. Hence, quality trimming is highly recommended.

12.2.4 Denoising

Denoising is a computationally intensive process that removes problematic reads

and increases the accuracy of the taxonomic analysis. This is critically important for

16S metagenomic data analysis as it may give rise to erroneous OTUs, and it is

sequencing platform-specific too. Illumina require less denoising than others.

Though generally a considerable number of sequences is lost, it usually results in

high-quality sequences (Gaspar and Thomas 2013) at certain level of stringency

(Bakker et al. 2012). Notable software packages that are commonly used to correct

amplicon pyrosequencing errors include Denoiser (Reeder and Knight 2010),

AmpliconNoise (Quince et al. 2011), Acacia (Bragg et al. 2012), DRISEE (dupli-

cate read inferred sequencing error estimation) (Keegan et al. 2012), JATAC

(Balzer et al. 2013), and CorQ (Iyer et al. 2013). Denoiser uses frequency-based

heuristics rather than statistical modeling to cluster reads and makes more accurate

assessments of alpha diversity when combined with chimera-checking methods.

AmpliconNoise is highly effective but is computationally intensive and applies an

approximate likelihood using empirically derived error distributions to remove

pyrosequencing noise from reads. These two tools do not modify individual

reads; rather they both select an “error-free” read to represent reads in a given

cluster. Acacia, on the other hand, is an error-correction tool, reduces the number

and complexity of alignments, and uses a quicker but less sensitive statistical

approach to distinguish between error and genuine sequence differences. DRISEE

assess sequencing quality and provides positional error estimates that can be used to

inform read trimming within a sample. JATAC algorithm identifies duplicate reads
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based on the flowgram that has been shown to be superior for noise removal in

metagenomics amplicon data and also allows for a more effective removal of

artificial duplicates. CorQ corrects homopolymer and non-homopolymer insertion

and deletion (indel) errors by utilizing inherent base quality in a sequence-specific

context.

12.2.5 Reducing Chimerism

Chimeras are fusion products that are formed between multiple parent sequences.

These are falsely interpreted as novel organisms. These are not sequencing errors as

they are not derived from a single reference sequence to which it can be mapped.

Few commonly used programs for combating chimerism are Bellerephon, Pintail

(Ashelford et al. 2005), ChimeraSlayer (Haas et al. 2011), Perseus (Quince et al.

2011), and Uchime (Edgar et al. 2011). The two algorithms most widely used for

16S chimera detection are Pintail and Bellerophon. The former is used by the

databases like the RDP (Cole et al. 2009) and SILVA (Pruesse et al. 2007) and

the latter is used by the GreenGenes 16S rRNA sequence collection (DeSantis et al.

2006). Pintail is generally visualized as 16S anomaly detection tool rather than a

chimera detection tool. But interestingly most anomalies detected by Pintail were

chimeras (Ashelford et al. 2005). Perseus, unlike Pintail and Bellerophon, does not

use a reference database, but does require a training set of sequences similar to the

sequences for characterization. Uchime outperformed ChimeraSlayer, especially in

cases where the chimera has more than two parents and its performance was

comparable to that of Perseus.

12.3 Sequence Assembly

The shotgun sequencing generates sequences for multiple small fragments sepa-

rately which are then combined into a reconstruction of the original genome using

computer programs called genome assemblers. These programs assemble shorter

reads first into contigs, and these are then oriented into scaffolds that provide a more

compact and concise view of the sequenced community. New challenges for the

assembly process are posed by recent advances in genome sequencing technologies

in terms of volume of data generated, length of the fragments, and new types of

sequencing errors especially in metagenomics (Pop 2009). Earlier metagenomic

data assemblies used tools that were originally designed for conventional whole-

genome shotgun sequence (WGS) projects with minor parameter modifications

(Wooley and Ye 2009). But recent ones have evolved as more robust specifically

in handling samples containing multiple genomes. The assembly process can be

approached either as reference-based assembly or as de novo assembly.
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12.3.1 Reference-Based Assembly

In reference-based assembly, contigs are created by mapping on one or more

reference genomes that belong to a particular species or genus, or sequences from

closely related organism would have already been deposited in online data repos-

itories and databases. Reference-based assembly tools are not computationally

intensive and can perform well when metagenomic samples are derived from the

areas that are extensively studied. Tools like GS Reference Mapper (Roche), MIRA

4 (Chevreux et al. 2004) or AMOS, and MetaAMOS (Treangen et al. 2013) are

commonly used in metagenomics applications. The assemblies can be visualized

using tools such as Tablet (Milne et al. 2009), EagleView (Huang and Marth 2008),

and MapView (Bao et al. 2009). Gaps in the query genome(s) of the resulting

assembly indicate that the assembly is incomplete or that the reference genomes

used are too distantly related to the community under investigation.

12.3.2 De Novo Assembly

On the other hand, de novo assembly is a computationally expensive process

requiring hundreds of gigabytes of memory and has long execution times, which

assembles the contigs based on the de Bruijn graphs without any reference genome

(Miller et al. 2010). Though tools such as EULER (Pevzner et al. 2001),

FragmentGluer (Pevzner et al. 2004), Velvet (Zerbino and Birney 2008), SOAP

(Li et al. 2008), ABySS (Simpson et al. 2009), and ALLPATHS (Maccallum et al.

2009) were built for assembling a single genome, even today they are used for

metagenomics applications. EULER and ALLPATHS attempt to correct errors in

reads prior to assembly, while Velvet and FragmentGluer deal with errors by

editing the graphs. These often underperform when used for metagenome assem-

blies due to problems coming from variation between similar subspecies and

genomic sequence similarity between different species. Besides that, difference in

abundance for species in a sample was also affected by different sequencing depths

for individual species. Tools like Genova (Laserson et al. 2011), MAP (Lai et al.

2012), MetaVelvet (Namiki et al. 2012), MetaVelvet-SL (Afiahayati and

Sakakibara 2014), and Meta-IDBA (Peng et al. 2011) managed to create more

accurate assemblies especially from data sets containing a mixture of multiple

genomes by making use of k-mer frequencies to detect kinks in the de Bruijn

graph. Using k-mer thresholds, they decompose the graph into subgraphs and

further assemble contigs and scaffolds based on the decomposed subgraphs. The

IDBA-UD algorithm (Peng et al. 2012) additionally address the issue of

metagenomic sequencing technologies with uneven sequencing depths by making

use of multiple depth-relative k-mer thresholds in order to remove erroneous

k-mers in both low-depth and high-depth regions.
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12.4 Analyzing Community Biodiversity

12.4.1 The Marker Gene

Microbial community fundamentally is a collection of individual cells, with distinct

genomic DNA. In order to describe the community, it is impractical to fully

sequence every genome in every cell. Hence, microbial ecology has defined a

number of unique tags to distinct genomes called molecular markers. A marker is

a small segment of DNA sequence that identifies the genome that contains it,

eliminating the need to sequence the entire genome. Despite its numerous varieties,

there are some which are desirable for properties for a good marker like it should be

present in every member of a population and discriminate individuals with distinct

genomes and, ideally, should differ proportionally to the evolutionary distance

between distinct genomes.

By far the most ubiquitous and significant (Lane et al. 1985) is the small or 16S

ribosomal RNA subunit gene (Tringe and Hugenholtz 2008) as the preferred target

marker gene for bacteria and archaea. But in case of fungi and eukaryotes, the

preferred marker genes are the internal transcribed spacer (ITS) and 18S rRNA

gene, respectively (Oulas et al. 2015). The gold standard (Nilakanta et al. 2014) for

the 16S data analysis is QIIME (Caporaso et al. 2010). Yet another popular tool is

Mothur (Schloss et al. 2009) which provides the user with a variety of choices by

incorporating software such as DOTUR (Schloss and Handelsman 2005), SONS

(Schloss and Handelsman 2006a), Treeclimber (Schloss and Handelsman 2006b),

and many more algorithms. Other tools include SILVAngs (Quast et al. 2012) and

MEGAN (Huson et al. 2007). These marker gene analyses generally involve

searching a reference database to find the closest match to an OTU from which a

taxonomic lineage is inferred. Some widely utilized databases for 16S rRNA gene

analysis include GreenGenes (DeSantis et al. 2006) and Ribosomal Database

Project (Cole et al. 2007; Cole et al. 2009). Besides 16S, SILVA (Pruesse et al.

2007) also supports analysis of 18S in case of fungi and eukaryotes. Unite (Koljalg

et al. 2013) can be used for analyzing ITS.

Unfortunately, not much databases are available for analyzing extremely diverse

protists and viruses for which considerably less sequence information is available

compared to bacteria. Humans are not only reported to carry viral particles

consisting mainly of bacteriophages (Haynes and Rohwer 2011) but also a substan-

tial number of eukaryotic viruses (Virgin et al. 2009). Like bacterial microbiota,

viromes show similar patterns in different stages of human (Caporaso et al. 2011;

Koenig et al. 2010), but the effects of these patterns in the human virome are mostly

not understood, although certain bacteriophages in other animals are beneficial to

the host (Oliver et al. 2009). The lack of a universal gene that is present in all virus

makes amplicon-based studies difficult for characterizing the virome in its totality.
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12.5 Analyzing Functional Diversity

This generally involves identifying protein coding sequences from the

metagenomic reads and comparing the coding sequence to a database (for which

some functional information is identified) to infer the function based on its simi-

larity to sequences in the database. Besides picturing the functional composition of

the community (Looft et al. 2012) or functions that associate with specific envi-

ronmental or host-physiological variables (Morgan et al. 2012), they may also

reveal the presence of novel genes (Nacke et al. 2011) or provide insight into the

ecological conditions associated with those genes for which the function is cur-

rently unknown (Buttigieg et al. 2013). Functional annotation of metagenome

involves two non-mutually exclusive steps: gene prediction and gene annotation.

12.5.1 Gene Prediction

This can be done on assembled or unassembled metagenomic sequences.

Metagenomic reads/contigs are scanned for identifying protein coding genes

(CDSs), as well as CRISPR repeats, noncoding RNAs, and tRNA. Predicting

CDSs from metagenomic reads is a fundamental step for annotation. Gene predic-

tion for metagenomic sequences can be performed in three ways: first, by mapping

the metagenomic reads or contigs to a database of gene sequences; second, based on

protein family classification; and, third, by de novo gene prediction.

Mapping the metagenomic reads or contigs to a database of gene sequences is a

straightforward method of identifying coding sequences in a metagenome. This

method of gene prediction can simultaneously provide functional annotation, if

functional annotation of the gene is available. It comes under high-throughput gene

prediction procedure as the mapping algorithms assess rapidly whether a genomic

fragment is nearly identical to a database sequence or not. This method is generally

useful for cataloging the specific genes present in the metagenome but not appro-

priate from predicting novel or highly divergent genes due to underrepresentation

of genomes in sequence databases.

The second method is the most frequently used gene prediction procedure where

each metagenomic read is translated into all six possible protein coding frames and

each of the resulting peptides is compared to a database of protein sequences. Tools

like transeq (Rice et al. 2000), USEARCH (Edgar 2010), RAPsearch (Zhao et al.

2011), and lastp (Kielbasa et al. 2011) translate reads prior to conducting protein

sequence alignment. On the other hand, algorithms like blastx (Altschul et al.

1997), USEARCH with the ublast option, or lastx (Kielbasa et al. 2011) translate

nucleic acid sequences on the fly. As this also relies on database, it can reveal only

diverged homologues of known proteins and not useful for identifying novel types

of proteins. Common functional databases includes SMART (Schultz et al. 1998),

SEED (Overbeek et al. 2005), NCBI nr (Pruitt et al. 2011), the KEGG Orthology
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(Kanehisa and Goto 2000), COGs (Tatusov et al. 1997), MetaCyc (Caspi et al.

2012), eggNOGs (Powell et al. 2011), and PFAM (Punta et al. 2011). Integrated

pipelines with integrated functional annotation like MG-RAST (Meyer et al. 2008),

MEtaGenome ANalyzer (MEGAN) (Huson et al. 2007), and HUMAnN

(Abubucker et al. 2012) are also available to automate these tasks.

Contrary to the above two methods, de novo gene prediction does not rely on a

reference database for identifying sequence similarity. Rather, gene prediction

systems are trained by evaluating various properties of microbial genes like length

of the gene, codon usage, GC bias, etc. Hence this method can potentially identify

novel genes, but it is difficult to determine if the predicted gene is real or spurious.

Tools like MetaGene (Noguchi et al. 2006), MetaGeneAnnotator (Meyer et al.

2008), Glimmer-MG (Kelley et al. 2011), MetaGeneMark (Zhu et al. 2010),

FragGeneScan (Rho et al. 2010), Orphelia (Hoff et al. 2009), and MetaGun (Liu

et al. 2013) can be used for de novo gene prediction. Yok and Rosen (2011)

recommended that gene prediction in metagenomes can be improved when multiple

methods are applied to the same data like following a consensus approach. Though

time-consuming, this method tends to be more discriminating than 6-frame trans-

lation while annotating (Trimble et al. 2012).

RNA genes (tRNA and rRNA) can be predicted using tools like tRNAscan

(Lowe and Eddy 1997). Predictions of tRNA predictions are quite reliable, but

not the rRNA genes. Other types of noncoding RNA (ncRNA) genes can be

detected by comparison to covariance models (Griffiths-Jones et al. 2005) and

sequence-structure motifs (Macke et al. 2001). These methods are computationally

intensive and take long time for metagenomic data sets. Predicting ncRNAs are

usually excluded from downstream analyses because of the complexity due to lack

conservation and reliable “ab initio” methods even for isolated genomes.

Errors in gene prediction mainly occur due to chimeric assemblies or frameshifts

(Mavromatis et al. 2007). Hence, the quality of the gene prediction normally relies

on the quality of read preprocessing and assembly. Though gene prediction can be

performed with both assembled reads (contigs) and unassembled reads, it is advised

to perform gene calling on both reads and contigs. It was observed that gene

prediction methods used on accurately assembled sequences predicted more than

90% when compared to predictions made on unassembled reads which exhibited

lower accuracy (~70%) (Mavromatis et al. 2007).

12.5.2 Functional Annotation

Functional annotation of metagenomic data sets are made by comparing predicted

genes to existing, previously annotated sequences or by context annotation.

Metagenomic data will have complications when predicted proteins are short and

lack homologues. Databases that are used for comparing protein sequences include

alignment of profiles from the protein families in TIGRFAMs (Selengut et al.

2007), PFAM (Finn et al. 2008), COGs (Tatusov et al. 1997), and RPS-BLAST
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(Markowitz et al. 2006). PFAMs allow the identification and annotation of protein

domains. TIGRFAM database include models for both domain and full-length

proteins. Though COGs also allow the annotation of the full-length proteins, it is

not frequently updated like PFAMs and TIGRFAMs. It is also recommended not to

assign protein function solely based on BLAST results as there is a potential for

error propagation through databases (Kyrpides and Ouzounis 1999). Context-based

annotation methods include genomic neighborhood (Overbeek et al. 1999), gene

fusion (Marcotte et al. 1999b), phylogenetic profiles (Pellegrini et al. 1999), and

coexpression (Marcotte et al. 1999a). It was observed that neighborhood analysis

was performed on metagenomic data, which, combined with homology searches,

inferred specific functions for 76% of the metagenomic data sets (83% when

nonspecific functions are considered) (Harrington et al. 2007) and is expected to

be used in predicting protein function in metagenomic data in the future.

12.6 Metatranscriptomic Analysis

Metatranscriptome sequencing has been recently employed to identify RNA-based

regulation and expression in human microbiome (Markowitz et al. 2008).

Accessing metatranscriptome of the microbiome through metatranscriptomic shot-

gun sequencing (RNAseq) has led to the discovery and characterization of new

genes from uncultivated microorganisms under different conditions. Few investi-

gations (Bikel et al. 2015; Franzosa et al. 2014; Gosalbes et al. 2011; Jorth et al.

2014; Knudsen et al. 2016) have been performed on metatranscriptomics combined

with metagenomics. Several technical issues affecting large-scale application of

metatranscriptomics are discussed by Bikel et al. (2015). Though metagenomic and

metatranscriptomic data provide extensive information about microbiota diversity,

gene content, and their potential functions, it is very difficult to say whether DNA

comes from viable cells or whether the predicted genes are expressed at all and, if

so, under what conditions and to what extent (Gosalbes et al. 2011).

The bioinformatics pipeline for analyzing the data obtained from a

metatranscriptomic experiment is similar to the one used in metagenomics. Basi-

cally this is also divided in two strategies: mapping sequence reads to reference

genomes or pathways to identify the taxonomical classification of active microor-

ganism and the functionality of their expressed genes and de novo assembly of new

transcriptomes. For de novo assembly, there are several programs like

SOAPdenovo (Li et al. 2009), ABySS (Birol et al. 2009), and Velvet-Oases (Schulz

et al. 2012) that have been reported to be successfully applied to the

metatranscriptome assembly (Ghaffari et al. 2014; Ness et al. 2011; Schulz et al.

2012; Shi et al. 2011). A program specially developed for de novo transcriptome

assembly from short-read RNAseq data, Trinity (Haas et al. 2013), is one of the

most used bioinformatics tools to assemble de novo transcriptomes of different

species. It is a very efficient and sensitive in recovering full-length transcripts and

isoforms (Ghaffari et al. 2014; Luria et al. 2014).
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Metatranscriptome analyses involves stepwise approach for detecting the differ-

ent RNA types, such as rRNAs, mRNAs, and other noncoding RNAs, facilitating

the researchers to study them individually. The reads can be then compared against

the small subunit rRNA reference database (SSUrdb), and later, the remaining

unassigned reads can be analyzed with the large subunit rRNA reference database

(LSUrdb)—the databases compiled from SILVA (Pruesse et al. 2007) or RDP II

(Cole et al. 2009). The non-rRNA representation can be then identified from

subtracting the LSU rRNA and SSU rRNA reads from the total reads obtained.

The non-rRNAs are finally carried forward for functional analyses.

The functional diversity of the microbiome can be predicted by annotating

metatranscriptomic sequences with known functions. cDNA sequences with no

significant homology with any of the rRNA databases can be searched against the

NCBI nr protein database using BLASTX (Altschul et al. 1997). The sequence

reads that contain protein coding genes are identified, and their sequences are

compared to the coding sequences of protein databases like the Kyoto Encyclopedia

of Genes and Genomes (KEGG), protein family annotations (Pfam), gene ontol-

ogies (GO), and clusters of orthologous groups (COG). Thus, the function of the

query sequence is assigned based on its homology to sequences functionally

annotated in all the above mentioned databases.

Pipelines for combined metatranscriptomics with metagenomics include

INFERNAL, a powerful tool for predicting small RNA in the metagenomic data

(Nawrocki and Eddy 2013). HUMAnN is another automated pipeline, an offline

platform, to determine the presence/absence and abundance of microbial pathways

and gene families in a community directly from metagenomic sequence. This is

done by converting sequence reads into coverage and abundance and finally

summarizes the gene families and pathways in a microbial community (Abubucker

et al. 2012). Other offline platforms used to analyze metagenomic data include

MEGAN (Huson et al. 2007), IMG/M server (Markowitz et al. 2008), RAST

(MG-RAST) (Meyer et al. 2008), and JCVI Metagenomics Reports (METAREP)

(Goll et al. 2010).

12.7 Statistical Analysis in Metagenomics

Statistical analysis plays critical role in analyzing and interpreting metagenomic

data. Even simple metagenomic analysis like estimate of species diversity seems

not so straightforward and obviously needs statistical attention due to the artifacts

created during the sequencing (discussed earlier).

Often critical statistical analysis precedes with normalization (i.e., normalization

to a reference sample), a step that reduces the systematic variance and improves the

overall performance for downstream statistical analysis. These include methods

like centering, autoscaling, pareto scaling, range scaling, vast scaling, log transfor-

mation, and power transformation. Appropriate selection of data pretreatment

methods and its significance have been by van den Berg et al. (2006).
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Robust data processing algorithms for wide range of analysis are mostly created

using repositories available from the open-source R-project (http://www.R-project.

org) and the R-based bioconductor project (https://www.bioconductor.org/). These

are widely considered to be the most complete collection of up-to-date statistical

and machine learning algorithms (Xia et al. 2009). Common statistical analysis

includes missing value estimation, diversity analysis, and univariate and multivar-

iate analysis like directions of variance, cluster analysis, etc.

Missing value exclusion, missing value replacement, and missing value impu-

tation can be identified by probabilistic PCA (PPCA), Bayesian PCA (BPCA), and

singular value decomposition imputation (SVDImpute) (Stacklies et al. 2007;

Steinfath et al. 2008). Univariate analysis includes three commonly used

methods—fold-change analysis, t-tests, and volcano plots. The t-test attempts to

determine whether the means of two groups are distinct. With t-value, P-value can
be calculated which can be used to determine whether the distinction is statistically

significant or not. The volcano plots compare the size of the fold change to the

statistical significance level (Xia et al. 2009). Directions of maximum variance can

be determined by principal component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA). PCA is an unsupervised method aiming to find the

directions of maximum variance in a data set (X) without referring to the class

labels (Y), and PLS-DA is a supervised method that uses multiple linear regression

technique to find the direction of maximum covariance between a data set (X) and

the class membership (Y). In both PCA and PLS-DA, the original variables are

summarized into much fewer variables using their weighted averages called scores.

Diversity analysis can be performed by estimating the alpha diversity, which pro-

vides a summary statistic of a single population, or beta diversity, which gives

organismal composition between populations. Chao1 (Chao 1984), abundance-

based coverage estimator (ACE) (Chao et al. 1993), and Jackknife (Heltshe and

Forrester 1983) measure alpha diversity, species richness, and evenness (species

distribution) expected within a single population. These results in collector’s or

rarefaction curves (Colwell and Coddington 1994). Alpha diversity is often quan-

tified by the Shannon Index (Shannon 1948) or by Simpson Index (Simpson 1949).

Beta diversity can be measured by simple taxa overlap or quantified by the Bray-

Curtis dissimilarity (Bray and Curtis 1957) or UniFrac (Lozupone and Knight

2005). Two major approaches of clustering analysis include Hierarchical clustering

and partitional clustering. Hierarchical, which is also called as agglomerative

clustering, begins with each sample considered as separate cluster and then pro-

ceeds to combine them until all samples belong to one cluster. The result of

hierarchical clustering is usually presented as a dendrogram or as a heat map,

which displays the actual data values using color gradients. Clustering methods

include average linkage, complete linkage, single linkage, and Ward’s linkage. A
dissimilarity measure includes Euclidean distance, Pearson’s correlation, and

Spearman’s rank correlation. On the other hand, partitional clustering attempts to

directly decompose the data set into a user-specified number of disjoint clusters.

This uses methods like k-means clustering and self-organizing map (SOM).

k-Means clustering create k clusters such that the sum of squares from points to
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the assigned cluster centers’ is minimized. SOM is an unsupervised neural network

based around the concept of a grid of interconnected nodes, each of which contains

a model.

Demands for new statistical methods to support emerging trends in

metagenomics applications have resulted in more efficient implementations and

better data visualization to lodge the tremendous increase in data analysis work-

loads. Web-based server with its user-friendly interface, comprehensive data

processing options, wide array of statistical methods, and extensive data visualiza-

tion and analysis support are playing key role. Servers like GEPAS (Herrero et al.

2003) and CARMAweb (Rainer et al. 2006), MG-RAST (Meyer et al. 2008),

MEGAN (Huson et al. 2007), QIIME (Caporaso et al. 2010), Mothur (Schloss

et al. 2009), and MetaboAnalyst (Xia et al. 2015) are few worth mentioning.

Table 12.1 summarizes some the commonly used tools in microbiome analysis

and their internet resources.

12.8 Analysis of Human Microbiome

Since birth, continuous exposure to microbial challenges has shaped the human

microbiome and whose perturbation affects both human health and disease (Segal

and Blaser 2014). In recent years, the knowledge about composition, distribution,

and variation of bacteria in the human body has dramatically increased. Besides

external factors like air, food, and environment, routine activity, habit, and phys-

iology create selective pressure of each organism. In order to understand the

influence of human microbiome, several studies have assessed the microbial com-

positions in different locations like stool, nasal, skin, vaginal, and oral of health and

unhealthy individuals (Kraal et al. 2014). Thus, determining the extent of the

variability of the human microbiome is therefore crucial for understanding the

microbiology, genetics, and ecology of the microbiome. Besides that, it is useful

for practical issues in designing experiments and interpretation of clinical studies

(Zhou et al. 2014).

Study demonstrating the feasibility of using the composition of the gut

microbiome to detect the presence of precancerous and cancerous lesions (Zackular

et al. 2014), ethnic relation to significant differences in the vaginal microbiome

(Fettweis et al. 2014), and discovery closely related oligotypes, differing sometimes

by as little as a single nucleotide, showing dramatic different distributions among

oral sites and among individuals (Eren et al. 2014), a less robustly interrogated

placental microbiome by Aagaard et al. (2014), altered interactions between intes-

tinal microbes, and the mucosal immune system resulting in inflammatory bowel

disease (IBD) (Kostic et al. 2014) have taken us to the next level of understanding

the human microbiome. Other studies like understanding of the etiology and

pathogenesis of reflux disorders and esophageal adenocarcinoma (Yang et al.

2014) and altered microbiome on pulmonary responses (Segal and Blaser 2014)

will be definitely be critical and open door for future investigations.
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Table 12.1 Selected tools and their resources for microbiome analysis

Software Brief description URLs

Preprocessing

FASTX-Toolkit A collection of command line tools

for short-read FASTA/FASTQ files

preprocessing

hannonlab.cshl.edu/fastx_toolkit

FastQC A quality-controlled tool for high-

throughput sequence data

www.bioinformatics.babraham.

ac.uk/projects/fastqc

SolexaQA Calculates sequence quality statis-

tics and creates visual representa-

tions of data quality for second-

generation sequencing data

http://solexaqa.sourceforge.net/

Lucy 2 Raw DNA sequence trimming and

visualization tool based on the

command-line tool Lucy1

http://www.complex.iastate.edu/

download/Lucy2/index.html

CutAdapt Removal of adapter sequences from

high-throughput sequencing data

https://code.google.com/p/

cutadapt/

NGS QC Toolkit Perl-based stand-alone program

package for the quality control

(QC)

www.nipgr.res.in/ngsqctoolkit.

html

Trimmomatic Employed in trimming tasks for

illumina paired-end and single

ended data

http://www.usadellab.org/cms/?

page¼trimmomatic

ngsShoRT Commonly used preprocessing

algorithms in PERL

research.bioinformatics.udel.edu/

genomics/ngsShoRT/

QC-Chain A fast, accurate, and holistic NGS

data quality-controlled method

http://www.

computationalbioenergy.org/qc-

chain.html

Meta-QC-Chain A tool that combines multiple QC

functions like identifying potential

errors, quality trimming filters for

poor sequencing quality bases and

reads, and contamination screening

that identifies higher eukaryotic

species, which are considered as

contamination for metagenomic

data

http://computationalbioenergy.

org/meta-qc-chain.html

PathoQC A streamlined toolkit for

preprocessing next-generation

sequencing data

http://sourceforge.net/projects/

PathoScope/

PRINSEQ Provides summary statistics of

FASTA (and QUAL) or FASTQ

files

http://prinseq.sourceforge.net/

Denoising

AmpliconNoise A collection of programs for the

removal of noise from

454 sequenced PCR amplicons

https://code.google.com/p/

ampliconnoise/

(continued)
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Table 12.1 (continued)

Software Brief description URLs

DADA Algorithm for fast and accurate

removal errors from PCR-amplified

sequence data

http://sites.google.com/site/

dadadenoiser

Acacia Error corrector for pyrosequenced

amplicon reads

http://sourceforge.net/projects/

acaciaerrorcorr

Chimera detection

UCHIME Detects very low-divergent chi-

meras with a reference database

http://drive5.com/usearch/man

ual/uchime_algo.html

ChimeraSlayer A chimeric sequence detection

utility, compatible with near-full-

length Sanger sequences and

shorter 454-FLX sequences

http://microbiomeutil.

sourceforge.net/

DECIPHER Chimeric sequence detection utility

developed using the R statistical

programming language

http://decipher.cee.wisc.edu

Reference-based assembly

Newbler (Roche) Assembling sequence data gener-

ated by the 454 GS-series of

pyrosequencing platforms sold by

454 Life Sciences, a Roche Diag-

nostics company

http://swes.cals.arizona.edu/

maier_lab/kartchner/documenta

tion/index.php/home/docs/

newbler

MIRA 4 A multi-pass DNA sequence data

assembler/mapper for whole-

genome and EST/RNASeq projects

http://mira-assembler.

sourceforge.net/docs/

DefinitiveGuideToMIRA.html

AMOS A consortium committed to the

development of open-source

whole-genome assembly software

http://amos.sourceforge.net/wiki/

index.php/AMOS

MetAMOS An integrated assembly and analy-

sis pipeline for metagenomic data

http://www.cbcb.umd.edu/soft

ware/metamos

Bowtie 2 Ultrafast and memory-efficient tool

for aligning sequencing reads to

long reference sequences

http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

De novo assembly

EULER A suite of programs for correcting

errors in short reads (454 and

Illumina) and assembling them

http://euler-assembler.ucsd.edu/

Velvet de Bruijn graph-based single-

genome assembler for short reads

https://www.ebi.ac.uk/~zerbino/

velvet/

SOAPdenovo The program is specially designed

to assemble Illumina GA short

reads for the human-sized genomes

http://soap.genomics.org.cn/

soapdenovo.html

Abyss A de novo, parallel, paired-end

sequence assembler that is designed

for short reads

http://www.bcgsc.ca/platform/

bioinfo/software/abyss

MetaVelvet Modified and extended de Bruijn

graph-based single-genome

http://metavelvet.dna.bio.keio.ac.

jp/
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Table 12.1 (continued)

Software Brief description URLs

assembler, Velvet, for de novo

metagenomic assembly

MetaVelvet-SL An extended Velvet assembler for

detecting chimeric nodes by using

supervised machine learning

metavelvet.dna.bio.keio.ac.jp/

Meta-IDBA An iterative de Bruijn graph de

novo short-read assembler specially

designed for de novo metagenomic

assembly

http://i.cs.hku.hk/~alse/hkubrg/

projects/metaidba/

Genovo A tool for de novo metagenomic

assembly and handle reads with

length>1000

http://cs.stanford.edu/group/

genovo/

Trinity Assembles transcript sequences

from Illumina RNAseq data

https://github.com/trinityrnaseq/

trinityrnaseq/wiki

Binning tools

TETRA To calculate how well

tetranucleotide usage patterns in

DNA sequences correlate

http://www.megx.net/tetra/index.

html

PhylopythiaS Taxonomic assignment of

metagenome sequences among

from three different models

http://phylopythias.cs.uni-

duesseldorf.de/index.php?

phase¼wait

TACOA Predicting the taxonomic origin of

genomic fragments from

metagenomic data sets by combin-

ing the advantages of the k-NN

approach with a smoothing kernel

function

http://www.cebitec.uni-bielefeld.

de/index.php/2-uncategorised/99-

tacoa?

highlight¼WyJ0YWNvYSJd

ESOM A suite of programs to perform data

mining tasks like clustering, visu-

alization, and classification

http://databionic-esom.

sourceforge.net/

ClaMS A sequence composition-based

classifier for metagenomic

sequences

http://clams.jgi-psf.org/

MetaPhyler Taxonomic classifier for

metagenomic shotgun reads

http://metaphyler.cbcb.umd.edu/

SOrt-ITEMS A similarity-based binning method http://metagenomics.atc.tcs.com/

binning/SOrt-ITEMS/

PhymmBL Hybrid classifier tool which com-

bines analysis from both Phymm

and BLAST and produces even

higher accuracy

http://www.cbcb.umd.edu/soft

ware/phymm/

MetaCluster Binning and annotating short

paired-end reads

http://i.cs.hku.hk/~alse/

MetaCluster/

OTU clustering

UCLUST An algorithm that divides a set of

sequences into clusters

http://www.drive5.com/usearch
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Table 12.1 (continued)

Software Brief description URLs

CD-HIT-OTU Fast and accurate in identifying true

OTUs and produces much fewer

spurious OTUs

http://weizhong-lab.ucsd.edu/cd-

hit-otu

TBC Algorithm for defining operational

taxonomic units (OTUs) without

multiple sequence alignment

http://www.ezbiocloud.net/sw/tbc

16S databases

RDP A database that provides quality-

controlled, aligned, and annotated

bacterial and archaeal 16S rRNA

sequences, fungal 28S rRNA

sequences, and a suite of analysis

tools to the scientific community

http://rdp.cme.msu.edu/index.jsp

SILVA A comprehensive online resource

for quality-checked and aligned

ribosomal RNA sequence data

http://www.arb-silva.de

GreenGenes A collection of tools for choosing

phylogenetically specific probes,

interpreting microarray results, and

aligning/annotating novel

sequences

http://greengenes.lbl.gov

EzTaxon A database that covers uncultured

species often found in microbial

ecological studies

http://www.ezbiocloud.net/

eztaxon

ITS database

UNITE A platform for sequence-borne

identification of ectomycorrhizal

asco- and basidiomycetes

http://unite.ut.ee

Sub-cellular localization

CoBaltDB Predicting prokaryotic protein

localizations

http://www.umr6026.univ-

rennes1.fr/english/home/research/

basic/software/cobalten

PSLpred To predict the subcellular location

for Gram-negative bacteria proteins

http://www.imtech.res.in/raghava/

pslpred/

CELLO Predicting subcellular localization

of proteins for Gram-negative bac-

teria by support vector machines

based on n-peptide compositions

http://cello.life.nctu.edu.tw/

PSORT-B To predict the subcellular location

for Gram-positive or Gram-

negative bacterial proteins

Functional annotation databases

BLAST nr Basic Local Alignment Search Tool

against nonredundant database

http://blast.ncbi.nlm.nih.gov/

Blast.cgi

SWISSPROT Manually annotated and reviewed

section of the UniProt

Knowledgebase (UniProtKB)

http://www.uniprot.org/
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Table 12.1 (continued)

Software Brief description URLs

KEGG Kyoto Encyclopedia of Genes and

Genomes

http://www.genome.jp/kegg/

SEED A resource that provide consistent

and accurate genome annotations

across thousands of genomes

http://pubseed.theseed.org/

EggNOG A database of orthologous groups

and functional annotation

http://eggnogdb.embl.de/#/app/

home

COG/KOG EuKaryotic Orthologous Groups

(KOG) is a eukaryote-specific ver-

sion of the Clusters of Orthologous

Groups (COG) tool for identifying

ortholog and paralog proteins

http://genome.jgi.doe.gov/Tuto

rial/tutorial/kog.html

PFAM Collection of protein families, each

represented by multiple sequence

alignments and hidden Markov

models (HMMs)

http://pfam.xfam.org/

TIGRFAMs A resource consisting of curated

multiple sequence alignments, hid-

den Markov models (HMMs) for

protein sequence classification, and

associated information designed to

support automated annotation of

(mostly prokaryotic) proteins

http://www.jcvi.org/cgi-bin/

tigrfams/index.cgi

MetaBioMe A web resource to find novel

homologues for known commer-

cially useful enzymes (CUEs) in

metagenomic data sets and com-

pleted bacterial genomes

http://metasystems.riken.jp/

metabiome/

TSdb The transporter substrate database

(TSdb)—a central repository of

formatted substrate information of

transporters as well as their

annotation

http://tsdb.cbi.pku.edu.cn/

TCDB Functional and phylogenetic clas-

sification of membrane transport

proteins

http://www.tcdb.org/

CAZy A specialist database dedicated to

the display and analysis of geno-

mic, structural, and biochemical

information on carbohydrate-active

enzymes (CAZymes)

http://www.cazy.org/

dbCAN A database for carbohydrate-active

enzymes

http://csbl.bmb.uga.edu/dbCAN/

Annotation of metagenomics sequences

MetaGeneMark For gene prediction in

metagenomes

http://exon.gatech.edu/meta_

gmhmmp.cgi

MetaGeneAnnotator A gene-finding program for pro-

karyote and phage

http://metagene.nig.ac.jp/
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Table 12.1 (continued)

Software Brief description URLs

Prodigal A gene-finding program developed

at Oak Ridge National Laboratory

and the University of Tennessee

http://prodigal.ornl.gov/

Orphelia A metagenomic ORF finding tool

for the environmental DNA

sequences with unknown phyloge-

netic origin

http://orphelia.gobics.de/

FragGeneScan Software for predicting prokaryotic

genes in incomplete assemblies or

complete genomes

http://sourceforge.net/projects/

fraggenescan/

PILER-CR Software for finding CRISPR

repeats

http://www.drive5.com/pilercr/

tRNAscan-SE A web server for predicting tRNAs http://lowelab.ucsc.edu/

tRNAscan-SE/

WebMGA A web server for rapid

metagenomic data analysis using

fast and effective algorithms

http://weizhong-lab.ucsd.edu/

metagenomic-analysis/

METAREP An open-source tool to view, query,

browse, and compare

metagenomics annotation profiles

from short reads or assemblies

http://jcvi.org/metarep/

STAMP A software package for analyzing

taxonomic or metabolic profiles

http://kiwi.cs.dal.ca/Software/

STAMP

CoMet A web server for fast comparative

functional profiling of

metagenomes

http://comet.gobics.de/

RAMMCAP Analysis and comparison of very

large metagenomes with fast clus-

tering and functional annotation

http://weizhong-lab.ucsd.edu/

rammcap/cgi-bin/rammcap.cgi

Analytical pipelines for 16S

CARMA Software pipeline for characteriz-

ing the taxonomic composition and

genetic diversity of short-read

metagenomes

http://www.cebitec.uni-bielefeld.

de/index.php/2-uncategorised/47-

carma?highlight¼WyJjYXJtYSJd

IMG/M Integrated Microbial Genomes with

Microbiome

http://img.jgi.doe.gov/m/doc/back

ground.html

MG-RAST An automated analysis platform for

metagenomes

http://metagenomics.anl.gov/

Mothur An open-source software for

microbial ecology community

analysis

http://www.mothur.org

QIIME An open-source bioinformatics

pipeline for performing

microbiome analysis from raw

DNA sequencing data

http://qiime.org

SILVAngs A data analysis service for ribo-

somal RNA gene (rDNA) amplicon

https://www.arb-silva.de/ngs/
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12.9 Conclusion

Human microbiota includes microorganisms living on the surface and inside the

body. They are important for the host’s health. These are highly dynamic and can be

influenced by a number of factors such as age, diet, and physiology. Studies have

shown that most of the human adult microbiota lives in the gut and follows specific

microbial signatures but with high intraindividual variability over time. Any alter-

ations of the human gut microbiome can play a role in disease development. Thus,

exploring microbiome could make themselves as potent target for diagnostic and

therapeutic applications. Since early microbial studies were bases on the direct

cultivation and isolation of microbes, clinical applications posed several limitations

especially growth conditions. Studies have shown that not all microbes are cur-

rently uncultivable. Methods to study cultivable organisms are also not suitable for

the study of entire microbiome. Metagenomics helped in the direct genetic analysis

of genomes contained within an environmental sample without the need for culti-

vating. Metagenomic studies using NGS-based methods can be approached by

amplifying 16S rRNA genes using specific primers or through whole-genome

shotgun sequencing. 16S sequences identified can be used to describe their com-

munity relative abundance and/or their phylogenetic relationships by clustering into

operational taxonomic units (OTUs) using databases of previously annotated

sequences. In whole-genome shotgun sequencing approach, where random primers

Table 12.1 (continued)

Software Brief description URLs

reads from high-throughput

sequencing

MEGAN Tool for studying the taxonomic

content from short-read

metagenomes

http://ab.inf.uni-tuebingen.de/soft

ware/megan5/

WATERS From 16S rDNA contigs to biolog-

ical interpretation and analysis

http://code.google.com/p/

waters16s

RDPipeline For processing large rRNA

sequence libraries (single-strand

and paired-end reads) obtained

through high-throughput sequenc-

ing technology

https://pyro.cme.msu.edu

VAMPS A collection of tools for visualiza-

tion and analyze data for microbial

population structures and

distributions

http://vamps.mbl.edu

Genboree A web-based platform for multi-

omic research and data analysis

using the latest bioinformatics tools

http://genboree.org

SnoWMan Pipeline for analysis of microbiome

data

https://snowman.genome.tugraz.

at/snowman
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are used for amplifying all microbial genes, the relative abundances of genes and

pathways can be determined by comparing the sequences to functional databases.

Next-generation sequencing (NGS) technologies not only increased the through-

put of bases sequenced/run but also reduced sequencing costs. This had a major

impact on the field of metagenomics where a specific microbiome can be qualita-

tively and quantitatively characterized in depth without the selection bias and

constraints associated with cultivation methods. Continuous advancements in

sequencing technologies have not only allowed address more complex habitats

but also have imposed growing demands on bioinformatic data post-processing.

Analyzing the huge amount of data by these technologies has become the bottle-

neck especially in case of larger metagenome projects. From assembly to analysis,

bioinformatic post-processing requires dedicated data integration pipelines, some

of which have yet to be developed.
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JCVI metagenomics reports—an open source tool for high-performance comparative

metagenomics. Bioinformatics. 2010;26(20):2631–2.

Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE,

Latorre A, Moya A. Metatranscriptomic Approach to Analyze the Functional Human Gut

Microbiota. PLoS One. 2011;6(3):e17447.

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. Rfam: annotating

non-coding RNAs in complete genomes. Nucleic Acids Res. 2005;33(Database issue):D121–4.

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D,

Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petrosino JF, Knight R, Birren

BW. Chimeric 16S rRNA sequence formation and detection in Sanger and

454-pyrosequenced PCR amplicons. Genome Res. 2011;21(3):494–504.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D,

Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R,

William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A. De novo transcript

sequence reconstruction from RNA-seq using the Trinity platform for reference generation and

analysis. Nat Protoc. 2013;8(8):1494–512.

Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the

chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5

(10):R245–9.

Hansen M, Tolker-Nielsen T, Givskov M, Molin S. Biased 16S rDNA PCR amplification caused

by interference from DNA flanking the template region. FEMS Microbiol Ecol.

1998;26:141–9.

Harrington ED, Singh AH, Doerks T, Letunic I, von Mering C, Jensen LJ, Raes J, Bork

P. Quantitative assessment of protein function prediction from metagenomics shotgun

sequences. Proc Natl Acad Sci U S A. 2007;104(35):13913–8.

Haynes M, Rohwer F. Metagenomics of the Human Body Springer. New: York; 2011.

292 K.S. Ibrahim and N.S. Kumar



Heltshe J, Forrester N. Estimating species richness using the jackknife procedure. Biometrics.

1983;39:1–11.

Herrero J, Al-Shahrour F, Diaz-Uriarte R, Mateos A, Vaquerizas JM, Santoyo J, Dopazo

J. GEPAS: A web-based resource for microarray gene expression data analysis. Nucleic

Acids Res. 2003;31(13):3461–7.

Hoff KJ, Lingner T, Meinicke P, Tech M. Orphelia: predicting genes in metagenomic sequencing

reads. Nucleic Acids Res. 2009;37(Web Server issue):W101–5.

Huang W, Marth G. EagleView: a genome assembly viewer for next-generation sequencing

technologies. Genome Res. 2008;18(9):1538–43.

Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res.

2007;17(3):377–86.

Iyer S, Bouzek H, Deng W, Larsen B, Casey E, Mullins JI. Quality score based identification and

correction of pyrosequencing errors. PLoS One. 2013;8(9):e73015.

Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the

human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4.

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res.

2000;28(1):27–30.

Keegan KP, Trimble WL, Wilkening J, Wilke A, Harrison T, D’Souza M, Meyer F. A platform-

independent method for detecting errors in metagenomic sequencing data: DRISEE. PLoS

Comput Biol. 2012;8(6):e1002541.

Kelley DR, Liu B, Delcher AL, Pop M, Salzberg SL. Gene prediction with Glimmer for

metagenomic sequences augmented by classification and clustering. Nucleic Acids Res.

2011;40(1):e9.

Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence

comparison. Genome Res. 2011;21(3):487–93.

Knudsen BS, Kim HL, Erho N, Shin H, Alshalalfa M, Lam LL, Tenggara I, Chadwich K, Van Der

Kwast T, Fleshner N, Davicioni E, Carroll PR, Cooperberg MR, Chan JM, Simko

JP. Application of a clinical whole-transcriptome assay for staging and prognosis of prostate

cancer diagnosed in needle core biopsy specimens. J Mol Diagn. 2016; pii: S1525–1578(16)

00051–9. doi:10.1016/j.jmoldx.2015.12.006.

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley

RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl

Acad Sci U S A. 2010;108(Suppl 1):4578–85.

Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD,

Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M,

Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD,

Lucking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U,

Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott JA, Senes C, Smith ME, Suija A,

Taylor DL, Telleria MT, Weiss M, Larsson KH. Towards a unified paradigm for sequence-

based identification of fungi. Mol Ecol. 2013;22(21):5271–7.

Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status

and the future ahead. Gastroenterology. 2014;146(6):1489–99.

Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains

in the human microbiome: a resource for experimental efforts. PLoS One. 2014;9(5):e97279.

Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician’s guide to

metagenomics. Microbiol Mol Biol Rev. 2008;72(4):557–78. , Table of Contents

Kyrpides NC, Ouzounis CA. Whole-genome sequence annotation: ‘going wrong with confidence’.
Mol Microbiol. 1999;32(4):886–7.

Laehnemann D, Borkhardt A, McHardy AC (2015) Denoising DNA deep sequencing data-high-

throughput sequencing errors and their correction. Brief Bioinform

Lai B, Ding R, Li Y, Duan L, Zhu H. A de novo metagenomic assembly program for shotgun DNA

reads. Bioinformatics. 2012;28(11):1455–62.

12 Methods for Microbiome Analysis 293

http://dx.doi.org/10.1016/j.jmoldx.2015.12.006


Lampe JW. The Human Microbiome Project: getting to the guts of the matter in cancer epidemi-

ology. Cancer Epidemiol Biomark Prev. 2008;17(10):2523–4.

Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal

RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 1985;82(20):6955–9.

Laserson J, Jojic V, Koller D. Genovo: de novo assembly for metagenomes. J Comput Biol.

2011;18(3):429–43.

Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinfor-

matics. 2008;24(5):713–4.

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K,Wang J. SOAP2: an improved ultrafast tool for

short read alignment. Bioinformatics. 2009;25(15):1966–7.

Liu Y, Guo J, Hu G, Zhu H. Gene prediction in metagenomic fragments based on the SVM

algorithm. BMC Bioinf. 2013;14(Suppl 5):S12.

Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B,

Cole JR, Hashsham SA, Tiedje JM, Stanton TB. In-feed antibiotic effects on the swine

intestinal microbiome. Proc Natl Acad Sci U S A. 2012;109(5):1691–6.

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in

genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.

Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communi-

ties. Appl Environ Microbiol. 2005;71(12):8228–35.

Luria N, Sela N, Yaari M, Feygenberg O, Kobiler I, Lers A, Prusky D. De-novo assembly of

mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment.

BMC Genomics. 2014;15:957.

Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J, McKernan K,

Ranade S, Shea TP, Williams L, Young S, Nusbaum C, Jaffe DB. ALLPATHS 2: small

genomes assembled accurately and with high continuity from short paired reads. Genome

Biol. 2009;10(10):R103.

Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R. RNAMotif, an RNA

secondary structure definition and search algorithm. Nucleic Acids Res. 2001;29(22):4724–35.

Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein

function and protein-protein interactions from genome sequences. Science. 1999a;285

(5428):751–3.

Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. A combined algorithm for

genome-wide prediction of protein function. Nature. 1999b;402(6757):83–6.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS,

Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S,

Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza

JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE,

McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT,

Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer

GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in

microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

Markowitz VM, Ivanova N, Palaniappan K, Szeto E, Korzeniewski F, Lykidis A, Anderson I,

Mavromatis K, Kunin V, Garcia Martin H, Dubchak I, Hugenholtz P, Kyrpides NC. An

experimental metagenome data management and analysis system. Bioinformatics. 2006;22

(14):e359–67.

Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, Chen IM, Grechkin Y,

Dubchak I, Anderson I, Lykidis A, Mavromatis K, Hugenholtz P, Kyrpides NC. IMG/M: a data

management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:D534–8.

Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I,

Salamov A, Korzeniewski F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P,

Kyrpides NC. Use of simulated data sets to evaluate the fidelity of metagenomic processing

methods. Nat Methods. 2007;4(6):495–500.

294 K.S. Ibrahim and N.S. Kumar



Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A,

Stevens R, Wilke A, Wilkening J, Edwards RA. The metagenomics RAST server – a public

resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf.

2008;9:386.

Miller DN, Bryant JE, Madsen EL, Ghiorse WC. Evaluation and optimization of DNA extraction

and purification procedures for soil and sediment samples. Appl Environ Microbiol. 1999;65

(11):4715–24.

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Geno-

mics. 2010;95(6):315–27.

Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D. Tablet – next generation

sequence assembly visualization. Bioinformatics. 2009;26(3):401–2.

Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA,

LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower

C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment.

Genome Biol. 2012;13(9):R79.

Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R. Identification and characteriza-

tion of novel cellulolytic and hemicellulolytic genes and enzymes derived from German

grassland soil metagenomes. Biotechnol Lett. 2011;34(4):663–75.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of Velvet assembler to

de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012;40(20):

e155.

Nawrocki EP, Eddy SR. Computational identification of functional RNA homologs in

metagenomic data. RNA Biol. 2013;10(7):1170–9.

Ness RW, Siol M, Barrett SC. De novo sequence assembly and characterization of the floral

transcriptome in cross- and self-fertilizing plants. BMC Genomics. 2011;12:298. [936]

Nilakanta H, Drews KL, Firrell S, Foulkes MA, Jablonski KA. A review of software for analyzing

molecular sequences. BMC Res Note. 2014;7:830.

Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome

shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30.

Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for

protection in a symbiotic mutualism. Science. 2009;325(5943):992–4.

Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G,

Arvanitidis C, Iliopoulos I. Metagenomics: tools and insights for analyzing next-generation

sequencing data derived from biodiversity studies. Bioinf Biol Insight. 2015;9:75–88.

Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer

functional coupling. Proc Natl Acad Sci U S A. 1999;96(6):2896–901.

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V,

Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A,

Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B,

McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD,

Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O,

Vonstein V. The subsystems approach to genome annotation and its use in the project to

annotate 1000 genomes. Nucleic Acids Res. 2005;33(17):5691–702.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions

by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S

A. 1999;96(8):4285–8.

Peng Y, Leung HC, Yiu SM, Chin FY. Meta-IDBA: a de Novo assembler for metagenomic data.

Bioinformatics. 2011;27(13):i94–101.

Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and

metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28(11):1420–8.

Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE,

Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD,

Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C,

12 Methods for Microbiome Analysis 295



Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H,

Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer

M. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317–23.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc

Natl Acad Sci U S A. 2001;98(17):9748–53.

Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res.

2004;14(9):1786–96.

Pop M. Genome assembly reborn: recent computational challenges. Brief Bioinform. 2009;10

(4):354–66.

Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I,

Doerks T, Jensen LJ, von Mering C, Bork P. eggNOG v3.0: orthologous groups covering 1133

organisms at 41 different taxonomic ranges. Nucleic Acids Res. 2011;40(Database issue):

D284–9.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. SILVA: a

comprehensive online resource for quality checked and aligned ribosomal RNA sequence

data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current

status, new features and genome annotation policy. Nucleic Acids Res. 2011;40(Database

issue):D130–5.

Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G,

Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD. The Pfam

protein families database. Nucleic Acids Res. 2011;40(Database issue):D290–301.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F,

Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J,

Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB,

Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y,

Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O,

Parkhill J, Weissenbach J, Bork P, Ehrlich SD. A human gut microbial gene catalogue

established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA

ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic

Acids Res. 2012;41(Database issue):D590–6.

Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced

amplicons. BMC Bioinf. 2011;12:38.

Rainer J, Sanchez-Cabo F, Stocker G, Sturn A, Trajanoski Z. CARMAweb: comprehensive R- and

bioconductor-based web service for microarray data analysis. Nucleic Acids Res. 2006;34

(Web Server issue):W498–503.

Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-

abundance distributions. Nat Methods. 2010;7(9):668–9.

Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic

Acids Res. 2010;38(20):e191.

Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite.

Trends Genet. 2000;16(6):276–7.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM,

Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan

SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA,

Jones SJ, Hoodless PA, Birol I. De novo assembly and analysis of RNA-seq data. Nat Methods.

2010;7(11):909–12.

Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational

taxonomic units and estimating species richness. Appl Environ Microbiol. 2005;71(3):1501–6.

Schloss PD, Handelsman J. Introducing SONS, a tool for operational taxonomic unit-based

comparisons of microbial community memberships and structures. Appl Environ Microbiol.

2006a;72(10):6773–9.

296 K.S. Ibrahim and N.S. Kumar



Schloss PD, Handelsman J. Introducing TreeClimber, a test to compare microbial community

structures. Appl Environ Microbiol. 2006b;72(4):2379–84.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley

BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber

CF. Introducing mothur: open-source, platform-independent, community-supported software

for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75

(23):7537–41.

Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing

artifacts on 16S rRNA-based studies. PLoS One. 2011;6(12):e27310.

Scholz MB, Lo CC, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the

current state of metagenomic data analysis. Curr Opin Biotechnol. 2011;23(1):9–15.

Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool:

identification of signaling domains. Proc Natl Acad Sci U S A. 1998;95(11):5857–64.

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across

the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92.

Segal LN, Blaser MJ. A brave new world: the lung microbiota in an era of change. Ann Am Thorac

Soc. 2014;11(Suppl 1):S21–7.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic

biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson WC, Richter AR,

White O. TIGRFAMs and Genome Properties: tools for the assignment of molecular function

and biological process in prokaryotic genomes. Nucleic Acids Res. 2007;35(Database issue):

D260–4.

Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423. ,

623–656

Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan

XC. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for

major metabolic pathways of tea-specific compounds. BMC Genomics. 2011;12:131.

Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol.

2010;77(4):1153–61.

Simpson E. Measurement of diversity. Nature. 1949;163:688.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for

short read sequence data. Genome Res. 2009;19(6):1117–23.

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods – a bioconductor package

providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–7.

Steinfath M, Groth D, Lisec J, Selbig J. Metabolite profile analysis: from raw data to regression

and classification. Physiol Plant. 2008;132(2):150–61.

Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science.

1997;278(5338):631–7.

Thomas T, Gilbert J, Meyer F. Metagenomics – a guide from sampling to data analysis. Microb

Info Exp. 2012;2(1):3.

Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM,

Pop M. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline.

Genome Biol. 2013;14(1):R2.

Trimble WL, Keegan KP, D’Souza M, Wilke A, Wilkening J, Gilbert J, Meyer F. Short-read

reading-frame predictors are not created equal: sequence error causes loss of signal. BMC

Bioinf. 2012;13:183.

Tringe SG, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol.

2008;11(5):442–6.

van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling,

and transformations: improving the biological information content of metabolomics data.

BMC Genomics. 2006;7:142.

Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009;138(1):30–50.

12 Methods for Microbiome Analysis 297



Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational challenges. J Comput Sci

Technol. 2009;25(1):71–81.

Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data

analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60.

Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0 – making metabolomics more

meaningful. Nucleic Acids Res. 2015;43(W1):W251–7.

Yang L, Chaudhary N, Baghdadi J, Pei Z. Microbiome in reflux disorders and esophageal

adenocarcinoma. Cancer J. 2014;20(3):207–10.

Yok NG, Rosen GL. Combining gene prediction methods to improve metagenomic gene annota-

tion. BMC Bioinf. 2011;12:20.

Zackular JP, Rogers MA, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool

for colorectal cancer. Cancer Prev Res (Phila). 2014;7(11):1112–21.

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs.

Genome Res. 2008;18(5):821–9.

Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for

next-generation sequencing data. Bioinformatics. 2011;28(1):125–6.

Zhou Y, Mihindukulasuriya KA, Gao H, La Rosa PS, Wylie KM, Martin JC, Kota K, Shannon

WD, Mitreva M, Sodergren E, Weinstock GM. Exploration of bacterial community classes in

major human habitats. Genome Biol. 2014;15(5):R66.

Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences.

Nucleic Acids Res. 2010;38(12):e132.

298 K.S. Ibrahim and N.S. Kumar



Chapter 13

Pharmacogenomics: Clinical Perspective,
Strategies, and Challenges

Dev Bukhsh Singh

Abstract Pharmacogenomics (PGx) defines the genetic basis of variability among

individuals in response to drugs. It is an emerging discipline of medical science and

is now a challenging and applied area of medical research. Several factors influence

the efficacy and toxicity of drugs such as environmental factors, age, weight,

gender, liver and kidney function, and applied drug therapy. Another crucial factor

that influences the drug response of a patient is the genetic makeup of the patient.

Polymorphism affects the drug efficacy, bioavailability, and toxicity. Human

Genome Project (HGP) has provided a foundation for PGx study by identifying

genes related to a disease. PGx knowledge derived from genetic profiling and

associated drug response must be translated into clinical applications. A drug

label contains information about PGx biomarker and drug related to a therapeutic

area and also provides specific information for safe and effective medication based

on a biomarker. PGx drugs have improved therapeutic response and also avoid

events of adverse drug reactions (ADRs). There are some important ethical, social

justice, and economic issues related to PGx which create hurdles in the drug

development via PGx. The objective of this chapter is to discuss the basic principle

of PGx and its application and also to put forward the ethical, social, technological,

and economic challenges in the way of PGx. In spite of many challenges, it is

expected that PGx may offer significant promises toward the goal of personalized

medicine in the future.
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13.1 Introduction

PGx is the study of how genes affect drug response within a person or population.

This is an emerging field which combines pharmacology and genomics to find a

safe and effective treatment for a disease based on the genetic makeup of an

individual. The long-term goal of PGx is to help doctors in selecting the drug and

dosage best suited for each patient, based on patient’s gene, an environment,

lifestyle, and other characteristics. The major objective of PGx is to identify all

the genetic and epigenetic differences that cause phenotypic variations in patient’s
response to drug therapy (Hess et al. 2015). Most of the drugs that are currently

available are not genome specific and also do not have the similar response to each

individual. These drugs generate three possibilities after treatment: positive

response, adverse reactions, and no response to a population (Fig. 13.1). PGx

promises a dramatic improvement in drug safety and efficacy. HGP played a very

important role in learning the significance of inherited differences in genes on

individual’s drug response to medication. Patient’s response to a drug depends on

pharmacokinetics and pharmacodynamics. Pharmacokinetic effects are due to

differences in absorption, distribution, metabolism, or excretion of the drug. The

inappropriate concentration of drugs and metabolites can result in toxicity. In

contrast, pharmacodynamics defines the efficacy of drugs among individuals

despite the presence of an effective concentration of drug at the site of action

(Wispelwey 2005).

The goal of PGx is to develop genetic-based strategies that will optimize the

therapeutic outcomes. PGx uses the differences in genetic makeup to find an

effective treatment for a particular individual and also avoids the chances of

ADR. PGx approach has been used for cancer, anticonvulsant, anti-infective,

cardiovascular, opioid, proton pump inhibitor, and psychotropic drugs, as well as

other types of therapies. The use of PGx is quite limited, but new approaches are

Genetic factors

Environmental
factors

Variation in drug
response between

individuals

Good
response

Moderate
response

Adverse
response

No
response

Fig. 13.1 Responses of a drug in traditional treatment

300 D.B. Singh



under study in clinical trials. In the future, PGx will offer a potential and effective

medication to a wide range of health problems, including cancer, AIDS,

Alzheimer’s disease, and other fatal diseases (Genetic Home Reference n.d.).

ADRs lead to a large number of injuries and deaths every year. PGx tests decrease

the possibility of ADR. It also reduces the need for trial and error treatment to find

the best therapy. Codeine is an effective painkiller, and it acts after its conversion to

morphine, which needs to be detoxified and excreted. For example, codeine may

have a toxic effect because of the high amount of morphine produced and/or

impairment of excretion. Individual genetic differences, as well as prescribed

drugs, affect the related metabolic pathways with clinical implications. Adverse

drug events result in high cost and experimenting with treatments is expensive.

Thus, PGx test reduces the overall cost for patients and physicians significantly.

Genetic basis of drug response enables us to understand the most critical aspects

of drug action, improves drug safety, and makes it easier to prescribe the right dose

for each person. PGx supports the drug development process which could be

achieved through a more rationalized, safer, and less expensive clinical trial

process. Drugs that suit to an individual with a particular genetic profile could be

marketed only for those with that genetic makeup, while drugs previously in use

could be recommended to the patient or limited population for whom they are safer.

Differences between individuals can affect drug absorption, metabolism, toxicity,

or activity. Therefore, while one treatment may work well for one individual, the

same may cause adverse effects to other individuals (Kitzmiller et al. 2011).

Currently, the majority of drug prescriptions are based on clinical factors such as

patient’s age, weight, sex, and liver and kidney function. For a small subset of

drugs, scientists have identified the genetic variations that affect people’s response
to a drug. The Food and Drug Administration (FDA) of the United States includes

the PGx information such as dosage guidelines, possible side effects, or difference

in effectiveness for people with certain genomic variations for more than 150 med-

ications (U.S. FDA n.d.).

PGx utilizes the variations in genes for proteins or enzyme that affects the

response of a drug. Such proteins include a number of liver enzymes that convert

drugs into their active or inactive forms. Even small variations in the genetic

composition of these enzymes can have a big impact on a drug’s safety or effec-

tiveness. A gene may exist in many forms/versions, many of which vary by only a

single difference in their DNA sequence or some may have larger changes. Most of

these genetic variants do not influence the drug responses. Some patients may have

much more copies of a gene. Those with extra copies of this gene manufacture an

overabundance of enzyme molecules and show a different response to treatment

with a drug (NIH, NIGMS n.d.). Pharmaceutical companies are using the PGx

knowledge to develop and market drugs for patients with specific genetic profile.

PGx also raises a lot of ethical issues. There is a need to protect informed consent

and confidentiality and to promote justice and equity both nationally and globally.

There is a need of a public policy related to PGx for the betterment of individual and

society. The potential benefits of PGx should not be underestimated even from an

ethical point of view.
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13.2 Genetic Polymorphism

Studies have shown that about 85% of human diversity at short tandem repeat

(STR) and restriction fragment length polymorphism (RFLP) autosomal loci is due

to differences between individuals of the same population, whereas differences

between populations of the same continent account for 5–10% (Romualdi et al.

2002). A study based on more than 350 microsatellites from a global sample of

humans showed that individuals could be grouped according to their continental

origin (Serre and Pääbo 2004). Results indicated that the pattern seen is one of the

gradients of allele frequencies that extend over the entire world and also disqualify

the assumption that major genetic discontinuities exist between different continents

or races. Human genetic variation is based on patterns of gene flow and genetic drift

(Jorde and Wooding 2004). Therefore, ancestry or racial study may prove useful in

the biomedical testing, but the results directly associated with disease-related

genetic variation will be more accurate and beneficial. CYP2D6 allele frequency

varies among racial groups. In European Caucasians and their descendants, the

functional group of alleles is predominant, with a frequency of 71% (Bradford

2002). The alleles which encode for no or reduced functioning will affect the

activity of the CYP2D6-mediated drug. Therefore, allele-related studies are neces-

sary to assure the optimal dosing recommendations.

HGP has provided a foundation for PGx study by identifying genes related to a

disease. Genetic information derived from genomic research must be translated into

clinical applications for the welfare of society. Most differences in drug response

among individuals are not caused by mutation of a single gene but by the altered

function of genes. Variations in absorption, distribution, metabolism, and excretion

(ADME) genes and the genes associated with drug targets may result in the absence

of protein or the production of a protein with altered or no activity. These variations

decide overall metabolism of the drug and the therapeutic index of the drug, as well

as the activity of its metabolites (Nadine and Theresa 2008). The clinical associa-

tion of a genetic variation can be related with a disease. Cyclooxygenases are the

key enzymes in several physiopathological processes. Genes coding for these

enzymes (PTGS1 and PTGS2) are highly variable, and variations in these genes

cause the risk of developing several diseases and ADR. Major variations in the

PTGS1 and PTGS2 genes, allele frequencies, functional consequences, and popu-

lation genetics have been analyzed (Agúndez et al. 2015). The most salient clinical

associations of PTGS gene variations are related to colorectal cancer and stroke.

Genes responsible for a clinical outcome can be identified by correlating variability

in genotype with phenotypic differences.

The study of genetic variants associated with cancer or any disease helps in early

detection of disease and also opens the way for personalized cancer therapy. In

recent years, the GWAS studies have provided information about many genetic

variants in cancer. For example, the presence of genetic variants rs1447295 and

rs6983267 on 8q24 contributes to prostate cancer in Europeans (Yeager et al. 2007).

These variants provide a useful biomarker for diagnosis and therapeutic
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categorization. The systematic cataloging of genetic variants may provide the

information of pathways controlling the cellular activities in cancer (Cho 2010).

Genetic variants can be more clinically useful if they are combined with the family

history records of the disease. New diagnostic test and therapeutic strategies can be

developed on the basis of biochemical targets to control the disease. Rare genetic

variants are too rare to be identified by GWAS and they have large effect on disease

risk (Cirulli and Goldstein 2010). The 1000 Genomes Project has identified many

genetic variants at lower frequencies. Some examples of polymorphism and its

effect on metabolism and therapeutic role have been discussed here.

13.2.1 Polymorphism in miRNA

MicroRNAs (miRNAs) are small, single-stranded, 19–21 nucleotide long

nonprotein-coding RNA molecules. miRNAs act as negative regulators of gene

expression through binding to their target mRNAs and consequently lead to mRNA

cleavage or translational repression (Bartel 2004). The miRNAs regulate the

expression of roughly 10–30 % of all human genes, including the genes related to

cell differentiation, proliferation, and apoptosis (Berezikov et al. 2005). miRNA

may contribute to cancer development with changes in the miRNA’s properties

and/or maturation process. A study was performed to validate the potential associ-

ation between the four common SNPs (miR-196a2C.T, rs11614913; miR-146aG.C,

rs2910164; miR-499A.G, rs3746444; miR-149C.T, rs2292832) and the risk for

developing cancer (He et al. 2012). The results of this study indicated that the

rs11614913TT genotype is significantly associated with a decreased risk for colo-

rectal cancer and lung cancer. The rs2910164C allele is associated with decreased

risk for cervical cancer, esophageal cancer, prostate cancer, and hepatocellular

carcinoma. SNPs in miRNA may prevent the pathogenesis of some cancers, and

some SNPs may also increase risk for cancer.

13.2.2 Urate Transporter 1 (URAT1) Polymorphisms

Genetic variation is routinely seen in all drug targets. African populations show

more genetic variation than Asian (Gurdasani et al. 2015). In most cases, these

polymorphisms do not alter the encoded amino acid and probably have no func-

tional effect. Approximately 75% of drug targets sequenced have at least one amino

acid changing genetic variant and >35% having more than three variants (McHale

2008). Sequence polymorphism reflects the variability in chemical target interac-

tions, but the real effect can only be tested in vitro or in clinical trials. In a

polymorphism-related study, the effect of urate transporter 1 (URAT1) polymor-

phisms in the hypertensive patients with hyperuricemia and the uricosuric action of

losartan therapy were explored. Results suggest that URAT1 rs3825016 and
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rs1529909 polymorphism affects the uricosuric action of losartan (Sun et al. 2015).

Polymorphism affects the drug efficacy, bioavailability, and toxicity.

13.2.3 Opioid Receptor Polymorphism

Knowledge of polymorphism is important as a specific type of polymorphism is

responsible for a particular characteristic which might not be exhibited by other

types. The pharmacologic actions of opioids are due to their interaction with the

opioid receptors (G-protein-coupled receptors) located in the brain and spinal cord

(Feng et al. 2012). Three subtypes of opioid receptors are mu-opioid receptors,

kappa-opioid receptors, and delta-opioid receptors. The mu-opioid receptor is the

primary site of action of opioid analgesics including morphine, fentanyl, and

methadone. More than hundred polymorphisms are reported for the human

mu-opioid peptide receptor gene. These polymorphisms are associated with both

agonistic and antagonistic opioid effects. Studies have shown that Gpr88, Ttr, Gh,
and Tac1 mRNAs were altered in mice exposed to chronic stress (Ubaldi et al.

2015). These transcripts represent a biomarker and therapeutic targets for diagnosis

and can also help in treatment of chronic stress-associated disease in humans.

13.2.4 The HapMap Project

The International HapMap Project was initiated in the year 2002 (International

HapMap Project n.d.). The goal of this project was to map the common patterns of

DNA sequence variation in the human genome. An international consortium was

involved in the mapping of these patterns across the genome by determining the

genotypes of sequence variants, their frequencies, and the degree of association

between them. The HapMap guides the discovery of sequence variants that affect

common disease. The HapMap facilitates the development of diagnostic tools and

also helps in drug target selection for therapeutic intervention. The HapMap

enhances our understanding of the hereditary factors involved in health and disease.

The International HapMap Project has much in common with the Human Genome

Project. The Human Genome Project covered the sequencing of the entire genome,

including the 99.9% of the genome where all human beings are identical in genetic

makeup (International HapMap Consortium 2003). The HapMap project character-

izes the common patterns of DNA sequence within the 0.1% where individuals

differ from each other.
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13.2.5 The 1000 Genomes Project

The data from 1000 Genomes Project is publically available through the 1000

Genomes Project website and dbSNP. This project was completed between 2008

and 2015 and provides the largest public catalog of human variation and genotype

data (IGSR: The International Genome Sample Resource n.d.). The goal of this

project was to find most genetic variants with frequencies of at least 1% in the

population. The International Genome Sample Resource (IGSR) was set up to

ensure the future usability and accessibility of data from the 1000 Genomes Project.

The goal of IGSR is to expand the data collection to include new populations and

ensure the future usability of the 1000 Genomes reference data (IGSR n.d.).

13.2.6 PGx Biomarkers and Drug Labeling

PGx plays an important role in identifying responders and nonresponders to a drug,

avoiding adverse events, and prescribing drug dose. Biomarkers include genetic or

somatic gene variants, changes in expression level, functional irregularities, and

chromosomal abnormalities. Drug labeling provides information about genomic

biomarkers and can describe (1) drug exposure and clinical response variability,

(2) risk of ADR, (3) genotype-specific dosing, (4) mechanism of drug action, and

(5) polymorphic drug target and disposition genes. FDA-approved drugs with PGx

information in their labeling are listed in Table 13.1. The labeling for the products

includes specific information for safe and effective medication based on biomarker

information.

EGFR has been approved as a biomarker in the therapeutic area of oncology

(lung cancer). The efficacy of epidermal growth factor receptor-tyrosine kinase

inhibitors (EGFR-TKIs) is superior to that of cytotoxic chemotherapy in advanced

non-small cell lung cancer (NSCLC) patients (Zhang et al. 2014). The efficacy of

EGFR-TKIs (gefitinib, erlotinib, and afatinib) differs between exon 19 deletion and

exon 21 L858R mutations. The L858R mutation (exon 21) results in an amino acid

substitution at position 858 in EGFR, from a leucine (L) to an arginine

(R) (My Cancer Genome n.d.). Patients with EGFR-mutated tumors display a

longer progression-free survival (PFS) on EGFR-TKI therapy. It has been reported

that patients with EGFR exon 19 deletions were associated with longer PFS

compared with L858 mutation at exon 21 (Zhang et al. 2014). The investigators

should consider the sensitive EGFR mutation as an important factor in clinical

studies regarding target therapy. After a demonstration of a genetic association with

response phenotype, there is the need to validating the biomarker for a

diagnostic test.

Cytochrome P450 (CYP) enzyme polymorphisms are a determining factor in a

patient’s ability to respond to different drugs (Lynch and Price 2007). CYP

enzymes metabolize the drugs within the endoplasmic reticulum of liver cells,
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and waste is excreted through urine. Most phase I metabolizing enzymes belong to

CYP family (CYP3A4, CYP3A5, CYP2D6, CYP1A1, CYP1B1, and CYP2E1) and

convert a wide range of substrates into more water-soluble form (Yiannakopoulou

2015). The polymorphisms of transporter enzymes, such as the OATP family of

transporters, have also been linked to differences in the pharmacokinetics of drug

absorption. For example, a single nucleotide polymorphism (SNP) in the SLCO1B1

gene, which encodes the OATP1B1 enzyme, leads to impaired absorption of statins

(Kalliokoski and Niemi 2009). Recent studies have highlighted the role of

Table 13.1 List of some PGx biomarkers in drug labeling

Drug Therapeutic area Biomarker

Referenced

subgroup Labeling section

Abacavir Infectious

diseases

HLA-B HLA-B*5701

allele carriers

Boxed warning, con-

traindications, warn-

ings and precautions

Afatinib Oncology EGFR EGFR exon

19 deletion or

exon 21 substitu-

tion (L858R)

positive

Indications and usage,

dosage and administra-

tion, adverse reactions,

clinical pharmacology

Aripiprazole Psychiatry CYP2D6 CYP2D6 poor

metabolizers

Dosage and adminis-

tration, clinical

pharmacology

Busulfan Oncology BCR-

ABL1

Philadelphia

chromosome

negative

Clinical studies

Carvedilol Cardiology CYP2D6 CYP2D6 poor

metabolizers

Drug interactions, clin-

ical pharmacology

Clobazam Neurology CYP2C19 CYP2C19 poor

metabolizers

Dosage and adminis-

tration, use in specific

populations, clinical

pharmacology

Glipizide Endocrinology G6PD G6PD deficient Precautions

Celecoxib Rheumatology CYP2C9 CYP2C9 poor

metabolizers

Dosage and adminis-

tration, use in specific

populations, clinical

pharmacology

Chlorpropamide Endocrinology G6PD G6PD deficient Precautions

Cisplatin Oncology TPMT TPMT interme-

diate or poor

metabolizers

Clinical pharmacology,

warning, precautions

Diazepam Psychiatry CYP2C19 CYP2C19 poor

metabolizers

Clinical pharmacology

Mafenide Infectious

diseases

G6PD G6PD deficient Warnings, adverse

reactions

Omeprazole Gastroenterology CYP2C19 CYP2C9 poor

metabolizers

Drug interactions

U.S. FDA (n.d.)
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CYP2C19 polymorphism for the action of clopidogrel, whereas the CYP2C9

polymorphism has a role in anticoagulant treatment (Sim et al. 2013). Furthermore,

the analgesic and side effect of codeine is related with CYP2D6 polymorphism, and

CYP2D6 genotype influences the breast cancer recurrence during tamoxifen treat-

ment. In another study, the effect of polymorphisms in CYP2C9 and CYP2C8 and

gender on the pharmacokinetics of the enantiomeric (R, S) forms of ibuprofen was

studied (Ochoa et al. 2015). The CYP2C9 polymorphisms and gender affect the

pharmacokinetics of S-ibuprofen and R-ibuprofen. CYP2C8 polymorphisms do not

have a significant role on the pharmacokinetics of ibuprofen. Polymorphism affects

drug metabolism and is also responsible for the diverse response of the same drug to

different individuals. An incidence of drug-induced toxicity also depends on

polymorphism.

13.2.7 Effect of Age, Sex, and Other Factors on Drug
Response

Many other factors such as age, sex, smoking or alcohol intake, intake of multiple

drugs, past history of ADR, presence of other diseases, pregnancy, breastfeeding,

kidney problem, and the liver function also affect the drug response (Alomar 2014).

Understanding of these factors on drug response enables healthcare professionals to

prescribe the most appropriate medication for a particular patient. Both very young

and very old individuals are more vulnerable to ADR than other age groups.

Because of all age-related changes, many drugs stay much longer in the body of

old-age person than younger person’s body and increase the risk of side effects

(Klotz 2009). Genetic, hormonal, and physiological differences between male and

female affect the prevalence, incidence, and severity of diseases and responses to

therapy (Soldin et al. 2011). In an age- and sex-based study of cortisol plasma level

in normal control and Alzheimer’s diseases (AD), a significant difference in cortisol
plasma levels between female AD patients and age-matched female controls and

between female and male AD patients has been reported (Leblhuber et al. 1993).

Important pharmacokinetic and pharmacodynamic changes occur with advancing

age. Pharmacokinetic changes include a reduction in renal and hepatic clearance

and an increase in the level of lipid-soluble drugs, whereas pharmacodynamic

changes involve altered sensitivity to several drugs such as anticoagulant, cardio-

vascular, and psychotropic drugs (Mangoni and Jackson 2004).

13.2.8 Herb-Drug and Drug-Drug Interactions

Environmental chemicals, coadministered drugs, dietary constituents, tobacco

smoking, and alcohol intake are known to induce or inhibit drug-metabolizing
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enzymes and drug transporters (Ma and Lu 2011). The factors alter drug efficacy,

induce drug-drug and drug-chemical interactions, and result in drug side effects.

Herbs in combination with therapeutic drugs result in herb-drug interactions. Herb-

drug interactions may lead to serious clinical consequences.Ginkgo biloba (ginkgo)
causes bleeding when combined with warfarin or aspirin, raises the blood pressure

when combined with a thiazide diuretic, and may cause coma when combined with

trazodone in patients (Hu et al. 2005). Herbs should be labeled to alert patients

when used in combination with a drug. A drug-drug interaction (DDI) involves

pharmacokinetic or pharmacodynamic mechanisms. Adverse drug reactions may

occur due to DDIs, and health service providers are often unaware of the ADR of

certain drug combinations (Magro et al. 2012). DDIs can lead to ADR, particularly

in cancer patients, because of polypharmacy and age-related organ dysfunction

(Chan et al. 2009). The number of clinically relevant DDIs is probably low. In most

cases, DDIs may be responsible for a substantial number of hospital admissions

(Becker et al. 2005). Specifically, pharmacists should have good knowledge of

combinations of drugs that may cause serious DDIs. The pharmacokinetics and

pharmacodynamics of many drugs are well known, but the role of coadministered

herbs has not been well explored due to complex components of herbal products

(Zuo et al. 2015). The pharmacokinetics and pharmacodynamics of drug-drug and

herb-drug interactions cannot be ignored. The safety of coadministration of herbs

together with drug should be kept in mind. These interactions need to be addressed

by conducting the high-quality scientific research.

13.3 PGx Testing and Drug Discovery Process

This section describes PGx studies performed on patients with a particular disease

and presents the major outcome of these studies (Fig. 13.2). The genome-wide

association study (GWAS) is extensively used to analyze hundreds of thousands of

SNP by high-throughput genotyping. In addition to the candidate gene approach,

the GWAS approach is utilized to investigate the determinants of antidepressant

response to therapy (Lin and Lane 2015). PGx has shown less impact on human

health than initially expected. One reason for this is that many diseases’ and

patients’ response to the drug treatments is affected by both genetic and environ-

mental factors. Pure genomics should also consider the role of environmental

elements (Everett 2015). Pharmacometabolomics describes the role of both genetic

and environmental influences on physiology. It is concerned with the study of drug

effects through the analysis of predose, biofluid, and metabolite profiles. Poly-

morphisms that are clinically relevant show population-specific allele frequencies.

Fifteen polymorphisms from 12 genes have been assessed in 81 Peruvian and

95 Mexican individuals (Marsh et al. 2015). Six polymorphism frequencies differed

significantly between these two populations.
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13.3.1 Adverse Drug Reactions and Hypersensitivity

Interindividual genetic differences are important causes of ADRs and lack of drug

response. The majority of phase I and phase II drug-metabolizing enzymes are

polymorphic and responsible for varying drug response (Ingelman-Sundberg and

Rodriguez-Antona 2005). GWAS related to drug response and genes encoding

drug-metabolizing enzymes have extracted knowledgeable information for varia-

tion in drug response and drug metabolism. For example, PGx markers in the

HLA-coding genes are associated with drug hypersensitivity of multiple drugs.

The HLA-B*5801 allele was significantly associated with the risk of severe cuta-

neous ADRs (cADRs) in the Han Chinese, Korean, Thai, Japanese, and European

populations (Jarjour et al. 2015). All SNPs identified in GWAS of common variants

are also located in or nearby HLA-B*5801. Five specific HLA alleles that predict

drug-induced hypersensitivity reactions (HSR) were tagged by seven SNPs

(He et al. 2015). It was concluded that SNP tagging is a “real-time” approach to

identify the specific HLA alleles associated with drug-induced hypersensitivity

across diverse racial groups. The influence of SNPs has been studied on efficacy

and safety of calcineurin inhibitors upon heart transplantation (Sánchez-Lázaro

et al. 2015). A panel of 36 SNPs was correlated with a series of clinical parameters.

Such types of studies can identify the patients at increased risk of clinical

complications.
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Drug target
identification

•Identification and validation of
target
• Investigating mode of action
• Understanding the metabolic

pathway
• Explaining the genetic
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• Studying the adverse effect of
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• Deciding the optimal dose
• Explain the drug interactions

• Determining sample size
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outcome

Applications of
Pharmacogenomics in 
drug discovery process

Fig. 13.2 Applications of pharmacogenomics across the drug discovery process
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13.3.2 Lung Adenocarcinoma

There is need to expand the scope of geographic data in PGx. Lung adenocarcinoma

is the most common form of lung cancer, and it begins in the tissues that lie near the

outer parts of the lung. The impact of the genetic polymorphisms on the therapeutic

efficacy of pemetrexed in lung adenocarcinoma patients has been investigated. The

genotyping of 51 polymorphisms of 13 genes in 243 lung adenocarcinoma patients

treated with pemetrexed was performed (Woo et al. 2015). Twelve polymorphisms

in six genes were found statistically significant in univariate analysis. Finally, two

polymorphisms (ATIC and GGH genes) were associated with therapeutic efficacy

in multivariate analysis. Genetic polymorphisms have been identified for many

enzymes, drug receptors, and transporters that are significant in clinical pharma-

cology. These polymorphisms can cause alterations in the amount, structure,

binding, and/or function of these proteins and also affect the drug interaction with

the target.

13.3.3 Breast Cancer

Cancer has become a great threat and challenge to public health. Breast cancer

accounts for 23% of the total cancer burden and 14% of cancer deaths worldwide

(Jemal et al. 2011). There is need of new diagnostic markers for the early detection

and prevention of breast cancer. Many studies have shown that the pathogenesis of

various tumors, including breast cancer, occurs due to suppression of apoptosis

(Wang et al. 2012). The effects of Fas and FasL polymorphisms on breast cancer

risk have been studied among the Chinese population. The Fas�1377GA,

Fas�1377AA, Fas�670AG, Fa�670GG, and FasL�844TC genotypes have been

associated with a lower risk of breast cancer (Xu et al. 2014). The genotype

Fas�1377G/�670A was associated with an increased risk of breast cancer. This

study also revealed that the Fas�1377GA/AA (�670AG/GG) and FasL�844CC or

TC/TT genotypes were associated with a decreased risk of breast cancer. This study

indicates that Fas polymorphisms may affect the breast cancer risk by regulating the

soluble Fas concentration.

Tamoxifen is used for the treatment of breast cancer. Tamoxifen is not effective

in all estrogen receptor (ER)-positive breast cancer patients and has side effects.

CYP2D6 is an important enzyme responsible for the production of endoxifen, a

potent tamoxifen metabolite (De Souza and Olopade 2011). Studies have shown

that genetic variation reduces CYP2D6 enzyme activity and results in poor clinical

outcome when treated with tamoxifen (Zembutsu 2015). Dose-adjustment study of

tamoxifen based on CYP2D6 genotypes suggests that dose adjustment is beneficial

for the patients carrying reduced or null allele of CYP2D6 to maintain the effective

endoxifen level.
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13.3.4 Acute Myeloid Leukemia

Variation in terms of efficacy and toxic side effects exists among acute myeloid

leukemia (AML) patients on chemotherapy with cytarabine (Ara-C). Differentially

expressed genes between Ara-C-sensitive and Ara-C-resistant samples were iden-

tified by global gene expression profiling (Abraham et al. 2015). Variations in

Ara-C cytotoxicity were seen among samples from AML patients and categorized

into sensitive, intermediately sensitive, and resistant groups, based on IC50 values.

Ara-C resistance index could be a potential biomarker for AML treatment outcome

and toxicity.

13.3.5 Tyrosine Kinase Inhibitors in Cancer Therapy

PGx informations are being widely used for drug discovery process and are already

used in clinical practice for the treatment of many diseases. EGFR family of

receptor tyrosine kinase regulates many metabolic, developmental, and physiolog-

ical processes. In tumor cells, the tyrosine kinase activity of EGFR is dysregulated

by various oncogenic mechanisms, including EGFR gene mutation and

overexpression and increased gene copy number. Many mutations in the kinase

domain of the EGFR gene provide sensitivity to tyrosine kinase inhibitors (TKIs).

Most of these patients acquired resistance to EGFR inhibitors after treatment.

EGFR-TKI resistance mechanisms include amplification and mutation in MET,

resulting in tumor cell growth (Pérez-Ramı́rez et al. 2015). Therefore, MET is

considered as an attractive target for anticancer therapy. MET promotes cell

proliferation, scattering, invasion, survival, and angiogenesis. Because of the

important role of MET in cancer development and progression, it has been

recommended as potential target for cancer therapy.

In chronic myeloid leukemia, the bone marrow produces too many white blood

cells. These cells crowd the bone marrow and interfere with the normal blood cell

production. In an interesting case, a patient bearing a T315I-mutant chronic mye-

loid leukemia resistant to nilotinib was successfully treated with two cycles of

omacetaxine and then with dasatinib (Venton et al. 2015). This study has suggested

that eradication of the T315I mutation could be achieved without third-generation

tyrosine kinase inhibitors. In the future, it is expected that other genetic markers of

drug response for a disease will further improve the efficacy and safety of therapies.

In vitro human cell line models may be used for PGx studies to know the clinical

response and to identify mechanisms associated with variation in drug response.
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13.3.6 Human Cell Line Models and Pharmacogenomics

In vitro human cell line models are used for cancer pharmacogenomics to predict

clinical response, to generate a pharmacogenomic hypothesis, and to identify

mechanisms associated with variation in drug response. Among cell line model

systems, Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) have

been used to test the effect of genetic variation on drug efficacy and toxicity (Niu

and Wang 2015). In the future, patient-specific inducible pluripotent stem cells

could improve the predictive validity. The human LCLs comprise a useful model

system for identifying genetic variants associated with pharmacologic phenotypes.

Many GWAS for drug-induced phenotypes have been tested in LCLs, often incor-

porating gene expression data (Wheeler and Dolan 2012).

The large-scale genome-wide studies in both human and model systems have

allowed us to understand how cell-based models help in finding an association

between clinically relevant genetic and drug response (Cox et al. 2012). A genome-

wide cell-based model was used to evaluate genetic variants for their contribution

to cellular sensitivity to tamoxifen. This model has included multidimensional

datasets, including genome-wide genotype, gene expression, and endoxifen-

induced cellular growth inhibition in lymphoblastoid LCLs (Weng et al. 2013a).

Genome-wide findings were further evaluated in NCI60 cancer cell lines. Further-

more, SNPs that were associated with tamoxifen-induced toxicities in breast cancer

patients were identified. The cell-based models are very useful in genome-wide

identification of pharmacogenomic markers.

13.4 Clinical Perspective and Implications

PGx has many advantages over traditional treatment options. The availability of

low-cost genotyping methods can make PGx drugs cost-effective and affordable to

poor people. Clinical and economic status should be identified under which a PGx

test might be a cost-effective option for patients (Shabaruddin et al. 2015). It is

considered that PGx tests are cost saving and better in improving human health than

no-testing approach for the cure of a disease. Pharmacists should advise clinicians

and patients on matters related to the implementation of PGx. The genetic variants

evaluated in PGx include SNPs, nucleotide insertion, deletion, copy number vari-

ation, tandem repeat, and chromosomal translocation. In addition, gene expression

is also commonly studied in PGx for relevancy in tumorigenesis and chemotherapy

response. In PGx, drug prescription is purely based on the knowledge derived from

association study between genetic profile and drug response. Basic steps and

principles in the PGx approach of treatment are represented in Fig. 13.3. However,

the current status of PGx in pharmacy colleges is poor and fails to produce

pharmacists with the required knowledge or practical training in this discipline

(Rao et al. 2015). More than 135 medications in the United States describe PGx
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informations related to drug response or drug safety on their package inserts.

Pharmacists offering PGx testing services receive billing questions specific to the

laboratory tests (O’Connor et al. 2015). Pharmacists must be able to discuss these

issues with the concerned patients. The goal of a pharmacist must always be to

provide a high quality of result and patient care. Some testing companies offer

extensive literature resources to help guide prescribers for suggesting medications.

Researchers are trying to establish an association between the response of a drug

and genotype of patients suffering from that disease. Most extensive genetic studies

such as GWAS, rare variant exome sequencing, copy number variant analysis, and

allele-related analysis can provide an answer to the altered response of the same

drug for the different individual (Cirulli and Goldstein 2010). The causal variants in

single-gene disorders are necessary and sufficient to impart large effects (Marian

and Belmont 2011). Knowledge of association between the genetic makeup of

patients and drug response must be translated into clinical practice. If genetic

variation controls the risk of drug-induced side effects, then it is recommended to

identify the variants and translate them into a highly sensitive PGx test.

Understanding of autoimmune diseases such as rheumatoid arthritis, systemic

lupus erythematosus, and psoriasis has improved considerably over the last

decades, and several PGx studies of these diseases have been carried out (Gregersen

and Olsson 2009). But the clinical applications still need to be improved. A striking

failure of modern medicine is an ADR which leads to death and illness in the

developed world with a high healthcare cost. For autoimmune disease, several

DNA-based tests are in practice to improve drug selection and dose optimization
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Fig. 13.3 Basic principles of PGx approach for medication
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and reduce the risk of toxicity. The “GATC” project was a nationwide project

established in Canada to identify novel markers of severe ADRs in children (Ross

et al. 2007). The goal of this project was to identify ADR patients, collect their

DNA samples, and apply genomic studies to identify ADR-associated genetic

markers. Different individuals may have a diverse response to the same drug, in

terms of efficacy and toxicity. ADRs cause about 6% of all hospital admissions and

account for up to 9% of hospitalization costs. Drug-induced skin injury (DISI) has

been reported as the most common ADR, ranging from maculopapular eruptions to

severe adverse cutaneous drug reactions (SCARs) with mortality of up to 40%

(Borroni 2015). Specific genetic polymorphisms present susceptibility to different

types of DISI. The cases of SCARs are now less frequent, with a low rate of

morbidity and mortality.

Abnormal genes related to cancer may be inherited or acquired. Genetic changes

that occur because of mutation in tumor suppressor genes, mismatch of repair

genes, and mutations in oncogenes alter the cell signaling pathways and other

cellular functions. Tumor-associated somatic mutations are used to identify cellular

signaling pathways in tumors. Somatic mutations serve as genomic predictors of

tumor response and represent a new target for drug development. A deep sequenc-

ing of 145 genes in colorectal and non-small cell lung cancers reported somatic

mutations in 98% and 83% of tumors, respectively. More than half (52.5%) of

colorectal cancers and 72% of non-small cell lung cancers contained at least one

mutation that was associated with a specific chemotherapy approach (Lipson et al.

2012). Clinical PGx applies deep sequencing to reveal the mechanism of sensitivity

or resistance to drug therapy. Drugs used in traditional cancer therapy destroy both

malignant and healthy cells.

PGx drugs target the specific molecules of a pathway that is related to the

division, growth, and spreading of cancer cells. One example of personalized

cancer treatment is trastuzumab (Herceptin), a recombinant monoclonal antibody

used for the treatment of breast cancer. Herceptin targets the human epidermal

growth factor receptor 2 gene (HER2) on the tumor cell surface and induces cell-

mediated cytotoxicity against the tumor cells (American Nurse Today n.d.). Leu-

kemia is the most common cancer affecting children, accounting for 25–35% of

childhood malignancies worldwide with acute lymphoblastic leukemia comprising

80% of leukemia cases. In certain leukemia patients, treatment fails due to drug

resistance that is why acute lymphoblastic leukemia is the leading cause of cancer-

related death in children (Ansari and Krajinovic 2007). Many advances have been

made in the field of anticancer therapy. Currently, the US FDA is providing the

package inserts of approximately 30 anticancer agents to include PGx information

(Weng et al. 2013b). FDA recommendation and potential action needed vary

among drugs. Scientific values of PGx knowledge should be used for improving

therapeutic efficacy and reducing side effects. There are significant limitations to

PGx discovery for anticancer therapies, because of unavailability of enough

patients for both discovery and validation purpose. A clinical study is a time-

consuming process, and outcomes of the clinical trial can then be used for PGx

314 D.B. Singh



discovery. The same is true for a validation of result, which requires enough

discovery and replication studies in the literature.

Breast cancer is the most frequently diagnosed cancer in women. In breast

cancer, somatic mutations in only three genes are observed with a greater than

10% incidence across primary breast cancer (Stjepanovic and Bedard 2015). Breast

cancer treatment is based on the identification of expression of estrogen receptor or

protein overexpression of HER2/ERBB2. HER2 amplification is tested for clinical

practices related to breast cancer, as HER2-targeted therapies are approved. Geno-

mic alternations in different types of cancer diseases can be reviewed, and

genotype-based treatments can be a common practice in the future. Efforts should

be made in the direction to translate the PGx knowledge to clinical application. The

clozapine is used for the treatment of resistant schizophrenia patients. Agranulocy-

tosis, an ADR, was reported in 0.8% of clozapine-treated patients, and this adverse

event was not associated with dose (Verbelen and Lewis 2015). Later on, PGx

evidence has established an association between HLA regions with agranulocytosis

in clozapine patients, but this knowledge has not been translated into clinical

practice yet.

The CYP2D6 polymorphisms have an impact on the clearance and response to a

series of cardiovascular drugs. Clinical studies indicate the relationships between

the CYP2D6 genotype and concentrations of drugs perphenazine, zuclopenthixol,

risperidone, and haloperidol. CYP2D6 is used as an independent predictor of the

outcome of tamoxifen treatment in breast cancer. Genotype testing for CYP2D6 is

not customarily performed in clinical practice, and there is uncertainty regarding

genotype-phenotype, gene concentration, and gene-dose relationships (Zhou 2009).

Further, prospective studies on the clinical impact of CYP2D6 are required. Genetic

polymorphisms of CYP, and the presence of the human leukocyte antigen (HLA)-

B*1502 allele, influence drug disposition and/or response in patients (Ma et al.

2012). Pharmacokinetic and pharmacodynamic variability can be explained by

polymorphism of genotype. However, conflicting evidence exists in some cases.

The effect of CYP2D6 polymorphisms on codeine efficacy and toxicity is not well

studied. The CYP2D6 genotyping tests are available, but its clinical utility is

limited.

Lack of sufficient resources, lack of knowledge provider, and ethical, legal, and

social issues are major limitations and challenges in the implementation of PGx

testing for clinical application. Understanding of the technologies and their appli-

cation is limited among practitioners (Collins et al. 2016). Pretreatment genetic

testing is very useful in preventing ADR in cardiovascular, cancer, HIV, and many

other diseases. Patients should be encouraged for genetic testing-based treatment

for cancer and other diseases, and such types of testing centers should be distributed

globally. Genetic testing is far from being realized because of low specificity and

sensitivity and a low incidence of an ADR or the high cost of genotyping for a

disease.
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13.4.1 Metabolomics and Pharmacology

Metabolomics is the study of metabolome (small molecules) present in the cells,

tissues, and body fluids. Metabolic status of a person provides the close represen-

tation of the health status that is not obvious from gene expression analysis (Beger

et al. 2016). The metabolic status reflects the effect of gene expression, environ-

mental factors, diets, and the gut microbiome. For researchers in the field of clinical

pharmacology, metabolomics offers a systems biology approach to understand

genotype-phenotype associations, disease signatures, severity and subclass, and

variability in drug response (James 2013). Clinicians measure only a small part of

information contained in the metabolome to assess disease status. In the future, the

narrow range of chemical analysis in medical community will be replaced by the

more comprehensive metabolic signatures (Kaddurah-Daouk et al. 2015). Meta-

bolic signatures are expected to more accurately describe specific disease and their

progression and also help in differential diagnosis of disease and healthy status. The

phenotypic outcome of complex interactions between genotype, diet, drug therapy,

environmental exposure, and gut microflora can be investigated at the molecular

level to see the overall drug response (Huang et al. 2015). Metabolic phenotyping

provides an insight into disease pathophysiology and mechanisms of drug response

and also predicts the risk of toxicity.

Pharmacometabolomics defines the efficacy, toxicity, or other outcomes of a

drug based on a mathematical model of a preintervention metabolite signatures.

Pharmacometabolomics complements genomic, transcriptomic, proteomic, and

epigenomic “systems biology” approaches to drug development by taking into

account the interindividual variation in drug response (Burt and Dhillon 2013).

Metabolomics provides the useful prognostic indicator to complement other per-

sonalized biomarker related to genomics, transcriptomics, and proteomics because

endogenous metabolites or small molecules are more closer and directly interacts

with the components affecting the human health. Before utilizing biomarkers in

drug development, a candidate omics-based test should be clearly defined and

validated using a two-step process: (i) discovery and (ii) evaluation of clinical

utility and use (Burt and Nandal 2016). Metabolomic data can be integrated with

genomic results to get some novel insight into mechanisms of variation in drug

response. Many scientific advances have been made to detect, identify, and quantify

the large numbers of metabolites. These advances have enabled us to study hun-

dreds or thousands of metabolites and millions of genomic variants in a single cell

(Neavin et al. 2016). It is now possible to analyze the large datasets generated by

omics studies to understand molecular basis of variation in disease risk and drug

response.
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13.4.2 CPIC and DPWG in Clinical Implementation of PGx

Dosing guideline takes into consideration patient’s genotype and has been

published by Clinical Pharmacogenetics Implementation Consortium (CPIC),

Dutch Pharmacogenetics Working Group (DPWG), or other organizations. One

barrier to clinical implementation of pharmacogenetics is the lack of freely avail-

able, clinical practice guidelines (PharmGKB n.d.). CPIC provides guidelines that

enable the translation of genetic test results for prescribing specific drugs. The

guidelines are focused on genes or around drugs. CPIC guidelines are peer

reviewed, published, and posted to PharmGKB with supplemental information/

data and updates. CPIC’s goal is to address barriers to the implementation of

pharmacogenetic tests into clinical practice (CPIC n.d.). DPWG was established

in 2005 by the Royal Dutch Pharmacists Association. The DPWG is

multidisciplinary and includes clinical pharmacists, physicians, clinical pharma-

cologists, clinical chemists, epidemiologists, and toxicologists (PharmGKB, n.d.).

The objective of the DPWG is to develop pharmacogenetic-based therapeutic

(dose) recommendations and assist the prescribers and pharmacist by

recommending drug prescription. DPWG has evaluated therapeutic dose recom-

mendations for tamoxifen based on CYP2D6 genotypes (Swen et al. 2011). For PM

and IM genotypes, aromatase inhibitors have been recommended for postmeno-

pausal women due to the risk of breast cancer with tamoxifen. For IM genotypes,

the recommendation is to avoid the use of a CYP2D6 inhibitor.

13.5 Therapeutic Advances in Pharmacogenomics

Progress has been achieved in the pharmacogenomics of SCAR, warfarin, and

antiplatelet therapy, and a summary of developments has been represented. In

recent years, many genetic polymorphisms were reported as contributing to ADR.

A recent study in Japan found 1010 ADRs in 3459 adult patients, and of these,

1.6%, 4.9%, and 33% were fatal, life-threatening, and serious, respectively

(Morimoto et al. 2011). The ability to predict ADR-related issues would prevent

drug administration to high-risk patients. However, genetic markers were studied

for several ADRs, especially for SCARs and drug-induced liver injury (DILI). As

for SCARs, associations of alleles HLA-B*15:02 or HLA-A*31:01 and

HLA-B*58:01 were reported for carbamazepine- and allopurinol-related Stevens-

Johnson syndrome and toxic epidermal necrolysis, respectively (Kaniwa and Saito

2013). Several HLA alleles also demonstrate drug-specific associations with DILI,

such as HLA-A*33:03 for ticlopidine, HLA-B*57:01 for flucloxacillin, and

HLA-DQA1*02:01 for lapatinib.
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13.5.1 Warfarin Therapy

Therapeutic advances have been achieved in pharmacogenomics of warfarin. War-

farin is a commonly used oral anticoagulant for the prevention of thromboembolism

in patients with deep vein thrombosis, atrial fibrillation, or prosthetic heart valve

replacement (Hirsh et al. 2001). Warfarin exerts its anticoagulation effect by

blocking the vitamin K regeneration cycle. Potential lethal side effects of warfarin

therapy have been found, and efforts were made to reduce the ADR. Efforts were

focused on developing dosing algorithms using clinical variables to predict warfa-

rin dose (Ageno et al. 2000). However, this approach was not very efficient due to

the lack of effectiveness of the programs. Warfarin maintenance was found to be

associated with polymorphisms in cytochrome P450 2C9 and vitamin K epoxide

reductase subunit 1. With the identifications of associated genetic factors, efforts

have been made on developing dosing algorithms incorporating both clinical and

genetic variables (Lee and Klein 2013).

13.5.2 Antiplatelet Therapy

Antiplatelet drugs are used in the prevention of thrombotic events associated with

cardiovascular disease. The adenosine diphosphate (ADP) receptor inhibitors are a

subclass of antiplatelet medications, which include clopidogrel, prasugrel,

ticagrelor, and ticlopidine. Clopidogrel is one of the most commonly prescribed

medications for the patients with acute coronary syndrome (ACS) and in patients

undergoing percutaneous coronary intervention (PCI) (Kushner et al. 2009). Recent

evidence supports a role of loss-of-function (LOF) variants in CYP2C19 as a

determinant of clopidogrel response. Patients who carry LOF variants do not

metabolize clopidogrel, a prodrug, into its active form resulting in decreased

inhibition of platelet function and a higher risk of cardiovascular events (Perry

and Shuldiner 2013). CYP2C19 LOF variants have been demonstrated to be

clinically significant determinants of poor outcomes in ACS/PCI patients. With

the addition of new antiplatelet therapy, the promise of translating these

pharmacogenetic insights into more effective individualized antiplatelet therapy

has excited the hope for future of personalized medicine.

13.5.3 Type 2 Diabetes

Genetic variants associated with incretin-based therapeutic approach for type

2 diabetes were also determined. Incretin-based therapies are used to treat patients

with type 2 diabetes. Incretin effect enhancers include GLP-1 receptor agonists and

dipeptidyl peptidase-4 (DPP4) inhibitors. Gliptins act by increasing endogenous
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incretin levels. GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) are their

indirect drug targets (Tkáč and Gotthardová 2016). Several genetic variants were

predicted to be involved in the physiology of incretin secretion. Only two gene

variants TCF7L2 rs7903146 C>T and CTRB1/2 rs7202877 T>G minor allele

carriers were associated with a smaller reduction in HbA1c after gliptin treatment

(Javorský et al. 2016). HbA1c is a form of hemoglobin that is bound to glucose and

indicates how well diabetes is controlled. These clinical observations could be

helpful to identify patients with lower or higher response to gliptin inhibitor.

13.5.4 Cancer Therapy

Mapping of the human genome has been a boon for cancer therapy. Both somatic

and germline genome provide some insight into the decision-making of cancer

treatment (Hertz and McLeod 2013). The somatic genome is involved in predicting

tumor behavior. Germline genome assists in determining drug exposure and toxic-

ity. These somatic and germline informations will be very helpful in personalized

therapy for cancer patients. Several new chemotherapeutic agents are available for

the treatment of colorectal cancer, and it has increased the decision complexity in

treatment planning. Treatment decision-making should be guided by predictive and

prognostic markers. Most cytotoxic drugs induce DNA damage; the DNA damage

repair pathways hold potential for yielding, predicting, and prognostic biomarkers

(Kap et al. 2016). The involvement of the nucleotide excision repair pathway in the

efficacy of chemotherapeutic agents should be validated for the treatment of

colorectal cancer. Vincristine induces distinct death programs in primary acute

lymphoblastic leukemia (ALL) cells depending on cell-cycle phase (Kothari et al.

2016). Vincristine is an important component of ALL treatment that can cause

neurotoxicity. Recently, a GWAS study reported a SNP, involved in vincristine

pharmacodynamics, with neurotoxicity during later phases of therapy. The stron-

gest associations with neurotoxicity were observed for two SNPs in ABCC2, and

the genotypes rs3740066 GG and rs12826 GG were associated with increased

neurotoxicity (Lopez-Lopez et al. 2016). Polymorphisms in ABCC2 could be

novel markers for vincristine-related neurotoxicity in pediatric ALL in early

phases. These results indicate that polymorphisms in pharmacokinetic genes are

associated with drug toxicity. The level of vincristine transporters or metabolizers

could be used as predictors of vincristine-related neurotoxicity in ALL patients.

13.5.5 Invasive Aspergillosis

Many genetic polymorphisms have been reported that are known to alter CYP

enzymes and drug receptors, drug targets, and transporters. These genetic variants

can greatly influence pharmacokinetics, dose requirement and response, and
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therapeutic outcomes. The clinical applications of these findings can significantly

improve drug efficacy and safety. For example, invasive aspergillosis (IA) is one of

the leading causes of morbidity and mortality in hematological patients (Kimura

2016). Voriconazole is used for initial therapy for IA. Individuals who carry the

CYP2C19*17 gain-of-function allele were shown lower voriconazole exposure and

are therefore at risk of failing IA therapy. However, there are limited data to

establish a predicted relationship between voriconazole dosage and CYP2C19

metabolic capacity. A pediatric CYP2C19 rapid metabolizer (i.e., CYP2C19*1/

*17) requires a voriconazole dose of 14 mg/kg twice daily (usual dose from 7 to

9 mg/kg twice daily) (Hicks et al. 2016). CYP2C19 genotype could be utilized to

optimize voriconazole dose and this may be a cost-effective to improve IA therapy.

13.5.6 New Drug Labels for Clopidogrel and Warfarin

The common, complex diseases have environmental and multiple genetic influ-

ences. Therefore, drugs targeting a specific mutation can be highly successful in

cancer, but we could not expect same success for chronic disease treatments.

However, genes identified through GWAS and other studies provide the important

protein targets. Substantial advances in the understanding of the genetic determi-

nants of drug response have been reported, and most frequent use of

pharmacogenetic data to guide drug therapy decisions can be seen in the future.

Implementation of CYP2C19 genotyping for clopidogrel treatment in patients

undergoing PCI is also occurring with increasing frequency, and centers Scripps

Health, Vanderbilt, University of Florida, and University of North Carolina have

adopted this approach (Pulley et al. 2012; Johnson et al. 2012) For instance,

understanding the relationship between genetics and drug metabolism causes to

issue a new drug label. In the case of a clopidogrel, new findings demonstrated that

patients with genetic variants of CYP2C19 may not effectively convert the drug to

its active form. After that, FDA issued a new label warning in 2010. Similarly, new

labels were issued for warfarin based on genetic findings (Lesko 2008). Changes in

drug labeling are likely to continue as more genetic findings are disclosed from

studies on approved drugs.

13.5.7 Collaborative Efforts to Achieve the Goal of PGx

New applications and processes are needed to integrate emerging

pharmacogenomic data into clinical practice. Current barriers, concerns, system

limitations, and requisite infrastructure need to be addressed to achieve the true goal

of pharmacogenomics. In 2010, the Pharmacy e-Health Information Technology

(HIT) Collaborative was formed by nine national nonprofit organizations (Reiss

and American Pharmacists Association 2011). The goal of HIT collaborative is to
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ensure the pharmacist’s role of providing patient care services and medication. The

Evaluation of Genomic Applications in Practice and Prevention (EGAPP) working

group has noticed that there is insufficient evidence to recommend for or against

genetic testing in case of the most genetic test (Khoury et al. 2010). The challenge

with such cases is that pharmacist still makes some decisions in the lack of proper

evidence. In this context Veenstra and colleagues proposed a three-tiered approach,

focusing on how to deal with cases with insufficient evidence for or against testing

(Veenstra et al. 2010).

The ACCE (analytical validity, clinical validity, clinical utility, and associated

ethical, legal, and social implications (ELSI)) model project, sponsored by the

Centers for Disease Control and Prevention (CDC), has recommended the evalua-

tion of pharmacogenomic biomarker tests (Berg 2009). Analytical validity deter-

mines how well diagnostic test measures what it is intended to measure, regardless

of whether it is an expression pattern, a mutation, or a protein (Lam 2013). Clinical

validity measures the ability of the test to differentiate between responders and

nonresponders or to identify ADR. The clinical utility measures the ability of the

test result to determine the outcome of clinical testing. Obviously, any biomarker

with validation and FDA approval could enhance test implementation and utiliza-

tion in the clinical settings. It is interesting to note that a large amount of PGx

information has been generated, but most of the findings have not yet been applied

in clinical testing and treatment. The clinical application of PGx is slow, and some

physicians do not know how to interpret and apply the clinical findings in patient

care (Ventola 2013).

13.6 PGx Resources

PGx discovery is based on two approaches: the candidate gene approach and

GWAS. The candidate gene study focuses on genes involved in transport, drug

metabolism, and targeting pathways. On the other hand, GWAS considers all genes

and noncoding sequences of the human genome, assuming that all genetic elements

have equal chances to affect the response of a drug. GWAS approaches came into

existence after the completion of the HGP in 2000. Genome-wide studies have

become more popular due to the public availability of human genomic information

and low cost of sequencing.

13.6.1 PharmGKB

The Pharmacogenomics Knowledge Base (PharmGKB) is a comprehensive online

resource that provides knowledge about the impact of genetic variation on drug

response (Whirl-Carrillo et al. 2012). Informations retrieved from PharmGKB are

very useful for clinical implementation and interpretation of clinical results. It
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provides a well-known PGx association between drug and gene on the basis of

dosing guidelines, drug label, clinical annotation, variant annotation, pharmacol-

ogy, mechanism of action, and related pathway. It also provides the details of genes

that are associated with a drug based on variant annotation, literature reviews,

pathway, and information retrieved from DrugBank. PharmGKB annotates drug

labels containing pharmacogenetic information approved by FDA, European Med-

icines Agency (EMA), the Pharmaceuticals and Medical Devices Agency, Japan

(PMDA), and Health Canada (Santé Canada) (HCSC) and provides a brief sum-

mary of the PGx in the label (PharmGKB, n.d.). National Institute of Health (NIH)-

funded scientists have studied the effect of genes on medications relevant to a wide

range of conditions, including asthma, depression, cancer, and heart disease. The

research findings are collected in PharmGKB.

13.6.2 PGxOne™

PGxOne™ is a proprietary clinical PGx test that provides relevant medical and

clinical data and its interpretation for the treatment of patients. PGxOne™ results

indicate dosing recommendations for 76 drugs. All 76 drugs are directly influenced

by the 13 PGx genes (drug metabolism) covered by PGxOne™ testing. Copy

number variations (CNVs) are a major source of genetic variation within an

individual’s genome. PGxOne™ is capable of detecting and providing information

about CNVs in the CYP2D6 gene. Importantly, CYP2D6 is responsible for metab-

olizing approximately 25% of drugs on the market, and CYP2D6 CNVs impact the

metabolism of 50% of these drugs (Ingelman-Sundberg et al. 2007). Features of

PGxOne™ test (1) screens all well-established PGx genes in a single, cost-effective

test; (2) detects multiple types of variations, including substitutions, insertions/

deletions, and copy number variations using next-generation amplicon sequencing

technology; (3) delivers results quickly via intuitive, clinically relevant, medically

actionable report; and (4) provides lifetime utility of data, decreasing the need for

future testing (GENEWIZ PGxOne™ n.d.).

13.6.3 Biobank

Biobank is a collection of human tissue samples or blood and medical information

about donors, which are stored for long periods of time and are used for research

studies. Donors voluntarily decide to give a blood or tissue sample or information

about themselves for free. Imagine if every person offers and shares their health

information with biobanks, then there will be a vast amount of health and clinical

data, which could be used in health study for decision-making (Genetic Alliance

Registry and Biobank n.d.). Biobank has the advantages of being considered in cell-

, tissue-, blood-, or DNA-related studies as minimal risk research since there is no
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harm to individual if their sample is examined (Biobank n.d.). Disease-related

biobanks were established initially with the goal of personalized medicine. In the

majority of clinical trials, the samples and blood are stored for future genetic

analysis. The UK Biobank is a major health resource, with the objective of

improving the health status, diagnosis, and treatment of a wide range of serious

diseases – including cancer, heart diseases, stroke, diabetes, arthritis, and osteopo-

rosis (Budimir et al. 2011). Scientist uses data from the questionnaire, physical

measures, and biological samples to undertake studies to improve the health of

future generations. In due course, it may be possible to find out more information

about the use of the resource and follow their results.

13.7 Challenges in Implementation of PGx

13.7.1 Informed Consent and Confidentiality

Drugs that are tailored to individual genomes may require extensive genetic

information of the participant in the clinical trial. Data collected from clinical trials

could be stored and utilized for future research. Hence, these genetic samples could

provide other information about the subject that could be unrelated to the intended

study but yet might prove useful for other genetic research (Singh 2003). The

patient should have high motivation to participate in the clinical trial, where the

subject and patient are the same person. Therefore, the guarantee of informed

consent, for all participants, is essential for the current as well as the future study.

Patient, whose genetic information has been collected for clinical diagnosis, may

not be interested in disclosing his/her health status and wants to keep it confidential.

Sometimes, family members show their interest to know the status of inherited

diseases in the patient’s genetic profile. Employers or health insurers may also

desire to access genetic profile of the person. Indeed, the fear of losing a job and

health insurance discourage the people’s interest to participate in genetic disease-

related study (Nass et al. 2009). To promote the participation of patients in health

and clinical study, the informations related to donor must be confidential and

anonymous.

13.7.2 Technical and Educational Status

The success of PGx testing depends on the accuracy of the genomic information.

The accuracy rate of hundred percent is impractical to expect in sequencing. Now,

the question is how to address the sequencing errors produced. Fundamental of all

sequencing method is DNA amplification. DNA amplification is well known for

introducing errors and these technical errors are impossible to avoid. During the
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data analysis, variation due to sequencing errors might be incorporated as a

“natural” characteristic of the cell (Bavarva et al. 2015). The next challenge

would be a question of how close our analyzed sequence is to the real sequence.

NGS technologies and their data analysis methods must be standardized for accu-

rate interpretation of biological problems. Auxiliary labels can be used as a tool to

promote patient’s awareness about PGx testing. Auxiliary labels highlight the

informations related to the use and risk of drugs (Haga and Moaddeb 2015). This

approach motivates the patients to consult with health provider for PGx testing. It is

necessary to educate patients about PGx testing using new educational strategies.

Pharmacist, physician, and other health service providers should increase and

update their knowledge about PGx testing to effectively respond to patient’s
inquiries.

13.7.3 Economic Status, Justice, and Equity

The cost of a drug developed by PGx approach will be high due to increased

research in order to identify genetic profile, develop genetic tests, and conduct

clinical trials. It is also believed that few pharmaceutical companies will show their

interest in developing personalized medicine due to the high cost of drug develop-

ment and limited availability of market. Pharmaceutical industries show their

interest in developing drugs against diseases with largest market value. An orphan

population has a genotype leading to a condition for which no effective treatment is

available, and pharmaceutical companies are also not attracted toward these dis-

eases due to low market potential. Therefore, incentives must be given to pharma-

ceutical industries to promote drug development for rare genotypes or less common

diseases (Sharma et al. 2010). One challenging issue for PGx is to develop the

effective therapy for those who do not show the response to a drug (nonresponders)

or difficult to treat.

There is also a disconnection between the funding agencies and the prioritization

of PGx research, in terms of financial commitment, clinical trial infrastructure, and

ability to adopt new strategies. Now, the question is whether national health

insurance or private medical insurance companies are willing to pay the cost of

drug therapy or the tests needed to prescribe them. It is also a challenge for the

governments to allocate grant for drug therapy in healthcare budget. Due to high

cost, PGx drugs will flow primarily into developed countries where most of the

individuals can afford them. Public policy must be altered to encourage drug

development via PGx, by promoting researcher, pharmaceutical companies, and

market. Justice and equity are other important issues in PGx. The idea behind this is

that every person should enjoy equal access to medical treatment irrespective of the

virtue of race, origin, or economic status. But these inequalities in access to

healthcare exist worldwide. Beyond that, it is important to address whether and

how justice related to healthcare can be well served between developed and poor

countries.
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The most controversial issue is whether and how to integrate category of race

into drug devolvement. It is discouraging that many members of the racial/ethnic

community do not show their interest in participating clinical drug trials. It is

noticed that a racial community receives a lower quality of healthcare than others

(Nsiah-Jefferson 2003). In recent years, few drugs got approval for use by a

particular racial group. Such injustice and difference are in practice because

biomedical research may be biased in favor of a particular race.

13.7.4 Recommendations for Implementation of PGx

Ossorio and Duster 2005 (2005) argue that “While attempting to provide medical

benefit, or market products, scientists and the pharmaceutical industry may

reinvigorate the very notions of biological difference that may have resulted in

racially disparate treatment and racially disparate health.” Justice demands that

benefits of personalized medicine must be available to individuals of all racial and

socioeconomic status. The policy maker must keep in view the racial, social, or

economic disparity that exists in healthcare system. Major points suggested by

Peterson-Iyer (2008) for consideration in policy of PGx are (1) informed consent

for the use of genetic samples, (2) improvements to subject/patient confidentiality,

(3) increased post-marketing surveillance, (4) increased incentives for the devel-

opment of orphan drugs, (5) revision of patent law to encourage the “rescue” of

drugs, (6) subsidies to ensure that the less wealthy have fair access, (7) approval of

gene-specific drugs over race-specific drugs, (8) inclusion of racial/ethnic minority

groups in drug research, and (9) incentives for pharmaceutical companies to invest

in and provide drug to developing countries. There are many technical, financial,

and ethical hurdles in clinical implementation of PGx. In spite of these hurdles, we

should start this journey with a patience and high motivation to achieve the goal.

13.8 Future Perspective

Human genome sequencing and advances in techniques that correlate specific

genetic variations to diseases have played an important role in developing more

effective therapy against disease. Currently, the most studied genetic variant is SNP

due to low cost and high accuracy of SNP genotyping. The location and allele

frequencies of genome-wide SNPs in human can be retrieved from SNP database

(dbSNP) of NCBI. The future of PGx is very wide. Biotechnology industries have

provided very advanced technologies for sequencing, genome annotation, expres-

sion analysis, and pharmacology. A major drawback in the study of PGx is the

common occurrence of false-positive association between polymorphisms and the

investigated outcome. Identification of biologically relevant polymorphism can

trigger the application of PGx. Next-generation sequencing has created a plethora
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of analytical and biological consideration. Scientists are very optimistic that single-

cell sequencing technology will better characterize cancer and other complex

diseases. The genome sequencing contributes a large amount of data but with

limited insight into therapies. It has become necessary to elucidate the clinical

implications of available data as well as to define the guidelines for the clinical

application of PGx data. PGx knowledge is not fully utilized in clinical practice due

to lack of in-depth understanding of PGx principles among the healthcare pro-

fessionals. Recent PGx studies have paid attention over mitochondrial genome

along with nuclear genome, because of its role in metabolism, cell cycling, cellular

differentiation, and signaling. The high rate of polymorphisms in mitochondrial

genome further highlights the significance of studying genetic variants in

mitochondria.

There is a need to promote the field of PGx globally and aware the peoples with

merits and demerits related to this field. Future advancements in PGx technologies

might be able to make firm and cost-effective recommendations for drug therapy.

Pharmaceutical companies are considering the importance of conducting PGx

research in the early stages of drug development so that the derived knowledge

could be utilized for new drug approval to avoid the risk of rejection or delayed

approval. Most importantly, efforts are needed to translate the scientific outcome of

PGx study into clinical practice. Patients living in urban areas are educated and

aware of benefits of PGx. Efforts should be made to improve and upgrade the

current status of PGx and also to implement the potential of PGx. Many PGx

biomarkers corresponding to a therapeutic agent have been evaluated and more

are in the process of study. These biomarkers have shown to improve the status of

medication with reduced toxicity and high efficacy, which could subsequently

lower the overall healthcare cost. Clinical feasibility of implementing PGx tests is

dependent on medical service providers and practitioners. Patients are optimistic

about the potential of PGx tests, but cost and testing time frame are barriers in the

implementation of PGx.

Now, the question is the accessibility of PGx testing to common and poor

people. It is surprising to know that few pharmaceutical industries are indeed in

favor of the race-based medicine. FDA has approved a heart failure drug (BiDil),

for its use by a self-identified racial group African-Americans, although there was

no solid evidence that BiDil would be ineffective for the rest of the population.

Therefore, race-based drug development practices should be discouraged to avoid

racial discrimination. There are many technical- and policy-related issues associ-

ated with the wide-scale implementation of PGx. These issues must be resolved to

cater the benefits of PGx equally and globally. Clinical application and cost-

effectiveness cannot be the only criteria for determining the relative value of

pharmacogenomics for drug therapy. Rather, it should be aimed to supplement

the best practice strategies to achieve optimal drug therapy.
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Campbell H, Rudan I. Ethical aspects of human biobanks: a systematic review. Croat Med

J. 2011;52:262–79.

Burt T, Dhillon S. Pharmacogenomics in early-phase clinical development. Pharmacogenomics.

2013;14:1085–97.

Burt T, Nandal S. Pharmacometabolomics in early-phase clinical development. Clin Transl Sci.

2016;9:128–38.

Chan A, Tan SH, Wong CM, Yap KY, Ko Y. Clinically significant drug-drug interactions between

oral anticancer agents and nonanticancer agents: a Delphi survey of oncology pharmacists.

Clin Ther. 2009;2:2379–86.

Cho WC. Recent progress in genetic variants associated with cancer and their implications in

diagnostics development. Expert Rev Mol Diagn. 2010;10:699–703.

Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-

genome sequencing. Nat Rev Genet. 2010;11:415–25.

13 Pharmacogenomics: Clinical Perspective, Strategies, and Challenges 327

http://www.americannursetoday.com/the-role-of-pharmacogenomics-in-cancer
http://www.americannursetoday.com/the-role-of-pharmacogenomics-in-cancer
http://www.ukbiobank.ac.uk/about-biobank-uk


Collins SL, Carr DF, Pirmohamed M. Advances in the pharmacogenomics of adverse drug

reactions. Drug Saf. 2016;39:15–27.

Cox NJ, Gamazon ER, Wheeler HE, Dolan ME. Clinical translation of cell-based

pharmacogenomic discovery. Clin Pharmacol Ther. 2012;92:425–7.

CPIC. Clinical Pharmacogenetics Implementation Consortium. n.d. https://cpicpgx.org. Accessed

03 May 2016.

De Souza JA, Olopade OI. CYP2D6 genotyping and tamoxifen: an unfinished story in the quest for

personalized medicine. Semin Oncol. 2011;38:263–73.

Everett JR. Pharmacometabonomics in humans: a new tool for personalized medicine. Pharmaco-

genomics. 2015;16:737–54.

Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function.

Curr Drug Targets. 2012;13:230–46.

Genetic Alliance Registry and Biobank. Overview. n.d. http://biobank.org/biobanks. Accessed

28 July 2015.

Genetic Home Reference What is Pharmacogenomics? n.d. http://ghr.nlm.nih.gov/handbook/

genomicresearch/pharmacogenomics. Accessed 28 July 2015.

GENEWIZ PGxOne™. Comprehensive pharmacogenomics test. n.d. http://www.genewiz.com/

public/PGxOne-pharmacogenomics-test.aspx. Accessed 20 July 2015.

Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu Rev

Immunol. 2009;27:363–91.

Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K,

Karthikeyan S, Iles L, Pollard MO, Choudhury A, Ritchie GR, Xue Y, Asimit J, Nsubuga

RN, Young EH, Pomilla C, Kivinen K, Rockett K, Kamali A, Doumatey AP, Asiki G, Seeley J,

Sisay-Joof F, Jallow M, Tollman S, Mekonnen E, Ekong R, Oljira T, Bradman N, Bojang K,

Ramsay M, Adeyemo A, Bekele E, Motala A, Norris SA, Pirie F, Kaleebu P, Kwiatkowski D,

Tyler-Smith C, Rotimi C, Zeggini E, Sandhu MS. The African genome variation project shapes

medical genetics in Africa. Nature. 2015;517:327–32.

Haga SB, Moaddeb J. Potential use of auxiliary labels to promote patient awareness of

pharmacogenetic testing. Pharmacogenomics. 2015;16:299–301.

He B, Pan Y, ChoWC, Xu Y, Gu L, Nie Z, Chen L, Song G, Gao T, Li R, Wang S. The association

between four genetic variants in microRNAs (rs11614913, rs2910164, rs3746444, rs2292832)

and cancer risk: evidence from published studies. PLoS One. 2012;7(11):e49032.

He Y, Hoskins JM, Clark S, Campbell NH, Wagner K, Motsinger-Reif AA, McLeod

HL. Accuracy of SNPs to predict risk of HLA alleles associated with drug-induced hypersen-

sitivity events across racial groups. Pharmacogenomics. 2015;16:817–24.

Hertz DL, McLeod HL. Use of pharmacogenetics for predicting cancer prognosis and treatment

exposure, response and toxicity. J Hum Genet. 2013;58:346–52.

Hess GP, Fonseca E, Scott R, Fagerness J. Pharmacogenomic and pharmacogenetic-guided

therapy as a tool in precision medicine: current state and factors impacting acceptance by

stakeholders. Genet Res (Camb). 2015;97:e13. doi:10.1017/S0016672315000099.

Hicks JK, Gonzalez BE, Zembillas AS, Kusick K, Murthy S, Raja S, Gordon SM, Hanna

R. Invasive Aspergillus infection requiring lobectomy in a CYP2C19 rapid metabolizer with

subtherapeutic voriconazole concentrations. Pharmacogenomics. 2016;17:663–7.

Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D. Oral anticoagulants:

mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest.

2001;119:8S–21S.

Hu Z, Yang X, Ho PC, Chan SY, Heng PW, Chan E, Duan W, Koh HL, Zhou S. Herb-drug

interactions: a literature review. Drugs. 2005;65:1239–82.

Huang Q, Aa J, Jia H, Xin X, Tao C, Liu L, Zou B, Song Q, Shi J, Cao B, Yong Y, Wang G, Zhou

G. A pharmacometabonomic approach to predicting metabolic phenotypes and pharmacoki-

netic parameters of atorvastatin in healthy volunteers. J Proteome Res. 2015;14:3970–81.

IGSR. Supporting the 1000 genomes data. n.d. http://www.internationalgenome.org. Accessed

01 May 2016.

328 D.B. Singh

https://cpicpgx.org
http://biobank.org/biobanks
http://ghr.nlm.nih.gov/handbook/genomicresearch/pharmacogenomics
http://ghr.nlm.nih.gov/handbook/genomicresearch/pharmacogenomics
http://www.genewiz.com/public/PGxOne-pharmacogenomics-test.aspx
http://www.genewiz.com/public/PGxOne-pharmacogenomics-test.aspx
http://dx.doi.org/10.1017/S0016672315000099
http://www.internationalgenome.org


IGSR: The International Genome Sample Resource. n.d. http://www.1000genomes.org/about.

Accessed 02 May 2016.

Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug metabolizing enzymes:

implications for a safer and more effective drug therapy. Philos Trans R Soc Lond Ser B Biol

Sci. 2005;360:1563–70.

Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450

polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects.

Pharmacol Ther. 2007;116:496–526.

International HapMap Consortium. The international HapMap project. Nature. 2003;426:789–96.

International HapMap Project. n.d. http://www.hapmap.org. Accessed 02 May 2016.

James LP. Metabolomics: integration of a new “omics” with clinical pharmacology. Clin

Pharmacol Ther. 2013;94:547–51.

Jarjour S, Barrette M, Normand V, Rouleau JL, Dubé MP, de Denus S. Genetic markers associated
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Chapter 14

Computational Network Approaches
and Their Applications for Complex Diseases

Ankita Shukla and Tiratha Raj Singh

Abstract Network biology has been widely used for the interaction studies and

analysis in modern era. Studies associated with biological networks, their modeling,

analysis, and visualization are imperative to the biological world. The advance-

ments in network biology have helped us better understand the biomolecular

complexities which in earlier times were difficult to study in vivo. High-throughput

technologies have revolutionized the genomic-sequencing procedures for the gen-

eration of tremendous data that need to be analyzed and interpreted rigorously.

However it has still been difficult to construe biological networks completely due to

the complexity of the interactions that exist between its components. Great efforts

have been made to disclose the maximum possible interactions that are significant

to maintain the potential mechanisms with the help of network biology. With

improvement in the analysis process, network biology has thought to be playing a

key role in understanding the complex biological behavior of the networks. In this

chapter we will cover the basics of network biology and its expansion in various

disciplines and its implementations in complex diseases and disorders, current

resources, and tools available for studying diverse forms of pathways (transcrip-

tional regulation, protein–protein interaction, signal transduction, and metabolism).

This chapter therefore deals with the core of network biology, its role in various

disease studies, and the advancements introduced so far in this field.

Keywords Interactome • Cancers • Autism • Network motif • Cardiovascular •

Aging • Diabetes

A. Shukla • T.R. Singh (*)

Department of Biotechnology and Bioinformatics, Jaypee University of Information

Technology (JUIT), Waknaghat, Solan, India

e-mail: tiratharaj.singh@juit.ac.in

© Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business

Media Dordrecht 2017

D.-Q. Wei et al. (eds.), Translational Bioinformatics and Its Application,
Translational Medicine Research, DOI 10.1007/978-94-024-1045-7_14

337

mailto:tiratharaj.singh@juit.ac.in


14.1 Introduction

Network biology is an amalgamation of systems biology, graph theory, and com-

putational and statistical analysis techniques wherein the topology of the graphs

represents the molecular interaction (Barabási and Oltvai 2004). Network biology

deals with biological complexities of the cellular components that comprise mac-

romolecules (genes, RNA and DNA) and metabolites. Most biological characteris-

tics arise from complex interactions between these cellular components. There are

diverse forms of biological networks which include metabolic networks, cell

signaling networks, kinase–substrate networks, gene regulatory networks, protein–

protein interaction networks, epistasis interaction networks, disease–gene interac-

tion networks, and drug interaction networks (Ma’ayan 2011; Zhu et al. 2007;

Winterbach et al. 2013). In network biology, a whole system is summarized in

the form of nodes and edges, wherein nodes represent the biological component and

edges represent interactions between them. These interaction studies can prove to

be helpful to unlock the mystery behind interrelatedness of biological pathways.

The use of standardized and efficient approaches is the first step in knowledge

casting to provide unbiased maps of functional interactions. The next challenge in

network biology is to examine the resulting interactome and to excavate global or

local network properties. These graph properties can be used to improve under-

standing of biological processes that are crucial for organism’s livelihood.

Advancement in network biology offers a novel conceptual scaffold that will

possibly revolutionize our view of biology and disease pathologies (Barabási and

Oltvai 2004).

It has been seen from various studies that behavior of the cell is not the result of

functioning of single pathway but of multiple ones that work together. So the rule of

unity can also be seen in biological environment wherein if there is a problem with

one pathway, it will not directly affect the system as the interrelated pathways try to

compensate for it. Therefore, a key challenge today is to understand the structure

and the dynamics of the complex intercellular web of interactions that contribute to

the structure and functioning of a living cell. Numerous experimental techniques

have been developed to date for identifying the physical interactions as well as the

state of the cell at any point of time. It includes protein chips, yeast two-hybrid

screens for physical interactions, and high-throughput screening for determining

the status of the cell (Srinivasa et al. 2014). On the other hand, network biology

proposes a quantifiable description of the networks that helps researchers charac-

terize diverse biological systems.

To understand the network topology, one needs to know the properties related to

the nodes and edges that should be considered while performing network analysis.

Properties of nodes include (a) connectivity degree, the number of links each node

possesses; (b) node betweenness centrality, the number of the shortest paths among

all the shortest paths between all possible pairs of nodes; (c) closeness centrality,

the average shortest path from one node to all other nodes; and (d) eigenvector

centrality, a more sophisticated centrality measure that assesses the closeness to

338 A. Shukla and T.R. Singh



highly connected nodes. Properties of edges include (a) betweenness centrality, the

number of the shortest paths among all possible shortest paths between all pairs of

nodes; (b) types of relationship, for example, edges may represent activating or

inhibiting relationships between a pair of nodes; and (c) edge directionality, the

upstream and downstream nodes connected by a particular link.

Properties of network include:

(a) Connectivity distribution: quantitative links between nodes and edges

(b) Characteristic path length: the average shortest path between all pairs of nodes

(c) Clustering coefficient: local density of interactions measured by the connectiv-

ity of neighbors for each node averaged over the entire network

(d) Grid coefficient: extends the clustering coefficient by only looking at first

neighbors to also examine second neighbors

(e) Network diameter: represents the longest of the shortest paths

(f) Assortativity: assesses whether nodes prefer to attach to other nodes on the

basis of common nodal properties (Barabási and Oltvai 2004; Ma’ayan 2011).

Along with the abovesaid properties, there are two significant characteristics that

are found in the network topology; one is network motifs which are recurring

patterns composed of few nodes and edges. It has been observed that these network

motifs appear in the regulatory networks much more frequently than in random or

shuffled networks. There are also subcategories that underlie motifs including

autoregulatory motifs, feedback loops, feedforward loops, bifans, diamonds,

3 and 4 chains, and other types of cycles that directly influence system’s overall
dynamics (Kim et al. 2011). These biologically significant subgraphs are vital to

uncover the structural aspect of the complex network. Although network motifs

provide insight to the functional properties, its detection is quite challenging

(Masoudi-Nejad et al. 2012). Another characteristic of networks is their modularity,

representing the modules or network clusters. These modules are dense regions of

connectivity and are separated by low connectivity regions. Nearest neighbors

clustering, Markov clustering, and betweenness centrality-based clustering which

comes under the category of unsupervised clustering algorithms are used to identify

the modules in networks (Ma’ayan 2011). Modularity is often used for detecting

community structure in networks which have significant functionality at local

levels. In the subcategory of modules come party hubs, nodes that interact with

several proteins in one cellular compartment at a specific time, and date hubs,

proteins that can be found in many places inside the cell and interact with diverse

partners at different times (Chang et al. 2013). It has been observed from various

studies that most of the biological molecular regulatory networks are scale-free,

meaning that their degree distribution, i.e., distribution of edges per node, fits a

power law. The overall functioning and homeostasis are being maintained by the

scale-free architectures which make the network robust to the random failures.

Networks can be directed or undirected depending on the nature of the interac-

tions. The directed network represents the interaction between any two nodes with a

well-defined direction. These directionalities can be an inference of the material

flow from a substrate to a product in a metabolic reaction or the information flow
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from a transcription factor to the gene. However, in case of the undirected networks,

the links do not show any assigned direction. Network motifs identified within

directed or undirected networks are called graphlets. One of the examples of

graphlets is those found in protein–protein interaction networks (Przulj et al.

2004). The fundamental method in understanding the biological networks is the

network visualization that helps scientists in uncovering important properties of the

underlying biochemical processes. The computational methods are proved helpful

for analysis purpose, but the major disadvantage is in data peculiarity that makes

the network interpretation difficult due to the complexity of the relationships.

As mentioned earlier, complex diseases are generally caused not from the

malfunction of individual molecules but from the interplay of a group of correlated

molecules or a network (Schadt 2009). Molecular biomarkers are widely employed

today as they are helpful to discriminate normal vs. disease samples. However,

there is a serious problem regarding their usage, i.e., they suffer from low coverage

along with the high false-positive/false-negative rates and further limit their clinical

applications. The limitation in traditional concept of biomarkers has been now

conquered with the modern concept of network biomarkers (also called module

biomarkers), and they achieve better performance because of the involvement of

diverse interactions of the molecules. Networks are considered more robust to

characterize the disease conditions than individual molecules. One drawback allied

both to the molecular biomarkers and the network biomarkers is that they can only

differentiate disease and normal conditions but cannot reliably identify predisease

conditions, therefore lacking the ability for early diagnosis.

Regarding the abovementioned condition, a new concept of dynamical network

biomarkers (DNBs) has been developed based on nonlinear dynamical theory and

complex network theory. One of the advantages of the DNB is its ability to

distinguish a predisease state from normal and disease states for even a small

number of samples, providing great potential to achieve authentic early diagnosis

for the complex diseases. Network biomarkers offer quantifiable and stable forms to

characterize biomedical phenotypes or diseases in contrast to individual molecular

biomarkers, which has inspired the development of systems medicine in the net-

work level (Liu et al. 2012; Kitano 2002; Aryee et al. 2013). Unlike molecular

biomarkers and network biomarkers, a DNB does not always contain a group of

fixed members even for the same disease but might have different molecules

depending on individual variations that can be identified by high-throughput data.

As compared to the edge biomarkers (or network biomarkers), which exploit

correlation or association information between molecules (expected to uncover

better biomarkers relating genotypes to phenotypes), DNB explores dynamical

information of data together with network information. An unavoidable problem

for both edge biomarkers and network biomarkers is the requirement of multiple

samples in the predicting step. Thus, DNB is used for detecting the predisease

condition and therefore provides the early signal of a disease. DNB method is

relatively easy to implement as it can be achieved with a smaller number of samples

and is a model-free method (Liu et al. 2014). Therefore, network biomarkers can
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exploit network information to unravel mechanisms of disease initiation and pro-

gression and thus improve the accuracy of diagnosis and prognosis.

14.2 Importance of Network Biology Toward Disease
Prevention and Cure

The study of networks has emerged in diverse disciplines for analyzing complex

relationships. The analysis of biological networks with respect to the human

diseases has led to the discovery of field known as network medicine. Network

biology has revolutionized the disease interrogation by uncovering many complex

linkages that reflect perturbations in the biological networks. The functional inter-

dependencies play major roles in maintaining the potential mechanisms which if

not worked properly could lead to a disease condition. It has been found that disease

is rarely a consequence of abnormality in single gene; the majority is due to the

irregularities in multiple linked genes. The advent of network medicine leads to the

emergence of a variety of tools which provide platforms to explore not only the

molecular complexity of a particular disease but also the molecular relationships

that exist between distinct phenotypes (Barabási et al. 2011). Advances in this

direction are vital for the detection of new disease genes and for revealing the

biological significance of disease-associated mutations. Since network also influ-

ences functioning of the other related networks, this interconnectivity implies that

the impact of a specific genetic abnormality is not only limited to the activity of the

gene product that holds it but can extend along the links of the network. These

anomalies therefore alter the activity of gene products that otherwise had no defects

initially. Hence, identifying phenotypic impact of a defect is not solely dependent

on the known function of the mutated gene but also on the functions of components

with which the gene and its products interact.

From the field of network medicine, it was found that it is the essential genes that

are encoding hubs and not the diseased ones (Barabási et al. 2011). This statement is

justified in terms of evolutionary perception because if we assume that mutations

disrupt hubs, the absence of hubs will create so many disruptions that the host may

not survive long enough to evolve and reproduce. Thus, only mutations that impair

functioning lie at the periphery, accounting for the numerous disease conditions

(Park et al. 2008). To determine the network-based position of disease genes, we

need to understand three distinct phenomena which comprise (a) topological mod-

ule, represents a locally dense neighborhood in a network, (b) functional module,

represents the aggregation of nodes of related function, and (c) disease module,

represents a group of network components that together contribute to a cellular

function and their disruption results in a particular disease phenotype (Vidal et al.

2011). These three concepts are interrelated given that the cellular components that

form a topological module have closely related functions and thus correspond to a
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functional module, and a disease is an outcome of the breakdown in a particular

functional module.

Network-based approaches to human diseases can have numerous biological and

clinical applications. It therefore provides a better understanding of the implications

of cellular interconnectedness on disease progression which offers better targets for

drug development by the identification of disease genes and pathways. These

advances will possibly reshape clinical practice, through the discovery of better

and more accurate biomarkers for better disease classification, paving the way to

personalized treatments and therapies.

14.3 Network-Based Computational Approaches from
Network Biology Available for Complex Diseases

In recent years, network-based approaches emerged as powerful tools for studying

complex diseases. Computational biologists are working continuously in utilizing

various approaches for understanding implicated pathways in complex diseases.

This leads to the expansion of diverse algorithmic approaches to expose a range of

facet of network biology. Today there is a dire need to enhance this field so as to

tackle the most challenging diseases that fall under the category of complex one

(named so as currently there is no effective therapy available to treat them). Many

diseases fall in this category including cancer, autism, diabetes, obesity,

Alzheimer’s disease (AD), and cardiovascular diseases (CVDs). Genetic

unbalancing is the root cause in complex diseases along with internal and external

perturbations (Cho et al. 2012; Mitchell 2012). Primary difficulties to deal with

complex diseases are that each of them might be caused by different genetic

conditions. In addition, if a disease is caused by a combinatorial effect of many

mutations, the individual effects of each mutation might be small and therefore hard

to discover. According to the study, autism is considered to be one of the most

inbred complex disorders, but its principal genetic causes are still largely unknown

(Diaz-Beltran et al. 2013). Rare genetic disparity and its heterogeneity aid in the

emergence of the complex disease (Kristiansson et al. 2008). Therefore, in case of

the complex diseases, researchers are gradually focusing more on groups of related

genes, referred to as modules or subnetworks. Typically, these topologies hold

information like whether a given molecule acts as an activator or inhibitor (Mitra

et al. 2013). An important advantage of working with modules rather than individ-

ual gene is that it is often easier to predict the function of a module than the function

of a gene.

It is important to keep in mind that there are some disadvantages pertaining to

the modules; those identified from high-throughput techniques are noisy,

containing both false-negative and false-positive edges (Cho et al. 2012). Also,

many times they skip information about the nature of an interaction. Not only the

experimental ones but the computationally identified network modules also lack a
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mechanistic explanation of pathway activities. Therefore, selection of data and

associated methods of analysis has to be chosen carefully. Network biology

enlightens the diverse ways to deal with complex forms of the disease.

Aging Aging is the most prominent factor allied to the more complex forms of

diseases, such as cancer, diabetes, CVDs, and neurodegenerative disorders

(Cevenini et al. 2010). Aging phenotypes are coupled to the large and complex

networks where cross talk occurs between assorted components. The main chal-

lenge in post-genomic aging research will be the dissection and analysis of the

complex gene regulatory networks involved in aging processes. Structure and

behavior studies are helpful in deducing the phenotypic effects of the responses

that take place inside the cell. Since it is hard to infer logic of genetic networks

experimentally, the union of new experiments and computational modeling tech-

niques has been pursued currently.

Cardiovascular Diseases CVD covers a wide variety of disorders which influence

different parts of cardiovascular system and includes coronary diseases, carotid

diseases, peripheral arterial diseases, and aneurysms (Sarajlić and Pržulj 2014).
There are also other forms of CVDs that are Mendelian disorders resulting from a

mutation of the single gene. Genome-wide association studies have revealed that

cardiovascular diseases, like the majority of complex diseases, have amazing

complex genetic architecture, and they actually do not possess any major genes.

Researchers have tried to investigate whether basic topological information such as

connectivity of the nodes can be interrelated with biological properties which

underlie CVD onset and progression. Module-based approaches are applied to

determine functional modules related to the disease and to discover new associa-

tions between genes and disease. Various types of network biology approaches

have been applied so far for CVD like in analysis done by Diez et al. who had

created a combined gene association and correlation network (Diez et al. 2010).

Rende et al. used topological features of PPI networks in search of genes common

to CVDs and other diseases by identifying functional modules of genes (Rende

et al. 2011). Approaches based on the biomolecular interaction networks provide

better insight into network topology of the disease and thus could help researchers

discover novel CVD genes and pathways.

Autism Autism is an early onset complex neurodevelopment disorder manifested

in a broad phenotypic range (Diaz-Beltran et al. 2013). Although it is recognized as

a highly heritable disorder, it is still uncertain whether the genetic variations are due

to few common variants or because of many rare ones. Multifactorial nature of the

complex disease makes use of systems biology perspective to embrace the com-

plexity of the biological processes and the vast variety of molecular interactions

that take place. Results showed that more than half of the published autism genes

have been also allied to related neurological disorders (Wall et al. 2009). These

findings provide evidence of molecular overlapping and indicate that these disor-

ders might share molecular mechanisms which will perhaps help us understand the

etiology of this complex disorder. The main objective of exploring the autism
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network is that the researchers will be able to locate those genes that cause the

disorder and pave the way toward faster diagnosis as well as treatment.

Diabetes About 90% of the diabetic population is affected with type 2 diabetes

which poses serious health issues to the society (Bergholdt et al. 2007). Elevated

blood glucose level is the primary marker which occurs as a consequence of

declined insulin activity. The adverse form of the disease could lead to the cardio-

vascular, renal, neurological, and organ complications. To date, a key challenge has

been to identify the biological processes or signaling pathways that play significant

roles in the disorder. There are various system-level studies done for diabetes like

the one contributed by Davis et al. who found the loci contributing to diabetes-

related traits along with the candidate genes with variation in gene expression

(Davis et al. 2012). Integrating high-throughput microarray studies, with protein–

protein interaction networks, seems to give the benefit in elucidating the underlying

biological processes associated with chronic diabetic conditions. Therefore, there is

a need to place more emphasis on the network biology methods to envisage the

alteration caused by the summation of disordered pathways.

Cancers Cancer is caused by deleterious mutations leading to the abnormal

functioning of a complex network. In cancer, dysregulation of multiple pathways,

which govern fundamental cell processes, leads to different consequences like cell

death, proliferation, differentiation, and migration. Like in case of other complex

diseases, interrelatedness of biological interactions affects multiple cellular func-

tioning. A major challenge is to find how diverse genetic mutations could help

researchers build actionable understanding of this multivariate dysregulation.

Therefore, the availability of diverse forms of networks which are amenable for

computational analysis offers successful application of bioinformatics and systems

biology methods for analysis of high-throughput data in cancer research. However,

the key challenge is how significant advances can be made by applying computa-

tional modeling approaches to expose the pathways most critically involved in

tumor formation and succession (Shukla et al. 2015, 2016; Sehgal et al. 2015).

Alzheimer’s Disease Alzheimer’s disease also abbreviated as AD is another

category of complex disease of the central nervous system that occurs as a result

of abnormal increase in levels of beta-amyloid (Aβ) and hyperphosphorylation of

the tau protein (Mondragón-Rodrı́guez et al. 2012). Although AD is the most

common form of dementia, its pathogenesis is still not well understood. Network

modeling offers a unique opportunity for better understanding of AD by combining

the current knowledge with a quantitative framework. The use of network biology

in elucidating AD markers has been widely reported by various researchers like in

one study performed by Ray et al. where severity across brain regions was exam-

ined by topological analysis of gene co-expression (Ray and Zhang 2010).
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14.4 Available Databases/Resources/Computational Tools/
Servers for the Network Analysis

One of the challenges in network analysis is data visualization. Here we present

several useful databases and software tools that exist for network analysis. First we

introduce the databases that we categorized in four groups: transcriptional regula-

tion pathways, protein–protein interaction pathways, signal transduction pathways,

and metabolic pathways (Table 14.1). Thereafter we present network biology tools

for network analysis and visualization (Table 14.2). With the advancement of

techniques and availability of the data, a myriad of such resources and tools have

been developed as shown in Fig. 14.1. We have compiled the list based upon

accuracy and applications.

14.5 Current Status of These Tools and Their Future
Enhancements

We have discussed a wide variety of tools that encompass features essential for

network visualization. As observed from various studies, three major challenges are

faced while performing data visualization, i.e., large amount of data, heterogeneous

data integration, and the representation of multiple linkages between nodes with

heterogeneous biological meaning (Pavlopoulos et al. 2008). Each visualization

tool differs from others in terms of specific features they possess and therefore

tackles the aforementioned challenges in its own way. Regarding the heterogeneity

tools, Ondex, Pivot, or Medusa offers some possible solutions. However, Medusa

and other tools that can handle multi-edged networks are also used when working

with systems biology data such as in case of highly interlinked nodes. Cytoscape or

BioLayout Express3D tools have good resolution and scaling features which further

augment the visualization process. Pajek is ideal for pattern recognition and for

studying the properties like density, centrality, and frequency of nodes. Osprey is

suitable for comparative biological analysis. The tools presented in this chapter

have a wide range of applicability in the network-related problems.

Besides a wide range of applicability of the tools, there are some drawbacks

associated with them. Firstly, the majority of tools can handle datasets only up to a

certain limit. As the size of datasets increases rapidly, there is a need for new

generations of visualization tools that can withstand this problem. Secondly, there

is a scaling problem posting a challenge to this field. Although many algorithms

have been developed, they are still not able to deal with the layout problem and

follow a heuristic approach instead of exhaustive ones. Therefore, there is an urgent

need to develop fast and more efficient algorithms for speedy analysis of large-scale

networks. One possible way to evade this problem is the parallel processing that

makes use of powerful machines which greatly speed up the process of visualiza-

tion and hence reduce the computational load. In addition, layout can be extended
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Table 14.1 Tools and resources for the analysis of transcriptional regulation pathway, protein–

protein interaction pathways, signal transduction pathways, and metabolic pathways

Transcriptional regulation pathway

PAZAR http://www.pazar.

info/

A public database of transcription factor

and regulatory sequence annotation

RegulonDB regulondb.ccg.

unam.mx

A reference database of Escherichia coli
K-12 offering curated knowledge of the

regulatory network and operon

organization

TRANSFAC http://transfac.gbf.

de/

A manually curated database of eukary-

otic transcription factors, their genomic-

binding sites and DNA-binding profiles

TRRUST http://www.

grnpedia.org/trrust/

A reference database of human tran-

scriptional regulatory interactions

YTRP (Yeast Transcriptional

Regulatory Pathway)

Database

http://cosbi3.ee.

ncku.edu.tw/

YTRP/

A repository for yeast transcriptional

regulatory pathways

Protein–protein interaction pathways

BIND/BOND (Biomolecular

Interaction Network

Database)

http://bind.ca Archives biomolecular interaction,

complex and pathway information

BioGRID (Biological General

Repository for Interaction

Datasets)

http://thebiogrid.

org/

A repository for set of physical and

genetic interactions that include interac-

tions, chemical associations, and post-

translational modifications (PTM)

CYGD (Comprehensive Yeast

Genome Database)

http://mips.gsf.de/

genre/proj/yeast/

index.jsp

Present information on the molecular

structure and functional network of the

entirely sequenced, well-studied model

eukaryote, the budding yeast Saccharo-
myces cerevisiae

DIP (Database of Interacting

Proteins)

http://dip.doembi.

ucla.edu/

Catalogs experimentally determined

interactions between proteins

HPRD (Human Protein Ref-

erence Database)

http://www.hprd.

org/

A web-based resource for protein–pro-

tein interactions, posttranslational mod-

ifications, enzyme–substrate

relationships, and disease associations

MINT (Molecular INTerac-

tion) Database

http://mint.bio.

uniroma2.it/mint/

Welcome.do

A public repository for protein–protein

interactions (PPI)

STRING (Search Tool for the

Retrieval of Interacting

Genes/Proteins)

http://string-db.

org/

A database of known and predicted pro-

tein interactions

Signal transduction pathways

BBID (Biological Biochemi-

cal Image Database)

http://bbid.grc.nia.

nih.gov/

A searchable database of images of

putative biological pathways, macromo-

lecular structures, gene families, and

cellular relationships

(continued)
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Table 14.1 (continued)

CSNDB (Cell Signaling Net-

works Database)

http://geo.nihs.go.

jp/csndb/

A data and knowledge base for signaling

pathways of human cells. It compiles the

information on biological molecules,

sequences, structures, functions, and

biological reactions which transfer the

cellular signals

SPAD (Signaling PAthway

Database)

http://www.grt.kyu

shu-u.ac.jp/spad/

An integrated database for genetic

information and signal transduction

systems

TransPath http://transpath.

gbf.de/

A database system about gene regulatory

networks that combines encyclopedic

information on signal transduction with

tools for visualization and analysis

Metabolic pathways

BioCyc http://www.biocyc.

org/

The BioCyc database collection is a set

of more than 7600 pathway/genome

databases (PGDBs) describing many

sequenced genomes

BIOPATH (Biochemical

Pathways) Database

http://www.mol-

net.de/databases/

biopath.html

A database of biochemical pathways that

provides access to metabolic transfor-

mations and cellular regulations

ECMDB (E. coli Metabolome

database)

http://ecmdb.ca/ An expertly curated database containing

extensive metabolomic data and meta-

bolic pathway diagrams about

Escherichia coli (strain K12, MG1655)

EMP (Enzymes and Meta

bolic Pathways) Database

http://emp.mcs.anl.

gov/

A database on the biochemistry of some

1800 different organisms

GMD (Golm Metabolome

Database)

http://gmd.mpimp-

golm.mpg.de/

Facilitates the search for and dissemina-

tion of reference mass spectra from bio-

logically active metabolites quantified

using gas chromatography (GC) coupled

to mass spectrometry (MS)

HMDB (Human Metabolome

Database)

http://www.hmdb.

ca/

A freely available electronic database

containing detailed information about

small molecule metabolites found in the

human body

KEGG (Kyoto Encyclopedia

of Genes and Genomes)

http://www.

genome.ad.jp/

kegg/

A collection of databases dealing with

genomes, biological pathways, diseases,

drugs, and chemical substances

Metacyc http://metacyc.org/ A curated database of experimentally

elucidated metabolic pathways from all

domains of life

MANET (Molecular Ancestry

Network)

http://www.manet.

illinois.edu/index.

php

A database tracing the evolution of pro-

tein architecture in metabolic networks

PathCase (Pathways Database

System)

http://nashua.case.

edu/pathwaysweb/

Store, query, and visualize metabolic

pathways, in addition to their specialized

tasks

(continued)
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Table 14.1 (continued)

PMN (Plant Metabolic

Network)

http://www.

plantcyc.org/

A broad network of plant metabolic

pathway databases that contain curated

information from the literature and

computational analyses about the genes,

enzymes, compounds, reactions, and

pathways involved in primary and sec-

ondary metabolism in plants

UniPathway http://www.

unipathway.org/

A resource for the exploration of meta-

bolic pathways

The left most column has been arranged alphabetically

Table 14.2 Important and popular tools and resources for the analysis of biological networks

Network biology tools and resources

Arena3D http://arena3d.org/ Use multilayered graphs to visualize bio-

logical networks. In such a way, heteroge-

neous data will be distinguished between

each other

BioLayout

Express3D

http://www.biolayout.org/ Offers different analytical approaches to

microarray data analysis

BioTapestry http://www.biotapestry.org/ A tool to visualize the dynamic properties

of gene regulatory networks

CellDesigner http://www.celldesigner.org/ A structured diagram editor for drawing

gene regulatory and biochemical networks

CellML https://www.cellml.org/ An XML-based markup language for

describing mathematical models

COPASI http://copasi.org/ COPASI is a software application for sim-

ulation and analysis of biochemical net-

works and their dynamics

CSB.DB http://csbdb.mpimp-golm.

mpg.de/csbdb/dbcor/cor.html

A comprehensive systems biology database

Cytoscape http://www.cytoscape.org/ Incorporates statistical analysis of the net-

work, and it makes it easy to cluster or

detect highly interconnected regions

EAWAG-BBD http://eawag-bbd.ethz.ch/ Contains information on microbial biocat-

alytic reactions and biodegradation path-

ways for primarily xenobiotic, chemical

compounds

E-Cell http://www.e-cell.org/ Develops general technologies and theo-

retical supports for computational biology

with the grand aim to make precise whole

cell simulation at the molecular level

possible

FANMOD http://theinf1.informatik.uni-

jena.de/~wernicke/motifs/

index.html

A tool for fast network motif detection

Genes2Networks http://actin.pharm.mssm.edu/

genes2networks/

Powerful web-based software that can help

experimental biologists to interpret lists of

genes and proteins such as those commonly

produced through genomic and proteomic

experiments, as well as lists of genes and

proteins associated with disease processes

(continued)
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Table 14.2 (continued)

Network biology tools and resources

GEPHI https://gephi.org/ Interactive visualization and exploration

platform for all kinds of networks and

complex systems, dynamic and hierarchical

graphs

Igraph http://igraph.org/ A collection of network analysis tools with

the emphasis on efficiency, portability, and

ease of use

JWS Online http://omictools.com/jws-

online-tool

A systems biology tool for the construction,

modification, and simulation of kinetic

models and for the storage of curated

models

Medusa http://coot.embl.de/medusa/ Medusa is optimized for protein–protein

interaction data as taken from STRING or

protein–chemical and chemical–chemical

interactions as taken from STITCH

Ondex http://ondex.sourceforge.net/ Ondex main strength is the ability to com-

bine heterogeneous data types into one

network. It is suitable for text mining and

sequence and data integration analysis

Osprey http://biodata.mshri.on.ca/

osprey/servlet/Index

The ability to incorporate new interactions

into an already existing network

Pajek http://pajek.imfm.si/doku.

php?id¼pajek

Main strength is the variety of layout algo-

rithms which greatly facilitate exploration

and pattern identification within networks

PATIKA

(Acquisition)

http://www.patika.org/ Integrated software environment designed

to provide researchers a complete solution

for modeling and analyzing cellular

processes

PIVOT http://acgt.cs.tau.ac.il/pivot/ Best suited for visualizing protein–protein

interactions and identifying relationships

between them

ProViz http://cbi.labri.fr/eng/proviz.

htm

Performs protein–protein interaction and

their analysis using arbitrary properties,

like for example annotations or taxonomic

identifier

Reactome http://www.reactome.org/ A free, open-source, curated, and peer-

reviewed pathway database

VisANT http://visant.bu.edu An online visualization and analysis tool

for biological interaction data

The left most column has been arranged alphabetically
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by adding a third dimension which would allow a clearer visualization of structures

and strongly facilitate a better navigation within the network. Currently, most of the

network tools only generate static snapshots of the interactions and provide no

methods to visualize a time series data (Suderman and Hallett 2007). By introduc-

ing time series data, the process of network visualization would thus achieve a more

complete picture of complex and highly dynamic biological systems. It is highly

expected that this will provide breakthroughs in the pathway analysis process or the

observation of interaction at different time points of cell cycles.

Systems memory is another important issue that should be taken care of while

performing computational visualization and analysis. The limited functionalities of

existing visualization tools make it necessary to constantly switch between different

applications to complete different levels of analysis. Frequent information and data

sharing between different tools has become possible with the availability of stan-

dard file formats. The visualization tools designed by taking care of aforementioned

functionalities would greatly simplify large-scale research in molecular biology and

would significantly cut down time and effort spent on data processing and analysis

(Pavlopoulos et al. 2008).

14.6 Conclusion

Network biology is the revolution in the field of life science as it provides infor-

mation not only on the significant interactions but also on the functionalities allied

to them. The network complexities can be studied with the help of a variety of

Fig. 14.1 Flowchart depicting the methods, tools, and applications of network biology
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methods available in network biology, and the most significant of them is the

module-based approach. Modularity focuses on the local significant regions that

share high-functional relationships comparative to the rest of the network. These

methods not only uncover the complex biological mysteries but also help investi-

gators understand various disease networks or their interactions and hence provide

the potential therapeutic targets. Network biology has accelerated the biomolecular

analysis process by offering different tools that have diverse applications depending

on the number of features embed in them. Network-based methods also have

several limitations including the lack of mechanistic explanations. Despite the

limitations, network analysis has been applied successfully to understand the

complexities of many disease states. It is anticipated that with rapid advancements,

network biology will serve as an excellent research complement to annotate bio-

molecules at a system level and will also help in the generation of more biologically

meaningful information.
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Chapter 15

Bioinformatics Applications in Clinical
Microbiology

Chao Zhang, Shunfu Xu, and Dong Xu

Abstract The human body is believed to house over 100 trillion microbes. These

microbial communities have a tremendously influential impact on their human

hosts. Although increasing evidence indicated a key role for the specific microbial

species in carcinogenesis, such as Helicobacter pylori (H. pylori), Epstein-Barr
virus, Human papillomavirus, and Hepatitis C virus, the underlying roles of human

microbiome in cancers are still unclear. Using the bioinformatics algorithms and

tools to integrate the microbiological data and clinical data could be very helpful to

better understand the mechanisms of diseases. During the past decade, we have kept

working on microbiome research and utilized bioinformatics methods to discover

host-pathogen interactions, relationships between microbiome dynamics and dis-

eases, and correlations between bacterial sequence variation and clinical outcomes.

In this chapter, we use H. pylori as an example to demonstrate the procedure of

related data integration, virulence classification, and prognosis model construction.

Keywords Microbiome • Helicobacter pylori • CagA • Gastric cancer •

Bioinformatics • SVM

15.1 Introduction

As the most abundant domain of all living organisms on earth, bacteria are

estimated to have more than five nonillion (1030) individuals worldwide (Whitman

et al. 1998), and these small single-cell organisms can be found everywhere. They
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are playing very important roles in our life, and we actually benefit from the

microorganisms in many cases, e.g., food production, human health (Turnbaugh

et al. 2009), environmental biotechnologies (Dinsdale et al. 2008), and chemical

industry (Lorenz and Eck 2005). On the other hand, pathogenic bacteria are one of

the most serious threats to human life. For example, tuberculosis, the most common

fatal bacterial disease, kills about two million people every year (Andries et al.

2005).

In the past, analysis of microbial communities was a complicated task due to

their high diversity and inaccessibility via culturing. The emerging next-generation

sequencing technologies provide a potential way for doing this analysis on a routine

basis (Petrosino et al. 2009). The Human Microbiome Project (Turnbaugh et al.

2007) undoubtedly provides new insight into many aspects of complex microbial

communities, such as metabolic capabilities of microorganisms, coevolution of

bacteria and host, interactions among microbial cells, and so on (Medini et al.

2008). Meanwhile, the unprecedented amount of genome data also poses major

challenges for computational analysis, which is an essential tool for microbial

genomics. In fact, computational methods for massive genomic sequence analysis

have become a bottleneck of microbial genomics. In our previous study, we

reviewed the major computational methods on metagenomic/genomic analyses

and the future computational challenges on general microbial identification

(Zhang et al. 2012a, 2015), and we will focus on bioinformatics applications in

clinical microbiology in this chapter.

Immediately after birth, humans undergo a lifelong process of colonization by

foreign microorganisms. Although we benefit from some host-bacterial associa-

tions, bacterial pathogens have long been known to play important roles in the

development of many diseases (Hacker et al. 2003) including cancer (Ullman and

Itzkowitz 2011). The host-bacteria interactions include many complicated mecha-

nisms, and discovering associations between bacteria and diseases in a clinical

setting is even more challenging. Due to the explosion of metagenomic/genomic

data, DNA sequence-based identification and classification are becoming more and

more important in exploring microbial diversity in clinical research. For example,

Bradyrhizobium enterica was discovered in cord colitis syndrome with shotgun

DNA sequencing of biopsy specimens (Bhatt et al. 2013). Recently we also found

that theHelicobacter pylori (H. pylori) infection can change the gastric microbiome

according to whole genome sequencing (WGS) on endoscopic biopsy. WGS gives a

much more accurate identification on H. pylori infection than traditional methods,

such as ELISA test and C-13 breath test. Besides H. pylori infection identification,

we also spent much effort on discovering the molecular mechanisms that underlie

different gastroduodenal diseases caused by H. pylori infection.
In this chapter, we use H. pylori as the example to describe how we utilized

computational methods to discover the relationships between H. pylori virulence
factor and diseases and built a potential model for clinical diagnosis or prognosis.

At first, we collected and curated the data from public databases, and then through

studying the distribution and polymorphism of EPIYA motif in CagA sequences,

we attempted to better understand the function of EPIYA motif, especially the role
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of EPIYAmotif during the interaction process betweenH. pylori and hosts. We also

constructed a computational model to access gastric cancer risk by using detected

important residues in CagA intervening sequences.

15.2 Public Data Collection and Curation

H. pylori is a Gram-negative helix-shaped bacterium inhabiting the human stomach

for possibly more than thousands of years. By far as one of the oldest known human

pathogens, it infects more than half of the world’s population (Suerbaum and

Michetti 2002). H. pylori has shown a strong correlation with all gastroduodenal

diseases, including duodenal ulcers (Covacci et al. 1993), gastric ulcers (Ernst and

Gold 2000), and chronic gastritis, especially being an important risk factor for

developing gastric cancer (Uemura et al. 2001). H. pylori is becoming more and

more important not only for gastroenterologists and pathologists but also for

phylogenists who use it as the evidence to study human’s origin and migration

(Linz et al. 2007).

As one of the most important model bacteria, the data of H. pylori have been

increasing dramatically in recent years. As of January 2014, 399 genome-

sequencing projects are almost complete or “in progress.” 37,304 nucleotide

sequences, 65,684 protein sequences, 61 primers, and 9953 publications were

collected from several major databases, e.g., NCBI databases (http://www.ncbi.

nlm.nih.gov), EBI databases (http://www.ebi.ac.uk), DDBJ (http://www.ddbj.nig.

ac.jp), and PDB (http://www.pdb.org). We searched the above databases with the

keywords “Helicobacter pylori” and “H. pylori” and then verified all results based

on the taxonomy information. References were collected from PubMed (http://

www.ncbi.nlm.nih.gov/pubmed).

As we know, geographical diversity and disease diversity are two most signif-

icant features and hottest topics on H. pylori research. Without these types of

information, the sequences of H. pylori are not very useful for studying the

underline mechanisms of H. pylori causing gastric diseases. Based on our research

experience, collecting H. pylori data from various sources is laborious and difficult,

and currently no database/website can provide the corresponding accurate infor-

mation, and collecting comprehensive information of H. pylori specifically for a

particular country or disease is even more time-consuming. We manually curated

the information not only based on the records from the above major databases but

also by reviewing related literature.
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15.3 Data Deposit

Based on the information we collected and curated, a web-based database, HPbase

(www.hpbase.org) has been built for providing a one-stop shop for H. pylori data
from multiple sources together with multiple embedded search/analysis tools for

querying the database. This website is not only for depositing collected public data

but also for providing curated information, new data generated by users, and other

features derived from original experimental data. By continuously accumulating

and updating the data, we anticipate that HPbase will serve as an important resource

for studying H. pylori and gastroduodenal diseases.

15.3.1 Implementation

The web interface is constructed using PHP, CSS, and the JavaScript jQuery

framework for a flexible user interaction with the system. The HPbase database is

implemented through a MySQL relational database as the backend data storage

system. A Java-based tool was developed to periodically synchronize data with

major sources, and it is also used to import related manually curated diseases and

geographical information into the MySQL database.

15.3.2 Other Information

Besides the basic information we collected from other sources, we generated

sequence profiles for all 65,684 protein sequences by running PSIBLAST (Altschul

et al. 1997) (2007 release version) three rounds against nonredundant

(NR) database (as of 2013) with the e-value cutoff of 0.001, and then we predicted

secondary structures by using PSIPRED (McGuffin et al. 2000) with the sequence

profiles generated above. We also predicted 3D structures for most of proteins,

including all major ones, e.g., CagA and VacA, by using our in-house software

MUFOLD (Zhang et al. 2010), which integrates whole and partial template infor-

mation to cover both template-based and ab initio predictions in the same package.

The predicted secondary and tertiary structural information could help users to

better understand the interaction between human proteins and H. pylori proteins.

15.3.3 Browsing Data

Users can search H. pylori data by different entries, such as GI number, accession

number, strain ID, keywords, disease type, geographical information, and so on
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(Fig. 15.1a). After submission of the search condition, the results will be displayed

in a new page as a list of records with some brief information, including GI number,

accession number, definition, strain ID, keywords, corresponding diseases, and

geographical information. As shown in Fig. 15.1b, users can simply pick all

sequence records or part of them in search results to download in the FASTA or

Genbank/GenPept format for further analyses provided by HPbase, e.g., BLAST

and multiple sequence alignment (MSA) as in Fig. 15.1c and e. Furthermore, users

can also navigate detailed information of any particular nucleotide/protein record in

Fig. 15.1 Screenshots and basic workflow of HPbase. (a) Dialog for entering search criteria. (b)
Table for displaying searching results. (c) Input dialog for BLAST. (d) Table for displaying

BLAST results. (e) Input dialog for sequence alignment. (f) Dialog for displaying alignments

between different sequences. (g) Page for displaying detail information of one particular protein/

DNA sequence
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the result page by clicking on the corresponding “locus” link, and it will redirect to

the nucleotide/protein detail page as shown in Fig. 15.1g. It not only provides the

brief information as other major databases do but also includes manually curated

information, e.g., disease-related and geographical information and computational

information, e.g., PSIBLAST sequence profiles, secondary structures, and 3D

structures for proteins. In this page, the sequence will be displayed with several

formats. PSIBLAST sequence profile is represented as a sequence logo, and it is

generated by using the WebLogo (Crooks et al. 2004) for the top 100 alignments of

the last PSIBLAST round with no gap in the query sequence. Protein secondary

structures are colored with the FASTA format. Jmol (http://www.jmol.org) is used

as a viewer for displaying protein 3D structures. Users are also encouraged to add

their own comments to each nucleotide/protein record and use the reference voting

function to improve the correlation between each sequence record and its refer-

ences, which could be helpful for others to better understand H. pylori.

15.3.4 Other Tools

Some further functions have also been embedded into the HPbase website to

improve the power of search and data analysis. As shown in Fig. 15.1c, a BLAST

utility was integrated as one useful feature, and two different BLAST programs

have been included, e.g., BLASTn and BLASTp. By selecting gene entries from

search results or uploading a protein/nucleotide sequence, users can retrieve iden-

tical or similar nucleotides/peptides in the database through BLAST according to

user-defined parameters, which can be freely chosen including E-value, number of

alignments, mutation matrix, and so on. As shown in Fig. 15.1d, a typical result

page contains the collected information including GI number, accession, definition,

length of sequence, E-value, identity, score, and alignment. Users can download

records and further execute BLAST for database search or MUSCLE (Edgar 2004)

for MSA by selecting records of their own interest from the BLAST results. Users

can also upload their own sequences to perform multiple sequence alignment. In

addition, the entire sequence data can be downloaded directly in the FASTA or

Genbank/GenPept format. Users can also download data for one particular “strain,”

“disease,” or “country.” Some statistical analysis of the most important virulence

factor – CagA from our previous work (Zhang et al. 2012b) – is also included in the

website, including the relations between CagA sequence subtypes and diseases, the

geographical diversity of CagA sequences, and the geographical diversity of dif-

ferent diseases.
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15.4 Computational Model for CagA

15.4.1 Motivation

As one of the most important virulence markers of H. pylori, the cytotoxin-

associated gene A (CagA) has been revealed to be related to the gastric disease

occurrence. H. pylori strains carrying the CagA gene increase the risk factor of

gastroduodenal diseases by threefold over CagA-negative strains (Blaser et al.

1995). CagA contains 1142–1320 amino acids, and at the C-terminal region, it

has a variable region in which various short sequences (EPIYA motif) repeat 1–7

times. After colonizing on the surface of the gastric epithelium, H. pylori
translocated into the gastric epithelial cell through type IV secretion system.

Once injected into the host cell, CagA could localize to the plasma membrane.

Src family tyrosine kinases can phosphorylate CagA on the specific tyrosine

residues of a five-amino-acid (EPIYA) motif (Odenbreit et al. 2000). Then

tyrosine-phosphorylated CagA binds specifically to SHP-2 tyrosine phosphatase

(Higashi et al. 2002) to activate a phosphorylase, which causes the cascade effect

that interferes with the signal transduction pathway of the host cell, leading to a

restructuring of the host cell cytoskeleton and formation of hummingbird pheno-

type (Argent et al. 2004). At the same time through activating mitogen-activated

protein kinase (MAPK), extracellular signal-regulated kinase (ERK) (Fu et al.

2009), and focal adhesion kinase (FAK), CagA also can cause cell dissociation

and infiltrative tumor growth (Amieva et al. 2003).

CagA protein carries two unique features. One is the geographical diversity.

There are some different intervening sequences between those EPIYA motifs. One

copy of EPIYA plus intervening sequence is identified as an EPIYA segment. Four

unique types of EPIYA segments have been found in CagA, defined as EPIYA-A,

EPIYA-B, EPIYA-C, and EPIYA-D (Higashi et al. 2002). Among them, EPIYA-D

motif only can be found from the East Asian subtype, and for the CagA from

Western countries, EPIYA-D is replaced by EPIYA-C. EPIYA-D has stronger

phosphorylation motif binding activity which leads to greater morphological

changes than what the EPIYA-C motif can cause in infected cells (Higashi et al.

2002). And it explains the higher incidence of gastric cancer in East Asian countries

(Jones et al. 2009).

Another feature of CagA is the variation in the number of EPIYA motif copies.

Many studies attempted to reveal the relations between number of EPIYA motif

repeats and clinical diseases (Lai et al. 2003). Although increasing of number of

EPIYA motif copies will affect biological activities, due to the sample size limita-

tion and geographic limitations of studies, none of the studies can draw a statisti-

cally significant conclusion about the relation.

Aside from the number of the EPIYA motif repeats, the sequence difference of

strains in variable regions could also cause a significant difference of virulence,

which might relate to the different pathogenic abilities of H. pylori (Naito et al.

2006). We speculate not only the number of EPIYA motif repeats, but also
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polymorphism of CagA sequences will affect the virulence of H. pylori and then

cause the different diseases. In this study, we focused on identifying the informative

residues, quantifying information of these selected residues, and then using it to

design a classifier that can predict whether a new sequence belongs to the cancer

group or the noncancer group. This method not only sheds light on the relations

between CagA sequences and gastric diseases but also may provide a potentially

useful tool for gastric cancer diagnosis or prognosis.

15.4.2 Data Preprocessing

According to our collected data, 535 strains of H. pylori CagA protein with disease

information will be used for this study. Among them, 287 strains belong to the East

Asian subgroup, and the rest 248 are Western strains. In the East Asian subtype

group, 47 out of 287 strains are from gastric cancer patients, and the rest are from

other diseases. In the Western subtype group, there are 37 strains from the gastric

cancer patients, and the remainders are from other diseases or the normal controls,

including 24 strains from volunteers whose health (disease) status was unknown.

Due to the significant difference between two subgroups, the East Asian subtype

and the Western subtype were treated as two independent groups and analyzed

within each group individually.

CagA sequences of each subtype were put into the corresponding disease groups,

and then the multiple sequence alignments were applied for each group individually

by using Clustal X version 2.0.3 (Larkin et al. 2007). Based on the aligned

sequences, for each column of multiple alignments, we computed the background

entropy Bi and the combinatorial entropy Ci based on the disease groups for each

column i as follow:

Ci ¼
X

k

ln
Nk!Q

α¼1:::20

Nα, i,k!

Bi ¼
X

k

ln
Nk!Q

α¼1:::20

eNα, i,k!

eNα, i,k ¼ NkNα, i=N

where Nk represents the number of sequences in group k, Nα , i , k indicates the

number of residues of type α in the column i of group k, Nα , i is the number of

residues of type α in the column i, and N represents the total number of aligned

sequences. Then the entropy difference between the combinatorial entropy and the

background entropy was calculated as feature values:
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ΔE ¼ Ci � Bi

Figure 15.2 illustrates the entropy concept using three extreme cases for a given

column of residues from sequence alignment. Case P1 is the so-called randomly

distributed or uniformly distributed, and the amino acids are “randomly distributed”

over all groups and without significantly conserved pattern. Case P2 represents a

“globally conserved” pattern, and all the amino acids are all almost same across

different groups. In “locally conserved” case P3, some specific amino acids are only

conserved in particular groups, and different groups have different conserved

pattern.

According to the calculation results of the entropy difference for the above three

cases, the combinatorial entropy is Ci¼ 0 for both “globally conserved” and

“locally conserved” cases. For “randomly or uniformly distributed” case, Ci gets

the maximum value. “Conserved” and “randomly distributed” cases can be distin-

guished based on the value of combinatorial entropy, but it won’t help pick “locally
conserved” case from all “conserved” cases. Then we look at the value of back-

ground entropy, Bi gets the maximum value, 0 and medium value for the “randomly

and uniformly distributed” case, “globally conserved” case, and “locally con-

served” case, respectively. Finally, “locally conserved” case could be selected

based on the differences between combinatorial entropy and the background

entropy. The value of differences for the above three cases are ΔE1¼ 0, ΔE2¼ 0,

and ΔE3 gets the minimum value.

15.4.3 Modeling

The training/identification procedure has been implemented based on the workflow

shown as follows (Fig. 15.3):

Fig. 15.2 An example to

present different cases for

the entropy calculation
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• Select one strain as the test strain.

• Apply a bootstrap procedure to the rest of the strains to get the training strains.

• Calculate the feature entropy for the test strain based on training strains and save

it as the test data.

• Calculate the feature entropy for each strain in the training strain set based on

training strains and save them as the training data.

• Generate classification model by using the training data.

• Classify the test data according to the classification model.

• Repeat this procedure five times, and then calculate the average as the final

result.

A bootstrapping procedure was applied to avoid the classification bias, since the

extremely unbalanced number of cases from different disease group. Usually

gastric cancer cases will be much less frequent than other diseases, such as ulcer

or gastritis. So we used all samples from noncancer group, and stains from the

cancer group were continuously drawn on a random basis until getting the same

number of samples as noncancer group. We also repeated this process five times to

generate five independent training sets for each test strain, and the final decision is

based on the average of five independent classification results. Due to the same

reason, traditional n-fold cross validation won’t fit our data. Then a leave-one-out

(LOO) cross validation procedure was performed. This is not only an assessment of

Pick 1 strain

Bootstrapping
the rest strains

Generate
training set

Train a
classification model

by using SVM

Classify the test
set

Generate test
set

Fig. 15.3 Workflow of

classification/prediction

procedure for one specific

CagA sequence
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the classifier performance on training/test data but also an estimate of prediction

power for novel cases.

SVMLight package V6.02 (http://svmlight.joachims.org/) (Joachims 1999) has

been employed as the classifier, and radial basis function (RBF) has been chosen as

kernel function. Two parameters were tuned to obtain the optimal F-vlaue by using

grid search with above-generated training data. The feature values of each test stain

were then fed into the optimized model to get the classification decision. Overall

classification performances were evaluated by using the following measurements

accuracy (Acc), sensitivity (Sn), specificity (Sp), Matthews correlation coefficient

(MCC), and F-value:

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN

Sp ¼ TN

FPþ TN

Sn ¼ TP

TPþ FN

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þp

F ¼ 2 Sp� Snð Þ
Spþ Sn

where a true positive (TP) is a cancer-related sequence classified as such, while a

false positive (FP) is a noncancer-related sequence classified as cancer related, a

false negative (FN) is a cancer-related sequence classified as noncancer related, and
a true negative (TN) is a noncancer-related sequence classified as noncancer related.

15.4.4 Comparison with Other Methods

Two popular identification methods, BLAST (Altschul et al. 1990) and HMMER

(Eddy 1998), were selected as the representative methods for comparison. We

applied the same evaluation procedure and measurements to above two tools as

our method, such as LOO cross validation. The default parameters have been used

for both BLAST and HMMER. Comparing the results for three methods, our

method achieved 76% and 71% classification accuracy for Western and East

Asian subtypes, respectively, which performed significantly better than the rest of

the two methods (Table 15.1).

15 Bioinformatics Applications in Clinical Microbiology 363

http://svmlight.joachims.org


15.4.5 Discussion

It was found that CagA multimerizes in mammalian cells (Ren et al. 2006). This

multimerization is independent to the tyrosine phosphorylation, but it is related to

the “FPLxRxxxVxDLSKVG” motif, which is named CM motif following EPIYA-

C motif. The CM motif plays an important role in CagA-positive H. pylori-medi-

ated gastric pathogenesis, since the multimerization is a prerequisite for the CagA-

SHP-2 signaling complex and subsequent deregulation of SHP-2. With multiple

CM motifs, H. pylori strains are much likely associated with severe gastroduodenal

diseases (Lu et al. 2008), but this observation cannot explain why different gastro-

duodenal diseases can be developed with the exact same number of CMmotifs. Our

study detected two residues in the CM motif, which might lead to the change of

multimerization, thus changing the virulence of CagA. This is in consistent with a

previous discovery (Sicinschi et al. 2010) that the sequence difference between the

East Asian CM and the Western CM determines the binding affinity between CagA

and SHP-2.

However, we also found that there is no simple relation between any single

residue and cancer occurrence, and hence, it is not possible to just use one single

residue to be the marker for identifying cancer. We speculate that one special

combination of all or partial important residues could have a high correlation

with one particular disease. The classification result strongly supports our hypoth-

esis, i.e., the information of the selected residues in intervening regions can be used

to classify the relation between CagA sequences and gastric cancer, although the

difference between the profiles of cancer and noncancer groups is not very strong.

15.5 Summary

We described the procedures for collecting, curating, and depositing public data

into a web-based database. With a user-friendly interface, those data could be easily

downloaded, browsed, and searched by different entries. Some computational

information (PSIBLAST sequence profile, protein secondary structures, and 3D

Table 15.1 Classification performances of different methods

Subtype

No. of

cancer

cases

No. of

noncancer

cases Method Sn Sp Accuracy

F-

value MCC

Western 37 211 Entropy 0.86 0.74 0.76 0.80 0.45

BLAST 0.22 0.77 0.69 0.34 �0.01

HMMER 0.94 0.005 0.14 0.009 �0.16

East

Asian

47 240 Entropy 0.74 0.71 0.71 0.73 0.35

BLAST 0.17 0.75 0.65 0.28 �0.07

HMMER 1 0.003 0.19 0.05 0.06
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structures) have also been integrated into the database. This database is not only

useful for our research but also could benefit the H. pylori and gastroduodenal

disease research community.

Based on the curated CagA data, an entropy-based calculation was used to detect

key residues of CagA intervening sequences as the gastric cancer biomarker. For

each residue, both combinatorial entropy and background entropy were calculated,

and the entropy difference was used as the criterion for feature residue selection.

The feature values were then fed into SVM with the RBF kernel, and two param-

eters were tuned to obtain the optimal F-value by using a grid search. Two other

popular sequence classification methods, the BLAST and HMMER, were also

applied to the same data for comparison. Our study indicates that small variations

of amino acids in those important residues might lead to the virulence variance of

CagA strains resulting in different gastroduodenal diseases. This study provides not

only a useful tool to predict the correlation between the novel CagA strain and

diseases but also a general new framework for detecting biological sequence bio-

markers in population studies.
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Chapter 16

Artificial Intelligence and Automatic Image
Interpretation in Modern Medicine

Costin Teodor Streba, Mihaela Ionescu, Cristin Constantin Vere,

and Ion Rogoveanu

Abstract The need for intelligent computerized systems in medicine has increased

over recent years; artificial neural networks (ANN) have become increasingly

popular for various classification tasks during diagnosis procedures.

One of the most dynamic branches of modern diagnosis is medical imaging, with

the emergence of various new methods for finding disease, especially cancer.

Quantifying and interpreting the results represents a constant challenge for the

already overburdened physician.

Gastroenterology is a dynamic field of medicine with many recent advances in

imaging methods for cancer diagnosis. Computerized systems have gained signif-

icant traction in the last few years, with promising future prospects of reducing

diagnosis time and workload on the performing physicians.

We describe here two image analysis systems that take advantage of the latest

accomplishments in ANN and computerized decision making. The first system

describes a computerized diagnosis system that takes into account a blend of both

clinical and biological set of parameters, combining them with advanced image

analysis of contrast-enhanced ultrasound imagery in an attempt to diagnose and

classify primary liver malignancies.

The second part of the chapter is dedicated to another advanced imaging method

in gastroenterology – wireless videocapsule endoscopy. The combination of differ-

ent novel image analysis techniques described here greatly reduces interpretation
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times of an extensive investigation and helps doctors in the decision-making

process.

Keywords Hepatocellular carcinoma • Artificial neural network • Contrast-

enhanced ultrasound • Wireless capsule endoscopy • Computer-aided diagnosis

16.1 Introduction

Computer-aided diagnosis (CAD) systems have gained a reputation for providing

integrative solutions for the diagnosis of several types of malignancies (Lisboa and

Taktak 2006; Grossi et al. 2007; Cucchetti et al. 2010), with many applications in

gastroenterology and tumour pathology associated with the digestive tract. The use

of artificial neural networks (ANN) or other adaptive, machine-based learning

systems, can substantially improve the accuracy of any quantitative-based image

analysis method (Cucchetti et al. 2010; Chiu et al. 2009; Markaki et al. 2009).

Current approaches lack integration with clinical and laboratory data, thus not

providing an integrative system designed for actual medical use (Markaki et al.

2009; Saftoiu et al. 2008; 2012).

Early correct diagnosis and appropriate staging of liver malignancies are of

utmost importance for patient survival, as curative surgical interventions have

narrow indications and are extremely specific to certain types of tumours

(El-Serag and Rudolph 2007; El-Serag 2011; European Association for the Study

of the Liver and European Organisation for Research and Treatment of Cancer

2012; Bruix and Sherman 2011). Hepatocellular carcinoma (HCC) currently ranks

third in terms of mortality worldwide and fifth in incidence with almost 750,000

new cases diagnosed each year while being second in mortality among digestive

cancers (Ferlay et al. 2010). Differential diagnosis is of the highest importance for

the patient, as correct identification of a tumour as being HCC in an earlier stage

drastically improves survival. The diagnostic criteria for HCC, the most common

primary liver malignancy worldwide, relay primarily on imagistic methods

(European Association for the Study of the Liver and European Organisation for

Research and Treatment of Cancer 2012; Bruix and Sherman 2011). With the

widespread use in recent years of imaging techniques, the differential diagnosis

of a newly discovered liver mass became less invasive for the patient.

Current accepted guidelines worldwide are those proposed by the American

Association for the Study of Liver Disease (AASLD, revised in 2010) (European

Association for the Study of the Liver and European Organisation for Research and

Treatment of Cancer 2012) and those of the association between the European

Society for the Study of Liver and the European Organization for Research and

Treatment of Cancer (EASL-EORTC, recently revised in April 2012) (Bruix and

Sherman 2011). The introduction of new generations of contrast agents marked the

adoption of a generally accepted radiological hallmark for positive HCC diagnosis,

namely, contrast uptake in the arterial phase followed by washout in the venous/late

phase. The American proposed guidelines stipulate that only one imaging technique
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with contrast uptake, either computer tomography (CT) or magnetic resonance

imaging (MRI), showing the radiological hallmark, is sufficient for positive diag-

nosis of tumours between 1 and 2 cm in diameter (this being the optimum tumour

size for curative surgery) (European Association for the Study of the Liver and

European Organisation for Research and Treatment of Cancer 2012). Their

European counterparts, however, are more cautious in applying a single imaging

method and recommend two coincidental techniques in suboptimal settings due to

technical limitations (Bruix and Sherman 2011).

16.2 Dynamic Interpretation of Contrast-Enhanced
Ultrasonography (CEUS) and Endoscopic Ultrasound
(EUS) Recordings

Second-generation contrast agents use gas bubbles between 2 and 7 microns in

diameter which resonate under the ultrasound (US) probe, the amplified signal

being registered by the US machine through the same probe (Dietrich 2004;

Rettenbacher 2007). While the radiological hallmark can be clearly identified in

this technique, the contrast microbubbles are bound to the intravascular space, as

opposed to iodinated contrast CT or gadolinium-based MR imaging in which the

contrast agents are rapidly cleared from the bloodstream into the surrounding

parenchymal space (Bruix and Sherman 2011; Albrecht et al. 2004; Lencioni

et al. 2008a; Rimola et al. 2009; Colli et al. 2005). According to some studies,

intrahepatic cholangiocarcinoma (ICC) or even some highly vascularized liver

metastases can display uptake patterns similar to HCC during contrast-enhanced

ultrasound (CEUS) or gadolinium-based MRI, thus providing an important source

of error (Rimola et al. 2009).

16.2.1 Time-Intensity Curve Analysis – Basic Principles

Currently, efforts are being made to overcome the inherited issues with CEUS

investigations and diminish the rate of false interpretations (Ignee et al. 2010;

Goertz et al. 2010; Huang-Wei et al. 2006; Salvatore et al. 2012; Jiang et al.

2010). The use of time-intensity curves (TICs) in the interpretation of CEUS

movies seems a feasible method of increasing the specificity of this investigation

(Huang-Wei et al. 2006; Salvatore et al. 2012). The method relies on plotting and

comparing on a timescale the median intensities of two user-defined areas, one

within the suspected tumour and one in a parenchymal area with no major vessels,

thus producing two curves which depict contrast uptake during CEUS (Huang-Wei

et al. 2006; Salvatore et al. 2012). The usual graphical representation shows

contrast uptake in the first 30–60 s, followed by tumour washout in portal and
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venous phases, when the maximum intensity is similar to those of the parenchymal-

selected area of interest. While TIC quantification does add more precision to the

investigation, several user-dependent and technique-dependent limitations have

been identified, such as different depths of the analysed tumour/parenchyma areas

of interest, moving artefacts due to patient breathing or the interference of large

blood vessels in the selected areas of interest (Ignee et al. 2010).

Automated quantitative image analysis techniques have been introduced in

medical practice for a number of years (Jiang et al. 2010; Zhang et al. 2009; Guo

et al. 2009), gaining significant importance in various fields of micro- or macro-

scopic assessment. Automated or semiautomated image segmentation with feature

extraction and overtime comparative quantification of independent elements has

been employed with various grades of success in interpreting medical imagistic

data (Jiang et al. 2010; Zhang et al. 2009; Guo et al. 2009; Mittal et al. 2011; Zhang

et al. 2008; Kondo et al. 2009; Verma et al. 2009). However, current image analysis

methods employed with US or CEUS lack clinical applications and are not suffi-

cient in order to provide effective aid to the clinician (Mittal et al. 2011; Zhang et al.

2008; Kondo et al. 2009; Verma et al. 2009).

A complete ultrasound evaluation of the liver can be performed using conven-

tional ultrasound methods (the “B-mode” US), this step being mandatory before

injecting the contrast agent. The contrast enhancement method is then used to

investigate at a low mechanical index. This ensures adequate cancellation of tissue

signal, leaving visible only the major vascular structures and some anatomical

landmarks such as the diaphragm. All US devices have a “dual view” which puts

contrast enhancement and conventional B-mode image side by side, in order to

facilitate tumour localization. This also helps the clinician when accurately demar-

cating edges of a tumour. Full examination of the liver takes about 4–5 min, only

the first 120 s usually being of importance for a proper TIC analysis.

Bolus models of arterial peak enhancement described contain the three stages of

vascular dissemination (an arterial phase, the portal venous phase and late phase

corresponding to bubble exhaustion). An inherent advantage of CEUS is being able

to assess patterns of contrast agent filling in real time with a higher resolution than

CT or MRI, avoiding the need to predefine benchmarks or performance time

tracking of contrast bolus. Due to different pharmacokinetics of contrast agent

used in CEUS, the vascular pattern is highlighted in this investigation differently

compared with CT or MRI imaging, where the agent is eliminated more rapidly in

the extracellular space (Singh et al. 2007).

The usual traceable parameters are the maximum value of the intensity (IMAX),

represented by the average intensities at each pixel of a region of interest (ROI);

mean transit time (MTT), which approximates the time needed by the contrast agent

to stop being represented as a significant increase in light intensity in the ROI; the

area under the curve (AUC), which provides a parallel interpretation of the impact

of changes in intensity; perfusion index (PI), which is an appreciation of the

vasculature in the area of interest; rise time (RT) which is a measurement of the

rate of increase of intensity until the upper threshold; and time to peak (TTP) which
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is the time taken by the contrast agent to reach peak intensity, from the point of zero

intensity (Fig. 16.1).

The importance of contrast agents to enhance the rate of diagnosis of liver

tumours has been demonstrated in several studies (Caturelli et al. 2004; Forner

et al. 2008; Bolondi et al. 2005; Lencioni et al. 2008b; Youk et al. 2003; Kim et al.

2000; Catalano et al. 2005; Leen et al. 2006). For example, a comparative analysis

using ROC curves showed an improvement of up to 91% of the specificity of

diagnosis and an increase in the number of positive diagnoses of up to 75% from a

maximum of 48% for the conventional ultrasound (Kim et al. 2005).

A recent study published by the team led by Adre Ignea (Ignee et al. 2010)

assessed using TICs obtained from analysis of CEUS movies, identifying possible

sources of error and developing a set of general rules for this investigation. Thus, it

is important to choose the region for comparison to normal parenchyma at the same

depth in the tumour parenchyma examined, but no more than 4–6 cm from the US

probe. They also showed that there are no restrictions in regard to the shape of

selected regions of normal liver parenchyma.

All recordings should previously be calibrated, with adjusted signal for light

intensity, colour and saturation channels. Recent studies using intensity-time curves

showed the great importance of proper standardization of analysed recordings

(Ignee et al. 2010; Goertz et al. 2010). The usual protocol that is generally

employed is focused on the selection of representative areas for focal liver forma-

tion, excluding large blood vessels and areas of necrosis which could influence the

results. Also, when choosing areas of interest surrounding parenchyma, the user

should avoid large blood vessels, which could influence the results by artificially

elevated values. Moreover, a recent study (Salvatore et al. 2012) concludes that

analysis of only ten frames chosen by different combinations of the three distinct

phases of CEUS recording gives the same result in the interpretation of best-fit

TICs. Currently, it is considered that the frames of interest must be selected from a

minimum interval of 100–180 s.

Fig. 16.1 Schematic representation of the TIC parameters, graphed as a function of intensity

against the time that the US transducer records the image
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In our experience, parameters resulting from the analysis of TICs show a low

degree of variability among the studied cases. In addition to these, we introduced

statistical comparison of values string for each phase of CEUS recording (Gheonea

et al. 2013; Streba et al. 2012a). The degree of correlation between the two averages

can be quantified by the computer, the observations a human operator can make

concerning the appearance of the two curves thus being objectified by the artificial

diagnosis system. Considering this approach, even longer recordings can be

employed in the analysis.

Outliers resulting from artefacts due to a short interposition of a blood vessel

(resulting in artificially increased intensity for the frame) or deeper breathing

movement (which can lead to a repositioning of an area of necrosis within the

selected region) should be excluded by plotting the curve on a “best-fit” model, thus

compensating with values following a theoretical distribution.

Hepatocellular carcinomas show higher enhancement in the tumour ROI com-

pared to parenchyma, similarly to hypervascular metastases and hepatic

haemangiomas. Differentiating these formations can be achieved mainly based on

the appearance of the terminal phase where the correlation of the two curves,

resulting in the appearance of overlapping routes, coincides with the existence of

the phenomenon of washout. Primitive malign tumours showed partial washout, the

approximate paths of the two ROIs being slightly offset during the late portal phase,

as hypervascular metastasis showed a complete and premature washout phenome-

non. The signal strength in these areas decreases more markedly than in the area of

parenchyma, therefore resulting in statistically significant differences between the

two rows of values. For haemangiomas, the particular aspect is the lack of conver-

gence of the two rows of values, following almost parallel routes during these

phases. It is also possible to quantify the centripetal contrast load, with a charac-

teristic appearance in the arterial phase. This can be recorded as a slope of the curve

at an angle less than the surge in cases with HCC or hypervascular metastases. A

comparative study (Huang-Wei et al. 2006) conducted on a group of patients with

diverse liver tumour pathology revealed significant differences in these parameters

between hepatocellular carcinomas and haemangiomas or hypervascular liver

metastases. This study did not identify significant differences between the maxi-

mum intensities reached in cases with HCC and hypervascular metastases.

Hypovascular metastases have a negative peak, with the maximum intensity

value actually lower than the parenchymal ROI. Literature lacks conclusive studies

on the appearance of time-intensity curves in this type of metastatic tumours;

however, it is logical that large areas of necrosis are avascular, thus resulting in

minimal contrast uptake (Goertz et al. 2010; Huang-Wei et al. 2006).

In cases of focal steatosis, the TICs of the two selected ROIs show parallel

contrast loading, determined by the lack of blood vessels alteration in these cases.

When referring to malignant tumours, there is an intense process of neogenesis with

predominantly arterial vasculature, leading to contrast uptake more pronounced

during the first phase of contrast dispersion. The washout phenomenon is due to the

lack of blood supply to the venous vasculature; therefore contrast uptake during this

step remains low. In cases with steatosis, veins remain approximately unchanged,
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also missing the “unpaired arteries” found in other pathologies, thus resulting in

parallel TICs.

Complex analysis performed on the TIC parameters resulting from CEUS

investigation proves extremely important in enhancing the diagnostic capabilities

of the ANN, as the final diagnostic rate is above 97% in the case of complex neural

networks (Gheonea et al. 2013; Streba et al. 2011, 2012a, b, c). An example of an

interface designed for plotting TICs and extracting relevant parameters for an ANN

system is shown in Fig. 16.2.

16.3 Artificial Neural Networks – Basic Principles
and Common Applications in Medicine

Computer-aided diagnosis systems may offer new possibilities in the diagnosis and

staging of tumours. Artificial neural networks (ANNs) are the result of research in

medical informatics, representing a form of artificial intelligence. Neural networks

are computer language translation of the principles of functioning of the human

central nervous system. Basic components of the brain, namely, neurons and

neuronal synapses, are thus reproduced by dedicated software applications, creating

networks that have the ability to retrieve and process information to solve complex

problems, with the added ability to learn and take calculated decisions (Chiu et al.

2009).

Fig. 16.2 Example of the interface designed to select ROIs and plot TICs with automatic

extraction of imaging parameters for later analysis in the ANN system
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There are currently several types of neural networks with different topographies

and specific methods for information processing. They are able to recognize and

generalize the correlations and rules of different databases, which then apply them

to solve new problems. They are also able to recognize patterns of any type and to

formulate hypotheses, being particularly useful in solving problems that are com-

monly encountered in clinical practice (Kondo et al. 2009).

Neurons, the basic unit of these networks, are organized in layers accessible to

the user (“visible”) or without direct access (“hidden layers”), being interconnected

via synapses, which ensure the transmission of information between each layer.

Briefly, each variable introduced in the system is received by a neuron, which

assigns a value – “weight” – quantifying its importance and a “bias” – a coefficient

of “disbelief”. These values can be both positive and negative, thus ensuring an

accurate assessment of the variables. All received information cross-links to the

next layer, which contains fewer neurons but receive more information than the

first, and thus made the logical associations between problem data. They in turn can

communicate with other “hidden” decision layers in the end resulting in a solution

or a logical assessment of the situation presented (Chiu et al. 2009; Jiang et al. 2010;

Kondo et al. 2009).

To be able to produce more accurate results, neural networks must be “trained”,

either by a human operator (supervised training) or by intrinsic systems (self/

unsupervised learning networks). Redundant data is eliminated through these pro-

cedures, networks being able to properly assess each variable introduced to make

the right decision at the end of a logic cycle (Chiu et al. 2009; Markaki et al. 2009;

Jiang et al. 2010).

There are several architectures of neural networks useful in processing medical

data, the “feedforward” type being one of the most widely used. In such networks,

the neurons in each layer are connected only with the subsequent layers. These

connections are unidirectional, information being transmitted by input neurons to

the hidden decision layer and further to the output layer, where a conclusion is

formulated (Verma et al. 2009). The preferred learning algorithm is typically a type

of supervised learning with successive propagation (back-propagation supervised

learning), in which the coefficients of each neuron are changed after each succes-

sive iteration (the weight and bias of each variable).

A typical example of such a network is the multilayer perceptron (MLP)

network comprising a nonlinear transfer function in the hidden layer (Fig. 16.3).

MLPs are capable of associating learning patterns to outcomes in

non-homogeneous data sets, thus being particularly useful in medical applications

that contain imaging data, with or without numerical data obtained from laboratory

investigations and medical history (Guo et al. 2009; Verma et al. 2009).

Radial neural networks (radial basis function, RBF) contain three neural layers

with vertical nonlinear transmission and linear transmission within the hidden

decision layer. These networks are extremely flexible in topology and size, being

suited to solve a variety of problems, in particular the analysis of three-dimensional

shapes or processing of quantities of data that refer to time series (Goodband et al.

2008).
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In recurrent networks, information can travel in both directions by introducing

loops that propagates the values from hidden decision layers back to the input layer.

Their status changes continuously until a point of equilibrium is reached, where

they remain until a radical change occurs with input data, when a new balance must

be found. These have the potential to become very powerful tools to process large

amounts of data. They are primarily used to reproduce the associative memory,

which helps when the user has a partial original data set and the network needs to fill

certain parameters in the learning cycle. They are particularly useful in medical

practice, especially in characterizing and determining the degree of malignancy of

tumour formations, when a result should be given with regard to partial or similar

models that were identified during the learning phase (Markaki et al. 2009; Guo

et al. 2009; Verma et al. 2009; Goodband et al. 2008).

Choosing the optimum neural network architecture is very important in every

medical task, as it must be able to intervene in both image analysis and when

complex patient data has to be processed during the investigation of a new case.

Fig. 16.3 Schematic representation of a typical MLP network and of a neuron
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Training artificial intelligence system ensures the production of results with a high

degree of confidence for the clinician, thus proving the versatility of the system

which could be used by health professionals with different levels of training

regarding the complex pathology.

Having both the clinical and biological set of parameters for a sufficiently large

number of patients, a neural network model can attempt classification and staging

and can determine the optimum therapeutic indication for patients with tumours,

especially malignancies.

Neural networks that are used to classify tumours are usually a variation of the

feedforward back propagation, optimal for solving classification problems. Net-

works have a number of input neurons equal to the number of parameters used, a

hidden layer and an output neuron (which provides the outcome). Each input

parameter introduced in numerical form (either predefined values or binary variable

0/1) is assigned a weight based on the network decision, in order to calculate their

importance in the final outcome. It is usually indicated not to set strict rules for the

weights, as their values will be determined based on the training set. Transfer

functions are the equivalent of human synapses, as they allow the connection

between neural layers.

Neural networks are now modern systems available in terms of technology,

flexible enough and particularly dynamic, which recommends them as semi-

independent diagnostic tools. They are currently worldwide preferred to classical

tracking methods and statistical modelling for population groups with complex

diseases, such as those with malignant neoplastic disease (Lisboa and Taktak 2006;

Cucchetti et al. 2010; Chiu et al. 2009; Mittal et al. 2011).

From a given patient lot, some cases are used to train the network, while the rest

of the data is involved in the validation of results. Data entered is stored in a

dedicated database for easy retrieval. Iteratively modifying the weights of the input

data in the global algorithm during the neural network training, after a certain time

they converge to a solution that provides a logical correlation between the input

data and output. In the training phase, the network becomes able to generalize the

relationships between the input data and output classes, based on the training set

that included only some of the possible combinations of inputs and outputs. The

training set is usually chosen so as to give the network the ability to identify one or

more characteristics of the input data corresponding to a specific output data

(Fig. 16.4).

16.3.1 Testing of an ANN in Classifying Liver Tumours

Although the concept is not new, neural network applied in medicine existing since

the mid-1990s (Lisboa and Taktak 2006; Cucchetti et al. 2010), advancing modern

diagnostic techniques has provided new opportunities for the networks which today

no longer rely only on clinical data, anamnesis and simple laboratory tests, but also

integrate imaging parameters or genetics and cellular biology methods (Lisboa and
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Taktak 2006; Chiu et al. 2009). The system designed in this study belongs to this

second category – that of the complex systems diagnosis, being able to take over,

interpret and sort complex imaging parameters. They come from the innovative

application of state-of-the-art methods such qualitative and quantitative analysis of

time-intensity curves resulting from CEUS.

We chose a representative number of variables for the studied pathology, which

contained patient history data, clinical, laboratory and imaging investigations as

Fig. 16.4 Schematic representation of the cascading ANNs and annexed subsystems for different

diagnostic, staging and prognostic modules employed in the management of liver tumours
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well as TIC-derived specific data (described above), which have been distributed to

separate subsystems in the complete neural network. The most important variables

can be found in Table 16.1.

All complex parameters for the neural network training were stored in a dedi-

cated database. This step allows the future use of this data for better training of the

ANN. To ensure continuity we chose a standardized format for entering patients

using additional fields for storing additional information that were not subject to the

interpretation of the neural network.

Data obtained through TIC analysis is fed directly into the database, and the

ANN makes use of it in its interpretation. Data can also be recorded on standard

forms and later fed into the database. Dynamic input fields can be organized

according to the immediate needs of training the neural network, changed during

the evolution of a study. The interface has been structured so that the options are

limited by subsequent logical steps – fields that are not subject to certain immediate

Table 16.1 Variables entered into the ANN network

Variable Type Special remarks

Personal data

Sex Binary Male sex is more predisposed to develop HCC

Age Predefined

intervals

10–30, 30–60, >60 years

Background Binary Urban/rural

Risk factors

Alcohol

consumption

Binary Abuse/normal

Hepatitis

viruses

Variable B+C/B/C

Significant patient history data

Liver cirrhosis Binary Yes/no

Tumoural markers

AFP Binary 1 ¼ above limit, 0 ¼ normal

Other tumour

markers

Binary 1 ¼ above, 0 ¼ normal

Standard US tumour parameters

Hepatomegaly Binary Da/Nu

Size (mm) Value Cu valoare prognostică

Number Value Cu valoare prognostică

Malignant

PVT

Binary

CEUS parameters

IMAX Value These parameters entered in the complex analysis for deter-

mining the type of focal liver lesionRT Value

TTP Value

Some of these parameters also played a role in prognosis

AFP alpha fetoprotein (marker for HCC), TVP portal vein thrombosis
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interaction (e.g. if a patient does not have liver cirrhosis, the user cannot enter data

on the Child-Pugh score) are inactive for the user. This method of data validation

eliminates errors inherent during data recording.

In a final stage of development a web interface accessible from within an

Internet browser can be added. It realizes the communication between the doctor

and the database which takes the inputs and outputs of the neural network. Between

the database and the ANN, there is a two-way communication, the results of newly

classified tumours are stored, and after a subsequent validation by the clinician, the

results can enter the ANN, thereby increasing diagnostic sensitivity considerably

through another training cycle. The major advantage of using a web interface for

controlling neural network is the ability to use the ANN diagnostic system at any

time and from any geographic location where Internet access is available for

entering all or part of the data (Fig. 16.5). The peculiarity of this system, which

distinguishes neural networks from any other statistical method, consists in partic-

ular plasticity, the ability to learn actively or passively from the new problems

which are offered.

For staging of HCC cases, we used the diagnostic algorithm proposed by the

Barcelona group study of the liver (Barcelona Clinic Liver Cancer, BCLC), which

was translated into a format easier to apply the computer system (Fig. 16.6). If the

liver tumour was determined by the ANN to be HCC, the diagnostic system

Fig. 16.5 Schematic representation of the computerized diagnostic system based on ANNs and

the TIC analysis integrated module

16 Artificial Intelligence and Automatic Image Interpretation in Modern Medicine 383



proposes a possible classification according to these criteria, and a complete

indication is provided to the clinician.

The final step was to design, train and test a neural network ensemble able to

receive an extensive panoply of clinical and paraclinical parameters. They offered a

diagnosis of certainty, prognosis and staging of HCC, completed by the complex

Fig. 16.6 Algorithm used in the computerized model to stage HCC cases. It follows the principles

set by the BCLC set of diagnostic and prognostic criteria (European Association for the Study of

the Liver and European Organisation for Research and Treatment of Cancer 2012)
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imaging investigations described above. Moreover, computer-aided diagnosis sys-

tem was able to perform a differential diagnosis for five distinct classes of focal

liver tumours identifiable by imaging: hepatocellular carcinoma, hypo- and

hypervascular metastases, hepatic haemangiomas and focal steatosis.

A recent study conducted by Cucchetti (Cucchetti et al. 2010) and the HCC

Bologna study group examined the capability of a neural network based on clinical

and paraclinical parameters used in pretransplant or liver resection for noninvasive

assessment of the degree of differentiation of the tumour and microscopic vascular

invasion compared with classic logistic regression used in current practice for such

assessment. The study demonstrated the absolute superiority of the neural network

to the simple statistical techniques, having predictive values of 0.94 and 0.92,

respectively, comparing to only 0.85 for logistic regression. Parameters introduced

into the network resulted from noninvasive techniques, being represented by the

serum level of alpha-fetoprotein, the number, volume and diameter of tumour

formation (Cucchetti et al. 2010). In the described ANN model, clinical and

paraclinical parameters are diversified, the intention being to diagnose the under-

lying disease and not to assess the morphological characteristics of tumour. It is

interesting to note that, with available pathological data for the set of cases used in

training, the network developed here would have been able to provide the same

results. In addition, the imaging parameters resulting from the CEUS investigation

provide additional information and can help to more accurately establish the stage

of the tumour.

The system is constantly evolving by its very nature; any new case presented

may undergo external validation of the clinician, thus adding a new set of training.

This ensures safety while increasing diagnostic accuracy, eliminating sources of

error. It is also noted that the complex system that encompasses imaging parameters

exhibits significantly improved capabilities compared to a simple network based

only on anamnesis data, clinical and simple imaging (sensitivity and specificity of

97.3 and 97.4%, respectively, compared with 93.2 and 89.7%, respectively). The

system is also extremely tolerant and avoids overfitting, as the learning algorithm

does not allow strict rules for the chosen weights.

16.4 Automated Computer-Aided Interpretation
of Wireless Capsule Endoscopy Recordings

16.4.1 Introduction to Wireless Capsule Endoscopy

Medicine has lately become a domain in which the latest technology is turning out

to be not only necessary, but more and more compulsory, starting from the first

contact with the patient and case management up to various examination tech-

niques, necessary tests, interventional therapies and post-treatment monitoring.

Computers have become deductive and intellectual instruments that represent an
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integral part in medical system structure, being involved in almost all phases of the

medical act.

Wireless capsule endoscopy (WCE) represents a modern investigation technique

of the small bowel, being comfortable for the patient, with little constraints and rare

complications. This procedure is the result of combining the most recent discover-

ies in medical and engineering fields, where the latest progress in technology finds

its place in medical explorations, leading to a high-tech investigation of the small

bowel. WCE delivers a set of over 50,000 images that enable a visual analysis of the

intestinal mucosa, thus allowing the identification of possible lesions present at

patient’s small bowel level.

The rich informational content of this imaging technique represents both an

advantage, by emphasizing the interior of the intestine, and a disadvantage, due to

the prolonged analysis and interpretation period (for more than 50,000 frames),

even for an experienced physician. The minimum time interval necessary for the

examination is 3–4 h that adds to the 8–9 h required for the procedure itself, leading

thus to a total of more than 12 h dedicated to a single patient. Another disadvantage

in the image analysis of the WCE images is represented by the fact that a lesion may

be very small compared to the intestinal region present in the image, or it may be

incompletely captured, thus being difficult to detect and analysed. In the same time,

a lesion may appear in a very small number of successive frames, and it may be

overseen by the examiner physician, especially if there are also distraction elements

that interfere within the analysis dedicated period.

These disadvantages represent a strong motivation for engineers to approach

software applications specific for computer-aided diagnosis, with support and

assistance in potential lesion detection, by automatic analysis of the images

acquired by WCE and the enhancement of particular elements present in these

images. Acknowledging the various types of aspects and the multitude of potential

lesions present in the set of frames captured by the WCE, the automatic detection

techniques must be designed, developed and applied, depending on each lesion’s
characteristics as well as on its differences from the normal small bowel mucosa.

Thus, in order to help the physician, it is necessary on one hand to have a unique

application, which comprises multiple stages of lesion detection, and, on the other

hand, to have an intelligent system that is able to analyse the entire set of images, to

identify frames that have a different aspect from the normal mucosa and to classify

potential lesions, offering as output a set of images corresponding only to lesions,

together with their classification and the time of appearance.

The aim of our efforts is the reduction in the overall analysis time necessary for

the physician in the interpretation of the images provided by the WCE, as well as

improving the accuracy of intestinal lesion automatic detection, offering computer-

aided support in diagnosis.

Currently, WCE examination represents the “golden standard” in assessing

lesions present in the interior of the digestive tract, in the same time offering a set

of images that are difficult to obtain with other techniques of exploration. It

represents an essential and important method in the exploration of the entire

digestive tract, thus confirming one more time the symbiosis between medicine
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and technology in the field of gastroenterology by enhancing the exploration with

software applications that offer assistance to gastroenterologists, in the assessment

and evaluation of images provided by the WCE. In the same time, this technique

offers decision support in image processing in a shorter period of time and with

better performances.

16.4.2 Brief History of the Wireless Capsule Endoscopy

Three decades ago, an idea of a medical procedure that offers information and

images from the interior of the digestive tract first appeared. It aimed in principal

the exploration of the small bowel, which is a more difficult segment to explore

with other investigation techniques. The first experiments took place later, when

technologic progress in this field had made possible a series of trials that led to the

development and improvement of this technique.

In 1996, Swain Paul conducted a series of experiments achieving the first image

transmission from inside a pig’s stomach (Gay et al. 2004). The concept of

endoscopic capsule has materialized after collaboration with Ing. Gavriel Iddan,

PhD., from Israel, who is considered the inventor of this miniature device (Meron

2000). The development of this new exploration technique was first announced in

2000 in Nature; in the same time, there were conducted the first studies on animals

(Iddan et al. 2000).

The first videocapsule was launched in 2001 by Given Imaging Ltd. (PillCam

SB), together with the first clinical trials conducted on human subjects (Kornbluth

et al. 2004; Mackiewicz 2011). The device was approved by FDA (American Food

and Drug Administration) at the beginning of August 2001, being recommended as

a supplementary method of exploring the small bowel, next to other endoscopic and

radiological techniques, but not necessary a replacement for these. In 2003, WCE

examination was directly recommended for the visualization of the intestinal

mucosa, being used as a technique for detecting small bowel lesions. The next

decade was very active, with over 100,000 examinations conducted and almost

1000 papers published (Meron 2000).

The first videocapsule produced by Olympus (EndoCapsule) first appeared in

October 2005. Its characteristics were similar to those of PillCam, having an

acquisition rate of two frames per second and the same resolution. It had a higher

quality provided by its acquisition system – CCD (charge-coupled device) instead

of CMOS (complementary metal oxide semiconductor). EndoCapsule had also an

automatic system to control brightness (ABC, automatic brightness control)

adapted from classical endoscopic equipment, as well as the possibility to view

the captured images in real time (Mackiewicz 2011).

In 2007, IntroMedic introduced a new videocapsule (MicroCam). It is shorter

than the other existing videocapsules, having only 24 mm and a 150� capture angle.
The lifespan of its batteries is about 11 h, in which period it can record around

120,000 images with a 320 � 320 pixel resolution, at an acquisition rate of three
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frames per second. This videocapsule is superior to other types by the quantity of

data it can gather in a same time period, thus increasing the chances to record

images of all lesions. On the other hand, the necessary time to analyse all the

recorded frames is increased.

OMOM videocapsule was developed in 2008 (approved in France and the USA),

bringing something new in this field – data transmission in both ways – allowing the

control of image acquisition rate and allowing to adjust brightness (Mackiewicz

2011). The lack of speed and motion direction control increases the risk to modify

the rate of acquisition and brightness, in the detriment of best level and conditions

to capture images.

Regardless of videocapsule producer, one of the main disadvantages of this

investigation technique is the absence of a self-propulsion system, which would

allow speed and motion direction control. There are several studies that suggest

different solutions, based upon magnetic fields (Gao et al. 2010; Kosa et al. 2008),

or on other technologies (Lenaerts and Puers 2006; Quirini et al. 2007), but nothing

has materialized yet.

16.4.3 Wireless Capsule Endoscopy Procedure

WCE investigation is a modern noninvasive technique of diagnosis, which allows a

complete exploration of the small bowel without patient sedation. The WCE

investigation system consists of a capsule which will be swallowed by the patient,

a set of sensors attached on patient’s abdomen or chest, a small digital recorder

attached on a belt that is carried by the patient and a working station (which has

evolved in time from a classic desktop to laptops and tablets). This working station

has a software application which can take recorded images and store them for

further analysis (Vere et al. 2009, 2012a, b).

The videocapsule has an image acquisition rate of 2–3 frames per second

(depending on producer), and after activation it transmits about 50,000 images,

during the lifespan of its batteries, which can vary from 8 to 11 h (Hadithi et al.

2006). At the beginning of the examination, the videocapsule is unsealed thus

becoming activated and is swallowed by the patient with a glass of water. It has a

diameter of 11 mm and a length which varies from 26 to 27.9 mm resembling a

normal tablet. Once activated, it starts recording images, thus the examination must

begin immediately. Normal peristaltic movement of the small bowel propels the

videocapsule that records images from its interior. It is naturally eliminated after

1–7 days from ingestion.

The WCE examination technique can be resumed in some important stages:

activation and swallowing of the videocapsule, acquisition of a set of frames from

the interior of the digestive tract (Fig. 16.7), transmission of recorded images to the

external working station, image processing and analysis, in order to detect potential

small bowel lesions. In present, WCE system is the most common technique of

small bowel exploration, being the only method almost without discomfort for the
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patient, noninvasive and with rare complications. Having an acquisition rate of two

or three frames per second that offers a high amount of information, over 50,000

images, it has become the “golden standard” in assessing potential lesions of the

small bowel, allowing access to a set of images otherwise difficult to obtain using

other exploration techniques.

16.4.4 Software Applications Used for Automatic Analysis
of WCE Results

Any exploration technique, imagistic or not, is analysed from both patient and

physician perspectives. From a patient’s point of view, WCE examination is

preferable, being comfortable, without anaesthesia and requires only a previous

preparation of the small bowel, followed by the ingestion of the videocapsule.

Patient’s comfort is incomparable relative to classic endoscopic techniques for the

extremities of the digestive tract (gastroscopy and colonoscopy), which have a

higher degree of discomfort during the investigation. For physicians, WCE exam-

ination offers a high amount of information, providing clear images from the

interior of the small bowel, thus facilitating the visual analysis of the intestinal

mucosa and the detection of potential lesions.

Fig. 16.7 Six successive frames (that present only normal intestinal mucosa, without pathology),

acquired during wireless capsule endoscopy
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From the medical point of view, the aim of WCE examination, regardless of the

digestive segment it was designed to explore, is the identification and classification

of lesions present in the captured images acquired by it during its voyage in the

interior of the digestive tract. This requires attention and concentration for about

3–4 h from an experienced examiner. In order to reduce the time period necessary

for the analysis of the images recorded by the WCE, there have been developed a

series of software applications that assist the physician and reduce the amount of

time required to examine the whole set of frames. These applications work by

automatically analysing the images, removing unnecessary frames or frames with

irrelevant content and highlighting sequences showing potential intestinal lesions.

Another advantage of the computer-assisted image analysis of frames recorded

by the WCE is the improvement of clinical diagnosis. Thus, the software becomes

an expert system able to establish patient’s diagnosis (Mackiewicz 2011). None-

theless, the physician has the final word in confirming or infirming the lesions

indicated by the software application. Beside the long period of time required for

image analysis, the speed which the frames succeed can be sometimes problematic

especially for lesions captured in a reduced number of frames or viewed

incomplete.

From a human point of view, the speed at which WCE captured frames succeed

is relatively constant, and it can be improved only until a certain point (achieved

after continuous exercise). On the other hand, the speed at which software appli-

cations can process images depends only upon the processing power of the com-

puter which performs the analysis. Current processors can perform an impressive

number or operations per second – over 12 digits – thus exceeding any human

ability of analysis. These applications not only reduce the amount of time necessary

to process the images generated by the WCE, but in the same time, they amplify

WCE’s accuracy. If, in general, a human examiner has a tendency to rapidly

overlook certain frames or to perform a superficial analysis of some images, a

software application assures objectivity in analysing each image assuring the same

steps processing and interpretation.

16.4.5 Important Elements in WCE Software Analysis

16.4.5.1 WCE Illumination

According to its technical characteristics, the wireless capsule is equipped with six

white light LEDs, which provide the necessary illumination for image acquisition.

This normally ensures the visibility of the field corresponding to the CCD camera,

characterized by a wide angle of 145� and a depth between 0 and 20 mm (Olympus

2007). All sources based on LEDs have an efficient light capacity, determined by

the ratio between the illuminance and the associated power. The illuminance

mainly specifies the light quantity expressed in lumens (lm), measured indepen-

dently from the light distribution direction. The illumination of the digestive tract is
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thus dependent on the uniform distribution of the illuminance upon the intestinal

mucosa surface, being mainly influenced by the fact that the tissue is not flat and,

instead, it presents plicae of different dimensions. Also, the capsule is not always

parallel with the tract central axis; thus the projection angles differ in accordance

with its position (Mang et al. 2008).

The luminance quantifies the light appearance of an object or a surface. The

entire section of the digestive tract located near the capsule absorbs a part of the

illuminance, reflecting the residual part (Filip et al. 2011). Thus, the two main

features that characterize the intestinal mucosa from a visual point of view – colour

and texture – define the quantity of absorbed light and the quantity of reflected light.

The human examiner apprehends the brightness of an image relative to the quantity

of reflected light, expressed by the illuminance. A particular case of images

acquired by WCE presents relative straight sections of the digestive tract, with a

lumen wide enough to let the light be dispersed, allowing only a small quantity of

light to be reflected back by the intestinal tissue (Fig. 16.8a–c). Even in these

conditions, the illumination must be powerful enough to acquire in optimum

conditions at least a section of 10 mm (in case there is no solid tissue to reflect

back the emitted light).

Generally, the spatial distribution of light produced by the WCE’s LED sources

is not distributed in a uniform manner in the foreground, which leads to an image

acquired with a lower quality relative to the capacity of the acquisition system. Due

Fig. 16.8 (a–c) Different illumination degrees in WCE frames. (d) Reflection of the six LEDs

within WCE images
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to the physical characteristics of the digestive tract, the luminance varies quantita-

tively from one section to another. Thus, the LEDs are circularly disposed around

the image acquisition system, in order to improve the degree of uniformity of the

light produced. Moreover, this disposition should compensate the drawback of the

LEDs’ size, which should be small enough relative to the size of the capsule

(in order to maintain its global size as small as possible), but in the same time

they should offer a proper light that ensures the acquisition of good quality images,

useful for the examiner (Aihara et al. 2011).

In case certain solid elements from the front end of the capsule present a smooth

and glare surface (like air bubbles), the quantity of absorbed light is minimal; thus

the reflected light offer a visual aspect easy to identify, being similar to another light

source. In fact, these elements placed right in front of the capsule reflect exactly the

six LEDs circularly positioned (Fig. 16.8d).

These reflections may influence the lesions’ automatic detection, being

misidentified as potential lesions (potential ulcerations that are characterized by

circular shapes, bright colours, undefined edges and normal mucosa in its

neighbourhood). In the same time, they might be useful in the automatic detection

process, by allowing a differential diagnostic between air bubbles that reflect the

LEDs and polyps that also have a round shape, but do not present such reflections.

They may be eliminated from the frames, either alone or together with the air

bubbles that contain them.

16.4.5.2 Artefacts

There are cases when the physical characteristics of the small bowel, as well as

other different elements (artefacts) found inside it, are misconsidered as mucosa

anomalies or even lesions (especially polyps, due to the round shape of intestinal

bubbles). Debris and bubbles are the most common elements present in the images

acquired through WCE, influencing the identification of potential lesions, as they

do not reflect relevant data, but they affect the global features of the analysed

images. The intestinal mucosa presents constant intensity, colour and texture, while

the areas containing artefacts present sudden changes in contrast, due to well-

defined edges, shadows, LEDs’ reflections for bubbles but also colour and texture

for debris.

Lumen, debris and bubble identification from the images acquired through WCE

represents an important phase that leads to a set of images free of artefacts, reducing

thus the risk of indicating them as potential lesions through the use of automatic

detection applications.

For each artefact potentially present within the images acquired by WCE, its

associated general characteristics were determined. Lumen detection was best

realized based on colour features – being characterized by darker shades relative

to the rest of the informational content of all frames – varying in the interval brown

to dark brown. The colour corresponding to the lumen is progressively changed

from the surrounding normal mucosa, thus the edge detection is not really effective

392 C.T. Streba et al.



unless the luminance of all areas in the frame is relatively uniform. The texture has

a lower weight in lumen automatic detection.

Debris present a similar behaviour, being mostly identified based on their

specific colour (relatively well delimited in the colour palette encountered within

WCE images), as well as its texture. The edges have sometimes a lower weight in

their automatic identification, especially when the passage towards the intestinal

mucosa is progressive; thus the content of debris is not very compact.

Air bubbles are best represented by their well-delimited margins, the best results

in their segmentation being obtained after applying edge detection techniques. In

some cases, favoured also by their close position relative to the wireless capsule or

in an optimum angle of illumination, their contour turns out to be thick, leading to

double edge detection; this represents a unique feature and ensures the differential

diagnosis relative to intestinal polyps. On the other hand, their interior is transpar-

ent, and it allows the visualization of intestinal mucosa placed behind them even if

its aspect is rather unclear. From a colour point of view, they do not present a

constant palette, which gives this feature a lower weight in the automatic detection

process. Their texture has similar weight, being useful only for characterizing the

interior generated by double edges. Overall, the correct identification of air bubbles

is performed especially through an optimum combination of detected edges and the

interior with normal mucosa aspect that adds to the pattern composed by the

reflection of the six LEDs.

Since there is no unique feature that uniquely identifies artefacts, the solution

implies the creation of a feature combination, texture, colour, edges and specific

elements, according to the weight of each feature in the automatic detection of a

certain artefact. Also, in some cases, one should take into account the invariance of

attributes to light variation (Hansen and Gegenfurtner 2006; Saarela and Landy

2007). For a better visual analysis, the segments of the original image were

superimposed over the original images, for eventual comparisons and an objective

evaluation of the results (Fig. 16.9).

The process of artefacts removal is not simple, due to the potential unstable state

of the image afterwards. All artefacts include colour and the associated shades in

their detection process, more or less accurate. This process involved an analysis at

pixel level; thus the removal of pixels with colours corresponding to their palettes

may lead to “holes” in the images and isolated regions that lead to a loss of

coherence within the WCE frame. This incoherent state may be obtained by

removing the bubble contours (as well as the reflections of LEDs).

Moreover, the separation area between sections in original images and the areas

created following the removal of artefacts will not be clearly emphasized, which

will lead to an increase of uncertainty in the following stages of lesion detection. A

potential solution for this problem is represented by the erosion morphological

operator, when the original image section between two or more regions is small

enough to be completely absorbed within the artefact section and thus subsequently

removed, without risking losing relevant information. But erosion also is applied at

pixel level, which does not always lead to proper expected results.
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Due to these reasons, artefacts removal must be performed in a controlled

manner, taking into account the maintenance of a clear region of the original

image, with a good delimitation from the removed areas, in order to ensure a

good analysis and detection of potential intestinal lesions. Thus, the region specific

Fig. 16.9 (a–c) Three WCE frames presenting intestinal debris; (d–f) segmentation based on

colour; (g–i) debris texture identification using Gabor filters; (j–l) edge detection based on Canny

edge detector (with σ ¼ 1.4)

394 C.T. Streba et al.



to artefacts must be removed based on general characteristics previously identified,

but applied to the same area in the original image. This was achieved by

overimposing regions with features specific to artefacts and separating those

regions that correspond with a high probability to these artefacts. Colour, feature

and edge detection were identified in three different images that were subsequently

applied as marks upon the original image. The delimitation area was mainly

represented by texture, as it presents a reasonable border compared to surrounding

regions. Each area obtained following this process was reanalysed, based on

specific features, for the detection of a potential artefact and its associated

classification.

16.4.5.3 WCE Frames – Similarity Analysis

From the moment of the ingestion, the wireless capsule begins its journey inside the

patient’s digestive tract, constantly acquiring, every half second, a snapshot of its

current location. The content of these frames also reflects the movement of the

capsule. A higher movement speed implies a greater variation of the informational

content of WCE frames. Vice versa, a lower speed amplifies the degree of similarity

between two or more successive frames, all being correlated with the images

acquisition rates.

In order to reduce the analysis time of an entire WCE movie, acquired while the

batteries were still active, a frame almost identical with the previous one may be

eliminated from the activities cycle, considering that it has the same features as the

previous one; therefore it does not bring any new information or other benefits for

the automatic lesion detection process. Moreover, this phase allows an efficient use

of the available resources and the access period, implicitly leading to an optimiza-

tion in the global processing time.

Regarding the informational content of a frame, two images are similar if they

present objects, elements or scenes from the same category, or they represent

different perspectives of the same object or scene, but acquired in different acqui-

sition conditions (Tirilly et al. 2010). Thus, image similarity may reflect an object

equivalence or a category equivalence.

The main techniques for defining image similarity may be based on the repre-

sentation method, or the definition of a proper comparison technique between

images, in a special representation space (Goldberger et al. 2003; Chen and Chu

2005; Chechik et al. 2010).

Imagistic differences between two successive WCE images are given by differ-

ent acquisition conditions, generated by the continuous movement of the capsule.

Even so, the speed of the acquisition system may compensate the physical move-

ment (combined in the same time with the peristaltic movement of the small

bowel), so that a series of pairs of successive frames may reflect a higher degree

of similarity, through a higher acquisition rate. This notion expresses from a

quantitative point of view, the image equivalence evaluated according to a set of
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predefined criteria. The image similarity is defined according to the necessary data

for the evaluation of image descriptors and corresponding measurements.

In a global analysis process of multiple WCE movies, the category equivalence

allows the classification of images in groups associated to the sections of the

digestive tract (oesophagus, stomach, duodenum, small bowel, colon – if necessary)

or associated to specific pathology. On the other hand, the similarity between WCE

frames, computed in order to reduce the analysis time, is based on object

Fig. 16.10 Colour and texture histograms for two pairs of similar WCE frames
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equivalence – if two successive frames display exactly the same area of the

intestinal mucosa, then a single analysis is sufficient to extract the informational

content.

The similarity between two WCE images may be computed based on the

difference between their histograms – the smaller the difference, the higher the

similarity degree. Both colour and texture may be represented as histograms

(Fig. 16.10).

Colour histograms represent the distribution of colours within an image, being

defined as the number of pixels whose colour corresponds to the elements in the list

of shades associated to the image colour space (comprising all colours within an

image). Texture histogram requires a method of expression in a quantitative

manner. An optimum method is LBP (local binary pattern). For each pixel within

the image, the LPB is computed, according to the chosen values for neighbourhood

and radius.

In case there is a uniform pattern present, the number of elements in the

corresponding category is incremented. Otherwise, the number of elements in the

non-uniform category is incremented. Those categories will subsequently represent

the basic classes for computing the associated histogram.

Histograms present the following drawback: it is known that similar images have

similar histograms. However, in the same time, different images may also have

similar histograms. Basically, both images may have the same colour distribution,

but content totally different from an informational point of view. In this case, an

analysis must be performed regarding the WCE frames and the applicability of

histograms for the necessary time reduction in the global analysis process, taking

into account that we do not employ a content-based image retrieval approach, but

an approach related to an imagistic equivalence:

• WCE images are acquired in the same global context.

• Similarity analysis is only performed for successive images or, at most, within a

sequence of 5–6 images (basically, multiple similarity analysis may be executed

within a complete sequence).

• All images are acquired with the same camera.

• Images comprise relatively the same informational content that cannot be

radically changed from one frame to another (except in a small number of

cases, relative to the size of an entire WCE movie).

• In any moment, the next frame will mainly present the same area of the digestive

tract, eventually with a different brightness level.

Basically, the purpose of using histograms is not represented by the identifica-

tion of a similar image or the identification of the most similar image within a

database of images; the purpose is to define the degree of equivalence between two

frames from the same movie sequence.

According to experiments performed on sets of WCE images, the colour histo-

gram reflected better the differences and similarities between successive frames.

For successive similar images, the removal should take place only for images

reflecting normal intestinal mucosa or artefacts clearly identified, reducing thus
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the analysis time allocated for the entire WCE movies. For lesion sequences, the

similarity analysis is not performed in order to remove those frames from the

sequence, but to confirm once more the presence of that lesion in the sequence,

which may represent an extra certainty degree regarding the complete identification

of appearance/disappearance sequences.

16.4.5.4 Motion Analysis Within WCE Movies

Motion analysis within WCEmovies implies not one but two different perspectives,

as the wireless capsule moves while it acquires images, but in the same time, the

digestive tract is in a continuous motion that represents the reason of the capsule

motion. Thus, every frame is influenced by two elements that are simultaneously

moving, ensuring implicitly the variability of the acquired images.

Figure 16.11 emphasizes, in a few successive frames, the peristaltic motion of

the small bowel, while the capsule is propelled forward.

Block matching algorithms represent one of the most known methods of motion

estimation by evaluating the similarity between two images, starting from the

premise that a block of pixels has the same translation movement from one frame

to the next. The image extremities are not taken into account. The block sizes may

vary, according to imposed requirements, but they may not exceed certain limits.

Based on a subset of 20 sequences extracted from a set of WCE movies, an

optimum size of 35 pixels was defined for the matching block – with a possibility

to decrease until 25, in case the important element covers a smaller area within

WCE images (Fig. 16.12).

Fig. 16.11 Eight successive WCE images that emphasize the peristaltic motion of the small

bowel
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The choice of the matching block depends on the main purpose of building the

motion sequence. For sequences of frames with normal intestinal mucosa, the block

may represent any area within this image. For sequences containing artefacts or

lesions, the block must reflect a region of them.

Building sequences that contain artefacts (and the moments of appearance,

disappearance) may be performed in a similar manner, being useful in the correct

removal of those artefacts from WCE images.

Motion analysis is useful in constructing sequences of lesions – sets of images

that present the same lesion, from different perspectives, from the moment it is first

captured and the moment when it is no longer visible in WCE images. The lesion

sequence is build based on similarity, the characteristic features useful in the

automatic detection and classification processes, and the motion direction of the

wireless capsule and the associated movement context. Considering the fact that the

capsule does not have its own propelling system, there is no control over the motion

itself, which may lead to sudden direction changes from one frame to another. Even

so, the acquisition rate compensates most of the times these changes that are not

always obvious in the WCE movie.

16.4.5.5 Telangiectasia Lesions

Automatic detection of telangiectasia lesions implies the analysis of WCE frames

following the phase of artefacts removal. Compared to artefact analysis, the entire

approach is changed, so that the particular identified elements are not removed from

the image, but instead they are analysed and classified, in order to increase the

accuracy of the diagnosis procedure.

The main criterion used by physicians in the evaluation of telangiectasia lesions

when defining a diagnosis is represented by colour. These lesions are characterized

Fig. 16.12 Motion direction of a matching block identified within a telangiectasia lesion
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by red shades, different from the colour palette of WCE images presenting normal

intestinal mucosa, with no pathology.

The majority of studies upon this matter also use colour as main characteristic

specific for vascular lesions. Lau et al. have proposed a detection method based on a

combination of characteristics at pixel level: R value of every pixel from a WCE

image (limited by two fixed thresholds), RGB characteristic triplet, mutual infor-

mation given by the difference between triplets corresponding to pixels in two

different images as well as the associated HSV triplet. Contrast segmentation and

threshold values were added to this feature set. The authors explained that the

experiments were performed on a set of images presenting occult gastrointestinal

bleedings, without offering supplementary statistical data (Lau and Correia 2007;

Bourbakis et al. 2005; Karargyris and Bourbakis 2008). Both Lv et al. and

Mackiewicz et al. used colour information expressed as histograms, based on the

colour distribution within images, the classification being subsequently performed

with SVM elements (Mackiewicz et al. 2008; Lv et al. 2011). Following the

experiments, both studies obtain sensitivity and specificity values between 94 and

97%, but for relatively small sets of images.

Other studies analysed different colour systems and expressing the colour of

vascular lesions through these systems, computing Euler or Euclidean distances,

angular vectors and covariance matrices, the image classification process being

based on weights or neural networks (Signorelli et al. 2005). Pan et al. extracted a

series of colour and texture features that were subsequently classified using a back-

propagation neural network, obtaining a sensitivity of 93% and a specificity of 96%

(Pan et al. 2009). Later on, they have performed experiments on the same data set,

but with a different probabilistic neural network, obtaining a sensitivity of 93.1%,

but a lower specificity value of 85.6% (Pan et al. 2010). A higher value of

specificity – 97.97% – was obtained by Shah et al. by combining colour character-

istics expressed using the HIS system with image region segmentation, in the

detriment of sensitivity – 70.96%; the study lot was relatively small, being com-

posed by 100 images (among which only 50 represented active bleeding) (Shah

et al. 2007).

Even though the analysis of vascular lesion colour was thoroughly studied, the

relation between their shades and the colour palette of the surrounding normal

intestinal mucosa and, in general, the context corresponding to these lesions of the

small bowel did not benefit from the same attention over the time. By analysing the

individual frame acquired through WCE, the uniqueness of the digestive tract

aspect of each patient is lost.

The red shades interval corresponding to potential vascular lesions may be

determined using a sample set of telangiectasia images, previously identified by

an experienced physician (Fig. 16.13). The final objective is to evaluate the colour

interval corresponding to telangiectasia lesions, relative to the colour interval

corresponding to normal intestinal mucosa.

For a global evaluation of an entire WCE movie, as well as a proper presentation

of the results for the examining physicians, in a concise and optimum manner, a
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quantitative analysis of the movie should be performed, expressing colour charac-

teristics and parameters obtained from independent frames.

16.4.5.6 Polyps

The main feature of intestinal sessile polyps is represented by their partial round/

oval shape (partial hemisphere), which is visible as a slight contour on the intestinal

mucosa (Fig. 16.14). A polyp is a growth of tissue, projecting on the surface of the

mucosa. Therefore, its contour is created by the light from the six LEDs of the

videocapsule, due to light’s reflection on their surface that creates a narrow area of

Fig. 16.13 Associated colour interval for: (a) telangiectasia lesions and (b) normal intestinal

mucosa
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shadow on the intestinal mucosa. By contrast, air bubbles are transparent and allow

the visualization of the mucosa through them. Intestinal polyp’s structure is dense
and does not allow light to cross through.

Depending on a polyp’s degree of development and type, the contour can be

better highlighted on less of half its circumference (transposed in two dimensions).

The texture of a polyp’s surface is not so different from the rest of the intestinal

mucosa, which makes their identification difficult within different frames recorded

by the WCE, even for experienced physicians. In fact, from an imagistic point of

view, polyps are abnormal protuberances of the normal tissue, having similar

characteristics with the surrounding mucosa. In some cases, certain polyps present

small ulcerations, which give them a different aspect, with a modified texture from

normal areas.

According to polyp’s size, their apical region can be situated at a smaller

distance from the videocapsule’s dome and from the intestinal wall, generating a

higher reflection of the light emitted by videocapsule’s LEDs; thus a brighter area
can appear in their central area. This feature is very useful in differential diagnosis

process.

The analysis of intestinal polyp’s imagistic aspect has revealed as a main feature

their specific partial round form. In this case, the main automatic detection method

will be focused on contour detection from the original frames provided by the

WCE, aiming to identify partial more or less closed contours, which present a

curvature specific to intestinal polyps.

Most studies regarding different methods for intestinal polyps detection focus on

identifying their curvature. Karargyris and Bourbakis have proposed a synergistic

detection method for protuberances inside the small bowel (potential polyps) using

a segmentation detector (SUSAN) associated with Gabor log filters and a set of

geometric rules (Karargyris and Bourbakis 2011). Studies were conducted upon a

set of 50 images, 10 presenting intestinal polyps. Their results showed a sensitivity

of 100% and a specificity of 67.5%.

Qian and Meng proposed another technique for the detection of polyp’s texture
according to LPB (local binary pattern) operator based upon LLE (locally linear

embedding), which leads to a detection accuracy at about 97% (Qian and Meng

2011). Other studies were mainly focused on analysing curvatures present in the

Fig. 16.14 Intestinal

polyps present in images

acquired through wireless

capsule endoscopy
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WCE image as a main element in polyp identification throughout graphic interpre-

tation of functions, defined in a pixel domain (Brown et al. 2006), or on surface

deformation according to physical folds (van Wijk et al. 2006). Other authors

obtained good results in intestinal polyp’s identification process, by using a series

of different characteristics like colour, texture, contour and associated curvature

together with SURF (speeded up robust features) descriptors (Zhao et al. 2012;

Hwang 2011).

Following a physician’s approach in analysing images provided by the WCE, a

more appropriate solution in identifying intestinal polyps will take in consideration

a combination of their physical characteristics like contour, curvature, colour and

texture. Our work begun with a comparative study between three detection

methods: Sobel operator, Canny operator and Gabor filter’s phase response. Con-

sidering that the intestinal mucosa is characterized by the presence of intestinal

vilosities, which induce detectable edges at their level, a new preprocessing phase

was introduced in order to level the aspect of the intestinal mucosa.

Subsequently, based on the edges detected in images – emphasized by the phase

response of Gabor filters – the real contours of the individual elements present in

WCE frames were determined (following a process of refinement that removed the

fake contour generated by the intestinal mucosa or the noise present in images,

induced by the image acquisition system and the wireless transmission towards

external recorders). For each independent contour, the associated curvature was

determined according to a generated Bezier curve from the points of the contour. If

this curve may be fitted in an ellipse with specific characteristics, then the original

edge curvature belongs to a polyp (depending on the sizes of the escribed ellipse

relative to the sizes of the entire WCE image).

Differential diagnostic may be performed based on texture or brightness that

represent extra information useful in establishing a clear opinion.
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Chapter 17

Computation in Medicine: Medical Image
Analysis and Visualization

Adekunle Micheal Adeshina

Abstract Computation in medicine has recently revolutionized those ideal pro-

cedures for translating fundamentally proven mathematical concepts in medical

imaging and analysis into relevant routines of algorithms. Modern computational

techniques, such as CUDA, a parallel computing platform, enabling direct access to

the GPU instruction and parallel processing capability, are currently providing

flexibility in the use of high-performance computational approaches. Similarly

are the other software optimization procedures that assure low-cost and high-

throughput visualization of medical datasets. Without mincing words, significant

impact of such hardware and software optimization algorithms in medical image

analysis and visualization cannot be overemphasized. In the same vein, acquisition

of appropriate clinical datasets plays a great role in the accurate diagnosis of

diseases and therapy management. The use of appropriate datasets and suitable

image modalities are both important in order to successfully prove the effectiveness

of any applied computational approaches in medical image analysis and visualiza-

tion. Moreover, data reconstruction and representation from 2-D to 3-D usually

follow notable mathematical approaches such as Euclidean plane, projective plane,

and Cartesian coordinate systems and involve other interactive properties such as

rotation, scaling, and translation which are also relying on various renderable

concepts of data representation. This chapter documents some of the image pro-

cedures for acquiring morphological and functional information of patients with

more emphasis on mathematical computations of commonly used techniques, such

as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI).

Interestingly, a typical framework for medical imaging and visualization has been

conceptualized in the course of this documentation. Relevant approaches to medical

data representation, restructuring, and modeling procedures such as volume seg-

mentation, classification, shading, gradient computation, interpolation, and

resampling are presented along with all the significant processes required before

generating informative composition of images. In order to facilitate better
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understanding of some of the concepts introduced in this chapter, real-world

examples of CT and MRI datasets in 2-D and in their 3-D correspondence are

showcased to depict the significance of the mapped structures in the 2-D.

Keywords CUDA • GPU • Image analysis • Medical imaging • Visualization

17.1 Introduction

Recent evolvement of translational informatics has been a strong driving force for

translation of laboratories’ data. The term “translation” is seen to involve correlat-

ing genotype with phenotype, which often requires dealing with information at all

structural levels, ranging from molecules and cells to tissues and organs and from

individuals to populations (Chen et al. 2013). A relatively new concept was coined

with translational bioinformatics, introducing profound changes which include the

identification of conviction biology as an informational science; the application of

high-throughput genomic and proteomic platforms for global analyses; the require-

ment to bring computer science, mathematics, and statistics into biology; the use of

model organisms as Rosetta Stones for deciphering biological complexity; and also

the power of comparative genomics for coming to understanding the logic of life

(Hood 2003). Apparently, such conceptual analysis opens up a new dawn in

medicine. Translational bioinformatics involves the development and the use of

computational methods that can reason over the enormous amounts of life science

data being collected and stored for the purpose of creating new tools for medicine

(Butte 2008). This field has been identified as a revolutional domain addressing

some of the hindering computational challenges in medicine. Translational bioin-

formatics is seen as an emerging field addressing the computational challenges in

biomedical research and the analysis of the vast amount of clinical data generated

from it (Butte 2008). Technically, the term “computational” involves certain

specific procedures for translating those ideal and fundamentally proven mathe-

matical concepts into routines of algorithms. However, all the accurate diagnosis,

surgical treatment, and assessment of response to treatment depend on the ability to

see through the affected tissues or organs (Aldrich et al. 2012), and this brings

medical image analysis and visualization forward into play in translational bioin-

formatics, thereby forming both combinatory and an integral part of the revolu-

tionary processes of translational bioinformatics. Those actions requiring the use of

scientific mathematics and execution of algorithms in order to attain significant and

more precise results in medical analysis are deeply rooted in the word computation
in medicine.

Computational approaches in medical image analysis have also gain more

attention due to the recent overwhelming rate of generation of biomolecular data.

This accumulated information explosion is being driven by the development of

low-cost, high-throughput experimental technologies in genomics, proteomics, and

molecular imaging, among others, tying the anticipated success in the life sciences
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to our ability to rationally interpret these large-scale, high-dimensional datasets into

clinically understandable and useful information, which in turn requires us to adopt

advances in informatics (Chen et al. 2013). Overview of medical imaging and

visualization architecture is presented in Fig. 17.1. However, with current align-

ment of computational medicine with high-performance computation, computer

models and efficient software could be leveraged in figuring out, within a consid-

erable interactive speed, how diseases develop and how to thwart it. Invariably,

paramedical research and computational approaches seem inseparable. This chapter

introduces computation in medicine. Medical image acquisition techniques, their

numerical computations, structuring, and data visualization procedures are

presented.

Fig. 17.1 Medical imaging and visualization architecture
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17.2 Acquisition of Medical Image Data

In medical diagnosis and disease therapy management, acquisition of medical

image data is a crucial process immediately after the diagnosis of the concerned

patients. However, in certain circumstances, acquisition of patient images may be

considered a priority, overriding the usual medical doctors’ preexamination and

interpretation of the health situation of patients. Such cases could be in the case of

emergency situation either as a result of severe injury especially when handling

unconscious patients. Nevertheless, in clinical practices, medical image data could

be acquired for diagnosis, therapy planning, intraoperative navigation, or postop-

erative monitoring (Preim and Bartz 2007). According to Dhawan et al. (2008),

medical imaging could be seen as a process of collecting information about a

specific physiological structure (an organ or tissue) using a predefined characteristic

property that is displayed in the form of an image. Such predefined characteristic

property may be physical properties such density, absorbance, or conductivity.

Image acquisition technique required in any case largely depends on the intended

information from patient medical examination. Image modalities such X-ray,

computed tomography (CT), and magnetic resonance imaging (MRI) are useful

in extracting “morphological information” from the patient. Other specialized MRI

techniques include MR spectroscopy, MR angiography, and MR microscopy.

However, in order to obtain physiological or functional information from patients,

positron emission tomography (PET) and single-photon emission computerized

tomography (SPECT) are appropriate. Diffusion tensor imaging (DTI) also plays

significant roles in diagnosis procedures that require measuring of the diffusion of

water and in tracking of the brain’s nerve fibers, the white matter. Apparently,

suitability of image modalities solemnly depends on the required medical exami-

nation, and thus, image modalities are seen to be complementary to each other in

the medical diagnosis and disease and therapy management procedures (Adeshina

et al. 2012). This section briefly discusses the X-ray, computed tomography, and

magnetic resonance imaging being the most commonly used image modalities.

17.2.1 X-Ray

In 1895, Wilhelm Conrad R€ontgen (or “Roentgen” in anglicized typography)

discovered X-ray (Roentgen 1898) as a high-voltage discharge between electrodes

in a gas at very low pressure producing a penetrating radiation which causes certain

materials to fluoresce visible light. X-ray is a medical imaging technique that

utilizes the radiation that is partly transmitted and partly absorbed through irradi-

ated objects. The X-ray photons are a form of electromagnetic radiation produced

following the ejection of an inner orbital electron and subsequent transition of

atomic orbital electrons from states of high to low energy (Jenkins 2000). X-ray is

widely used in projection of images based on absorption and scattering with very
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high spatial resolution, and it has been seen to be greatly useful in imaging fractured

bones, such as a broken arm or wrist, often used by surgeons during therapeutic

procedures, such as a coronary angioplasty, to help guide equipment to the area

being treated and in highlighting a lung infection, such as pneumonia. Meanwhile,

X-rays can only produce 2-D images; it exposes patients to radiation and not

suitable for imaging soft tissues. According to Bingham (1998), considering the

following assumptions, the inside structures of an object could be investigated:

1. There exists an object with n-dimensional space where n is fixed as 2.

2. f(x) is the X-ray attenuation coefficient at point X 2  where the attenuation

coefficinet depends on the material through which the ray passes. Therefore, f is
expected to give information about object.

3. Suppose the object is contained in a ball of radiusRwith the center at the origin

and that the X-ray attenuation coefficient f is zero outside the object.

4. If the object is x-rayed in a direction θ E Sn� 1 from a point a E A : ¼ Sn� 1(0, R),
the attenuation of the X-ray intensity I at each point a+ tθ, t� 0.

According to assumption (iii), we can have Eq. (17.1):

supp f � B 0;Rð Þ ð17:1Þ

and then Eq. (17.2):

⟺dI ¼ f aþ tθð Þ Idt ð17:2Þ

By solving this differential equation, we see that the intensity of the X-ray

measured by a detector situated behind the object is as Eq. (17.3):

Imeas ¼ I0 exp ⟺

Z 1

0

f aþ tθð Þ dt
� �

ð17:3Þ

Therefore, we can derive formulae for reconstructing f(x) from the measure-

ments Imeas or equivalently from Eq. (17.4):

Z 1

0

f aþ tθð Þdt ¼ ln
IO
Imeas

� �
ð17:4Þ

The above equation could be seen as cases of having different combinations of

a E A and θ2 Sn� 1.

17.2.2 Computed Tomography

X-ray imaging techniques follow the same scenario of allowing radiation to pass

through different parts of the patients’ body. Such passage of X-rays is dependent
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on the amount of X-rays that could be absorbed or exit the body of the patients,

which in turn determines the radiation dose of the patient. Computed tomography

(CT) is not exceptional to this; however, in CT multiple X-ray images are taken

from different directions producing cross-sectional images or “slices” of patients’
anatomy. The cross-sectional images could be used in medical diagnosis and

disease therapy. CT entails the reconstruction of a function f from a finite number

of line integrals f (Faridani and Ritman 2000). With such understanding, it becomes

apparent that the goal of CT is to recover an approximation to f(x) from CT datasets

over a finite number of lines.

X-rays from a located source travel and pass through the patient. However, some

energy of rays are attenuated, and rays with less energy eventually reach the

detector. Rays of CT are able to produce a map of gray values representing a

close resemblance of the insides of the patient. This situation can be understood

either through a monochromatic beam or polychromatic beam considering the

intensity Iin at distance x ; Iout, the intensity at the detector’ s end ; and μ, the
attenuation coefficient or absorption coefficient. If we consider a situation whereby

the radiation passes through a body with the same property at every point, a

homogeneous body, we expect the intensity of radiation passing through the body

to decrease exponentially with distance; hence, we have Eq. (17.5):

I xð Þ ¼ Iinexp �μxð Þ ð17:5Þ

Therefore, if we differentiate Eq. (17.5),

dI

dx
¼ �μI ð17:6Þ

However, for a nonhomogeneous body where the absorption coefficient varies

with distance x,

I xð Þ ¼ Iin exp �
Z

udx

� �
ð17:7Þ

Similarly, we can consider a specific interval a, b where a and b have values

between 0 and n in order to get a more specific approximation, thus Eq. (17.8):

In ¼ I nð Þ ¼ Iinexp �
Z b

a

μdx

� �
ð17:8Þ

If we know In, the total absorption, At, could be calculated:

At ¼
Z b

a

μdx ¼ �log
In
Iin

� �
¼ log

Iin
In

ð17:9Þ

However, even if we know Iin and In, we still cannot clearly say the distribution

of the material within the interval a, b as being illustrated. Resolution of this was
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first attempted by Radon (1917). Similarly, the absorption coefficient could be

analyzed following a related approach based on a number of assumptions

established for computed tomography (Faridani 2003):

1. f(x) ¼ density of the cross-section at x 2 2

2. L ¼ the line of X-rays

3. I(x) ¼ the intensity of X-rays at x2 L

Apparently, in theoretical physics, I(x) decreases proportional to f(x); thereby,
we can have Eqs. (17.10) and (17.11):

dI=dx ¼ �f xð ÞI xð Þ ð17:10Þ

dI=I ¼ �f xð Þdx ð17:11Þ

Therefore we can have the measured data calculated as,

meas ¼ Iin
Iout

¼ eRF Lð Þ ð17:12Þ

where the total attenuation along L,

RF Lð Þ ¼
Z
x2L

f xð Þds ð17:13Þ

Radon (1917) referred to the expression in Eq. (17.8) as the total “material”

along L. To construct the absorption coefficient μ (x, y) as a function of position

using Radon approach, we assume:

1. Projection is a line integral.

2. Projection p (s, ∅) at angle∅ , s is coordinate on detector.

The Radon transform (RT) of a distribution f(x; y) is given by Eq. (17.14):

p s;∅ð Þ ¼
Z1
�1

Z1
�1

f x; yð Þ:δ x cos∅þ y sin∅� sð Þdxdy ð17:14Þ

where δ is the Dirac delta function and x, y, ∅ , and s are respective coordinates .
The Radon transform of an off� center point source is a sinusoid ; hence, the

function p(s, ∅) is usually being referred to as a sinogram.

17 Computation in Medicine: Medical Image Analysis and Visualization 415



17.2.3 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an application of nuclear magnetic resonance

(NMR) which is a subtle quantum mechanical phenomenon that has played a major

role in medical imaging revolution over the last 30 years. Hydrogen in water

molecules possesses an inherent ability referred to as spin which gives it potential

to act as magnet. Nuclear magnetic resonance is a phenomenon which occurs when

the nuclei of certain atoms are immersed in a static magnetic field and exposed to

second oscillating magnetic field (Hornak 1997). The spin property in proton makes

the nucleus that produces NMR signal. Mathematical description of NMR could be

better presented using 2-D Fourier transform, a standard Fourier transformation of

two variables f x; yð Þ, wave forms e2πi kxð xþ kyyÞ and k� space kxky
� �

:For f 2 L2

R2
� �

, the Fourier transformation of f is presented in Eq. (17.15):

F fð Þ kx; ky
� � ¼ Z 1

�1

Z 1

�1
f x; yð Þe�i2π kxxþkyyð Þ dxdy ð17:15Þ

In the same vein, we can re-represent Eq. (17.15) to portray a reverse approach to

Fourier transformation as in Eq. (17.16):

F�1 fð Þ x;ð Þ ¼
Z 1

�1

Z 1

�1
f x; yð Þe�i2π kxxþkyyð Þ dkxdky ð17:16Þ

MRI is the most suitable and widely used imaging technique for brain and other

soft tissues. It is capable of producing detail image of patients in any plane. MRI is

highly flexible to use and it provides better spatial resolution with higher discrim-

ination, making it very relevance in contrasting soft tissue. Moreover, unlike X-ray

and CT, MRI has no ionizing radiation.

17.3 Medical Data Visualization

17.3.1 Reconstruction and Data Representation

Projective plane is seen as a geometric structure with extended concept of a plane.

However, in ordinary Euclidean plane, unless the line crosses each other and

intersects, parallel lines do not intersect. Meanwhile a projective plane with any

two lines intersect in one and only one point called vanishing point, a point where

parallel lines that are not parallel to the image plane appear to converge, which

could be better interpreted with projective plane.

In the development of medical imaging and visualization framework, using

homogeneous coordinate principle, a point x, y of 2�D slice in the Euclidean

plane is represented in the projective plane (3�D) by adding a third
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coordinate 1 at the end, x, y, 1 . This is based on the fundamental Euclidean theorem

which states that a point in an n� dimensional Euclidean space is

represented as appoint in an (n+ 1)-dimensional projective space. However, overall

scaling is not important.

The MRI slices are abstractly represented as stack of images as in Fig. 17.2. It is

assumed that there are points Ui with Ui¼ 1, 2, 3, 4 arranged parallel in line with

plane π . Since there exist suchmany slices, we assume the slices aremoved up a dis-

tance Z as shown in Fig. 17.2. With such moved distance of the slices, there will be

a formation of new sets of points Ui0 with i0 ¼ 1, 2, 3, 4 leaning on a new plane π0:
The first issue to address is estimation of the new points Ui0 automatically which

can be done by estimating directly from the first plane π.
At this point, it can be assumed that U1 and U3 are known ; hence, U2 and U4 can

be estimated and computed by applying intrinsic properties of the vanishing points.

Figure 17.2 shows the point estimation of 2-D slices. The vanishing point of the

parallel lines leaning on plane π could be computed as in Eq. (17.17):

V ¼ U1 � U2ð Þ � U3 � U4ð Þ ð17:17Þ

However, based on projective geometry, which describes the physical charac-

teristics of the virtual camera and the relationships between the images, the

projection of a point Xw in the object space to a point Ui in the image space using

projective camera is expressed in terms of a direct linear mapping in homogeneous

coordinates as in Eq. (17.18):

λUi ¼ PXw ¼ P1 P2 P3 P4½ �
X
Y
Z
1

2
64

3
75 ð17:18Þ

Fig. 17.2 Point estimation

of 2-D slices
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where λ is the scale factor due to projective equivalency of (kx ; ky ; k)¼ (x; y; 1),
P is a 3∗4 camera projection matrix, and Pi is the ith column of P.

As earlier discussed, with homogeneous coordinate representation, value 1 in the

last row of the vector denotes that the defined point leans on the image plane .

However, if the point in the object space leans on ground plane Z¼ 0, hence the

linear mapping will change to Eq. (17.19):

sU ¼ HX0
w ¼ P1 P2 P4½ �

X
Y
1

2
4

3
5 ð17:19Þ

H is the homography matrix mapping points lying on a plane in the object space

across different images ; s introduced scaling factor in the mapping equation stems

from setting Z to 0.

In order to establish relationship between Ui and U
0
i, we can restate Eq. (17.18)

above as (17.20):

λUi ¼ P1 P2 P4½ �
Xi

Yi

1

2
4

3
5þ P3Z ð17:20Þ

where P3 corresponds to the vanishing point in the direction of Z axis or the normal

of the ground plane.

The main target is to project the lines and points that made up the 2-D slices in

3-D. The Euclidean formula for s line is ax+ ay+ c¼ 0; this is regarded as nonzero

scaling factor, and since the equation is unaffected by scaling, we can however

arrive at the following:

qX þ rY þ sZ ¼ 0

where q, r, and s are the homogeneous coordinates of points (x, y) in the line:

tTP ¼ PTt ¼ 0

t ¼ q, r, s½ �T representing the line

p ¼ X Y Z½ �Trepresenting the point

Substituting Vz for P3 in Eq. (17.20) and combining the result with Eq. (17.19),

we have

λiUi ¼ siUi þ Vz Z ð17:21Þ

λi and si are the unknowns from this equation, though they were both defined

earlier in Eq. (17.18) and Eq. (17.19). We can estimate the respective values by

using Eq. (17.22):
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λi
si

� �
¼ Aj

TAi

� ��1
AT

ibi ð17:22Þ

Ai ¼ Ui j � Ui½ � ð17:23Þ
bi ¼ Vz Z and Vz ¼ P3

Since si is estimated, we can continue setting different values for Z in

order to estimate any other image point along the lines . Hence, we can equally

estimate U2 and U4 as follows:

U2 ¼ U2 � Vzð Þ � U1 � Vð Þ ð17:24Þ
U4 ¼ U4 � Vzð Þ � U3 � Vð Þ ð17:25Þ

17.3.1.1 Renderable Representation

Memory system architecture of medical image analysis and visualization frame-

work is typically concerned with making the data available for its optimal archi-

tectural use. It is at this stage that series of the original data slices are stacked,

shaped, and positioned for flow. Properties such as rotation, scaling, and transla-
tion are likewise necessary in the data for better value distribution. Coordinate
system is greatly useful for the success of data preparation; hence, medical image

analysis and visualization framework is usually developed to use the model, world,
view, and display coordinate systems.

The model coordinate system is typically a local Cartesian coordinate system.
As the name model implies, it is the coordinate system in which model is defined.

This type of coordinate system is locally defined by the modeler. We can refer to

this as an inherent coordinate system based on the decision of the person that

generates it. The units used in its definition may be meters, inches, or feet and its

axis might be arbitrary; these are based on discretion of the modeler.

The world coordinate system is the 3-D space where actors are positioned.

Unlike model coordinate system, which is a typical local Cartesian coordinate

system, world coordinate system is the only standard coordinate system where all

actors locally defined coordinate systems are converted to. The world coordinate

system is the coordinate system where all the actors are scaled, rotated, and
translated into. Moreover, the position and orientation of cameras and light are

specified in the world coordinate system.

The view coordinate system is directly referenced to the camera; it represents
what is visible to the camera. It consists of x, y, z values . The x and y specify

location of the image plane and it ranges from� 1, 1, while z is the depth coordi-
nate that represents the distance or ranges from the camera . In order to convert from

the world coordinates to view coordinates, a four by four (4∗4) coordinate trans-
formation matrix is applied, introducing the perspective effects of a camera.
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The usual way to represent element in three dimensions is through Cartesian
vector x, y, z . However, in order to project 2�D image to 3�D plane, vanishing

point must be included in the projection ; hence, homogeneous coordinate system is

needed . Unlike cartesian vector with three (3)elements x, y, z, homogeneous

coordinate has four element vectors represented as X, Y, Z, W as earlier explained

in the previous section. The conversion from Cartesian coordinates to homogeneous

coordinates is presented in Eqs. (17.26), (17.27), and (17.28):

x ¼ X

W
ð17:26Þ

y ¼ Y

W
ð17:27Þ

z ¼ Z

W
ð17:28Þ

Four by four (4∗4)matrix is used for the performance of translation, scaling,

and rotation through repeatedmultiplication ofmatrix . We can create a transforma-

tion of matrix that translates a point x, y, z in Cartesian space by vector tx, ty, tz as in
Eq. (17.29). Figure 17.3 illustrates translation:

TT ¼
1 0 0

0 1 0

0 0 1
0 0 0

tx
ty
tz
1

2
64

3
75 ð17:29Þ

where TT is the matrix for translation.

The created translated matrix needs to be post-multiplied with homogeneous

coordinate X, Y, Z, W .Meanwhile, we have to construct the homogeneous coordi-

nate from the Cartesian coordinate before such multiplication ; hence, if

we set W¼ 1 representing finite point, X, Y, Z will yield X, Y, Z, 1 . In the same

vein, we pre�multiply the current position by the transformation matrix TT in

order to determine the translated point X
0
, Y

0
, Z

0
for yielding the translated coordi-

nate. Hence, we have Eq. (17.30):

x0

y0
z0

w0

2
64

3
75 ¼

1 0 tx
0 1 ty
0

0

0

0

tz
1

2
664

3
775 ∙

x
y
z
1

2
64

3
75 ð17:30Þ

Using the general pattern of conversion back to Cartesian coordinates as in

Eqs. (17.26), (17.27), and (17.28), we have Eqs. (17.31), (17.32), and (17.33):
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x0 ¼ xþ tx ð17:31Þ
y0 ¼ yþ ty ð17:32Þ
z0 ¼ zþ tz ð17:33Þ

Equations (17.32) and (17.33) are the procedure to translate an object. Similar

procedure can be employed for scaling or rotating of an object. Using the transfor-

mation matrix as Eq. (17.34) where Ts is the transformation matrix for scaling, sx,
sy, sz represent the scale factors along x, y, z axes, respectively. Figure 17.4

illustrates scaling about the origin:

Ts ¼
sx 0 0

0 sy 0
0

0

0

0

sz
0

0

0
0

1

2
664

3
775 ð17:34Þ

In the same vein, we can do rotation around x, y, and z axes by angle θ as

illustrated in Figs. 17.5, 17.6, and 17.7 to produce TRx
, TRy

, and TRz
, respectively.

Rx θð Þ: y0 ¼ y cos θ � z sin θ

z0 ¼ y sin θ þ z cos θ

x0 ¼ x

Fig. 17.3 Translation
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TRx
¼

1 0 0

0 cos θ � sin θ
0

0

sin θ
0

cos θ
0

0

0
0

1

2
64

3
75 ð17:35Þ

Illustration of rotation about y axis is given in Fig. 17.6.

Ry θð Þ: z0 ¼ z cos θ � x sin θ

x0 ¼ z sin θ þ x cos θ

y0 ¼ y

TRy
¼

cos θ 0 sin θ
0 1 0� sin θ
0

0

0

cos θ
0

0

0
0

1

2
64

3
75 ð17:36Þ

Similarly, Fig. 17.7 illustrates rotation about z axis producing TRz
.

Fig. 17.4 Scaling about the

origin

Fig. 17.5 Rotation about

x axis
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Rz θð Þ: x ¼ x0 cos θ � y sin θ

y0 ¼ x sin θ þ y cos θ

z0 ¼ z

TRz
¼

cos θ � sin θ 0

sin θ cos θ 0
0

0

0

0

1

0

0

0
0

1

2
64

3
75 ð17:37Þ

However, during the rotation of the object, we might need to transform the object

from one coordinate axes to another, from x� y� z to x
0 � y

0 � z
0
. In order to do this,

we need to first derive a transformation matrix by assuming the following:

1. The unit x
0
axis makes the angle θx

0
x, θx

0
y, θx

0
z around x� y� z axis.

2. The unit y
0
axis makes the angle θy

0
x, θy

0
y, θy

0
z around x� y� z axis.

3. The unit z
0
axis makes the angle θz

0
x, θz

0
y, θz

0
z around x� y� z axis.

where (θx
0
x, θx

0
y, θx

0
z), (θy

0
x, θy

0
y, θy

0
z), and (θz

0
x, θz

0
y, θz

0
z) are the directional

cosines.

Fig. 17.6 Rotation about

y axis

Fig. 17.7 Rotation about

z axis

17 Computation in Medicine: Medical Image Analysis and Visualization 423



Hence, placing the directional cosines along the rows of the transformation

matrix will produce Eq. (17.38) which is referred to as the resulting rotation matrix

TR:

TR ¼
cos θx0x cos θx0y cos θx0z
cos θy0x cos θy0y cos θy0z
cos θz0x

0

cos θz0y
0

cos θz0z
0

0

0
0

1

2
64

3
75 ð17:38Þ

To rotate around the center of the object, which is usually more convenient, we

must first translate from the center of the object to the origin, and then we apply

rotations followed by translating the object back to its center. However, in order to
achieve the translation, rotation, and scaling of the object using the transformation

matrix, the order of the multiplication is important.

In display coordinate system, the coordinates are actual x, y pixel locations on

the image plane, though display coordinate uses the same basis as view coordinates

except it does not use �1, 1 range . The view coordinates determine window
size and view point .Display coordinates determine how the nega-

tive one� to� one (�1, 1) of view coordinates is mapped into pixel locations of
display .With view port, it is possible to divide the port which ranges from 0,

1 for x and y axes and depth value representation with z axis. This is particularly
useful in cases where one needs to render two different scenes but display them in

the same window. The analysis and justifications for the preparation of datasets in

its more suitable renderable form are also in line with the explanations of Schroeder

et al. (2002).

17.3.2 Data Restructuring and Modeling

The prepared dataset has to be filtered thoroughly in order to enhance its pixel

intensities. Similarly, the specified focused data should be geometrically mapped

for better image quality. Modeling of the camera focus point in medical image

analysis and visualization framework is likewise significant, often aligned with the

physical laws of optics which could be better described by modeling the transport

theory of light with specific attention on geometrical optics lights. Meanwhile,

factors such as the wave character of light, possible light polarization states,

diffraction, and interference are usually neglected.

If x is the radiant field at any point in the direction of the radiant

energy n and around υ, the radiant energy could be defined as R(x . n . υ) . Therefore,
if θ is the angle between the direction n and the normal on da for time dt, the

traveling radiant energy δE can be respresented in Eq . (39) provided that there

is a specified frequency interval dυ around υ through a solid angle dΩ:
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δE ¼ R x:n:υð Þ cos θdadΩdυdt ð17:39Þ

However, we can also define radiant energy using photon number density ψ(x .
n . υ) . If x denotes the position of the photons per unit volume, dυ represents the

frequency interval around υ along the direction n and travels into an element of

solid angle dΩ . Then, the number of photon Ň per unit volume could be represented
in Eq. (17.40).

Ň ¼ ψ x:n:υð ÞdΩdυ ð17:40Þ

Equation (17.40) could be extended for calculation of the number of photons

Ň by representing surface da with time dt and traveling velocity c in Eq. (17.41):

Ň ¼ ψ cos θdað Þ cdtð Þ dΩdυð Þ ð17:41Þ

Nevertheless, if the energy carried by each photon is considered as hυ in

accordance to the constant expressed in Planck – Einstein relation where h is the

Planck’s constant, hence, a new relationship could be established for radiant energy

using photon number density:

δE ¼ chυψ x:n:υð Þ cos θdadΩdυdt ð17:42Þ

Apparently, since we have clearly defined radiant energy in Eqs. (17.39) and

(17.40), we can therefore equate these equations:

R x:n:υð Þ cos θdadΩdυdt ¼ chυψ x:n:υð Þ cos θdadΩdυdtð Þ

R x:n:υð Þ ¼ chυψ x:n:υð Þ ð17:43Þ

Equation (17.43) shows clear similarity between radiance and photon number

density as in Eq. (17.43). Therefore, in order to record all the focused points in an

image, it becomes reasonable if we compute R(x . n . υ) for all the focused points.

Some of these concepts are documented in Adeshina et al. (2012) and more

elaborately in Hege et al. (1996).

17.3.3 Volume Segmentation and Classification

Volume or image segmentation entails partitioning of image or volume into mean-

ingful region representation. Segmentation improves the analysis of an image

establishing a reasonable correspondence between the image pixel properties and

the type of tissue to facilitate the successful manipulation of data for medical

visualization, while classification focuses on labeling the pixels of an image
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corresponding to a specific type of tissue or anatomical structure usually with color

and opacity. Apparently at the end of a successful volume segmentation and

classification, specific objects within the image would be separated, and regions

that have similar pixel properties would be identified along a specified

predetermined boundaries. All these create rooms for a more detail image or

volume analysis. In volume rendering, depicting region of interest based on color

and transparency mappings of respective scalar values to the corresponding regions

of volume is achieved using transfer function. Image point processing scale is

presented in Fig. 17.8.

Transfer function could be established using image point ranging from 0 to

255 scale. Point processing image enhancement techniques is based on the intensity

of individual pixels in the image. Hence, based on Eq. (17.44), intensity transfer

function could be represented through 255 output pixels and 255 input pixels as in
Fig. 17.8:

O ¼ T Ið Þ ð17:44Þ

where O represents the output pixel, T is the transform, and I is the input pixel.
Feature enhancement is extremely important in order to distinguish normal

tissues distinctly from abnormal tissues especially when intensities of abnormal

tissues match with the intensities of normal ones. Despite the fact that brain tumor

might sometimes be large, space occupying, it could still exist in the same intensity

as the normal tissues making it difficult to distinguish.

Transfer function was utilized in mapping data value to “renderable quantities”

as the output value. The two (2) main transfer functions usually designed are the

opacity transfer function and the color transfer function. The opacity transfer
function maps intensities of volume elements (voxels) in the data sample to the

corresponding opacity value based on the framework intensity scale and selectively

makes some voxels transparent enough to be seen through the assigned opacity

value in order to show the interior of the data sample. Meanwhile, color transfer
function uses coloration for its classification procedures. It maps intensities of

Fig. 17.8 Image point

processing approach
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voxels to corresponding color values using lookup table and likewise does selective

painting of voxels with different colors such that voxels of different intensity values

are presented with appropriate corresponding color variances. However, in order to

have better clarities of the output images, contrast enhancement transfer function,

referred to as the contrast transfer function (CTF), could be applied in 3-D

reconstruction procedures.

17.3.4 Shading and Gradient Computation

The ambient coefficient, the diffuse coefficient, and the specular coefficient are the
three parameters that are usually modeled for illumination. Ambient lighting, the

background illumination, is represented in equation (17.45):

Rc ¼ LcOc ð17:45Þ

where Rc is the resulting intensity curve, Lc is the light intensity curve, and Oc is the

color curve of object.

Ambient light has no direction and is independent of light position, orientation of

the object, and observer’s position. With this in mind, ambient is simply seen as the

approximate contributions of light to the scene which is irrespective of the location

of object and light. Figure 17.9 illustrates that.

Diffuse lighting is the non-shiny illumination and shadows. It has no dependence

on camera angle. Diffuse lighting is illustrated in Fig. 17.10 and represented as

Eq. (17.46). In order to determine diffuse’s contribution to the surface, surface

normal and the direction of the incoming rays are important:

Rc ¼ LcOc cos θ ð17:46Þ

where Lc is the light color, Oc is the object color, and cos θ is the product of the

vector of light source (a negative value) and the vector of surface normal value to

the object.

Specular lighting is the bright and shiny reflections which has no dependence on

object color. Specular lighting is represented as Eq. (17.47) and illustrated in

Fig. 17.11.

Rc ¼ LsKs cos αð Þn ð17:47Þ

Lc represents the light color, Ks is the reflection constant, and Rc is the color
curve . The product of the vector of light source, which is a negative value, and the

vector of surface normal value to the object is cos α . However, specular power is
denoted as n resulting from different n values of specular light. Equation (17.48)

presents the integration of the three parameters that are usually modeled for

illumination:
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Rc ¼ Wa þWd þWs ð17:48Þ

where Wa, Wd, and Ws are the relative weights of ambient, diffuse, and specular,
respectively.

Moreover, in order to achieve quality image output, medical image analysis and

visualization framework could be configured to select either flat, Gouraud, Phong
shading, or their combination for better shading of images with respect to the level

of pixels in the datasets. Flat shading is the earliest shading method which requires

shading the polygons in the data samples with single color. However, because

sometimes resulting interpolation color could be needed during shading to have a

better image coloration, Gouraud shading was introduced. With Gouraud shading,

polygons are shaded by interpolating color that are computed at the vertices of the

image. Unfortunately, Gouraud shading usually produces specular highlights, a
bright spot of light that appears on shining objects when illuminated. Phong shading

produces better shading results compared to Gouraud shading by fixing the issue of

specular highlights. However, despite the shortcomings in flat and Gouraud shad-

ing, using all in combination will contribute to obtaining better-shaded image.

Fig. 17.9 Ambient lighting

Fig. 17.10 Diffuse lighting

Fig. 17.11 Specular

lighting
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17.3.5 Interpolation and Resampling

Interpolation is very important in medical visualization. Interpolation and

resampling usually become necessary particularly whenever we perform scaling

operations on digital images, for instance, a 3 by 3 image with its pixels represented

in xy coordinates as illustrated in Fig. 17.12.

bxby
� �

¼ sx 0

0 sy

� �
x
y

� �
ð17:49Þ

In the scaling operation presented in Eq. (17.49), Sx, 0ð Þ and�
0, S

y
� respresent the transformation matrix, -

xy is the coordinate of the pixel in the original image, and the bx and by are -

the coordinates of the pixels in the transform:The original 3 -

by 3 image has 3 pixels in the horizontal direction-

and 3 pixels in the vertical direction:-
However, after performing scaling operation by -

a factor of 3 in both axes, the final image size has 9 pixels in the horizontal and-

9 pixels in the vertical direction, leaving many pixels not-

filled up: If we have a 1 dimensional signal-

f tð Þ and sampled signal as f s tð Þ, we could therefore see the sample values f s tð Þ
represented accordingly at discrete locations in the Fig. 17.13. However, since we

do not have information of the positions at the intermediate locations as in

Fig. 17.13, we need to do interpolation for all the values of t and subsequently do

resampling in order to fill up those positions.

It is important to ensure that the interpolation operations follow the following

properties:

1. The interpolation function should have a finite region of support, i.e., the

interpolation operations should be carried out based on local information of

the sample values and not on global information.

2. The interpolation function should be very smooth without introducing any

discontinuity in the signal.

3. The interpolation function should be shift invariant; when the signal is shifted

through operations such as translation, the same operation should be performed.

Fig. 17.12 A 3 by 3 image

sample
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The stated properties are commonly satisfied with B-spline function

(Prochazkova 2005). B-spline function is represented in Eq. (17.50):

x tð Þ ¼
Xn
i¼0

PiBi,k tð Þ ð17:50Þ

where n + 1 is the number of approximated samples, Pi are the control points that

determine the smooth curve in B� spline functions, and Bi, k is the normal-

ized B� spline of order of k.
In order to produce smoother images with less artifacts, trilinear interpolation

approach is usually being considered. Meanwhile this also comes with other over-

heads as computation of trilinear interpolation usually takes longer time. Therefore,

optimization procedures should also be designed to reduce the computational

overheads associated with interpolation and resampling procedures.

17.4 Compositing and Algorithm Performances

There are a number of notable volume rendering techniques (also referred to as the

direct volume rendering) such as splatting, shear warping, texture mapping, and the

ray casting, the Levoy’s historic method of rendering. The commonly used

compositing functions are the maximum intensity projection (MIP) and the local

maximum intensity projection (LMIP). Apparently, LMIP is an extension of MIP.

The image in MIP is created by selecting the maximum value along an optical ray

that corresponds to each pixel of the 2-D MIP image, while the image of LMIP is

created by tracing an optical ray traversing 3-D data from the viewpoint in the

viewing direction and then selecting the first maximum value encountered that is

larger than a preselected threshold value (Sato et al. 1998). Hence, MIP deals with

maximum sampled values, while LMIP involves first local maximum above pre-

scribed threshold and thus approximates occlusion. LMIP is considered faster and

therefore better than MIP.

Due to the sensitivity nature and huge data cases in medical visualization, a

robust, quality, high-fidelity, and high-performance rendering algorithm is impor-

tant. Meanwhile, with the advent of high-performance computing architectures,

Fig. 17.13 Signals in

discrete and intermediate

locations
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integrating medical application into fast and parallel hardware has been seen as a

viable alternative. Various acceleration approaches have been previously proposed

for image composting and medical image visualization at large in order to reduce

the usual associated computational cost. Apart from the huge number of graphic

processing units (GPU) recently available, Compute Unified Device Architecture

(CUDA) framework has been lately seen as a heel of high-performance computing

which has been leveraged in many circumstances from the clinical data acquisition

phase to the results analysis. With a firm design of algorithm, the computational

complexities in some of the processes are handled by the high-performance graphic

components. Compositing procedures and some of the previously proposed algo-

rithms, although most of them mainly rely on different acceleration approaches, are

intensively documented in Cabral et al. (1995), Fang and Chen (2000), R€ottger et al.
(2000), Engel et al. (2001), Aluru and Jammula (2014), and Leeser et al. (2014) and

specifically with CUDA (Adeshina et al. (2012, 2013, 2014), Liu et al. (2014),

Adeshina and Hashim (2015), and Kalms (2015). Sample 2-D slices of brain MRI,

2-D CT slices of human pelvic region, and the obtained 3-D correspondents after a

series of translational and visualization procedures are presented in Fig. 17.14.

17.5 Conclusion

Modern medicine is greatly benefiting from the fundamentals of mathematics and

algorithmic approaches. The evolvement of high-performance algorithms also

opened up more growth opportunities in traditional medicine, revolutionalizing

the way medical image analysis and visualization are carried out for effective

disease diagnosis and therapy management.

X-ray, CT, MRI, PET, SPECT, and other related techniques are used for

acquiring morphological or functional information of patients. Apparently, each

of the image modalities has its peculiar advantages over another making them

somehow complementary rather than being a complete replacement; hence, each

of the techniques may be used in various appropriate circumstances. Moreover, in

certain decisions such as consideration on the level of exposure to radiation and in

certain circumstances, acquisition time could also be considered by the physician

while deciding the suitable image acquisition modalities to engage.

Data representation plays a significant role in achieving a reliable visualization

results. In some cases, cross-sectional 2-D images in form of slices might need to be

stacked. The stacked data needs to be properly enhanced in order to improve its

pixel accuracy for effective segmentation and classifications. This chapter has

presented some significant stages in data representation, data reconstruction, and

modeling.

Compositing approaches and most of the stages in medical visualization could

be accelerated using computational techniques such as CUDA, a parallel computing

platform allowing programmers to have direct access to the GPU instruction and

parallel computational elements. Such acceleration procedures drastically reduce
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computational overheads, thereby saving some of the associated computational

cost. In the same vein, potential users (doctors) could spend less time in the disease

and diagnosis procedures, thereby saving more lives.
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Radon J. Über die Bestimmung von FunktionendurchihreIntegralwerte

längsgewisserMannigfaltigkeiten. Ber Verh Sächs Akad WissLeipzig Math Nat Kl. 1917;69
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