
Chapter 8

Chemical Hazard Determination

The first issue in any attempt to conduct a public health risk assessment for

chemical exposure problems relates to answering the seemingly straight-forward

question: ‘does a chemical hazard exist?’ Thus, all environmental and public health

risk management programs designed for chemical exposure situations usually will

start with a hazard identification and accounting; this initial process sets out to

determine whether or not the substance in question possesses potentially hazardous

and/or toxic properties. This chapter discusses the principal activities involved in

the acquisition and manipulation of the pertinent chemical hazard information

directed at answering this question; ultimately, this would generally help in devel-

oping effective environmental and public health risk management decisions/pro-

grams about chemical exposure problems.

8.1 Chemical Hazard Identification: Sources of Chemical
Hazards

The chemical hazard identification component of a public health risk assessment

involves first establishing the presence of a chemical stressor that could potentially

cause adverse human health effects. This process usually includes a review of the

major sources of chemical hazards that could potentially contribute to a given

chemical exposure and possible risk situation. Indeed, chemical hazards affecting

public health risks typically originate from a variety of sources (Box 8.1)—albeit

their relative contributions to actual human exposures are not always so obvious.

Needless to say, there is a corresponding variability in the range and types of

hazards and risks that may be anticipated from different chemical exposure

problems.

Oftentimes, qualitative information on potential sources and likely conse-

quences of the chemical hazards is all that is required during this early stage (i.e.,
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the hazard identification phase) of the risk assessment process. To add a greater

level of sophistication to the hazard identification process, however, quantitative

techniques may be incorporated into this process—to help determine, for instance,

the likelihood of an actual exposure situation occurring. The quantitative methods

may include a use of mathematical modeling and/or decision analyses techniques to

determine chemical fate and behavior attributes following human exposure to a

chemical vis-�a-vis the likely receptor response upon exposure to the chemical of

potential concern. For instance, physicochemical data can be used to predict a

chemical’s physical hazard, reactivity, and pharmacokinetics—including attributes

such as absorption by different exposure routes, distribution inside the receptor, and

likely metabolites associated with the subject chemical. Indeed, physicochemical

and structural properties of a chemical of interest/concern are quite critical for

chemical characterization processes—especially because they can help in the

prediction of a chemical’s potential to pose a physical hazard, its reactivity, and

its pharmacokinetic characteristics (such as bioavailability and likely routes of

exposure). Ultimately, this initial evaluation for a chemical exposure problem

should provide great insight into the nature and types of chemicals, the populations

potentially at risk, and possibly some qualitative ideas about the magnitude of the

anticipated risk.

Box 8.1 Examples of major sources of chemical hazards potentially

resulting in public health problems

• Consumer products (including foods, drinks, cosmetics, medicines, etc.)

• Urban air pollution (including automobile exhausts, factory chimney

stacks, etc.)

• Contaminated drinking water

• Industrial manufacturing and processing facilities

• Commercial service facilities (such as fuel stations, auto repair shops, dry

cleaners, etc.)

• Landfills, waste tailings and waste piles

• Contaminated lands

• Wastewater lagoons

• Septic systems

• Hazardous materials stockpiles

• Hazardous materials storage tanks and containers

• Pipelines for hazardous materials

• Spills from loading and unloading of hazardous materials

• Spillage from hazardous materials transport accidents

• Pesticide, herbicide, and fertilizer applications

• Contaminated urban runoff

• Mining and mine drainage

• Waste treatment system and incinerator emissions
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8.2 Data Collection and Evaluation Considerations

The process involved in a public health risk assessment for chemical exposure

problems will usually include a well-thought out plan for the collection and analysis

of a variety of chemical hazard and receptor exposure data. Ideally, and to facilitate

this process, project-specific ‘work-plans’ can be designed to specify the adminis-

trative and logistic requirements of the general activities to be undertaken – as

discussed in Chap. 6, and excerpted below. A typical data collection work-plan that

is used to guide the investigation of chemical exposure problems may include, at a

minimum, a sampling and analysis plan together with a quality assurance/quality

control plan. The general nature and structure for such types of work-plans, as well

as further details on the appropriate technical standards for sample collection and

sample handling procedures, can be found in the literature elsewhere (e.g., Asante-

Duah 1998; ASTM 1997b; Boulding 1994; CCME 1993; CDHS 1990; Keith 1988,

1991; Lave and Upton 1987; Petts et al. 1997; USEPA 1989a, b).

In general, all sampling and analysis should be conducted in a manner that

maintains sample integrity and encompasses adequate quality assurance and con-

trol. Also, specific samples collected should be representative of the target materials

that are the source of, and/or ‘sink’ for, the chemical exposure problem. And,

regardless of its intended use, it is noteworthy that samples collected for analysis

at a remote location are generally kept on ice prior to and during transport/shipment

to a certified laboratory for analysis; also, completed chain-of-custody records

should accompany the samples to the laboratory.

Indeed, sampling and analysis can become a very important part of the decision-

making process involved in the management of chemical exposure problems. Yet,

sampling and analysis could also become one of the most expensive and time-

consuming aspects of such public health risk management programs. Even of

greater concern is the fact that errors in sample collection, sample handling, or

laboratory analysis can invalidate the hazard accounting and exposure characteri-

zation efforts, and/or add to the overall project costs. All samples that are intended

for use in human exposure and risk characterization programs must therefore be

collected, handled, and analyzed properly—in accordance with all applicable/

relevant methods and protocols. To ultimately produce data of sound integrity

and reliability, it is important to give special attention to several issues pertaining

to the sampling objective and approach; sample collection methods; chain-of-

custody documentation; sample preservation techniques; sample shipment

methods; and sample holding times. Chapter 6 contains a convenient checklist of

the issues that should be verified when planning such type of sampling activity.

Overall, highly effective sampling and laboratory procedures are required during

the chemical hazard determination process; this is to help minimize uncertainties

associated with the data collection and evaluation aspects of the risk assessment.

Ultimately, several chemical-specific parameters (such as chemical toxicity or

potency, media concentration, ambient levels, frequency of detection, mobility,

persistence, bioaccumulative/bioconcentration potential, synergistic or antagonistic
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effects, potentiation or neutralizing effects, etc.) as well as various receptor infor-

mation are further used to screen and help select the specific target chemicals that

will become the focus of a detailed risk assessment.

8.2.1 Data Collection and Analysis Strategies

A variety of data collection and analysis protocols exist in the literature (e.g.,

Boulding 1994; Byrnes 1994; CCME 1993, 1994; Csuros 1994; Garrett 1988;

Hadley and Sedman 1990; Keith 1992; Millette and Hays 1994; O’Shay and

Hoddinott 1994; Schulin et al. 1993; Thompson 1992; USEPA 1982, 1985,

1992a, b, c, d, e; Wilson 1995) that may be adapted for the investigation of

human exposure to chemical constituents found in consumer products and in the

human environments. Regardless of the processes involved, however, it is impor-

tant to recognize the fact that most chemical sampling and analysis procedures offer

numerous opportunities for sample contamination and/or cross-contamination from

a variety of sources (Keith 1988). To be able to address and account for possible

errors arising from ‘foreign’ sources, quality control (QC) samples are typically

included in the sampling and analytical schemes. The QC samples are analytical

‘control’ samples that are analyzed in the same manner as the ‘field’ samples—and

these are subsequently used in the assessment of any cross-contamination that may

have been introduced into a sample along its life cycle from the field (i.e., point of

collection) to the laboratory (i.e., place of analysis).

Invariably, QC samples become an essential component of all carefully executed

sampling and analysis programs. This is because, firm conclusions cannot be drawn

from the investigation unless adequate controls have been included as part of the

sampling and analytical protocols (Keith 1988). To prevent or minimize the inclu-

sion of ‘foreign’ constituents in the characterization of chemical exposures and/or

in a risk assessment, therefore, the concentrations of the chemicals detected in

‘control’ samples must be compared with concentrations of the same chemicals

detected in the ‘field’ samples. In such an appraisal, the QC samples can indeed

become a very important reference datum for the overall evaluation of the chemical

sampling data.

In general, very well designed sampling and analytical protocols are necessary to

facilitate credible data collection and analysis programs. Sampling protocols are

written descriptions of the detailed procedures to be followed in collecting, pack-

aging, labeling, preserving, transporting, storing, and tracking samples. The selec-

tion of appropriate analytical methods is also an integral part of the processes

involved in the development of sampling plans—since this can strongly affect the

acceptability of a sampling protocol. For example, the sensitivity of an analytical

method could directly influence the amount of a sample needed in order to be able

to measure analytes at pre-specified minimum detection (or quantitation) limits.

The analytical method may also affect the selection of storage containers and

preservation techniques (Keith 1988; Holmes et al. 1993). In any case, the devices
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that are used to collect, store, preserve, and transport samples must not alter the
sample in any manner. In this regard, it is noteworthy that special procedures may

be needed to preserve samples during the period between collection and analysis.

Finally, the development and implementation of an overall good quality assur-

ance/quality control (QA/QC) project plan for a sampling and analysis activity is

critical to obtaining reliable analytical results. The soundness of the QA/QC

program has a particularly direct bearing on the integrity of the sampling as well

as the laboratory work. Thus, the general process for developing an adequate

QA/QC program, as discussed in Chap. 6 of this book and elsewhere in the

literature (e.g., CCME 1994; USEPA 1987, 1992a, b, c, d, e), should be followed

religiously. Also, it must be recognized that, the more specific a sampling protocol

is, the less chance there will be for errors or erroneous assumptions.

8.2.2 Reporting of ‘Censored’ Laboratory Data

Oftentimes, in a given set of laboratory samples, certain chemicals will be reliably

quantified in some (but not all) of the samples that were collected for analysis. Data

sets may therefore contain observations that are below the instrument or method

detection limit, or indeed its corresponding quantitation limit; such data are often

referred to as ‘censored data’ (or ‘non-detects’ [NDs]). In general, the NDs do not

necessarily mean that a chemical is not present at any level (i.e., completely

absent)—but simply that any amount of such chemical potentially present was

probably below the level that could be detected or reliably quantified using a

particular analytical method. In other words, this situation may reflect the fact

that either the chemical is truly absent at this location or sampled matrix at the

time the sample was collected—or that the chemical is indeed present, but only at a

concentration below the quantitation limits of the analytical method that was

employed in the sample analysis.

In fact, every laboratory analytical technique has detection and quantitation

limits below which only ‘less than’ values may be reported; the reporting of such

values provides a degree of quantification for the censored data. In such situations, a

decision has to be made as to how to treat such NDs and associated ‘proxy’
concentrations. The appropriate procedure depends on the general pattern of detec-

tion for the chemical in the overall investigation activities (Asante-Duah 1998; HRI

1995). In any case, it is customary to assign non-zero values to all sampling data

reported as NDs. This is important because, even at or near their detection limits,

certain chemical constituents may be of considerable importance or concern in the

characterization of a chemical exposure problem. However, uncertainty about the

actual values below the detection or quantitation limit can also bias or preclude an

effectual execution of subsequent statistical analyses. Indeed censored data do

create significant uncertainties in the data analysis required of the chemical expo-

sure characterization process; such data should therefore be handled in an appro-

priate manner—for instance, as elaborated in the example methods of approach

provided below.
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8.2.2.1 Derivation and Use of ‘Proxy’ Concentrations

‘Proxy’ concentrations are usually employed when a chemical is not detected in a

specific sampled medium per se. A variety of approaches are offered in the

literature for deriving and using proxy values in environmental data analyses,

including the following relatively simpler ones (Asante-Duah 1998; HRI 1995;

USEPA 1989a, 1992a, b, c, d, e):

• Set the sample concentration to zero. This assumes that if a chemical was not

detected, then it is not present—i.e., the ‘residual concentration’ is zero. This
involves or calls for very compelling assumptions, and it can rarely be justified

that the chemical is not present in the sampled media. Thus, it represents a least

conservative (i.e., least health-protective) option.

• Drop the sample with the non-detect for the particular chemical from further
analysis. This will have the same effect on the data analysis as assigning a

concentration that is the average of concentrations found in samples where the

chemical was detected.

• Set the proxy sample concentration to the sample quantitation limit (SQL). For
NDs, setting the sample concentration to a proxy concentration equal to the SQL

(which is a quantifiable number used in practice to define the analytical detection

limit) makes the fewest assumptions and tends to be conservative, since the SQL

represents an upper-bound on the concentration of a ND. This option does

indeed offer the most conservative (i.e., most health-protective) approach to

chemical hazard accounting and exposure estimation. The approach

recognizes that the true distribution of concentrations represented by the NDs

is unknown.

• Set the proxy sample concentration to one-half the SQL. For NDs, setting the

sample concentration to a proxy concentration equal to one-half the SQL

assumes that, regardless of the distribution of concentrations above the SQL,

the distribution of concentrations below the SQL is symmetrical. [It is notewor-

thy that, when/if the subject data are highly skewed then a use of the SQL

divided by the square-root-of-two (i.e., SQL/√2) is recommended, instead of

one-half the SQL.]

In general, in a ‘worst-case’ approach, all NDs are assigned the value of the SQL
– which is the lowest level at which a chemical may be accurately and reproducibly

quantitated; this approach biases the mean upward. On the other hand, assigning a

value of zero to all NDs biases the mean downward. The degree to which the results

are biased will depend on the relative number of detects and non-detects in the data

set, and also the difference between the reporting limit and the measured values

above it. Oftentimes, the common practice seems to utilize the sample-specific

quantitation limit for the chemical reported as ND. In fact, the goal in adopting such

an approach is to avoid underestimating exposures to potentially sensitive or highly

exposed groups such as infants and children, but at the same time attempt to
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approximate actual ‘residual levels’ as closely as possible. Ultimately, recognizing

that the assumptions in these methods of approach may, in some cases, either

overestimate or underestimate exposures, the use of sensitivity analysis to deter-

mine the impact of using different assumptions (e.g., ND ¼ 0 vs. ND ¼ SQL/2 vs.
ND ¼ SQL/√2; etc.) is encouraged.

Other methods of approach to the derivation of proxy concentrations may

involve the use of ‘distributional’ methods; unlike the simple substitution methods

shown above, distributional methods make use of the data above the reporting limit

in order to extrapolate below it (USEPA 1992a, b, c, d, e). Indeed, even more robust

methods than this may be utilized in such applications for handling censored data

sets. In any event, selecting the appropriate method to adopt for any given situation

or problem scenario generally requires consideration of the degree of censoring, the

goals of the assessment, and the degree of accuracy required.

Finally, it is noteworthy that, notwithstanding the options available from the

above procedures of deriving and/or using ‘proxy’ concentrations, re-sampling and

further laboratory analysis should always be viewed as the preferred approach to

resolving uncertainties that surround ND results obtained from sampled media.

Thence, if the initially reported data represent a problem in sample collection or

analytical methods rather than a true failure to detect a chemical of potential

concern, then the problem could be rectified (e.g., by the use of more sensitive

analytical protocols) before critical decisions are made based on the earlier results.

8.3 Statistical Evaluation of Chemical Sampling/
Concentration Data

Once the decision is made to undertake a public health risk assessment, the

available chemical exposure data has to be carefully examined/appraised—in

order to, among other things, arrive at a list of chemicals of potential concern

(CoPCs); the CoPCs represent the target chemicals of focus in the risk assessment

process. In general, the target chemicals of significant interest or concern to

chemical exposure problems may be selected for further detailed evaluation on

the basis of several specific and miscellaneous important considerations—such as

shown in Box 8.2. The use of such selection criteria should generally compel an

analyst to continue with the exposure and risk characterization process only if the

chemicals represent potential threats to public health. For such chemicals, general

summary statistics would commonly be compiled; meanwhile, it is worth the

mention here that, where applicable, data for samples and their duplicates are

typically averaged before summary statistics are calculated—such that a sample

and its duplicate are ultimately treated as one sample for the purpose of calculating

summary statistics (including maximum detection and frequency of detection).

Where constituents are not detected in both a sample and its duplicate, the resulting

8.3 Statistical Evaluation of Chemical Sampling/Concentration Data 175



values are the average of the sample-specific quantitation limits (SSQLs). Where

both the sample and the duplicate contain detected constituents, the resulting values

are the average of the detected results. Where a constituent in one of the pair is

reported as not detected and the constituent is detected in the other, the detected

concentration is conservatively used to represent the value of interest. On the

whole, the following summary statistics are typically generated as part of the key

statistical parameters of interest:

• Frequency of detection—reported as a ratio between the number of samples

reported as detected for a specific constituent and the total number of samples

analyzed.

• Maximum detected concentration—for each constituent/receptor/medium com-

bination, after duplicates have been averaged.

• Mean detected concentration—typically the arithmetic mean concentration for

each constituent/receptor/medium combination, after duplicates have been aver-

aged, based on detected results only.

• Minimum detected concentration—for each constituent/area/medium combina-

tion, after duplicates have been averaged.

Next, the proper exposure point concentration (EPC) for the target populations

potentially at risk from the CoPCs would be determined; an EPC is the concentra-

tion of the CoPC in the target material or product at the point of contact with the

human receptor.

Box 8.2 Typical important considerations in the screening for chemicals

of potential concern for public health risk assessments

• Status as a known human carcinogen versus probable or possible

carcinogen

• Status as a known human developmental and reproductive toxin

• Degree of mobility, persistence, and bioaccumulation

• Nature of possible transformation products of the chemical

• Inherent toxicity/potency of chemical

• Concentration-toxicity score—reflecting concentration levels in combina-

tion with degree of toxicity (For exposure to multiple chemicals, the

chemical score is represented by a risk factor, calculated as the product

of the chemical concentration and toxicity value; the ratio of the risk factor

for each chemical to the total risk factor approximates the relative risk for

each chemical—giving a basis for inclusion or exclusion as a CoPC)

• Frequency of detection in target material or product (Chemicals that are

infrequently detected may be artifacts in the data due to sampling, analyt-

ical, or other problems, and therefore may not be truly associated with the

consumer product or target material under investigation)

(continued)

176 8 Chemical Hazard Determination



Box 8.2 (continued)

• Status and condition as an essential element—i.e., defined as essential

human nutrient, and toxic only at elevated doses (For example, Ca or Na

generally does not pose a significant risk to public health, but As or Cr may

pose a significantly greater risk to human health)

The EPC determination process typically will consist of an appropriate statistical

evaluation of the exposure sampling data—especially when large data sets are

involved. Statistical procedures used for the evaluation of the chemical exposure

data can indeed significantly affect the conclusions of a given exposure character-

ization and risk assessment program. Consequently, appropriate statistical methods

(e.g., in relation to the choice of proper averaging techniques) should be utilized in

the evaluation of chemical sampling data. Meanwhile, it is noteworthy that over the

years, extensive technical literature has been put forward regarding the ‘best’
probability distribution to utilize in different scientific applications—and such

resources should be consulted for appropriate guidance on the statistical tools of

choice.

8.3.1 Parametric Versus Nonparametric Statistics

There are several statistical techniques available for analyzing data that are not

necessarily dependent on the assumption that the data follow any particular statis-

tical distribution. These distribution-free methods are referred to as nonparametric
statistical tests—and they have fewer and less stringent assumptions. Conversely,

several assumptions have to be met before one can use a parametric test. At any

rate, whenever the set of requisite assumptions is met, it is always preferable to use

a parametric test—because it tends to be more powerful than the nonparametric test.

However, to reduce the number of underlying assumptions required (such as in a

hypothesis testing about the presence of specific trends in a data set), nonparametric

tests are typically employed.

Nonparametric techniques are generally selected when the sample sizes are

small and the statistical assumptions of normality and homogeneity of variance

are tenuous. Indeed, nonparametric tests are usually adopted for use in environ-

mental impact assessments because the statistical characteristics of the often messy

environmental data make it difficult, or even unwise, to use many of the available

parametric methods. It is noteworthy, however, that the nonparametric tests tend to

ignore the magnitude of the observations in favor of the relative values or ranks of

the data. Consequently, as Hipel (1988) notes, a given nonparametric test with few

underlying assumptions that is designed, for instance, to test for the presence of a

trend may only provide a ‘yes’ or ‘no’ answer as to whether or not a trend may
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indeed be present in the data. The output from the nonparametric test may not give

an indication of the type or magnitude of the trend. To have a more powerful test

about what might be occurring, many assumptions must be made—and as more

assumptions are formulated, a nonparametric test begins to look more like a

parametric test. It is also noteworthy that, the use of parametric statistics requires

additional detailed evaluation steps—with the process of choosing an appropriate

statistical distribution being an important initial step.

8.3.1.1 Choice of Statistical Distribution

Of the many statistical distributions available, the Gaussian (or normal) distribution

has been widely utilized to describe environmental data; however, there is consid-

erable support for the use of the lognormal distribution in describing such data.

Consequently, chemical concentration data for environmental samples have been

described by the lognormal distribution, rather than by a normal distribution

(Gilbert 1987; Leidel and Busch 1985; Rappaport and Selvin 1987; Saltzman

1997). Basically, the use of lognormal statistics for the data set X1, X2, X3, Xn

requires that the logarithmic transform of these data (i.e., ln[X1], ln[X2], ln[X3], ln
[Xn]) can be expected to be normally distributed.

In general, the statistical parameters used to describe the different distributions

can differ significantly; for instance, the central tendency for the normal distribu-

tions is measured by the arithmetic mean, whereas the central tendency for the

lognormal distribution is defined by the geometric mean. In the end, the use of a

normal distribution to describe environmental chemical concentration data, rather

than lognormal statistics will often result in significant over-estimation, and may be

overly conservative—albeit some investigators have argued otherwise (e.g.,

Parkhurst 1998). In fact, Parkhurst (1998) argues that geometric means are biased

low and do not quite represent components of mass balances properly, whereas
arithmetic means are unbiased, easier to calculate and understand, scientifically

more meaningful for concentration data, and more protective of public health. Even

so, this same investigator (Parkhurst 1998) still concedes to the non-universality of

this school of thought—and these types of arguments and counter-arguments only

go to reinforce the fact that no one particular parameter or distribution may be

appropriate for every situation. Consequently, care must be exercised in the choice

of statistical methods for the data manipulation exercises carried out during the

hazard accounting process—and indeed in regards to other aspects of a risk

assessment.

8.3.1.2 Goodness-of-Fit Testing

Recognizing that the statistical procedures used in the evaluation of chemical

exposure data should generally reflect the character of the underlying distribution

of the data set, it is preferable that the appropriateness of any distribution assumed
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or used for a given data set be checked prior to its application. This verification

check can be accomplished by using a variety of goodness-of-fit methods.

Goodness-of-fit tests are formal statistical tests of the hypothesis that a specific

set of sampled observations is an independent sample from the assumed distribu-

tion. The more common general tests include the Chi-square test and the

Kolmogorov-Smirnov test; common goodness-of-fit tests specific for normality

and log-normality include the Shapiro-Wilks’ test and D’Agostino’s test (see, e.g.,
D’Agostino and Stephens 1986; Gilbert 1987; Miller and Freund 1985; Sachs

1984). At any rate, it is worth mentioning here that goodness-of-fit tests tend to

have notoriously low power—and indeed are generally best for rejecting poor

distribution fits, rather than for identifying good fits. In general, if the data cannot

be fitted well enough to a theoretical distribution, then perhaps an empirical

distribution function or other statistical methods of approach (such as bootstrapping

techniques) should be considered.

Another way to determine the specific probability distribution that adequately

models the underlying population of a data set is to test the probability of a sample

being drawn from a population with a particular probability distribution; one such

test is the W-test (Shapiro and Wilk 1965). The W-test is particularly important in

assessing whether a sample is from a population with a normal probability distri-

bution; the W-test can also be used to assess if a sample belongs to a population

with a lognormal distribution (i.e., after the data has undergone a natural logarithm

transformation). It is noteworthy that, the W-test (as developed by Shapiro and

Wilk) is limited to a small sample data set size (of 3 to 50 samples). However, a

modification of the W-test that allows for its use with larger data sets (up to about

5000 data points) is also available (e.g., in the formulation subsequently developed

by Royston) (Royston 1995).

8.3.2 Statistical Evaluation of ‘Non-detect’ Values

During the analysis of environmental sampling data that contains some NDs, a

fraction of the SQL is usually assumed (as a proxy or estimated concentration) for

non-detectable levels—instead of assuming a value of zero, or neglecting such

values. This procedure is typically used, provided there is at least one detected

value from the analytical results, and/or if there is reason to believe that the

chemical is possibly present in the sample at a concentration below the SQL. The

approach conservatively assumes that some level of the chemical could be present

(even though a ND has been recorded) and arbitrarily sets that level at the ‘appro-
priate’ percentage of the SQL.

In general, the favored approach in the calculation of the applicable statistical

values during the evaluation of data containing NDs involves the use of a value of

one-half of the SQL. This approach assumes that the samples are equally likely to

have any value between the detection limit and zero, and can be described by a

normal distribution. However, when the sample values above the ND level are
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log-normally distributed, it generally may be assumed that the ND values are also

log-normally distributed; the best estimate of the ND values for a log-normally

distributed data set is the reported SQL divided by the square root of two (i.e., SQLffiffi
2

p ¼
SQL
1:414) (CDHS 1990; USEPA 1989a). Also, in some situations, the SQL value itself

may be used if there is strong enough reason to believe that the chemical concen-

tration is closer to this value, rather than to a fraction of the SQL. If it becomes

apparent that serious biases could result from the use of any of the preceding

methods of approach, more sophisticated analytical and evaluation methods may

be warranted.

8.3.3 Selection of Statistical Averaging Techniques

Reasonable discretion should generally be exercised in the selection of an averag-

ing technique during the statistical analysis of environmental sampling data—viz.,
chemical concentration data in particular. This is because, among other things, the

selection of specific methods of approach to determine the average of a set of

environmental sampling data can have profound effects on the resulting concen-

tration—especially for data sets coming from sampling results that are not normally

distributed. For example, when dealing with log-normally distributed data, geo-

metric means are often used as a measure of central tendency – in order to ensure

that a few very high (or low) values on record do not exert excessive influence on

the characterization of the distribution. However, if high concentrations do indeed

represent ‘hotspots’ in a spatial or temporal distribution of the data set, then using

the geometric mean could inappropriately discount the contribution of these high

chemical concentrations present in the environmental samples. This is particularly

significant if, for instance, the spatial pattern indicates that areas of high concen-

tration for a chemical release are in close proximity to compliance boundaries or

near exposure locations for sensitive populations (such as children and the elderly).

The geometric mean has indeed been extensively and consistently used as an

averaging parameter in the past. Its principal advantage is in minimizing the effects

of ‘outlier’ values (i.e., a few values that are much higher or lower than the general

range of sample values). Its corresponding disadvantage is that, discounting these

values may be inappropriate when they represent true variations in concentrations

from one part of an impacted area or group to another (such as a ‘hot-spot’ vs. a
‘cold-spot’ vs. a ‘normal-spot’ region). As a measure of central tendency, the

geometric mean is most appropriate if sample data are lognormally distributed,

and without an obvious spatial pattern.

The arithmetic mean—commonly used when referring to an ‘average’—is more

sensitive to a small number of extreme values or a single ‘outlier’ compared to the

geometric mean. Its corresponding advantage is that true high concentrations will

not be inappropriately discounted. When faced with limited sampling data,
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however, this may not provide a conservative enough estimate of environmental

chemical impacts.

In fact, none of the above measures, in themselves, may be appropriate in the

face of limited and variable sampling data. Contemporary applications tend to favor

the use of an upper confidence limit (UCL) on the average concentration. Even so, if

the computed UCL exceeds the maximum detected value amongst a data pool, then

the latter is used as the source term or EPC. Finally, it has to be cautioned that in

situations where there is a discernible spatial pattern to chemical concentration

data, standard approaches to data aggregation and analysis may usually be inade-

quate, or even inappropriate.

8.3.3.1 Illustrative Example Computations Demonstrating

the Potential Effects of Variant Statistical Averaging

Techniques

To demonstrate the possible effects of the choice of statistical distributions and/or

averaging techniques on the analysis of environmental data, consider a case involv-

ing the estimation of the mean, standard deviation, and confidence limits from

monthly laboratory analysis data for groundwater concentrations obtained from a

potential drinking water well. The goal here is to compare the selected statistical

parameters based on the assumption that this data is normally distributed versus an
alternative assumption that the data is lognormally distributed. To accomplish this

task, the several statistical manipulations enumerated below are carried out on the

‘raw’ and log-transformed data for the concentrations of benzene in the groundwa-

ter samples shown in Table 8.1.

(1) Statistical Manipulation of the ‘Raw’ Data. Calculate the following statistical

parameters for the ‘raw’ data: mean, standard deviation, and 95% confidence

limits. [See standard statistics textbooks for details of applicable procedures

involved.] The arithmetic mean, standard deviation, and 95% confidence limits

(95% CL) for a set of n values are defined, respectively, as follows:

Xm ¼
Pn
i¼1

Xi

n
ð8:1Þ

SDx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Xi � Xmð Þ2

n� 1

vuuut ð8:2Þ
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CLx ¼ Xm � tsffiffiffi
n

p ð8:3Þ

where: Xm¼ arithmetic mean of ‘raw’ data; SDx¼ standard deviation for ‘raw’
data; CLx ¼ 95% confidence interval (95% CI) of ‘raw’ data; t is the value of
the Student t-distribution [as expounded in standard statistical books] for the

desired confidence level (e.g., 95% CL, which is equivalent to a level of

significance of α ¼ 5%) and degrees of freedom, (n–1); and s is an estimate

of the standard deviation from the mean (Xm). Thus,
Xm¼ 0.213 μg/L
SDx¼ 0.379 μg/L
CLx¼ 0.213� 0.241 (i . e.,�0.028�CIx� 0.454) and UCLx¼ 0.454 μg/L
where: UCLx ¼ 95% upper confidence level (95% UCL) of ‘raw’ data.
Note that, the computation of the 95% confidence limits for the untransformed

data produces a confidence interval of 0.213 � 0.109 t ¼ 0.213 � 0.241 [where

t¼ 2.20, obtained from the Student t-distribution for (n–1)¼ 12–1¼ 11 degrees

of freedom] – and which therefore indicates a non-zero probability for a

negative concentration value; indeed, such value may very well be considered

meaningless in practical terms—consequently revealing some of the shortcom-

ings of this type of computational method of approach.

(2) Statistical Manipulation of the Log-transformed Data. Calculate the following
statistical parameters for the log-transformed data: mean, standard deviation,

and 95% confidence limits. [See standard statistics textbooks for details of

applicable procedures involved]. The geometric mean, standard deviation, and

95 percent confidence limits (95% CL) for a set of n values are defined,

respectively, as follows:

Table 8.1 Environmental sampling data used to illustrate the effects of statistical averaging

techniques on exposure point concentration predictions

Concentration of Benzene in Drinking Water (μg/L)
Sampling Event Original ‘raw’ data, X Log-transformed data, Y ¼ ln(X)

1 0.049 –3.016

2 0.056 �2.882

3 0.085 �2.465

4 1.200 0.182

5 0.810 �0.211

6 0.056 �2.882

7 0.049 �3.016

8 0.048 �3.037

9 0.062 �2.781

10 0.039 �3.244

11 0.045 �3.101

12 0.056 �2.882
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Xgm ¼ antilog

Pn
i¼1

‘nXi

n

8>><
>>:

9>>=
>>;

ð8:4Þ

SDx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Xi � Xgm

� �2

n� 1

vuuut ð8:5Þ

CLx ¼ Xgm � tsffiffiffi
n

p ð8:6Þ

where: Xgm ¼ geometric mean for the ‘raw’ data; SDx ¼ standard deviation of

‘raw’ data (assuming lognormal distribution); CLx ¼ 95% confidence interval

(95% CI) for the ‘raw’ data (assuming lognormal distribution); t is the value of
the Student t-distribution [as expounded in standard statistical books] for the

desired confidence level and degrees of freedom, (n–1); and s is an estimate of

the standard deviation of the mean (Xgm). Thus,

Ya�mean¼ � 2.445

SDy¼ 1.154

CLy¼ � 2.445� 0.733 (i . e., a confidence interval from� 3.178 to� 1.712)

where: Ya�mean ¼ arithmetic mean of log-transformed data; SDy ¼ standard

deviation of log-transformed data; and CLy ¼ 95% confidence interval (95%

CI) of log-transformed data. In this case, computation of the 95% confidence

limits for the log-transformed data yields a confidence interval of �2.445 �
0.333 t ¼ �2.445 � 0.733 [where t ¼ 2.20, obtained from the student

t-distribution for (n-1) ¼ 12–1 ¼ 11 degrees of freedom].

Now, transforming the average of the logarithmic Y values back into arith-

metic values yields a geometric mean value of Xgm¼ e�2.445 ¼ 0.087. Further-

more, transforming the confidence limits of the log-transformed values back into

the arithmetic realm yields a 95% confidence interval of 0.042 μg/L to 0.180 μg/L;
recognize that these consist of positive concentration values only. Hence,

Xgm¼ 0.087 μg/L
SDx¼ 3.171 μg/L
0.042�CIx� 0.180 μg/L
UCLx¼ 0.180 μg/L

where: UCLx ¼ 95% upper confidence level (95% UCL) for the ‘raw’ data
(assuming lognormal distribution).

Inconsiderationof theabove, it isobviousthat thearithmeticmean,Xm¼0.213μg/L,
is substantially larger than the geometric mean of Xgm ¼ 0.087 μg/L. This may be

attributed to the two relatively higher sample concentration values in the data set
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(namely, sampling events #4 and#5 inTable 8.1)—which consequently tend to strongly

biasthearithmeticmean;ontheotherhand, thelogarithmic transformacts tosuppress the

extreme values. A similar observation can bemade for the 95% upper confidence level

(UCL) of the normally- and lognormally-distributed data sets. In any event, irrespective

of the type of underlying distribution, the 95% UCL is generally a preferred statistical

parameter to use in the evaluation of environmental data, rather than the statisticalmean

values.

The results from the above example analysis illustrate the potential effects that

could result from the choice of one distribution type over another, and also the

implications of selecting specific statistical parameters in the evaluation of envi-

ronmental sampling data. In general, the use of arithmetic or geometric mean values

for the estimation of average concentrations would tend to bias the EPC or other

related estimates; the 95% UCL characteristically offers a better value to use—

albeit may not necessarily be a panacea in all situations.

8.4 Estimating Chemical Exposure Point Concentrations
from Limited Data

In the absence of adequate and/or appropriate field sampling data, a variety of

mathematical algorithms and models are often employed to support the determina-

tion of chemical exposure concentrations in human exposure media or consumer

products. Such forms of chemical exposure models are typically designed to serve a

variety of purposes, but most importantly tend to offer the following key benefits

(Asante-Duah 1998; Schnoor 1996):

• To gain better understanding of the fate and behavior of chemicals existing in, or

to be introduced into, the human living and work environments.

• To determine the temporal and spatial distributions of chemical exposure con-

centrations at potential receptor contact sites and/or locations.

• To predict future consequences of exposure under various chemical contacting

or loading conditions, exposure scenarios, or risk management action

alternatives.

• To perform sensitivity analyses, by varying specific parameters, and then using

models to explore the ramifications of such actions (as reflected by changes in

the model outputs).

The results from the modeling are generally used to estimate the consequential

exposures and risks to potential receptors associated with a given chemical expo-

sure problem.

One of the major benefits associated with the use of mathematical models in

public health risk management programs relate to the fact that, environmental

concentrations useful for exposure assessment and risk characterization can be

estimated for several locations and time-periods of interest. Indeed, since field
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data are often limited and/or insufficient to facilitate an accurate and complete

characterization of chemical exposure problems, models can be particularly useful

for studying spatial and temporal variability, together with potential uncertainties.

In addition, sensitivity analyses can be conducted by varying specific exposure

parameters—and then using models to explore any ramifications reflected by

changes in the model outputs.

In the end, the effective use of models in public health risk assessment and risk

management programs depends greatly on the selection of the models most suitable

for its stated purpose. The type of model selected will characteristically be depen-

dent on the overall goal of the assessment, the complexity of the problem, the type

of CoPCs, the nature of impacted and threatened media that are being evaluated in

the specific investigation, and the type of corrective actions contemplated. A

general guidance for the effective selection of models used in chemical exposure

characterization and risk management decisions is provided in the literature else-

where (e.g., Asante-Duah 1998; CCME 1994; CDHS 1990; Clark 1996; Cowherd

et al. 1985; DOE 1987; NRC 1989a, b; Schnoor 1996; USEPA 1987, 1988a, b;

Yong et al. 1992; Zirschy and Harris 1986)—with some excerpts presented in

Chap. 6 of this title. It is noteworthy that, in several typical environmental assess-

ment situations, a ‘ballpark’ or ‘order-of-magnitude’ (i.e., a rough approximation)

estimate of the chemical behavior and fate is usually all that is required for most

analyses—and in which case simple analytical models usually will suffice. Some

relatively simple example models and equations that are often employed in the

estimation of chemical concentrations in air, soil, water, and food products are

provided below for illustrative purposes.

• Screening Level Estimation of Chemical Volatilization into Shower Air. A

classic scenario that is often encountered in human health risk assessments

relates to the volatilization of contaminants from contaminated water into

shower air during a bathing/showering activity. A simple/common model that

may be used to derive contaminant concentration in air from measured concen-

tration in domestic water consists of a very simple box model of volatilization. In

this case, the air concentration is derived from volatile emission rate by treating

the shower as a fixed volume with perfect mixing and no outside air exchange, so

that the air concentration increases linearly with time.

On the whole, the following equation can be used to determine the average air

concentration in the bathroom during a shower activity (generally for chemicals

with a Henry’s Law constant of � 2 � 10–7 atm-cu m/mol only) (HRI 1995):

Csha ¼ Cw� f � Fw � t½ �
2� V� 1000 μg=mg½ � ð8:7Þ

where Csha is the average air concentration in the bathroom during a shower

activity; Cw is the concentration of contaminant in the tap water (μg/L); ƒ is the
fraction of contaminant volatilized (unitless); Fw is the water flow rate in the

shower (L/hour); t is the duration of shower activity (hours); and V is the
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bathroom volume (m3). Similarly, the following equation can be used to

determine the average air concentration in the bathroom after a shower activity
(generally for chemicals with a Henry’s Law constant of� 2� 10–7 atm-m3/mol

only) (HRI 1995):

Csha2 ¼ Cw� f � Fw � t½ �
V� 1000 μg=mg½ � ð8:8Þ

It is noteworthy that, water temperature is a key variable that affects stripping

efficiencies and the mass transfer coefficients for the various sources of chemical

releases into the shower air.

In the above simplified representations, the models assume that: there is no air

exchange in the shower—which assumption tends to overestimate contaminant

concentration in bathroom air; there is perfect mixing within the bathroom (i.e.,

the contaminant concentration is equally dispersed throughout the volume of the

bathroom)—which assumption tends to underestimate contaminant concentra-

tion in shower air; the emission rate from water is independent of instantaneous

air concentration; and the contaminant concentration in the bathroom air is

determined by the amount of contaminants emitted into the box (i.e.,

[Cw � ƒ � Fw � t]) divided by the volume of the bathroom (V) (HRI 1995).
• Estimation of Household Air Contamination due to Volatilization from Domestic

Water Supply. Contaminated water present inside a home can result in the

volatilization of chemicals into residential indoor air—e.g., via shower stalls,

bathtubs, washing machines, and dishwashers. Under such scenarios, chemical

concentrations in household indoor air due to contaminated domestic water may

be estimated for volatile chemicals (generally for chemicals with a Henry’s Law
constant of � 2 � 10–7 atm-cu m/mol only), in accordance with the following

relationship (HRI 1995):

Cha ¼ Cw �WFH� f½ �
HV� ER�MC� 1000 μg=mg½ � ð8:9Þ

where: Cha is the chemical concentration in air (mg/m3); Cw is the concentration

of contaminant in the tap water (μg/L);WFH is the water flow through the house

(L/day); ƒ is the fraction of contaminant volatilized (unitless); HV is the house

volume (m3/house); ER is the air exchange rate (house/day); and MC is the

mixing coefficient (unitless). It is noteworthy that, water temperature is a key

variable that affects stripping efficiencies and the mass transfer coefficients for

the various sources of chemical releases into the indoor air.

• Contaminant Bioconcentration in Meat and Dairy Products. In many cases, the

tendency of certain chemicals to become concentrated in animal tissues relative

to their concentrations in the ambient environment can be attributed to the fact

that the chemicals are lipophilic (i.e., they are more soluble in fat than in water).

Consequently, these chemicals tend to accumulate in the fatty portion of animal

tissue. In general, the bioconcentration of chemicals in meat is dependent
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primarily on the partitioning of chemical compounds into fat deposits (HRI

1995). Consequently,

Cx ¼ BCF� F� Cw ð8:10Þ

where: Cx is the chemical concentration in animal tissue or dairy product; BCF
is the chemical-specific bioconcentration factor for tissue fat—indicating the

tendency of the chemical to accumulate in fat; F is the fat content of the tissue or

dairy product; and Cw is the chemical concentration in water fed to the animal

(HRI 1995; USEPA 1986a, b, c, d, e, f). Overall, the concentration of such

bioaccumulative chemicals in animal tissue (or other animal products for that

matter) may be seen as a reflection of the chemical’s inherent bioconcentration
capacity—as represented by the BCF.

• Estimation of Contaminant Concentrations in Fish Tissues/Products. Fish tissue
contaminant concentrations may be predicted from water concentrations using

chemical-specific BCFs, which predict the accumulation of contaminants in the

lipids of the fish. In this case, the average chemical concentration in fish, based

on the concentration in water and a BCF is estimated in accordance with the

following relationship (HRI 1995):

Cf ¼ Cw� BCF� 1000 ð8:11Þ

where Cf is the concentration in fish (μg/kg), Cw is the concentration in water

(mg/L), and BCF is the bioconcentration factor. In situations where fish tissue

concentrations are predicted from sediment concentrations, a two-step process is

used; first, sediment concentration is used to calculate water concentrations, and

then the water concentrations are used to predict fish tissue concentrations—with

the former being carried out in accordance with the following equation:

Cw ¼ Csediment

Koc � OC� DN½ � ð8:12Þ

where: Cw is the concentration of the chemical in water; Csediment is the

concentration of the chemical in sediment; Koc is the chemical-specific organic

carbon partition coefficient; OC is the organic carbon content of the sediment;

DN is the sediment density (relative to water density).

Models can indeed be used for several purposes in the study of chemical

exposure and risk characterization problems. In general, the models usually simu-

late the response of a simplified version of a more complex system. As such, the

modeling results are imperfect. Nonetheless, when used in a technically responsible

manner, models can provide a very useful basis for making technically sound

decisions about a chemical exposure problem. In point of fact, models are partic-

ularly useful where several alternative scenarios are to be compared. In such

comparative analyses/cases, all the alternatives are contrasted on a similar basis;
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thus, whereas the numerical results of any single alternative may not be exact, the

comparative results of showing that one alternative is superior to others will usually

be valid.

8.5 Determination of the Level of a Chemical Hazard

In order to make an accurate determination of the level of hazard potentially posed

by a chemical, it is very important that the appropriate set of exposure data is

collected during the hazard identification and accounting processes. It is also

imperative to use appropriate data evaluation tools in the processes involved;

several of the available statistical methods and procedures finding widespread use

in chemical exposure and risk characterization programs can be found in subject

matter books on statistics (e.g., Berthouex and Brown 1994; Cressie 1994; Freund

and Walpole 1987; Gibbons 1994; Gilbert 1987; Hipel 1988; Miller and Freund

1985; Ott 1995; Sachs 1984; Sharp 1979; Wonnacott and Wonnacott 1972; Zirschy

and Harris 1986). In the final analysis, the process/approach used to estimate a

potential receptor’s EPC will comprise of the following key elements:

• Determining the distribution of the chemical exposure/sampling data, and fitting

the appropriate distribution to the data set (e.g., normal, lognormal, etc.);

• Developing the basic statistics for the exposure/sampling data—to include

calculation of the relevant statistical parameters, such as the upper 95% confi-

dence limit (UCL95); and

• Calculating the EPC—usually defined as the minimum of either the UCL or the

maximum exposure/sampling data value, and conceptually represented as fol-

lows: EPC ¼ min [UCL95 or Max-Value].

Ultimately, the so-derived EPC (that may indeed be significantly different from

any field-measured chemical concentrations) represents the ‘true’ or reasonable

exposure level at the potential receptor location of interest—and this value is used

in the calculation of the chemical intake/dose for the populations potentially at risk.
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