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    Chapter 5   
 Regulation of Interleukin-10 Expression                     

     Sascha     Rutz      and     Wenjun     Ouyang    

    Abstract     Interleukin (IL)-10 is an essential anti-infl ammatory cytokine that plays 
important roles as a negative regulator of immune responses to microbial antigens. 
Loss of IL-10 results in the spontaneous development of infl ammatory bowel dis-
ease as a consequence of an excessive immune response to the gut microbiota. IL-10 
also functions to prevent excessive infl ammation during the course of infection. 
IL-10 can be produced in response to pro-infl ammatory signals by virtually all 
immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its 
function in maintaining the delicate balance between effective immunity and tissue 
protection, it is evident that IL-10 expression is highly dynamic and needs to be 
tightly regulated. The transcriptional regulation of IL-10 production in myeloid 
cells and T cells is the topic of this review. Drivers of IL-10 expression as well as 
their downstream signaling pathways and transcription factors will be discussed. 
We will examine in more detail how various signals in CD4 +  T cells converge on 
common transcriptional circuits, which fi ne-tune IL-10 expression in a context- 
dependent manner.  

  Keywords     Interleukin-10   •   Transcriptional regulation   •   Immune suppression   • 
  Infl ammation   •   Tolerance   •   c-Maf   •   Blimp-1   •   T cell   •   Myeloid cell  

        S.   Rutz      (*) 
  Department of Cancer Immunology ,  Genentech , 
  1 DNA Way ,  South San Francisco ,  CA   94080 ,  USA   
 e-mail: saschar@gene.com   

    W.   Ouyang      
  Department of Immunology ,  Genentech ,   South San Francisco ,  CA ,  USA    

  Present Affi liation: Department of Infl ammation and Oncology ,  Amgen , 
  1120 Veterans Blvd ,  South San Francisco ,  CA   94080 ,  USA   
 e-mail: wouyang@amgen.com  

mailto:saschar@gene.com
mailto:wouyang@amgen.com


90

5.1       Introduction 

 Multicellular organisms have developed ever more sophisticated and effective 
immune systems to defend themselves against a wide variety of pathogens. Equally 
importantly, the immune system has the capacity to limit its potentially deleterious 
adverse effects on the host itself by utilizing various strategies, such as self- tolerance 
and anti-infl ammatory pathways. Defects in these strategies can result in the devel-
opment of autoimmune and infl ammatory diseases. The anti-infl ammatory cytokine 
IL-10, identifi ed by Mosmann and colleagues in 1989 [ 52 ], is a critical negative 
regulator of immune responses. Loss of IL-10 leads to infl ammatory diseases, most 
notably the development of IBD [ 131 ]. 

 IL-10 is the founding member of the IL-10 family of cytokines, which also 
includes IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, 
IL-28B, and IL-29 [ 131 ,  149 ]. IL-10 was initially described as a secreted cytokine 
synthesis inhibitory factor (CSIF) produced by Th2 T cell clones, which inhibits the 
production of several cytokines from Th1 cells [ 52 ]. Since this fi rst characterization 
it has become clear that IL-10 is in fact expressed by a wide variety of cells of the 
innate and adaptive arms of the immune system, including macrophages, mono-
cytes, dendritic cells (DCs), mast cells, eosinophils, neutrophils, natural killer (NK) 
cells, CD4 +  and CD8 +  T cells, and B cells [ 119 ,  131 ]. 

 IL-10 forms non-covalently linked homodimers, which bind to two receptor 
chains, IL-10R1 and IL-10R2 [ 92 ,  176 ]. IL-10R1 binds IL-10 with high affi nity and 
is unique to the IL-10 receptor, whereas IL-10R2 is a common component of the 
receptors for IL-22, IL-26, IL-28A, IL-28B, and IL-29 [ 131 ,  149 ]. While the 
IL-10R2 chain is ubiquitously expressed, IL-10R1 is mainly present on leukocytes. 
In fact, IL-10 is the only member of the IL-10 cytokine family, which primarily 
targets leukocytes [ 131 ,  149 ]. 

 IL-10 signals through the Janus kinase (Jak)/signal transducer and activator of 
transcription (STAT) signaling pathway (Fig.  5.1 ). Jak1 and Tyk2 are associated 
with IL-10R1 and IL-10R2, respectively. Binding of IL-10 to the receptor leads to 
Jak-dependent phosphorylation of the receptor. This allows for the recruitment of 
STAT3 and to a lesser extent STAT1. Jak1 and Tyk2 phosphorylate STAT3 on tyro-
sine 705, leading to its dissociation from the receptor and the formation of an active 
homodimer [ 50 ,  70 ,  117 ,  162 ,  175 ].

   IL-10 has a broad spectrum of anti-infl ammatory functions and can suppress 
immune responses to foreign or self-antigens. It mainly targets antigen-presenting 
cells, such as monocytes and macrophages, by inhibiting the release of pro- 
infl ammatory mediators, including TNF-α, IL-1β, IL-6, IL-8, G-CSF, and GM-CSF, 
from these cells [ 40 ,  51 ]. IL-10 also inhibits antigen presentation by reducing the 
expression of MHC II and co-stimulating (e.g. CD86) and adhesion (e.g. CD54) 
molecules [ 34 ,  41 ,  194 ]. Moreover, IL-10 inhibits the production and/or secretion of 
cytokines required for CD4 +  T cell differentiation, such as IL-12 and IL-23 [ 38 , 
 158 ]. Apart from these indirect ways of inhibiting T cell responses through the 
downregulation of APC functions, IL-10 can also directly inhibit both proliferation 
and cytokine production of CD4 +  T cells [ 65 ].  
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5.2     IL-10 Function During Homeostasis and Infection 

 IL-10, like transforming growth factor beta (TGF-β), is a regulatory cytokine with 
pleiotropic roles in the immune system. However, the prominent function of TGF-β 
is to maintain T cell tolerance to self or innocuous environmental antigens via its 
direct effects on differentiation and homeostasis of effector and regulatory T cells 
(Tregs). Defi ciencies in the TGF-β pathway result in hyperactivation and uncon-
trolled expansion of T cells leading to a lethal multi-organ autoimmune disorder 
[ 101 ]. In contrast, IL-10 functions primarily as a feedback inhibitor of excessive T 
cell responses to microbial antigens. Most prominently, IL-10-defi cient mice spon-
taneously develop colitis demonstrating that IL-10 has an essential role in maintain-
ing peripheral immune tolerance [ 95 ]. Colitis in these mice is mediated by activation 
and differentiation of effector T cells and is inhibited in IL-10-defi cient mice housed 
under germ-free conditions [ 95 ,  160 ]. This suggests that IL-10 functions to main-
tain homeostatic T cell tolerance to commensal bacteria in the intestine. IL-10 acts 
on myeloid cells in order to maintain colonic homeostasis. Mice bearing a deletion 
of the IL-10 receptor within the myeloid compartment develop colitis indistinguish-
able from mice with global IL-10 receptor defi ciency [ 165 ,  203 ]. The absence of 
IL-10 signaling results in excessive production of pro-infl ammatory cytokines, such 
as IL-1β, IL-23, and IL-6 by myeloid cells [ 71 ]. Defi ciency in the signaling adaptor 
myeloid differentiation primary response gene 88 (MyD88), which abrogates most 
of Toll-like receptor (TLR) signaling – one of the major pathways by which myeloid 
cells sense microbial products – blocks the development of colitis in IL-10-defi cient 
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mice [ 71 ,  140 ], further demonstrating that indeed microbial stimuli are required in 
order to trigger disease. 

 Various immune cells produce IL-10 in the intestine. IL-10 producing macro-
phages are abundant in the lamina propria and can induce or expand Tregs in various 
models [ 43 ,  67 ,  122 ]. Tregs are critical in the prevention of spontaneous or experi-
mentally induced colitis [ 145 ,  183 ]. Indeed, mice with Tregs that are not able to 
sense IL-10 develop colitis, although later than IL-10-defi cient mice. These mice 
also exhibit reduced levels of Treg-derived IL-10 [ 29 ]. Similarly, macrophage- 
derived IL-10 is necessary for the Treg-mediated prevention of experimental colitis 
induced by transferred CD4 + CD45RB +  T cells [ 122 ]. However, the selective loss of 
IL-10 derived from myeloid cells is by itself not suffi cient to drive spontaneous 
colitis [ 166 ,  203 ]. In contrast, Treg-specifi c IL-10 defi ciency does result in sponta-
neous colitis development demonstrating that indeed Tregs are the critical source 
for IL-10 in the intestine [ 145 ]. 

 Collectively these fi ndings demonstrate that IL-10 is essential to maintain colonic 
homeostasis by limiting macrophage activation in response to commensal bacteria, 
which would otherwise trigger detrimental effector T cell responses. The clinical 
relevance of the pathway is demonstrated by the fact that mutations that block IL-10 
function in humans result in the development of severe early onset colitis [ 64 ]. 

 Regulatory mechanisms are also essential to properly control and limit infl am-
matory responses during ongoing immune responses against pathogens. IL-10 is 
produced as a negative feedback mechanism [ 33 ,  129 ]. Depending on the type of 
immune response, loss of IL-10 may lead to an enhanced immune reaction and 
therefore faster pathogen clearance; adversely it can give rise to excessive infl am-
mation resulting in tissue damage or mortality. IL-10 derived from macrophages is 
critical in order to limit innate responses to certain microbial stimuli, such as the 
TLR4 ligand lipopolysaccharide (LPS) [ 166 ]. Mice with global IL-10 defi ciency as 
well as those with IL-10 defi cient macrophages, but not wild-type mice, succumb to 
septic shock following administration of low doses of LPS [ 16 ,  166 ]. 

 IL-10 production from effector T cells, and to a lesser extent from regulatory T 
cells, is critical in many infections that trigger an adaptive immune response. During 
 Toxoplasma gondii  infection, for example, IL-10 produced by Th1 cells is essential 
to limit an otherwise excessive Th1 cell response [ 48 ,  77 ]. Lack of IL-10 production 
from T cells in this model is associated with enhanced T cell activation and differ-
entiation. Mice with a T cell-specifi c defi ciency in IL-10 succumb to severe immu-
nopathology upon infection with  T. gondii  akin to mice with global IL-10 defi ciency 
[ 77 ,  142 ]. Similarly, infection with  Plasmodium chabaudi  leads to IL-10 secretion 
from CD4 +  T cells. Deletion of IL-10 from T cells results in decreased survival, 
greater weight loss, and increased levels of effector cytokines, such as IFN-γ and 
TNF-α [ 55 ]. The contribution of IL-10 derived from B cells during infection is less 
well understood. However, one report found that B cell-derived IL-10 non- 
redundantly decreases virus-specifi c CD8 +  T cell responses and plasma cell expan-
sion during murine cytomegalovirus infection [ 108 ]. 

 In some cases the IL-10-mediated negative feedback promotes chronic infection 
as it dampens the immune response enough to prevent effi cient pathogen clearance 
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[ 33 ]. This is the case, for example, during infection with the  Leishmania major  
strain NIH/S, which induces nonhealing lesions in infected wild-type mice due to 
IL-10 production from Th1 cells [ 8 ]. Certain pathogens, such as the Epstein-Barr 
virus, even encode IL-10 homologs in their genome as a means to evade the host’s 
immune response [ 120 ].  

5.3     Drivers of IL-10 Expression in Myeloid Cells 

 IL-10 production in myeloid cells is triggered by microbial products (Fig.  5.2 ), 
which are recognized through pattern recognition receptors, including TLRs, C-type 
lectin receptors, retinoic acid-inducible gene 1 (RIG-I)-like receptors, and 
nucleotide- binding oligomerization domain (NOD)-like receptors. Several TLRs, 
including TLR2, TLR4, TLR5, TLR7, and TLR9, have been shown to induce IL-10 
production in human and murine macrophages and DCs [ 2 ,  18 ,  27 ,  30 ,  44 ,  47 ,  51 , 
 56 ,  59 ,  68 ,  69 ,  80 ,  143 ]. TLR2 ligands, such as Pam3cys, appear to be particularly 
potent inducers of IL-10 production by myeloid cells [ 44 ]. Accordingly, TLR2-
defi cient mice exhibit reduced IL-10 production from macrophages during  Candida 
albicans  infection [ 127 ]. Despite their common expression of TLRs, myeloid cells 
differ in their ability to produce IL-10 in response to TLR ligation. TLR9 activation, 
for example, induces IL-10 production more readily from murine macrophages than 
from DCs [ 18 ,  80 ].
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   Myeloid cells also have the capacity to integrate signals received through TLRs 
with other pathways in order to modulate their IL-10 production. TLR-independent 
triggers of IL-10 production include the C-type lectin receptors DC-SIGN [ 59 ] and 
Dectin-1 [ 42 ,  143 ]. Co-activation of TLR2 and Dectin-1 enhances IL-10 production 
in DCs relative to TLR2 or Dectin-1 stimulation alone [ 42 ]. Similarly, CD40 liga-
tion together with TLR activation further enhances IL-10 production in DCs [ 47 ]. 

 In addition to microbial stimuli, myeloid cells modulate their IL-10 production 
in response to cytokines secreted by other immune cells. Type I interferon enhances 
IL-10 production from TLR4-stimulated murine macrophages and human mono-
cytes. In fact, a sustained IL-10 production by macrophages in response to LPS 
requires an IFN-β-mediated autocrine feedback loop in order to maintain IL-10 
transcription [ 5 ,  27 ,  132 ]. Type I IFN also promotes IL-10 production in 
 Mycobacterium tuberculosis -infected macrophages [ 112 ,  116 ]. In contrast, IFN-γ 
reduces the production of IL-10 in TLR2-activated human macrophages [ 72 ]. 

 Phagocytosis of apoptotic cells results in an anti-infl ammatory response character-
ized by IL-10, PGE2, and TGF-β [ 190 ]. LPS-activated peripheral blood mononuclear 
cells in the presence of apoptotic peripheral blood lymphocytes are able to produce 
higher levels of IL-10 compared to LPS alone [ 190 ]. IL-10 may also act to drive its 
own transcription in macrophages and/or monocytes. Stimulation of monocyte- 
derived macrophages with IL-10 leads to an increase in IL-10 mRNA [ 170 ]. 

 B cells are a source for IL-10 in vitro and in vivo (Fig.  5.2 ). A combination of anti-
Ig and anti-CD40 stimulation induces IL-10 expression, a process that is further 
enhanced by IL-12 [ 167 ]. B cells express a number of TLRs. Agonists of TLR2, 
TLR4, or TLR9 have all been shown to promote IL-10 production [ 1 ,  97 ,  156 ]. Similar 
to macrophages, IFN-α in combination with TLR agonists increases IL-10 production 
from B cells compared to stimulation with TLR stimulation alone [ 62 ,  198 ].  

5.4     Drivers of IL-10 Expression in T Cells 

 While myeloid cells can directly sense microbial products and produce IL-10 in 
response, T cells require cytokines or cell-based ligands provided by other immune 
cells in order to do so. Virtually all T cell subsets (Fig.  5.2 ), including regulatory T 
cells, Th1, Th2, Th9, Th17 effector cells, and CD8 +  T cells, have the capacity to 
produce IL-10 [ 113 ,  119 ,  129 ,  144 ,  153 ,  180 ]. 

 As discussed earlier, IL-10 production from regulatory T cells is essential in 
order to maintain immune homeostasis in the gut. Accordingly, IL-10 production 
from Tregs in vivo is largely confi ned to the intestine under homeostatic conditions 
[ 114 ]. Surprisingly, the signals required to trigger IL-10 expression from Tregs are 
not well defi ned. One report concluded that the development of IL-10-competent 
Tregs does not require IL-10 itself, but is instead dependent on TGF-β [ 114 ]. 
However, another study found that Tregs in the intestine indeed sense IL-10 and that 
IL-10R-defi cient Tregs have reduced levels of IL-10 expression [ 29 ]. IL-2 and IL-4 
induce IL-10 production from regulatory T cells in vitro and in vivo [ 13 ,  35 ,  96 ]. 
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 In accordance with its function as a negative feedback regulator, effector T cells 
transiently express IL-10 linked to a state of full activation and effector cytokine 
production [ 153 ,  155 ]. Although this conclusion is largely based on in vitro studies, 
in many cases, the induction of IL-10 appears to be an intricate part of the T cell 
differentiation program, triggered by the same stimuli. Accordingly, strong TCR 
stimulation together with the Th1-polarizing cytokine IL-12 is required for IL-10 
production from Th1 cells, while the Th2-polarizing cytokine IL-4 is essential for 
IL-10 production from Th2 cells [ 28 ,  60 ,  118 ,  155 ,  164 ]. TGF-β and IL-6 drive the 
production of IL-10 as part of the Th17 cell differentiation program [ 173 ,  195 ]. The 
more recently defi ned subset of IL-9-producing Th9 cells requires IL-4 and TGF-β 
for its differentiation and IL-10 production [ 39 ,  187 ]. 

 Similar to their role in myeloid cells, type I IFNs promote IL-10 production from 
CD4 +  T cells [ 5 ,  32 ,  100 ]. 

5.4.1     IL-10 Induction by IL-27 and TGF-β 

 IL-27 and TGF-β are potent inducers of IL-10 production in various T cell subsets 
in vivo (Fig.  5.2 ). IL-27 is a member of the IL-12 cytokine family and is produced 
mostly by innate immune cells during infections [ 73 ,  84 ]. IL-27, which is normally 
not part of T cell differentiation protocols, indeed promotes IL-10 production in 
CD4 +  T cells under neutral and Th1-, Th2-, or Tr1-polarizing conditions in vitro [ 11 , 
 14 ,  53 ,  124 ,  134 ,  173 ]. More importantly, IL-27 limits Th1, Th2, and Th17 cell 
responses in various infection and autoimmune disease models [ 9 ,  53 ,  73 ,  84 ,  172 ]. 
For example, IL-10 + IFN-γ +  Th1 cells are absent in IL-27 receptor-defi cient mice, 
and these mice develop lethal CD4 +  T cell-mediated infl ammation upon  T. gondii  
infection [ 172 ,  189 ]. Acting together with IL-2, IL-27 also induces IL-10 expression 
in cytotoxic CD8 +  T cells [ 174 ]. 

 TGF-β, on the other hand, is required for the differentiation and IL-10 produc-
tion of regulatory T cells [ 114 ] and Th17 cells in the intestine. These T cells are 
generated mainly in response to the commensal microbiota, in the absence of strong 
pro-infl ammatory stimuli, which precludes high levels of IL-27. However, TGF-β 
does further augment IL-27-induced IL-10 expression in CD4 +  T cells in vitro, con-
ditions most commonly used to generate Tr1 cells [ 11 ,  173 ]. In contrast, IL-10 pro-
duced by Th17 cells in response to IL-6/TGF-β is not further enhanced by IL-27 
[ 173 ]. Mechanistically IL-27 and TGF-β rely on distinct but partially overlapping 
transcriptional programs to induce IL-10 expression [ 128 ].  

5.4.2     IL-10 Induction by Notch 

 In addition to secreting cytokines that shape the differentiation of CD4 +  T cells, 
myeloid cells also upregulate Notch ligands in response to microbial stimuli that 
have been shown to drive T cell polarization and IL-10 production [ 6 ,  139 ]. 
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 We found that the Notch pathway is a critical regulator of IL-10 production 
under pro-infl ammatory conditions in Th1 cells. Notch synergizes with IL-12 or 
IL-27 to strongly enhance IL-10 production in IFN-γ-producing Th1 cells [ 147 ]. 
Activation of the Notch pathway via its ligands Delta-like (Dll) 1 or Dll4 promotes 
the co-expression of IL-10 and IFN-γ in Th1 cells in vitro [ 83 ,  147 ]. The Notch 
pathway also promotes IL-10 production from Th17 cells in vitro [ 131 ]. Notch- 
mediated IL-10 induction in vivo critically depends on Dll4, the expression of 
which is strongly induced on dendritic cells upon TLR stimulation, but is largely 
restricted to plasmacytoid DCs in the steady state [ 83 ].   

5.5     The  Il10  Gene Locus and Its Epigenetic Regulation 

 The  Il10  gene locus in mice exhibits a high degree of homology to the one in human. 
In both cases  Il10  is located within the  Il10  gene family cluster on chromosome 1 
[ 88 ], immediately downstream of  Il19 ,  Il20 , and  Il24  (Fig.  5.3a ).  Il10  exhibits the 
prototypical genomic organization of all IL-10 family cytokines being comprised of 
fi ve exons and four introns. Genomic alignments of the mouse and human  Il10  loci 
have identifi ed a number of highly conserved noncoding sequences (CNS), indicat-
ing important roles in the regulation of  Il10  expression (Fig.  5.3b ). The highest 
degree of conservation is observed for CNS-29.8, CNS-26, CNS-20, CNS-9, CNS- 
4.5, and CNS-0.12 (in kb relative to  Il10  transcriptional start site (TSS)) upstream 
as well as CNS+1.65, CNS+3, and CNS+6.5 downstream of the TSS [ 79 ,  98 ,  191 ].

   Regions within the  Il10  locus that are hypersensitive to DNase I digestion (HSS) 
localize mostly to the CNS regions, indicating accessible chromatin in these areas. 
For instance, bone marrow-derived macrophages stimulated with TLR ligands 
(LPS, CpG, or zymosan) exhibit fi ve HSS regions located −4.5, −2, and −0.12 kb 
upstream and +1.65 and +2.98 kb downstream of the TSS [ 154 ]. Non-stimulated 
macrophages also show some degree of sensitivity to DNase I digestion at these 
sites. This is consistent with the immediate IL-10 expression observed in these cells 
upon exposure to microbial stimuli. Only HSS −4.5 kb was detected in BM-derived 
DCs when stimulated with TLR ligands [ 154 ]. Again, the reduced accessibility in 
DCs as compared to macrophages is in line with the weaker IL-10 expression in 
DCs in response to the same stimuli. 

 In contrast, chromatin accessibility in T cells is more dynamic. The  Il10  gene 
locus in naïve T cells is in a closed, transcriptionally inactive conformation with 
only one HSS at −8.8 kb [ 79 ]. Extensive chromatin remodeling during T cell dif-
ferentiation leads to the formation of additional, mostly common HSS in Th1 and 
Th2 cells [ 74 ,  79 ,  154 ,  191 ]. Some of these sites are more prominent in Th2 than in 
Th1 cells (HSS −30.4, −29.8, −21, −17.5, and −0.12 kb and +6.45 kb) [ 79 ]. Most 
described HSS in the  Il10  locus are common between T cells and myeloid cells, 
apart from HSS −4.5 kb which appears to be specifi c to macrophage and DCs [ 154 ]. 

 The chromatin structure at the  Il10  locus is critical in the regulation of IL-10 
expression. Among other mechanisms, chromatin accessibility for the transcriptional 

S. Rutz and W. Ouyang



97

Th1

Th17

Tr1

Treg

Il24a) Il20 Il19 Il10

b)

-9 -4.5

MF

Th2

Il10

CNS

c)

AhR

GATA3

c-MAF

BLIMP1

STAT3/4

NFAT
STAT3/6

BLIMP1
IRF4

c-MAF

c-MAF

c-MAF

-9 -4.5

-20-26-29.8 -0.12

IRF4

-9 -4.5

-9 -4.5

-9 -4.5

-9 -4.5

-9 -4.5

STAT4 STAT4

STAT3

NF-κB

IRF4
AP1

SMAD4

NF-κB

ATF1 CREB

E4BP4

+6.5

Il10

Il10

Il10

Il10

Il10

Il10

+6.5

+6.5

+6.5

+6.5

+6.5

+6.5

-20-26-29.8

-20-26-29.8

-20-26-29.8

-20-26-29.8

-20-26-29.8

-20-26-29.8

Sp1
STAT1/3

AhR

NFAT1

BATF

BATF
IRF4

IRF4
NFAT

BLIMP1

STAT3

AhR

IRF4
BLIMP1

BLIMP1

  Fig. 5.3    The  Il10  locus and transcriptional regulation of IL-10 expression in various cell types. ( a ) 
 Il10  is part of the IL-10 cluster on chromosome 1 that also contains  Il19 ,  Il20 , and  Il24 . ( b ) 
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machinery is regulated by different modifi cations of lysine residues on the tails of 
histones. For instance, histone 3 K4me3 is a marker for an accessible, transcription-
ally competent chromatin, whereas H3K27me3 is associated with inactive chroma-
tin. Chromatin immunoprecipitation followed by deep sequencing (ChIP- seq) has 
demonstrated that in differentiated Th1 and Th2 cells, the  Il10  locus is in a transcrip-
tionally competent state, characterized by the presence of H3K4me3 and the absence 
of H3K27me3 marks [ 192 ]. The same study found binding of STAT4 in intron 4 in 
Th1 cells and of STAT6 in the  Il10  promoter region in Th2 cells [ 192 ]. H3K4me3 
marks are lost and H3K27me3 marks reoccur in STAT4 or STAT6 defi cient cells, 
respectively [ 128 ,  192 ], suggesting that STATs function during IL-10 regulation by 
increasing the accessibility of the  Il10  gene locus for other transcription factors. 

 Histone 3 phosphorylation at promoter regions further promotes accessibility 
and active transcription. Activation of the mitogen-activated protein (MAP) kinase 
ERK leads to H3 phosphorylation in the  Il10  promoter and facilities the binding of 
transcription factors, such as the constitutively expressed Sp1 in TLR-stimulated 
macrophages [ 104 ,  199 ]. 

 Finally, histone acetylation is a hallmark of active transcription. Hyperacetylation 
of histone H4 was detected at the −4.5 and −1.2 kb HSS regions in IL-10-producing 
macrophages [ 154 ]. The histone deacetylase HDAC11 has been shown to inhibit 
IL-10 production in macrophages presumably by limiting binding of Sp1, STAT3, 
and polymerase II to the proximal  Il10  promoter [ 188 ]. Ets-1, a member of the ETS 
family of transcription factors that is highly expressed in resting T cells, negatively 
regulates IL-10 production in Th1 cells. Ets-1 defi ciency signifi cantly decreases 
recruitment of HDAC1, another histone deacetylase, at HSS −0.12, +1.65, and 
+2.98 kb [ 99 ]. Consistently, Ets1-defi cient CD4 +  T cells exhibit enhanced IL-10 
production when stimulated under Th1-polarizing conditions [ 99 ]. The transcrip-
tion factor E4BP4 also regulates IL-10 production in various CD4 +  T cell subsets 
[ 121 ]. At least in Th2 cells, E4BP4 binds to intron 4 and to the 3′ UTR of  Il10  to 
promote histone acetylation [ 121 ].  

5.6     Transcriptional Regulation of IL-10 Expression 
in Myeloid Cells 

 TLR signaling is the main driver of IL-10 expression in myeloid cells. All TLRs, 
with the exception of TLR3, bind to the adaptor protein MyD88. TLR3 instead 
binds the adaptor TRIF (TIR domain-containing adaptor protein inducing IFN-β), 
while TLR4 recruits both MyD88 and TRIF [ 4 ]. Both MyD88- and TRIF-dependent 
TLR signaling are able to induce IL-10 production [ 18 ]. TLR ligation leads to the 
activation of several downstream pathways, including the MAP kinase pathway, the 
PI3K/AKT pathway, and the NF-κB pathway [ 85 ]. 
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 Activation of the MAP3 kinase TPL-2 and downstream ERK1 and ERK2 is criti-
cal for IL-10 production in macrophages and DCs in response to TLR2, TLR4, and 
TLR9 activation [ 12 ,  44 ,  80 ,  196 ]. Accordingly, inhibitors of the ERK1/2 pathway 
reduce IL-10 secretion from macrophages [ 103 ]. Similarly, a knockout of TPL-2 
reduces TLR-induced IL-10 production [ 12 ]. ERK activation is also downstream of 
Dectin-1-induced IL-10 production in DCs [ 45 ,  168 ]. The degree of ERK activation 
correlates with the levels of IL-10 production observed in macrophages, mDCs, and 
pDCs [ 80 ] demonstrating the central importance of this pathway. The MAP kinase 
pathway eventually results in activation of members of the AP1 and ATF transcrip-
tion factor families. The AP1 factor c-Fos, for instance, has been shown to be 
involved in TLR-induced IL-10 expression in macrophages and DCs [ 2 ,  44 ,  72 ,  80 ]. 

 In addition to ERK, p38 [ 30 ,  54 ,  72 ,  78 ,  89 ,  196 ] and JNK [ 26 ,  30 ,  72 ] also con-
tribute to IL-10 production in TLR-stimulated macrophages, monocytes, and DCs. 
For example, knockout of p38α or treatment with p38α/β inhibitors reduce IL-10 
secretion in macrophages [ 86 ]. Macrophages defi cient for DUSP1, a dual- specifi city 
phosphatase involved in deactivating p38 signaling in response to LPS, display pro-
longed p38α activation relative to wild-type cells, and this correlates with an 
increase in IL-10 production [ 151 ]. p38γ and -δ also seem to be required for normal 
LPS-induced IL-10 production, presumably through their regulation of TPL-2 
expression. p38γ/δ knockout macrophages have very low TPL-2 levels and fail to 
activate ERK1/2 downstream of TLR activation [ 141 ]. Both ERK and p38 may 
function cooperatively in their regulation of IL-10 production, through their joined 
activation of MSK1 and MSK2, mitogen- and stress-activated protein kinases, 
which promote IL-10 production in TLR4-stimulated macrophages. Downstream of 
MSK1 and MSK2 the transcription factors CREB and ATF1 bind and trans-activate 
the  Il10  promoter [ 7 ,  133 ]. The MAPK–MSK1/2–CREB pathway is also down-
stream of Dectin-1 induced IL-10 expression [ 49 ]. Both ERK1/2 and p38α directly 
phosphorylate Sp1 [ 37 ,  177 ]. Numerous studies using  Il10  promoter reporter genes 
have shown that Sp1 binding sites are required for the induction of IL-10 transcrip-
tion [ 20 ,  106 ,  178 ,  199 ]. 

 The PI3K/AKT pathway also contributes to IL-10 expression in myeloid cells 
[ 109 ,  130 ,  193 ], either by antagonizing GSK3-β, a constitutively active kinase 
which inhibits the production of IL-10 [ 125 ,  130 ], or through ERK [ 109 ] and mTOR 
[ 130 ,  193 ] activation. mTOR may further regulate IL-10 production through the 
activation of STAT3 [ 193 ]. 

 NF-κB is activated in response to TLR stimulation and contributes to IL-10 regu-
lation. Accordingly, IKK2-defi cient macrophages, which have impaired NF-κB acti-
vation, show reduced production of IL-10 [ 82 ]. In TLR4-stimulated macrophages, 
the NF-κB subunit p65 is recruited to an NF-κB binding site at HSS −4.5 kb [ 154 ]. 
Its binding to a different site mediates IL-10 production in response to dsRNA [ 26 ]. 
p105 (NF-κB1) is a binding partner for TPL-2. Accordingly, knockout of p105 
blocks TLR-induced ERK1/2 activation and downstream IL-10 expression [ 12 ]. In 
addition to binding to TPL-2, p105 can be cleaved to generate the p50 NF-κB sub-
unit. The p50 homodimer is recruited to a site proximal to the  Il10  transcriptional 
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start site and promotes IL-10 production in macrophages in response to TLR4 acti-
vation [ 22 ]. 

 Several transcription factors, including c-Maf, the aryl hydrocarbon receptor 
(AhR), and STATs, mediate IL-10 production in macrophages as well as in T cells 
(see below). c-Maf belongs to the Maf family of basic region and leucine zipper 
transcription factors and has been discussed as somewhat of a master transcription 
factor for IL-10 in T cells and macrophages [ 23 ,  146 ,  153 ]. c-Maf binds to the  Il10  
promoter and enhances IL-10 production in LPS-stimulated macrophages [ 23 ]. 
Conversely, c-Maf-defi cient macrophages exhibit strongly impaired IL-10 produc-
tion upon LPS stimulation. c-Maf is expressed constitutively in resting monocytes 
and macrophages and further upregulated by IL-4. The ability of IL-4 to act in 
combination with LPS to induce IL-10 is blunted in c-Maf knockout cells [ 23 ]. The 
ligand-activated transcription factor AhR is required for optimal IL-10 production 
in TLR4- but not TLR9-stimulated macrophages, where it forms a complex with 
STAT1 [ 90 ]. LPS-induced IL-10 production is inhibited in AhR-defi cient or STAT1- 
defi cient peritoneal macrophages compared to WT cells [ 90 ]. The IL-10 enhancing 
function of type I IFN relies in part on the recruitment of STAT1 or STAT3 to the 
 Il10  promoter [ 66 ,  202 ]. Inactivation of the STAT-binding motif completely ablates 
trans-activation by type I IFN. 

 Type I IFN also activates the transcription factor interferon regulatory factor 1 
(IRF1), which enhances IL-10 production [ 202 ]. In contrast IRF5, the expression of 
which is induced downstream of TLR ligation, binds to the  Il10  promoter but func-
tions as a repressor of IL-10 in human GM-CSF differentiated monocytes [ 94 ].  

5.7     Transcriptional Regulation of IL-10 in T Cells 

 T cells need to undergo activation and differentiation into effector T cells in order to 
express IL-10. Accordingly, they integrate signals through their T cell receptor 
(TCR) and cytokine receptors in regulating IL-10 expression. 

5.7.1     TCR Signaling in IL-10 Regulation in T Cells 

 TCR ligation, which is the minimal requirement for any kind of T cell activation but 
not suffi cient for subsequent effector differentiation, activates several downstream 
signaling pathways culminating in the activation of transcription factors such as 
AP1, NFAT, and NF-κB. Similar to its role in macrophages and DCs, the MAP 
kinase ERK is a common positive regulator of IL-10 expression in different T helper 
cell subsets [ 155 ]. Based on the use of small-molecule kinase inhibitors, the ERK1/2 
and p38 MAP kinase signaling pathways also seem to regulate IL-10 production in 
CD8 +  T cells [ 179 ]. ERK is activated via Ras downstream of the TCR [ 46 ] and 
eventually leads to the activation of transcription factors of the AP1 family. Several 
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members of the AP1 family have been shown to promote IL-10 expression in vari-
ous T cell subsets by binding to AP1 motifs in the  Il10  locus. Early studies found 
that in Th2, but not in Th1 cells, JunB and to a lesser extent c-Jun bind at HSS +6.45 
kb and promote IL-10 expression [ 79 ,  191 ]. Ectopic expression of c-Jun and JunB 
enhances IL-10 production in activated naïve T cells, whereas a dominant negative 
c-Jun reduces IL-10 production [ 191 ]. The transcription factor IRF4 positively reg-
ulates IL-10 expression in Th2 cells and also binds to the  Il10  promoter as well as 
the CNS+6.45 region [ 3 ]. 

 Upon TCR activation, NFAT1 translocates from the cytoplasm into the nucleus 
where it is known to interact with AP1 and other transcriptional partners to promote 
cytokine gene transcription [ 107 ]. Consistently, NFAT1 binds to the  Il10  promoter 
in Th2 and to intron 4 in Th1 cell lines [ 74 ]. NFAT1/IRF4 co-binding to CNS-9 
synergistically enhances IL-10 expression in Th2 cells [ 98 ]. 

 More recently the basic leucine zipper transcription factor ATF-like (BATF), 
another AP1 family member, together with JunB and IRF4 were found to function 
as “pioneer factors” in T cell differentiation by binding to a multitude of loci, includ-
ing CNS-9 in the  Il10  locus, early after T cell activation [ 31 ,  63 ,  102 ,  182 ]. Mutating 
either the IRF or AP1 motif within CNS-9 results in a diminished luciferase reporter 
activity consistent with functional cooperation between these factors in  Il10  gene 
regulation [ 102 ]. Defi ciencies in BATF or IRF4 signifi cantly impair Th2 or Th17 
differentiation and effector cytokine production demonstrating a much broader 
function beyond IL-10 regulation [ 3 ,  31 ,  123 ]. This further demonstrates the close 
interrelation of IL-10 expression and T cell differentiation. However, the broad 
function of BATF/IRF4 across different T cell subsets is more consistent with a 
scenario in which T cell activation provides a framework for both IL-10 expression 
and T cell differentiation, both of which are then further specifi ed by additional 
polarizing factors, such as STATs.  

5.7.2     STAT/SMAD Pathways in IL-10 Regulation in T Cells 

 STATs are cytoplasmic transcription factors that translocate to the nucleus to regu-
late gene expression in response to cytokines and growth factors. In this regard 
STATs are essential in mediating T cell polarization. STAT4 is downstream of 
IL-12 in driving Th1 differentiation, and STAT6 downstream of IL-4 mediates Th2 
polarization, whereas STAT3 is activated by IL-6 and IL-23 and is critical for Th17 
differentiation. All of these STATs have been implicated as critical drivers of IL-10 
expression in the respective T cell subsets [ 28 ,  147 ,  155 ,  195 ]. STAT3 and to some 
extent STAT1 downstream of IL-27 and IL-21 have roles in inducing IL-10 beyond 
a particular T cell subset [ 14 ,  53 ,  115 ,  169 ,  170 ,  173 ,  195 ]. Two STAT binding sites 
have been identifi ed in the murine and human  Il10  promoter [ 184 ,  202 ]. Accordingly, 
STAT4 and STAT6 bind to the  Il10  promoter in Th1 and Th2 cells, respectively 
[ 128 ,  192 ]. STAT4 binding has also been detecting in the CNS-9 [ 128 ] and intron 4 
[ 192 ] region in Th1 cells. STAT3 binds to the same intron 4 region in Th17 cells 
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[ 102 ]. However, STAT3 defi ciency does not block the ability of TGF-β/IL-6 treat-
ment to promote IL-10 production, although it blocks the effects of IL-27 [ 195 ]. In 
conclusion, STATs downstream of a variety of cytokines critically contribute to 
IL-10 expression, arguably in some cases as an integral part of the respective dif-
ferentiation program, but also more broadly in a subset-nonspecifi c manner. 

 Similarly, SMADs downstream of TGF-β regulate IL-10 production in T helper 
cells, although TGF-β in many cases interfers with or alters T helper cell differentia-
tion. For example, Th17 cells generated with IL-6 and TGF-β produce large amounts 
of IL-10 in addition to the signature cytokine IL-17. In contrast, Th17 cells differ-
entiated in the absence of TGF-β lack IL-10 expression, whereas IL-17 levels are 
comparable [ 61 ]. Even more strikingly, TGF-β potently induces IL-10 production 
from Th1 cells [ 91 ,  128 ]. Downstream SMAD4 binds and trans-activates the  Il10  
promoter in Th1 cells [ 91 ]. At the same time, however, TGF-β extinguishes IFN-γ 
expression in these cells [ 91 ,  128 ]. Similarly, TGF-β, in the presence of IL-4, stirs T 
cell differentiation toward a Th9 phenotype, away from Th2 [ 39 ,  187 ]. Yet, SMAD3 
together with GATA3 positively regulate IL-10 production in response to TGF-β in 
Th2 cells [ 17 ]. TGF-β signaling seems to promote IL-10 expression broadly and 
mostly independently of the T cell differentiation program.  

5.7.3     T Cell Lineage Transcription Factors in Regulation 
of IL-10 Expression 

 As discussed previously, IL-10 is not produced by naïve T cells, but instead requires 
T cell activation following antigen recognition. This activation usually occurs in the 
context of certain cytokines that favor T cell differentiation. Therefore both pro-
cesses usually coincide. 

 One way of dissecting this further is to assess the direct contribution of master 
transcription factors that are induced during T cell differentiation, and that in fact 
drive and defi ne this process. T-bet is induced by STAT4 downstream of IL-12 and 
drives Th1 differentiation. Th2 differentiation requires IL-4 signaling through 
STAT6 and the expression of GATA binding protein 3 (GATA3). Th17 differentia-
tion is dependent on TGF-β and IL-6, which together induce the expression of 
RAR-related orphan receptor gamma (RORγt) [ 201 ]. 

 The requirement for these master transcription factors for IL-10 expression is 
probably best studied in the case of GATA3 in Th2 cells. GATA3 is recruited to two 
locations in the  Il10  locus, but it does not trans-activate the  Il10  promoter. Instead, 
GATA3 binding facilities chromatin remodeling and leads to histone acetylation at 
the  Il10  locus [ 164 ]. This leads to “epigenetic imprinting,” which allows Th2 cells 
to establish a stable memory for IL-10 expression [ 28 ,  87 ,  164 ]. However, GATA3 
is not required for IL-10 production in differentiated Th2 cells [ 200 ]. The role for 
T-bet in IL-10 expression in Th1 cells has been studied in less detail. However, one 
of the main functions of T-bet during Th1 polarization is the induction of the 
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IL-12RβII chain to enable IL-12 signaling [ 159 ], which in turn drives IL-10 expres-
sion. Similarly, we fi nd that the induction of IL-10 downstream for Notch signaling 
is not impaired in T-bet-defi cient T cells cultured under Th1-polarizing conditions. 
It is, however, strictly dependent on STAT4 [ 147 ]. A detailed recent analysis of the 
transcriptional network in Th17 cells suggests that RORγt indeed acts as a repressor 
for  Il10 , whereas it positively regulates the expression of the Th17 signature cyto-
kine  Il17a  [ 31 ]. Overall these fi ndings suggest that although IL-10 expression coin-
cides with effector cytokine expression in various T helper cell subsets, it is, at least 
to some degree, decoupled from the respective differentiation program. The term 
“master transcription factors” is further called into question by recent fi ndings 
showing that T-bet, GATA3, and RORγt only regulate the expression of a relatively 
small subset of genes directly – which includes the signature cytokine genes – 
whereas STATs affect gene expression much more broadly [ 31 ,  185 ]. Additional 
factors, fi rst and foremost STATs and SMADs downstream of pro-infl ammatory 
cytokines and TGF-β, determine the expression of IL-10 in response to environmen-
tal factors.  

5.7.4     The Role of c-Maf in IL-10 Regulation in T Cells 

 c-Maf expression is induced by several important drivers of IL-10 expression, 
including IL-27, TGF-β, and ICOS ligand [ 10 ,  15 ,  134 ,  195 ]. Indeed, c-Maf has 
been shown to be critical for IL-10 expression in Th17 and Tr1 cells [ 10 ,  134 ,  195 ]. 
But its expression also correlates with IL-10 production in Th1 and Th2 cells [ 155 ]. 
Although its role in Th9 cells has not been studied, it is likely that c-Maf also con-
trols IL-10 production in this T cell subset, given the fact that Th9 cells differentiate 
in the presence of IL-4 and TGF-β [ 39 ,  187 ], both inducers of c-Maf. 

 Although c-Maf can trans-activate  Il10  by itself to some extent [ 10 ,  195 ], robust 
IL-10 expression requires interaction with additional transcriptional regulators. In 
the case of Tr1 cells generated in the presence of IL-27 or IL-27/TGF-β [ 134 ], 
c-Maf cooperates with AhR in the regulation of IL-10 production in mouse as well 
as human [ 10 ,  58 ]. As such, knocking down c-Maf or AhR in Tr1 cells decreases 
 Il10  mRNA expression. Both factors bind and synergistically trans-activate the  Il10  
gene promoter [ 10 ]. The induction of c-Maf in Tr1 cells is thought to be further 
regulated by IL-21 and possibly by ICOS, since both IL-21- and ICOS-defi cient T 
cells show reduced IL-10 production and c-Maf expression [ 135 ]. In Th17 cells, 
c-Maf is induced downstream of TGF-β and acts mainly as a suppressor of pro- 
infl ammatory gene expression most likely by antagonizing BATF [ 31 ,  148 ]. 
However, IL-10 is among the few genes induced by c-Maf in Th17 cells [ 31 ,  195 ]. 
Although c-Maf expression is low in Th1 cells compared to other T cell subsets, it 
is driven by IL-12 and can be potently induced by activation of the Notch pathway 
in order to drive IL-10 expression [ 128 ].  
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5.7.5     The Role of Blimp-1 in IL-10 Regulation in T Cells 

 Blimp-1 encoded by the  Prdm1  gene is a transcriptional repressor that positively 
regulates IL-10 production in both CD4 +  and CD8 +  T cells [ 76 ,  111 ,  174 ]. Blimp-1 
expression is limited to highly polarized effector CD4 +  T cells and therefore associ-
ated with effector cytokine secretion [ 110 ,  111 ]. 

 We recently reported that Blimp-1 is critical for IL-10 production in Th1 cells, 
where it binds mainly to CNS-9 [ 128 ]. Blimp-1 expression in Th1 cells in vitro is 
dependent on STAT4, which explains its late induction during Th1 polarization. The 
early phase of Th1 differentiation is IL-12 independent and instead relies on IFN-γ- 
mediated induction of T-bet [ 159 ]. Consistent with the transient nature of IL-10 
expression in Th1 cells, Blimp-1 activity is restricted to an effector state and is 
likely to coincide with high availability of pro-infl ammatory cytokines, such as 
IL-12. Blimp-1-defi cient Th1 cells lack IL-10 production in vitro and in vivo [ 128 ]. 

 T cell-specifi c Blimp-1 defi ciency results in enhanced infl ammation and immu-
nopathology during  T. gondii  infection. IL-27-induced IL-10 production in CD4 +  T 
cells is completely dependent on Blimp-1 [ 128 ], further suggesting a broad function 
of Blimp-1 in IL-10 regulation in T cells. In IL-27-induced Tr1 cells, the transcrip-
tion factor egr2 is upstream of Blimp-1 [ 76 ]. Accordingly, egr2-defi cient Tr1 cells 
have reduced IL-10 production but enhanced secretion of IL-17 or IFN-γ [ 76 ]. 
Although IL-12 and IL-27 seem to use different pathways to induce Blimp-1, IL-12 
by signaling through STAT4 and IL-27 by signaling through STAT1/STAT3 [ 173 ], 
their co-expression in many Th1-driven immune responses makes it likely that both 
cytokines synergize in promoting Blimp-1-dependent IL-10 expression in Th1 cells 
in vivo. 

 Similarly, Blimp-1 is critical for IL-10 production in CD8 +  T cells, where its 
expression requires CD4 +  T cell help and is limited to effector and memory CD8 +  T 
cells [ 81 ,  111 ,  174 ]. Blimp-1 is also involved in IL-10 regulation in regulatory T 
cells and is expressed in an effector regulatory T cell population that is found at the 
site of infl ammation [ 35 ]. Blimp-1 defi ciency does not prevent Treg development 
but strongly impairs the production of IL-10 by these cells in response to TCR 
stimulation. In Treg cells Blimp-1 acts synergistically with IRF4 [ 35 ]. Given its 
expression pattern, Blimp-1 is perfectly suited to restrict IL-10 production to an 
effector phase at the peak of an acute infl ammatory response. However, Blimp-1 is 
not universally required for IL-10 expression in T cells, as differentiation of Blimp- 
1- defi cient CD4 +  T cells into Th2 cells results in normal IL-10 expression [ 81 ].  

5.7.6     Transcriptional Regulation of IL-10 Expression 
Through Infl ammation 

 T cells integrate diverse environmental stimuli to appropriately express IL-10. Pro- 
infl ammatory cytokines, such as IL-12 and IL-27, secreted by activated antigen- 
presenting cells signal ongoing infl ammation and eventually the need for 
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self-limitation of these responses. Blimp-1 is being recognized as the main driver of 
IL-10 production in pro-infl ammatory effector T cells under these conditions [ 128 , 
 186 ]. Not only is Blimp-1 essential for IL-10 expression in Th1, Tr1 cells, and CD8 +  
T cells; it also drives IL-10 production in regulatory T cells that have entered an 
“effector stage” induced by cytokines such as IL-2, IL-4, and others [ 36 ,  128 ,  174 ]. 
All these cells are severely impaired in their capacity to produce IL-10 in the 
absence of Blimp-1. How does Blimp-1-mediated IL-10 expression relate to c-Maf, 
another widely expressed transcription factor regulating IL-10 [ 146 ]? c-Maf expres-
sion can be induced by pro-infl ammatory stimuli including IL-27 [ 134 ] but also by 
Notch ligands expressed on APCs in response to TLR stimulation. This process 
greatly enhances IL-10 production from Th1 cells, but still requires Blimp-1 [ 128 ]. 
Therefore c-Maf acts cooperatively with Blimp-1 in inducing IL-10 under infl am-
matory conditions. 

 However, IL-10 production is also required to maintain immune homeostasis in 
the absence of acute infl ammation, mainly in the intestine. TGF-β is an important 
driver of IL-10 production under those circumstances. While TGF-β is a potent 
inducer of c-Maf, it strongly antagonizes Blimp-1 expression [ 10 ,  128 ,  134 ,  150 , 
 195 ]. In fact, Th17 cells generated in the presence of TGF-β/IL-6 do express high 
levels of c-Maf but no Blimp-1. The suppressive effect of TGF-β on Blimp-1 is 
dominant over IL-27, explaining why IL-27 does not further enhance IL-10 from 
Th17 cells [ 173 ]. Ectopic expression of Blimp-1 in Th17 cells indeed strongly 
increases IL-10 production [ 128 ]. Tr1 cells can be generated in vitro with IL-27 in 
the presence or absence of TGF-β. The addition of increasing concentrations of 
TGF-β to these cultures shifts IL-10 expression from a Blimp-dependent to a Blimp- 
independent pathway [ 128 ]. In the presence of high levels of TGF-β, in Tr1 cells 
and Th17 cells, IL-10 expression fully relies on c-Maf interacting with AhR [ 10 , 
 128 ]. Collectively, these observations across several T helper cell subsets suggest 
that IL-10 expression, rather than being regulated in a subset-specifi c manner as 
part of the differentiation program, is driven more universally and fi ne-tuned by the 
infl ammation state.   

5.8     Posttranscriptional Regulation of IL-10 Expression 

 Posttranscriptional control of cytokine production represents an additional layer of 
regulation that enables the cell to rapidly release cytokines in response to extracel-
lular stimuli but also to shut down this response in a timely manner. Prominent 
mechanisms of posttranscriptional regulation of cytokines are RNA-binding pro-
teins and microRNAs that control the stability and translational activity of the cyto-
kine RNA [ 75 ]. 

 A growing number of studies, mostly conducted in macrophages, has found 
pathways that regulate IL-10 expression on the posttranscriptional level. The 3′UTR 
of the IL-10 mRNA contains AU-rich elements (AREs) [ 136 ], which are character-
istic of short-lived RNAs, that mediate mRNA decay through their recruitment of 
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ARE-binding proteins [ 75 ]. Two studies identifi ed tristetraprolin (TTP) as the ARE- 
binding protein regulating the stability of IL-10 mRNA in TLR4-stimulated macro-
phages [ 57 ,  171 ]. As a consequence, TTP-defi cient macrophages produce higher 
levels of IL-10 [ 57 ]. A more recent study found higher serum IL-10 levels in LPS- 
treated mice with a myeloid-specifi c defi ciency in TTP [ 93 ]. TTP also targets other 
cytokine mRNAs for rapid degradation, including IL-6, TNF-α, and GM-CSF [ 24 , 
 25 ,  126 ]. 

 Interestingly, the mRNA-destabilizing function of TTP is inversely regulated by 
p38 MAPK activity [ 152 ,  181 ], such that after receiving an infl ammatory stimulus 
the TTP-dependent decay is initially limited ensuring IL-10 expression at the height 
of the infl ammatory response [ 93 ]. IL-10 signaling itself regulates IL-10 mRNA 
[ 21 ] in a TTP-dependent manner. IL-10 increases TTP expression and activity by 
antagonizing p38 activity [ 57 ,  157 ]. 

 Another posttranscriptional regulatory circuit involves the RNA-binding protein 
ARE/poly(U) binding/degradation factor 1 (AUF1), which also binds to the 3′UTR 
of the IL-10 mRNA and reduces its half-life [ 19 ], and the upstream MKP-1, which 
regulates the translocation of AUF1 from the nucleus to the cytosol [ 197 ]. In the 
absence of MKP-1, both IL-10 mRNA stability and IL-10 secretion are increased 
[ 197 ]. 

 MicroRNAs (miRNAs) target IL-10 and in doing so play important roles in auto-
immune and infl ammatory diseases such as SLE, reperfusion injury, and asthma 
[ 138 ]. IL-10 can be regulated by several microRNAs, including miR-106a, miR- 
4661, miR-98, miR-27, let7, and miR-142-3p/5p [ 138 ]. While miR-106a binds to 
the 3′UTR of the IL-10 mRNA and negatively regulates its expression [ 161 ], bind-
ing of miR-466l to the 3′UTR results in a net increase in the half-life of IL-10 
mRNA, by preventing TTP binding [ 105 ]. Another miRNA, miR-21, has been 
shown to indirectly regulate IL-10 via downregulation of the IL-10 inhibitor PDCD4 
[ 163 ]. 

 A number of viruses exploit the cell-intrinsic control of gene expression by miR-
NAs for immune evasion by encoding their own viral homologues of miRNAs. For 
example, Kaposi’s sarcoma-associated herpesvirus encodes 17 mature microRNAs, 
two of which, miR-K12-3 and miR-K12-7, activate transcription and secretion of 
IL-10 [ 137 ].  

5.9     Concluding Remarks 

 Given its crucial roles in maintaining an effective immune response against patho-
gens while reducing the risk of potentially deleterious excessive infl ammation, 
IL-10 expression has to be fi nely tuned. As a negative feedback mechanism, it has 
to be responsive to the degree of infl ammation and has to have the ability to be 
turned on or off quickly in any immune cell. Accordingly, IL-10 expression is regu-
lated at multiple levels, by extracellular stimuli, transcriptionally, through 
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epigenetics, and posttranscriptionally. A broad understanding of the signals that 
regulate IL-10 expression has evolved, according to which myeloid cells directly 
respond to microbial stimuli, most prominently TLR ligands, whereas IL-10 pro-
duction from T cells requires the release of pro-infl ammatory cytokines, such as 
IL-27 from antigen-presenting cells. These extracellular stimuli then translate into 
the activation of various signaling pathways and the downstream activation of tran-
scription factors. In T cells this occurs in the context of transcriptional programs of 
T cell activation and differentiation. Over the past years, we have identifi ed a num-
ber of transcription factors, such as c-Maf or Blimp-1, with prominent roles in IL-10 
regulation. While we are making progress in elucidating how these factors function 
individually to enable IL-10 expression, a comprehensive understanding of the tran-
scriptional regulation of IL-10 is only just beginning to emerge. Extensive research 
will be required to better understand the epigenetic regulation of the  Il10  locus, as it 
is crucial to a timely expression of IL-10. Currently we only have a rudimentary 
understanding of how chromatin accessibility at the  Il10  locus is controlled. In par-
ticular in T cells, this process appears to be highly dynamic, very different from 
“effector cytokines” and distinct in various T cell subsets. 

 While most of our knowledge of the transcriptional regulation of IL-10, in par-
ticular in T cells, is derived from the studies of cultured cells, moving forward it will 
be essential to apply and further develop this knowledge toward an integrated view 
of IL-10 expression during immune responses in vivo. Only by doing so we will be 
able to harness the great potential for therapeutic intervention inherent in this fun-
damental immune-regulatory pathway.     
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