
Chapter 4
Non-radiative Processes in Nanocrystals

J. M. Collins

Abstract This paper discusses non-radiative processes relevant to the luminescence
characteristics of optically active ions doped into insulators or large-gap
semiconductors, with particular attention to how these processes are affected as the
particle size is reduced from bulk single crystals to as small as a few nanometers.
The non-radiative processes discussed in this article are thermal line broadening
and thermal line shifting, relaxation via phonons between excited electronic states,
and vibronic emission and absorption. One prominent effect of confinement in the
systems of interest is a reduction in the phonon density of states. Thus, we focus
on how these non-radiative processes are altered due to the change in the phonon
density of states as particle size decreases.

4.1 Introduction

Inorganic insulators doped with rare-earth ions and transition metal ions represent an
important class of luminescent materials for many applications, including phosphors
for lighting, scintillators, solid-state laser materials, bio-markers for imaging,
and nanothermometry. Following excitation by radiation, the optical ions usually
undergo some degree of non-radiative relaxation, releasing part or all of its energy
to the lattice. During the non-radiative relaxation, all or part of the electronic energy
initially stored in the optically active ion is converted into phonons.

The specific non-radiative processes addressed in this work are thermal line
broadening, thermal line shifting, decay via a phonon from one electronic level
to another, vibronic transitions, and phonon-assisted energy transfer. Generally
speaking, the two main effects of going from the bulk to the nano are: (1) an increase
in the surface to volume ratio, and (2) a reduction in the phonon density of states.
In this paper we focus on the second point. Most non-radiative processes that play
a significant role in the luminescent properties of these systems involve phonons,
and most of those are determined in part by the phonon density of states of the
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lattice. One goal of this paper is to present results that demonstrate how the reduced
density of states in nanoparticles affect the aforementioned processes, and under
what conditions will such affects be noticeable.

Before doing so, however, we present some detailed theory of the non-radiative
processes in solids, including various forms of the adiabatic approximation, the non-
adiabatic operators that drive the transitions, and prediction about the rates of non-
radiative transitions. The electron-phonon coupling is a central idea to the theory.
We consider primarily systems where this coupling is weak, such as f-f transitions
of rare earth ions.

To set up the problem, we first address the following question: How is the energy
stored in the electronic system of the optically active ion converted into phonons?
To answer this question, it is useful to first review the notion of an adiabatic process.

4.2 Adiabatic Processes

In this section, we introduce the Adiabatic Approximation, which allows separation
of the motion of the nuclei from that of the electrons. The idea of an adiabatic
process is fundamental to QuantumMechanics and Thermodynamics, and so a brief
review of an adiabatic process, is useful. For interested readers, the original proof
of the adiabatic theorem by Max Born is given in Ref. [1].

Suppose we have a system with a Hamiltonian having the time dependence
shown in Fig. 4.1. At t < ti, the Hamiltonian is constant at Hi, and at t > tf , the
Hamiltonian is constant atHf , and during a time�tD tf – ti the Hamiltonian is time-
dependent. Suppose also that the system has a characteristic time T. (For example,
if the system were a harmonic oscillator, T would represent the period of the
oscillator.) In an adiabatic process, we demand that the following three conditions
hold.

1. Suppose there exists another state
ˇ
ˇ
ˇm
E

nearby to
ˇ
ˇ
ˇ ni with an energy "m. The

variation in the Hamiltonian during the time �t must be less than or on the order
of "n – "m:

˝

Hf � Hii <� j"n � "mj :
2. The time over which the Hamiltonian varies must be much greater than the

characteristic time of the system: �t � T

Fig. 4.1 Generic diagram of
a time-dependent
Hamiltonian between tinitial
and tfinal. In this diagram, the
Hamiltonian varies linearly
with time, but a linear
dependence is not required
for the system to vary
adiabatically
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3. The initial state
ˇ
ˇ
ˇn
E

of the system is nondegenerate.

Consider s system for which the above conditions hold, and that at t < ti such

a system is in the stationary state
ˇ
ˇ
ˇn
E

with an energy "n, i.e., Hi

ˇ
ˇ
ˇn
E

D "n

ˇ
ˇ
ˇn
E

.

The Adiabatic Approximation states that, although the time dependence of the
Hamiltonian causes the system to evolve during the time�t, the system will remain

in the state
ˇ
ˇ
ˇn
E

throughout. At tD tf the energy of the system will be "0
n, (i.e.,

Hf

ˇ
ˇ
ˇn
E

D "0
n

ˇ
ˇ
ˇn
E

), where in general "0
n ¤ "n. The wavefunction represented by

the state
ˇ
ˇ
ˇn
E

will also have changed during the time �t. That is, if we define

hx
ˇ
ˇ
ˇ ni D  n, then in general  i

n ¤  f
n .

As an elementary example, consider the case of an electron trapped in an infinite,
one-dimensional well. For a particle of mass m and a box with potential energy is
zero region between xD 0 and xDL, the energies and wavefunctions of the system
are given by

"n D h2�2

8 mL2
n2 and  .x/ D

r

2

L
sin
�n�x

L

�

; (4.1)

where nD 1, 2, 3, : : : is the quantum number of the state of the system. The
characteristic time of the particle in the nth state is associated with the round trip
time, Tn, between xD 0 and xDL, and is given by Tn � h="n:

Suppose now that the wall of the box at xDL is moved slowly (adiabatically) in
a time �t � Tn to a final position xD 2 L. During that time, the size of the box can
be described by the function l(t) such that l(ti)DL and l(ti C�t)D 2 L. Figure 4.2a
shows the particle’s wavefunction (in the n D1 state) at ti and at tf . Note that as the
wall is moved, the particle remains in the n D1 state, as long as the wall is moved
slowly.

In this scenario, the system consists of a slow subsystem (the expanding box)
and a fast subsystem (the particle). As the wall moves, the particle responds nearly
instantaneously to the new position of the wall, and always remains in the nth energy
state; a the transition from the nth to the state (nC 1)th state (or any other state) will
not occur. During the time �t, the instantaneous energy and wavefunction of the
system are given by:

"n.l/ D h2�2

8m.l.t//2
n2 and  .x; l/ D

s

2

l.t/
sin

�
n�x

l.t/

�

(4.2)

As the wall moves, the wavefunctions and energies have a dependence on l,
the width of the box, and hence on time. Because the form of the energies
and wavefunctions are unaltered, this dependence on the length of the box is a
parametric one.
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Fig. 4.2 (a) In an adiabatic process the wall moves from xDL to xD 2L, the particle remains in
the same state, and the wavefunction adapts adiabatically. (b) If the wall is moved suddenly, the
initial wavefunction is unchanged immediately after the wall is moved. In each case above the n
D1 wavefunction is shown

For the sake of comparison, it is useful to consider briefly the case where the wall
moves suddenly (i.e. non-adiabatically) from xDL to xD 2L in a time �t� Tn.
This case is shown in Fig. 4.2b. In this case, the particle does not have time to react
to the movement of the wall. Immediately after the wall is moved, the wavefunction
of the particle is unaltered, and the particle is now in a superposition state consisting
of many stationary states of the box of length 2L. The motion of the wall in this case
is decidedly non-adiabatic.

4.3 Ion in a Solid: The Adiabatic Approximation

An optically active of ion embedded in a solid consists of two subsystems: the
electrons and the nuclei. Because the ratio of the nuclear mass to the electronic mass
is on the order of 105, the nuclei move more slowly than the electrons by a factor
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of 10�2–10�3. Thus, the electrons and the nuclei constitute a fast subsystem and a
slow subsystem, respectively, and an adiabatic approximation is indeed justified.

Treatments in the literature on the adiabatic approximation as applied to
molecules or to ions in a solid are plentiful, [e.g. 2–9]. Though different authors each
present valid treatments of the adiabatic approximation, there are inconsistencies
among them, particularly in the nomenclature. For an excellent overview of
the distinctions between some of the treatments, see the article by Azumi and
Matsuzaki [6].

4.3.1 The Full Hamiltonian

The Hamiltonian of a molecular system can be expressed as

Htotal D Te.r/C TN.R/C U .r;R/C V.R/; (4.3)

where

Te.r/ D
X

i

p2i
2m

D � ¯2
2m

X

i

�!r 2

i (4.4)

TN.R/ D
X

i

P2˛
2M˛

D �¯2
2

X

’

�!r 2

˛

M˛

(4.5)

U .r;R/ D
X

i

X

j>i

e2
ˇ
ˇ�!r i � �!r j

ˇ
ˇ

C
X

i

X

˛

Z˛e2
ˇ
ˇ
ˇ
�!r i � �!

R ˛

ˇ
ˇ
ˇ

(4.6)

V.R/ D
X

˛

X

ˇ>˛

Z˛Zˇe2
ˇ
ˇ
ˇ
�!
R ˛ � �!

R ˇ

ˇ
ˇ
ˇ

(4.7)

In the equations above, �!r i and
�!r j are the positions of the electrons, and

�!
R ˛ and�!

R ˇ are the positions of the nuclei. Te (r) and TN (R) are the kinetic energy operators
for the electrons and nuclei, respectively. U(r,R) contains the electron-electron
and electron-nuclear interactions, and V(R) is represents the repulsive interaction
between the nuclei. Z’ and M’ are the atomic number and mass of the ’th nucleus,
respectively, and m is the mass of the electron. To simplify the notation, for the

remainder of the article we will use the symbols r and R instead of �!r and
�!
R .

The eigenstates and eigenvalues of the system are given by the solutions to the
time-independent Schrodinger equation:

.Htotal � Etotal/‰ .r;R/ D 0 (4.8)
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Because of the electron-nuclear interaction term, the Hamiltonian Htotal does not
allow for separation of variables, i.e., � (r,R) cannot be separated into the product
of electronic and nuclear wavefunctions.

4.3.2 The Born-Oppenheimer Adiabatic Approximation

Let us define an electronic Hamiltonian consisting all the terms containing the
electronic coordinates,

Helec D Te.r/C U .r;R/ : (4.9)

As constructed, the potential energy term in Helec contains both electronic and
nuclear positions, so the eigenfunctions of Helec will be functions of both r and
R.

Let us assume that at any moment the nuclear positions can be considered fixed,
that is, the electrons are “unaware” of the nuclear motion. This assumption is
justified by the fact that the nuclei move much more slowly than the electrons, so
that the electrons can react instantaneously to any change in position of the nuclei.
(Note that the nuclear motion in this system is the analog to the moving wall in the
previous section.) In such an assumption, R is treated as a parameter and r as the
variable. The Schrodinger equation for Helec becomes

.Te.r/C U .r;R/ � �k.R// �k .r;R/ D 0: (4.10)

The wavefunctions �k(r,R) and the eigenvalues �k(R) correspond to the kth elec-
tronic state at a particular set of nuclear coordinates. As the nuclear coordinates
change, the system remains in the kth electronic state as the wavefunction and
energy eigenvalues adjust adiabatically. The set of wavefunctions �k(r,R) may
be chosen to form a complete, orthonormal set, i.e., they obey the following
relationship:

˝

�i .r;R/ �jj .r;R/
˛ D ıij: (4.11)

Combining Eqs. (4.3), (4.8), and (4.9), we may write:

.TN.R/C V.R/C Helec � Etotal/‰ .r;R/ D 0 (4.12)

We see that the Hamiltonian is a sum of terms that depend on the nuclear and
electronic coordinates separately. Since the �k(r,R) form a complete set, � (r,R)
may be expanded as follows:

‰ .r;R/ D
X

k
�k .r;R/ �k.R/; (4.13)
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where the �k(R) are expansion coefficients that are functions of the nuclear
positions.

Inserting (4.13) into (4.12), and writing the electronic state in Dirac notation, we
obtain:

.TN.R/C V.R/C Helec � Etotal/
X

k
�k.R/ j�k .r;R/i D 0 (4.14)

Operating on Eq. (4.14) on the left with
D

�i .r;R/
ˇ
ˇ
ˇ , and using (4.5), (4.9), (4.10)

and (4.11), we get:

ŒTN.R/C V.R/C �i.R/ � Etotal	 �i.R/

�
X

k

X

˛

¯2
2M˛

�k.R/ h�i .r;R/j �!r 2

˛ j�k .r;R/i

�
X

k

X

˛

¯2
M˛

h�i .r;R/j �!r ˛ j�k .r;R/i �!r ˛�k.R/ D 0 (4.15)

In arriving at (4.15) we integrated over all electronic coordinates, i.e. we imposed
the orthonormality condition defined by Eq. (4.11), so �i(R) does not depend on the
electronic coordinates. We also used the following:

�!r 2

˛� .r; R/ � . R/ D �!r ˛ �
h�!r ˛ .��/

i

D �!r ˛ �
�

�
�!r ˛�C �

�!r ˛�
�

D �
�!r 2

˛�C �
�!r 2

˛� C 2
� �!r ˛�

�

�
��!r˛ �

�

The term in brackets [] on the left side of Eq. (4.15) depends only on the nuclear
positions. The last two terms in Eq. (4.15) contain derivatives of the electronic
wavefunctions with respect to the nuclear positions, and are responsible for coupling
the nuclear and electronic subsystems.

We now make the assumption that the last two terms on the right side of
Eq. (4.15) are negligible, simplifying Eq. (4.15) to

ŒTN.R/C V.R/C �i.R/ � Etotal	 �i.R/ D 0 (4.16)

Equation (4.16) is essentially the Schrodinger equation for the nuclear wavefunc-
tions, �i(R). Note that �i(R) comes from the solution to the electronic Schrodinger
Eq. (4.10) and plays the role of a potential energy in (4.16).

Neglecting the last two terms in (4.15) has allowed for the separation of the
electronic and nuclear wavefunctions whose solutions are found by first solving
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Eq. (4.10) and then (4.16). Consequently, the wavefunction of the system can be
written as the product of an electronic wavefunction and a nuclear wavefunction:

‰k .r;R/ D �k .r;R/ �k.R/ (4.17)

Equations (4.10), (4.13) and (4.17) comprise the Born-Oppenheimer Adiabatic
Approximation. In this approximation, �i(R) corresponds to an average electronic
potential in which the nuclei move, and includes, as seen from Eq. (4.10), the kinetic
energy of the electrons, the electron-electron interaction, and the electron-nuclear
interaction. If the nuclear positions change, the electrons, with their much smaller
masses, react immediately to the new position of the nuclei, producing a new �i(R),
that is, the system behaves adiabatically in response to the motion of the nuclei.

The validity of the Born-Oppenheimer Adiabatic Approximation rests on the
last two terms in (4.15) to be considered negligible, that is, on terms of the

form
�!r ˛�k .r;R/ and

�!r 2

˛�k .r;R/, and on the nuclear mass, M˛ . Neglecting the

terms containing
�!r ˛�k .r;R/ and

�!r 2

˛�k .r;R/ assumes a weak dependence of
the electronic wavefunction, �k(r,R), on the nuclear coordinates. Specifically, it
assumes that the slope and the curvature of �k(r,R) in R-space are small. This is
reasonable for many systems, especially if the amplitudes of the vibrations of the
nuclei are small. Also, the large nuclear mass M˛ in the denominator contributes to
making the last two terms in (4.15) small perturbations to the Hamiltonian in (4.16).

4.3.3 The Born-Huang Adiabatic Approximation

In this section we relax slightly the constraints of the Born-Oppenheimer approx-
imation. Recall that in adiabatic process the motion of the slow subsystem will
not induce a change in the state of the fast subsystem. Thus, if the fast system is
perturbed by an interaction with slow system, only matrix elements that connect two
different electronic states can induce the system to transition to a different electronic
state. In examining Eq. (4.15), one notices that only the off diagonal components
of matrix elements in the last two terms of Eq. (4.15) connect different electronic
states. The diagonal components, on the other hand, connect each electronic state to
itself, and so can be incorporated into the Hamiltonian in (4.16).

Following this thought, we first consider the diagonal component of the last term
in Eq. (4.15):

� ¯2
M˛

D

�k .r;R/
ˇ
ˇ
ˇ
�!r ˛

ˇ
ˇ
ˇ �k .r;R/i �!r ˛�k.R/ (4.18)

where
D

�i .r;R/
ˇ
ˇ
ˇ
�!r ˛j�k .r;R/

E

represents an integral over electronic coordinates, r,

and can be rewritten as
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� ¯2
M˛

�Z

�k .r;R/
�!r ˛�k .r;R/ d

�!r
� �!r ˛�k.R/ (4.19)

Inside the brackets [] in the above expression, we may rearrange the integration over�!r with the derivative with respect to the nuclear coordinates to obtain

� ¯2
M˛

�!r ˛

�Z

�k .r;R/ �k .r;R/ d
�!r
� �!r ˛�k.R/ (4.20)

Imposing orthonormality of the electronic states (at all R), (4.20) is equal to zero,

since
�!r ˛.1/ D 0. Thus, the diagonal matrix elements of the last term in (4.15) are

identically zero.
We now consider the diagonal elements of the second term in Eq. (4.15), namely

� ¯2
2M˛

�k.R/h�k .r;R/
ˇ
ˇ
ˇ
�!r 2

˛

ˇ
ˇ
ˇ�k .r;R/i: (4.21)

We may choose �k(r,R) to the real, in which case the integral form of (4.21)
appears as

� ¯2
2M˛

�k.R/
Z

�k .r;R/
�!r 2

˛�k .r;R/ d
�!r : (4.22)

To evaluate (4.22), consider the identity

0 D r2
˛

�Z

�k .r;R/ �k .r;R/ d
�!r
�

D
Z

r2
˛ Œ�k .r;R/ �k .r;R/	 d

�!r

D 2

Z ��!r ˛�k .r;R/
�2

d�!r C 2

Z

�k .r;R/r2
˛�k .r;R/ d

�!r (4.23)

where in the first line above we have use the orthonormality condition (4.11). Using
(4.23), (4.22) can be written as

¯2
2M˛

�k.R/
Z ��!r ˛�k .r;R/

�2

d�!r : (4.24)

Thus, the diagonal elements of the last two terms in (4.15) are reduced to (4.24). In
carrying out the integration over �!r in (4.24) results in a term that is a function of R
only, and so may be incorporated into the left side of Eq. (4.16), which becomes

�

TN.R/C V 0.R/C �k.R/ � E0
total

	

�k.R/ D 0; (4.25)
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where

V 0.R/ D V.R/C ¯2
2M˛

Z ��!r ˛�k .r;R/
�2

d�!r : (4.26)

Equation (4.25) can be solved to obtain the nuclear wavefunctions, �k(R). As
previously done, the separation of the electronic and nuclear equations allows us
to write the states of the system as

‰k .r;R/ D �k .r;R/ �k.R/: (4.27)

where the �k(R) in (4.27) are different than those in (4.17). Equations (4.10), (4.25),
and (4.27) define the Adiabatic Approximation, sometimes referred to as the Born-
Huang Adiabatic Approximation. Equation (4.25) represents a slight improvement
over (4.16).

4.3.4 The Crude Adiabatic Approximation

It will prove useful to consider one additional form of the adiabatic approximation.
We begin by rewriting (4.9) as follows:

Helec D Te.r/C U .r;R0/C�U .r;R/

D H0
elec .r;R0/C�U .r;R/ (4.28)

where R0 indicates the nuclei are at fixed positions, and �U(r,R) is the interaction
due to the displacements of the nuclei from those positions. Neglecting �U(r,R),
and using the same arguments as in Sect. 4.3.2, the electronic wavefunctions can be
found by solving the Schrodinger equation




Te.r/C U .r;R0/ � �0i .R0/
�

�0k .r;R0/ D 0; (4.29)

which is analogous to Eq. (4.10). In (4.29), the �0
k(r,R0) are electronic wavefunc-

tions with the nuclei at fixed positions, and are not identical to the analogous terms
in (4.10). These �0

k(r,R0) also form a complete set of orthonormal wavefunctions, so

‰k .r;R/ D
X

k
�0k .r;R0/ �k.R/; (4.30)

with the understanding that the �k(R) in (4.26) are not the same as those in (4.13).
The states defined in (4.26) are called the crude Born-Oppenheimer states.

Following arguments similar to those in Sect. 4.2.2, the Schrodinger equation
analogous to (4.16), is

�

TN.R/C V.R/C�U .r;R/C �0k .R0/ � E0total
	

�k.R/ D 0 (4.31)

http://dx.doi.org/10.1007/978-94-024-0850-8_3
http://dx.doi.org/10.1007/978-94-024-0850-8_2
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Because�U(r,R) depends on both the electronic and nuclear coordinates, (4.31) as
written cannot be solved for all values of r.

The Schrodinger equation for the entire system is

�

TN.R/C V.R/C�U .r;R/C �0i .R0/ � E0total
	X

i
�0i .r;R/i�.R/ D 0 (4.32)

Operating on (4.27) with �0k .r;R0/
ˇ
ˇ
ˇ we obtain

h�0k .r;R0/
ˇ
ˇ
�

TN.R/C V.R/C�U .r;R/C �0k .R0/ � E0total
	ˇ
ˇ
P

i�
0
i .r;R0/i�k.R/

D
n

TN.R/C V.R/C �0k .R0/ � E0total C h�0k .r;R0/
ˇ
ˇ
ˇ�U .r;R0/

ˇ
ˇ
ˇ �0k .r;R0/

˛o

�k.R/

CP

i¤kh�0k .r;R0/ j�U .r;R/j�0i .r;R0/i�k.R/ D 0

(4.33)

Note that we have separated out the diagonal matrix element of �U(r,R), which
does not connect different electronic states. All terms in the brackets fg depend
only on R. Also, because R0 represents fixed coordinates, TN does not act on the
electronic wavefunctions, as it did in the previous two sections.

Neglecting the off-diagonal terms in (4.33), which couple the electronic to the
nuclear motion, results in:

n

TN.R/C V.R/C �0k .R0/ � E0total C h�0k .r;R0/
ˇ
ˇ
ˇ�U .r;R/

ˇ
ˇ
ˇ�0k .r;R0/i

o

�k.R/D0 :
(4.34)

Equation (4.34) can be solved to find the nuclear wavefunctions, �k(R). Finally, the
separation of the electronic and nuclear wavefunctions into functions of r and R,
respectively, allows the wavefunction of the system to be written as

‰ .r;R/ D �0k .r;R/ �k.R/ (4.35)

Of course, the �k(R) in (4.35) are different from those in (4.17) and (4.27).
Equations (4.29), (4.30) and (4.35) define the Crude Adiabatic Approximation. The
defining characteristic of this approximation is that the electronic wavefunction are
determined with the nuclei fixed at fixed positions.

In each of the three forms of the adiabatic approximations presented, the total
wavefunction is a product of an electronic wavefunction and a nuclear wavefunction,
thus separating the fast and slow subsystems. The next section is devoted to
finding expressions for the coupling between the electronic and nuclear subsystems,
known as the electron-phonon coupling. Before proceeding, we make the following
observations.

1. In deriving the Crude Adiabatic Approximation, we neglected the off diagonal
matrix elements between electronic states of the potential energy term in the
Hamiltonian, �U(r,R). On the other hand, in the adiabatic approximation in
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Sects. 4.2.2 and 4.2.3, the neglected terms arose from the kinetic energy term,
TN, operating on the electronic wavefunctions. Thus, the different formalisms
presented in the previous sections neglect different terms in the Hamiltonian in
order to separate the fast and slow subsystems. It should not be surprising, then,
that these different formalisms will give rise to different forms for the electron-
phonon coupling.

2. The Crude Adiabatic Approximation assumes that the positions of the nuclei are
fixed. If we take this position to be that at which the ground state of the ion is
at equilibrium, this approximation is only valid in systems for which the higher
electronic states have equilibrium positions close to that of the ground state. Such
is the case for ions in electronic states that are weakly coupled to the lattice.
Examples are the 4f states of the lanthanides ions and also the 2E level of the
Cr3C.

3. The neglected terms in the Born-Oppenheimer and Born-Huang Adiabatic
Approximations are valid starting points for finding the electron-phonon cou-
pling in weakly- and strongly-coupled systems. Transitions among most d-states
in transition metal ions and f-f or f-d transition in rare earth ions can be treated
with electron-phonon couplings found from the neglected terms in the Born-
Oppenheimer or Born-Huang formalisms.

4.4 Electron-Phonon Coupling

A breakdown in the adiabatic approximation leads to an interaction that couples the
electronic motion to the nuclear motion, allowing from the conversion of electron
energy to be converted into the kinetic and potential energy associated with of
the vibration of the nuclei. This interaction is often called the electron-phonon
interaction, and is formally included in the quantum mechanical transition matrix
elements as an electron-phonon coupling operator. In this section, we present the
two most commonly used expressions for the electron-phonon coupling operator
for an ion in a solid. These operators are used to explain a variety of phonon-related
transitions between different electronic states, including vibronic absorption and
emission, one-phonon transitions, multiphonon relaxation, and Raman scattering.

4.4.1 Type A Electron-Phonon Coupling

In the Crude Adiabatic Approximation, we neglected the off-diagonal terms of
�U(r,R), which takes into account the change in potential energy of the system
due to the motion of the nuclei. To find the electron-phonon coupling within this
approximation, we first write �U(r,R) in a more useful form.

http://dx.doi.org/10.1007/978-94-024-0850-8_2
http://dx.doi.org/10.1007/978-94-024-0850-8_2
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In the presence of an acoustic wave, the optically active ion is displaced from
its equilibrium positions, changing the energy of the system. This change in energy
is due only to a relative change in the distance between the optically active ion
and its neighbors. We denote the distance between the optically active ion and its
neighbor (labeled ’) as Rion,˛ , and the equilibrium distance between them as Rion,˛,0.
For the systems considered in this work, the wavefunctions are highly localized
to the central ion, and so we need concern ourselves mainly with the perturbation
of the optically active ion by the motion of the surrounding ions. The change in
the potential energy between the optically active ion and its neighbors due to the
vibrations, which we write as �Uion(r,R), can be expressed in terms of a Taylor
expansion:

�Uion .r;R/ D Uion .r;R/ � Uion .r;R0/

D
X

˛

�
@Uion

@R˛

�

0

.Rion;˛ � Rion;˛;0/C

1

2

X

˛;ˇ

�
@2Uion

@Rion;ˇ@Rion;˛

�

0

.Rion;˛ � Rion;˛;0/



Rion;˛ � Rion;ˇ;0
�C � � �

D �U.1/
ion C�U.2/

ion C � � �
(4.36)

where �U(1)
ion and �U(2)

ion are given by

�U.1/
ion D

X

˛

�
@Uion

@R˛

�

0

.Rion;˛ � Rion;˛;0/ (4.37)
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ion D 1
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X

˛;ˇ

�
@2Uion

@Rion;ˇ@Rion;˛

�

0

.Rion;˛ � Rion;˛;0/



Rion;˛ � Rion;ˇ;0
�C � � �

(4.38)

In order to gain physical insight into these terms, we consider the simple case of a
linear solid, shown in Fig. 4.3. The atoms nuclei are separated from their neighbors
by a distance a, and they are free to vibrate longitudinally. The displacement
of the lth ion from its equilibrium position is given by ql. In addition to the
displacements, Fig. 4.3 also shows a representation of the acoustic wave in the
crystal. In the long wavelength approximation, the strain, "l, at the lth site can be
written as [4]:

"l D @ql
@x

� qlC1 � ql
a

D .xlC1 � xl/ � a

a
: (4.39)

Thus, the strain is proportional to the change in distance between the optically
active ion and a neighboring ion. In the case of an ion in a solid, .xlC1�
xl/ � a in (4.39) is replaced by Rion;˛ � Rion;˛;0. Comparing (4.39) and (4.36),
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Fig. 4.3 Representation of a one-dimensional solid in the presence of a longitudinal acoustic
wave. Equilibrium positions of the atoms are given by the dashed lines, separated by a distance
a, and actual positions are labeled by xl. The sine wave is a representation of the displacement
of the ions from equilibrium as a function of the horizontal position, with regions of tension
and compression indicated. In the long wavelength approximation, the strain in the lattice is
proportional to (qlC1– ql) (Figure 4.3 is adapted from Ref. [4])

the change in potential energy experienced by the optically active ion due to the
displacements of the ions in the solid can be written as the sum of powers of the
strain.

�Uion .r;R/ D
X

˛
V1;˛"˛ C

X

˛
V2;˛"˛

2 C � � � (4.40)

For a linear system of like ions experiencing a longitudinal wave, as shown in
Fig. 4.3, the form of the strain given in (4.39) is particularly simple. For a three
dimensional crystal consisting of different ion types, transverse and longitudinal
waves, and going beyond the long wavelength limit, the situation is very much
more complex. We shall, however, make the assumption that we can write the
�Uion(r,R) in the form given in (4.40). We will utilize Eq. (4.40) later in this
paper.

In a perturbation treatment, the first term given in (4.36) can be used to find the
first order correction to the electronic wavefunction:

�i .r;R/ D �0i .r;R0/C
X

j¤i

D

�j .r;R0/ j�U.1/
ion

ˇ
ˇ
ˇ�i .r;R0/

E

�j � �i �j .r;R0/ (4.41)

The states in the Crude Adiabatic Approximation corrected to the first order are:

‰
.1/
i;k .r;R/ D

2

4�0i .r;R0/C
X

j¤i

˝

�j .r;R0/
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ˇ �U.1/

ion

ˇ
ˇ
ˇ�i .r;R0/

E

�j � �i �i .r;R0/

3

5�k.R/

(4.42)

The sum in (4.42) contains terms of the form
D

�j .r;R0/
ˇ
ˇ
ˇ �U.1/

ion

ˇ
ˇ
ˇ �i .r;R0/i, which

mix the various electronic states of the system, indicating that the displacements
of the nuclei from equilibrium cause transitions from one electronic state to
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another. Thus, �U(1)
ion is an example of an electron-phonon coupling operator.

It is interesting to note that the wavefunctions in (4.42) are the product of a
purely electronic wavefunction, in brackets [], with nuclear wavefunction. That
is, when �U(1)

ion is used as a perturbation to the electronic wavefunction only, it
mixes various electronic states, but does not couple the electronic wavefunction to
the vibrational wavefunction. The electronic and the nuclear states are not truly
coupled in the usual sense, and the corrected wavefunction (4.42) is still considered
“adiabatic”. This type of the coupling is known as electron-phonon coupling of type
A [6].

4.4.2 Type B Electron-Phonon Coupling

In the Born Oppenheimer Adiabatic Approximation (Sect. 4.2.2), the states of
the system are given by (4.27). We define a non-adiabatic Hamiltonian, HNA, by
the neglected, off-diagonal matrix elements of the last two terms in (4.15) in the
following manner.

HNA‰i;k .r;R/ D �¯2
2

X
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X
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1
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�!r 2

˛�i .r;R/

� ¯2
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X
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1

M˛

��!r ˛�i .r;R/
�

�
��!r ˛�i;k.R/

�
(4.43)

At this point, it is typical to assume that the first term on the right in
(4.43) is negligible compared with the second. Under that assumption, (4.38)
becomes

H0
NA‰i;k .r;R/ D �¯2

X

k

X

˛

1

M˛

��!r ˛�i .r;R/
�

�
��!r ˛�i;k

�

: (4.44)

Treating H
0

NA as a perturbation, the first order, non-adiabatic wavefunction is
given by:

‰
.1/
i:k .r;R/ D ‰i;k .r;R/ �P

j¤i

P

˛
¯2
M˛

*

‰j;k.r;R/

ˇ
ˇ
ˇ

 �!�!r ˛�i.r;R/

!

�
 �!�!r ˛�i;k

!ˇ
ˇ
ˇ‰k.r;R/

+

Ej�Ei

�‰j;k .r;R/
(4.45)

The wavefunction ‰(1)
i,k in (4.45) cannot be expressed as a product of an electronic

wavefunction and a nuclear wavefunction, so it is a true non-adiabatic wavefunction.
The electron-phonon coupling operator expressed in (4.44) leads to a breakdown
of the adiabatic approximation, coupling the electronic and nuclear motions and

http://dx.doi.org/10.1007/978-94-024-0850-8_2
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allowing the nuclear motion to cause transitions between electronic states. H
0

NA is
sometimes referred to as the electron-phonon coupling of type B[6].

4.5 Representation of Eigenstates and Operators

In order to apply the previous treatments to phonon-related processes in solids, we
must first represent the vibrational states of the lattice and electron-phonon coupling
operators in the appropriate forms. To do so, we make the following assumptions:

1. The nuclei vibrate in a harmonic potential. In this so-called “harmonic approxi-
mation”, each normal coordinates Qk, is associated with the kth vibrational mode
of the solid and oscillates with a frequency !k. Each mode acts as a harmonic
oscillator, with the excitation of the kth oscillator corresponding to the number
of phonons, nk, in that mode. The energy of the lattice is:

E D E0 C
X

k

�

nk C 1

2

�

¯!k (4.46)

where E0 is the energy of the lattice with the nuclei at their equilibrium positions.

2. The normal modes of the solid act independently, with no communication
between them. In this assumption, the eigenstates of the lattice vibrations, �(Qk),
are products of the states of the normal modes:

� .Qk/ D
Y

k

ˇ
ˇ
ˇnk
E

D jn1ij n2i jn3i : : : j nki : : :
ˇ
ˇ
ˇ n3N�6i ; (4.47)

where N is the number of atoms in the solid.
It should be noted that neither of the assumptions above are strictly valid.

Experiments on phonon decay times have shown that phonons generally do
decay into other, lower energy modes [e.g. 10, 11]. Also, the assumption of a
harmonic approximation is only valid for very small amplitudes of vibration.
As the amplitudes increase (i.e., as temperature increases), the restoring force
becomes more non-linear. Frenkel noted early on that such non-linear effects
cause a breakdown of the adiabatic separation between the electronic and nuclear
subsystems, thus allowing lattice vibrations to cause electronic transitions [12].
Despite these assumptions, working with the states as described in (4.47) does lead
to results that adequately explain the behavior of many systems across a range of
temperatures.

In Sect. 4.3 we derived the electron-phonon coupling operators (types A and B)
in terms of the nuclear coordinates. Within the constraints of the above assumptions,

http://dx.doi.org/10.1007/978-94-024-0850-8_3
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we now present the form of those electron-phonon coupling operators in terms of
the normal coordinates.

The electron-phonon coupling of type A, in terms of the strain operator, is
given in Eq. (4.39). It is convenient to express the strain in terms of the phonon
annihilation and creation operators, a and a
, respectively. We do not derive this
expression here, but simply present the result. The reader is referred to the text by
Henderson and Imbusch [4] for the details of the derivation.

Referring to the example of a linear solid shown in Fig. 4.3, it can be shown that
the displacement of the lth ion from its equilibrium position, ql, can be written in
terms of the generalized position has the following form [4]:

ql D
�
1

N

�1=2X

k
Qkexp .�i�a/ (4.48)

where a is the spacing between atoms, k is the wave vector associated with the kth
mode, N is the number of atoms in the linear chain. Using (4.48), the local strain at
the site of the lth ion, as approximated in (4.39), due to the kth normal mode can be
expressed in terms of ak and a
k as follows:

"k D �i

� ¯!k

2MNv2k

�1=2 �

a�

k � ak
�

(4.49)

In (4.49) vk is the velocity of the sound associated with the kth mode. Again, the
reader is referred to [4] for the full derivation of (4.49). The operator for the electron-
phonon coupling of type A is obtained by inserting (4.49) into the expansion similar
to (4.40), except the sum is over all the normal coordinates. Keeping only the first
two terms, the result is:

�Uion � �U.1/
ion C�U.2/

ion D V1;k"k C V2;k"
2
k (4.50)

Recall that (4.48) applies to a linear chain of atoms in the long wavelength
approximation. For practical reasons, however, it is usually assumed that the
simplified version of the strain operator in (4.49) has the same form for all normal
modes in a three-dimensional crystal with different masses, whether those modes
correspond to transverse or longitudinal waves.

The electron phonon coupling of type B is given by the non-adiabatic Hamil-
tonian, H

0

NA, defined by Eq. (4.44). To express (4.44) in terms of the normal

coordinates, recall that i¯�!r ˛ D P˛ . The kinetic energy of the lattice in Cartesian
coordinates and in normal coordinates is:
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X
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2M˛

D
X
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2M
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X

k
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2M
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@

@Qk
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(4.51)
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where the first sum is over all nuclei, the second and third sums are over all
normal modes, and M is a properly weighted mass. Using the term on the far right
in (4.51), and re-deriving Eq. (4.44), it is readily seen that the electron-phonon
coupling operator of type B operating on the adiabatic wavefunction of the system
is expressed as:

H0
NA‰i .r;Q/ D �¯2

X

k

1

M

�
@�i .r;Q/

@Qk

�

�
�
@�i;.Q/

@Qk

�

(4.52)

This defines the non-adiabatic operator written in terms of the normal coordinates
of the lattice. We note that calculating the first term in parentheses in (4.52) is
very difficult, requiring detailed knowledge of the electronic wavefunction. On the
other hand, the last term in the sum in (4.52) is readily calculated in the harmonic
approximation, since it contains the first derivatives of the standard harmonic
oscillator wavefunctions. The matrix elements containing this term are frequently
calculated in determining non-radiative transition rates between electronic levels
using a single configurational coordinate model [13,14, and references therein].

4.6 Thermal Broadening and Shifting of Sharp Spectral
Lines

4.6.1 Thermal Broadening of Spectral Lines

The broadening of a spectral line can be caused by several interactions, among
which are the following:

1. Strain Broadening – These are site-to-site variations in the crystalline field at the
ion due to strains in the crystal. This is a static interaction and is present at even
low temperatures.

2. Lifetime Broadening: This category includes all processes that affect the lifetime
(£) of the ion in its excited state, thereby changing the linewidth (�E) through the
uncertainty relation: �E£	 -h/2. The processes are radiative decay, nonradiative
decay, and vibronic transitions. Even for allowed transitions, the broadening due
to this term is less than the strain broadening observed in single crystals.

3. Direct processes: These processes involve a transition from one level to another
via the absorption or emission of a phonon. This term has been found to be of
secondary importance in most systems, and so will not be discussed here.

4. Raman Scattering: This occurs via the emission of a phonon at one frequency and
the absorption of another phonon at a different frequency, and where the initial
and final electronic states are the same, and the intermediate state is virtual. It is
a second order process, and is found to be the dominant contributor to the shift
in several systems [e.g. 15–18]. This process is shown in Fig. 4.4.
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Fig. 4.4 The phonon density of states vs. phonon energy of cubic nanoparticles with (left)
15� 15� 15 atoms, (center) 25� 25� 25 atoms, and (bottom)250� 250� 250 atoms. The veloc-
ity of sound was set to 3400 m/s

To investigate this interaction, we utilize the electron-phonon coupling of type A,
as given by Eqs. (4.49) and (4.50). For weak electron-phonon coupling, Eqs. (4.49)
and (4.50) can be used to determine the interaction term to the second order. The
result is:
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:

(4.53)

where we have assumed V1 and V2 are independent of the phonon mode k. The
states of the system are products of an electronic part and a nuclear part.

j‰i Dj �i ˝
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ˇn1n2n3 : : : nk : : :

E

D
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ˇ
ˇ�; n1n2n3 : : : nk : : :

E

(4.54)

Since Raman scattering is a second order process, the contributing terms derive
from: (4.1) the first order term in (4.53) with the first order correction to the initial
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and final states, and (4.2) the second order term in (4.5) with the zeroth order states.
The relevant matrix element for the Raman process is:
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Using (4.53) to replace for �U(1)
ion and �U(2)

ion in (4.55), recalling that
a
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ˇ
ˇ n � 1i and a
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ˇ
ˇ n C 1i, and assuming that !k; !k0 � �j

for all intermediate states, j, (4.55) becomes:
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The transition probability per unit time due to modes k and k’ is

.WRaman/kk0 D 2�
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; (4.58)

where ¬(! f ) represents the density of final states of the phonon field. To find the
total transition rate for these Raman processes, we must integrate over all phonon
modes k and k0. For sharp lines, where the width of the line is much less than the
Debye frequency, we estimate ¬(! f ) as

%



!f
� ' % .!k/ % .!k0/ ı .!k � !k0/ d!kd!k0 D %2 .!k/ d!k: (4.59)

Inserting (4.59) into (4.58) and integrating over all phonon modes, we obtain:
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Recalling the expression for the phonon occupation number of the kth mode,

nk D 1

e¯!k=kT � 1 ; (4.61)

the total transition probability becomes
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In the Debye approximation, % .!/ D 3V!2=2�2v3s , (4.61) takes the following
form:
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where !D is the Debye frequency. It is convenient to rewrite (4.63) in terms of the
unitless parameter x D ¯!=kT and the Debye temperature TD D ¯!D. The result is:
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where ˛ D 9V2

2�¯2
�
!D

vs

�6
ˇ
ˇ˛0ˇˇ2, and is referred to as the electron-phonon coupling

constant.
The temperature dependence of (4.64) is contained in the T7 term outside the

integral and in the upper limit of the integral, TD/T. In the limit as T! 0, the upper
limit goes to infinity, and the integral is simply a constant, so the contribution of
Raman processes to the linewidth goes as T7, which goes to zero as T! 0. At T �
TD we may use the approximation ex � 1C x, so the integral goes roughly as x5, and
the (4.64) goes as T2.

4.6.2 Thermal Shifting of Spectral Lines

Any interaction of a system an external agent will, in general, affect the energies of
the states of the system. As temperature increases, the interaction of the phonons
with the electrons also increases, leading to the thermal shift of the energy level.
The contribution of the electron-phonon interaction is a second-order effect, and so
contains the matrix element of �U(2)

ion between the zeroth order states, and of �U(1)
ion



128 J.M. Collins

between the first order states. The correction to the energy of the level due to the
electron-phonon interaction is given by:
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Using (4.53) to rewrite �U(1)
ion and �U(2)

ion in terms of the creation and annihilation
operators, assuming that
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The thermal shift of the line is due only to the terms containing nk. The total
thermal shift is found by summing over all k. For large particles, this sum can be
approximated by an integral, so the total shift is given by:
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Assuming the Debye distribution (% .!/ D 3V!2=2�2v3s
�

, using the equilibrium

value of nk as defined in (4.61), setting the upper limit of the integral in (4.67) to the
Debye frequency, and making the substitution x D ¯!=kT , the thermal shift of a an
energy level becomes:
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The temperature dependence of the thermal shift of a spectral line is determined by
the T4 term contained in �V and by the upper limit of the integral. As T! 0, the
integral approaches a constant value, and the line shift goes as T4. At high T the
integrand goes roughly as x2, the integral goes as T�3, and so the line shift becomes
linear with T.

4.7 The Phonon Density of States in Nanoparticles

Consider a simple cubic solid with side length L and atomic spacing a. The
wavelengths of the phonons vary from roughly twice the atomic spacing to twice
the side length of the particle. The energy of a phonon in such a solid is given by

"ph D hvs


D hvs
2L

n; (4.70)

where vs is the velocity of sound, n D 


nx2 C ny2 C nz2
�1=2

; and nx, ny, nz are
integers ranging from 1 to L/a. Note that the maximum phonon energy is determined
by the interatomic spacing, and so is independent of the particle size, while the
low frequency phonons increase in energy as the particle size, L, decreases. Thus,
many low frequency phonons that exist in the bulk are no longer supported in a
nanoparticle.

Calculated phonon densities of states (DOS) of cubic nanoparticles 15� 15� 15
atoms on a side (L� 3 nm), 25� 25� 25 atoms on a side (L� 5 nm), and that of
a nanoparticle 250� 250� 250 atoms on a side (L� 50 nm) have been calculated
using the speed of sound equal to 3400 m/s and an interatomic spacing of 0.2 nm.
The modes were accumulated in 1000 bins, which for the diagrams show were each
approximately 0.5 cm�1 in width. The results are shown in Fig. 4.4. We note the
following:

1. For the 250� 250� 250 atoms system, the DOS exhibits a "2 dependence, as
expected from the Debye theory, out to a frequency at which the DOS reaches a
maximum. At higher energies, the DOS is decidedly un-Debye-like, decreasing
smoothly to zero. This behavior is due to the finite size of the crystal.

2. For the smaller particles, the DOS is a discrete function at lower energies,
with a large energy gap between zero energy and the first mode. For 250 nm
particles, the DOS appears nearly continuous at all energies, and is very similar
in appearance to the DOS in a bulk cubic particle. Figure 4.5, shows the DOS at
low phonon energies.

3. The results in Figs. 4.4 and 4.5 are for cubic crystals, but the discreteness of the
DOS at low energies is a common feature to all very small particles. The exact
shape of the DOS function, however, depends on the particle shape.
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Fig. 4.5 The phonon density of states shown in Fig. 4.4 in the energy range from 0 to 100 cm�1

The discreteness seen in the small particle is due to the fact that in going from
bulk to nano, the total number of phonon modes decreases drastically. This decrease
can be shown by noting that the total number of phonon modes is simply 3 N-6,
where N is the number of atoms in the particle, and can be estimated as N � 


L
a

�3
:

For a bulk crystal with LD 0.3 cm and aD 0.2 nm, 3N � 4.5� 1021, whereas when
LD 3 nm, 3N � 4.5� 103. Thus, going from a particle size of 0.3 cm to 3 nm the
total number of allowed phonon modes decreases by 18 orders of magnitude! As a
result, the phonon spectrum is no longer a continuous function of energy.

Given the importance that phonon-related processes play in the luminescence
behavior of ions in solids, the change in the phonon DOS as one moves from the bulk
to the nano regime is likely have observable experimental effects. In the following
sections, we take note of experiments that have, and in some cases have not, revealed
such effects.
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4.8 Effect of the Phonon DOS on the Establishment
of Thermal Equilibrium

Following absorption of a photon, a luminescent ion generally relaxes to a state of
quasi-thermal equilibrium. The time it takes to reach this quasi-thermal equilibrium
is generally on the order of picoseconds. The relaxation can be within a single
electronic state or among different electronic states, the latter of which would
require the breakdown of the adiabatic approximation. Even relaxation within the
same electronic state requires the participation of all phonon modes and the mixing
of those modes for thermal equilibrium to be established. For small particles, where
the low frequency modes are discrete and well separated from one another, we may
expect the establishment thermal equilibrium following excitation to be inhibited.

Experimental evidence of this effect has been observed by G. Liu et al. [19, 20],
who conducted emission and excitation experiments on nanoparticles of Er-doped
Y2O3 with radii of �400 nm and 25 nm. Figure 4.6 shows an emission spectrum at
3 K of the 4S3/2 !4I11/2 transition of Er in Y2O3 following excitation with a pulsed
laser at energy levels into the 4F7/2 manifold. In the 400 nm particles, the emission
originates from only the lowest energy level of the 4S3/2 manifold. In the 25 nm
nanoparticles, however, anomalous hot emission bands are observed. Excitation into
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Fig. 4.6 The luminescence of the 4S3/2 to 4I15/2 transition in bulk (dotted line) and diameter
nanocrystals (solid line) of Er:Y2O2S at 2.6 K [19]
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the 4F7/2 levels is followed by fast relaxation to the 4S3/2, resulting in the population
of the upper crystal field level of that manifold. In the 400 nm particles there is fast
relaxation from level (b) of the 4S3/2 manifold to its lower level (a) (See Fig. 4.6).
In the 25 nm particles, however, there is no available mode to accept a phonon of
that low frequency (�25 cm�1). Consequently, the one-phonon decay process at
that energy does not occur in the nanoparticle, and level (b) remains populated long
enough to emit a photon.

This experiment demonstrates the effect of the discreteness of the phonon DOS
in small particles. However, it also hints that observing such effects may be difficult;
the discreteness of the phonon DOS can be masked by second-order processes
and/or by the mixing of phonons due to anharmonic contributions to the potential,
even at low temperatures.

4.9 Thermal Broadening and Shifting of Sharp Spectral
Lines in Nanoparticles

In this section, we focus on the changes in the density of states of nanoparticles
of different sizes affects the shift thermal broadening and shifting of sharp spectral
lines.

4.9.1 Broadening of a Spectral Line in a Nanoparticle

In Sect. 4.6, the broadening of a spectral line was found to depend on the density
of phonon states and on the phonon occupation number of each state. Earlier, we
estimated the phonon density of states using Debye approximation, and the sum
over all phonon states was carried out by integration. For nanoparticles, the density
of phonon states is a discrete function, and the sum over states can be carried out
directly. We begin our discussion of the thermal broadening of a spectral line in a
nanoparticle with Eq. (4.58):

.WRaman/kk0 D 2�

¯2
ˇ
ˇ˛0ˇˇ2!k!k0nk .nk0 C 1/ %




!f
�

; (4.71)

where ˛0 is given by (4.57).
The total transition rate is found by summing over all final states of the lattice,

subject to the condition that energy must be conserved. In nanoparticles, the density
of phonon states, ¬nano(!), depends on the size and shape of the sample. Examples
are shown in Fig. 4.4. In describing the density of phonon states, it is important
to recall that each phonon mode represents a resonance peak with a particular line
shape (f(!)) and line width (�!). The density of states may be written as:

http://dx.doi.org/10.1007/978-94-024-0850-8_6
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¬nano .!i/ D g .!i/ f .!i/ (4.72)

where g(! i) is the degeneracy modes at frequency ! i. Though the line shape is more
correctly represented as a Lorentzian, we shall simplify the shape to the “top hat”
function, that is:

f .!/ D
�
1=�! for ! ��! 
 ! 
 ! C�!

0 elsewhere
(4.73)

We also assume that line width of each resonance is �!, independent of !. For
sharp spectral lines, we further assume that the main contribution to the broadening
occurs when j!k � !k0 j 
 �¨=2, that is, the phonons in the scattering process are
of nearly the same frequency. In such a scheme, we may approximate the density of
final states as

%
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Summing (4.71) over phonon frequencies, and using (4.72), (4.73) and (4.74),
the total transition rate of the Raman process is
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The degeneracy term g(¨) includes all modes within a range !˙�¨=2. In Fig. 4.4,
the energy axes are broken up into 1000 bins, each of energy� 0.5 cm�1. g(! i) is
given by the number of modes in the ith bin, where !i is the central frequency of the
bin. The sum in (4.78), which carries the temperature dependence of the broadening,
was carried out for four particle sizes from TD1 K to TD700 K. The results are
shown in Fig. 4.7.

We make the following observations regarding these results.

1. The strongest temperature dependence of the line broadening for all particle
sizes occurs at temperatures below 10 K. For the 3 nm (15� 15� 15 atoms)
nanoparticle, the temperature dependence is strong between 1 K and 10 K.

2. Above 300 K the curvature of the lines in Fig. 4.7 are independent of particle
size, thus thermal dependence of the broadening should be the same for particles
of all sizes.

3. Figure 4.7 also shows that above �10 K the expected broadening to be larger
for smaller particle sizes. However, this effect depends on the details of the
calculation (e.g. the binning of the data and the “top hat” line shape function),
and should not be taken too seriously.

To understand the strong temperature dependence of the broadening at low
temperatures, it is useful to consider not just the phonon density of states, but also
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the phonon occupancies. Figure 4.8 shows the product ¬nano(�)n(�) for the 3 nm
particle at TD 10 K, 100 K, and 500 K. At 10 K, only a few modes are occupied,
and even then the phonon occupation numbers are very small, much less than 1. At
1 K, the occupancy of the lowest mode in the 3 nm particle is �10�23. Thus, in a
nanoparticle there are essentially no phonons at 1 K, so there is no broadening. This
helps explain the steep slope for the 3 nm particle in Fig. 4.7 at temperatures less
that a few degrees K.

Using hole-burning experiments, Meltzer and Hong [21] examined the broad-
ening of the 7F0 !5D0 transition of Eu2O3 spherical nanoparticles of different
diameters (5.4, 7.6, and 11.6 nm) at temperatures between 4 K and 10 K. They
observed a Tn dependence, where 3 < n < 4, for the thermal broadening of the line.
This dependence is much smaller than that shown in Fig. 4.7 for the 5 nm particles,
and was also much smaller than their own calculated predictions. In contradiction to
the results in Fig. 4.7, the authors observed the thermal broadening increasing as the
particle size decreases. To explain this they refer to calculations that posit an inverse
relation between the electron-phonon coupling and particle size [22].

Erdem et al. [23] measured the linewidth of the 2E!4T2 transition of Cr-doped
YAG nanoparticles at temperatures from 30 K to 300 K as a function of particle size
(Fig. 4.9). The results were fit to Eq. (4.64) assuming Debye temperature of 550 K
and where the electron-phonon coupling parameter, ˛0, was allowed to vary. The
fits to Eq. (4.64) are reasonably good, showing that even in nanoparticles as small
as 28 nm behave similar to the bulk crystal. This is consistent with the behavior
shown in Fig. 4.7. Excellent fits to Eq. (4.64) were also reported by Bilir et al. on the
temperature dependence of the linewidth of Nd nanoparticles ranging in diameters
from 16 to 250 nm [24].
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Fig. 4.7 Temperature dependence on the thermal broadening of a spectral line (given by the sum in
Eq. (4.74)) for cubic nanoparticles (15� 15� 15-black, 25� 25� 25-blue, 100� 100� 100-red,
1000� 1000� 1000-green) for temperatures ranges 1–30 K (left) and 30–700 K (right)
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The examples above show an unresolved conflict in the behavior of the electron-
phonon coupling as the particle size changes. Whereas Meltzer et al. [21] suggest an
increase in the coupling as the particle size decreases, the data from Erdem et al. [23]
and Bilir et al. [24] suggest a decrease in the coupling as particle size decreases. And
finally Suyver et al. [25] conclude that electron-phonon coupling is independent of
particle size. These works indicate that a definitive answer as to how the electron-
phonon coupling changes with particle size remains elusive.

4.9.2 Shifting of a Sharp Spectral Line in a Nanoparticle

The theoretical treatment of the thermal shift of the energy of the spectral line in a
nanoparticle begins with Eq. (4.66) the shift due to a particular phonon mode, k.
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Fig. 4.9 Linewidth vs. temperature of the R1 line in nanopowders (•28 nm, �58 nm, N250 nm),
and in a single crystal (♦) of Cr-doped YAG. The solid lines are fits to Eq. (4.64) [23]

To find the total thermal shift of the particle, we neglect the contribution of
spontaneous emission to (4.79) (i.e., .2nk C 1/ becomes (2nk), and sum (4.79) over
all phonon modes. Referring to (4.75) and (4.76), the total thermal shift can be
written as:
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The sum in (4.77) carries the temperature dependence of the thermal line
shift. Figure 4.10 shows the fit the sum in Eq. (4.77) for cubic nanoparticles
(15� 15� 15, 25� 25� 25, 100� 100� 100, and 1000� 1000� 1000 atoms) at
temperatures between 1 K and 700 K. We see that, as with the line broadening,
the main differences between the shift in large and small particles occurs at very
low temperatures. At high temperatures, the thermal shift is nearly independent of
particle size.

Erdem et al. studied the lineshift of the 2E!4T2 emission line of Cr3C in YAG
in nanoparticles and in a bulk crystal [23]. The results showed that the thermal
lineshift the lineshift decreases as the particle size decreases, which is consistent
with Fig. 4.10. In that work, the lineshift was fit to Eq. (4.68) assuming a Debye
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Fig. 4.10 Temperature dependence on the thermal shift of a spectral line (given by the sum in
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1000� 1000� 1000-green) for temperatures ranges 1–30 K (left) and 30–700 K (right)

temperature of 550 K, and it was found that, as with the thermal line broadening
data, the electron-phonon coupling parameter decreased with particle size. Given
the lack of a theoretical explanation of the electron-phonon coupling decreasing
with particle size, more work is required to say definitively why the shift is less in
smaller particles.

4.10 Vibronic Transitions

Following excitation, the decay of an isolated ion can occur via (4.1) emission of a
photon, (4.2) emission of phonon(s), or (4.3) the emission of a photon concurrent
with the absorption or emission of one or more phonons. This third process is
referred to as a vibronic transition. In this section we discuss vibronic lines that
appear as sidebands to a zero-phonon line in weakly-coupled systems [26–28].

4.10.1 Vibronic Sidebands of Sharp Lines: Theory

In the limit of weak electron-phonon coupling, the narrow zero-phonon line is
accompanied by sidebands, which result from the modulation of the zero-phonon
transition by the vibrations of the solid. In Fig. 4.11, one immediately notices the
rich structure contained in that sideband, structure that contains information of
the phonon density of states. To explain such a structure, we must consider the
interaction of the ion with the different phonon modes of the crystal.

The transition rate of a vibronic transition involving the emission of a photon and
of a phonon in the kth mode is governed by terms having the following form:
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Fig. 4.11 Emission spectra
at 30Kof Cr:YAG particles of
28 nm, 58 nm, and >1000 nm.
Notice the broadening of the
spectral lines and an
enhanced background signal
as the particle size decreases

Fig. 4.12 The vibronic
emission process with states
and transition operators
labeled according to
irreducible representations
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whereOrad andOph in Eq. (4.78) represent the appropriate radiative and nonradiative
operators and � i, � j, and � f are the wavefunctions of the initial, intermediate and
final electronic states, respectively. The first term in Eq. (4.78) represents a process
whereby a photon is created in the transition from the initial electronic state to
an intermediate electronic state, and then a phonon is emitted in the transition to
the final electronic state. The second term reverses the order of these transitions.
Figure 4.12 shows a schematic drawing of a vibronic transition that represents by
the second term in Eq. (4.78).

Each of the electronic wavefunctions and the operators have a certain symmetry,
and using group theory one can associate them with certain irreducible representa-
tions. We make the following definitions.

� i: the irreducible representation of the initial electronic state of the transition
� f: the irreducible representation of the final electronic state of the transition
� r: the irreducible representation of the radiative operator (We will assume that this

is the electric dipole operator.)
�v: the irreducible representation of the vibrational mode involved in the transition
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Thus, for the vibronic transition shown in Fig. 4.12 to occur the direct product
� i � � vib � � r must contain � f :

�f 2 �i � �v � �r (4.79)

We note that (82) is merely a selection rule, and can only be used to determine if
a particular transition can occur; it cannot be used to determine the strength of a
transition.

4.10.2 Vibronic Sidebands of Sharp Lines: The Case
of Mgo:V2C

Consider the case of a vibronic spectrum in emission at low temperature of
MgO:V2C, shown in Fig. 4.13 [28]. In MgO the V2C ion sits in a site of octahedral
symmetry, surrounded by six oxygen ions. Because the site has inversion symmetry,
electric dipole transitions between two electronic states within the d3 configuration
are forbidden. As a result, the purely radiative transitions (accounting for the zero-
phonon line) are driven by the magnetic dipole operator. Odd vibrations of the local
complex destroy this inversion symmetry, so that the vibronic transitions involving
such vibrations are electric dipole allowed.

We now examine the relationship between theses vibronic transitions in
MgO:V2C and the density of phonon states of the MgO lattice. First, we observe
that the normal vibrational modes of the site symmetry of the octahedral group Oh

are either purely even or purely odd. The representation of the final state (� f) of
the V2C ion is known to be even. Since the electric dipole operator (� rad) is odd,
then a transition from the intermediate state via the electric dipole, according to Eq.
(4.79), will be allowed only if the intermediate state is odd. The initial (excited)
electronic state of V2C is also even, so that only odd vibrations will be involved in
the transition from � i to � j. Thus, Eq. (4.79) reduces to a statement of the parity
selection rule.

It can be shown that of the phonons modes featured most prominently in the
density of states of MgO, most of them can induce the octahedral complex to
oscillate in one or more of its odd vibrational modes [29]. As a result, nearly all
of the crystal phonon modes are able to participate in the vibronic transitions. The
phonon spectrum of the MgO crystal (obtained by neutron scattering data [30]) is
shown in Fig. 4.13a. The similarity of the shape of the low temperature vibronic
sideband (Fig. 4.13b) to that of the phonon spectrum is striking, and suggests that
the vibronic sideband can be closely related to the phonon spectrum of the lattice.
That these two spectra show similarities and the fact that nearly all phonon modes
of the MgO crystal can cause local vibrations to participate in the transition is not
coincidental. However, proving that there is a one-to-one correspondence between
the peaks (and valleys) of the two spectra is not trivial, since that would require
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calculating the transition probabilities for each of the 3N-6 normal modes of the
crystal. Even if such a calculation could be done, it is no guarantee that such a
calculation would be able to reproduce the observed vibronic spectrum. Generally,
the shape of the vibronic spectrum will not exactly mimic that of the density of
phonon states. It is, however, a practical way of gaining insight into the phonon
density of states for some crystals.

In nanocrystals, where the confinement on the density of phonon states is most
severe, one would expect that changes to the density of states would be obvious in
the vibronic spectrum of the nanoparticle. In fact, such a result would represent the
most direct experimental evidence of the reduced density of states in nanoparticles.
Unfortunately, there is a significant amount of broadening of the zero-phonon line
in small nanocrystals, due to the fact that zero phonon lines from various sites
(due to the proximity of the surface) are shifted in energy with respect to one
another. The sum of the contributions from various sites overlaps with a large
portion of the phonon sidebands of the zero phonon line from the “normal” site.
An example of this is shown in the vibronic spectra of Cr-doped YAG nanoparticles
shown in Fig. 4.11. Perhaps due to the fact that this overlap is most prominent near

Fig. 4.13 (a) The density of
states of MgO as determined
from neutron scattering
shown with (b) the vibronic
sideband of MgO:V2C [29]
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in the low energy range of the sidebands, where the most obvious changes (i.e.,
discreteness of the density of states and absence of the very low energy modes) to
the density of states occur, there is no reported vibronic spectrum that clearly shows
the vibronic spectrum changing with particle size. The difficulty in observing this
is also complicated by the fact that the emission from nanoparticles is often very
weak, probably because of the large number of surface states.

4.11 Conclusions

This paper first presented a detailed discussion of the Adiabatic Approximation(s),
and the breakdown of that approximation, which allows for the existence of non-
radiative processes. The electron-phonon coupling terms for the different adiabatic
approximations were then discussed. This electron-phonon coupling was then used
to determine the thermal broadening and shifting of sharp spectral lines of optically
active ions in bulk solids. Integral to the broadening and shifting of spectral lines,
and indeed to most non-radiative processes, is the phonon density of states in
the system under investigation. Given that one goal of the paper was to examine
how non-radiative processes depend on particle size, we then investigated how the
phonon density of states depended on particle size. This investigation consisted of
calculations of the phonon density of states for cubic nanoparticle, where it was
found that for very small particles, the phonon density of states becomes very
different than for bulk particles. The most obvious change in the phonon density
of states between macro and nano systems occurs at the low energy end of the
spectrum. After presenting this extensive background, the question of how non-
radiative processes in doped insulators are altered as the size of the particles change
from macroscopic to nano-sized was considered.

The fact that the electronic states of optically active ions in insulators are highly
localized to the site of the ion, the general theory of non-radiative transitions is
largely unaltered as the particle size changes. Using the calculated densities of
states for cubic nanoparticles, we examined the thermal broadening and shifting
of spectral lines for various particle sizes over a wide temperature range. Initial
results hint that the effects of particle size on the broadening and shifting of lines
are most likely to be observed only at low temperatures and in very small particles.
Even in particles on the order of 50 nm, one is unlikely to be able to discern any
contribution to these processes due to confinement effects of the phonon density
of states. Also discussed were how the reduced phonon density of states inhibits
the systems ability to reach thermal equilibrium and should changes in the vibronic
sidebands in weakly-coupled systems.
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