
Chapter 3
Nanomaterials: Basic Concepts and Quantum
Models

Maura Cesaria and Baldassare Di Bartolo

Abstract The term “nanosystem” refers to a system with at least one spatial
dimension scaled down to the nanometer-scale (<100 nm) and includes zero-
dimensional systems (such as metallic, semiconducting and ceramic nanoparticles),
one-dimensional systems (such as nanowires, nanotubes and nanorods) and two-
dimensional structures (thin films or plates).

The fascinating properties of materials at the nanoscale are continuing to attract
the scientific interest in many research fields at both applicative and fundamental
levels. The impossible to comprehensively review large number of reports and
results available in the literature demonstrates the complexity in describing all the
functionalities offered by the nanosystems as well as their properties as related to
their fabrication approaches apart from departure from bulk form. To be able to gain
insight into the potentialities and new future perspectives offered by the nanoworld
and nanotechnology, knowledge and understanding of the physical fundamentals is
a necessary starting point.

In this review paper, we consider and discuss the spectroscopy of nanomaterials
by pointing out differences and breaking points as compared to the bulk counter-
parts, the importance of the surfaces, the characteristic length-scales (De Broglie
wavelength, Fermi wavelength and exciton Bohr radius) that define various con-
finement regimes, the physics underlying the formalism to calculate the electronic
dispersion of the low-dimensionality systems and the technological benefits on
the excitonic binding energy implied by low-dimensionality (zero-, one- and two-
dimensionaity). The presented discussion aims at laying a foundation to further
studies for a reader new to the field of nanomaterials.
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3.1 Introduction

The nomenclature “nanomaterials” refers to materials with at least one dimension
in the nanometer (1 nm D 10�9 m) range (from 1 to 100 nanometers) that are
commonly classified as zero-dimensional (0D), one-dimensional (1D) and two-
dimensional (2D) structures. In general, adding one more confinement direction
can affects the system properties remarkably and involve different applications.
In practice, the systems of interest in nano-science are more often composed of
ensembles of nanostructures instead of single nanostructures because of processing.
Hence, on one hand, fabrication processes able to control such dispersion are critical
and, on the other hand, dispersion in size and shape must be taken into account to
interpret the experimental findings and to design devices exploiting the properties at
the nanoscale.

The first lecture (titled “There’s Plenty of Room at the Bottom”) regarding
possible applications for nanomaterials dates to 1959 and was given by the Physics
Nobel Laureate (in 1965) Richard Feynman at the annual American Physical Society
meeting on the campus of Caltech [1]. The challenging concept expressed by Feyn-
man in this seminal lecture was miniaturization as a possibility to collect/encode a
huge amount of information in increasingly small spaces. Even if no practical way
to accomplish all of this was known then, this idea laid the conceptual foundations
for applications exploiting very short length-scales and new properties of materials.
In this sense, Feynman challenged scientists to collaborate and explore increasingly
small sizes and the applicative perspectives in this realm without thinking small
about the solution of future challenging problems. In 1984 Feynman was invited to
give an updated version of his landmark lecture at a weeklong seminar held at the
Esalen Institute. His talk, titled “Tiny Machines”, while discussing the important
technological advances since 1954, demonstrated that his first outlined picture of
nanoworld was prescient and farsighted.

Over the years, there has been a growing widespread interest in nanomaterials
(also termed mesoscopic systems) at both fundamental and applicative level leading
to a new promising research field named “nanotechnology”. This term was first
introduced in 1974 by Norio Taniguchi at the International Conference on Precision
Engineering (ICPE) [2] and refers to processes enabling to engineer and fabricate
objects with control on the nanoscale level.

The development of nanoscience demands fundamental knowledge of the phys-
ical properties at the nanoscale level and new technologies both in fabrication
processes and investigation tools as well as interaction/exchange of various research
fields including physics, chemistry, material science and engineering, just as
previewed by Feynman. Efforts of fundamental research are presently focused on
understanding the origin of the mechanical, chemical, reactivity, catalysis, thermal,
electrical, optical, and magnetic properties of nanomaterials, which strongly differ
from the ones of the large-scale structures of the same composition (i.e., bulk
counterpart). Changes of the bulk properties involved by size-effects can be
observed as regards
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• chemical properties: reactivity and catalysis
• thermal properties: melting temperature and thermal conduction
• mechanical properties: adhesion and capillary forces
• optical properties: band-structure, absorption and scattering
• electrical properties: Coulomb charging, quantized conductance, quantum tun-

neling current
• magnetic properties: superparamagnetic effect

On the other hand, technology aims at engineering and controlling nanoma-
terial shape and size, size- and shape- dispersion and composition. Hence, since
investigation of the nanoworld and nanotechnology takes advantage from imaging,
measuring, modeling and manipulating matter at the nanometer scale, powerful
observation tools, such as electron microscopes (scanning electron microscope
(SEM) and transmission electron microscope (TEM)) [3–6], scanning-tunneling
microscope (STM) [7, 8], atomic force microscope (AFM) [9] and scanning
near-field optical spectroscopy (SNOM) [10, 11] were decisive in enabling and
prompting progress in the nanoscale field. STM uses a sharp metal tip brought
close (0.3�1 nm) to the surface to be investigated to measure a detectable electron
tunneling current. The “tunneling” of electrons (quantum tunneling effect) between
the tip and the substance creates a current (flow of electrons) that lets acquire
an image of the sample by changing the current intensity over the time. The
reachable resolution (0.1 �1 nm) enables to observe even single atoms. Today’s
STMs allow not only to see atoms but also to measure the electronic density of
states of single nanostructures as well as to move atoms around and arrange them
in a specific designed configuration. Whereas STM works only on electrically
conductive samples, AFM can image the surface of any (inorganic, organic,
conductive and insulator) material with such a high resolution to define the position
of individual atoms. The working principle of AFM can be summarized as follows.
A tiny tip at the end of a flexible micro-cantilever is scanned in a raster pattern over
the surface to be imaged by a piezoelectric actuator with sub-Angstrom accuracy.
Cantilever deflection results from the tip-sample (short-range chemical binding,
van-der Waals, electrostatic or magnetic) interaction which is kept to a fixed value
by a feedback circuit in almost all operating modes of the AFM instrument. The
cantilever deflection is carefully monitored by a laser beam reflected off the back of
the cantilever towards a four-quadrant split position-sensitive photodetector acting
as amplifier of the cantilever deflection.

Near-field optical probing (SNOM) enables to image and measure the optical
properties of single semiconductor quantum nano-structures, even distributed at a
spatial density of the order of 100/�m2, with spatial subnanometer resolutions,
i.e., well beyond the diffraction limit of light. Conventional optical microscopes
obtain the image of an object without being able to gain information about fine
(subwavelength) features due to the diffraction limit [12], meaning that detail can’t
be greater than 0.61 œ/NA where œ is the probing wavelength and NA is the
numerical aperture of the microscope optics. To overcome the limits of conventional
microscopes the sample should be illuminated by a small aperture with diameter
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d much shorter than the probing wavelength and at a distance much shorter than
d from the surface to be imaged (near-field region). SNOM technology exploits
a tapered optical fiber with a metalized terminal part having diameter d of a few
tens of nanometers and enables to collect local emission from the surface region
just underneath the microscope aperture. Since a few hundreds of nW of laser light
shine the sample, a high collection efficiency is a prerequisite to be able to detect
very low level photoluminescence signals by SNOM spectroscopy.

Undoubtedly, nanotechnology would not exist without the above mentioned pow-
erful tools and many fascinating properties of mesoscopic systems would never have
been disclosed. In this respect, while the fundamental behavior of bulk materials
is inherently determined by structure and composition, at the nanometer length-
scale peculiar phenomena occur strictly related to either spatial confinement of the
electronic as well as phonon wave-functions or surface-effects. For example, as it
will be thoroughly discussed later, when at least one length (L) of a semiconductor
system along a spatial direction is comparable with a characteristic length-scale (the
so-called De Broglie electronic wavelength of the corresponding bulk material),
then the energy spectrum becomes quantized along the confinement direction.
Such phenomenon, termed “quantum size effect”, involves a larger band gap and
a blue shift of the absorption onset with decreasing size as compared to the bulk
counterpart, meaning that the optical properties of a nanostructure are tunable as a
function of both the confinement length L and number of the confinement directions
(0D, 1D and 2D nanostructures).

A further consequence of low-dimensional confinement is the increase of the
binding energy of an exciton (i.e., an electron-hole pair bounded by the Coulomb
interaction) resulting from the enhanced Coulomb coupling between electrons and
holes achievable by carrier localization in a nanostructure. This low-dimensional
effect is a prerequisite to be able to observe excitonic effects in semiconductor
mesoscopic systems working at room temperature and exploiting optical non-
linearity in optoelectronic devices.

Moreover, discrete phonon density of states is characteristic of the nanoscale
[13] and low-frequency acoustic phonon modes are cut off depending on the
nanostructure size [14–17].

Since electron-phonon interaction determines the thermal conductivity and
affects carrier dynamics in quantum-confined systems, different thermalization rules
and processes (multiphonon processes [18, 19], Coulomb interactions and phonon-
bottleneck effects [20, 21]) have to be considered in the nanoworld.

Turning to metal nanoclusters/nanoparticles, for which there is no band-gap,
another nanoparticle phenomenon, known as plasmon resonance, is active that
results from the resonant oscillation of surface conduction electrons stimulated by
incident light with the plasma wavelength [22–29]. Scaling down to dimensions of
a few nanometers, surface plasmon resonance disappears in metal nanostructures.
In fact, as the spacings between adjacent energy levels (referred to as the Kubo gap)
become comparable to the thermal energy kBT (where kB is the Boltzmann constant
and T the absolute temperature), a shift in conductive properties, from metallic to
semiconducting and insulating, results for decreasing size [30–32].



3 Nanomaterials: Basic Concepts and Quantum Models 47

Metallic nanoparticles have a huge potential in nanotechnology thanks to
optimized synthesis approaches enabling control on their size, shape and degree of
aggregation. Under resonant excitation, an enhancement of the local electric fields
close to the metal nanoparticle surface occurs that is the basis of important appli-
cations such as surface-enhanced Raman Spectroscopy (SERS) [26, 33–35]. Such
an active recent research field uses various chemical functional groups favoring
bonds/interactions with antibodies, ligands, and drugs of interest in biotechnology,
nano-medicine and diagnostic imaging. Furthermore, other applications exploit
metal nanoparticles with modified composition and core-shell structure [36]. Metal
nanoparticles are also interesting for sensor applications and enhanced catalytic
activity involved by increased fraction of surface atoms and surface curvature with
decreasing size as well as particle-particle and particle-chemical interactions [37].

Also, surface effects are responsible for fundamentally and technologically
important experimental findings such as pre-melting (i.e., melting initiated at the
surface) and size-dependent depression of the melting temperature (i.e., lowered
melting temperature as compared to the bulk counterpart) [38–46].

A further amazing phenomenon peculiar of the nanoworld is the substantial
increment of the thermal conductivity exhibited by nanofluids (very low con-
centrations of nanostructures dispersed in solvents with suitable relative thermal
conductivity) which varies with size, shape, and material of the nanostructures as
well as difference of thermal conductivity between bulk material and base fluid [47].

On the other hand, the evidence of quantum size effects makes the Planck’s
black-body model unable to describe the thermal emission spectrum at the nanoscale
(at particle dimensions smaller than the radiation wavelength), where the Stefan–
Boltzmann law yields strongly overestimated results [48–50]. Moreover, nanoworld
also involves magnetic properties different as compared to the bulk materials
[51, 52].

Extensive, even if not exhaustive because of continuous progress and develop-
ments, literature is available about nanoscience (nanomaterials and nanotechnology)
and a comprehensive review of the existing scenario is outside the scope of this
paper. The subject of quantum-confined structures is wide, in continuous progress
and involves fundamental quantum mechanical models, applications in different
fields and processing of materials and architectures at the nanoscale.

Instead, in the following we overview and critically discuss the spectroscopic
properties of nanomaterials at the fundamental level with a focus on the underlying
physics and breaking points with respect to the bulk counterparts. We aim at
introducing a beginner reader to the fascinating world of low-dimensional systems
from the fundamental standpoint, i.e., accounting for the understanding of low-
dimensional physics as a tool for gaining insight in the potentialities and future
perspectives of the nanoworld. In this perspective, we consider the surface-related
effects (increased surface-to volume ratio (SVR) and the related modified chemistry
and thermal stability of nanomaterials) and their technological importance while
scaling down dimensions to the nanoscale level. Furthermore we overview and
discuss basic concepts such as optical confinement characteristic lengths (De
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Broglie wavelength, Fermi wavelength and exciton Bohr radius), the meaning
of the classification-scheme of low-dimensionality systems (zero-, one- and two-
dimensional systems), quantum mechanical models to mathematically describe the
electronic structure and quantum size effects in semiconductor nanostructures as
well as excitons in nanostructures, and the size-induced dramatic changes of the
electronic dispersion of metallic nanostructures.

3.2 Basic Concepts Underlying Nanoscience

Nanoscience deals with phenomena and processing involving systems with nanome-
ter dimensions (termed nanostructures or low-dimensional structures or mesoscopic
structures). Drastic (from macroscopic to nanometer-scale) reduction in size results
in physicochemical (electrical, mechanical, chemical, thermal, magnetic, and opti-
cal) properties that remarkably depart from the ones of the bulk counterpart
whenever a characteristic dimension becomes comparable with some fundamental
length-scale of the material. In this regime, the spatial confinement involves changes
of the electronic dispersion, usually falling into the category of quantum-size effects,
that can be detected in the optical response of nanostructures and lead to new device
performances and technologies. Nanoscale spectroscopy is not only size-dependent
but can also be controlled by the number of confinement dimensions (i.e. shape of
the nanostructure) leading to atom-like spectrum when the confinement occurs in
all directions (zero-dimensional structure or quantum dot or nanoparticle). At the
nanoscale, tuning of size and shape also affects the surface energy: the smaller the
nanostructure and the larger the number of edges, the larger is the contribution of
the surface energy, a fact which decreases the cohesive energy. Since the cohesive
energy dominates phenomena such as melting, evaporation and phase transition,
scaling down to nanometer size involves modified thermal stability as compared
to the bulk case. All of this has very interesting fundamental and applicative
perspectives that will be examined.

In the present section of our paper we introduce the reader to nomenclature
and basic concepts in nanoscience such as characteristic length-scales in solids (De
Broglie wavelength, exciton Bohr radius and Fermi wavelength), their interplay with
confinement effects leading to the classification of the mesoscopic systems as 2D-,
1D- and 0D-dimensional systems, size-induced (quantum-size effect) and surface-
related effects.

3.2.1 Characteristic Scale-Lengths in Bulk Solids

The regimes where the properties of materials became size- and shape-dependent
are defined by a set of characteristic length scales and their relationship with the
physical dimensions of the system. In the following we briefly overview the basic
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concepts of the solid state physics enabling to introduce such relevant length scales
(i.e., De Broglie wavelength and exciton Bohr radius in semiconductors, and Fermi
wavelength in metals).

In the framework of the solid state theory a simple model, the so-called free-
electron model, is often applied to solve for the Scroedinger equation of atomic and
metal systems. Such a model assumes independent and free electrons obeying the
Pauli-exclusion principle (Fermi-Dirac distribution function). To calculate systems
described by a periodic potential (semiconductor crystals), it has been modified to
include corrections to the pure free-electron model accounted for the band-structure
and carriers’ effective mass [53].

Based on the solid state physics [53], materials with ordered (periodic) lattice
structure can exhibit electronic energy dispersion organized according alternate
bands of allowed and forbidden energies. The highest fully occupied band and the
lowest empty or partially occupied band are termed valence band and conduction
band, respectively, and are separated by a continuum of electronic forbidden
energies referred to as energy band-gap (Fig. 3.1). The width of such a band-gap
(Eg) as compared to the thermal energy kBT is of interest to classify materials
as insulators or semiconductors. In fact, when in the ground state (zero absolute
temperature, T D 0 K) Eg is much too wide to allow electrons from the valence
band to be thermally promoted to the conduction band at room temperature
(kBT � 25 meV at T D 300 K) then a material is classified as insulator. In this
case the valence band (and all bands of lower energy) is fully occupied, and the
conduction band is empty (implying vanishing conductivity) even at temperature
almost higher than the room temperature. Instead, a semiconductor material is
insulator at T D 0 K but its energy band-gap smaller compared to insulators (�a few
eV) enables the conduction band to be thermally populated around its minimum at
room temperature, which implies electric conductivity. In addition to insulators and
semiconductors, important materials in condensed matter physics are metals that do
not have forbidden energy gap, i.e., at T D 0 K their conduction electrons occupy

Fig. 3.1 Schematics of the band structure of a metal, semiconductor and insulator material
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Fig. 3.2 Fermi-Dirac
distribution function
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a continuum of energy levels (the so-called “Fermi sphere”) with maximum energy
corresponding to the so-called “Fermi energy”(EF). In metals the allowed electronic
states with energy higher than EF are depopulated at T D 0 K and can be thermally
populated at any non-vanishing low temperature due to the absence of a forbidden
energy gap. In general, EF is defined as the highest energy level below which all
electronic energy levels are filled and above which all electronic energy levels are
empty at T D 0 K. In terms of statistics, EF is defined by the Fermi-Dirac statistics
which describes the probability density that fermions (like electrons) can occupy an
allowed state at energy E as a function of the temperature (Fig. 3.2). Being T the
absolute temperature, the Fermi-Dirac distribution function fFD has the following
mathematical expression:

fFD .E; T/ D

�
1 C e

�.E��/
kBT

��1

where kB is the Boltzmann’s constant and � is the so-called “total chemical
potential” (tending to EF at T D 0 K). Based on the Fermi-Dirac statistics, it results
fFD (EF,T D 0 K) D 1/2, i.e., the probability of occupation at EF is 1/2. Notably, EF

is the ground state (T D 0 K) limit of the chemical potential � and may be or may
not be an electronic allowed energy. In fact, while in metals EF is the maximum
occupied electronic energy, in semiconductors and insulators EF is located in the
middle of the forbidden band-gap (Fig. 3.1), consistently with fully occupied
valence band and empty conduction band in the ground state (T D 0 K). At T > 0 K
the step-like profile of fFD at T D 0 K smooths/rounds and a tail develops extending
towards E > EF with fFD (�,T) D 1/2 (Fig. 3.2) at any T > 0 K. The chemical potential
� shifts with temperature as well as doping content and type (n-type or p-type).

Another important difference between band-gap materials and metals is the
nature of carriers, i.e. electrons in metals and both electrons and holes in semi-
conductors. The concept of hole is introduced to account for the properties of the
missing electron in the valence band.

The outlined background of solid state physics provides the basic information
necessary to introduce and discuss characteristic length scales in solids.
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In semiconductors, the characteristic length scale of carriers (electrons and holes)
is the De Broglie wavelength œDB given by

œDB D h=p

where pD m* v is the momentum of a carrier with effective mass m* (determined
by the crystal lattice) and velocity v and h D 6.62 � 10�34Js is the Planck’s constant.
In general, holes have larger effective mass and lower velocity than electrons
in a given material. For example, in GaAs, the effective mass of electrons and
holes and their thermal velocity are given by me* D 0.063 mo, mh* D 0.53 mo,
ve D 4.4 � 105 m/s and vh D 1.8 � 105 m/s. Based on the definition, after substituting
h D 6.62 � 10�34 Js and 1 J D 1 kg m2/s2, the De Broglie wavelength can be
expressed as œDB D (727 � 103 nm)/(m*/mo)v, where m*/mo is the carrier effective
mass expressed in units of mo (mo D 9.11 � 10�31Kg, mass of a free electron) and
v is the value of the carrier velocity expressed in m/s. For example, in the case
of electrons (holes) with isotropic effective mass me* D 0.1mo (mh* D 0.4mo) and
thermal velocity ve D 105 m/s, the electron (hole) De Broglie wavelength is equal to
œDB,e � 73 nm (œDB,h � 18 nm).

In typical semiconductors with electron effective mass me* D (0.01–1) mo, a De
Broglie wavelength of the order of �730–73 Å (much larger than lattice constant)
results at T D 300 K. For decreasing temperatures down to T D 4 K, œDB increases
to 102–104 Å because of the lower electron thermal velocity. Furthermore, œDB can
depend on the doping conditions due to changes in the carrier density.

In metals, the characteristic length-scale is termed Fermi wavelength (œF) and
defined as De Broglie wavelength at the Fermi edge EF (the highest occupied
energy level at T D 0 K: any energy state below EF is occupied and every level
above EF is empty). Based on its definition, the Fermi wavelength is expressed as
follows

œF D h=mvF

where vF is the electron velocity at the Fermi energy EF that, in terms of the electron
density n at T D 0 K, is given by

EF D .1=2/ mvF
2 D

�
3 2

�2=3 �
h2= .2m/ n2=3

�

For increasing temperature above zero degrees Kelvin some electrons will be excited
to higher states thus causing a blue-shift of the energy of the topmost filled level (the
chemical potential energy �) and increasing electron thermal velocity.

For example, in the case of copper (Cu) which is a monovalent element
with atomic number Z D 29 and electronic configuration Cu:[Ar] 3d10 4 s1,
the Fermi velocity is vF D 1.57 � 106 m/s. From the equations EF D (1/2)mvF

2

and œF D h/mvF, after substituting m � mo [54], it results that EF � 7 eV and
œF � 0.46 nm.
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Table 3.1 Fermi energy
(EF), Fermi velocity (vF),
effective mass normalized to
the free electron mass
(m*/mo) and Fermi
wavelength (œF) of some
common metals

Element EF (eV) vF (106 m/s) m*/mo œF (nm)

Li 4.74 1.29 1.28 0.44
Na 3.24 1.07 1.20 0.57
K 2.12 0.86 1.12 0.75
Cu 7 1.57 1.01 0.46
Ag 5.49 1.39 0.99 0.53
Au 5.53 1.4 1.10 0.47
Al 11.7 2.03 1.18 0.30
Zn 9.47 1.83 0.85 0.47

In metals, since the density of the conduction electrons ranges between approxi-
mately 1028 and 1029 electrons/m3, a Fermi energy of the order of 2–10 eV results
that depends on the atomic valency and the electronic density. As Table 3.1 shows, in
many common metals, the electron effective mass is close to mo and œF � 0.3–1 nm.

Another characteristic length scale in bulk solids is the average physical sepa-
ration between the electron and hole, referred to as the “exciton Bohr radius”, in a
bound electron-hole (e-h) pair (termed “exciton”). The absorption of a photon by an
interband transition in a bulk semiconductor or insulator can create an electron in
the conduction band and hole in the valence band correlated through the Coulomb
interaction. Such a state of an electron and hole bound by the electrostatic interaction
is a neutral e-h complex called “exciton” [55–61]. The bulk exciton Bohr radius
aex

bulk is given by the following formula

aex
bulk D aH©r .mo=�r/

where aH D 0.53
0

Å is the Bohr radius of H atom, "r is the relative dielectric
constant, mo is the mass of a free electron and �r is the reduced mass of the e-h
system (�r D me* mh*/(me* C mh*), being me* and mh* the effective masses of the
electron and hole, respectively).

Two kinds of excitons can be distinguished, termed Wannier–Mott excitons
and Frenkel excitons (Fig. 3.3). The former ones, also called “free excitons”, are
delocalized (i.e., weak e-h coupling) states with binding energy �10 meV and
mainly occur in semiconductors (large dielectric constant " � 10). The latter ones,
also called “tight bound excitons” are characterized by strong e-h coupling with
binding energy of �0.1–1 eV (form in insulator and molecular crystals (" � 2)),
localization on specific sites and hopping motion from one site to another. Basically,
differences in the binding energies implies that aex

bulk of the Wannier–Mott excitons
is larger than aex

bulk associated to Frenkel excitons (Fig. 3.3).
Since in the following we will consider semiconductors, we will deal with

Wannier–Mott excitons. The common technological important semiconductors such
as Si, Ge, GaAs, GaP, InP, CdSe and InSb, have exciton Bohr radia of 4.9, 17.7, 14,
1.7, 9.5, 3 (5.07), and 69 nm, respectively.
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Fig. 3.3 Schematic representation of the two kinds of excitons

Definitively, to summarize, typical solid-state bulk systems can be characterized
by their electronic dispersion (band-structure) and the Fermi-Dirac distribution
function. Furthermore, characteristic length scales can be defined, namely a De
Broglie wavelength of carriers (electrons and holes in semiconductors and electrons
in metals) in the picture of the fermion gas and the exciton Bohr radius in
semiconductors which is related to e-h pairs coupled by electrostatic interaction.

Once assessed that characteristic length scales exist in solid-state bulk systems
and they are of the order of nanometer, it is straightforward to investigate their
interplay with the size of the nanostructures in regard to fundamental properties
of materials.

3.2.2 Quantum Confinement Effects and Classifications
of the Nanostructures

The expression “quantum confinement effects” refers to changes in the electronic
band structure and density of states (DOS) resulting from scaling the size of a
system down to ultra-small length scales. The meaning of “ultra-small” is critical
and can be specified once the interplay between characteristic length scales and
size of the system is established. Notably, both optical and electric (transport
regimes) properties of materials can be affected by reduction of their size to the
nanometer level. On this small length scale electron transport is ruled by quantum
mechanics (electron wave behaviour and quantum tunnelling are demanding) and
novel phenomena (such as quantized conductance, Coulomb blockade and single
electron tunnelling) [62–76] occur which are the subject of “nano-electronics” [77,
78]. Further length scales must be defined to account for the size-dependent electric
properties that we will not consider in our discussion focused on the size-dependent
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optical properties of nanostructures. In this respect, the regime where the optical
properties of semiconductors became size and shape dependent is ruled/set by the
bulk exciton Bohr radius aex

bulk or the De Broglie wavelength of carriers in the bulk
counterpart. Instead, the Fermi wavelength œF is the length-scale associated with
confinement effects in metal nanostructures.

The most known and widely studied size-dependent effect is the co-called
“quantum-size effect”, i.e., the confinement-induced discrete energy spectrum, that
occurs whenever a length characteristic (termed “confinement length” hereafter) of
the system becomes comparable or smaller than a characteristic length-scale of the
bulk counterpart. For example, a semiconductor sample with at least one dimension
comparable to or smaller than the De Broglie wavelength of the corresponding bulk
material exhibits discrete electron energy along the k-space direction associated to
the confinement direction. On the other hand, while in bulk semiconductors, the
exciton (Coulomb-bounded e-h complex) can move freely in all directions, an e-h
pair forms and feels the system boundaries when a relevant length of a semicon-
ductor is reduced to the same order as the bulk exciton Bohr radius aex

bulk (a few
nanometers). In this situation, quantization of the exciton energy spectrum results.

Quantum size effects are also known for metal nanoparticles. However, since the
typical De Broglie wavelengths œDB and exciton Bohr radius aex

bulk in semicon-
ductors are larger than the Fermi wavelength œF in metals, then œF is the smallest
length scale relevant to quantum-size effects and effects of spatial confinement are
expected to be more easily observable in semiconductors than in metals. Indeed,
being œF usually very short in metals (Table 3.1), then localization of the energy
levels can be observed in metal nanostructures with size below 2–4 nm, that is
whenever the level spacing exceeds the thermal energy (�25 meV at T D 300 K).

Commonly, nanostructures are classified based on their dimensionality, meaning
the number of dimensions (one, two and three) scaled down to the nanometric-
length. According to this criterion/standard, mesoscopic structures are termed
two-dimensional or briefly 2D (confinement along one direction), one-dimensional
or briefly 1D (confinement along two directions) and zero-dimensional or briefly
0D (confinement along three directions). Consistently with this classification, three-
dimensional (3D) structure means bulk system. More precisely, the dimensionality
of a mesoscopic system refers to the number of degrees of freedom in the particle
momentum (Fig. 3.4). Hence, the nomenclature 2D-structure indicates confinement

nz

Ky

Kx nz

nz

ny

nx

Kx

ny

2D 1D 0D

Fig. 3.4 Classification of the nanostructures based on the number of confinement spatial directions
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of the particle motion along one direction (z-direction in Fig. 3.4) and free motion
along the other two independent directions (x and y directions in Fig. 3.4).The
term 1D-structure means free movement along only one direction (x-direction in
Fig. 3.4), i.e., confinement along two directions (y and z directions in Fig. 3.4).
Confinement along all the directions defines 0D-structures and the nomenclature
3D structure refers to free motion along any direction. Generally 2D, 1D and 0D
systems are also referred to as “quantum well” (QW), “quantum wire” (QWR)
and “quantum dot” (QD), respectively. Sometimes 0D nanostructures are termed
“quantum boxes” or “artificial atoms” too because electron confinement along all
directions implies atom-like electron dispersion, i.e., spectrum consisting of discrete
lines accessible to the system at characteristic energies.

In practice, the idea underlying the introduction of nanostructures was to create
artificially, by combining different semiconductor materials, potential wells and bar-
riers for confining carriers (electrons and holes) along one, two or three directions.
The shape of the confining potential in conduction and valence bands is determined
by the offset of band gap between different materials used as well as by the geometry
of the structure. Nanostructures are the key systems for band gap engineering
purposes in optolectronics: since the band gap energy of semiconductors determines
their emission wavelength, new materials and combination of materials rather than
alloys of semiconductors enable to carry out custom-designed emission energies.

3.2.3 Surface to Volume Ratio and Applications

In addition to quantum-size effects, another peculiarity of nanomaterials is the
increasing importance of their surfaces with decreasing size that involves chemical
and physical properties remarkably different from their macro counterparts. For
example, while bulk gold does not react with many chemicals, gold nanoparticles
can be used as highly reactive catalysts to speed up reactions due to their size-
related reactivity [79–82]. This behavior can be ascribed to the increased surface to
volume ratio (SVR) and role played by surface atoms for decreasing size, which is
a peculiarity of the nanoworld.

Let there be a cube with sides L and a sphere with radius R (Fig. 3.5). For the
cube, the volume and surface area is V D L3 and S D 6L2, respectively. For the
sphere, the volume and surface area is V D (4/3) R3 and S D 4 R2, respectively. As
the characteristic size (L or R) increases, the corresponding increase in the surface
area is squared and the increase in the volume is cubed. Hence, surface area and
volume decrease for decreasing size with volume increasingly at a much faster rate
than the surface area. Instead, since the SVR (S/R) scales with the inverse of the
characteristic size (L or R), it increases very fast for decreasing size and the greater
the characteristic size, the lower the SVR. In the case of characteristic length of the
order of nanometer, a very large SVR would result, meaning that the role and weight
of surfaces becomes important in the nanoworld. In fact, increased SVR involves
higher contribution of the surface energy to the overall energy, i.e., decreased
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Fig. 3.5 Surface to volume
ratio (S/V) of a cube and a
sphere

V = L3 V = (4/3)pR3

S = 4pR2

S/V = 3/R
S = 6L2

S/V = 6/L

L

R

cohesive energy [44, 83]. Moreover, the number of weakly coordinated surface
atoms increases with decreasing size [44, 83, 84]. Such increased SVR and number
of surface atoms in mesoscopic systems involve important phenomena peculiar of
the nanoworld, such as increased surface chemical reactivity and depression of the
melting point.

In practice, given a system of nanostructures (for example nanoparticles), the
remarkably increased number of surface atoms would favor interactions (chem-
ical reactions and bonds) between the surfaces of contiguous nanostructures as
well as between the nanostructures and other chemicals. Therefore, nanoscale
sizing maximizes possible reactivity because it maximizes the number of reaction
sites. On the other hand, reduced coordination of the surface atoms (i.e., fewer
neighboring bonds than inner atoms) reduces the cohesive energy that dominates
the thermal stability (melting, evaporation and phase transition) [44, 85]. Since
melting stabilizes the total energy by reducing the total surface energy, isolated and
substrate-supported metallic, organic and semiconductor low-dimensional systems
with relatively free surface fraction melt at temperatures lower than the melting
point of the corresponding bulk material [41] and melting can be a surface-initiated
process [86–89]. In this respect, the nomenclature “surface melting” or “pre-
melting” is used because the mechanism can be modeled as the formation of a
disordered “quasi-liquid” layer (where “quasi-liquid” indicates both liquid-like and
solid-like) on the surface of an annealed solid system that thickens with increasing
temperature and drives the complete melting of the nanostructure [90–92].

Surface melting is also responsible for collapse/breaking up of a continuous
film, with thickness ranging from a few nanometers to hundreds of nanometers and
deposited on an inert substrate, into patterns that spread, coalesce and decay into
discrete droplets under high-temperature heating [93–96].

Such a dewetting phenomenon onsets at temperature lower than the one of bulk
melting and is driven by the reduction of surface energy, optimization of shape and
reduction of the heat for melting [96]. Therefore, pre-melting, melting and dewetting
of low-dimensional systems are stabilizing processes prompted to minimize the
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surface energy in the presence of competition between surface and bulk free energy.
Also, shape and sharp surface features (surface curvature, stepped surfaces and
corners) favor reduced coordination of the surface atoms (i.e., fewer neighboring
bonds than inner atoms) and surface diffusion, thus leading to increased surface-
energy (reduced cohesive energy) [97–99] and reshaping. In this respect, “edge
pre-melting” (i.e., pre-melting appearing at vertices and edges) is the first step of
surface melting [100] and involves initial getting rounder and broaderly stepped
features, due to mostly liquid-like atoms causing increasing mobility of vertex and
edge atoms [97, 98, 101]. Another melting phenomenon peculiar of the nanoworld
is “superheating”, meaning that supported mesoscopic systems can melt below or
above the melting point of the corresponding bulk crystal depending on the interface
structure and matrix material [102–105]. To predict and explain the depression of the
melting point at the nanoscale, a number of theoretical models have been developed,
including the Thomson’s and Pawlow’s models [38, 106–109], the Lindemann
criterion [110] and approaches based on the Lindemann melting rule [111–114],
phenomenological approaches considering solid–liquid equilibrium (such as the
homogeneous melting (HGM) model [38, 41, 115],the liquid skin melting (LSM)
model and the liquid nucleation and growth model (LNGM) [111, 115–117],
analytical models based on the increase of SVR and reduction of the cohesive energy
[118–120], the liquid drop model [83, 121] and the bond-order-length-strength
(BOLS) correlation mechanism [83].

Essentially two main classes of approaches can be identified to investigate the
thermal stability of nanosystems: thermodynamic approaches, also termed top-down
approaches, and bottom-up approaches.

Thermodynamic approaches apply basic concepts of classical thermodynamics
(solid-liquid equilibrium, phase change and state variables, Gibb’s free energy) to
develop equations relating the melting point to the size and shape of a nanoscale-
system.

Bottom-up approaches are based on computer modeling (mainly Molecular
Dynamic (MD) simulations) and are becoming the mainstream method to inves-
tigate the melting behavior of nanoparticles/nanoclusters [91, 122–128]. Even if
MD simulations can picture the melting dynamic over time scales of the order of
picoseconds (i.e., cannot show the true melting dynamics of a system) and model
systems containing a limited numbers of atoms, however they let a more accurate
estimation of the melting point and melting processes (pre-melting, edge-melting
and influence of shape) at the nanoscale. Indeed, the thermodynamic point of view
(that predicts melting at a well-defined (equilibrium) temperature) contrasts with
the experimental evidence that shows the lack of a precise melting temperature and,
instead, the occurrence of a temperature interval over which melting phenomena
can be observed [129, 130]. In the presence of melting point depression, a size-
dependent broadening of the range of temperature in which melting occurs can be
observed, being the broadening more evident for decreasing particle size.

On the other hand, based on the thermodynamic equilibrium between
bulk solid state and bulk liquid state, the change of the melting temperature
�Tm D Tm,B � Tm,NP (where Tm,B and Tm,NP are the bulk phase and size-dependent



58 M. Cesaria and B. Di Bartolo

melting point, respectively) can be found to scale linearly as a function of the size
R of the nanoparticle (subscript NP). In this calculation isolated, homogeneous
and spherical nanoparticles are assumed. Indeed, the experimental findings indicate
deviation from a linear trend for small enough (R < 10 nm) size and in the case of
supported semiconductor nanoparticles [131–133]. Moreover, shape, substrate and
free surface, crystalline orientation and dimensionality must be also considered to
realistically model the size-dependent melting process. Therefore, in addition to
the difficulty in determining the melting point from experiments, spreading use of
MD simulations as compared to thermodynamic approaches is also favored by the
conceptual limits of the thermodynamic approach. In this respect, the key question
arising from the failing predictions of the conventional thermodynamics applied to
the nanoworld is “May classic thermodynamics be applied to model the thermal
stability of nanomaterials or, instead, nano-thermodynamics should be developed?”

Even if key issues still need to be understood about the thermal stability of
nanomaterials, depression of melting point has important technological applications
such as low-temperature (far below the bulk melting temperature) melting of
nanostructure distributions resulting in a continuous dense film [130] and large
area soldering applications leading to the packaging technology termed “wafer
bonding” [134]. Wafer bonding is an emerging technology for fabricating complex
three-dimensional structures at temperatures (a few hundreds of Celsius degrees)
compatible with the ones required in the processing conditions leading to integration
of multi-function microelectronic systems.

Annealing of arrays of nanorods can be used to obtain a dense continu-
ous film going through several temperatures and structure (disordered phase,
re-crystallization and formation of larger grains) regimes before the heated nanorods
completely melt and collapse into a continuous phase [130, 134]. It is worth noticing
that tilt angle change of the nanorods as well as tuning of their diameter and degree
of package (reduced gaps between neighboring nanorods) can help their collapse
and disappearing (as a result of coalescence) and decrease the annealing temperature
requested to carry out a dense continuous film. At the applicative level all of this
enables to form a continuous ordered film at much lower temperature as compared
to the post-deposition annealing temperature of the counterpart bulk film.

The depression of the melting point can be also exploited to carry out wafer
bonding, where two wafers, each consisting of a supported array of nanorods
grown by an oblique angle deposition technique, are superposed with the nanorods
layer in contact to act as an adhesive upon annealing. This two wafer structure is
subsequently subjected to external pressure and heating (even at lower temperature
than the collapse temperature of the nanorods) in order to favor first the formation
of nano-structured bond at the nanorod/nanorod interface and then eliminate such a
bonding interface and structure voids. The resulting sintering of the nanostructures
and the formation of a dense bonding layer is not only size-dependent but depends
on the bonding pressure too.

Since temperatures as low as a few hundreds Celsius degrees are involved in
wafer bonding, this approach is an emerging technology with great promises in
advancing integrated 3D chip technology.
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3.3 Quantum Mechanical Models in Nanoscience

Low-dimensional systems are excellent examples of quantum mechanics in action
[135]. Quantum confinement effects result essentially from changes in the electronic
dispersion as compared to the bulk counterpart due to the influence of ultra-small
(nanometric) length-scale constraints on the electron wavefunctions. Quantum size
effects occur whenever a characteristic geometric-length of the system becomes
comparable or smaller than a characteristic length-scale of the bulk counterpart.
As a result of such “geometrical” constraints, electrons “feel” the presence of the
structure boundaries and changes in its size as well as shape and adjust their energy
spectrum that becomes discrete. Depending on the material (semiconductor, insula-
tor or metal) and dimensionality of the nanostructure (2D, 1D or 0D nanostructure),
an electronic dispersion with different expression results.

As previously discussed, the bulk characteristic length-scales are the De Broglie
wavelength (œDB) (termed Fermi wavelength (œF) in metals) and the Bohr radius
of an exciton (aex

bulk) in semiconductors. The basic building-block nanostructures
are QWs (2D dimensional system), QWRs (1D dimensional system) and QDs (0D
dimensional system). In any case, a quantum-mechanical treatment is demanding to
be able to predict the physical behaviour of a low-dimensional structure, meaning
that the Schrödinger equation must be solved in presence of a given quantum-
confinement potential.

In general, in the Schrödinger description of a system the following equation
must be solved

�
�

¯2

2m�
r2 C V .r; t/

�
' .r; t/ D i¯

@' .r; t/

@t

where r and t are the spatial and temporal coordinates, respectively, r2 D @2

@x2 C
@2

@y2 C @2

@z2
is the Laplacian operator, V(r,t) is the potential influencing the system’s

motion, m* is the (effective) mass of the system, -h is the reduced Planck constant
and ®(r,t) is the wave function describing the system. The quantity j®(r,t)j2 is the
probability of finding the system at a spatial location rD (x,y,z) and time t.

Under the assumption V(r,t) D V(r) the dependence on time and spatial coordi-
nates can be separated by writing the wave function as a product

® .r; t/ D § .r/ ¥ .t/ D § .r/ exp .�i2 Et=h/

which leads to the following time-independent Schrödinger equation
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where E is introduced as a constant to be meant as the energy of the system.
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Standard quantum systems in solid state physics are a free (isolated) particle,
a particle in a box with either infinite or finite walls and a particle moving under
the influence of a periodic potential (such as an electron in a crystal). In all these
cases the corresponding time-independent Schrödinger Eq. (3.1) can be solved
analytically yielding energy spectrum and electronic wave functions.

A free electron model is the simplest way to interpret the electronic structure
of metals. In this approximation the time-independent Schrödinger Eq. (3.1) can
be solved for V(r) D 0 and effective mass given by the free electron mass mo. The
resulting solutions have the form of plane-wave functions (i.e., §k(r) D A exp(ik�r),
where k is the wave vector constrained by the periodic boundary conditions) with
energies E D (¯k)2/(2 mo).

Confining a particle along at least one spatial direction introduces quantized ener-
gies and wave function changing from a traveling wave to a standing wave [136]. In
the most simple case of a particle spatially confined along the x-direction within a
distance a (one-dimensional (1D) quantum box of width a) (Fig. 3.6), the effect of
the 1D spatial confinement along the x-direction is introduced mathematically by the
potential V(x) defined as V(x) D 0 if 0 < x < a (where a is the width of the confining
well) and V(x) D Vo elsewhere (where Vo is assumed finite and infinite in the case
of a finite and infinite well, respectively) with boundary conditions requiring that
the wave functions have nodes at the walls of the potential well. In the case of
one-dimensional infinite well the solutions are oscillating functions vanishing at the
walls (Fig. 3.6a) and the energy spectrum is discrete with eigenvalues labeled by one
quantum number. In the case of a finite well having the same width a, the energies
are slightly lower than the corresponding ones of the infinite well and leakage of the
wavefunctions into the barrier occurs (quantum tunneling) (Fig. 3.6b) [136], which
means that the wave functions are less well confined than in the corresponding
infinite well. Notably, there is only a limited number of solutions, but there is always
at least one.

Although the infinite-well model is an approximation, it is usually applied as a
good starting point for describing the general effects of quantum confinement.

The results of the 1D quantum box can be extended to the two-dimensions (2D
quantum box) and three-dimensions (3D quantum box) in a straightforward way.
For example, if the particle with mass m is confined to a 2D box in the (x,y)
plane of a Cartesian coordinate system, then the well potential V(x,y) is defined
as V(x,y) D 0 if 0 < x < a and 0 < y < b (where a and b is the width of the confining
well along x and y, respectively) and V(x,y) D Vo elsewhere (where Vo is finite
and infinite in the case of finite and infinite well, respectively). The solutions of
the time-independent Schrödinger equation are still oscillating functions in each
confinement direction and the energy spectrum is discrete with eigenvalues labeled
by two quantum numbers, that is
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Fig. 3.6 (a) Quantized energy spectrum and wave functions of a one-dimensional infinite quantum
box of width a. (b) Effect of the finite potential barrier versus the infinite one

where nx and ny are integers. The energy of the first allowed electron energy level
in a typical 100 Å-wide GaAs quantum well is about 40 meV.

The standard problem of a N-dimensional box (N D 1,2,3) is the basis of the
quantum-mechanical treatment of semiconductor quantum confined structures that,
as already outlined, can be classified according to the number of confinement
spatial directions. That is, confinement in one, two and three directions defines
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2D-structures (termed QWs or quantum films), 1D-structures (termed QWRs) and
0D-structures (termed QDs), respectively. Usually, the theory of nanostructures
retains the Bloch description of the bulk properties of a solid-state system but
introduces an envelope function to correct for the spatial confinement of the charge
carriers (electrons and holes) along one or more directions. In this approximation,
the total wave function is expressed as the product of the Bloch function describing
the bulk properties of the nanostructure’s material and the envelope function that
accounts for the spatial confinement effects. The envelope function satisfies a
Schrödinger equation for a “particle-in a-box” problem (one-dimensional, two-
dimensional and three-dimensional box in the case of a QW, QWR and QD,
respectively).

3.3.1 Quantum Confinement in Semiconductor QWs

Quantum wells (QWs) are thin layered semiconductor structures [137, 138] that
can be fabricated to a high degree of structural quality and control of thickness
by modern epitaxial crystal growth approaches [139]. QWs can be assumed as
prototypical systems to discuss the key theoretical concepts relevant to introduce
quantum confinement effects and to interpret the electronic and spectroscopic
properties of low-dimensional systems.

A semiconductor QW structure results whenever one characteristic geometric
length of a semiconductor system is made comparable to or smaller than the elec-
tronic De Broglie wavelength œDB of the corresponding bulk material. In practice
a QW is a heterostructure formed through alternating layers of semiconductor
materials with different band gaps: the semiconductor (termed A in Fig. 3.7a) with
the lowest band gap energy EA

gap (Fig. 3.7b) is sandwiched between two layers
of another semiconductor (termed B in Fig. 3.7a) having a larger band gap energy
EB

gap (Fig. 3.7b). Therefore, a confining potential well for electrons (holes) in the
material A (termed well semiconductor) is introduced by potential barriers involved
by the sandwiching layers (material B) (Fig. 3.7b). The well depth for electrons
(holes) is the difference (i.e. the offset) between the conduction-band (valence-
band) edges of the well and barrier semiconductors. This situation is encountered
in practice for the following list of pairs of materials well/barrier: GaAs/GaAlAs,
GaAs/GaInP, GaSb/GaAlSb, GaInAsP/InP, GaInAs/AlInAs, InP/GaInAs, Si/SiGe
and GaSb/AlSb. In the case of a GaAs/AlGaAs QW, the quantum confinement is
provided by the discontinuity in the band gap at the interfaces and the Al concen-
tration is typically around 30 %, leading a band-gap discontinuity of 0.36 eV [140]
such that electrons and holes see a confining barrier of 0.24 and 0.12 eV, respec-
tively. The dispersion of a QW can be calculated by solving the Schrödinger equa-
tion for the electrons and holes in the potential wells created by the interface band
discontinuities. The well width is the thickness of the intermediate layer (termed Lz

in Fig. 3.7a, where z is the growth-direction of the tri-layer heterostructure) and rep-
resents the length to be made comparable with the bulk de Broglie wavelength of the
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Fig. 3.7 A semiconductor
QW structure A/B/A: (a)
alternating layers of
semiconductor materials
B/A/B with (b) the lowest
band gap material A
sandwiched between two
layers of a material B with a
larger band-gap in such a way
to form a potential well
confining the electron motion
(c) along the growth direction
of the heterostructure

electrons or holes in the material A (œA
DB) to induce quantum size effects. Materials

to be coupled to form a QW should satisfy the further request to be “lattice-
matched”, that is their lattice constants must be nearly identical, to reduce interface
dislocations and defects. In practice relief of strain occurs above a critical thickness.
Indeed, QWs can be routinely grown as strained layers on top of a lattice with a
different cell constant (e.g., InxGa1�xN/GaN, InxGa1�x As/GaAs, and Si1�xGex/Si
QWs) as long as the total thickness of the strained layer is less than a critical value
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above which interface misfit dislocations form. For example, a defect-free strained
InxGa1�x As/GaAs QW can be grown with x D 0.2 and Lz of nearly 10 nm.

The well width is the thickness of the intermediate layer (termed Lz in Fig. 3.7a,
where z is the growth-direction of the tri-layer heterostructure) and is the char-
acteristic geometric length to be compared with œA

DB to observe quantum-size
effects [140, 141]. In GaAs, where the electron effective mass amounts to 0.067 m0,
the De Broglie wavelength œDB D 42 nm at 300 K results, meaning structures of
thickness � 10 nm are needed in order to be able to induce quantum-confinement
effects at room temperature. If the thickness of the well material is comparable to or
smaller than the De Broglie wavelength of the corresponding bulk material, based
on the simple “particle in a 1D box” model, the motion of carriers is expected to be
confined in the direction perpendicular to the layers (growth-direction) and free in
the QW plane (Fig. 3.7c). In order to demonstrate that the allowed states in a QW
correspond to standing waves in the direction perpendicular to the layers (growth-
direction) and plane waves in the QW plane, the time-independent Schrödinger
Eq. (3.1) must be solved in the simple “particle in a 1D box” approximation (of
the envelope function) [142–145] where the well potential is the QW potential
(Fig. 3.8a, b).
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Fig. 3.8 Schematic diagram of (a) the potential barrier, (b) layer structure, (c) quantized eigen-
functions and eigenvalues and (d) band diagram with subband-structure (dashed lines) of a QW of
thickness Lz and infinite barrier wall
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Accounting for the structure geometry and presence of materials A and B
(Fig. 3.7a), the QW potential can be written as follows:

VQW .x; y; z/ D VA .x; y; z/ FA .z/ C VB .x; y; z/ FB .z/

where the functions FA(z) and FB(z) introduce the potential of the corresponding
layer, that is FA(z) vanishes in the layer B and FB(z) vanishes in the layer A in such
a way that VQW (x,y,z) D VA (x,y,z) in the layer A and VQW (x,y,z) D VB (x,y,z) in
the layer B. Since the QW geometry decouples (x,y)-plane and z-direction, the QW
potential can be decomposed as

VQW .x; y; z/ D Vxy
QW .x; y/ C VQW .z/

where VQW (z) D VA FA(z) C VB FB(z) is the confining potential seen by the carrier
(electron and hole) along the direction z.

On the other hand, the translational invariance of the QW system in the (x,y)-
plane enables to model the wavefunctions describing the motion in the QW plane as
plane waves. Hence, being m* the carrier effective mass, a general solution of the
time-independent Schrödinger equation associated with Vxy

QW (x,y) and motion in
the (x,y)-plane can be written as follows:
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where z is the confinement direction (growth-direction), rxy D (x, y) and kxy D (kx,
ky) is the position vector and wave vector in the QW-plane ((x,y)-plane), respec-
tively, and the prefactor is a normalization constant. Therefore, being m* the carrier
effective mass, the Schrödinger’s equation to be solved for the particle of interest
(electron or hole) in a QW is the following one-dimensional time-independent
Schrödinger equation:
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where §n(z) and En are the energy eigenfunction and eigenvalue (confinement
energy) associated with the n-th solution and it is assumed that Lz � œA

DB 	 Lx, Ly.
Rather than the continuity condition of the derivative of the wave functions at the
interfaces, the conservation of both wave function §n(z) and particle flux ((1/m*)
(@§n(z)/@z)) across the QW walls is the boundary condition to be imposed to match
the solutions in the well and the barrier materials. Essentially the equation to be
solved is the time-independent Schrödinger equation of the standard problem of a
particle confined in a one-dime1D box whose solutions are known to be standing
waves (Fig. 3.6) labeled by one integer number.

In the case of an infinitely deep QW heterostructure, the solutions §n (z) of the
time-independent Schrödinger equation are analytically known (oscillating sin and
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cos functions with nodes at the walls) and the energy spectrum is discrete (Fig. 3.8c)
with eigenvalues
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the energy spectrum can be expressed as

En D E1nz
2 where nz D 1; 2; 3; : : :

Notably, the confinement energies Enz are referred to the bottom of the well and the
non vanishing energy E1 is located above the bottom of the well.

Spacing between subsequent eigenvalues can be easily expressed as
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Therefore, the QW confinement energies are quadratically spaced and their energy
spacing increases for decreasing well width Lz and effective mass m* as well as for
increasing quantum number nz.

The solution of the QW problem for finite well height must be performed
numerically and yields bound states whose wave functions are again standing
oscillating functions inside the quantum well and exponentially decaying into the
barriers (Fig. 3.6) with eigen-energies always somewhat lower than those of the
infinite case [146]. In any case, the solution of the QW problem leads to discrete
sequences of valence and conduction energy levels (termed sub-bands) (Fig. 3.8d).
As the reduced translational symmetry of a QW structure lifts the bulk degeneracy
of the heavy-hole (hh) and light-hole (lh) valence bands, each valence sub-band in
Fig. 3.8d is a doublet of hh and lh subbands with the hh subband closer to the valence
band bottom than the corresponding lh subband. Therefore, hh-to-conduction edge
starts at a slightly lower energy and is more closely spaced than the lh-to-conduction
edge.

Definitively, if Lz � œA
DB 	 Lx, Ly and the effective mass is assumed isotropic,

the total energy of a carrier in a QW is given by the formula
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where the eigenvalues Ex and Ey are associated to plane waves solutions describing
the free motion of a carrier along the x and y directions, respectively, and Enz

are the bounded energies of the carrier labeled by the integer index nz. Since the
confinement energies are inversely proportional to both the well width Lz and
the carrier effective mass, narrow wells as well as lighter particles involve larger
confinement energies. In a typical GaAs/Al0.3Ga0.7As QW with Lz D 10 nm, the
confinement energy for electrons and holes is 245 meV and 125 meV, respectively.
The infinite well model predicts lowest quantized energies of E1 D 30 meV and
E2 D 113 meV for the electrons [147, 148] and 11 meV (40 meV) and 44 meV
(160 meV) for the first two bound states of the heavy (light) holes. Notably,
the energy spacing of the electron levels should be larger than kBT at 300 K
(i.e., 25 meV) to make the quantum size effect readily observable at room
temperature.

The above considerations result in the typical band structure depicted in Fig. 3.9:
since the electronic dispersion is parabolic along the direction of free motion, the
occurrence of discrete spectrum along the confinement direction (growth direction
of the QW) implies a discrete sequence of parabolic bands (“sub-bands”) with
minimum energy given by the discrete confinement energy along z (Ex D Ey D 0).
Basically, in a QW carriers (electrons and holes) are free to move in any direction
parallel to the QW layers and a carrier in a given confined state can have additionally
any amount of kinetic energy corresponding to its in-plane free motion that implies
any energy greater than or equal to the confined- energy of that sub-band.
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(in x-y plane)

Bandstructure

sub-bands

Fig. 3.9 Electronic dispertion of a QW: In a QW, as a result of the carrier confinement along the
growth direction and its free motion in the QW plane, the electronic dispertion consists of parabolic
subbands leading to a step-like DOS



68 M. Cesaria and B. Di Bartolo

The subband-structure that characterizes the energy spectrum of a QW deter-
mines its spectroscopic properties [149]. The optical transitions in QWs are
termed “inter-subband transitions” and take place between electronic states that are
confined in the z-direction and free in the well x–y plane.

In a bulk semiconductor, an optical transition is allowed between states having
the same k-values in the case of a direct-gap material and momentum is conserved
via a phonon interaction in the case of an indirect bandgap material. Turning to a
QW, allowed interband transitions can occur according to the following relationship
between exciting photon energy (-h¨), energy gap of the bulk counterpart of the
well material (Eg), energies of the valence (Enz) and conduction (Emz) subbands
measured from the valence and conduction edges of the bulk material, respectively:

„¨ D Eg C Enz C Emz D Eg C
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under the selection rule that only transitions between states of the same quantum
number in the valence and conduction bands are allowed. Indeed, in a QW, optical
transitions must still conserve momentum in the plane of the QW, just as for
bulk semiconductors. Instead of momentum conservation, there is an additional
selection rule for the direction perpendicular to the layers resulting from optical
absorption strength proportional to the overlap integral of the conduction and
valence (envelope) wave functions. The transition rate is proportional to both the
square of the overlap of the envelope wave functions and the joint density of states
[150]. In the case of an infinitely deep well, the wave functions are orthogonal unless
nz D mz, which gives a selection rule of the quantum number. Transitions between
states of different parity are strictly forbidden.

For transitions among the lowest energy states (mz D nz D 1), meaning the
fundamental absorption, the energy band gap of the QW can be calculated, that is:
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Being in any case -h¨ > Eg, a blue- shift by the sum of the electron and hole confine-
ment energies of the fundamental absorption as compared to the bulk energy gap Eg

is characteristic of a quantum-confined QW heterostructure. Moreover, such a blue-
shift may be tuned by adjusting the well width Lz and the well material (i.e., the
effective masses of electron (m*e) and hole (m*h)). Therefore, a practical advantage
of confined structures over bulk materials is a wider and tunable band gap energy.

In general, the knowledge of the electronic dispersion lets calculate the density
of states (DOS), i.e., the number of allowed energy states per unit volume and unit
energy interval, based on the formula
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where E is a given allowed energy, g(E) dE is the total number of electronic states
with energy ranging from E to E C dE per unit volume, the sum is extended to all the
allowed values of the discrete band-index n, the integral sums all the wave vectors
and averages on all allowed spin states.

If the band structure of a QW consisting of parabolic subbands is considered,
then the corresponding DOS (per unit energy, per unit surface area) is given by the
following expression

gQW .E/ D
m�

 ¯2

X
nz

™ .E � Enz/

where nz is the quantum number associated with the confinement energy along the
z-direction, ™(E–Enz) is the Heaviside unit step function defined by ™(E–Enz) D 0
if E < Enz and ™ (E–Enz) D 1 if E > Enz and a factor 2 for spin has been included.
Therefore, it results:

gQW .E/ D 0 if E < E1

gQW .E/ D m�

 ¯2 if E1 < E < E2

gQW .E/ D 2m�

 ¯2 if E2 < E < E3

Therefore, DOS associated to a QW for a given subband is a “step-like” function
starting at the appropriate confinement energy [151]. Since in QWs, just as for
bulk semiconductors, absorption transitions follow the DOS profile, the absorption
coefficient (i.e., the change in the intensity of the photon flux per unit length) of a
QW is a series of steps each corresponding to a QW subband [152].

To summarize, quantizing the carrier motion along the z-direction has three main
consequences; (i) a blue-shift of the bulk band edge depending on QW’s material
and width, which enables effective band-gap engineering; (ii) an increase of the
radiative recombination probability by keeping electrons and holes closer together
due to the spatial confinment; and (iii) a DOS independent on energy (step-like
profile) in contrast to that of the bulk counterpart.

The above approach (free-electron gas approximation) deals with absorption
processes in which an exciting photon creates a free electron-hole pair without
considering the effect of electron-electron correlation. The considered independent-
electron approximation leads to an energy spectrum of carriers independent on the
presence of other similar carriers which is taken into account only by populating
the allowed energy states according the Pauli’s exclusion principle. However,
the electron-electron (electron-hole) interactions are important to a more accurate
description of physical phenomena such as optical absorption below away from the
band-edges. The influence of electron-electron correlation is addressed by excitonic
effects in semiconductors that are introduced by defining the exciton as an electron-
hole pair bounded by Coulomb interaction. As already discussed, the Wannier
excitons, that are classified as weakly bounded excitons, form in semiconductor
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materials. Their large size makes them strongly sensitive to nanometer-scale
variations of the surrounding, meaning to spatial confinement in nanostructures.

In bulk semiconductors the spectroscopy of (Wannier) excitons can be calculated
based on the Schrödinger Eq. (3.1) solved within the approximation that treats
electron and hole as two particles moving with the effective masses of the
conduction (m e

*) and valence (m h
*) bands, respectively, and attracted to each other

by the Coulomb interaction (according to a modified Bohr model of the hydrogen
atom):
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Upon the transformation of coordinates defined by rD re�rh and the RCM D

(me
*re C mh

*rh)/(me
* C mh

*), the above two-body Schrödinger equation can be
separated into an equation for the wave function F(r) of the relative motion of the
electron-hole system and an equation describing the motion of the center of mass
(CM) by the wave function G(RCM):
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where 1/m*r D (1/m*e C 1/m*h) is the reduced mass of the electron-hole system,
KDke-kh is the wave vector of the CM motion and kD (m e

*ke C m h
*kh)/(m

e
* C mh

*) is the wave vector of the relative motion.
Since the Coulomb interaction depends on the relative coordinate, as a result,

the CM motion can be pictured as a free motion (plane wave solution) of a
particle with total mass M D m*e C m*h and the equation of the relative motion
is mathematically the Schrödinger equation of the hydrogen atom. Therefore the
dispersion relationship of the exciton can be written as follows

En;K ex D Eg C ECM C Er D Eg C
¯2

2M
K2 �

R�
y

n2

where Eg is the band gap energy of the bulk semiconductor (i.e., the energy without
the Coulomb interaction), ECM is the CM energy (kinetic energy of the exciton)
given by

ECM D
¯2

2M
K2
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Er is the discrete spectrum energy of the electron-hole bound states labeled by a
principal quantum number n D 1,2,3, : : : and expressed as follows

Er D �
R�

y

n2

and Ry
* is the exciton Rydberg given by
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r

mo–2
r

�
Ry

where "r is the relative dielectric constant of the semiconductor, mo is the mass of
the free electron and Ry D 13.6 eV is the atomic Rydberg constant. Therefore, the
spectrum of the relative motion of an exciton is a Rydberg series similar to that of
the hydrogen atom with an effective Rydberg constant modified by the reduced mass
of the exciton and the dielectric relative constant of the material.

The exciton (envelope) functions solving the Schrödinger equation of the relative
motion are the known hydrogen-like functions with the ground state solution given
by

F .r/ D F100 .r/ D
1p
 a3

ex

e�r=abulk
ex

where

abulk
ex D aH©r

mo

m�
r

is termed “Bohr radius of exciton” and aH D 0.53
0

Å is the Bohr radius of the
hydrogen atom. In the case of Si, Ge and GaAs, aex

bulk amounts to 4.3, 11.5 and
12.4 nm, respectively. Physically, aex

bulk is the relative electron-hole separation in
the pair coupled by the Coulomb interaction (exciton) and, as already mentioned,
represents a characteristic confinement length-scale in semiconductors.

As compared to the independent-electron approximation (leading to the band-
structure in Fig. 3.10a and the absorption coefficient in Fig. 3.10b), accounting for
the electron-hole Coulomb correlation (i.e., excitonic effects) leads to a modified
bandstructure that describes the system in terms of the electron-hole momentum and
consisting of a sequence of discrete bands lying below the conduction band of the
continuum of electronic states of the one-electron model (Fig. 3.11a). Such discrete
excitonic bands approach the band-edge becoming closer and closer for increasing
exciton energy.
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Fig. 3.10 Typical (a) bandstructure and (b) absorption coefficient of a bulk semiconductor in the
framework of the independent-electron approximation
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Fig. 3.11 Typical bulk semiconductor (a) bandstructure including excitonic contribution and (b)
absorption coefficient with (solid line) and without (dashed line) excitonic effects

As for the spectroscopy in the presence of excitonic effects [138], while unbound
electron-hole pairs can be continuously generated by interband absorption of
photons with energy at least equal to the fundamental band-gap (Eg), for photon
energy decreasing below Eg excitons can be created at discrete energies leading to
sharp absorption peaks (Fig. 3.11b). Figure 3.11b sketches the main features of the
absorption coefficient in the presence (solid line) and in absence (dashed line) of
excitonic effects. It can be observed that as the exciting photon energy becomes
lower than Eg, the (unbound electron-hole pairs) continuum absorption curve of
a direct gap semiconductor with excitonic effects included doesn’t decrease to zero
according to the square-root trend of the one-electron model (Fig. 3.10b). Instead the
absorption coefficient remains finite at the band edge and exhibits strong absorption
peaks associated with the ground state (n D 1) and the first excited state (n D 2) of
the exciton just below Eg (Fig. 3.11b). Basically, near the band edge, the absorption
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coefficient in the presence of excitonic effects (’ex) can be related to the absorption
coefficient without excitonic effects (’) as follows

’ex D ’

0
B@ 2 

q
R�

y�
„¨ � Eg

�1=2

1
CA

Finite enhanced absorption below Eg stemming from exciton formation is expressed
by the Sommerfeld enhancement factor (i.e., the Coulomb-enhanced absorption
coefficient divided by the absorption without Coulomb effects). In practice, in bulk
semiconductors excitonic effects can be observed only in optical spectra at very
low temperature in truly pure samples because of the low binding energy Ry

*

[153]. Indeed, in technologically important bulk semiconductors, such as Si, Ge,
and GaAs, the exciton binding energy Ry

* ranges from 3.8 to 14.7 eV, meaning
it is lower than the thermal energy (kBT D 25 meV at room temperature). As
a consequence, excitonic resonances are not observed because exciton usually
dissociates easily at room temperature and merging of excitonic resonances with
interband transitions is also favored in poorer quality bulk samples.

Instead, the spatial confinement of carriers in QWs greatly enhances the binding
energy of excitons and the oscillator strength in such a way that excitonic effects
become observable at room temperature in the optical spectra of QWs as sharp
resonances. Basically, exciton binding energy is related to the probability to have
electron and hole in the same unit cell which is expressed by an overlap integral of
the electron and hole wave functions in the QW. Spatial confinement is expected
to strength the electron-hole interaction, thus enhancing the exciton binding energy
through an increased overlap integral, and a decreased ground state electron-hole
distance (Bohr radius of exciton) of the QW exciton (Fig. 3.12).

Fig. 3.12 Cartoon of the effects of the spatial confinement on an exciton in a QW: strengthed
electron-hole interaction and decreased ground state electron-hole distance (excitonic Bohr radius)
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To address the exciton problem in a QW, a time-independent Schrödinger
equation must be solved with potential given by the sum of the QW confinement
potentials of electron and hole (Ve(ze) and Vh(zh), respectively, being z-axis the
growth direction of the QW structure) in the one-particle picture and the electron-
hole Coulomb interaction:
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In general, such a problem doesn’t have simple analytic solution because the
parabolic approximation can be poor for holes, a QW system is a quasi 2D system
and the effect of the well size and finite well depth must be considered [154, 155].
Under the assumption that the QW width is less or comparable to the bulk exciton
Bohr diameter, then electron and hole are quantized independently of each other and
a variational approach can be considered that introduces a class of trial functions
with the following form

®ex D F .R/ f .¡/ Ue .ze/ Uh .zh/

where R is the exciton center of mass coordinate, ¡ is the radius-vector of electron
and hole relative motion in the QW-plane, F(R) describes the exciton center of mass
motion, f(¡) describes the relative electron-hole motion in the plane of the QW,
Ue(ze) and Uh(zh) describe the electron and hole confined motion, respectively, and
the following normalization is assumed:
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In the ideal 2D case, jUe,h (ze,h)j2 D •(ze,h) under the parabolic assumption for
carriers, the equation for f(¡) is the exactly solvable one of a 2D hydrogen atom
problem. Therefore, the energy spectrum is given by
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where Enz,e and Emz,h refer to subband energies of electron and hole, respectively,
resulting from the one-particle approximation (Fig. 3.8d), n D 1,2,3 : : : is an integer
and K2 D Kx

2 C Ky
2 [156]. Therefore, including the excitonic effects implies that

the eigen energies of the QW calculated in the single particle approximation (i.e.,

Eg C Enz,e C Emz,h) are shifted by the Rydberg energy
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of the exciton in the QW. As a general trend, while in

bulk, the total energy of the exciton is simply the energy of the bang gap plus the
exciton binding energy, in a nanostructure there are additional components due to
the electron and hole confinement energies

By setting n D 1 (ground state), it can be observed

EQW
bind;exc D 4R�

y D 4 Ebulk
bind;exc

that is, the binding energy of the exciton in an infinite QW is four times the binding
energy of the corresponding bulk exciton. This fact lets observe excitonic effects
at room temperature in QWs, in contrast to bulk semiconductors where they are
only usually observed at low temperatures. Furthermore, in a QW, the electron-hole
separation (Bohr radius of the exciton) decreases with respect to the bulk counterpart
(Fig. 3.12). This is consistent with increasing binding energy in low-dimensional
systems. In the 2D case,

EQW
bind;exc D 4R�

y D 4 Ebulk
bind;exc

aQW
exc D

1

2
abulk

exc

In the case of a realistic QW, a more complex expression of the exciton binding
energy is obtained by the variational approach that, after minimization with respect
to a variational parameter, yields that the exciton binding energy in a QW ranges
from Ebulk

bind;exc to EQW
bind;exc. Moreover, it depends on the QW width and barrier heights

for electrons and holes and increases for increasing exciton confinement: while for
wide QWs the confinement increases for decreasing QW width, for very narrow
QWs the opposite occurs due to leakage of the carrier wave function into the
barriers.

In regard to excitons in QWs, they are characterized by two regimes depending
on the relationship between the well thickness Lz and the bulk Bohr radius of the
exciton aex

bulk: strong confinement if Lz � aex
bulk and weak confinement if Lz �

aex
bulk. Strong confinement regime (also termed “quasi-2D regime”) means that

the exciton binding energy is smaller than the confinement energy of the carriers
(electrons and holes) and the exciton binding energy as well as the oscillator strength
enhance on reducing the well thickness Lz. Weak-confinement regime (also termed
“3D regime”) means that the exciton binding energy is larger than the carrier
quantization energy and the center-of-mass motion of the exciton is quantized as
a whole and the oscillator strength is proportional to Lz [157].

The enhanced binding energy and increased oscillator strength of a exciton
confined in a QW have critical impact on the spectroscopic properties, that can
become dominated by the excitonic effects even at room temperature [154, 155,
158–162]. In this regard, Fig. 3.13c sketches the theoretical absorption spectrum



76 M. Cesaria and B. Di Bartolo

Fig. 3.13 (a) QW heterostructure and (b) its step-like DOS. (c) Sketched theoretical characteristic
step-like absorption spectrum of a QW including excitonic effects (sharp intense absorption peaks
just below the band-gap energy of the QW)

of a QW including excitonic effects: sharp intense absorption peaks just below the
band-gap energy of the QW are associated to the exciton discrete spectrum and
the characteristic step-like absorption stemming from the step-like profile of the
DOS (Fig. 3.13b) results modified near the absorption edge, as observed in bulk
materials while including excitonic influence (Fig. 3.11). The absorption profile of
the QW above the exciton lines reflects the constant DOS in 2D, which differs
from the increasing absorption of the bulk material resulting from the parabolic
3D DOS.

Indeed, the continuum absorption coefficient is increased over the value without
excitonic effects (grey curve in Fig. 3.13c) by the Sommerfeld factor which
expresses the influence of the electron-hole correlation on the unbound states.
Excitonic features and their appearance can also be modulated by the well thickness
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(Lz) [153]. Separate transitions are usually observed for the hhs anf lhs, as a
consequence of their different effective masses and lower symmetry of the QW as
compared to the bulk counterpart material.

3.3.2 Quantum Confinement in Semiconductor QWRs

Since the study by Esaki and Tsu [137] in the 1970s about semiconductor QWs
and superlattices, progress in the processing technology let fabricate systems of
lower dimensionality such as QWRs where the confinement of the carriers can be
controlled through the size and shape of the QWR as well as through the selection
of structure and barrier materials to produce various band offsets [163].

Our previous analysis dealing with QWs assumed carrier spatial confinement
along one coordinate, where the confinement was provided by the offset between
the band edges of two different semiconductors. The next logical step is to consider
what happens if carriers are spatially confined along a further direction, leading
to 2D confinement (that is one-dimensional free-motion) that defines the kind of
nanostructure termed QWR. A semiconductor QWR structure results whenever
two characteristic geometric lengths of a semiconductor system are comparable to
or smaller than the electronic De Broglie wavelength of the corresponding bulk
material. Hence, electron motion is free along the direction of the wire axis (termed
x-direction hereafter) and confined along two direction (plane yz of the wire cross-
section) (Fig. 3.14). Unlike the case of a QW, different potential profiles (e.g.,
rectangular and triangular) can be realized in the case of a QWR depending on the
fabrication techniques and protocol [164–177]. The role of electron-hole Coulomb
interaction also depends on the profile of the confining potential [178, 179].

Different analytical expressions of the confining potential lead to different classes
of energy eigenfunctions and may require numerical solving of the Schrödinger
equation. Anyway, quantum size effects exhibited by QWRs have general features
that can be assessed in the most simple case of a rectangular QWR. Therefore,
in the following we will develop the basic theoretical concepts for calculating
the electronic and optical properties of QWRs in the case of a rectangular QWR,
i.e., electrons (holes) are confined by a square potential well along each of two
confinement independent directions (termed y and z hereafter).

In the case of 1D structures, to solve the time-independent Schrödinger equation
(Eq. (3.1)) it is possible to decouple the motion along the axis of the QWR (x axis in
Fig. 3.14) and the motion along the direction perpendicular (yz plane in Fig. 3.14a).
Given the lengths Lx, Ly and Lz (Fig. 3.14), the 2D confinement potential of a
rectangular QWR can be decomposed as follows

VQWR .x; y; z/ D V1 .x/ C V2;3 .y; z/
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Fig. 3.14 (a) Schematics of a QWR heterostructure and corresponding confinement imposed to
the electronic motion. (b) Bandstructure and DOS of a QWR without excitonic effects

where V1(x) D 0 is the potential ruling the carrier free motion along the wire length
(x-axis) and V2,3 (y,z) vanishes for 0 < y < Ly and 0 < z < Lz and is infinite otherwise.
Accordingly, the wave function can be written as the following product of wave
functions

§ .x; y; z/ D §1 .x/ §2;3 .y; z/
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Substitution of the above general expression of potential and wave function in
the time-independent Schrödinger Eq. (3.1) lets get the following independent
Schrödinger equations:
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where mx*, my* and mz* is the carrier effective mass along the x, y and z-direction,
respectively.

The first Schrödinger equation can be satisfied by a plane wave function

§1 .x/ � eikx�x

and by energy eigenvalues
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where x is the position along the direction of the QWR axis (free-motion direction)
and kx is the wave vector along the x-axis.

The second Schrödinger equation can be easily solved by observing that in
the case of a QWR with rectangular cross-section, geometry lets decouple the
dependence on y and z, namely the potential V2,3 can be written as V2,3 (y,z) D V2

(y) C V3 (z), where V2(y) D0 if 0 < y < Ly, V2(z) D0 if 0 < z < Lz and both V2 and V3

are infinite otherwise. This approach that separates the variables enables to express

§2 .y; z/ D §2 .y/ §3 .z/

and

E2;3 D E2 C E3

where
 

�
¯2

2m�
y

�
d2

dy2

�!
§2 .y/ D E2§2 .y/

�
�

¯2

2m�
z

�
d2

dz2

��
§3 .z/ D E3§3.z/



80 M. Cesaria and B. Di Bartolo

Since the obtained equations to solve are mathematically the Schrödinger equation
of an infinite one-dimensional quantum well, eigenfunctions and eivgenvalues are
already known. Therefore, under the assumption that Ly and Lz are comparable to
the electron De Broglie wavelength in the wire material, it results the following
quantized energy spectrum:
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where ny; nz D 1; 2; 3; : : :

Therefore, the energy spectrum of a rectangular QWR in the free-electron approxi-
mation is given by
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where ny; nz D 1; 2; 3; : : :

where Eg is the band gap energy of the bulk material and two quantum numbers,
instead of one as in the case of a QW, are now introduced by 2D confinement.
In analogy to a QW, a subband forms at each eigenvalue labeled by a couple of
quantum numbers (ny and nz) with each subband having a free-particle dispersion
(i.e., parabolic) as shown by the band structure in Fig. 3.14b. Given the energy
dispersion, the resulting DOS has the following expression:
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where Eny,nz are the confinement energies associated with the y and z directions
and the ™ function is the Heaviside unit step function The DOS of a QWR has a
characteristic inverse square root dependence on the quantized confinement energies
leading to the DOS profile shown in Fig. 3.14b. If only the first subband is filled,
the system is purely 1D. As more subbands are filled, the system is quasi-1D and
the DOS is found by summing over all subbands. The discontinuities in the DOS of
a QWR are known as van Hove singularities.

More detailed calculation are reported in the literature to include the effects of
the finite barrier height and the validity of the parabolic approximation to represent
the valence subbands of a QWR [180, 181]. Notably, in contrast to a QW, where the
reduced translational invariance lifts the bulk degeneration of the topmost valence
band, the valence subbands of a QWR consist of a weighted linear combination of
hh and lh states in such a way that distinction between lh and hh is unjustified in
general [182–185]. A consequence of the peculiarities of the dispersion of a QWR is
represented by the polarization selection rules accounting for the relative orientation
of the polarization of the exciting field with respect to the axis of the QWR. The
absorption strength of the hh exciton divided by the absorption strength of the lh
exciton, depending on the polarization direction, gives indication of the anisotropy
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of the optical matrix elements [185, 186]. In regard to the allowed optical transitions
of a QWR, the strength of hh (lh) transitions increases if the polarization of the
exciting electric field is parallel (perpendicular) to the wire axis. Besides the valence
mixing hh-lh, other quantities influencing the polarization anisotropy are the aspect
ratio of rectangular QWRs [185] and the geometry of the cross-section (e.g., square,
rectangular, triangular) of the QWR [187].

Because of larger exciton binding energies associated with confinement, as it
occurs in QW structures, excitonic effects are expected to be very important in
QWRs even at room temperature [188]. Indeed, to interpret the optical spectra of
a QWR, the above calculated electron confinement energies must be modified as
follows to include excitonic effects:
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where Eex is the exciton binding energy. Since a carrier is confined in the wire plane
and can move freely along the wire direction of the wire axis, the motion along the
wire axis can be separated from the motion in the wire cross-section. The excitonic
problem can be solved by introducing relative and center-of-mass coordinates that
enable to decouple the starting two-body equation into two one-body equations, as
described for a bulk exciton. The sum of the one-particle potentials due to the wire
confinement taken at the center-of-mass coordinates is the potential to solve the
center-of-mass motion. The relative motion along the wire direction is controlled by
the Coulomb interaction.

As discussed in the case of a QW, the exciton binding energy depends on the
probability that electron and hole can be found in the same unit cell expressed
by the overlap integral of the electron and hole wave functions in the QW. For
ideal QW, the binding energy of the ground-state exciton is four times the 3D
effective Rydberg. This limit is reached when the well thickness is progressively
reduced [136]. Turning from a QW to a QWR, the introduction of an additional
confinement direction further enhances the exciton binding energy (by roughly
50 % and depending on the barrier height and degree of non-parabolicity of the
valence band) [181]. Large exciton binding energies larger than the ones of QWs
of comparable confinement length have been observed in semiconductor wires
fabricated by different techniques [189–194]. In a QWR the exciton binding energy
is strongly dependent on the spatial extension of the electron and hole wave-
functions and theoretically can range from the bulk exciton binding energy to
infinity [195–197]. This divergence would suggest that in the ideal 1D limit exciton
binding energies can be increased much beyond the 2D limit of a QW [198, 199].
In realistic cases, the exciton binding energy in a QWR is finite and rarely is
larger than four times the bulk exciton binding energy. Variational calculations
were performed to predict the dependence of the excitonic ground state binding
energy on the shape and height of the confining potential in a QWR as well as its
scaling with size [200]. It was found a scaling governed by the extension of the
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single-particle wavefunctions in the plane perpendicular to the free motion wire
direction and much less sensitive to the shape of the wire. Experimental results do
not always confirm such a prediction about the dependence on the wire shape [201].
As a general rule, the influence of the excitonic effects on the optical properties of
confined systems depends on the size of the confinement length, meaning that if
such a length is much larger than the bulk Bohr radius of the exciton aex

bulk then
a very weak influence of the confinement is expected (i. e., a weak confinement
regime). In detail, for a wide wire (Ly,Lz > 3 aex) in which the carriers are not
confined (Ly,Lz larger than De Broglie wavelength) the excitons feel the boundaries
of the wire structure and this involves discrete dispersion of the center of mass
motion of the exciton [202, 203]. If Ly,Lz < 3 aex then carriers are confined with
discrete spectrum (quantization-induced blue-shift of the electronic states) which
dominates the optical properties of the QWR and the excitonic motion consists of a
purely 1D-confined excitonic motion along the confinement direction and a relative
motion along the wire direction controlled by the Coulomb interaction. The reduced
dimensionality affects the excitonic wave functions in that the overlap integral of the
electron-hole wave functions increases, hence involving enhanced exciton binding
energy and oscillator strength of the optical transitions.

Laser operation from GaAs QWRs was first demonstrated in 1989 [204], but then
the difficulty in fabricating QWR structures caused relatively slow progress that was
further slowed following the discovery that 0D-systems form spontaneously during
molecular beam epitaxy (MBE) growth in the Stranski–Krastanow regime [205].

3.3.3 Quantum Confinement in Semiconductor QDs

If carriers are spatially confined down to nanometric scale along all directions,
which is the ultimate limit, then 3D confinement results that defines a QD
heterostructure. Early synthesis of PbS QDs dates to more than 2000 years ago
[206]. More recently, incorporation and tuning of the size and stoichiometry (CdS,
CdSe, CuCl and CdSxSe1-x) of QDs in silicate glasses and colloidal solutions
was a well assessed trick to change the color of glass [207–209]. In general,
semiconductor QDs have been intensively investigated for their unique optical and
electrical properties [210, 211] and applications as light emitting devices (LEDs
and lasers), coupling QD-(semiconductor/photonic crystal) microcavity systems,
solar cells, spintronic devices and biological markers. Fundamental and applicative
interest in the potentialities of QDs prompted the development and optimization
of processing and growth approaches such as molecular beam epitaxy (MBE)
[212], metal-organic chemical-vapor deposition (MOCVD) [213], self organization
approaches (QDs fabricated by Volmer-Weber [214] or Stranski-Krastanow [214,
215] growth) and “freestanding” (e.g., colloidal) QDs [216, 217].

Carriers spatially confined in all three coordinates cannot be described by plane-
wave eigenstates. In this situation, whenever a characteristic geometric length of
the system (e.g., the side for a cubic box or the radius of a spherical particle)
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is comparable or smaller than the electronic De Broglie wavelength of the corre-
sponding bulk material, then quantum size effects result. To calculate the energy
dispersion of a 0D-system (QD or quantum box) the same general theoretical
guidelines developed in the case of QWs and QWRs can be applied. In a simplified
model a QD can be assumed to be a box with side Lx, Ly and Lz along the direction
x, y and z, respectively (Fig. 3.15a). Under the effective mass approximation of the
single-electron model, the electronic states are described by the envelope function
satisfying a time-independent Schrödinger equation with infinitely deep potential
well along each independent spatial direction (x, y and z) resulting from the potential
energy barriers formed at the QD’s boundaries. Based on the same arguments
applied in the case of a QWR, the 3D confinement potential of a rectangular QD
(Fig. 3.15a) can be decomposed as follows

VQD .x; y; z/ D V1 .x/ C V2 .y/ C V3 .z/

where Vi(x) D 0 for 0 < x < Lj (where (i,j) D (1,x), (2,y), (3,z)) and is infinite
otherwise. Accordingly to the method of separable variables, the wave function to
be determined can be written as follows

§ .x; y; z/ D §1 .x/ §2 .y/ §3 .z/

Substitution of the above general expression of potential and wave function within
the time-independent Schrödinger Eq. (3.1) lets get the following system of three
decoupled time-independent Schrödinger equations:
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Following the same arguments of QWs and QWRs, the confined energies of a
rectangular QD are given as follows
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Schematic representation of the quantum confinement effects of a QD shown in
Fig. 3.15c) depicts the changes in the structure of both valence band and conduction
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Fig. 3.15 (a) Cubic QD and (b) corresponding bandstructure and DOS. (c) Schematic represen-
tation of the quantum confinement effects of a QD: on the structure of both valence band and
conduction band: discrete energy states at the band edges of the bulk material with energies and
their relative spacing increasing with decreasing size

band: discrete energy states arise at the band edges of the bulk material and such
allowed confined energies and their relative spacing increase with decreasing size
of the QD [218]. Quantum confinement effects are observed when the QD’s size
is small enough that the energy level spacing of the confined energies exceeds kBT
(where kB is Boltzmann’s constant and T is the absolute temperature). Typically, the
spacing range between QD’s intraband energy levels is of 10–100 meV. The carrier
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effective mass is important in determining intraband energy spacings too. Notably,
the calculated energy spectrum indicates that a QD exhibits distinct narrow optical
line spectrum. Parameters involved in the mathematical expression of discrete
energy spectrum of a QD indicate that an attractive property of a 0D-system is the
possibility to tailor/tune its size, shape and composition for a desired application.

Therefore, the band structure of a QD is a sequence of discrete energy values
(atom-like spectrum) (Fig. 3.15b) leading to a DOS given as a series of delta
functions

gQD .E/ D 2
X

nxnynz

•
�
E � Enxnynz

�

where the factor 2 takes into account the spin degeneracy. This is why QDs are often
termed “artificial atoms”(•-function-like DOS) [219].

In contrast to a QW and a QWR, the DOS of a QD doesn’t have at least a piece
wise continuous profile, which has an important impact on spectroscopic properties.
Indeed, the electron energy spectrum of a QD in the effective mass and free-electron
approximations has the following expression:
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where Eg is the energy gap of the bulk material and nx, ny and nz are three integer
quantum numbers associated to the confinement directions. For example, the energy
levels for a cubic QD (Lx D Ly D Lz) having side length L and electronic isotropic
effective mass (mx* D my* D mz* D me*) are
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Energy direct transitions from the mth confined energy in the valence band to the
nth confined energy in the conduction band are allowed under absorption of incident
exciting photons with energy
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where mh* is the hole effective mass. Hence, the band gap energy of a cubic QD is
given by the above formula by setting n D m D 1:
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Such a relationship indicates that the fundamental absorption edge of a QD is larger
than the energy gap of the bulk counterpart and blue-shifts with decreasing size of
the QD (Fig. 3.15c). The energy gap of a QD also depends on the semiconductor
material and its stoichiometry. All of this allows tuning of the energy gap through
changes in the QD size, material and composition (doping).

To summarize the key points in the case of a QD (0D system), quantization of
the electron and hole spatial motion in any direction has the following implications:
(i) quantized energy spectrum mimics the atomic one, (ii) the effective band-edge
is blue-shifted; (iii) confinement forces the wave function of electron and hole to
overlap, thus favoring the increase of the oscillator strength and probability of
radiative transitions; and (iv) the discrete •-function-like DOS produces narrow
optical line spectra. Points (i) and (iv) justify the nomenclature “artificial atoms”
adopted to describe the peculiar spectroscopy behavior of QD systems (Fig. 3.16a).
Based on the delta-like DOS, the optical spectrum of a QD would be expected
to consist of spectrally narrow emission characteristics. Instead, the conventional
spectroscopic measurements of QDs reveal emission spectra with significantly
broadened peaks [220–225]. This experimental evidence can be attributed to the
fact that conventional procedures acquire the emission response of an ensemble
of QDs rather than of a single QD. Hence, spectroscopy of single QDs is the
starting point to understand and evaluate their intrinsic physical properties but, in
practice, it is not possible to describe a QD ensemble/array by the spectroscopy
of a single QD. In fact, fluctuations of size and shape (“regularly shaped” QDs
require excellent growth conditions!) as well as compositional non-uniformities
involve spectral inhomogeneous broadening of the spectral lines. Indeed, real
samples consist of a distribution of QDs polydispersed in size and shape. If several
families i D 1, : : : ,N of QDs with dimension Ri ˙ �Ri concur to the emission
spectrum of a QD-based system, then the observed emission spectrum reflects
the convolution of all the emission spectra resulting from each family of QDs
composing the sample (Fig. 3.16b). Therefore, fabrication techniques are crucial to
ensure structural quality of the samples avoiding strong inhomogeneous broadening
of the absorption/emission features. Extremely high spatial resolution imaging tools
can help in probing the optical response of a single QD and disclose its atom-like
behavior [219, 222, 226].

Furthermore, spectroscopic properties of QDs cannot be correctly interpreted
without taking into account the excitonic effects that often play a dominant role
because of further increased binding energy of an exciton in a QD as compared to
QWs and QWRs. Optical transitions in QDs can be described by an approximated
expression (known as the Brus equation) that models the transition energy in
spherical QDs with radius R and relative dielectric constant "r (QD with dielectric
coefficient "QD surrounded by a medium of dielectric coefficient "m):
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Fig. 3.16 (a) Emission spectrum of (a) a single QD and (b) a distribution of QDs with size and
shape dispertion

In the Brus equation "o is the permittivity of vacuum and "r is the relative dielectric
constant of the sherical QD that confines an exciton. The third term is related to
the electron-hole Coulomb attraction and express the binding energy of the exciton
which is influenced from the size R of the QD due to quantum confinement [227].

As described earlier, in bulk semiconductors, excitons are observable typically
only at very low temperatures because room temperature thermal energy can easily
dissociate the exciton. Instead, in quantum confined structures, a closer spacing
between electron and hole enhances the excitonic binding energy (the exciton feels
the confinement boundaries even if the confining well is larger than the exciton bulk
Bohr radius) that turns out to be more enhanced and stable at room temperature the
larger the number of confining directions. In a QD the exciton binding energy is



88 M. Cesaria and B. Di Bartolo

strongly dependent on the spatial extension of the electron and hole wave-functions
and, even if theoretically can range from the bulk exciton binding energy to infinity,
in practice it rarely exceeds 4 times the bulk exciton binding energy.

Since in a bulk semiconductor crystal the exciton Bohr radius (aex
bulk) is

significantly smaller than the overall size of the crystal, the exciton is free to migrate
throughout the lattice. Instead, weak confinement (i.e., the confinement length L
is slightly larger than or comparable to aex

bulk) and strong confinement (i.e., the
confinement length L is much smaller than aex

bulk) regimes can be introduced at
the mesoscopic scale [228]. In the case of weak confinement the exciton binding
energy is larger than the carrier quantization energy and, in presence of quantum
confinement, exciton forms with center-of-mass motion localized and quantized.
Coulomb interaction can be treated as a perturbation to the QD confinement
potential for electrons and holes and the exciton binding energy can be calculated
based on the perturbation theory as follows
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where Ue(re) and Uh(rh) are electron and hole wave-functions.
Strong confinement involves the exciton binding energy is smaller than the

confinement energy of the carriers and confinement effects dominate over the
Coulomb ones, thus leading to electron-hole states with dominant single-particle
character. That is, carriers do not form bond states corresponding to the exciton
(electrons and holes are separately confined) and wave function can be represented
as a product of electron and hole wave-functions § D Ue(re) Uh(rh), where the
single-particle wave-functions are solutions of coupled Schrödinger equations with
the QD potential for an electron (a hole) Ve,h
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In this case, the exciton binding energy is defined by

EQD
B D Eo

e C Eo
h � Ee � Eh

where Eo
e and Eo

h are energies of electron and holes that do not interact by Coulomb
coupling.

In semiconductor QDs singly and multiply charged excitons were studied by
photoluminescence spectroscopy applied to a single QD [229–232].

More generally, the bulk exciton Bohr radius (aex
bulk) is taken as the measure of

quantum confinement in low-dimensional systems: given a solid state structure with
characteristic length R:

(i) if R � aex
bulk, then confinement effects are generally negligible;

(ii) if R > aex
bulk or R � aex

bulk, then the weak confinement regime occurs;
(iii) if R < aex

bulk, then we the strong confinement regime occurs.
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Fig. 3.17 Schematic overview of the DOS of semiconductor nanostructures (2D, 1D and 0D
structures) in the excitonic strong confinement regime

A schematic overview of the DOS of semiconductor nanostructures (2D, 1D and
0D structures) in the strong confinement regime is shown in Fig. 3.17 [233]. For
comparison the case of the bulk semiconductor (3D case) is also depicted and the
exciton Bohr diameter is represented by a dark sphere.

Another important role in interpreting the optical properties of QDs is played
by the electronic quantum states associated with the surface (called surface states)
due to the high surface-to-volume ratio of mesoscopic systems [234, 235]. High
density of surface sites associated with high surface-to-volume ratio may cause an
enhanced or reduced transfer rate of photogenerated charge carriers (electron or
hole or exciton) by their trapping and behaving as reducing (electron) or oxidizing
(hole) agents [236, 237]. Capping or passivation (i.e., saturation of surface dangling
bonds) of the QD’s surface lets provide photostable QDs whenever surface states
are detrimental because of their quenching radiative recombination and reducing
the quantum yields.

3.4 Quantum Effects in Metal Nanoparticles

As already pointed out, the Fermi wavelength is the smallest length scale associated
with confinement effects in metal nanostructures, that is properties become size-
dependent when the geometrical size of the metal structure is comparable to or
smaller than the Fermi wavelength. Since the conduction electron density is larger
in metals than in semiconductors, the Fermi wavelength is of the order of a few
nanometers in metals and tens of nanometers in semiconductors. A consequence of
very short Fermi wavelength in metals is that confinement effects may be observed
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in metal nanostructures only at size-scales of a few nanometers. The optical, elec-
tromagnetic properties of metal nanoparticles remarkably differ from bulk materials
[23, 29, 35]. At the nanometric length-scale, for size larger than a few nanometers
(tipically larger than 10 nm) the optical properties of metallic nanoparticles are gov-
erned by the so called surface plasmon resonance that disappears with decreasing
size. Indeed, the electronic structure of metal nanoclusters/nanoparticles exhibits an
important nanoparticle phenomenon known as “surface plasmon resonance” (SPR)
or localized surface plasmon resonance (LSPR), that is a coherent collective charge
oscillation of the conduction band electrons at the interface between conductors and
dielectrics induced by an external electromagnetic field with frequency matching
the plasma frequency of the metal [22–28, 238]. For example gold nanoparticles
show a strong absorption band in the visible region due to coupling through the
surface between surface plasmon oscillation modes of conduction electrons and the
applied electromagnetic field. The oscillation frequency is determined by the density
of electrons, the electron mass, the size, and the shape of the charge distribution. At
the fundamental level, the free electrons of a metal are modeled like a gas of free
charge carriers (a so-called plasma) and can be excited to sustain propagating plasma
waves, that is longitudinal electromagnetic charge density waves, whose quanta are
termed “plasmons”. Plasmons exist in the form of both bulk plasmons in the volume
of a plasma and surface plasmons bound to the interface between a plasma and a
dielectric. When the size of a metal nanoparticle is in the range of the penetration
depth of an electromagnetic field into the metal (e.g., �20 nm for silver in the optical
spectral range), there is no distintion between surface and bulk plasmons.

The first example of this nanoscale phenomenon dates to some glassblowers from
imperial Rome made by embedding colloidal metal nanoparticles within glassy
works. Another well-known fine example is the famous Lycurgus Cup (fourth
century A.D.): such a chalice has a dark greenish tint under reflected lighting and
appears red once illuminated from behind. Some of the beautiful bright colors
in medieval stained glass windows are a metal-nanoparticle phenomenon that
fascinated scientists long before studies of semiconductors and was explained later
when Faraday (1857) proposed metallic gold in its colloidal form as origin of
colorful emission and Mie (1908) [239] provided the theoretical foundations for
understanding the physical behavior and optical responses of metal nanoparticles
by solving Maxwell’s equation for the absorption and scattering of electromagnetic
radiation by spherical particles (2R < <œ, being œ the wavelength of the light
irradiating the particle with radius R). On the basis of Mie theory, the plasmon
band of metal particles involves electric-field induced dipolar oscillations of the
free electrons in the conduction band that occupy energy states near the Fermi level.

Essentially, bright colors can be observed from colloidal solutions of metallic
nanoparticles with their color emission tunable by changing shape, size, composi-
tion, orientation and local dielectric environment of the nanostructures [240, 241].
In what concerns the comparison between the optical properties of semiconductor
QD [242] and metal nanoparticles [243] as a function of size and shape, it can be
observed that while the optical spectra of semiconductor QDs are very sensitive to
changes in size (due to the already discussed confinement energies which scale as
the inverse of the squared radius), instead just a slight change and a drastic change
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of the optical response can be observed in the case of metal nanoparticles versus size
and shape changes, respectively. Therefore, metal nanoparticles are more sensitive
to anisotropy than to size tuning. Introducing an anisotropy (for example a shape
transition from sphere to rod by femtosecond laser irradiation of colloidal metal
nanoparticles) results in the splitting of the SPR into two modes. Also, an increase in
the refractive index of the dielectric surrounding a metal nanoparticle leads to a red-
shift of the surface plsmon resonance peak as well to an increase in the plasmon band
intensity and bandwidth. The shift if the SPR peak caused by changes in the local
environment (such as adsorbed species or a core-shell structure) within a distance d
around the nanoparticle can be calculated by �œmax D n �n[1�exp(�2d/ld)], where
n is the bulk refractive-index response of the nanoparticle(s); �n is the change in
refractive index induced by the surrounding and ld is the characteristic exponential
decay length of the electromagnetic field [244, 245]. In the case of a metal-core/shell
structure of the nanoparticle, thickening of the shell embedding the nanoparticle can
cause a blue-shift or a red-shift of the SPR peak depending on the shell composition
[246–248].

Under resonant excitation of metal nanoparticles, an enhancement of the local
electric fields close to the particle surface occurs. Enhancement and local SPR
dependency on size and shape indicate that the smallest nanoparticles have a
maximum SPR peak at shorter wavelengths [249, 250], too small nanoparticles
exhibit reduced effective conductivity and light scattering [251], for nanoparticle
size of the order of the exciting wavelength non radiative modes become favoured
[251] and shapes with high curvature corners and edges strongly enhance the local
field around these geometrical features [252, 253].

Scaling down to dimensions of a few nanometers removes the SPR from the
optical properties of the metal nanostructures and enables to observe a shift in
the conductive properties from metallic to semiconducting and insulating with
progressively decreasing size. The origin of such a modified electronic structure
of metals at very small scale-lengths is the discreteness of the electronic states due
to confinement of the electron wavefunction. As the nanoparticle size decreases,
the energy continuum of the bulk metal transforms into discrete energy levels
(Fig. 3.18). The average spacing of successive quantum levels, •, is termed the Kubo
gap and is given by • D4EF/3 N, where EF is the Fermi energy of the bulk material
and N is the nuclearity (number of atoms in the metal nanocluster), which is related
to the number of valence electrons in the metal [30–32]. In this picture, metallic
behavior is ascribed to gap between occupied and unoccupied electronic states at the
Fermi level vanishing (bulk metal) or smaller than the thermal energy kBT (metal
nanoparticle) (Fig. 3.18). For scaling size from bulk to nano-scale metal the Kubo
gap increases because the number of atoms decreases. Therefore, for decreasing size
(and/or temperature) a threshold is reached when the Kubo gap equals the thermal
energy kBT. In this circumstance a transition/shift in conductive properties, from
metallic to semiconducting/insulating behavior, results. Based on a well-known
mechanism applied in semiconductor solid-state physics, when electrons can be
thermally excited across the Kubo gap, a low temperature insulator becomes a
semiconductor and a metal at higher temperatures. According to the principles
of band theory, the overlapping between atomic orbitals of neighboring atoms
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Fig. 3.18 Changes of the electronic structure of metals going from the bulk phase to the nanoscale
(a few nanometers) where the plasmonic resonance disappears and discrete energy spectrum
accounts for the metal-to-insulator conductivity transition

leads to bonding and antibonding states, namely valence and conduction bands
in semiconductors, with a band width related to the bond strength. Hence, the
insulating properties of nanometric metal systems can be ascribed to the small
number of neighboring atoms. Indeed, in the case of systems consisting of a
relatively poor number of atoms (e.g., nanoparticles with size of a few nanometers),
weak non metallic interactions (e.g., van der Waal forces) hold together the atom
constituents and no band may form.

3.5 Summary and Conclusions

Since the famous Feynman’s lecture, titled “There’s Plenty of Room at the Bottom”,
regarding the challenging applicative perspectives for nanomaterials and the first use
of the term “nanotechnology” by Taniguchi, there has been a widespread interest
devoted to nanomaterials at both fundamental and applicative level.
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While the fundamental behavior of bulk materials is inherently determined by
structure and composition, at the nanometer length-scale fascinating effects and
phenomena occur strictly related to either spatial confinement of the electronic
wavefunctions or surface-effects.

This review paper has introduced and discussed the fascinating fundamental
properties of nanomaterials by treating the meaning of quantum confinement, the
importance of the surface effects and their technological applications, the classifica-
tion usually adopted to refer to the low-dimensional systems, the quantum models
applied to solve for both electronic and excitonic dispertion of the mesoscopic
semiconductor systems and the nanoscale behavior of the metal nanoparticles.

The developed discussion has pointed out the following main different behaviors
of the nanoworld as compared to the 3D bulk world.

In regard to the confinement effects, when at least one of the material dimensions
L is comparable with the De Broglie electronic wavelength of the corresponding
bulk band-gap material, then the energy spectrum becomes quantized along the
confinement direction. Such phenomenon, termed “quantum size effect” involves a
larger band gap and a blue shift of the absorption onset with decreasing size as com-
pared of the bulk counterpart as well as material optical properties tunable as a func-
tion of both the confinement dimension L and number of the confinement directions.

Moreover, whenever the length scale of the material is comparable to the
wavelength of the phonons, discrete phonon density of states form too. Since
electron-phonon interaction determines the thermal conductivity and affects car-
rier dynamics in quantum-confined systems, different thermalization rules and
processes (multiphonon processes, Coulomb interactions and phonon-bottleneck
effects) occur in nanomaterials as compared to the bulk counterpart due to discrete
density of states.

In the case of metallic nanoclusters/nanoparticles, for which there is no band-gap
between valence and conduction bands, another phenomenon known as plasmon
resonance is active, involving localized enhancement of the field intensity with
important applicative perspectives in bio-imaging and sensing. For metallic nan-
oclusters with dimensions smaller than 2 nm, the surface plasmon absorption
disappears: the spacings between adjacent energy levels (referred to as the Kubo
gap) become comparable to the thermal energy, kBT, resulting in a shift in
the conductive properties from metallic to semiconducting and insulating with
decreasing size.

Among the technological important behaviors of nanomaterials, pre-melting and
lowered melting temperature as compared to the bulk counterpart are very recently
active research topics which are ascribed to surface effects such as the increased
fraction of surface atoms and surface curvature with decreasing size. Lowered
melting temperature may occur for isolated and un-supported nanomaterials. In fact,
nanocrystals embedded in a matrix can melt below or above the melting point of the
corresponding bulk crystal depending on the interface structure between embedded
nanocrystals and the matrix. If the interfaces are coherent or semi-coherent, an
enhancement of the melting point is present. Otherwise, there is a depression of
the melting point.
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Amazing thermal behavior is also exhibited by nanofluids, which can exhibit
substantial increment of the thermal conductivity even when the concentrations
of suspended nanoparticles are very low, and the more enhanced the smaller
nanomaterial size. The thermal conductivity of nanofluids varies with the size,
shape, and material of nanoparticles as well as difference of thermal conductivity
between nanomaterial and base fluid.

On the other hand, the evidence of quantum size effects make the Plank’s black-
body model unable to describe the thermal emission spectrum at the nanoscale
(at particle dimensions smaller than the radiation wavelength), where the Stefan–
Boltzmann law yields strongly overestimated results.

Furthermore, the catalysis and magnetic properties of nanomaterials strongly
differ as compared to the bulk materials. As can example, superparamagnetism is
a form of magnetism peculiar of ferromagnetic or ferromagnetic nanomaterials.

Efforts of science and technology are presently focused on understanding
the origin of the mechanical, chemical, reactivity, catalysis, thermal, electrical,
optical, magnetic properties of nanomaterials, which strongly differ from the bulk
counterpart, as well as being able to engineer and control shape and size, size- and
shape- dispersion as well as composition at the nanoscale.

The huge amount of studies and papers about nanomaterials published in the
last decades and still presently demonstrates that the interest in this research field
is growing more and more. What do you expect?. Very likely further fundamental
surprising properties as well as challenging opportunities and novel applications
made possible by improved nanofabrication approaches and nanostructuring.
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