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Abstract  The energy problem is one of the most challenging issues in the twenty-
first century. Many energy applications for portable electronics, electric vehicles, 
spacecraft, and renewable energy are under extensive investigation worldwide. 
New alternative energy with renewable energy devices are competitive with fossil 
fuels. To develop the advanced energy storage and harvesting/conversion system, 
renewable energy nanomaterials are in high demand. Two-dimensional nanomate-
rials composed of graphene and two-dimensional transition-metal chalcogenides 
(2D-TMDs) have attracted a great deal of interest due to their unique properties. 
From the prospect of energy applications, graphene and 2D-TMD nanosheets have 
many interesting properties, such as large surface area, atomically thin sheet with 
high flexibility, and a wide range of electrical conductivity. Graphene has proved 
to be a good material for nanoscale devices used in energy harvesting/conversion 
and storage applications. Recently, 2D-TMDs are also attracting significant atten-
tion in many energy-related applications. In this chapter, we focus on the recent 
advances in graphene (including graphene oxide, GO) and 2D-TMD nanosheets 
research for energy devices: electrodes in solar cell, electrocatalysts or photocata-
lysts for fuel cell, electrodes in Li-ion battery, and electrodes for supercapacitors.
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1 � Introduction

The rapid development of better energy-related devices has generated some of the 
most important challenges in the twenty-first century. Extensive studies around the 
world have been focused on energy products such as portable electronics, elec-
tric vehicles, spacecraft, and renewable energy. Low cost, high efficiency, sustain-
able-energy devices are in high demand. As new alternative energy devices have 
become more competitive with fossil fuels, renewable energy nanomaterials for 
energy harvesting and energy storage are in high demand.

Two-dimensional (2D) nanomaterials composed of graphene and nanostruc-
tured transition-metal dichalcogenides (TMDs) have attracted a great deal of inter-
est due to their unique properties. These make them good candidates for potential 
applications in electronic devices such as supercapacitors, light-emitting diodes, 
solar cells, fuel cells, piezoelectric nano-generators, and lithium-ion batteries.

When it comes to energy-related applications, graphene and 2D-TMD single-
layers have many advantages: (1) atomic thickness for quantum confinement of 
charge carriers, (2) electrical properties that vary from those of metal to semi-
conductor to insulator, (3) good cycle stability and flexibility, (4) high catalytic 
activity, and (5) short path-lengths for electron transport. Moreover, 3D structures 
incorporating graphene and 2D-TMDs are more attractive electrode materials in 
applications related to renewable energy. In particular, their properties related 
to the versatile electrical conductivity and their huge surface area are useful in 
enhancing the performance of energy devices.

Since its discovery in 2004 [1] graphene has demonstrated its role in enabling 
rapid advances in energy technologies for high-performance energy devices. 
Moreover, 2D-graphene has proven a good material for nanoscale devices used 
in energy harvesting, energy conversion, and storage applications. Recently, lay-
ered TMD materials (e.g., MoS2, WS2, MoSe2, and WSe2) are attracting signifi-
cant attention in many energy-related applications. Their crystal structure varies 
from hexagonal (MoS2, WS2) to ortho-rhombic (MoTe2, WTe2). Nanosheets of 
2D-TMDs possess remarkably different electronic properties than those of bulk 
TMDs, which can exhibit either semiconductor or metallic behavior depending 
on their elemental composition and method of synthesis. The optical properties of 
2D-TMD nanosheets make them potentially useful for energy harvesting and con-
version materials in solar cells, photoelectrochemical cells, and photo-fuel cells. 
Their graphene-like layer can also be used for energy storage devices such as Li-
ion batteries and supercapacitors.

Here, we focus on the recent advances on graphene (including graphene oxide, 
GO) and 2D-TMD nanosheets for use in energy devices: specifically, electrodes 
in solar cells, electrocatalysts and photocatalysts for fuel cell, electrodes in Li-ion 
batteries, and electrodes for supercapacitors.
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2 � Electronic Structure and Synthesis of 2D Materials

2.1 � Electronic Structure

Graphene This substance can be made to assume the form of single-atom-thick, 
2D single-layer of sp2 hybridized carbon atoms in a honeycomb crystal lat-
tice. In this form, it has unique structure and properties. These include rich elec-
tronic states (excellent conductivity of 106  S  cm−1 and thermal conductivity of 
5000 W  m−1  K−1), good mechanical properties (Young’s modulus of 1.0  TPa), 
large surface area (2630 m2 g−1), optical absorbance of ~2.3 % for visible light, 
high transparency, high flexibility, and easy modification using organic and inor-
ganic molecules. Detailed descriptions of the overall properties of graphene have 
been published elsewhere [2–7].

Because it possesses these superior properties, graphene is still being studied 
intensely as an attractive candidate for many energy-related applications [8–21].

2D-TMDs Atomically thin 2D-TMDs (6.5 Å thick) have received much atten-
tion in recent years, because they are naturally abundant, have unique proper-
ties and form semiconductors with various bandgaps [6, 22]. Layered TMDs are 
materials with the formula MX2, where M is a transition metal from Group-4 to 
Group-7 and X is a chalcogen of S, Se, or Te. Their structures are formed of cova-
lently bonded X-M-X single-layers that interact by van der Waals forces (Fig. 1a). 
Each single layer consists of two X atom layers and a layer of metal atom sand-
wiched between two layers of chalcogens. Transition metal atoms provide four 
electrons to fill the bonding states of MX2, oxidation states of +4 for metal atoms, 
and oxidation states of −2 for chalcogen atoms. The d-electron count of the tran-
sition metal relates to the MX2 phase. The metal atoms of MX2 can have either 

Fig. 1   a Layered MX2 structure. b Atomic structure for MX2 in the H and T structure. (Repro-
duced with permission from Ataca et al. 2012 [24]. Copyright © 2012 American Chemical Society)
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trigonal prismatic or octahedral coordination. Bulk MX2 exhibits three different 
stacking-types: 1T (trigonal), 2H (hexagonal), and 3R (rhombohedral) [6, 23]. 
Group-6 bulk MX2 is mostly of 2H structure, which is more stable than the 1T 
phase. Single-layer MX2 is of only two types: 1H and 1T (Fig. 1b) [24]. Each M 
atom has six X atoms, and each X atom has three M atoms forming hybridiza-
tion of the M d-orbital and X p-orbital. The change in symmetry induces changes 
in the electronic properties from semiconducting to metallic [25, 26]. Thus, MX2 
nanosheets have electronic properties from semiconducting to metallic, depending 
on their geometry, composition, thickness, and electron density. The phase transi-
tion from 2H to 1T can be induced by specific procedures.

The bandgap of MX2 varies with a number of layers. Calculations using density 
functional theory (DFT) have shown that the MoX2 and WX2 materials can change 
from indirect-to-direct bandgaps, depending on the number of layers (Fig. 2) [6, 
27–30]. Single-layer MX2 is a direct bandgap semiconductor with bandgap energy 
of 1.2−2.1  eV, whereas bulk MX2 is an indirect bandgap semiconductor with 
bandgap energy of 1.0−1.4 eV. The electronic properties of MX2 are summarized 
in Table 1.

Contrary to zero-bandgap graphene, single-layer 2D MX2 sheets are semicon-
ductors with a small direct-bandgap, which is a useful material for a wide range 
of applications (e.g., field effect transistors, energy harvesting/conversion devices, 
optoelectronics, and sensors). Transistors of single-layer MoS2 using HfO2, exhib-
ited a mobility of 200  cm2  V−1  s−1 [32]. Other properties shown are Young’s 

Fig. 2   Electronic band structures of bulk and single-layer MX2. The black arrows are their band 
gaps. (Reproduced with permission from: (MoS2, WS2) Kuc et al. 2011 [28]. Copyright © 2011 
American Physical Society. (WSe2) Huang et al. 2014 [30]. Copyright © 2014 Royal Society of 
Chemistry)
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modulus of 270 ±  100  GPa for MoS2 single-layer [33] and in-plane resistivity 
of 3–40 kΩ/sq [34] and 14–28 kΩ/sq [35] for micromechanical exfoliated MoS2 
and CVD-grown MoS2, respectively. The direct-bandgap transition in single-layer 
MX2 provide enhanced photoluminescence (PL) by quantum confinement effects. 
Moreover, MoS2 single-layer exhibits optical-valley polarization [36, 37] and 
lesser stiffness than graphene [38]. The electronic band structure of 2D-MX2 not 
only depends on the number of layers but also on the strain [27].

In summary, both graphene and 2D-MX2 nanosheets have a great number of 
superior properties that make them attractive candidates for use in energy harvest-
ing, energy conversion, and storage applications.

2.2 � Synthesis Methods

Graphene and 2D-MX2 can be obtained from a variety of methods including 
micromechanical exfoliation (also called scotch-tape method), chemical vapor 
deposition (CVD), and liquid-based exfoliation. Each preparation method results 
in products with particular structures and properties. Graphene and 2D-MX2 pro-
cessed using liquid-based-exfoliation and CVD methods have often been used in 
energy harvesting, conversion, and storage applications due to their large surface 
area and ease of mass production. [7, 39–48].

2.2.1 � Micromechanical Exfoliation

Graphene become an important material after discovery through micromechani-
cal exfoliation method by Novoselov et al. (2004) [1]. Micromechanical exfolia-
tion is the best known method for obtaining high quality graphene. This method 
produces graphene from bulk crystals of layered graphite by repeated exfoliation 
using scotch tape [1, 49] (Fig. 3). Like graphene, a 2D-MX2 single-layer can be 
exfoliated from bulk MX2 crystal using scotch tape [50]. Other layered materi-
als can also be exfoliated into single-layer flakes by micromechanical exfoliation 
[51, 52]. This method does not control flake thickness and size; however, and is 

Table 1   Electronic 
properties of MX2  
materials [6, 28, 30, 31]

Metal X, chalcogen

S Se Te

Mo Semiconductor Semiconductor Semiconductor

Bulk: 1.2 eV Bulk: 1.1 eV Bulk: 1.0 eV

1 L: 1.8–1.9 eV 1 L: 1.5–1.6 eV 1 L: 1.2 eV

W Semiconductor Semiconductor Semiconductor

Bulk: 1.4 eV Bulk: 1.2 eV Bulk:

1 L: 1.9–2.1 eV 1 L: 1.6–1.7 eV 1 L: 1.2 eV
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not appropriate for mass production, or for production of large 2D-MX2 single-
layers. For energy harvesting/conversion and storage devices, 2D nanosheet-based 
devices require nanosheets of large surface area for solar cells, and large amounts 
of nanosheets for energy storage applications. Thus, this mechanical exfoliation 
method is used primarily for fundamental studies of new physics and new devices 
[32, 33, 40, 53–61].

2.2.2 � Chemical Vapor Deposition

Among methods for graphene synthesis, CVD is widely used to produce uniform 
single-layer of large area [44, 62]. This is also the most appropriate method to syn-
thesize 2D-MX2 single-layer with a vertically hybrid structure. This method also 
makes it possible to introduce dopants to 2D-MX2 to control bandgap [63].

A typical, low-pressure CVD system consists of a furnace with a quartz tube, 
for heat-vaporization of chalcogenides, and an outflux cold trap. The CVD syn-
thesis of MoS2 has involved precursors of various phases, such as MoO3 and S 
powder vaporized and co-deposited onto substrate [64–66], sulfurization of pre-
deposited Mo precursors (e.g., MoO2 film [67, 68], MoO3 film [68], Mo [35], 
aromatic molecules [69]), and decomposition of ammonium thiomolybdate 
((NH4)2MoS4) film under S gas [70].

Regarding the first case, CVD methods have been reported for creating MoS2 
single-layer on SiO2/Si substrates by Lee et al. [64]. They reported that large-area 
MoS2 sheets with 1–3 layers were directly synthesized on SiO2/Si substrate by 
heating MoO3 and S powder (Fig. 4). The synthesized MoS2 showed high crystal-
linity in a six-fold hexagonal lattice and n-type semiconductor properties. Zhan 
et  al. demonstrated that large-area MoS2 could be synthesized by sulfurization 
of pre-deposited Mo film by e-beam evaporation [35]. The resulting film showed 
polycrystalline MoS2 due to suppressed Mo migration because the melting point 
of Mo (2610  °C) was higher than the growth temperature (~750  °C). Another 
similar method was reported by Wang et  al. [67]. They demonstrated forma-
tion of a MoS2 bilayer 1.5  nm thick using layer-by-layer sulfurization of MoO2 

Fig. 3   Micromechanical exfoliation. AFM images of mechanically exfoliated single-layer gra-
phene and MoS2. (Reproduced with permission from: (graphene) Novoselov et  al. 2005 [49]. 
Copyright © 2005 American Chemical Society). (MoS2) (Reproduced with permission from Li 
et al. 2012 [50]. Copyright © 2012 John Wiley and Sons)
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microplates at 850–950 °C. Using the weak adhesion between a MoS2 layer and 
MoO2 precursor film, MoS2 flakes with domain size of 10 μm were obtained by 
separation from the MoS2/MoO2 film. MoS2 synthesis using substrate dip-coated 
in (NH4)2MoS4 solution and exposed to S gas was reported by Liu et  al. [70]. 
These workers produced large-area MoS2 film with uniform thickness in 2–3 lay-
ers. Sulfurization using pre-deposited metal precursor films is an effective method 
for preparation of large-area MX2 single-layer.

Recently, Najmaei et  al. reported forming triangular MoS2 single-layer with 
large grain size and an edge-length of 10 μm using MoO3 film on Si substrate 
[68] (Fig.  5a). Lee et  al. demonstrated triangular MoS2 sheets on various sub-
strates using atmospheric pressure CVD (APCVD) with aromatic-molecule seeds 
(perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt, PTAS) [69] (Fig. 4b). 
In addition, there have been reports of demonstrations in which insulating sin-
gle-crystals, such as sapphire, quartz, and mica, were used to form high quality 
2D-MX2 [71–76].

Formation of large-area MoS2 single-layer was reported by van der Zande et al. 
[66]. They used solid MoO3 and S precursors to produce large MoS2 single-layer 
by APCVD growth. The resulting sheets of triangular MoS2 had very long edge-
length (~120 µm). Another large MoS2 layer was grown on mica substrate, result-
ing in a continuous MoS2 film of high uniformity, by coalescence of aligned MoS2 
domains [75].

Besides MoS2, recently, our group reported CVD growth of large-area MoSe2 
single-layer with high quality and uniformity, on SiO2/Si and sapphire substrate 
[73] (Fig.  6). A MoSe2-graphene hetero-structure created by the CVD method 
was also demonstrated. It exhibited PL quenching by fast transfer of photogen-
erated charge carriers in the stacked heterostructure. Cong et al. reported triangular 
WS2 single-layer with long edge-length (178 μm) formed in a modified quartz-
tube furnace [77]. In this case, WO3 and S powder were loaded into a small, inner 
quartz tube sealed on one side. By direct sulfurization of the WO3, formation of 

Fig. 4   Schematic illustration for CVD (left) and the optical image of MoS2 on SiO2/Si (center). 
The thickness of single-layer MoS2 is 0.72 nm, which is measured by AFM (right). (Reproduced 
with permission from Lee et al. 2012 [64]. Copyright © 2012 John Wiley and Sons)
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Fig.  5   a Schematic illustration for CVD (upper), SEM image (bottom left) and False-color 
dark-field TEM image of MoS2 (bottom right) (Reproduced with permission from Najmaei et al. 
2013 [68]. Copyright © 2013 Nature Publishing Group). b Chemical structure of PTAS (bottom 
right), schematic illustration of MoS2 growth (bottom left) and SEM images of single-layer MoS2 
(upper left). Optical images of MoS2 film on quartz (upper right) and sapphire (bottom right). 
(Reproduced with permission from Lee et al. 2013 [69]. Copyright © 2013 American Chemical 
Society)

Fig.  6   Schematic illustration of CVD system (upper). The structure of MoSe2 on SiO2/Si (or 
sapphire) and graphene/SiO2/Si substrate, respectively (bottom left). Optical image of MoSe2 sin-
gle-layer and PL intensity map for the yellow box shown in the left optical image (bottom right). 
(Reproduced with permission from Shim et al. 2014 [73]. Copyright © 2014 American Chemical 
Society)
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large-area, WS2 single-layer of high quality was demonstrated. First, triangular 
WS2 sheets formed and then a few layer sheets grew at the apexes of the triangular 
sheets. Formation of large-area WSe2 monolayer was also demonstrated using gas-
phase reaction of WO3 and Se powder in hydrogen [72].

The CVD method can produce MX2 single-layer with large domain and high 
quality. In particular, well-aligned MX2 domains may produce wafer-scale, single 
crystals by domain coalescence during CVD growth.

2.2.3 � Liquid-Based Exfoliation

Graphene and 2D-MX2 can also be obtained by the liquid-based exfoliation 
method. This method is the most economic for mass production. Therefore, it has 
been considered a useful approach for obtaining large quantities of 2D nanosheets 
from bulk powder. Liquid-based exfoliation is a suitable method for applications 
that require large amounts, such as electrochemical energy storage, flexible energy 
devices, composite materials, inkjet printing, thin films, and spray coating.

Graphene Nanosheets

Liquid-based exfoliation involves sonication of graphite, intercalated graphite, or 
graphite oxide powder in suitable solvents [43, 78–80].

Graphite oxide Liquid-based exfoliation of graphite oxide is widely used for 
graphene production [41, 43, 81–89]. This method involves a two-step process: 
intercalation with strong oxidizing agents and expansion of graphite layers by 
sonication. These chemical processes introduce functional groups (i.e., epoxide, –
OH, –COOH, and –COH groups) in the basal plane and at the edges [80] (Fig. 7). 
Thus, GO by oxidative exfoliation has a defective structure and insulating proper-
ties. The reduction of GO by thermal [89, 90], electrochemical [86, 88, 91], or 
chemical treatment [87, 90] can transform the insulating GO to conductive gra-
phene, which is then referred to as reduced GO (rGO).

Direct exfoliation of graphite Direct liquid exfoliation of natural graphite can 
produce single- or few-layer graphene by ultrasonication in organic solvents (e.g., 
N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), and benzyl 
benzoate) with suitable surface energy (40–50 mJ m−2) [92]. This method gives 
the highest yield in NMP and high quality graphene with low defects. Although 
this type of exfoliation can be used directly to obtain conductive graphene sheets 
with low defects, this method has some disadvantages (e.g., very low yield, toxic 
solvents, and reaggregation).

Intercalated graphite Intercalated graphite formed by insertion of intercalant 
species between graphite layers can be used to expand the graphite-interlayer dis-
tance by rapid increase in the vapor pressure of inserted materials, during micro-
wave or thermal treatment. This form of exfoliation provides a high-yield method 
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of producing graphene with high quality and large lateral size. However, many 
methods for creating intercalated-graphite involve oxidation in ambient air and 
dangerous chemical reactions.

2D-TMD Nanosheets

With a layered structure similar to graphene, MX2 can also be made to produce 
single-layer or few-layer MX2 by liquid-based exfoliation. There are two pertinent 
types of liquid-based exfoliation: direct exfoliation by sonication in appropriate 
solvents and chemical exfoliation of Li-intercalated MX2 in water.

Liquid-based direct exfoliation Direct exfoliation involves ultrasonication of 
bulk MX2 powder in organic solvents and in aqueous surfactant solutions [93–97]. 
The efficiency of direct exfoliation depends on solvent, surfactant, and sonica-
tion time. Direct liquid exfoliation using organic solvents can produce single- or 
few-layer 2D-MX2 through ultrasonication. Nanosheets of 2D-MX2 also showed 
the highest yield in NMP as graphene. Coleman et al. demonstrated this form of 
direct exfoliation and reported surface energy of 65−75 mJ m−2 for MoS2, WS2, 
and MoSe2 [94, 96]. NMP has surface energy similar to MX2. In the case of 
direct exfoliation using surfactants, the surfactants prevent the restacking of MX2 
nanosheets. However, these direct exfoliations exhibited very low yield (2−10 %), 
which also required lengthy sonication time to improve dispersion. Our group, 
has recently reported direct exfoliation of MoS2 with alkali-metal-hydroxide 

Fig. 7   a Scheme for GO synthesis and the structure of GO and rGO (gray ball: carbon, red ball: 
oxygen). b Optical image of GO and rGO solution, and c AFM image of GO sheets on SiO2/Si 
with 1 nm height. d Optical image of GO paper (left) and SEM image (right) of cross-section 
of the GO paper. (Reproduced with permission from Dikin et al. 2007 [85]. Copyright © 2007 
Nature Publishing Group)
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assistance to improve the direct-exfoliation efficiency [93] (Fig.  8). Our method 
exhibited high yield (65 %) and good dispersibility.

Liquid-based chemical exfoliation Liquid-based chemical exfoliation of Li-
intercalated MX2 in water gives a high yield of single-layer MX2 (nearly 100 %). 
Bulk MX2 is intercalated with Li using n-butyllithium (n-BuLi) [26] (Fig. 9a) or 
electrochemical lithiation [98, 99] (Fig.  9b), forming LixMX2. Electrochemical 
lithiation can be controlled by adjusting the amount of Li ions inserted [99]. The 
LixMX2 materials can easily be exfoliated using brief ultrasonication in water. The 
resulting 2D-MX2 flakes showed single-layer thickness of 1–1.2  nm and metal-
lic 1T phase. The initial 2H phase was induced to form the metallic 1T phase by 

Fig. 8   Optical image of MoS2 dispersion with alkali-metal assistant in DMF (left). TEM image 
and AFM image of the exfoliated MoS2 single-layer. (Reproduced with permission from Bang 
et al. 2014 [93]. Copyright © 2014 American Chemical Society)

Fig. 9   a Schematic illustration for Li intercalation into MX2 layers (upper) and optical image 
of the exfoliated MoS2 dispersion in water. TEM image of MoS2 single-layer and AFM image 
the exfoliated MoS2 sheets (bottom). (Reproduced with permission from Eda et  al. 2011 [26]. 
Copyright © 2011 American Chemical Society). b Schematic illustration for electrochemical 
lithiation (2) and exfoliation (3) of the Li-intercalated MX2 (upper). TEM image of MoS2 
nanosheet. Inset: optical image of the exfoliated MoS2 dispersion (bottom). (Reproduced with 
permission from Zeng et al. 2011 [98]. Copyright © 2011 John Wiley and Sons)
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charge transfer from Li to MX2. The induced 1T-phase can recover to the ini-
tial 2H phase upon annealing at temperatures of 200–300  °C [26]. This method 
is one of the most effective methods for mass production of metallic 2D-MX2 
single-layer.

3 � Energy Harvesting and Energy Conversion Applications

3.1 � Solar Cells

Solar energy is abundant and sustainable and has attracted interest for many years. 
Solar cells (dye-sensitized, polymer, organic, hetero-junction, and quantum-dot 
sensitized) are promising devices for conversion of solar energy into electricity. 
Graphene has been extensively investigated in relation to solar cell applications 
because of its high optical transparency, good mechanical flexibility, high thermal 
stability, and high electrical conductivity. For these reasons, it is now a candidate 
to replace indium tin oxide (ITO) in photovoltaics and opto-electronics. Graphene-
analogs, such as 2D-MX2 materials, have also potential as photovoltaic and opto-
electronic materials. There have been reports of their use for transparent anodes 
or cathodes, catalytic counter electrodes, and the active layer for energy harvest-
ing and conversion. In particular, heterostructures, such as those formed by com-
bining 2D-MX2 and graphene, have recently attracted attention as a new structure 
for light-harvesting applications. Heterostructures can induce significant photon 
absorption and photocurrent.

3.1.1 � Graphene Nanosheets for Solar Cells

Graphene and graphene-based materials are attractive for solar energy harvesting 
and conversion. They have been investigated extensively for solar cell applica-
tions. As mentioned in Sect. 2.2, graphene has unique properties such as high car-
rier mobility, high optical transparency, very large surface area, high chemical and 
thermal stability, and high mechanical flexibility. It can be used in diverse ways as 
transparent anodes and cathodes, electron and hole-transport materials, catalytic 
counter electrodes, and active layers in solar cells.

Graphene as photo-anode In dye-sensitized solar cells (DSSCs), graphene can 
be used as photo-anode. Transparent indium tin oxide (ITO) and fluorine-doped 
tin oxide (FTO) are conventional electrodes used in DSSCs. However, indium is 
a rare-earth metal, mechanically brittle, and unstable under high temperature pro-
cessing. Graphene, because of its high electrical conduction and optical transpar-
ency, may replace ITO in solar cells. Coleman et  al. analyzed the transmittance 
and sheet resistance of graphene-based transparent electrodes from published 
data [100] (Fig. 10a). They mentioned that the conductivity of graphene could be 
increased by increasing the concentration of carriers. Bae et al. reported creation 
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of large-area CVD-graphene film (4-layered) with HNO3 doping by the roll-to-
roll method [101]. This acid-doped graphene film exhibited low sheet resistance 
(30 Ω/sq) with 90 % transmittance, which is superior to ITO electrodes. In addi-
tion to these, hybrid films of CVD-graphene and metal grid showed the best per-
formance (3 Ω/sq with 80 % transmittance), in the form of bendable, transparent 
electrodes [102] (Fig. 10b).

Wang et  al. reported rGO film used as a transparent conducting electrode in 
DSSCs [103]. The rGO film exhibited conductivity of 550  S  cm−1 with 70  % 
transmittance (1000–3000  nm). However, DSSCs using rGO film (device struc-
ture:  rGO/TiO2/dye/spiro-OMeTAD/Au) showed very low power-conversion effi-
ciency (PCE) of 0.26 %. Li et al. reported the use of GO film as the hole-transport 
layer in organic solar cells (OSCs) [104]. The OSC using GO film (device struc-
ture: ITO/GO(2  nm)/P3HT:PCBM/Al) had PCE of 3.5 ±  0.3  %. DeArco et  al. 
reported flexible CVD-graphene films on polyethylene terephthalate (PET) film 
[105]. The CVD-graphene on transparent PET film showed sheet resistance of 
230 Ω/sq with 72  % transparency. Organic solar cells using this CVD-graphene 
as flexible transparent anode exhibited 1.27 % PCE and good performance under 
bending of up to 138° (Fig. 11). For use in high performance organic solar cells, 
Hsu et  al. reported a CVD graphene-tetracyanoquinodimethane (TCNQ) multi-
layer anode with the resistance of 182 Ω/sq and 88  % transmittance [106]. The 
OSC using graphene-TCNQ (device structure: Graphene-TCNQ/PEDOT:PSS/
P3HT:PCBM/Ca/Al) showed 2.58 % PCE.

CVD-graphene and rGO can be used as diverse roles in solar cells. CVD-
graphene is more attractive as transparent conducting electrode due to their high 
electrical conductivity and relative inertness compared to rGO.

Fig. 10   a Plot for transmittance and sheet resistant from data in the published papers. (Repro-
duced with permission from De and Coleman 2010 [100]. Copyright © 2010 American Chemical 
Society). b Schematic illustration of hybrid film of CVD-graphene and metal grid as transparent 
electrode (upper). Optical image of the bendable transparent electrode (bottom left) and SEM 
image (bottom right) of CVD graphene-metal grid on PET. (Reproduced with permission from 
Zhu et al. 2011 [102]. Copyright © 2011 American Chemical Society)
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Graphene as catalytic counter electrodes Graphene is also a promising mate-
rial for use as catalytic counter electrodes (CE) in DSSCs due to its low cost, 
high surface area, high conductivity, and electrocatalytic properties. Many works 
have reported using graphene and graphene composites as catalytic CEs in Pt-free 
DSSCs. Recently, Gong et  al. demonstrated that rGO embedded in a polypyrrol 
(ppy) matrix, is a good candidate conductive and catalytic CE in DSSCs [107]. 
Certain DSSCs (device structure FTO/TiO2/dye/I3, I−  mediated electrolyte/rGO-
ppy) exhibited a high PCE of 8.14 %, which is comparable to a Pt counter elec-
trode (8.34 % PCE). This rGO-ppy electrode can be considered a promising CE 
for Pt-free DSSCs.

Graphene Quantum Dots (GQDs) GQDs are graphene nanoparticles with lat-
eral size less than 100 nm. They have excellent properties that include high opti-
cal absorptivity [108–110]. Yan et al. first reported GQD-sensitized DSSC [111]. 
Zhang et  al. demonstrated that graphene synthesized by a hydrothermal method 
could act as a photosensitizer [112]. Recently, Williams et al. suggested that pho-
toexcited GQDs inject electrons into TiO2 within 15 fs [113].

Metallic graphene with a semiconductor can form Schottky-junction layer in 
DSSCs. Miao et  al. reported an enhanced Schottky-junction solar cell formed 
using chemical-doped graphene/n-Si [114]. The graphene had been doped with 
bis(trifluoromethanesulfonyl)-amide (TFSA). The TFSA-doped graphene showed 
low sheet resistance and increased work function. This solar cell exhibited a high 
PCE (8.6  %). Song et  al. reported the rGO-TiO2 Schottky-junction in a DSSC 
(device structure: FTO/graphene-TiO2/dye/I3, I−  mediated electrolyte/Pt). DSSC 
using rGO-TiO2 showed an improved PCE (6.06 %) compared to pure TiO2 with-
out rGO [115]. Liu et al. reported GO (work function of 4.6–4.8 eV) used for hole 

Fig. 11   Schematic illustration of the organic solar cell with CVD graphene as anodic electrode 
(upper). Current-voltage characteristic curves for the photovoltaic device under A.M. 1.5 illu-
mination at 100 mW cm−2 for different bending angles (bottom). (Reproduced with permission 
from De Arco et al. 2010 [105]. Copyright © 2010 American Chemical Society)
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transport and Cs-doped GO (work function of 3.9–4.1 eV) for electron transport in 
polymer solar cells [116].

Thus, graphene and graphene derivatives could be widely used to improve the 
performance of solar cells. These materials have high electrical conductivity and 
optical transparency, and are promising candidates to replace ITO in solar cells.

3.1.2 � Nanosheets of 2D-TMDs for Solar Cells

Nanosheets of 2D-MX2 have recently been receiving a lot of interest due to their 
role as semiconductors with a small direct bandgap (1–2 eV) and n or p-type car-
riers depending on their layer thickness and elemental compositions [22]. They 
can absorb significant portions of the solar spectrum, and may be considered effi-
cient nanomaterials for use in solar energy conversion. These 2D-MX2 sheets have 
higher sunlight absorption (5–10 % in visible range at 6.5 Å thickness) than the 
commonly used absorbers, Si and GaAs [117]. Moreover, the 2D-MX2 single-
layer is flexible, transparent, and ultrathin. Thus, 2D-MX2 single-layer can be used 
as an efficient photovoltaic material.

2D-TMDs for cathode catalysts In DSSC, platinum (Pt) is widely used as a 
cathode material due to its excellent electrocatalytic properties. However, it has 
several disadvantages in DSSC applications (i.e., high price and limited reserves). 
To replace expensive Pt electrodes, 2D-MX2-based materials have been studied 
for use as cathode catalysts in DSSC. When DSSC was chemically synthesized 
using MoS2 and WS2 it exhibited power conversion efficiency (PCE) of 7.59 and 
7.73 %, respectively [118]. Recently, Patil et al. prepared MoS2 from MoCl5 and 
thioacetamide at low temperature (70  °C) and under wet conditions [119]. This 
DSSC exhibited 7.01  % PCE, which is comparable to DSSC with a Pt counter 
electrode (7.31 %). Chen et al. reported the few-layer MoSe2 fabricated by surface 
selenization of Mo-coated glass in a CVD system [120]. The few-layer MoSe2 
DSSC showed a higher PEC (9 %) than a counter electrode based on Pt nanoparti-
cles on FTO glass. MoS2 and graphene composite as a counter electrode in DSSC 
showed a PEC of about 6 % [121, 122]. The 2D-MX2-based CE exhibited good 
performance, and are very useful for replacement of Pt in DSSCs.

2D-TMDs for polymer solar cells 2D-MX2-based materials have been 
studied for applications in polymer solar cells. Yu et  al. reported a MoS2-Au 
Schottky-junction solar cell with 1.8 % PCE [123]. In the same group, a MoS2-
TiO2 composite structure with a P3HT active layer (device structure: ITO/TiO2/
MoS2/P3HT/Au) exhibited 1.3 % PCE under 100 mW cm−2 illumination [124]. 
Recently, Yun et al. reported creation of a polymer solar cell using p- and n-doped 
MoS2 film for modulation of the work function of the interfacial layer. A P-doped 
MoS2 hole-transport layer showed enhanced performance (3.4 % PCE) in a pol-
ymer solar cell [125]. Gu et  al. prepared a 2D-MoS2 single-layer (AFM image 
in Fig.  13) using liquid-based exfoliation from Li-intercalated MoS2 [126]. A 
device using liquid-exfoliated 2D-MoS2 nanosheets as a hole-extraction layer 
exhibited 4.03  % PCE for the P3HT:PC61BM active layer and 8.11  % PCE for 
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the PTB7:PC71BM active layer, respectively (Fig.  12). Niu et  al. reported sin-
gle and few-layer 2D-TMDs nanosheets obtained by salt-assisted liquid exfolia-
tion [127]. Some OSCs using the 2D-MoS2 nanosheets as hole-transport layers 
and P3HT:PC61BM as the photoactive layer (device structure: ITO/2D-MoS2/
P3HT:PC61BM/Al) showed 1.81  % PCE under AM 1.5 illumination. Recent 
OSCs using MoO3/MoS2 exhibited a PCE of 6.9 % and high air-stability of 5.5 % 
PCE after 16  days [128]. These results also demonstrate that 2D-MoS2-based 
nanosheets are a promising hole-transport material for high performance solar 
cells. To improve light harvesting in OSCs, plasmonic OSCs using MoS2-Au NP 
composite (MoS2@Au) as the hole-transport layer exhibited enhanced short-cir-
cuit photocurrent density, and a PCE of 7.25 % [129].

Heterostructure of 2D-TMDs Van der Waals heterostructures of semiconduct-
ing MX2 have recently attracted attention as a new structure for light-harvesting 
applications [117, 130–135]. Britnell et  al. prepared vertical heterostructures 
of MX2-graphene using 2D-MX2 as good photoactive materials and graphene 
as a good transparent electrode [135]. They demonstrated effective photovoltaic 
devices with photosensitivity above 0.1 A W−1 using vertical MX2-graphene het-
erostructures. From DFT calculation, Bernardi et  al. predicted the performance 
of heterojunction solar cells with a Schottky barrier (MoS2-graphene) and bilayer 
excitonic MX2 (MoS2-WS2) [117]. They estimated 0.4–1.5 % PCE for a bilayer 
of MoS2-WS2 1.2 nm thick, and 0.1–1.0 % PCE for a bilayer of MoS2-graphene 
0.9  nm thick. Recently, Lopez-Sanchez et  al. reported a diode based on a p–n 
heterojunction of single-layer MoS2 and p-type silicon [132]. This heterojunc-
tion diode of MoS2-Si operates as a photovoltaic device, which converts incident 
light into electrical power with an external quantum efficiency (EQE) of 4.4 %. 
Lee et  al. fabricated at sandwiched p–n heterojunction of n-MoS2 and p-WSe2 
single-layer between graphene layers, and measured the external quantum effi-
ciency [134] (Fig. 13). The reported EQE of the p-WSe2/n-MoS2 heterojunctions 
of different thicknesses were 2.4, 12, and 34 % for single layer, bilayer, and mul-
tilayer, respectively. In addition, Hong et  al. reported the experimental observa-
tion of ultrafast hole-transfer within 50 fs in the stacked heterostructure of MoS2 

Fig. 12   Schematic 
illustration of inverted-type 
OSC with MoS2 thin layer 
(upper) and AFM image of 
MoS2 nanosheets on APTES 
modified SiO2/Si (bottom). 
(Reproduced with permission 
from Gu et al. 2013 [126]. 
Copyright © 2013 John 
Wiley and Sons)
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and WS2 [133]. Heterostructures of semiconducting 2D-MX2 can enhance light–
matter interaction, which induces major photon absorption and production of 
photocurrent.

Semiconductors of 2D-MX2 are materials that separate electrons and holes for 
energy conversion. The physical properties of heterostructures using them can be 
controlled to induce fast charge-separation. Therefore, 2D MX2-based devices are 
promising for light-harvesting and conversion.

3.2 � Fuel Cells

Fuel cells are clean, sustainable energy conversion devices that convert chemical 
energy of a fuel directly into electricity. These technologies are approaching com-
mercialization in small portable power sources [136]. The key parts of a fuel cell 
are electrodes for fuel oxidation (anode) and oxygen reduction (cathode) (Fig. 14). 
Expensive noble metals are well-known active catalysts for both anodes and 

Fig.  13   Schematic illustration of Graphene/n-MoS2/p-WSe2/Graphene. (Reproduced with per-
mission from Lee et al. 2014 [134]. Copyright © 2014 Nature Publishing Group)

Fig. 14   The structure of 
fuel cell
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cathodes in fuel cells. Among them, platinum-nanoparticles are regarded as the 
best catalyst, and they have the highest electrocatalytic activity for oxygen reduc-
tion at the cathode. However, Pt has several disadvantages in practical applications 
of fuel cells. These include its high price, limited (global) reserves, and deactiva-
tion by self-poisoning from CO adsorption. Therefore, it is essential to develop 
low-cost non-platinum catalysts. The activities of catalysts depend on their surface 
properties. Good catalysts for high performance and commercialization require 
low cost, high surface area, maximum contact area, good electronic conductivity, 
and high electrochemical stability in acidic and alkaline electrolytes. Graphene 
has received a great deal of attention as a good catalyst due to its high surface 
area, good chemical and environmental stability, and unique structures. Graphene-
analogous 2D-MX2 has also begun receiving considerable interest recently.

3.2.1 � Graphene Nanosheets for Fuel Cells

Oxygen reduction reaction (ORR) at the cathode The oxygen reduction reac-
tion determines the overall performance of a fuel cell. Pt nanoparticles are the 
best catalysts and are still used in practical applications due to their high catalytic 
activity and good stability. Graphene-based Pt nanoparticles have been also stud-
ied for ORR [13, 137–142]. However, Pt has the disadvantage of reserves that are 
too limited, and prices that are too high for the commercialization of fuel cells. 
Therefore, development of Pt-free catalysts is important for commercialization of 
fuel cells. Many researchers have addressed the electrocatalytic activity of metal-
free graphene-based nanomaterials. These graphene-based nanomaterials exhib-
ited enhanced catalytic activity and durability when used for ORR in fuel cells. 
Graphene appears to be a promising candidate as catalyst support than commer-
cial Pt-C due to high surface area, high electrical conductivity, 2D nanosheets with 
atomic layer, basal-plane structure of sp2-hybridized carbon, and good stability 
[13, 140–149].

As metal-free alternatives, metal-free graphene-based nanomaterials are impor-
tant for commercialization of fuel cells. As a result, metal-free graphene-based 
nanomaterials have been extensively developed for ORR [13, 140–142, 150–161]. 
Heteroatom-doped graphene is one of the metal-free nanocatalysts. Heteroatom 
doping can induce charge redistribution in graphene and create active sites for 
oxygen adsorption. Heteroatom-doped graphene induces intramolecular charge 
transfer between graphene and dopants, and exhibits high catalytic activity and 
stability. Qu et  al. reported creating N-doped graphene by growth of CVD gra-
phene with ammonia [140]. The resulting N-doped graphene has shown higher 
catalytic activity and stability than commercial Pt/C. Yang et  al. reported an 
S-doped rGO with good catalytic activity [141]. Li et  al. synthesized N-doped 
graphene quantum dots (N-GQDs) with oxygen rich functional groups [142]. 
Zhang et al. reported amine-functionalized rGO with good performance for ORR 
[13]. These heteroatom-doped graphenes provided advantages as ORR cata-
lysts. Although it is still not exactly clear about the active sites, theoretical and 
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experimental studies suggest that heteroatom-based graphene or its composites 
may provide metal-free catalysts with high activity and low cost.

Fuel oxidation at the anode Graphene-based noble metals have been attrac-
tive as anode material for use in direct methanol fuel cells (DMFCs). Methanol 
is a fuel appropriate for fuel cells, and the methanol oxidation process includes 
methanol adsorption and subsequent dissociation into adsorbed intermediates 
[162]. As mentioned earlier, CO-poisoning can greatly reduce the catalytic activ-
ity of Pt NPs [163]. In the case of the rGO-Pt NP catalysts, the oxygen-containing 
functional group of rGO or graphene can improve the electrocatalytic activity by 
removing the adsorbed CO from Pt sites [164]. Actually, the rGO-Pt nanoparti-
cles exhibited higher catalytic performance than commercial Pt/C catalyst for the 
methanol oxidation reaction [143–148, 163–165]. Li et al. reported high catalytic 
activity for methanol oxidation using rGO-Pt nanoparticle (rGO-PtNPs) electrodes 
[145]. The graphene-based alloy metal NPs (e.g., PtRu-graphene, PtNi-graphene, 
and PtPd-rGO, PtFe-graphene) also displayed high electrocatalytic activities for 
methanol oxidation. Zhao et al. used one metal-free graphene-based nanomaterial 
(rGO-PPy-PdNPs) as anode [164]. In addition to methanol, the catalytic activity 
of graphene-based metal NPs catalysts has also been studied for use in oxidation 
reaction of ethanol [166, 167], formic acid [167–169], and hydrogen [163].

Graphene-based nanomaterials can be used as catalyst at both anodes and 
cathodes in fuel cells. Further study is necessary to determine the exact catalytic 
mechanisms needed to develop graphene-based catalysts with high activity and 
durability.

3.2.2 � Nanosheets of 2D-TMDs for Fuel Cells

Hydrogen is a clean fuel that leaves only water behind when used, and is one of 
the promising new energy sources. To produce hydrogen in a fuel cell effectively, 
an electrocatalyst is required. As already known, Pt is the best known electrocata-
lyst for the hydrogen evolution reaction (HER), though it has the disadvantages 
mentioned previously. Layered MX2 products are made from abundant materials, 
and 2D-MX2 nanosheets have received increasing attention as HER catalysts for 
fuel cells [170–172].

2D-TMDs for HER catalysts As seen in Sect.  2.1.2 (CVD), 2D-MX2 
nanosheets exhibit the shape of triangle or truncated triangles. Their structure 
has two different edge sites: X and M [173] (Fig. 15a). The elements Co and Ni 
incorporated into MoS2 induce morphology change resulting in truncated triangles 
with prominently exposed S edge [174]. The ratio of the length of the basal plane 
to that of the edge sites changes with the size of the nanosheet. These edge sites 
are related to HER activity. In density-functional calculations, the free energy for 
hydrogen adsorption on the MoS2 edge was shown to be similar to the activity of 
biological catalysts [170] (Fig. 15b).

Jaramillo et al. [172] experimentally demonstrated that MoS2 edges are catalyt-
ically active sites for HER. Since then, Kibsgaard et al. synthesized double-gyroid 
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MoS2 to largely expose the edge sites [171] (Fig. 16). This double-gyroid MoS2 
exhibited high activity, with a Tafel slope of 50  mV decade−1. An amorphous 
MoS2 with many defects also exhibited catalytically activity, with an average Tafel 
slope of 50 mV decade−1 [175–177].

Fig.  15   a STM images of MoS2 single-layer (left) and white lines for the scan orientation. 
Top view of atomic ball model of the truncated MoS2 (right, Mo atoms: blue, S atoms: yellow). 
(Reproduced with permission from Lauritsen et  al. [173]. Copyright © 2004 Elsevier). b Free 
energy diagram for hydrogen evolution by density functional calculations. (Reproduced with 
permission from Hinnemann et al. 2005 [170]. Copyright © 2005 American Chemical Society)

Fig. 16   The mesoporous structure of double-gyroid MoS2 (left). CVs of the double-gyroid MoS2 
electrode at 5 mV s−1 (right upper) and tafel plot (right bottom). (Reproduced with permission 
from Kibsgaard et al. 2012 [171]. Copyright © 2012 Nature Publishing Group)
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As mentioned in Sect. 2.1 (Electronic structure), the symmetry of single-layer 
2D-MX2 has trigonal prismatic (2H phase) or octahedral (1T phase) coordination 
for transition-metal atoms [22]. Materials of 2D-MX2 with 2H phase are mainly 
semiconducting, whereas 1T phase is metallic. Moreover, 2D-MX2 nanosheets 
chemically exfoliated with Li intercalation exhibit metallic properties after phase 
change from 2H to 1T. An MX2 single-layer in 1T phase was much more active 
for HER than in 2H phase [99, 178, 179]. The higher activity can be attributed to 
the presence of the metallic 1T phase. In particular, strained single-layer 1T-WS2 
produced by chemical exfoliation with Li intercalation exhibited excellent cata-
lytic activity for HER [179]. Yi et al. demonstrated the correlation between MoS2 
properties and HER activity by electrochemical tuning of Li intercalation [99]. 
They also reported that 1T-MoS2 have high catalytic activity for HER. In other 
work, MX2-graphene hybrid types were used as catalysts for HER [180, 181]. Li 
et al. reported use of a MoS2-rGO hybrid to improve the conducting network and 
edge sites, and this hybrid exhibited excellent electrocatalytic activity with high 
current, low over-potential of −0.1 V and a low Tafel slope of 41 mV decade−1 
[181]. Liao et  al. synthesized MoS2 NPs on mesoporous graphene sheet (MoS2 
NPs-MGF) with high surface area and conductive skeleton, and this product 
showed high electro-catalytic activity with rapid electron transfer and a low Tafel 
slope of 42  mV decade−1 [180]. A WS2-rGO hybrid exhibited electrocatalytic 
activity with a Tafel slope of 58  mV decade−1. There are also studies in which 
noble-metal NPs (Pt and Au)-MoS2 nanosheets [182, 183] were used for HER and 
Pd-MoS2 [184] for methanol oxidation. The hybrid materials showed higher HER 
activity than pure 2D-MoS2 or WS2. High HER performance was shown using 
2D-MX2 or 2D MX2-G hybrid types (amorphous sheets, defective nanosheets, 
porous structure, and metallic 1T phase) with highly active sites. A summary of 
MX2-based HER catalysts is provided in Table 2.

Table 2   MX2-based HER catalysts

Material Tafel slope (mV/decade) References

MoS2 nanoparticles 55–60 [172]

Double-gyroid MoS2 50 [171]

Amorphous MoS2 40 [177]

Defect-rich MoS2 50 [176]

1T-MoS2 nanosheets 40–44 [99, 185, 186]

1T-WS2 nanosheets 60 [179]

MoS2-rGO 41 [181]

MoS2 on MGF 42.8 [180]

WS2-rGO 58 [187]

Pt on single-layer MoS2 40 [183]

Pt-2H MoS2 110 [185]

Pt-1T MoS2 43
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2D-TMDs for water-splitting catalysts Semiconductor-based photocatalysts 
can be used for hydrogen production from photoelectrochemical (PEC) water 
splitting powered by solar energy (Fig. 17a). Single-layer 1H-MoS2 is a photoac-
tive semiconductor with a direct bandgap of 1.8 eV, which exhibits quantum con-
finement and excellent catalytic activity. Bandgaps of the 2D MX2 single-layer can 
be matched with the visible region of the solar spectrum (1−2 eV). Therefore, the 
2D MX2 single-layer can absorb more sunlight, which can lead to high efficiency. 
Very recently, the Au-MoS2 composite photo-anode exhibited enhanced photocata-
lytic water splitting under visible light [188] (Fig. 17b).

To achieve high efficiency of solar energy conversion, the development of active 
semiconductors under visible-or-longer wavelength regions will become important. 
Nano materials of 2D MX2 are potential candidates for renewable hydrogen pro-
duction. However, many challenges remain regarding solar hydrogen fuel.

4 � Energy Storage Applications

Batteries and supercapacitors are important electrochemical energy storage 
devices, and have been extensively developed for a wide range of applications. 
The use of these energy storage devices in many energy-related products demands 
high energy storage capability, power delivery capability, and cycle stability. The 
rapid advance of these technologies depends on the development of better elec-
trode materials. Nanostructured materials offer excellent energy storage, long life-
cycles, and high rate capability.

Fig. 17   a The structure of PEC water splitting cell. b TEM image of Au NPs on MoS2 (upper 
left) and transmittance versus wavelength for MoS2-Au NPs on FTO (upper right). LSVs for 
PEC with MoS2-Au NPs photoanode in 0.1  M KH2PO4 under visible light of 350  mW  cm−2 
(bottom left) and normalized amperometric I-t cycles at 0.8 V for PEC on MoS2-Au NPs pho-
toanode (bottom right). (Reproduced with permission from Yin et al. 2014 [188]. Copyright © 
2014 John Wiley and Sons)
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Atomically thin graphene and 2D-MX2 nanosheets have also attracted attention 
for use as electrode materials and electrode assistants for developing energy stor-
age devices.

4.1 � Lithium-Ion Batteries

Li-ion batteries (LIBs) have the significant advantages of low weight and higher 
energy storage. They are at the heart of the most promising energy storage systems 
for portable electronic devices and future electric vehicles. An LIB system consists 
of three parts: anode, cathode, and electrolyte. Commercial batteries utilize graph-
ite as anode and lithium cobalt oxide (LiCoO2) as cathode. The electrode materials 
are closely related to battery performance. Fast insertion and extraction of Li ions 
can be sustained using 2D nanosheets of materials such as graphene and MX2. 
They are ultrathin, flexible, stretchable, and have high surface area, which will be 
useful for development of future portable, flexible devices.

4.1.1 � Graphene Nanosheets for LIBs

Graphite is a common anode-electrode material in LIBs, but exhibits low Li stor-
age capacity. The theoretical capacity of graphite is 372 mAh g−1 for LiC6 [189]. 
Great efforts have been great made to overcome the capacity limitations of graph-
ite for use in advanced LIBs. Graphene has received significant interest as an 
electrode material due to its high specific surface area, good chemical and ther-
mal stability, wide potential window, high electrical conductivity, and excellent 
mechanical flexibility. The theoretical surface area of graphene is 2630 m2 g−1 [7]. 
This is much higher than that of graphite (~ 10 m2 g−1) and CNT (~400 m2 g−1). 
Thus, atomically thin graphene can be considered an electrode material with good 
power capability for electrochemical energy storage. In particular, chemically pre-
pared rGO offers a large number of porous sites, good conductivity, and increased 
interlayer spacing. Furthermore, they can be made to form layered structures with 
large interlayer space. The specific capacity of rGO sheets, with specific surface 
area of 492.5  m2  g−1, was 1264  mAh  g−1 at 100  mA  g−1, a value higher than 
that of graphite [190]. However, the rGO electrode showed limited rate capabil-
ity with capacity fluctuation due to induction of instability during lithiation and 
de-lithiation. To improve the rate capability, N or B-doped graphene has been 
used. It showed high rate capability and high specific capacity (1043  mAh  g−1 
for N-doped graphene and 1540 mAh g−1 for B-doped graphene) [19]. The high 
performance of these doped-graphene electrodes is due to fast Li-ion diffusion 
and electron transport supported by heteroatomic defects, increased interlayer 
distance between graphene sheets, improved electrical conductivity, and ther-
mal stability. Graphene sponges could increase porosity, resulting in improved 
capacity. However, porosity also reduces the volumetric capacity and leads to a 
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large amount of electrolyte insertion, resulting in increased irreversible capac-
ity. The first-cycle capacity of rGO sponge was 1059 mAh g−1 at 50 mA g−1, but 
the capacity after a few cycles was only 400  mAh  g−1 at 50  mA  g−1 [191]. In 
the first cycle, mesoporous graphene had a specific capacity of 3535 mAh g−1 at 
100 mA g−1, but only 1040 mAh g−1 in the second cycle [192]. Graphene itself 
used as electrode material show low rate capability, poor cycle stability, and much 
lower capacity than a silicon-based anode (4200 mAh g−1).

For high performance LIBs, graphene-based hybrid composites have been widely 
explored as electrode materials. These include graphene-metal oxide composites, 
graphene-2D MX2 composites, graphene-CNT composites, and graphene-Si nano-
particle composites. In graphene-based composites, graphene can act as a highly 
conductive layer and as a mechanical support layer. The hybrid composites may 
reduce restacking of graphene layers and maintain a highly active surface area. Thus, 
Li storage capacity and the cycling performance of graphene-based hybrid compos-
ites can be enhanced. For example, the specific capacity of rGO-Fe2O3 compos-
ite in the 1st and 50th cycles exhibited 1693 and 1027 mAh g−1 at 100 mA g−1, 
respectively [193]. Honeycomb film of 3D rGO-dimethyldioctadecylammonium 
(rGO-DODA) showed a large specific capacity of about 3025 mAh g−1 in the first 
cycle and a reversible capacity of 1612 mAh g−1 at 50 mA g−1 [194]. A graphene-
silicon hybrid structure may significantly improve the energy density. The rGO-Si 
nanoparticle composite (SiNP@rGO) exhibited specific capacity of 2920 mAh g−1 
in the first cycle and capacity of over 1205  mAh  g−1 after 150 cycles with high 
cycling stability [195]. Sandwiching Si nanowires in rGO creates 3D porous 
structure (SiNW@G@rGO) produced a reversible capacity of 1600  mAh  g−1 at 
2100 mA g−1 [196]. Porous 3D graphene networks connected with Sn nanoparticles 
encapsulated within graphene shells (Sn@G-PGNW)were used as LIB anode [9]. Its 
capacity was 1022 mAh g−1 at 0.2 C and it exhibited very long-term cycle stability 
with capacity of 96.3 % after 1000 cycles. Graphene-based hybrid structures have 
shown better performance than bare graphene. Generally, graphene-Si composites 
showed high capacity (more than 2000  mAh  g−1). Various graphene-based anode 
materials useful for LIBs have been listed in Table 3.

One-atom-thick graphene was also studied for use in flexible LIBs, due to 
its high surface area, excellent flexibility, high conductivity, and short ion diffu-
sion length. Graphene paper is highly conductive and mechanically strong with a 
Young’s modulus of 41.8 GPa and a tensile strength of 293.3 MPa [197]. Some 
groups have demonstrated it using conductive rGO paper or CVD graphene. This 
graphene paper exhibited a capacity of 822 mAh g−1 at 50 mA g−1 [198]. The bat-
tery using CVD graphene can be bent and showed energy density of 10 Wh L−1 
at 50 W L−1 with good cycle stability over 100 cycles [12]. These flexible batter-
ies using graphene have shown good flexibility, high capacity, high rate, and long 
cycle performance even under conditions of repeated bending.

Graphene also serves as cathode material due to its high capacity and long cycle 
stability. LiFePO4-CVD graphene sponge as cathode material exhibited a revers-
ible capacity of 120 mAh g−1 at 10 °C without capacity loss after 500 cycles [199]. 
Composite sponge of rGO-VO2 ribbons 10  nm thick showed a high reversible 
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specific capacity of 415 mAh g−1 at 1 C and cycle stability of 10 % capacity loss 
for over 1000 cycles [200].

Graphene-sponge-type electrodes could be used as anodes or cathodes in LIBs, 
with improved performance. Graphene-based hybrid materials that are thin, flex-
ible, and stretchable and have high surface area will be applied in future electronic 
devices. Despite many achievements, however, new structures of graphene-based 
electrodes are still needed for higher performance energy-storage devices.

4.1.2 � Nanosheets of 2D-TMDs for LIBs

Layered bulk-MX2 has been explored for use as LIB-anode material due to its 
potential for improved Li-insertion and extraction. For example, MoS2 has inter-
layer spacing of 0.615 nm, larger than that of graphite (0.335 nm), which may easily 
diffuse Li ions. MoS2 nanosheets have recently received great attention because of 
their high theoretical specific capacity (669 mAh g−1), and because of a voltage for 
Li-ion insertion that is higher than that of graphite, which is a good anode material 
[201, 202]. The theoretical capacity of MoS2 is two times higher than that of graph-
ite. However, the electric conductivity of MoS2 is very low, resulting in poor rate 
performance. One effective method for enhancing the conductivity is combining 
graphene, CNT, or conducting polymers with poorly conductive MoS2 nanosheets. 
There are many reports of MoS2 composites used as LIB anodes. The capacity of 
the MoS2-rGO composite as anode was 1100 mAh g−1 at 100 mA g−1 and showed 
good rate capability [22]. The capacity of MoS2 (66.7  %)-polyaniline nanowires 

Table 3   Graphene-based anode materials for LIBs

Material Surface
area
(m2 g−1)

Capacity
(mAh g−1)

Cycle stability
(mAh g−1)

References

rGO 492.5 1264 at 0.1 A/g 848 after 40 cycles [190]

N-doped rGO 290 1043 at 0.05 A/g 872 after 30 cycles [19]

B-doped rGO 256 1549 at 0.05 A/g 1227 after 30 cycles [19]

rGO sponge 1059 at 0.05 A/g 82 % capacity retention 
after 100 cycles

[191]

Mesoporous 
graphene

281 3535 at 0.1 A/g 1040 at the 2nd cycle [192]
833 after 60 cycles

rGO-Fe2O3 1693 at 0.1 A/g 1027 after 50 cycles [193]

rGO-DODA honey-
comb film

3025 at 0.05 A/g 1612: reversible capacity, 
1150 after 50 cycles

[194]

SiNP@rGO 2920 at 0.1 A/g 1720: reversible capacity, 
1205 after 150 cycles

[195]

SiNP@G@rGO 1600 at 2.1 A/g 80 % capacity retention 
after 100 cycles

[196]

Sn@G-PGNW 1022 at 0.2 C 96.3 % capacity retention 
after 1000 cycles

[9]
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(66.7  % MoS2-PANI NW) was 952.6  mAh  g−1 at 100  mA  g−1. Composites of 
MoS2 (C@MoS2) with a coating of flower-like carbon, synthesized with D-glucose 
and MoO3, exhibited high reversible specific capacity (1419 mAh g−1 at 0.1 A g−1) 
and good rate performance [203]. MoS2(90 %)-graphene with a nano-cable struc-
ture exhibited a specific capacity of about 1150 mAh g−1 at 0.5 A g−1 and a long 
cycle life (100 % capacity retention after 160 cycles) [204]. Nano MoS2-based com-
posites as anode material exhibited a significant improvement in cycle performance 
and rate capability. WS2 could also be a candidate material for anodes. A hybrid of 
3D WS2 nanotubes-graphene (WS2NT-G) exhibited improved cycling stability and 
rate capability without additional materials. Its initial capacity was 886.1 mAh g−1 
at 1 A g−1 and 318.6 mAh g−1 after 500 cycles [205]. Anode materials for LIBs 
made of 2D-MX2 are listed in Table 4.

MoS2 and MoS2-graphene composites are also attractive material for novel 
Na-ion batteries [93, 211, 212]. Sodium-ion batteries (SIBs) have an advantage 
in large-scale applications that require a large amount, due to the low cost and 
abundance of Na. Our group worked with MoS2 nanosheet and MoS2-rGO com-
posite and these materials showed high initial capacities of 254 mAh g−1 (MoS2 
nanosheets) and 376 mAh g−1 (MoS2-rGO composite) [93]. Recently, anodes of 
single-layer MoS2-carbon-nanofiber composite exhibited the best rate performance 
and cycling stability for Na storage in MoS2. It achieved a specific capacity of 
854 mAh g−1 at 0.1 A g−1 after 1000 cycles [213].

These results demonstrate the advantages of MX2 nanosheets, graphene, and 
their hybrid composites as electrode materials for LIBs or SIBs.

Table 4   MX2-based anode materials for LIBs

Material Surface
area
(m2 g−1)

Capacity
(mAh g−1)

Cycle stability
(mAh g−1)

References

Bulk MoS2 4.89 800 at 0.05 A/g 226 after 50 cycles [202]

Restacked MoS2 9.83 800 at 0.05 A/g 750 after 50 cycles

MoS2 nanosheets 1062 at 1 C 907 after 50 cycles [206]

WS2 nanosheets 886 at 1 A/g 318.6 after 500 cycles [205]

MoS2-GNS(1:2) 2200 at 0.1 A/g 1290 after 50 cycles [207]

MoS2-rGO 1100 at 0.1 A/g [22]

95 % MoS2-PEO 1131 at 0.05 A/g ~900 after 50 cycles [208]

66.7 % MoS2-PANI 
NW

1063.9 at 0.1 A/g 90.2 % capacity retention 
after 50 cycles

[209]

Flower-like  
C@MoS2

31 1419 at 0.1 A/g 80 % capacity retention 
after 50 cycles

[203]

MoS2-MWCNT 1549 at 0.05 A/g 98.6 % capacity retention 
after 10 cycles

[210]

90 % MoS2-G 
nanocable

20 1150 at 0.5 A/g
reversible capacity

100 % capacity retention 
after 160 cycles

[204]

WS2NT-G 996 at 0.1 A/g 500.2 after 50 cycles [205]
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4.2 � Supercapacitors

Supercapacitors, another energy storage device, have advantages over batter-
ies in their high power density and excellent cycle ability. There are two types, 
according to the energy storage mechanism used [214, 215]. One type is called 
the electrical double layer capacitors (EDLCs). They store charge in electric dou-
ble layer formed at the interface between an activated electrode and an electrolyte. 
The others are called pseudocapacitors, and the charge storage of pseudocapacitors 
depends on fast faradaic redox reactions.

EDLC depends on the charge in the double layer of the electrodes used. The 
capacitance is given by C = εA/4πt, where ε is the dielectric constant of the elec-
trical double-layer region, A the electrode surface area, and t the thickness of 
electrical double layer. To achieve high capacitance, large specific surface area 
and thin double layers are necessary. Double-layer charge storage is a surface 
process and the surface properties of the electrode greatly influence the capaci-
tance. Therefore, the performance of EDLCs is determined by the choice of elec-
trode material, in relation to large surface area and high electrical conductivity. 
Recently, 2D layered materials (i.e., graphene, rGO, MX2 and their composites) 
have been shown to be efficient, promising materials for high-performance super-
capacitor electrodes due to their large surface area and large in-plane conductivity 
[10, 16, 216–220].

Generally, activated carbon materials have been used as electrodes for EDLCs, 
while transition metal chalcogenides have been investigated for use in pseudoca-
pacitors. Thus, atomically thin graphene and 2D-MX2 nanosheets are attractive for 
use in supercapacitors.

4.2.1 � Graphene Nanosheets for Supercapacitors

The capacitance of single-layer graphene was reported to be 21  mF  cm−2. 
Theoretical gravimetric capacitance of graphene materials is about 550  F  g−1, 
which is the highest capacitance value among all carbon-based electrodes [215, 
221]. However, the reported capacitance of graphene-based materials is still below 
the theoretical value. For example, the specific capacitance of reduced graphite 
oxide was 135 F g−1 in aqueous KOH electrolyte and 99 F g−1 in organic elec-
trolyte [18]. The specific capacitances of other graphene materials with different 
treatments were also low values (120 F g−1 in an organic electrolyte for a reduced 
graphene oxide (rGO) electrode by thermal heating [222], 282 F g−1 at 1 A g−1 
for an N-doped rGO electrode) [218]. To enhance storage capacity, several groups 
have reported results from work on various supercapacitors using graphene-hybrid 
composites (e.g., graphene-CNTs composites and graphene-conductive polymer 
composites). There have also been many efforts to enhance capacity using porous 
graphene. KOH-activated rGO had large surface area (3100 m2 g−1) and specific 
capacitance of 165  F  g−1 at 1.4 A  g−1 [219]. The porous graphene grown on a 
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porous MgO layer gave a specific capacitance of 255 F g−1 at 10 mV s−1 in 6 M 
KOH aqueous solution [223]. Vertically oriented graphene showed high power 
density (112.6 kW kg−1 at 600 A g−1) [10]. Restacking inhibited rGO using mela-
mine resin exhibited high specific capacitance of 210 F g−1 at 0.5 A g−1 due to 
its high specific surface area (~1040 m2 g−1) and large macro pore distributions 
[224]. 3D macroporous embossed graphene frameworks showed both high energy 
(44 Wh kg−1) and power densities (25 kW kg−1) [225]. Recently, a supercapacitor 
with holey-graphene-framework electrode yielded a high capacitance (298 F g−1 
at 1 A g−1) [16].

Portable electronic devices require on-chip energy storage. Micro- or nanode-
vices have advantages such as small thermal time constants, high sensitivity, and 
integrated circuit fabrication. Micro-supercapacitor devices formed by the pattern-
ing of graphite oxide thin film exhibited good energy storage capacity and excel-
lent cycle stability [226]. However, they also showed large internal resistance 
(6.5  kΩ) and poor frequency response. Recently, more than 100 micro-superca-
pacitors exhibited high power (200 W cm−3), excellent frequency response, and 
were highly bendable [15]. A graphene supercapacitor using plain-woven fab-
ric composites showed a specific capacitance of 8  mF  cm−2 (267  F  g−1) [227]. 
This electrode had excellent flexibility, an electrode about 1–7  nm thick, and 
device thickness of less than 1 mm. Thus, this flexible electrode could be useful 
for energy storage devices in portable and wearable electronics. Although many 
improved electrodes for EDLC have been demonstrated, their capacitance is still 
not sufficient for high-performance energy storage devices.

Pseudocapacitors (another type of supercapacitor), have large specific capaci-
tance and hybrid electrodes made of redox-active materials and highly conductive 
graphene-based materials. Transition metal oxides (RuO2 and MnO2) are widely 
used as pseudocapacitor electrode materials, and they use fast and reversible redox 
reactions for charge storage [228–230]. Graphene-38w% RuO2 composites exhib-
ited high specific capacitance of 570 F g−1 and excellent cycle stability of 97.9 % 
capacitance retention after 1000 cycles [229]. Graphene-MnO2 nanoparticle com-
posites with 3D-porous structure showed a specific capacitance of 389  F  g−1 at 
1.0 A g−1, energy density of 44 Wh kg−1, and power density of 25 kW kg−1 [225]. 
Micro-supercapacitor of rGO-polyaniline films showed electrochemical capaci-
tance of 970 F g−1 at 2.5 A g−1 [230]. Cobalt oxide nanowires on 3D-graphene 
possessed high specific capacitance (1100 F g−1 at 10 A g−1) [228]. Thus, hybrid 
graphene combined with other active materials give much higher pseudo-capaci-
tance. Details of graphene-based supercapacitors are summarized in Table 5.

4.2.2 � Nanosheets of 2D-TMDs for Supercapacitors

Nanosheets of 2D-MoS2 have graphene-like morphology including a basal plane 
and an edge plane similar to graphene, which provide a large surface area. These 
2D-MoS2 nanosheets can be stacked using van der Waals interaction. The Mo 
atoms possess a range of oxidation states from Mo2+ to Mo6+ and show promising 
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behavior as pseudocapacitors. The theoretical gravimetric capacitance of MoS2 
is about 1000  F  g−1 [207]. Their performance in supercapacitors is comparable 
to that of CNT array electrodes. Liquid-based exfoliated 2D-MoS2 nanosheets 
could be used as electrode materials for high-performance micro-supercapac-
itors. Micro-supercapacitors with finger-like electrodes using 2D-MoS2 films 
exhibited area-specific capacitance of 8  mF  cm−2 with excellent cycle stability 
[220]. Composites of MoS2-polypyrrole exhibited high specific capacitance (553. 
7 F g−1 at 1 A g−1) and high cycle stability [217]. Hybrid electrodes of 2D WS2-
rGO also exhibited high specific capacitance (350  F  g−1) [216]. Edge-oriented 
MoS2-nanowall films made excellent supercapacitors [231]. Supercapacitors using 
2D MX2  nanosheet-graphene composites showed enhanced specific capacitance 
and excellent cycle stability.

Graphene and 2D-MX2 nanosheets could provide electrode materials for super-
capacitors to be used in portable, flexible, transparent microelectronic devices. 
In spite of the substantial research already done, there is still a pressing need to 
develop higher quality electrode materials with higher power, higher energy den-
sity, and lower cost for supercapacitor applications.

5 � Summary

Today, some of the fastest growing technologies are related to electronic devices 
in communication, health care, and environmental monitoring. Nanomaterials 
that might be used to enhance energy harvesting, energy conversion, and energy 

Table 5   Graphene-based supercapacitors

Material Capacitance Electrolyte References

EDLC

Reduced graphite oxide 135 F/g 5.5 M KOH [18]

99 F/g 1 M TEA BF4/AN

rGO by thermal treatment 122 F/g at 1 A/g 1 M TEA BF4/PC [222]

N-doped rGO 282 F/g at 1 A/g 1 M TEA BF4/AN [218]

Microwave exfoliated  
porous rGO

165 F/g at 1.4 A/g 1 M BMIM BF4/AN [219]

Porous graphene grown  
on porous MgO template

255 F/g at 10 mV/s 6 M KOH [223]

Vertically oriented graphene 156 F/g at 100 A/g 6 M KOH [10]

3D Holey graphene 298 F/g at 1 A/g 6 M KOH [16]

Pseudocapacitor

rGO-RuO2 composite 570 F/g at 1 A/g 1 M H2SO4 [229]

rGO-MnO2 composite 389 F/g at 1 A/g 1 M Na2SO4 [225]

rGO-PANI 970 F/g at 2.5 A/g 1 M Na2SO4 [230]

Co3O4 NW on 3D graphene 1100 F/g at 10 A/g 2 M KOH [228]
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storage devices are in great demand. High-quality electrode materials are the main 
driving force for energy-related devices involving high power and high energy 
density at lower cost.

Graphene and 2D-MX2 nanosheets are very attractive for energy harvesting, 
energy conversion and storage applications, due to their superior electrical, opti-
cal, and mechanical properties. Graphene, in particular, shown to be an ideal mate-
rial for use in many of the nanoscale devices used in energy harvesting/conversion 
and storage applications, is still being studied for these and other energy-related 
purposes. Recently, 2D-MX2 nanomaterials are also attracting significant attention 
in many energy-related applications. These 2D-MX2 materials exhibit controllable 
bandgap properties and MX2 single-layer is a direct bandgap semiconductor with 
bandgap energy of 1.2–2.1  eV in its elemental composition. The optical proper-
ties of 2D-MX2 nanosheets have potential as energy harvesting and energy con-
version materials in solar cells, photoelectrochemical cells, and photo-fuel cells. 
Moreover, the heterostructure of semiconducting 2D-MX2 can be used to control 
its physical and optical properties, which include large photon absorption, high 
photocurrent production, and fast charge separation. Thus, atomically thin layers 
of 2D-MX2 and graphene, with good flexibility and high transparency, are promis-
ing materials for use in future devices. In particular, 3D assembly technology will 
provide intrinsic advantages necessary for high efficiency in practical applications.
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