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Part I
Fundamental/Energy-related Issues

of Smart Cameras



CMOS Image Sensor for Smart Cameras

JongHo Park

Abstract A smart camera is a vision system with special features implemented to
achieve its specific purpose. A smart camera which can be used for security or
surveillance purpose requires high dynamic range of the sensor to cover broad
illumination range of the scene. A stick- or badge-type smart camera operates as a
stand-alone device so that the power consumption is one of the most important
parameters. For applications such as nondestructive inspection using infrared (IR),
sensitivity of the image sensors should be improved to obtain suitable SNR for
reliable output. This chapter describes basic imaging principles and dynamic range
expansion methods of the CMOS image sensors.

Keywords CMOS image sensor (CIS) � Charge coupled device (CCD) � Active
pixel sensor (APS) � Wide dynamic range (WDR) � Correlated double sampling
(CDS)

1 Imaging Principles

Image sensors in CMOS technology are implemented using an array of smart photo
sensors called active pixel sensor (APS). The design of the APS is flexible and
various types of pixels have been developed for various applications including
WDR imaging [1]. The performance of CMOS APS in areas of high-end digital
imaging has been proven to be comparable to their CCD counterparts due to the
ability of on-chip image processing [2]. Image processing to a certain degree could
be performed within the pixel itself by integrating signal processing circuitry in
each pixel [3]. Further image processing can be done in the subsequent circuit
stages before image information is read out [4].
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1.1 Solid State Imaging Devices

1.1.1 Charge Coupled Device

A Charge coupled device (CCD) is the most important technology for image
sensors. The CCD offers guaranteed image quality because it uses optimized
photodetectors for achieving low noise, low dark current, and high sensitivity [5].
The basic concept of CCD is a simple series connection of MOS capacitors. The
individual capacitors are physically located very close to each other, which com-
pose an analog shift register driving by two, three or four phase clocks for charge
transfer. Figure 1 shows the simplified structure of an interline-transfer CCD.
A charge transfer must occur at high enough rates to avoid image corruption by
leakage, but slow enough rates to ensure high charge transfer efficiency [5].

The limitation of CCD technology comes mainly from insufficient charge
transfer efficiency [6]. To avoid insufficient charge transfer, high-speed and
high-voltage clock control schemes in CCD increase the system complexity and the
power consumption. Another major drawback in CCD technology is that peripheral
circuits such as ADC cannot be integrated on the same chip. Nevertheless,
understanding CCD technology is very important because CMOS image sensors
(CISs) have been developed based on CCD.
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Fig. 1 Simplified interline-transfer (IT) CCD structure
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1.1.2 CMOS Image Sensors

Unlike CCD technology, CISs are fabricated with normal CMOS technology so that
pixel array and peripheral circuits such as ADC and image processing circuits can
be integrated on the same chip. A conventional CIS architecture with an APS is
shown in Fig. 2. The CIS consists of pixel arrays, column-parallel analog front end
(AFE) circuits, and peripheral circuits. Since the pixels are selected in a row by row
fashion, each pixel has a row selection transistor connected to a row selection signal
from a vertical scanner. The vertical and the horizontal scanners are used to
sequentially access pixels. Column parallel readout circuits such as correlated
double sampling (CDS) circuit and ADC perform noise cancelation [7] and
analog-to-digital conversion before reading out the signal. Pixel outputs selected by
row selection signal are sampled to the column circuits for analog signal processing
in parallel. After analog signal processing, the horizontal scanner generates access
signals to read out digitized output sequentially.

1.2 Preliminaries for CMOS Image Sensors

1.2.1 Readout Timing for CMOS Image Sensors

In conventional CISs, one frame image output is read out in a frame period.
Figure 3 shows a signal accumulation and a readout timing for conventional CISs.

V
ertical S

can
n

er

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

PD

Pixel

Horizontal Scanner

Column Circuit (CDS, ADC)
Buffer Amp.

Fig. 2 Structure of conventional CMOS image sensors

CMOS Image Sensor for Smart Cameras 5



In this diagram, it is assumed that the sensor has 5 vertical pixel arrays for sim-
plification, and long accumulation time signals, LA, are read out in a frame period
TF . A horizontal readout time TH can be written by TH ¼ TF=NV where, NV is the
total number of vertical pixel arrays. TH includes the time for column signal pro-
cessing and the readout time of the column signal. If the time for column signal
processing such as CDS and A/D conversion is TS and the time required to scan out
all column signals is TR, then TH ¼ TS þ TR. Here, one pixel readout time TP is
defined by TP ¼ TH=NH , where NH is the number of horizontal pixel arrays.

1.2.2 Column Noise Canceler for CMOS Image Sensors

Pixel output itself contains various noise sources from photodiode and source
follower amplifier. A fixed pattern noise (FPN) and a part of temporal noise are
suppressed or canceled by column circuits shown in Fig. 4a. In this circuit diagram,
the input labeled Vin shows pixel output. A transistor M3 is a current source circuit
which is common to all source followers in each column.

A timing diagram describing switching conditions for each phase is shown in
Fig. 4b. Vin from the pixel can be represented in two levels, Vreset and Vsignal,
respectively. During T1 period, the noise canceler samples Vreset into capacitor C1,
and the difference between Vreset and Vsignal is output in T2. The output is given by

Vout ¼ C1

C2
ðVreset � VsignalÞ þ Vref ð1Þ

Removing a FPN and a correlated temporal noise by differentiating two outputs
is called a CDS [8]. A reset noise which has a correlation between the two levels in
4-transistor APS is mostly removed by applying CDS, while 1/f noise is partially
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Fig. 3 Timing diagram showing the integration and the readout timing in a frame period
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removable by applying CDS [9]. In addition, if the system gain given by the ratio of
two capacitors is set to be higher, an input-referred noise can be reduced by
bandwidth limitation effect [10].

1.3 Pixel Structure for CMOS Image Sensors

1.3.1 Three Transistor APS

Although special functionality such as high-speed and low-noise imaging can be
achieved by adding dedicated circuits on CIS, the pixel is the most important
building block which affects overall performance of CIS.

There are two types of APS. One is a 3-transistor APS which has three tran-
sistors in a pixel and the other is a 4-transistor APS. Figure 5a shows a schematic of
3-transistor APS including a simple column noise canceler. The pixel consists of a
reset transistor, a source follower transistor, and a selection transistor as well as a
photodiode.

-AVin

Vbias

Vout

C2

M3

C1

VrefNref

NCs

NCR

Vin

V reset

Vsignal

Nref

T1 T2

NCs

NCR

(a)

(b)

Fig. 4 Column noise
canceler: a Schematic
diagram, b timing diagram

CMOS Image Sensor for Smart Cameras 7



Incident photons into the photodiode generate a proportional amount of signal
charge that is accumulated in the photodiodes. The potential of the photodiode is
varied by the accumulated signal charges, and applied to the in-pixel source fol-
lower. The selection transistor controlled by the signal Si is used as a switch to read
out pixel output row by row.

The timing diagram and corresponding voltage of VFD are shown in Fig. 5b. The
signal level, VS is read out first through the in-pixel source follower when the Si
turns on. The /s is used to sample the signal level VS to the noise canceler and reset
the capacitor C2. After reading the signal level VS, the photodiode is reset by Ri.
A reset level, VR is sampled to the noise canceler again by /R. The difference
between the signal level and the reset level is obtained as the final output. However,
the reset noise still remains in 3-transistor APS because of uncorrelated VS and VR

as shown in Fig. 5b.
The photodiode accumulates signal charges which form a photocurrent Iph. The

potential of photodiode which is initially set to VDD decreases to VS during the
accumulation time Ta. If Iph is constant, VS is given by

VS ¼ Iph � Ta
CFD

ð2Þ

where, CFD is a capacitance of photodiode. The signal level VS is proportional to the
accumulation time Ta.

The detailed pixel structure and a potential distribution of the 3-transistor APS
are shown in Fig. 6. In order to suppress dark current, the photodiode used in
3-transistor APS can be partially pinned because the potential of the photodiode is
directly read out through the source follower shown in Fig. 6b. However, partially
pinned photodiode shows high dark current which is a significant drawback of the
3-transistor APS for high performance imaging applications [11].

VFD
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Vcom
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Fig. 5 Three transistor APS: a Pixel structure, b timing diagram
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1.3.2 Four Transistor APS

Recently, a four-transistor APS shown in Fig. 7a is mostly used as pixel because of
its excellent performance. Unlike 3-transistor APS, potential variation of the pho-
todiode due to signal charges in four-transistor APS is not directly read out. The
signal charges in photodiode are transferred to a floating diffusion node, VFD before
reading out. Therefore, the conversion gain can be increased independently because
the capacitance of the floating diffusion, VFD can be designed as small as possible.
Moreover, strong correlation between the reset and the signal levels is achieved by
separating the regions of signal collection and detection.
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Fig. 6 Detailed structure and potential profile for three-transistor APS: a Pixel structure,
b potential profile
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The timing diagram of four-transistor APS is shown in Fig. 7b. The signals Si,
TXi, and Ri represent control signals applied to the pixel, and /R and /S are clock
signals for reset and sample in column circuit. Initially Si goes high to turn on the
select transistor. The floating diffusion node VFD is then reset via Ri. The reset level
is read out by a noise canceler with /R. Signal charges colected in the photodiode
are then transferred to the FD node VFD by TXi. The potential variation of VFD is
proportional to the amount of accumulated signal charges in the photodiode. The
signal level is read out to the noise canceler by the signal /S. The difference
between reset level and signal level is obtained as the final output.

The detailed pixel structure of the four-transistor APS is shown in Fig. 8a. The
photodiode can be fully pinned by holes because the charge integration and
detection are performed in different device, which is separated by a transfer tran-
sistor M2. Dark current is significantly reduced by using a fully pinned photodiode.
The signal charges accumulated in the photodiode are perfectly transferred to the
floating diffusion. Therefore, an image lag due to any remaining signal charges in
the photodiode does not exist in four-transistor APS. The reset noise is cancelled by
the noise canceler because of strong correlation of the reset and signal outputs [12,
13]. The sensitivity of the 4-transistor APS can be increased by the small capaci-
tance of charge detection node (VFD) without reducing the size of photodiode.
Figure 8b shows a potential distribution of the four-transistor APS when the signals
VR and VTX are set to low. A potential variation of the floating diffusion node is read
out through a source follower.
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1.4 Dynamic Range of Image Sensors

In image sensors, maximum detectable signal is called the full well capacity in both
of CCD and CIS. The ratio of the maximum non-saturating signal to the smallest
detectable input signal is called dynamic range (DR) [14] which can be expressed as

DR½dB� ¼ 20log
VS;max

VS;min
ð3Þ

where, VS;max is the largest non-saturation signal which can be obtained from the
pixel and VS;min is the smallest detectable input signal determined by sensor’s noise
level.
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The maximum non-saturation signal has a close relationship with the maximum
detectable charge NS;max, the sensitivity of photodiode, SPD, and the accumulation
time, Ta. The relationship can be expressed by VS;max /NS;max=SPD � Ta. Therefore,
the dynamic range for bright region can be increased by following methods.

1. Increasing the maximum number of electrons Ns;max by increasing the size of
photodiode.

2. Increasing VS;max by reducing integration time Ta.
3. Adjusting the photodiode sensitivity, SPD which is inversely proportional to

VS;max.
4. Employing a nonlinear detector to prevent the saturation of pixel output.

The dynamic range of dark region can be expanded by improving sensor’s noise
performance, i.e., lowering the detectable low illumination. Random noise such as
reset noise, readout noise, and shot noise of dark current limits the minimum
detectable input signal. Effective suppression of these noise should be considered to
expand the dynamic range in both directions, i.e., toward both bright and dark regions.
Figure 9 illustrates the definition of the dynamic range from the sensor’s output
characteristics. The minimum detectable illumination is defined by the signal to noise
ratio (SNR) being equal to 0 dB where the sensor’s output is the same as noise level.

2 Dynamic Range Extension

Important specifications of wide dynamic range (WDR) image sensors can be
described as high SNR, low noise for low illumination as well as high dynamic
range (DR). Various methods to achieve both of high SNR and high DR have been
reported for the last decade.

Representative WDR methods can be clarified according to response types of
CIS. One is a nonlinear response type and the other is a linear response type.
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2.1 Nonlinear Response Type

2.1.1 Logarithmic Photodetector

A logarithmic compression is a well-known method to expand DR of image sensors
[15]. Figure 10a shows a circuit diagram of the logarithmic photodetector. The gate
of the transistor M1 is connected to the drain which differs from three-transistor
APS. The transistor M1 operates in subthreshold region because a photocurrent that
flows through diode-connected transistor is typically several tens to hundreds of
femto ð10�15Þ ampere. The photocurrent Iph can be written as

Iph ¼ WM1

LM1
ID0e

VD
Ut

1
n ð4Þ

where ID0 is a reverse leakage current of photodiode, Ut is a thermal voltage defined
by kT=q, and n is a subthreshold factor affected by fabrication process. Therefore,
the node voltage VD is proportional to logðIphÞ as shown in Fig. 10b.

In the logarithmic photodetector, the pixel output is directly converted to the
corresponding voltage from the photocurrent, which is logarithmically proportional
to the photocurrent. Unlike integration-type APS, no operation for charge inte-
gration is required in logarithmic photodetector due to this mechanism. An
important advantage with nonintegration type operation is that the pixel can be
accessed randomly.

Although the logarithmic photodetector can extremely expand the dynamic
range for bright region, it also has many drawbacks. First, a MOSFET working in
the subthreshold region shows a large variation of threshold voltage, which leads to
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Pixel
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illumination [lx]

Output
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Fig. 10 Logarithmic photodetector: a Schematic diagram, b output characteristics
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a high pixel FPN. A slow response time due to very low photocurrent causes an
image lag, which is not acceptable for high-speed imaging. A nonlinear output also
makes the signal processing like a color correction difficult.

2.1.2 Linear-Logarithmic Method

An image sensor showing both linear and logarithmic responses has been reported
[16, 17], which can address the image lag of the logarithmic detector due to the
slow response time. Figure 11a shows a pixel schematic of the linear and loga-
rithmic sensor. The difference between the two technologies is that the gate of
transistor M1 can be set to an arbitrary voltage level compared to logarithmic pixel.
Initially, the node VD is reset through M1 by applying the signal Vtrans, and the
signal accumulation is performed after the reset operation. The potential VD

changes linearly until VD goes to (Vtrans � Vth;M1) because M1 is turned off. When
VD reaches (Vtrans � Vth;M1), the transistor M1 enters into subthreshold region.
Therefore, the pixel’s response becomes logarithmic according to the subthreshold
operation of the transistor M1, which results in the dynamic range expansion by
preventing saturation of pixel output. The response of the linear-logarithmic sensors
is shown in Fig. 11b.

The lin-log sensor can expand the dynamic range for a bright region maintaining
the three-transistor properties in the low-light region. However, nonlinear image
sensors still suffer from difficulties in reducing random noise such as dark current
and reset noise. The other important issue of the lin-log sensor is that the transition
of linear and logarithmic is strongly affected by the pixel to pixel variation of the
transistor properties such as threshold voltage.
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Fig. 11 Linear-logarithmic sensor: a Schematic diagram, b output characteristics
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2.2 Linear Response Type

2.2.1 Well Capacity Adjusting Method

Controlling the well capacity of photodiode can be used to prevent the saturation of
pixel output, which expands the dynamic range with partially linear output [18].
Figure 12a shows the equivalent circuit for the pixel with transistor M4 for well
capacity adjusting. The pixel structure is the same as four-transistor APS, but
transistor M4 is controlled with a certain reference voltage according to the illu-
mination. In operation, the photodiode is reset by a lateral overflow gate M3. Then
the potential barrier between the charge sensing node, the cathode of photodiode
and the drain is lowered by reset, and the lower barrier allows the excess charges to
flow into the drain. After the reset, the potential of lateral overflow gate is raised to
the given level. Signal charges proportional to the illumination begin to be accu-
mulated in the photodiode. If the illumination is sufficiently high and the potential
of photodiode reaches a certain voltage, the accumulated charges in the photodiode
are drained through the lateral gate M3. At the end of integration, pixel output is
read out through the source follower M1 by turning on the selection transistor M2.

Example barrier curves and their corresponding output curves are shown in
Fig. 12b. The barrier height bðtÞ represents the charge capacity of the sensing node
and is the product of the sensing-node capacitance and barrier potential, which is a
function of the lateral overflow gate voltage bðtÞ. Therefore, the DR expansion ratio
is controllable by bðtÞ.
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Fig. 12 Well capacity adjusting method: a Pixel schematic, b barrier curve b(t) and compression
curve Q(t)
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2.2.2 Method to Use a Lateral Overflow Integration Capacitor

A DR expansion method using a lateral overflow capacitor has been proposed by
Tohoku university [19]. This sensor shows a high DR of 100 dB without degra-
dation of image quality at low-light conditions. Figure 13a shows a pixel schematic
for the proposed sensor. A transistor M3 and a capacitor CS are the key elements
newly added to the conventional four-transistor APS. Overflowed extra charges
from the photodiode are accumulated in the capacitor CS. The charge accumulation
behavior before saturation is the same as the conventional four-transistor APS.
When accumulated charges in the photodiode exceed the well capacity of the
photodiode, overflown photo-electrons are now accumulated in the floating diffu-
sion and the overflow capacitor CS through M3. The overflowed charges can be
used for signal charges, which means expansion of full well capacity.

The leakage current at the floating diffusion and the overflow capacitor was
minimized by dedicated pixel design and process control. Figure 13b shows the
photoelectric conversion characteristics of the proposed DR extension method with
linear responses.

2.2.3 Dual Sampling Method

A dual sampling method having the DR of 109 dB using two different exposures
has been proposed by [20]. Two successive frames with different exposure times are
output and synthesized as a WDR image. The dual exposure method can also
support linear output which is preferred for signal processing in many applications.
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(b)

S1

S2

illumination

Output

M3

Cs

Fig. 13 DR expansion method using lateral overflow integration capacitor: a Pixel schematic,
b output characteristic

16 J. Park



The structure of the dual sampling method is shown in Fig. 14. In this archi-
tecture, two blocks of column circuits at the top and bottom of the pixel array are
employed, which enable two row’s simultaneous readout. The pixels for row n are
selected and sampled into the capacitors of the column circuits on the lower side. At
the same time, the pixels for row (n� D) are also selected and read out from the
circuits on the upper side. The integration time of pixels being read out through the
circuits on lower side is given by

Tlong ¼ ðN � DÞ � Trowln
f2
f1

ð5Þ

and the integration time for the pixels being read out though the circuits on the
upper side is

Tshort ¼ D� Trow ð6Þ
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Therefore, two outputs which have different exposure times, long exposure Tlong
and short exposure Tshort are obtained simultaneously. The DR extension is given
by an exposure time ratio, Tlong=Tshort.

2.2.4 Double Sampling Method

A special pixel having two photodiodes in each pixel has been proposed by [21].
Figure 15 illustrates pixel structure of double sampling method, which contains
signal processing circuits on both sides of a pixel array. The upper circuits cover
normal light conditions from low light to medium light levels on PD1 with a long
exposure time. The lower circuits cover the pixel output PD2 with short exposure
time. The dynamic range is extended from the two pixel outputs.

2.2.5 Burst Readout Multiple Exposure

Another WDR image sensor using the burst readout multiple exposure (BROME)
has been proposed by [22]. The WDR image sensor with the dynamic range of
117 dB and a linear response has been implemented.

Signal accumulation and readout timing for the sensor is shown in Fig. 16 [22]. In
this diagram, it was assumed that the sensor has n vertical pixel arrays and four
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Fig. 15 Pixel structure using double sampling method

18 J. Park



different exposure times. The long, short, very short, and extremely short accumu-
lation are denoted as LA, SA, VSA, and ESA, respectively. A long and three short
exposure signals are read out in a frame period, TF . The LA signals occupy three
time slots for a signal accumulation. SA signals are accumulated with overlapping
the time slots for reading the LA signals. The VSA and ESA signals are accumulated
with overlapping the time slots for reading the SA and VSA signals, respectively. In
Fig. 16, the unit time for one slot is one-sixth of one frame period. If the image sensor
operates at 30 frames per second, the unit time is 1=180 s ffi 5:5ms.

To expand the dynamic range further to higher illumination, an extremely short
exposure time signal using inverted reset-signal sampling is proposed in [23].
Extremely high dynamic range of 153 dB with linear response was achieved using
BROME and a low-noise circuit.
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Architectural Analysis of a Baseline ISP
Pipeline

Hyun Sang Park

Abstract An ISP is an entity that performs various image-processing algorithms
on a raw image from an image sensor. A number of functions are incorporated in an
ISP, and they are combined together similarly but differently among ISP imple-
menters. ISP functions are divided into pixel-based and frame-based ones, and are
dedicated to one of three color domains in Bayer, RGB, or YCbCr. Although it is an
essential component for a camera system, surprisingly, its architecture has not been
analyzed in the context of standards. The purpose of this chapter is to remove
ambiguity when analyzing an ISP architecture or designing a new ISP architecture.
At the end of this chapter, a baseline ISP pipeline is presented, which is tentatively
built to conform to the existing standards.

Keywords Image signal processor � Image pipeline � Image sensor � Bayer sensor

1 Introduction

The functions implemented in ISP can be categorized into two groups. The first
includes pixel-based functions. It makes the result by utilizing an input pixel and its
surrounding pixels. It is also regarded as a spatial filter because its output is gen-
erated by exploiting spatial information. The second contains frame-based func-
tions. To obtain the processed result, these functions require the whole pixels of an
image. Frame-based functions are further divided by how many images are
exploited to get the outcome.

One is to refer to global features of the whole frame of a single image. The image
quality of an image needs to be consistent over all portions of the image. The
method for extending the dynamic range of an image can be included in this
category. There are many other algorithms such as auto-white balance,
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auto-exposure, contrast enhancement, which extract the global features from the
given single image. The other functions that require a plural number of image
frames often utilize temporal correlation among them. Some algorithms to reduce
noise or distortion are included in this group. They analyze the temporal correlation
between frames, and include following algorithms such as temporal noise reduc-
tion, rolling-shutter removal, image stabilization, and so on.

Frame-based functions are not handled in traditional ISPs except for
auto-exposure control, auto-white balance, and auto focus (also known as 3A or
3-auto). For example, if noise is to be reduced by considering temporal correlation,
at least two image frames have to be stored to check if it can be regarded as noise or
not. Basically, an ISP has been developed to be embedded in an image sensor.
Because of this requirement, it cannot work with functions requiring the frame
memory. The 3A algorithm doesn’t need the frame memory because the global
features that 3A requires can be extracted while scanning the current frame.
Although they are regarded as frame-based ones, they could be considered as basic
components in the traditional ISP architecture since they do not need the
frame-memory itself. In general an ISP can be implemented in three ways.

1.1 Embedded ISP in an Image Sensor

It is what is called the baseline ISP, which has a cascaded pipeline architecture
composed of spatial filters and point functions. Allowed frame-based functions are
limited to only 3A algorithms, which do not require any frame-memory.

1.2 Discrete ISP Package

In the early era of ISP commercialization, a baseline ISP itself was built solely as a
discrete chip. These days it is often produced in a multi-chip package with a stacked
SDRAM as frame memory. Because it embeds the frame memory inside, it can
support frame-based functions such as image stabilization, temporal noise reduc-
tion, wide dynamic range, and so on. However, it still has difficulties in handling
those algorithms derived from computer vision technology, which also utilize the
images stored in the frame memory but require large number of floating-point
operations and complicated control flow. Adopting power-consuming CPU and/or
GPGPU is not considered yet.

1.3 Embedded ISP Inside an AP

There are powerful programing units like CPU/GPGPU inside an application
processor (AP). Besides, the application processor provides abundant memory
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space as well as bandwidth. So the pixel-based functions can be processed with a
legacy baseline ISP, while the frame-based functions can be processed by pro-
graming GPU/GPGPU. This form of the ISP implementation consumes much
energy since it uses the power-hungry memory device and the hot computing units.
Nevertheless, it can provide the best quality of an image for end-user satisfaction.

The pipelined chain of an ISP is not standardized, such that each implementer
has devised lots of very similar, yet different ISP pipelines. In this section, the
baseline ISP in Fig. 1 will be discussed in the context of known standards.

2 Primary ISP Architecture for Bayer Image Sensors

The ISP itself is not a subject under standardization, but the standardization of
digital video has been built continuously for a long time. Rec. ITU-R Rec. 601 [1]
and Rec. ITU-R BT. 656 [2] (also known as CCIR601/656) constituted in 1982
claims the standardization of basic component of an ISP for the first time.

The camera module in Fig. 2 consists of an optical module, an image sensor, and
an ISP. The ISP here contains three components: quantization, color space
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conversion, and data formatter. The image sensor is assumed to produce analog R,
G, and B signals at every pixel position. In Rec. ITU-R BT.601, the first two
functions are standardized, and in Rec. ITU-R BT.656 the last function is
standardized.

The title of Rec. ITU-R BT.601 is “Studio encoding parameters of digital
television for standard 4:3 and wide-screen 16:9 aspect ratios” and defines common
regulations on digitization of digital video for SDTV (Standard Definition
Television). Video in this standard has the resolution of 720 × 480 or 720 × 576 at
the sampling frequency of 13.5 MHz. This recommendation standardizes how to
obtain the corresponding digital video data. When analog R, G, and B signals—ER,
EG, and RB—of the 1.0 volt dynamic range are given, 8-bit digital RGB signals are
quantized as below. They will have 219 values which reside between 16 and 235.

ERD ¼ intð219ERÞ þ 16

EGD ¼ intð219EGÞ þ 16

EBD ¼ intð219EBÞ þ 16

ð1Þ

Y, CR, and CB signals are calculated from these digital R, G, and B signals. The
formula to convert R-G-B into Y-CR-CB is defined a little bit differently according to
the recommendations. For example, Rec. ITU-R BT.709 [3] and Rec. ITU-R
BT.2020 [4] specify the digital video format for HDTV (High Definition
Television) and UDTV (Ultra Definition Television) in a very similar way to Rec.
ITU-R BT.601. Although these recommendations standardize the digital video
formats at difference resolutions, their color space conversion to the Y-CB-CR space
is not the same. That is, there is no color compatibility between them. In case of
inverse transformation from Y-CR-CB made by a different regulation to R-G-B, there
may be some differences among reconstructed R-G-B data. So any ISP implementer
should obey the formula specified in the appropriate recommendation. Equation (2)
is what is recommended in Rec. ITU-R BT. 601. Each arithmetic operation in
Eq. (2) is designed to be implemented by integer operations. Allowing the use of
integer operations gives consistent calculation results among different implemen-
tations in hardware or software.

Y ¼ 77
256

ERD þ
150
256

EGD þ
29
256

EBD

CR ¼ 131
256

ERD �
110
256

EGD �
21
256

EBD þ 128

CB ¼ � 44
256

ERD �
87
256

EGD þ
131
256

EBD þ 128

ð2Þ

In Rec. ITU-R BT.601, subsampling is performed horizontally with CB and CR

components after color conversion. There exist some subsampling formats on Y-CR-
CB signals, such as 4:4:4, 4:2:2, 4:1:1, or 4:2:0. These subsampling formats are
available only in the Y-CR-CB color space, not for legacy RGB color spaces. The
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subsampling on CB-CR components is desirable when effective data reduction is
required without loss of visual quality degradation. There are large correlations
between R, G, and B signals, but a few between CR and CB signals. Rec. ITU-R
BT.601 only regulates 4:4:4 and 4:2:2 chroma subsampling formats. The 4:4:4
chroma subsampling format represents that there is indeed no subsampling. The
4:2:2 chroma subsampling format allows the subsampling on CB and CR chroma
signals with 2:1 horizontally. The corresponding subsampled Y-CR-CB data are then
interleaved into a single data stream according to Rec. ITU-R BT.656. The module
to do subsampling and to interleave Y-CR-CB signals is Data Formatter in Fig. 2.
The formatted data by Data Formatter will have the form like that in Fig. 3. In Rec.
ITU-R BT.656, only the chroma 4:2:2 subsampling format is allowed. Thus the
standardized digital video produced by conventional camera modules always sup-
ports the chroma 4:2:2 subsampling format.

Data formatter of an ISP needs the output speed to be twice as fast as any other
part in the ISP, instead of using a number of data signals. An ISP usually has two
clock domains. For example, a camera module made by Rec. ITU-R BT.601 and
Rec. ITU-R BT.656 takes 13.5 MHz as the sampling frequency and 27.0 MHz as
the output data frequency, respectively. The transferred signals through Rec. ITU-R
BT.656 are only video, and no timing reference signals that define
horizontal/vertical blanking periods are explicitly transferred. Instead those timing
reference signals are derived from video data, where some reserved codewords are
inserted at appropriate locations within the data stream.

In Fig. 3, a line of an image frame consists of 858 luminance (Y) data. Among
them, the number of valid video data is 720. The interval of producing invalid data
is called the horizontal blanking period. In Rec. ITU-R BT.656, four successive
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words just before and after the valid data are replaced by a reserved codeword
sequence such that correct timing reference signals can be derived. The four
codewords substituted at the end of a valid line are called EAV (End of Active
Video) and those before the beginning of a valid line are called SAV (Start of
Active Video). Each codeword in SAV or EAV has either 8-bit or 10-bit, but 8-bit
is preferably used in industries. SAV and EAV have the sequence of
‘FF-00-00-XY’ in hexadecimal numbers.

The first three codewords constitute a synchronization code to inform the
receiver of the existence of timing reference. Because the synchronization code is
used to synchronize the communication between a transmitter and a receiver, the
synchronization code itself cannot happen by chance in video data. Otherwise
erroneous synchronization will happen, which will result in a failed reconstruction
of an image. The emulation of the synchronization code will not be made in
practice. If Rec. ITU-R BT.601 is used in producing the digital video data, no ‘00’
or ‘FF’ is allowed to be generated. In practical implementation of an ISP, however,
it is often necessary to consider at the transfer stage not to emulate the synchro-
nization code because the ISP may use all 256 values that an 8-bit code can have.
There are three timing information signals such as F, V, and H, where they are
transferred with protection bits at the last codeword of SAV or EAV. Their bit
positions and meanings are given in Table 1.

As described above, the simplest form of an ISP is composed of quantization,
color space conversion from R-G-B to Y-CR-CB, and data formatter. All of these
steps are standardized in Rec. ITU-R BT.601 and in Rec. ITU-R BT.656, respec-
tively. Because the quantization step is mostly embedded in an image sensor, the
minimum number of components for the simplest ISP is only two, and the corre-
sponding ISP is shown in Fig. 4.

In Fig. 4, it assumes that the image sensor produces digital R, G, and B data for
each pixel. Unfortunately, no image sensors produce the R, G, and B data altogether
at the same pixel position, unlike display devices where three or four color
sub-pixels exist within a pixel. Foveon [5] invented the image sensor that samples
R, G, and B data altogether at any pixel position. However, the practical sensor

Table 1 Timing reference code configuration

Data bit
number

First word
(FF)

Second word
(00)

Third word
(00)

Fourth word
(XY)

7 (MSB) 1 0 0 1

6 1 0 0 F

5 1 0 0 V

4 1 0 0 H

3 1 0 0 P3

2 1 0 0 P2

1 1 0 0 P1

0 1 0 0 P0
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samples one of color components for a pixel as shown in Fig. 5 [6]. This differ-
entiation between two light-related devices comes from the fact that the allowable
pixel sizes they use are quite different.

Let’s compare the size of two different optical devices shown in Fig. 6: a display
panel and an image sensor supporting the same FHD (Full High Definition,
1920 × 1080) resolution, assuming the size of the display panel is 5 inches, and that
of the image sensor is 1/3 inch. The display panel is easier to implement, compared
to the image sensor because the effective pixel area of the display panel is (3 × 5)2

times as large as that of the image sensor. The pixel area of an image sensor needs
to be as large as possible for improving SNR (Signal to Noise ratio). However, there
is another constraint on the pixel size, which claims that an image sensor should be
made as small as possible such that it can be packaged inside a compact smartphone
of a small form factor. As the sensor shrinks, the SNR becomes lower. So there
must be some compromise between the pixel size and the image sensor resolution.
If sub-pixels constituting a pixel, e.g., R, G, B sub-pixels, are to be defined as in the
display panel, the effective area of each sub-pixel will be much smaller. This is why
sub-pixels of a pixel cannot be implemented on the same plane in the image sensor.
Thus, the appropriate compromise between the high SNR and the small form factor
is to adapt the spatial subsampling strategy such as Bayer array.

Table 2 Protection bits in
SAV and EAV

F V H P3 P2 P1 P0

0 0 0 0 0 0 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 1 0

1 1 0 1 1 0 0

1 1 1 0 0 0 1

F = 0 during field 1; 1 during field 2
V = 0 elsewhere; 1 during field blanking
H = 0 in SAV; 1 in EAV
P0, P1, P2, P3: protection bits (see Table 2)
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A sensor array made by spatial color subsampling is called color filter array
(CFA) or Bayer array. According to the patent by Bayer, only the principle of color
subsampling is provided, and which color is sampled is not explained. Thus, colors
can be sampled in a variety of ways, and these combinations of sampling are also
called Bayer pattern. Some typical examples of Bayer patterns are shown in Fig. 7.

Image sensors with Bayer pattern have high sensitivity with low implementation
cost, but the process of restoring deficient color components is additionally
required. This process is called interpolation or demosaicing. There are lots of ways
[7] in demosaicing color filter arrays. One of the simplest is the 1-st order inter-
polation, i.e., bilinear interpolation. Among Bayer patterns mentioned in Fig. 7, the

Fig. 5 Color imaging array by Bayer

Fig. 6 Typical color filter
pattern in image sensors (left)
and display panels (right)
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RGB pattern is widely used since it allows better color reproduction. So, the
subsidiaries of bilinear interpolation are to be described with this pattern. In Fig. 8,
the shaded pixels represent practically sampled ones in the sensor array, while the
other unshaded pixels represent those to be restored by bilinear interpolation in
Eq. (3).

R11 ¼ R11

R12 ¼ R11þ R13
2

R21 ¼ R11þ R31
2

R22 ¼ R11þ R13þ R31þ R33
4

ð3aÞ

G22 ¼ G12þ G21þ G23þ G32
4

G23 ¼ G23

G32 ¼ G32

G33 ¼ G23þ G32þ G34þ G43
4

ð3bÞ

Fig. 7 Bayer patterns
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B22 ¼ B22

B23 ¼ B22þ B24
2

B32 ¼ B22þ B42
2

B33 ¼ B22þ B24þ B42þ B44
4

ð3cÞ

Because bilinear interpolation averages two or four adjacent data of the same
color attribute, the interpolated values may be what do not exist in the real scene.
Since different interpolation equations are used for color components, the associated
color built by combining them can show undesirable color where there are edges
with high gradient. These unwanted color artifacts are called pseudo-color or color
noise. Figure 9 shows artifacts produced by bilinear interpolation. The periodic
noise pattern, which is called zipper noise (or maze noise), is shown with additive
pseudo-color. The main role of color interpolation is to suppress such pseudo-color
and zipper noise. The zipper noise can be reduced greatly by interpolating pixels
along the distinct edges as shown in Fig. 9c.

Edge-directed interpolation is an adaptive approach, where the adjacent pixels
around each pixel are analyzed to decide if there exists a horizontal or vertical edge.
There are lots of ways to decide the direction of edges. In [19], the simplest form of
edge direction detection is presented. Let G22 be interpolated using its neighboring

R11 R13

R31 R33

R12 R14

R32 R34

R21 R23

R41 R43

R22 R24

R42 R44

G11 G13

G31 G33

G12 R14

G32 G34

G21 G23

G41 G43

G22 G24

G42 G44

B11 B13

B31 B33

B12 B14

B32 B34

B21 B23

B41 B43

B22 B24

B42 B44

Fig. 8 Pixels to be interpolated by bilinear interpolation

Fig. 9 Artifacts by color filter interpolation. a Original; b bilinear interpolation; c edge-directed
interpolation [19]
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G pixels in Fig. 8. The horizontal and vertical gradients are defined as ΔH = |G21–
G23| and ΔV = |G12–G32| respectively. If ΔH > ΔV, the edge direction is vertical,
then G22 = (G12 + G32) ≫1. If ΔH < ΔV, the edge direction is horizontal, then
G22 = (G21 + G23) ≫1. Otherwise, G22 = (G12 + G21 + G23 + G32) ≫2. In this
way, the G image is interpolated first, and then the other color planes are acquired
by utilizing the G image.

Impulsive noise is easy to remove by legacy noise reduction filters that utilize
median filter. The basic assumption about noise is that noise is statistically inde-
pendent and has very high-frequency components. Zipper noise looks like
high-frequency noise, but it is difficult to remove by a legacy noise reduction filter
because its frequency components are in the mid-to-high ranges. This is a contra-
diction to the basic assumption on noise. In Fig. 10 filtering results are presented by
applying median filter and mean filter to remove zipper noise. The results show that
the zipper noise is very difficult to remove by basic noise reduction tools. Thus, it is
desirable to suppress the zipper noise in the interpolation stage instead of using
noise reduction filter after color interpolation. Besides, an additional filter for
removing pseudo-color is also necessary because it is hard to remove pseudo-color
only with interpolation. Figure 9c also shows pseudo-colors along the edges after
edge-directed interpolation

Figure 11 is the block diagram of an ISP evolved to compensate for artifacts
raised by using a Bayer sensor. Anti-aliasing filter means a low-pass filter adapted
before the color sampling to avoid aliasing. The ideal anti-aliasing filter must be an
optical low-pass filter (OLPF) because the signals before the spatial subsampling
are purely optical. However, OLPF cannot be considered here because it must be
considered during the camera module design stage. Nevertheless, the first function
of an ISP needs to be a noise reduction filter in the Bayer domain. The purpose of
placing the noise filter here is not to prevent aliasing, but to prevent noise propa-
gation through color interpolation. Anyway, this function is often called
anti-aliasing noise filter for convenience. By adopting a cost-effective Bayer sensor,
thus, an ISP should add following functions as shown in Fig. 11. Among them, the
CFA interpolation is mandatory and all noise filters are optional.

Fig. 10 Applying conventional low-pass filter to reduce zipper noise. a zipper noise; b median
filtering; c mean filter
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2.1 Anti-aliasing Noise Filter

Noise needs to be removed in the Bayer domain. Salt-and-pepper noise produced
during the manufacturing of image sensor has to be removed before color inter-
polation. Otherwise the noise will be expanded through color interpolation kernel.

2.2 Color Filter Array Interpolation

This is the process to restore the original color components from the sampled ones.
It results in zipper noise and pseudo-color. The zipper noise can be suppressed
considering edge direction during color interpolation process.

2.3 Noise Filter for Luma

In an anti-aliasing noise filter, it is not possible to exploit correlation with the
adjacent pixels because they are of different color attributes. After interpolation, it is
easier to remove Gaussian noise by considering correlation with adjacent data. This
noise filter is a legacy noise filter [8] that has been developed for a long time.

2.4 Noise Filter for Chrominance: CB and CR

This is a filter for removing pseudo-color caused by subsampling and interpolation
process. Because human eyes are very sensitive to rapid color changes, it is nec-
essary to build a natural image by suppressing excessive color changes.

Noise filter 
for Chroma

Anti-aliasing
Noise filter

CFA
Interpolation

Color space 
conversion

Data 
formatter

Noise filter 
for Luma

Image
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s

Fig. 11 ISP architecture to recover artifacts from a Bayer image sensor
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3 ISP Architecture for Color Reproduction

The process for restoring ‘natural’ color is necessary because the response of silicon
to light is quite different from that of human eyes. Color is the response of light
receptors of the human eyes to light spectrum. In the retina where there are rods and
cones, rods sense brightness and cones sense chromaticity, respectively. Rods are
extremely sensitive to light, and can be triggered by as few as six photons [9]. At
very low light conditions, visual experience is solely decided by rods. Cones
require significantly brighter light than rods. There are three different types of
cones, distinguished by their response pattern with different wavelengths of light.
Colors can be defined and quantified by the degree with which these cells are
stimulated.

A color space is a 3-dimensional representation system into which a perceived
color is translated [10]. The whole colors are represented by three-dimensional
coordinates in a color space. There are many color spaces such as CIERGB,
CIEXYZ, CIELAB, CIELUV, and so on. An RGB color space [11] is any additive
color space based on the RGB color model. The most popular RGB color space is
sRGB [12], which is used in consumer electronics including digital cameras, video
cameras, televisions, projectors, and computer monitors. The RGB color space is
defined in Rec. ITU-R. BT. 709.

A particular RGB color space is defined by the three chromaticities of the red,
green, and blue additive primaries, and can produce any chromaticity inside the
triangle whose vertices are defined by those primary colors. The primary colors are
specified with reference to their corresponding chromaticity coordinates (x, y) in the
CIE 1931 color space [13]. To completely specify an RGB color space, a white
point and a gamma correction curve need to be additionally defined. In Table 3, the
three primary colors and white points for popular RGB color spaces are summa-
rized [11].

It should be noted that a gamma correction curve is mandatorily included for
specifying a color space. Our “nonlinear” eyes do not perceive light like “linear”
image sensors. They are more sensitive to changes in dark tones, and less in bright

Table 3 RGB color space parameters

Color space Gamut White
point

Primaries

Red Green Blue

x y x y x y

sRGB, HDTV CRT D65 0.64 0.33 0.30 0.60 0.15 0.06

PAL/SECAM CRT D65 0.64 0.33 0.29 0.60 0.15 0.06

NTSC(1987) CRT D65 0.63 0.34 0.31 0.595 0.155 0.07

UHDTV Wide D65 0.708 0.292 0.170 0.797 0.131 0.046

CIE(1931)
RGB

Wide E 0.7347 0.2653 0.2738 0.7174 0.1666 0.0089
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tones, compared to silicon image sensor. It is because human eyes have evolved to
enable our vision system to operate over a wide range of luminance. Gamma
correction or gamma encoding is the name of a nonlinear operation used to code
and decode luminance or tri-stimulus values in image sensors or display systems.
Gamma correction is defined by the following power-law expression:

Vo ¼ V c
i ð4Þ

The input and output values are nonnegative real numbers and are typically in
the range of [0,1]. A gamma value which is smaller than 1 (i.e. γ < 1) is called an
encoding gamma, and is used to compress the dynamic range of input values. The
nonlinear characteristics of the human eyes to the brightness change can be
observed from the exemplary patches in Fig. 12. Figure 12 shows what happens
after quantizing continuous tones in an explicitly linear way or a perceptually linear
way. Figure 12b shows quantizing into 32 levels by uniform quantization step and
Fig. 12c by nonlinear quantization step based on a gamma curve. The quantization
step size in Fig. 12c is numerically nonlinear but is perceived linear to the human
eyes, while the quantization step size in Fig. 12b is arithmetically linear but looks
nonlinear. Thus the true linear response of an image sensor should be perceived
linear for human eyes. The nonlinear tone mapping process for human eyes is called
gamma correction, which is included in defining a color space. The definition of
gamma curve in the sRGB color space is like Eq. (5) below.

Vo ¼ 1:099V0:45
i � 0:099; 0:018�Vi � 1

4:500Vi; 0�Vi\0:018

�
ð5Þ

To support a particular RGB color space, both tone mapping and color mapping
are required. The former is gamma correction and the latter is color correction.
Gamma correction is nonlinear but color correction is linear, which are generally
implemented by a 3 × 3 matrix multiplication. In color correction, the result of color
mapping should not be affected by the brightness level of the captured scene. To

(a)

(b)

(c)

Fig. 12 Linear and nonlinear quantization of continuous tones. a Continuous tones from 0 to
1023; b linearly quantized tones into 32-levels; c nonlinearly quantized tones into 32-levels
according to a gamma curve
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maintain consistency of color correction regardless of brightness, the color cor-
rection process needs to be linear. An ISP pipeline containing these two functions to
support a particular color space is depicted in Fig. 13.

There is no restriction as to where stage gamma correction is placed. Gamma
correction can be located before color interpolation or after color correction. It is
also possible to place it even after color space conversion. The purpose of doing
gamma correction is a nonlinear tone mapping. As long as this purpose is achieved
efficiently, the place of performing gamma correction in the ISP pipeline is not so
important. In reality, many ISP implementers do not use gamma correction in the
same way. If efficient hardware implementation is pursued, implementing gamma
correction in the Bayer domain or in the Y-CB-CR domain may be more efficient
than in the RGB domain. Figure 14 shows two modified ISP chains with different
location for gamma correction.

A white point is also included in the definition of an RGB color space. It is used
to standardize the light spectrum and is abbreviated as D65 or E as tabulated in
Table 3. The spectrum of a standard illuminant can be converted into tri-stimulus
values by integrating it over all wavelength spectrums. The set of resultant three
tri-stimulus coordinates of an illuminant is called a white point. CIE Standard
Illuminant D65 [14] is a commonly used standard illuminant defined by the CIE. It
describes standard illumination conditions at open-air in different parts of the world.
D65 is intended to represent average daylight, and has a corresponding color
temperature of approximately 6500 K. The power spectrum of illuminant D65 is
shown in Fig. 15. CIE standard illuminant D65 should be used in all colorimetric
calculations requiring representative daylight, unless there are specific reasons for
using different illuminant. Illuminant E [15] is an equal-radiator; it has a constant
distribution inside the visible spectrum. That is, it is a theoretical illuminant that
gives equal weight to all wavelengths.
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Fig. 13 ISP architecture to support a particular RGB color space
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Fig. 14 ISP architecture variants for gamma correction. a ISP architecture variant with gamma
correction at the Bayer domain; b ISP architecture variant with gamma correction at the Y-CB-CR

domain

Fig. 15 Spectral power
distribution of Illuminant D65
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Color correction is performed with reference to the illumination spectrum of
D65. If the illumination spectrum is different from D65, the chromaticity of the
same object in the same scene will be perceived different in colors. Thus the
chromaticity for the current light spectrum has to be corrected to be perceived
similar to that of D65, since the chromaticity under D65 is most natural to average
people. The attribute of light source is numerically characterized by the color
temperature. Thus, the current color temperature should be changed to match D65.
This process is called AWB (Auto-White Balance) and it is to compensate for the
color distortion caused by the light spectrum different from D65. The key tech-
nology of AWB is to measure the color temperature of the current light source. To
do this, achromatic-colored regions in the scene are used to estimate the color
temperature because the color there reflects the color temperature of the light
source. Gray or white regions are typical achromatic-colored regions. Achromatic
color region is where the ratios between R, G, and B components are identical.
Thus, the AWB process is modeled by Eq. (6), where average values of R, G, and B
components in achromatic-colored region are denoted as �R; �G; �B respectively. It is
desirable for AWB to be performed before color correction.

R0

G0

B0

2
64

3
75 ¼

�G=�R 0 0
0 1 0
0 0 �G=�B

2
4

3
5 R

G

B

2
64

3
75 ð6Þ

However, locating achromatic-colored region is almost impossible in practice;
even human eyes sometimes cannot identify it from the natural scene. However, it
is possible to measure the color variations of achromatic-colored region when the
color temperature of the ambient light is changed. Such color variation is confined
in a small area of the color gamut. Such area can be identified experimentally in the
CB-CR plane by plotting the CB-CR components of achromatic-colored regions for
all allowable color temperatures, as shown in Fig. 16. Then we can find connected
regions where at least one achromatic-colored pixel exists. Among them, we can
assume that there exists one region which reflects the current ambient color tem-
perature. In this way, we can estimate the ambient color temperature. There are
many heuristic ways to decide which area gives a good estimate for the ambient

C
B

CR

Fig. 16 Determination of the
chrominance variation of
achromatic-colored regions in
the CB-CR plane
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color temperature. Besides, instead of using CB/CR components, other terms can be
used such as G-R and G-B, G/B and G/R, and so on.

Chromaticity is an objective specification of a color regardless of its brightness,
and is further represented by hue and saturation. The white point is a neutral
reference, which is characterized by chromaticity. All other chromaticities are
defined with respect to the white point using polar coordinates (an angle and the
distance from the origin). Hue is “the degree to which a stimulus can be described
as similar to or different from stimuli that are described as red, green, and blue”
[16].

HSL (Hue-Saturation-Lightness) and HSV (Hue-Saturation-Value) are the two
most common cylindrical-coordinate representations of points in an RGB color
space [17]. Figure 17 shows the hue from 0° to 360°. In case of emphasizing or
deemphasizing particular color, we first find the hue corresponding to that color and
then emphasize or deemphasize all R, G, and B values that have the same hue. In
case of adjusting color of the whole image consistently, it is done by rotating the
hue of each RGB data around the white point as much as needed.

Calculating the hue from R, G, and B data requires very complicated operation.
So the Y-CR-CB color space can be regarded as a cost-effective substitute for hue.
Mapping all colors in the CR-CB plane is shown in Fig. 18. Hue control in the CR-
CB plane can be performed by Eq. (7a). The constant 128 indicates that the values
of Y-CR-CB are in 8-bit, which is replaced by 512 when using 10-bit data. Saturation
control is the same as amplifying the CB and CR components according to Eq. (7b).
It is performed by Eq. (7c) when both hue and saturation controls are conducted
simultaneously.

C0
B � 128

C0
R � 128

" #
¼ cos h � sin h

sin h cos h

� �
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CR � 128

" #
ð7aÞ
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" #
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Various functions are included in an ISP for reproducing correct colors that
human eyes perceive, and are performed in different color domains. AWB is
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performed usually in the Bayer domain, both gamma correction and color correc-
tion are done in the RGB domain, and the hue/saturation control is conducted in the
Y-CR-CB domain (See Fig. 19).

Fig. 17 Hue in the HSB/HSL encodings of RGB
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Fig. 18 Color distribution in
the CR-CB plane
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Fig. 19 ISP architecture for color reproduction
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4 ISP Architecture with Pre-/Post-processing

Some additional pre-/post-processing functions are added to the baseline ISP
pipeline described above. The purpose of pre-processing is to compensate for the
sensor or camera distortions such that robust images can be acquired through a
legacy ISP pipeline. The role of post-processing is to give a better visual quality
from the standpoint of human visual system.

An image sensor has permanent bright or dark pixels due to physical defects.
They are called dead or defective pixels, and the function to remove them is called
DPC (Deal Pixel Concealment). Dead pixels are far brighter and much darker than
their neighbors and generate salt-and-pepper noise. They can be easily removed by
using a median filter, which always leads to a blurred image. A special noise filter
has been developed to effectively remove the salt-and-pepper noise. This filter
detects the dead pixels in real time and corrects them by replacing them with
neighbor pixel data. Another method is to correct predefined dead pixels whose
locations are searched and stored in the memory in advance. This method is free
from the risk of blurring by a legacy noise filter because it conceals only prede-
termined defect pixels. The more coordinates of defective pixels are stored, the
more high-cost memory is consumed. So, an appropriate memory storage should be
determined in terms of cost and performance.

Sensor response does not have perfect linearity. Each pixel of an image sensor is
a capacitive photodiode, and the charge in each pixel is discharged according to the
incident photons. The discharged charge is sampled in voltage, and is regarded as a
pixel value. Naturally it is not possible to detect no-light condition because the
photodiode is always discharged by the reverse bias current, even in no-light
condition. To detect sensor response corresponding to no-light, any image sensor
has the dedicated sensor region called optical black area. The optical black area has
the same structure as that of normal pixels, but it is made intentionally not to be
exposed to light by covering photo-diodes with metal. Thus, it is possible to esti-
mate the sensor response at no-light condition. Because there are R, G, and B pixels
in the optical black area, it is possible to have sensor responses to ‘0’ in no-light
condition if their averaged values in the optical black area are subtracted from the
sensor output appropriately. The function to do this is called BLC (Black Level
Compensation) and is implemented by using Eq. (8), where OBR, OBG, and OBB are
the average values of red, green, and blue pixels in the optical black area,
respectively. BLC should be the function to operate at the earliest stage in an ISP
pipeline because only this function can make the sensor response linear.
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The magnitude and brightness of each pixel will have linearity after BLC.
However, the linear slope of each pixel is not constant but varies randomly

40 H.S. Park



according to its spatial position. The image is brightest in the center of optical axis
and becomes monotonically darker as one goes to the edge of the field-of-view. The
shading might be caused by nonuniform illumination or nonuniform camera sen-
sitivity. In general this shading effect is mainly due to a lens system, and is called
lens-shading distortion. Figure 20 shows a lens-shading image which is an origi-
nally flat-field image having a constant value all over the plane.

LSC (Lens-Shading Correction) is the process to compensate for the disparity of
linear gain of each pixel due to lens shading, such that all pixels can have the same
light-to-voltage gain regardless of their locations in the sensor array. The simplest
and robust solution for LSC is to compensate for shading by the correction gain,
which was estimated for each pixel in advance and then stored in the memory. This
method is called FFC (Flat Field Compensation) [20]. FFC consists of two numbers
for each pixel, the pixel’s gain and its dark current. The corrected image C(x, y) at
the pixel location (x, y) is obtained by Eq. (9).

C x; yð Þ ¼ R x; yð Þ � D x; yð Þ
F x; yð Þ � D x; yð Þ � m ð9Þ

where, D(x, y) is a dark frame, R(x, y) is a raw image, F(x, y) is a flat-field image,
and m is the average value of F(x, y)–D(x, y). The dark frame and the flat field are
captured experimentally by taking the flat-field scenes in a very dark lighting
condition and in a marginally unsaturated lighting condition. FFC is not appropriate
in a baseline ISP because it requires sufficiently large memory to store the entire
image. Instead, an appropriate mathematic model for the LSC gain map is used.

Noise reduction is performed after consistent linearity is obtained for the whole
pixels. Noise sources in an image are various. The need for noise reduction is
increasing as the resolution of image sensor is increased with the pixel size being
drastically reduced. Noise reduction is considered as a key component to determine
the performance of camera systems, and consumes the most computational power
of legacy ISPs.

Fig. 20 Flat-field image
without lens-shading
correction
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The enumerated methods so far are the functions to let the sensor response to be
linear and to compensate for derating factors of an image sensor or a camera
module. These are not mandatory functions in a baseline ISP, but need to be
considered whether to implement or not, since they try to compensate for the
imperfection of a camera system. Figure 21 shows an ISP pipeline with such
compensation functions. LSC should be located after BLC, but there is no strict
restriction on DPC location if and only if the DPC is located before color inter-
polation in a baseline ISP chain. Thus it is often desirable to embed DPC function in
anti-aliasing noise filter.

Let’s examine typical methods to enhance subjective visual quality. Mach bands
[18] are an optical illusion, which can be seen in an image patch where there are
two wide bands, one light and the other dark, separated by a narrow strip with a
light-to-dark gradient. Human eyes perceive two narrow bands of different
brightness at either side of the gradient that are not present in the original image
(See Fig. 22).
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Edge enhancement is a digital processing technique to improve the sharpness of
an image by intentionally emphasizing Mach band effect. The creation of bright and
dark highlights on either side of any line makes the line look contrasted from a
distance. It only increases the perceptual sharpness. Some artifacts are raised by
edge enhancement. The enhancement is not completely reversible, and some detail
in the image can be lost as a result of enhancement. Repeated sharpening operations
on the resulting image compound the loss of detail, and lead to artifacts known as
ringing. Most sharpening filters are based on the first and the second-order deriv-
atives. Among them, Laplacian filter has been the most popular tool. Equation (10)
describes one of the Laplacian filters for the pixel value I(x, y), where x and y are
horizontal and vertical coordinates in an image.

L x; yð Þ ¼ r2 x; yð Þ ¼ @2I x; yð Þ
@x2

þ @2I x; yð Þ
@y2

¼ I x� 1; yð Þ þ I xþ 1; yð Þ þ I x; y� 1ð Þ þ I x; yþ 1ð Þ � 4I x; yð Þ
ð10Þ

Contrast is the difference in color and light that makes an object distinguishable
from others and the background. The human visual system is more sensitive to
contrast than absolute luminance. The contrast-controlled value is acquired by
Eq. (11), where Kc, Kr and Kb are contrast control gain, reference luminance,
brightness control offset, respectively. The contrast gain Kc is a fractional number
ranging from 0 to 1. The reference luminance Kr is defined as 2

B−1 if B-bit codes are
used for luminance representation. The brightness offset Kb is used to increase or
decrease the average brightness level.

Y 0 ¼ Kc Y � Krð Þ þ Kb þ Kr ð11Þ

Figure 23 shows the proposed baseline ISP pipeline considering all related
standards. The proposed ISP chain will be the minimum configuration for designing
a baseline ISP.

5 Further Works on ISP

The ISP itself is a pipelined chain of functional units, whose inputs are fed from the
previous unit and the processed outputs are transferred to the next unit. In each
functional unit, every pixel of an image is processed sequentially. When a pixel is
processed, only its adjacent pixels are utilized and a small window is defined
around the pixel such that some lines of the incoming image have to be stored in the
memory. For defining an N × N window, at least N − 1 lines are to be saved into the
memory. In other words, it is often said that N − 1 line memories are required. In
this way, an ISP only utilizes the spatially localized information. One of the hot
functions in a legacy ISP is mainly focused on the true color reproduction. As the
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ambient color temperature changes, the color-related functions begin to degrade the
subjective color quality. Realizing the robust color quality over the ambient color
temperature is becoming a critical requirement for high-quality ISP implementation.
It is because the drastic change of chrominance is annoying to human eyes while
the drastic change of luminance is perceived as natural and often can be ignored
without annoying our eyes.

When global information is necessary, an entire image has to be saved in the
memory. In this case, the amount of memory requirement is so huge such that the
frame memory is realized by using an external SDRAM. When the frame memory
is available, a more sophisticated function can be conducted in software by using a
powerful CPU and/or a GPGPU (General Purpose Graphic Processing Unit).
Nowadays, many computer vision applications have been implemented in an
intelligent camera. In a legacy ISP, however, those functions requiring the frame
memory are not considered since they cannot be embedded inside an image sensor.
Thus, they are not regarded as further works for ISP. They are highly related to the
intelligent camera. Recently many researches have been done to expand the
dynamic range of the image sensor. WDR (Wide Dynamic Range) or HDR (High
Dynamic Range) implies such a technique to expand the dynamic range by utilizing
two or more frames respectively and is not considered in a legacy ISP pipeline since
it requires the frame memory.

There remain a few functions to be implemented in an ISP. Nevertheless, color
interpolation and noise reduction are always key functions that need more
improvement. Besides, the false color suppression or pseudo-color removal is also
becoming a major function since the false color critically distorts the human eyes.
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An Ultra-Low-Power Image Signal
Processor for Smart Camera Applications

Zhenhong Liu and Nam Sung Kim

Abstract Among thriving cyber physical systems (CPS), smart camera applica-
tions require to run both image sensors and image signal processors (ISPs) to
capture images whenever necessary. Due to the nature of such applications (i.e.,
constantly capturing images and analyzing the images to detect any event of
interest), the image sensor and ISP become the two most energy consuming
components in smart camera applications. In this chapter, we start with our intuition
that the perceptive quality of images is not strongly correlated with the accuracy of
object detection algorithms and propose three techniques that require only minor
modifications to the baseline ISP but dramatically reduce the ISP energy con-
sumption in object detection mode for smart camera applications. When joining
three proposed techniques, we demonstrate that our ISP consumes only 3 % of the
baseline ISP energy while degrading face detection accuracy by 3–4 %.

Keywords Image signal processor � Smart camera � Face detection

1 Introduction

An image signal processor (ISP), which processes a raw image from a CMOS
image sensor, is a specialized processor and it is an essential component in a digital
cameras. Figure 1(left) shows a raw image from an image sensor and it is far from
what the human eyes perceive. After the ISP processes the image, we see the image
in Fig. 1(right), which is close to what the human eyes perceive. The ISP is
comprised of many processing functions such as white balance, gamma correction,
format processing, geometric correction and color filter array interpolation.
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The image processing functions of the ISP are normally implemented in a pipelined
fashion and a given image passes through pipeline stages implementing these
functions operating in tandem. A more expensive ISP often integrates more
sophisticated processing functions such as red-eye removal and image stabilization.
In general, the image processed by the ISP is normally output to a display or a
storage device.

The increasing capability of digital cameras and processors in mobile devices
has given rise to emerging applications in which images are acquired for purposes
other than picture-taking. For example, a smart camera may be used to recognize
the user of a mobile device and to unlock features of the device, or the camera may
be used as an input device to recognize gestures by the user. For these emerging
applications, the ISP may be teamed up with a (general-purpose) processor running
various recognition algorithms to extract characteristics of given objects or gestures,
where the ISP is required to operate continuously. Even the energy consumption of
a simple ISP is comparable to that of an image sensor [1] and a few times higher
than a general-purpose processor running recognition algorithms in our smart
camera environment; our baseline ISP consumes *20 mW while an ARM
Cortex-M0 processor consumes *4–10 mW in 65 nm technology [2] Thus, the
energy consumed by the ISP for such applications can tax the capacity of the
batteries used in mobile devices.

In this chapter, we observe that the task of optimizing images for human per-
ception may not align with the requirements of recognition algorithms (e.g., face
detection in this chapter). Accordingly, we propose an ISP that may operate in at
least two modes, one mode optimizing the image signal processing for human
vision and the other mode optimizing the image signal processing for object
detection and gesture recognition, where this latter mode may provide degraded
perceptual image quality. Though the perceptual image quality is degraded, we
show that such degraded image quality negligibly impacts on the accuracy of object
detection while significantly reducing the ISP energy consumption. More specifi-
cally, we propose three techniques for an ISP that can receive images from an image
sensor and output images optimized for either human vision or object detection.

• First, we hypothesize that many ISP stages are only needed for human perception
and propose to skip some ISP stages after identifying which stages are critical for
a face detection algorithm. Our experiment shows that only gamma correction
and demosicking stages are critical for a face detection algorithm we adopt.

Fig. 1 Images before (left) and after (right) ISP processing
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This can reduces the energy consumption of the ISP by 33 % while degrading the
true positive and negative face detection accuracies by only 3 and 5 %,
respectively.

• Second, we observe that the ISP often processes many pixels with similar values
and propose to interpolate the output pixel values based on their neighboring
output pixel values, if their neighboring pixels have similar values. This reduces
the energy consumption of the ISP by 30 % while degrading the true positive
and negative face detection accuracies by only 3 and 9 %, respectively.

• Third, we propose to reduce the number of pixels to process (i.e., scaling input
images). For example, we process only one out of every four pixels. This
reduces the energy consumption of the ISP by 93 % while degrading the true
positive face detection accuracy by only 3 %. However, this degrades the true
negative face detection accuracy by 14 %, which may not be acceptable and
cannot be used alone.

• Finally, we propose to join three techniques after we observe that the negative
impact of each technique on the detection accuracy is not cumulative. This
reduces the energy consumption by 97 % while degrading the true positive and
negative face detection accuracies by only 5 and 4 %, respectively.

The rest of the chapter is organized as follows. Section 2 describes background
on our baseline ISP and a face detection algorithm. Section 3 presents our exper-
imental methodology. Section 4 describes three proposed techniques and provides
evaluations. Section 5 discusses the related work. Section 6 concludes this study.

2 Background

2.1 Baseline ISP Design

We design a baseline ISP for a video recording system. Our baseline ISP is com-
prised of 10 pipeline stages as depicted in Fig. 2 and it supports the image reso-
lution of up to 1920 × 1080 pixels. The baseline ISP can produce one 8-bit output
per cycle. We describe the functionality of key ISP stages below.

Black Level Compensation (BLC): Ideally, a “black” pixel from the image sensor
should have a value of 0. However, this is not the case in reality due to the leakage
current of the photodiode in CMOS sensor. Therefore, the BLC stage is required to
subtract this bias from each pixel value.

Lens Shading Correction (LSC): Due to the deflection of the light on the lens
surface, the uniform in-coming light will distribute non-uniformly across the image
sensor. The light will be the brightest at the center and decrease gradually with the
distance from the center. To correct such a lens shading effect, we multiply every
pixel with a gain factor, which is a function of the distance between the pixel and
the center of the image sensor in our ISP.

An Ultra-Low-Power Image Signal Processor … 49



Auto White Balance (AWB): An image sensor responses differently to the power
spectrum of diverse light sources. Since the ambient light source is not a standard
illuminant D65, its color values need to be re-scaled to be like those of D65 (i.e.,
AWB). In our ISP design we implement the gray-world algorithm that uses the
average pixel values of each color channel to calculate the scaling parameters for
each color for AWB [3].

Color Filter Array (CFA) interpolation (also known as demosaicing): To
produce a color image with a single image sensor, a CFA is placed over the
photodiodes [4] to separate RGB values for each pixel. Since the pixel values of the
3 color channels cannot fill the whole image plane, some interpolation is needed as
illustrated in Fig. 3. We use a gradient-based interpolation algorithm for
RGGB CFA pattern in our baseline ISP design.

Color Correction (CC): The difference between the spectral sensitive of photo-
diodes and the human visual system makes the color sensed by the image sensor
inaccurate. If we directly use the RGB values from the image sensor, the color of
the image will be significantly diverged from the color perceived by human eyes.

Fig. 2 Baseline ISP

Fig. 3 CFA interpolation
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Thus, we correct the image sensor’s RGB values through a color space conversion
(i.e., matrix multiplications) in our ISP design.

Gamma Correction (GC): For human eyes perception, 8-bit color depth is suffi-
cient while image sensors produce 10-bit color depth. The linear conversion of
10-bit color values to 8-bit ones will lead to perceptually very dark images. Thus,
following the ITU-R. BT.709 standard, we non-linearly map each 10-bit value from
the sensor to 8-bit one to show more details in the dark part of images.

RGB to YCbCr color space conversion (R2Y): We convert colors from RGB to
YCbCr color space [5] in our ISP design because the following two stages can be
implemented much more easily in YCbCr color space.

Edge Enhancement (EDGE): We enhance the contrast of edges in images (i.e.,
sharper images) by decreasing/increasing the Y component of the pixels on or near
edges in our ISP design.

Contrast/brightness/hue/saturation control (CTR): We adjust the contrast,
brightness, hue and saturation of an image by applying a linear transformation to
YCbCr components in our ISP design.

YCbCr to RGB color space conversion (Y2R): We convert the colors back to the
RGB color space.

2.2 Face Detection Algorithm

In this chapter, we use a face detection algorithm proposed by Viola and Jones [6].
This is one of the most popular and widely used face detection algorithms and well
supported by OpenCV. It extracts Haar-like features from the gray-scale integral
image and uses a series of cascaded weak classifiers in order to achieve real-time
performance. Figure 4(left) shows some of the basic Haar-like feature masks.
A mask is placed on a gray-scale image and a feature is calculated by subtracting
the sum of the pixels under the black area from the sum of the pixels under the
white area. Extracting the features from the original gray-scale images is very

Fig. 4 Haar-like features [6] (left). Original image (right-top). Integral image (right-bottom)
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compute-intensive since it needs to scan and accumulate the rectangular area under
the feature mask every time. Viola and Jones used an integral image for efficiently
extracting features. An integral image (Fig. 4(right-top)) is essentially a lookup
table of the same dimension as the original image (Fig. 4(right-bottom)), but each
pixel on the integral image is the sum of all the pixels in its up-left rectangular area,
as shown in Fig. 4(right-bottom). With the integral image, the sum of pixels in
rectangle ABCD can be efficiently calculated with a few lookups and
additions/subtractions: sum(ABCD) = I(A) + I(C) − I(B) − I(D) where I(A) = sum
(EFAH) and I(B) = sum(EGBH).

3 Evaluation Methodology

Raw image preparation:To evaluate the impact of our proposed techniques, we first
need to obtain (raw) images from an image sensor or images that are not yet processed
by an ISP. While a typical digital camera only offers images processed by its
embedded ISP, a Canon 650D digital single-lens reflex camera allows us to store
unprocessed 14-bit pixel values from its image sensor in a lossless JPEG format
(ITU-T81) embedded in.CR2 format [7]. We use this camera to take images for this
study. After decoding a lossless JPEG in a CR2 file, we right-shift each 14-bit pixel
value by 4 bits to produce a 10-bit unsigned integer value andmake it compatible with
our baseline ISP. Themost important characteristics of the raw images, such as noises
and distribution of the pixel values, are unchanged after mapping them to 10-bit
values. Since the baseline ISP supports the image resolution of up to 1920 × 1080
pixels, the taken images are cropped accordingly. The Bayer pattern of the camera
sensor is RGGB and the way in which the images are cropped makes this pattern
unchanged. However, the raw images obtained using this method have negligible lens
shading effect because the original images are much larger and cropped around the
center part. Therefore, a pseudo lens shading effect is applied to these images by
scaling the pixel values according to their coordinates on the image. The pseudo lens
shading effect uses parameters from the lens shading effect of a small camera.

Face detection algorithm: A face detection program is implemented using
OpenCV v2.4.7 APIs [8]. It takes an image as an input and outputs the same image
with detected faces marked with rectangles. Training a classifier requires positive
and negative image sets. A positive image contains one or more faces while a
negative one does not contain any face. We use about 3000 negative images from
[9] and about 3000 positive images generated from 800 faces taken by our Canon
650D camera. Finally, the training uses OpenCV built-in programs: opencv_cre-
atesamples to create sample from images with one or more faces and op-
encv_traincascade to train the classifier. The final output is an xml file, which is
used to initialize the classifiers in the face detection application.

ISP power estimation: We synthesize the baseline ISP with an IBM 65 nm
standard cell library targeting 250 MHz, which is fast enough for processing
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1920 × 1080 video frames at 60 frames per second, and validate the design after
performing post-synthesis simulations. We use actual raw images to generate input
trace files to estimate the average power consumption of various ISP configurations.
The power consumption of the SRAM in CFA interpolation stage is calculated
separately using IBM 65 nm memory compiler. The baseline ISP consumes
21.2 mW total and its power breakdown is given in Table 1.

Evaluation metric: We use 100 images with one or more faces and 100 images
without any face as an evaluation image set. The images are taken under various
light conditions and scenes. In the positive evaluation images, about 85 % of the
images have at least one face, 10 % have two faces and the rest have three to five
faces. To describe how accurate the face detection is, we use per-image based
metrics (whether or not we detect at least one face in a given image), which is more
appropriate for our target application that is intended to start to record and transmit
images upon detection of one or more faces. We define four detection outcomes:
(i) true positive (TP), (ii) true negative (TN), (iii) false positive (FP) and (iv) false
negative (FN). Consider that a given image has one or more faces and the detector
recognizes at least one face. This is a TP event that wakes up the smart camera
system for recording and transmitting images. Similarly, suppose that a given image
has no face and the detector recognize no face. This is a TN event in which the
system stays in a sleep mode. The rate of TP, TN, FP, and FN is defined as follows:

TP ¼ # of correctly recognized imagesw=faces
# of imagesw=faces

ð1Þ

TN ¼ # of correctly recognized imagesw=no face
# of imagesw=no face

ð2Þ

FP ¼ 1� TN ð3Þ

FN ¼ 1� TP ð4Þ

Note that achieving a high TN (i.e., low FP) rate is critical because an FP event may
unnecessarily wake up the system, wasting the energy.

Table 1 Percentage power
breakdown of the baseline ISP

Stage Power (%) Stage Power (%)

BLC 0.9 LSC 17.3

AWB 3.1 CFA 30.6

CC 6.2 GC 2.9

R2Y 3.4 EDGE 1.2

CTR 2.8 Y2R 3.0

SRAM 24.0 Misc. 4.1
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4 Optimizing ISP for Face Detection

In this section, we start with our hypothesis that the perceptual image quality is not
directly correlated with face detection accuracy. Founded on this hypothesis, we
propose three techniques that can reduce the ISP energy consumption while
maintaining high TP and TN detection accuracies. Then we join these three tech-
niques and demonstrate that the joined techniques have a synergistic effect on TP
and TN detection accuracies while dramatically reducing the ISP energy
consumption.

4.1 Skipping Non-critical ISP Stages

Based on our earlier hypothesis, we speculate that some ISP stages may not be
critical for face detection algorithms or they marginally improve face detection
accuracy. For example, In the Viola-Jones face detection algorithm, a given color
image is first converted to a gray-scale image and only the gray-scale image is used
for detection. Therefore, all stages related to modifying or enhancing the color of
images can be unnecessary for high detection accuracy.

Implementation details: Skipping most of the ISP stages is straightforward. We
only need multiplexers at the output port of each ISP stage to select between the
input and output of the stage. If the input of the stage is selected, the stage is
bypassed and all flip-flops in this stage are disabled. However, skipping CFA and
GC stages requires some additional logic. As shown in Fig. 5, when the CFA
interpolation stage is skipped, the pixel value for only the color channel will be
duplicated so the other two color channels have the same value. Since the RGB
values in this pixel are the same, the pixel represents a gray color in the output
image, which looks like a normal gray-scale image with a transparent checkerboard
on it. When the GC stage is skipped, the pixels in all three color channels are right
shifted by two bits to replace the non-linear mapping, since we still need to map the

Fig. 5 Skipping CFA and
GC
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10-bit color to 8-bit and this is the simplest method; note that later our evaluation
indicates that we must keep these two CFA and GC stages but this modification is
useful for the second technique that will be described in Sect. 4.2. Finally, we do
not consider skipping the two color space conversion stages: R2Y and Y2R,
because they are required to pre-process and post-process the image for CTR and
EDGE. Therefore, as long as any one of CTR and EDGE is kept, the color space
conversion must not be skipped. On the other hand, R2Y and Y2R stages, which
actually do not modify the images, are automatically skipped when both CTR and
EDGE are skipped.

Impact on TP, TN, SSIM, and energy consumption: In Fig. 6 we show the TP
(left) and TN (right) detection accuracies of for various ISP configurations in which
we skip one or more ISP stages. We also show a structural similarity index (SSIM)
value [10] to correlate human perception image quality with detection accuracy for
each explored ISP configuration. Since we have a large number of combinations of
which stages to skip, we do not evaluate all of them exhaustively. Instead, we first
evaluate the detection accuracy of skipping a single stage at a time. Analyzing
“single stages” in Fig. 6 (left), we see that skipping either the CFA or GC stage can
significantly degrade the TP detection accuracy. The ISP configurations skipping
the GC and CFA stages lead to only 61 and 85 % TP detection accuracy while the
baseline ISP and other ISP configurations offer 98 and 92–97 % TP detection
accuracies, respectively. This suggests that the CFA and GC stages are the most
critical ones for face detection purpose; all the other stages only modify the image
to enhance the perceptual quality while CFA and GMA reconstruct images from
10-bit Beyer pattern images.

Observing “single stages” in Fig. 6(left), we also see that there is a very weak
correlation between SSIM and TP detection accuracy. For example, skipping the
CFA stage exhibits notably lower TP accuracy (i.e., 85 vs. 94 %) but higher SSIM
than skipping the AWB stage (i.e., 0.88 vs. 0.71). In contrast, skipping the GC stage
shows a significant negative impact on both SSIM and detection accuracy (i.e.,
61 % and 0.46). After studying “single stages” in Fig. 6(left), we skip two ISP
stages but always keep the CFA and GC stages. We see that even skipping two
stages have a minor negative impact on the TP accuracy. Thus, we attempt to skip
all the ISP stages except for the CFA and GC stages (cf. “B” in Fig. 6(left)).
This ISP configuration offers 3 % lower TP accuracy (95 %) than the baseline ISP

Fig. 6 Detection accuracy (shown in bars) and SSIM after skipping ISP stages: (left) true positive
and (right) true negative
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(98 %), while reducing the energy consumption by 33 %; Fig. 7(right) shows the
image after only the CFA and CG are applied to the raw image in Fig. 7(left).

Although only two out of ten stages are used, the energy reduction is limited to
33 % because the CFA stage and the logic associated with the CFA consume more
than 50 % of the total energy consumption of the baseline ISP. Finally, we also
attempt to skip all the ISP stages including the CGA and GC stages (i.e., feeding
raw images from the image sensor directly to the classifier). As expected, we
observe huge TP accuracy degradation due to missing the CFA and GC stages (cf.
“A” in Fig. 6(left)). Finally, we observe that the negative effect of skipping ISP
stages is not cumulative because some ISP stages and the classifier are not linear
systems. Similar non-linear characteristics are observed in our other techniques (in
particular when we join three proposed techniques).

Skipping ISP stages have a much smaller negative impact on TN detection
accuracy. The lowest TN detection accuracy among all the ISP configurations is
87 %. This does not mean the perceptive image quality has less impact on TN
detection accuracy. Note that TN detection accuracy is also high for skipping CFA
and GC. This is because the TP detection accuracy for skipping these two stages is
so low, simply rejecting many images with faces as ones that do not have any face.
We see that the TN detection accuracy is 93 % when skipping all stages except
CFA and GC, which is only 3 % lower than the baseline ISP.

4.2 Interpolating Pixel Values

Most pixel values in a natural image change gradually while it is the image’s edges
and corners that contribute to the accuracy of face detection algorithms. Exploiting
this observation, we propose to skip processing pixels if their neighboring pixels
have similar values. For the skipped pixels we replace their value with the pro-
cessed pixel values at the ISP output stage. By doing so, we can still preserve the
most obvious edges and corners while reducing the number of pixels to process.
Some details in the image can be lost, negatively impacting the perceptual image
quality. However, we demonstrate that such a technique negligibly impacts the
detection accuracy.

Fig. 7 A raw image (left). The image after CG and CFA processing (right)
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Implementation details: Since our baseline ISP takes and processes one 10-bit
pixel value per cycle, we augment a stage that buffers input pixels from the image
sensor and compare their values in that stage. Figure 8(top) shows a row of R and G
pixels. When our adaptive pixel interpolation feature is enabled, Reven and Geven

will always be processed by the ISP (e.g., (R0, G0) and (R2, G2) in Fig. 8(top)). As
an example for processing R pixels, refer to Fig. 8(bottom) where we check whether
R1 will be processed or not after comparing its value with the average value of R0

and R2. If the difference between R1 and (R0 + R2)/2 is smaller than a given
threshold value (Th), processing R1 is skipped and the output pixel value of R1 at
each stage is replaced with the average value of the output R0 and R2 pixel values at
each stage. Whether or not a certain pixel is skipped is determined by the raw pixel
values from the image sensor at the ISP input stage and the decision for each pixel
is propagated through the ISP pipeline, and each ISP pipeline stage either processes
the input value or does nothing at a given cycle to reduce dynamic energy con-
sumption. The threshold value controls the quality of the interpolation; as the
threshold value is smaller, fewer pixels will be interpolated. Skipping some pixel
processing leverages the hardware modification illustrated in Sect. 4.1 since each
pixel is processed sequentially.

Note that we cannot simply skip all the ISP stages and interpolate the values of
pixels chosen for interpolations based on the final output values of the neighboring
pixels at the last ISP stage. For example, to process one pixel (that we do not
interpolate), the CFA stage needs the (intermediate) values of the neighboring 48
pixels in a 7 × 7 pixel matrix; the intermediate values denote the values after the
pixels are processed by the proceeding ISP stages. These pixels stored in the SRAM
may include the pixel values that are supposed to be skipped and interpolated later.
Thus, we need to interpolate the intermediate values of the skipped pixels based on
those of the neighboring pixels at the output of the AWB stage that feeds the
intermediate values of pixels to the CFA stage (cf. Fig. 2). Nonetheless, the number
of pixels processed by the CFA stage (i.e., the energy consumption of the CFA
stage) is also reduced leveraging the feature described in Fig. 5 of Sect. 4.1.

Fig. 8 A row of pixels (top). Adaptive pixel value interpolation (bottom)
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Impact on TP, TN, and energy consumption: In Fig. 9 we show the TP (left) and
TN (right) detection rates of for various pixel interpolation threshold values. We
also show how many pixels are interpolated for each threshold value. Analyzing
Fig. 9, we see that our adaptive pixel interpolation technique shows a very minor
impact on TP detection accuracy and a modest impact on TN detection accuracy.
As we increase the threshold values, more pixels can be interpolated but the TP
detection accuracy asymptotically decreases. When the threshold value is set to 20,
44 % of the pixels in (raw) images can be skipped, while the TP detection accuracy
is still as high as 95 % (i.e., 3 % lower than the baseline ISP); Fig. 10 shows
The TN detection accuracy simply stays at 89 % for all four threshold values. This
is because most part of the background is much smoother than the faces and further
increasing the effect of interpolation on the background has little effect on it. This
adaptive pixel interpolation technique can reduce the energy consumption of all ISP
stages except for the SRAM in the CFA stage and its controller. Note that the logic
to support the proposed pixel interpolation technique is very simple (i.e., a few
comparators and multiplexers). When the threshold value is set to 20, we can reduce
the energy consumption of the ISP by 30 %.

Fig. 9 Detection accuracy of interpolating pixel values adaptively: true positive (left) and true
negative (right)

Fig. 10 Fully-processed image before (left) and after (right) the interpolation (Th = 20)
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4.3 Scaling Images

A practical implementation of a face detection algorithm must be able to detect faces
of different sizes. Usually, there is a minimal size of face that the algorithm can
detect. As long as the size of a face in the input image is larger than the minimal size,
the face can be detected. Therefore, it is not always necessary to maintain the original
dimension of the image. Instead, we can scale the images down to greatly reduce the
total number of pixels to be processed by the ISP. A smaller input image can also
benefit the face detection application and reduce energy spent on the detection.

Implementation details: We can either scale the input pixels at the interface
between the image sensor and the ISP, or we can use a simple scaling algorithm to
efficiently decrease a given image size and replace the CFA interpolation. Figure 11
shows a part of the color filter array on an image sensor. For 2 × 2 scaling, we
merge four sub pixels in a 2 × 2 RGGB square to a single pixel with all 3 RGB
components. The RGB value for the merged pixel is {R, G, B} = {R00, (G01 + G10)/
2, B11}.

This scaling algorithm also “interpolates” the CFA and outputs a smaller color
image since we get all RGB values for a pixel in the scaled image. Thus, when this
scaling algorithm is applied, the CFA stage in the ISP can be bypassed. Scaling
image by 2 × 2 can reduce the total number of processed pixels to only 25 % of the
original image. Similarly, to scale the image by 4 × 4, we merge the sub pixels in a
4 × 4 square to a single pixel. The merged pixel has a value of {R, G, B} =
{(R00 + R02 + R20 + R22)/4, (G01 + G03 + G10 + G12 + G21 + G23 + G30 + G32)/8,
(B11 + B13 + B31 +B33)/4}.

Impact on TP and TN: Three scaling algorithms are evaluated in our experiment:
2 × 2, 4 × 4 and 8 × 8 in Fig. 12 shows the detection accuracy of the scaled images.
The TP detection accuracy along with SSIM shows a simple decreasing trend with
the scaling factor increasing from 2 × 2 to 8 × 8. When the images are scaled by
2 × 2 or 4 × 4, the TP detection accuracy shows only a modest decrease to about
95 %. However, when the scaling factor goes up to 8 × 8, the TP detection accuracy
decreases to about 80 %. The TN detection accuracy has a quite different behavior.
When the images are scaled by 2 × 2, the TN detection accuracy drops to 82 %.
Then, with the scaling factor increasing, the TN detection accuracy gradually
increases to 90 % at 8 × 8. Since both TP and TN detection accuracy is important,

Fig. 11 Part of the color filter
array
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we select the 4 × 4 scaling algorithm as the best one. It reduces the total number of
pixels to process to 6.25 % of the original image thus reduces the ISP energy
consumption (almost) proportionally. The energy consumption can be even lower if
we use the algorithm described in section—to replace the CFA interpolation stage
with the much simpler logic for scaling.

4.4 Putting It Together

The three proposed techniques are exploiting somewhat orthogonal characteristics
of the face detection algorithm and the ISP. Therefore, they can be joined together
to further reduce ISP energy consumption. To evaluate how the three techniques
perform when they are joined, we enable only the CFA and GC stages in the ISP
and vary the interpolation threshold value and scaling factor. Figure 13 shows the
results of joining all the three proposed techniques. The configuration is denoted by
“threshold value + scaling factor” in Fig. 13. For example, “5 + 2 × 2” denotes that
the threshold value is 5 and the scaling factor is 2 × 2. Our evaluation shows that
when all techniques are joined, the TN detection accuracy for some configurations
improves over simple image scaling due to the non-linear effect of various tech-
niques on the face detection algorithm, as discussed in Sect. 4.1. Furthermore, the
high frequency artifacts introduced by scaling is filtered when our adaptive inter-
polation is applied. Considering both TP and TN detection accuracies and ISP
energy consumption, we see that the “20 + 4 × 4” configuration becomes the most
desirable one; it reduces ISP energy consumption by 97 % while degrading TP and
TN detection accuracies by only 5 and 4 %, respectively.

Fig. 12 Detection accuracy of scaling images: true positive (left) and true negative (right)
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5 Related Work

The prior work closest to the objective of our study is [11] where LiKamWa aims to
improve power efficiency of the ISP especially for computer vision applications. In
this “extended abstract,” it proposes to slow down the frame rate and apply other
low-power techniques such as putting the ISP into a sleep state between frames, but
no detailed energy analysis and/or impact on the detection accuracy was provided.
Also, there are other studies targeting to reduce the power consumption of ISP, such
as [12, 13]. However, those studies only optimize the ISP for high perceptual
quality and do not consider the optimization of object detection applications. In
[14], a mixed-signal processor for feature extraction is proposed to reduce the
system power consumption. However, it focuses on reducing power consumed of
the I/O between the CMOS sensor and the processor.

6 Conclusion and Future Work

In this chapter, we propose three techniques to reduce the energy consumption of
the ISP after observing that the image quality for human perception is not strongly
correlated with the image quality for object detection algorithms. We demonstrate
that our three techniques, which require minor modification on the baseline ISP, can
reduce the energy consumption of our ISP by 97 % while degrading true positive
and negative detection accuracies by only 5 % and 4 %, respectively. Furthermore,
the proposed ISP design can be easily re-configured to be running at either
low-energy object detection or normal mode. Consequently, it can provide either
images of high perceptual quality or images processed only for detection to reduce
the energy consumption.

Fig. 13 Detection accuracy of three combined techniques: true positive (left) and true negative
(right)
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Foundations and Applications of 3D
Imaging

Min H. Kim

Abstract Two-dimensional imaging through digital photography has been a main
application of mobile computing devices, such as smart phones, during the last
decade. Expanding the dimensions of digital imaging, the recent advances in 3D
imaging technology are about to be combined with such smart devices, resulting in
broadened applications of 3D imaging. This chapter presents the foundations of 3D
imaging, that is, the relationship between disparity and depth in a stereo camera
system, and it surveys a general workflow to build a 3D model from sensor data. In
addition, recent advanced 3D imaging applications are introduced: hyperspectral
3D imaging, multispectral photometric stereo and stereo fusion of refractive and
binocular stereo.

Keywords Stereo imaging � Hyperspectral 3D imaging

1 Foundations of 3D Imaging

The history of measuring a 3D shape started with pantography, which measures a
3D shape by directly contacting surface points with a mechanical linkage. The
distance measurements over the surface with a stylus allow for duplicating the 3D
shape of an object on paper [25]. Contact-based measurement systems have been
used to transfer engravings or 3D shapes. However, such contact-based approaches
tend to damage fragile surfaces while they are being measured. It is also
time-consuming to capture the entire 3D shape of an object by contact.
Alternatively, non-contact-based methods are more commonly practiced using
modulated light patterns over the object’s surface nowadays.
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1.1 Passive 3D Imaging

Passive 3D imaging approaches reconstruct 3D shapes from camera signals only,
while active approaches capture shapes by projecting structured light or modulated
illumination over an object’s surface. In general, passive methods utilize an optical
phenomenon such as parallax disparity. Stereo imaging is one of the most popular
passive methods, allowing for point-wise depth of a scene. Stereo imaging can be
divided into binocular and multi-view approaches.

1.1.1 Binocular Stereo

Binocular stereo utilizes two cameras with a specific displacement between the
cameras. Two images captured by the cameras contain a pair of corresponding
pixels projected from a surface. Binocular disparity describes pixel-wise dis-
placement of parallax between the corresponding points on a pair of stereo
images.

Figure 1 shows a schematic diagram of a classic binocular system. Rays from a
point of an object on a surface are projected into two imaging planes, passing
through the optical centers of the cameras. Since there is a distance between the two
imaging planes, so-called baseline b, these rays reach different pixel positions on
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Fig. 1 Suppose there is a
point on an object, at which
two cameras point. The point
is projected at different pixel
positions on two image
planes. The difference
between these two positions
changes depending on the
depth distance of the point
from the camera plane, the
focal length of the cameras
and the baseline (the distance
between the two cameras).
Image courtesy of © 2015
Elsevier Computer Vision and
Image Understanding [2]
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these two planes. The pixel-wise displacement between these corresponding pixel
positions is called disparity d of the object point:

d ¼ XL � XRj j; ð1Þ

where XL and XR are the distances between the projected point and the center on
each image plane. This parallax disparity d of these corresponding points, in
Eq. (1), is inversely proportional to the depth distance z from the camera plane to
the object surface. Now we can apply trigonometry to the four distances: the depth
distance of the point d, the focal length of the cameras f, the baseline b, and the
disparity d, allowing us to recover the depth z from given image measurements.
Supposing we know the focal length and the baseline, the depth information can be
calculated as:

z ¼ fb
d
: ð2Þ

Since disparity is the pixel displacement of two different rays projected from the
same point on the object, per-pixel disparity can be obtained by searching the
corresponding pixel points along the axis of the aligned cameras. Suppose the two
cameras’ image planes are aligned perfectly on a line, the corresponding points
exist in different columns in the images along the line, the so-called epipolar line.
Assuming there is a single epipolar line for this corresponding pair, we can narrow
down the search range of correspondence in the image within a single line of a
certain width.

Computing a fine disparity map from stereo is a four-step process: finding
matching cost of corresponding pixels along the epipolar line, aggregating the
matching costs to near pixels, building an initial disparity map, and refining the
disparity map.

In the process of searching for matching costs, we assume that the scene consists
of Lambertian surfaces, where the color of the surface is assumed to be identical in
any directions. Often non-Lambertian surfaces, such as specular plastic or metal
surfaces, cannot be scanned properly using a stereo system.

However, the initially obtained matching costs contain severe noise and errors.
Aggregating the matching costs is equivalent to filtering noisy data and propagating
sparse disparity information. There are two popular approaches to cost aggregation:
local and non-local methods. The critical difference between these two approaches
is the search window size, where all pixels are tested for the similarity of matching
costs, i.e., non-local cost aggregation enforces the cost similarity to all pixels in the
test image, while local aggregation only accounts for the matching costs of pixels
within the local window.

Next, the initially computed disparity candidates need to be selected by mini-
mization of the sum of the matching costs within a boundary condition. There are
local or global approaches to this optimization process. Local methods incur less
computational cost than the global methods, while global methods yield a more
elaborate depth map than that of local methods.
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Lastly, we could refine the disparity estimates using a relevant filtering method,
such as a median filter or a box filter, yielding a refined depth map. Once we have a
disparity map from the last stage, we can calculate the depth information from the
computed disparity, the baseline of stereo, and the focal lengths of the cameras
using Eq. (2).

1.1.2 Multi-view Stereo

Binocular stereo is fundamental in stereo imaging, but the performance of this
stereo is affected by many parameters. In particular, the baseline between the
cameras is critical to the performance of a stereo system. However, the baseline
must be adapted to the scene configuration for optimal performance. There is no
universal configuration of the baseline for real-world conditions.

Wide-baseline stereo reserves more pixels for disparity than narrow-baseline
stereo does. Therefore, wide-baseline systems can discriminate depth with a higher
resolution. On the other hand, the search range of correspondences increases, and in
turn, it increases the chances of false matching. The estimated disparity map is
plausible in terms of depth, but it includes many small regions without depth as
spatial artifacts (of holes) on the depth map. This missing information is caused by
occlusion and false matching in featureless or pattern-repeated regions, where the
corresponding point search fails.

Narrow-baseline stereo has a relatively short search range of correspondence.
The search range of matching costs is shorter than that of the wide-baseline stereo.
There are fewer chances for false matching so that accuracy and efficiency in cost
computation can be enhanced. In addition, the level of spatial noise in the disparity
map is low because the occluded area is small. However, narrow-baseline stereo
reserves a small number of pixels for depth discrimination. The
depth-discriminative power decreases accordingly, whereas the spatial artifacts in
the disparity map are reduced. It trades off the discriminative power for the reduced
spatial artifacts in the disparity map.

This fundamental limitation of the baseline in binocular stereo has been
addressed by the use of more than two cameras, so-called multi-baseline or
multi-view stereo. Okutomi and Kanade [37] proposed a multi-baseline stereo
method, which is a variant of multi-view stereo. The proposed system consists of
multiple cameras on a rail. They presented the matching cost design for the
multi-baseline setup. Instead of computing the color difference of a pixel on the
reference view and the corresponding point on the other view, the color differences
of all views are summed up. This multi-baseline stereo gives more accurate depth
estimates than binocular stereo does.

Furukawa and Ponce [14] presented a hybrid patch-based multi-view stereo
algorithm that is applicable to objects, scenes, and crowded scene data. Their
method produces a set of small patches from matched features, which allows for
filling in the gaps between neighboring feature points to be filled in, yielding a fine
mesh model. Gallup et al. [15] estimated the depth of a scene by adjusting the
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baseline and resolutions of images from multiple cameras so that depth estimation
becomes computationally efficient. This system exploits the advantages of
multi-baseline stereo while requiring the mechanical support of the moving cam-
eras. Nakabo et al. [32] presented a variable-baseline stereo system on a linear
slider. They controlled the baseline of the stereo system depending on the target
scene to estimate the accurate depth map.

Zilly et al. [47] introduced a multi-baseline stereo system with various baselines.
Four cameras are configured in multiple baselines on a rail. The two inner cameras
establish a narrow-baseline stereo pair while two outer cameras form a
wide-baseline stereo pair. They then merge depth maps from two different base-
lines. The camera viewpoints in the multi-baseline systems are secured mechani-
cally at fixed locations in general. This design restricts the spatial resolution along
the camera array while the depth map is being reconstructed. Refer to [38] for the
in-depth investigation of other multi-view methods.

1.1.3 Refractive Stereo

Refractive stereo estimates depth using the refraction of light via a transparent
medium. Suppose a 3D point p in a target scene is projected to pd on an image plane
through the optical center of an objective lens C directly without any transparent
medium (Fig. 2a). Inserting a transparent medium in the light path changes the
transport of the incident beam from p, and it reaches at pr on the image plane with a
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lateral displacement d (between with and without the medium). The displacement
between pd and pr on the image plane is called refractive disparity.

Now we formulate the depth z of p using simple trigonometry as follows [16, 17]:

z ¼ f
R
r
; ð3Þ

where r is a refractive disparity completed by searching a pair of corresponding
points, f is the focal length, and R is the ratio of lateral displacement d to sinðhpÞ:

R ¼ d
sinðhpÞ ; ð4Þ

Here hp is the angle between prC
��!

and the image plane. To obtain the value of R,
we first compute cosðhpÞ as

cosðhpÞ ¼ pre
�! � prC��!
pre
�!�� �� prC��!

���
���
: ð5Þ

Then, we simply assign sinðhpÞ into Eq. (4) after computing sinðhpÞ with a
simple equation:

sin2ðhpÞ þ cos2ðhpÞ ¼ 1: ð6Þ

Lateral displacement d, the parallel-shifted length of the light passing through
the medium, is determined as [20]

d ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ðhiÞ
n2 � sin2ðhiÞ

s !
t sinðhiÞ; ð7Þ

where t is the thickness of the medium, n is the refractive index of the medium, and
hi is the incident angle of the light. Here, sinðhiÞ can be obtained in a similar manner
as the case of sinðhpÞ using the following equation:

cosðhiÞ ¼ prC
��! � eC�!
prC
��!���
��� eC
�!���
���
: ð8Þ

The refracted point pr lies on a line, the so-called essential line, passing through
an essential point e (an intersecting point of the normal vector of the transparent
medium to the image plane) and pd (Fig. 2b). This property can be utilized to
narrow down the search range of correspondences onto the essential line, allowing
us to compute matching costs efficiently. It is worth noting that disparity in
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refractive stereo depends on not only the depth z of p but also the projection
position pd of light and the position of the essential point e, whereas the disparity in
traditional stereo depends on only the depth z of the point p. Prior to estimating a
depth, we calibrate these optical properties in refractive stereo in advance.

Nishimoto and Shirai [36] first introduced a refractive camera system by placing
a refractive medium in front of a camera. Rather than computing depth from
refraction, their method estimates depth using a pair of a direct image and a
refracted one, assuming that the refracted image is equivalent to one of the bin-
ocular stereo images. Lee and Kweon [26] presented a single camera system that
captures a stereo pair with a bi-prism. The bi-prism is installed in front of the
objective lens to separate the input image into a stereo pair with refractive shift. The
captured image includes a stereo image pair with a baseline. Depth estimation is
analog to the traditional methods. Gao and Ahuja [16, 17] proposed a seminal
refractive stereo method that captures multiple refractive images with a glass
medium tilted at different angles. This method requires optical calibration of every
pose of the medium. It was extended by placing a glass medium on a rotary stage in
[17]. The rotation axis of the titled medium is mechanically aligned to the optical
axis of the camera. Although the mechanical alignment is cumbersome, this method
achieves more accurate depth than the previous one does.

Shimizu and Okutomi [39, 40] introduced a mixed approach that combines the
refraction and the reflection phenomena. This method superposes a pair of reflection
and refraction images via the surface of a transparent medium. These overlapping
images are utilized as a pair of stereo images. Chen et al. [11, 12] proposed a
calibration method for refractive stereo. This method finds the pairs of matching
points on refractive images with the SIFT algorithm [30] to estimate the pose of a
transparent medium. They then search corresponding features using the SIFT flow
[29]. By estimating the rough scene depth, they recover the refractive index of a
transparent medium.

1.1.4 Other Approaches

In addition to these binocular, multi-view and refraction-based approaches, Levin
et al. [27] introduced a coded aperture-based approach, in which they insert a coded
aperture blade inside a camera lens instead of a conventional aperture. It allows to
estimate depth to be estimated by the evaluation of blur kernels of the coded aperture.

Bando et al. [3] presented a color-filtered aperture in a commodity camera,
where the sub-apertures of red, green and blue colors are windowed at different
positions. This optical design enables the camera to form three color channels with
geometric shift at different positions to yield depth. They extract depth from the
shifted channels, analogous to traditional depth from defocus.

Recently, Baek and Kim [1, 2] introduced a hybrid approach, so-called stereo
fusion that combines binocular and refractive stereo, using a refractive medium on a
binocular base. The performance of depth reconstruction in binocular stereo relies
on how adequate the predefined baseline for a target scene is. Wide-baseline stereo
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is capable of discriminating depth better than the narrow one, but it often suffers
from spatial artifacts. Narrow-baseline stereo can provide a more elaborate depth
map with fewer artifacts, while its depth resolution tends to be biased or coarse due
to the short disparity. Therefore, Baek and Kim [1, 2] proposed an optical design of
heterogeneous stereo fusion on a binocular imaging system with a refractive
medium, where the binocular stereo part operates as wide-baseline stereo; the
refractive stereo module works as narrow-baseline stereo. They then introduced a
stereo fusion workflow that combines the refractive and binocular stereo algorithms
to estimate fine depth information through this fusion design. Their stereo fusion
system outperforms homogeneous stereo approaches in measuring depth.

1.2 Active 3D Imaging

As mentioned in section “Passive 3D Imaging”, it is necessary to search corre-
sponding points in estimating a depth per pixel. The most ambiguous part of
passive 3D imaging is determining how to search corresponding points. If we could
identify corresponding point more confidently, it would enable a higher accuracy in
measuring the 3D shape of an object or a scene. This active 3D imaging approach is
often called 3D scanning. The most common methods are 3D scanning with
swept-planes, structured lighting and photometric stereo. Assuming that a target
object is static, these methods require the time to sweep the shadow plane across the
object. Recently, some time-of-flight techniques were introduced to overcome this
limitation of static objects; however, the spatial resolution of these methods is
relatively low. In this section, we briefly survey the foundations of 3D scanning
with swept-planes, structured lighting and photometric stereo.

1.2.1 3D Scanning with Swept-Planes

Bouguet and Perona [7] introduced a seminal work on 3D scanning. It is a simple
and inexpensive solution for extracting the 3D shape of static objects. This method
requires a desk-lamp, a stick and a checker board. The camera captures the object
illuminated by the desk-lamp. This method is based on a simple idea. The user is
supposed to move the stick in front of the light source, casting a moving shadow
over the surface of the object. Then the 3D shape can be obtained from the spatial
and temporal location of the captured shadow.

1.2.2 3D Scanning with Structured Lighting

Bouguet and Perona’s [7] idea has been developed with a projector. A camera and a
projector are coupled to establish correspondences through calibration in a 3D
scanning system with structured lighting. Once the correspondences are established,
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a 3D point cloud is reconstructed using ray-plane triangulation. Instead of a simple
swept-plane sequence, spatially-encoded planes, temporally-encoded planes, or a
combination of both spatial and temporal encodings in a projector-based system
allows us to reconstruct still objects or even dynamic scenes.

1.2.3 Photometric Stereo

Photometric stereo, also known as shape-from-shading, estimates surface gradients
using images taken under multiple light directions, assuming that the surface
reflection satisfies the Lambertian constraints. For deeper understanding of photo-
metric stereo, it is necessary to understand the foundations of light transport, for-
mulated in the beginning of computer graphics.

Light Transport. Kajiya [23] models recursive light transport w.r.t. the incident H0

and the exitant H light directions in the hemispherical domain as a rendering
equation:

L x! Hð Þ ¼ Le x! Hð Þ þ RXx
q x;H0 ! Hð ÞL x H0ð Þcos Nx;H

0ð ÞdxH0 ;

where qðÞ is a reflectance function, and Nx is a surface normal at the point x.
In a diffuse environment, self-emitted radiance LeðÞ and reflectance qðÞ do not

depend on the incident and exitant light directions. Although the incident radiance,
say Lðx H0Þ, still depends on the incident direction, the light transport on purely
diffuse surfaces can be simplified:

L xð Þ ¼ Le xð Þ þ RXx
q xð ÞL x H0ð Þ cos Nx;H

0ð ÞdxH0 :

The spherical integral over the hemisphere Xx can be transformed into an
integral over all surfaces S in the scene. Hence no directions appear anymore in the
rendering equation:

L xð Þ ¼ Le xð Þ þ q xð Þ RS K x; yð ÞL yð ÞdAy;

where K(x, y) is the product of a binary visibility V(x, y) and the geometrical
relationship G(x, y) between the illuminating surface y and the reflected surface x at
a distance rxy:

G x; yð Þ ¼ cos Nx;H
0ð Þ cos Ny;�H0

� �
=r2xy: ð9Þ

We now rewrite the above in a discrete matrix-vector form:

L ¼ Le þ qKð ÞL; ð10Þ

where L is the radiance vector of each infinitesimal patch dA, Le is the self-emitted
radiance vector of each patch, K ¼ V � G, and qK is the exitant diffuse illumination
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vector (so-called radiosity). Assuming a state of equilibrium for light transfer, we
can rewrite Eq. (10) as L ¼ I � qKð Þ�1Le. Again we can expand this into a
Neumann series:

L ¼ Le þ qKð ÞLe þ qKð Þ2Le þ � � � þ qKð ÞnLe: ð11Þ

In this form, we can easily model how much light energy is contributed from
n-bounded light; the nth order of the polynomial is equivalent to the effect of
n-bounded light. This allows us to remove indirection illumination from reflection.

Surface Normals. A shading illuminated by a point light, I can be calculated as a
dot product between the incident radiance L and surface normal N: I ¼ L � N.

Supposing we obtain i images under a different light in photometric illumination,
we can obtain the following linear system for each point of the surface:

I1
I2
..
.

Ii

2
6664

3
7775 ¼

L1;x L1;y L1;z
L2;x L2;y L2;z

..

.

Li;x Li;y Li;z

2
6664

3
7775

Nx

Ny

Nz

2
4

3
5:

To solve the linear system above, the row-rank of the matrix L should be at least
three. With more than three light sources used, it becomes an over-constrained linear
system, and it can be solved using least-squares to obtain a normal estimation N.

Shape From Normals. Once we obtain a surface normal per pixel, each point on
the image now has a normal N of fNx;Ny;Nzg; therefore, we solve for the height
field z at (x, y) by minimizing an objective function [5]:

CðzÞ ¼P
x;y

Nz
@zðx;yÞ
@x þ Nx

� �2
þ Nz

@zðx;yÞ
@y þ Ny

� �2
:

where we approximate the ratios of the partial derivatives of z to x and y assuming
orthographic projection:

@zðx;yÞ
@x ¼ zðxþ 1; yÞ � zðx; yÞ;

@zðx;yÞ
@y ¼ zðx; yþ 1Þ � zðx; yÞ:

Once we obtain a set of point clouds (a set of {x, y, z}), we recover the 3D shape
of the surface by indexing neighboring points.

Interreflection in Photometric Stereo. Photometric stereo estimates surface gra-
dients using images taken under multiple light directions, assuming that the surface
reflection observes the Lambertian constraints. However, interreflection breaks this
assumption, and it causes critical problems in photometric stereo. A few works have
addressed these problems by removing interreflection in photometric stereo.
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Nayar et al. [34] presented an iterative method to estimate non-biased surface
normals. They first estimated a pseudo shape, a shape that contains interreflection in
its shape, and reflectance, and they iteratively corrected the pseudo-shape so that it
would converge to the real shape. They also showed the convergence property of
their iterative algorithm. Nayar et al. [35] introduced a method that removes
interreflection using structured light patterns. They used high frequency illumina-
tion patterns in order to separate the direct and the indirect illuminations of a scene.
While two illumination patterns are enough to separate the indirect illumination
theoretically, three illumination patterns were used in practice. For photometric
stereo, they used the high frequency illumination patterns for each light source; thus
at least triple-number of images were required. Liao et al. [28] presented an active
method to remove n-bounded light from photometric stereo using colored multiplex
lighting. The proposed algorithm theoretically assumes that there are at least two
images of an object with the same illumination but varying surface albedos. They
modeled and solved an interreflection problem based on monochromatic surface
albedo. Gupta and Nayar [18] presented a micro-phase shifting technique, i.e.,
sinusoidal illumination patterns with high frequency. They also reduced the number
of illumination patterns needed for shape recovery using micro phase shift. By
using only high frequency patterns, the indirect illumination effects become the
same for every image under each illumination pattern so that indirect illumination
effects can be removed. Most of the prior interreflection-removal methods have
employed active approaches with the specially designed illumination patterns or the
spectrum of the modified light sources. Recently, Nam and Kim [33] proposed an
interreflection removal technique that uses multispectral imaging and does not rely
on any structure of the light source. They presented a novel multispectral photo-
metric stereo method that allows us to remove interreflection on diffuse materials to
be removed by the use of multispectral reflectance information. Their proposed
method can be easily integrated into an existing photometric stereo system by
simply substituting the current camera with a multispectral camera, as their method
does not rely on additional structured or colored lights. They demonstrated several
benefits of their multispectral photometric stereo method such as interreflection
removal and the reconstruction of the 3D shapes of objects with high accuracy.

2 Applications of Advanced 3D Imaging

Reconstructing a 3D object model from multiple overlapping geometry scans has
been an active area in the past decade in computer graphics [6]. In general, there are
two different types of 3D scanning systems: typically a triangulation-based system
for small objects and a time-of-flight system for large scale objects such as a
building. Such 3D scanning systems have been coupled to a color imager and lights
to capture surface color information as texture. Camera calibration and registration
between the camera system and the three-dimensional scanner are necessary to
investigate the interrelationship between the spectral and geometric information.
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Bernardini and Rushmeier [6] surveyed and summarized the general 3D scanning
pipeline that has been employed by many research projects and commercial sys-
tems. Recently, Holroyd et al. [22] presented a two-way 3D imaging system that
allows us to extract both three-dimensional shapes and reflectance functions from
the same set of image data. The system achieves high accuracy in registration of the
shape and reflectance and also explores the directional changes of material
appearance. However, the spectral resolution of the system is limited to the tri-
chromatic RGB channels.

Recently, a straightforward approach to hyperspectral 3D imaging has been
introduced, which swaps out the standard RGB camera used in current 3D scanning
systems and replacing it with a two-dimensional hyperspectral imager. As one of
the seminal approaches, Mansouri et al. [31] attempted to integrate a
two-dimensional multispectral imager into a three-dimensional range scanning
system. Similar to the method of Brauers et al. [9], a set of seven bandpass filters is
employed and accompanied by an LCD projector. This projector illuminates the
surface of the target object to measure the topology of the 3D surface. This system
captures a hyperspectral image and maps it to a scanned surface as a texture
map. This seminal system is limited to capturing a flat surface only.

2.1 3D Imaging Spectroscopy

Kim et al. [24] introduced a 3D imaging spectroscopy (3DIS) system the integrates
2D imaging spectroscopy and 3D scanning, which is the first complete hyper-
spectral 3D imaging system to yield complete 3D scanning models. This enables
the measurement of physically-meaningful 3D hyperspectral patterns of
arbitrarily-shaped solid objects with high accuracy. In particular, they proposed a
modification of a dispersion-based hyperspectral imaging design [45] to achieve
high enough spatial and spectral resolution to build a 3D hyperspectral pattern from
the captured 2D hyperspectral images. Figure 3 shows an overview of the hyper-
spectral 3D imaging system.

2.1.1 The Dispersion-Based Hyperspectral Imager

The design of the hyperspectral imager [24] is based on the snapshot-based design.
They coupled dispersive prism optics and a coded aperture mask to resolve
spatio-spectral information for radiometric sampling. They then addressed the
under-determined problem by solving sparsity-constrained optimization problems.

Unlike bandpass filter-based systems, their imaging system measures continuous
hyperspectral patterns from NUV-A (359 nm) to NIR (1 lm). To increase the
efficiency of the UV spectrum, this system was built with specialized optical
materials, such as fused silica (FS) and calcium fluoride (CaF2). These optical
components enable this system to exceed the spectral range of traditional imaging
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systems, where UV transmittance below 400 nm decreases rapidly due to absorp-
tion effects. In contrast to the IR band, the UV band is challenging for imaging due
to the inherent transmittance characteristics of the optical substrate of glass
components.
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Fig. 3 An overview of the hyperspectral 3D imaging system built by Kim et al. [24] for
measuring 3D hyperspectral patterns on 3D solid objects. This 3D imaging spectroscopy system,
so-called 3DIS, measures 3D geometry and hyperspectral radiance simultaneously. Piecewise
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scientific research. Image courtesy of © 2012 ACM Transactions on Graphics [24]
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In the hyperspectral imager, a random-pattern coded aperture is lithographically
etched on a quartz substrate. A piezoelectric translation stage modulates the aper-
ture, and the aperture code is then directly relayed onto the monochromatic imaging
sensor. The system includes relay lenses and a double Amici prism to disperse the
incoming rays. The light sources used in this system are a Xenon light bulb and a
UV fluorescence light for measuring UV fluorescence.

2.1.2 3D System Integration

The 2D hyperspectral imager is integrated into a 3D imaging pipeline in order to
measure not only the 3D shape but also the reflectance of 3D solid objects. Their
3D scanning pipeline is based on the classic 3D imaging workflow described in
[13]. The hyperspectral imager, a laser range scanner and a Xenon light source are
mounted together on a standard optical table located in a darkroom. The positions
of the imager system, the light source and turntable axis are calibrated in terms of
the laser scanner coordinate system, using the standard calibration targets.

Figure 4 presents the design of the hyperspectral 3D imaging system. A laser
projector shines a thin sheet of light onto the object. On each scan line, the laser
sensor detects the reflected laser light to produce a depth map. A Xenon light source
(or a UV fluorescent light) illuminates the surface with a broad spectrum. The
hyperspectral imager measures reflected radiance to compute a reflectance map with
respect to the reference white.

Laser  
detector 

Laser  
projector 

Hyper-
spectral 
imager 

Xenon 
light source 

Turntable 

White  
reference 

Object System prototype

Fig. 4 Principal design of the 3DIS system [24]. Inset a photograph of the prototype system.
Image courtesy of © 2012 ACM Transactions on Graphics [24]
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2.1.3 Measuring 3D Hyperspectral Patterns

The 3DIS system is demonstrated with various practical and scientific applications
for measuring hyperspectral patterns on 3D solid objects. The imaging system was
used for the non-destructive measurement of the 3D reflectance and fluorescence
patterns of biological organisms, minerals and an archaeological artifact in col-
laboration with Yale Peabody Museum of Natural History. Figure 5 shows an
example of a scanned 3D object.

2.2 Hyperspectral Photometric Stereo

2.2.1 Measuring Surface Normals

Photometric stereo is a 3D imaging technique that has been commonly performed to
capture the shape of 3D solid objects in computer vision for more than three
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Fig. 5 An example of scanning an ore sample that includes willemite, calcite and magnetite,
captured by the 3DIS system [24]. a Is a physically-based rendering result of the 3D hyperspectral
pattern of UV fluorescence with associated spectral readings. Inset (top) NUV-induced fluorescent
radiance of willemite. Inset (bottom) fluorescent radiance of calcite. An ultra-violet spectrum (260–
390 nm) illuminates the object, and the emitted fluorescent radiance (excluding reflected UV) is
measured and rendered in 3D. b Shows the appearance of the ore under white light captured in a
photograph. c Is a rendering of the 3D spectral pattern at 516 nm, where the willemite presents a
spectral peak of fluorescence. Image courtesy of © 2012 ACM Transactions on Graphics [24]
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decades. Photometric stereo estimates surface normal vectors over the surface of the
3D solid objects, yielding a normal map, the surface topology description of the 3D
shape orientation. Photometric stereo captures the shading information over the
surface by varying the position of point light sources. This allows us to estimate the
normal vectors from shading, measured as pixel intensities by a monochromatic
camera [5]. In contrast, the classical binocular stereo estimates the depth infor-
mation from the parallax disparity, caused by placing the two cameras at a distance
away from each other along a base line. One of the virtues of photometric stereo is
that it produces a high-resolution normal map from a relatively simple setup, which
includes a camera and multiple light sources. However, photometric stereo and
hyperspectral imaging have been rarely combined and practiced together in the
computer vision and hyperspectral imaging.

2.2.2 Combining Hyperspectral Imaging with Photometric Stereo

In photometric stereo, many optical phenomena occur as obstacles, such as indirect
illumination, specular reflection and self shadows, degrading the accuracy of the
shape measured by photometric stereo. Much research has focused on recon-
structing surface normals from Lambertian and non-Lambertian reflections by
removing self shadows and specular reflections from photometric stereo [4, 5, 10,
21, 41, 43, 46]. However, removing the indirect illumination effect from photo-
metric stereo [28, 34] has received less attention.

Interreflection is an optical phenomenon that occurs over a concave surface.
When one of the sides is illuminated, the reflected light illuminates the neighboring
side in the concave shape, where two points over the surface face each other. Most
photometric stereo methods are designed with the general assumption that the
surface has Lambertian reflection and the geometric proxy of the object is a convex
shape, which does not suffer from interreflection. However, objects in the real world
comprise a mixture of convex and concave shapes. Removing interreflection in
photometric stereo is a traditional chicken-and-egg problem as we need to account
for interreflection without knowing geometry. This is a typical problem when we
capture a 3D surface geometry with concave shape using photometric stereo. See
Fig. 6c for examples.

Nam and Kim [33] proposed a hyperspectral (a.k.a. multispectral, which means
acquiring visible spectral information in hyperspectral imaging) photometric stereo
method to remove interreflection from diffuse materials of a concave surface while
capturing a 3D shape with photometric stereo. They estimate the amount of
interreflection on a monochromatic diffuse surface using the reflectance infor-
mation of the visible spectrum. The method is integrated into a typical photo-
metric stereo system by simply substituting a multispectral imager for the RGB
camera as the method does not rely on additional structured or colored lights.
Figure 6 shows a schematic overview of their hyperspectral photometric stereo
method.
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2.2.3 Removing Interreflection

Removing interreflection is challenging as the effect is integrated in a light path,
where a ray of light is emitted from a light source, travels through a medium such as
air, reflects on the surface of an object, and enters the camera. The
multiple-bounded light is affected by the surface albedo of the reflecting surface.
The multiple-bounded light becomes a new light source, so-called radiosity, and the
reflection is added at each point. Most of energy that enters the camera is either
directly from the light source or one bounded light from the object surface, which is
the product of the light and surface reflectance. The portion of the second and
higher bounded light varies from scene to scene. Some objects or scenes are more
susceptible to indirect illumination. In this case, the radiance measured by a camera
is affected not only by the illumination and the surface albedo, but also by the
reflectance of the surrounding surfaces.
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The key insight of this hyperspectral photometric stereo method is that a
hyperspectral camera can capture spectrum-dependent albedo with many chan-
nels. Therefore, multiple bounces of wavelength-dependent interreflection are
modelled as a polynomial function, and the interreflection effect is optimized
through hyperspectral reflectance analysis. This allows us to separate
interreflection over diffuse surfaces from measured radiance. Their hyperspectral
photometric stereo does not rely on multiplexing spectral lights as the method in
[42, 44] do; thus the Nam and Kim’s [33] method is capable of acquiring any
arbitrary shape and illumination without the help of structured light and colored
light.

2.2.4 Measuring a Shape with Hyperspectral Imaging

Nam and Kim [33] demonstrated several benefits of the hyperspectral (a.k.a.
multispectral) photometric stereo method, such as the removal of interreflection and
the reconstruction of the 3D shapes of objects with high accuracy.

Figure 7 compares the performance variation of their method according to the
number of input spectral channels. They scanned a concave-shaped soap, which
would have high interreflection. As the soap had specular reflection, polarizing
filters were attached in front of the light sources in order to prevent the specular
reflection coming into the sensor directly. This figure compares three different 3D
photometric stereo results to the ground truth obtained by a 3D laser scanner
(NextEngine). Figure 7b shows the reconstruction results of the normals and 3D
geometry with the naïve photometric stereo approach (without the removal of
interreflection). The reconstructed geometry is flattened compared to the ground
truth. Figure 7c, d present the normals and 3D models using the proposed method
with two different cameras: an RGB camera and a hyperspectral imager. In Fig. 7c,
although the reconstructed geometry is still somewhat flattened, there is an
improvement in terms of sharpness at the edges. Figure 7d shows the results of the
hyperspectral photometric stereo system using 29 channels. The proposed method
yields a geometry that is virtually identical to the ground truth. Using a sufficient
number of channels, high-frequency details of the object surface can be obtained,
yielding high-fidelity normals and 3D shapes.

2.3 Stereo Fusion of Refractive and Binocular Stereo

The performance of depth reconstruction in binocular stereo relies on how adequate
the predefined baseline for a target scene is. Wide-baseline stereo is capable of
discriminating depth better than the narrow-baseline stereo, but it often suffers from
spatial artifacts. Narrow-baseline stereo can provide a more elaborate depth map
with fewer artifacts, while its depth resolution tends to be biased or coarse due to
the short disparity. Baek and Kim [1, 2] proposed a novel optical design of
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heterogeneous stereo fusion on a binocular imaging system with a refractive
medium, where the binocular stereo part operates as wide-baseline stereo, and the
refractive stereo module works as narrow-baseline stereo. They then introduced a
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Fig. 7 Nam and Kim [33] compared the reconstruction 3D models depending on the number of
input spectral channels. a Shows the ground truth obtained by a 3D laser scanner (NextEngine).
b Is the result of naïve photometric stereo without the removal of interreflection. c Is the result of
application of their hyperspectral method applying it to an RGB camera using three spectral
channels. d Is the result of the proposed hyperspectral photometric stereo using 29 visible
channels. The reconstructed shape is virtually identical to the ground truth. Image courtesy of ©
2014 IEEE Computer Graphics and Applications [33]

Foundations and Applications of 3D Imaging 81



stereo fusion workflow that combines the refractive and binocular stereo algorithms
to estimate fine depth information through this fusion design.

Hardware Design. Their stereo fusion system consists of two cameras and a
transparent medium on a mechanical support structure. The both camera lenses
have the same focal length of 8 mm. The cameras are placed on a rail in parallel
with a baseline of 10 cm to configure binocular stereo. A transparent medium is
placed on a rotary stage for refractive stereo in front of one of the binocular stereo
cameras. See Fig. 8 for the hardware design. Note that this refractive stereo module
is equivalent to narrow-baseline stereo while the binocular stereo structure is
equivalent to wide-baseline stereo in their system.

Stereo Fusion. Their stereo fusion workflow consists of two main steps. They first
estimate an intermediate depth map from a set of refractive stereo images (from the
camera with the medium) and reconstruct a virtual direct image. Then, this virtual
image and a direct image (from the other camera without the medium in a baseline)
are used to estimate the final depth map referring to the intermediate depth map
from refractive stereo. Figure 9 overviews the workflow of their stereo fusion
method.

They compared their method with a renowned graphcut-based algorithm [8] with
an image of the same resolution. In general, global stereo methods allow for an
accurate depth map to be obtained, but they incur high computational cost. It is not
surprising that this global method was about eight times slower than their method
(see Fig. 10a). They also compared their method with a local binocular method
[19], which computes the matching cost as the norm of intensity difference and
aggregates the cost using the weight of the guided filter [19]. Its computing time
was *212 s with the same scene (see Fig. 10b). This local method struggles with
typical false matching artifacts. A refractive method using SIFT flow [12] is
compared to their method (Fig. 10c, d). The same number of six refractive images
were employed for both methods. While the refractive method suffers from wavy
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Fig. 8 a The schematic diagram of the Baek and Kim’s [1] stereo fusion system. A point p is
captured by both the refractive stereo and the binocular stereo module. b The Baek and Kim’s [1, 2]
system prototype. Image courtesy of © 2015 Elsevier Computer Vision and Image Understanding
[1, 2]
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Fig. 10 Depth maps of three different scenes in each row were computed by four different
methods. The first two columns (a) and (b) show results obtained with global [8] and local
binocular stereo [19] methods. The third column (c) presents the results obtained by the refractive
stereo method [12]. The Baek and Kim’s [1] method (d) estimates depth accurately without
suffering from severe artifacts. Image courtesy of © 2015 Elsevier Computer Vision and Image
Understanding [1, 2]
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artifacts of SIFT flow and its depth resolution is very coarse, as is typical of
refractive stereo, their method estimates depth accurately with fewer spatial artifacts
in all test scenes.

3 Conclusions

This chapter briefly surveyed the foundations of 3D imaging: the relationship
between disparity and depth in stereo imaging and popular a 3D imaging method
that enables the building of 3D models. In addition, related applications related to
advanced 3D imaging have been introduced: hyperspectral 3D imaging, multi-
spectral photometric stereo, and stereo fusion of refractive and binocular stereo.
Expanding the dimensions of digital imaging, the recent advances in 3D imaging
technology are about to be combined with smart devices, resulting in broadened
applications of 3D imaging.
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E-R-D Optimization in Video Compression

Hyuk-Jae Lee, Hyun Kim and Chae-Eun Rhee

Abstract In mobile multimedia devices with video compression capability, a
reduction of the power consumption in H.264/AVC compression is important to
increase battery lifetime. This chapter presents a power-aware design to determine
the best combination of operation conditions for multiple power-scaling schemes.
To derive the best combination of existing power-scaling schemes, the power
saving and rate-distortion (R-D) performances of individual schemes are presented.
The combined effects of these schemes on power saving and R-D loss are modeled
and the best operation combination is derived. The largest power saving can be
achieved with the smallest R-D degradation by selecting an optimized combination
from among all possible combinations. The optimized combinations are defined as
a power level table comprising ten levels. Depending on the size and motion speed
of a video, four different power level tables are designed to achieve performance
improvements. For application of such tables to the encoder, the usable power for
each period is calculated and the power level suitable for the calculated power
budget is selected. This application method uses the given power budget as much as
possible and shows a better performance. The presented power level tables are
suitable for power control in real-time applications because the tables are developed
in advance. The presented power-aware design is tested with four popular
power-saving schemes and simulations with these four schemes show that a power
saving of about 30 % is achieved for slow-motion videos, whereas these amounts
are about 20 % for fast-motion videos at the sacrifice of less than 0.1 dB
Bjontegaard Delta PSNR degradation.
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1 Power-Aware Design for Hardware-Based
Video Compression

The H.264/AVC video compression standard proposed by the Joint Video Team
(JVT) is widely used for multimedia devices due to its high compression efficiency.
Reduction of power consumption during H.264/AVC compression is important
given the increasing use of mobile multimedia devices in which battery capacity is
limited. Extensive research has been undertaken to reduce power consumption by
the H.264/AVC encoder. Particular efforts have been made to reduce power con-
sumption of motion estimation (ME), which accounts for a major portion of the
power consumption in an H.264/AVC encoder [1–6]. The low-power algorithms
for the H.264/AVC encoder significantly reduce the power consumption, but they
fail to consider the rate-distortion (R-D) degradation resulting from that power
reduction. In the approaches in [7–9], power consumption is controlled by adjusting
the encoder’s operation condition adaptively depending on battery status, user
preferences, and operating environment. In [7], the concept of a power-aware
design is introduced and various power-scaling schemes for hardware accelerators
in H.264/AVC encoders are presented. In the approach in [8], the power con-
sumption target is defined and the power consumption in the encoder is controlled
to meet that target. To control power consumption in the encoder, various operation
conditions for integer motion estimation (IME), fractional motion estimation
(FME), and intra prediction (IP) are determined. In [9], the operation conditions of
the encoder are controlled based on video complexity and the remaining battery
capacity. In [10–12], power-rate-distortion (P-R-D) models are proposed in which
the relationships between power, rate, and distortion are derived. A large number of
simulations are needed when the video sequence is changed or when a new scheme
is added because all combinations of schemes should be simulated in each video
sequence. Therefore, it is necessary to develop a method to speed up the simulation
time in order for the P-R-D models to be practically used to determine the best
operation condition for a power consumption target.

This chapter presents a power-aware design for an H.264/AVC encoder; a design
that optimizes R-D performance. The proposed power-aware design changes the
operation condition in the encoder by using various power-scaling schemes. For an
effective combination of various power-scaling schemes, this chapter formulates the
model to estimate the cross-effects on power consumption among the scaling
schemes. By using the proposed modeling approach, the number of simulations
required to determine the best combination of power-scaling schemes is markedly
reduced. Consequently, the set of power-scaling schemes is easily composed. Based
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on the estimated power saving and the simulated R-D performance, a power level
table is defined. Each power level in that table has corresponding operation con-
ditions that minimize the R-D loss for a given power consumption target.

To achieve better R-D performance, four different power level tables are defined
independently, and dependent on video size and motion speed, in order to char-
acterize power consumption behaviors that are appropriate for the video content. By
using these pre-defined power level tables and utilizing the operation conditions
derived by power-scaling schemes from pre-defined levels, optimized power con-
trol can be easily applied at run time. Decisions related to selection of the proper
power level are made periodically. The available power budget for the current
period is calculated by considering both the power consumed in previous periods
and the power that is to be used in future periods. Subsequently, the power level for
the current period is chosen based on the available power budget. In order to
evaluate the proposed approach, four popular power-scaling schemes are selected
and then the proposed power-aware design is simulated with these four schemes
which are prediction mode reduction [13], search range control, early SKIP mode
decision, and intra-frame period control [14]. Simulation results show that the
average bitrate is increased by 1.34 and 3.42 % for CIF (352 × 288) and HD
(1280 × 720) resolution videos, respectively, in slow-motion videos while
achieving power savings of 25 %. In fast-motion videos, the increase in the average
bitrate is 7.91 and 6.9 % for CIF and HD resolutions, respectively, achieving power
savings of 25 %.

2 Implementation of Power-Aware Design

The power-aware design aims to control power consumption to meet a power
budget target by combining various individual power-saving algorithms that are
widely used for H.264/AVC encoders. The input for the power-aware design
includes multiple power-scaling algorithms, each of which has various operating
conditions that have a trade-off between R-D performance and power consumption.
After applying these power-scaling algorithms, a power level table is generated to
define a set of operating conditions incorporating various power-saving algorithms
that can achieve the best R-D performance for the target power budget. The
power-aware design uses a power level table and selects the best operating con-
dition in that table to achieve the power consumption target.

2.1 Power Consumption of Mobile Devices

This section discusses the impact of video compression on the power consumption
of mobile devices. There are a number of previous studies that investigate the power
consumption of mobile devices. The multimedia operation consumes about 25 % of
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the total power consumption and H.264 encoder contributes most of the multimedia
power consumption [15]. In [16], the power consumption of four operation phases
is shown. In Fig. 7 of [16], Phase J2 represents the video capture without encoding
and Phase J3 represents the video capture with H.264 encoding. Therefore, the
difference between J2 and J3 corresponds to the power consumption of H.264
encoding. In this case, about 40 % power consumption is made by encoding
operation. In summary, the power consumption of H.264 encoding operation
contributes about 25–40 % of the total power consumption of mobile devices.

In the case when 35 % of power consumption of H.264 encoding is saved by the
proposed algorithm, then the amount of the total power consumption of the mobile
devices is between 8.75 and 14 %. In the case of 30 % power saving by the
proposed algorithm, the total power saving is between 7.5 and 12 %. In summary,
the proposed algorithm may save about 7.5–14 % of the power consumption of a
mobile device.

2.2 Generation of a Power Level Table

The power level table defines a list of operation conditions for various
power-saving algorithms along with their power consumptions (i.e., the power
consumptions that are required by video compression when the power-saving
algorithm is performed under the listed operation condition). The operation con-
ditions are chosen to achieve the best video quality for the given power con-
sumption level.

Generation of a power level table includes six steps. In the first step, the power
saving from application of an individual power reduction algorithm is estimated by
simulation. For each algorithm, simulation is performed under various operation
conditions and the power consumption for each of the conditions is estimated. Such
simulations are performed for every power-saving algorithm that is to be used for
power control. Note that the power consumption estimation for one power-scaling
algorithm is performed independently from that for the other algorithms. In addi-
tion, for accurate power estimation, a post-layout simulation for each algorithm is
desirable.

In the second step, the power savings obtained by applying various combinations
of power-scaling algorithms are estimated. Estimation of power consumptions for
all possible combinations of operation conditions is time consuming because
post-layout simulations are necessary to estimate accurate power consumption for
each of the combinations. To save time, the estimation is not performed by using
post-layout simulation. Instead, a power consumption model is used to derive the
power consumptions associated with the various power-scaling algorithm combi-
nations. That model combines the power simulation results from the first step and
enables estimation of power consumption. Details of the power consumption model
used for this estimation are presented in Sect. 3.
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In the third step, corresponding R-D loss is measured for the various algorithm
combinations estimated in the second step. This measurement is obtained by
software simulation, which takes far less time than hardware simulation, making it
possible to obtain R-D losses for all possible combinations. From the power saving
and R-D loss obtained in the second and third steps, respectively, the relationship
between power saving and corresponding R-D loss is obtained for all possible
combinations of power-saving algorithms. That relationship is derived in the fourth
step. The fifth step selects a fixed number of power-saving targets. In the example
presented in Sect. 4, ten power levels are defined. The number of the power levels
affects the granularity of the power control. The final step chooses the operating
conditions that minimize R-D loss. This set of operation conditions combines to
constitute the power level table. By using examples, each of the above six steps is
explained in Sect. 4.

2.3 Effect of Video Characteristics

The effectiveness of a power-scaling algorithm may be influenced by the charac-
teristics of the video. To avoid influences related to video characteristics and to
achieve effective power saving, the proposed power-aware design classifies the
input video into four categories based on video size and motion characteristics.
A power table (see Sect. 2.2) is generated separately for four categories: fast-large,
fast-small, slow-large, and slow-small videos. A large video sequence has a video
sequence width greater than 1000 pixels. Otherwise, the sequence is considered
small. A video is further categorized by the average of its motion vectors (MVs).
A video sequence is classified as slow-motion or fast-motion if the average mag-
nitude of the MVs in the previous 30 frames is either smaller or larger, respectively,
than a pre-defined threshold. In this study, the pre-defined threshold is one pixel,
obtained by experiments with various test sequences. For the initial 30 frames of a
video, the sequence is always categorized as slow-motion because no previous
motion information is available.

2.4 Dynamic Selection of the Power Budget Target

The power level table defines the estimated power consumption of the encoder
when power-scaling algorithms operate under the conditions defined in that table.
Note that the power consumption given in the power level table is an estimated
value; thus, the real power consumption may be different, depending on the char-
acteristics of the input video (see Sect. 2.3). To meet the power budget target, the
actual power consumption is compared with that estimated from the power level
table. If the actual and expected power consumption levels are different, the encoder
needs to compensate for that difference by controlling the power consumption in the
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remaining periods of the video sequence. To this end, the encoding period is
divided into small intervals and the power consumption is controlled independently
for each period.

Suppose that a total power budget (PTOTAL) is given for an encoder to operate
for a certain period of time. Then, let PCUR denote the available power budget for
the current period, PPAST denote the power consumption used in the preceding
period, and PFUR denote the estimated power consumption to occur in the future.
The current power budget PCUR is then calculated by using:

PCUR = PTOTAL � ðPPAST þ PFURÞ ð1Þ

For each period, PCUR is derived from (1). Subsequently, the appropriate
operation condition in the power level table is chosen for the desired power budget
target. Note that the exact value of PFUR cannot be evaluated because the charac-
teristics of future periods are not known until all periods are encoded completely.
Thus, an average value, which is calculated by dividing PTOTAL by the expected
number of periods, is allocated to each future period.

2.5 Selection of a Power-Scaling Algorithm

By combining the power level table and the power budget target, selection of a
power-scaling algorithm that uses a power level appropriate for the current power
budget can be developed. The flow of this algorithm through repeated periods of a
video sequence is shown in Fig. 1. The first step in that flow is to calculate the
power budget target for PCUR by using (11). The second step selects the appropriate
power level table among the four size/motion-based power level tables for the input
video. The third step selects the appropriate power level from the table selected in
step two that will meet the PCUR target. After encoding the current period with the
chosen level, the fourth step identifies the video characteristics of the current period
and determines the amount of power consumed. Those four steps are repeated until
the encoding of all periods is completed. In every period, the appropriate power

Power table selection

Power level selection

Power consumption update

Power budget calculation

YES

Last Period?

Fig. 1 Flow of a
power-scaling algorithm
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level for the current period is adjusted flexibly according to the power consumed in
the past periods as well as that to be consumed in the future periods. In this way, the
operating condition of an encoder can be adjusted to meet the power budget target.
In this study, the selected power level update period is one minute. The update
period and frame rate can be adjusted according to the requirement by an appli-
cation and/or available power budget. Note that the computational complexity of
this algorithm is very small because the power level tables are predefined; thus, the
time needed to determine the optimal operation condition is negligible.

3 Power Estimation Model

There are a number of power-saving schemes that offer effective trade-offs between
R-D loss and power reduction. This section proposes a model that determines
power consumption when various algorithms are performed together.

3.1 Formulation of a Power Estimation Model

Power-scaling algorithms are classified into two types: one applicable for
inter-frame prediction and the other suitable for intra-frame prediction. By applying
those two types, total power saving (PSTOTAL) is obtained by using:

PSTOTAL = PSINTER � ð1� 1=IP)þ PSINTRA � 1=IP ð2Þ

where PSINTER and PSINTRA denote the power savings achieved via inter-frame and
intra-frame predictions, respectively, and where IP represents the period of the
frames encoded by intra-frame prediction.

Of the two power saving terms in (2), PSINTER is analyzed first. There are five
main hardware-based operations within inter-frame prediction: IME, FME, IP,
adaptive deblocking filter (ADF), and variable length coding (VLC). The total
power saving is a summation of the power savings from these five hardware
modules. A number of power-scaling algorithms are proposed for IME, FME, and
IP. In contrast, the use of ADF and VLC for scaling power consumption is not
reported extensively. Therefore, power scaling by ADF or VLC is not considered
hereafter in this chapter. As a result, PSINTER is a summation of PSIME, PSFME, and
PSIP, which denote the power savings achieved by applying IME, FME, and IP,
respectively, as determined by using:

PSINTER ¼ PSIME þ PSFME þ PSIP ð3Þ

Power-scaling algorithms for IME, FME, and IP can be classified into two
categories. In the first category, the computational complexity of the operation is
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controlled and, consequently, the power consumption is also scaled. A search
algorithm for IME is an example of that category. This type of algorithm controls
the computational complexity of IME operations by adjusting the IME search range
and, consequently, also scales the power consumption. In the second category, the
execution frequency of the operation is controlled. For example, an early SKIP
mode detection can result in elimination of ME operations. Depending on the
decision made by this SKIP detection, the frequency of the ME operations is
controlled. As a result, the power consumed by an ME module is also adjusted.

The two power control algorithm categories are reflected in a power-saving
equation as discussed next. Let PSIME,RC denote the power saving achieved by the
computational complexity of IME operations (representative of the first category)
and PSIME,RF denote the power saving by reducing the frequency of IME execution
(representative of the second category). PSIME,RF can be obtained by multiplication
of FIME,RF which denotes the frequency of the IME operation that is not executed
by the algorithm to achieve PSIME,RF and PCIME which denotes the power con-
sumption of conventional IME module. Then the power saving obtained by
incorporating IME is determined by using:

PSIME ¼ ½ð1� FIME;RFÞ � PSIME;RC� þ FIME;RF � PCIME ð4Þ

Note that the term (1 − FIME,RF) is multiplied to the first term of the right side of
(4) because the frequency of the IME operation is reduced. Therefore, the power
saving obtained by reducing the IME complexity is also reduced in proportion to
the reduced frequency of the IME operation. Similarly, the power saving associated
with FME and IP operations is determined by using:

PSFME ¼ ½ð1� FFME;RFÞ � PSFME;RC� þ FFME;RF � PCFME ð5Þ

PSIP ¼ ½ð1� FIP;RFÞ � PSIP;RC� þ FIP;RF � PCIP ð6Þ

where FFME,RF and FIP,RF denote the frequencies of the reduced FME and IP
operations that are not executed by the algorithms used to achieve PSIME,RF and
PSIME,RF, respectively. PCFME and PCIP denote the power consumptions of con-
ventional FME and IP modules, respectively. Then the total power saving for
inter-frame prediction is obtained by summing (4)–(6) as in:

PSINTER ¼½ð1� FIME;RFÞ � PSIME;RC� þ FIME;RF � PCIME

þ½ð1� FFME;RFÞ � PSFME;RC� þ FFME;RF � PCFME

þ½ð1� FIP;RFÞ � PSIP;RC� þ FIP;RF � PCIP

ð7Þ

There is an algorithm that reduces concurrently the execution frequencies of
IME, FME, and IP. In this case, the algorithm affects the terms FIME,RC, PSIME,RF,
FFME,RC, PSFME,RF, FIP,RC, and PSIP,RF. For the evaluation of (7), the frequencies
FIME,RC, FIME,RC, and FIME,RC need to be obtained independently. In general,
estimation of the frequencies is not difficult because it can be obtained from
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software simulation. In contrast, the terms PSIME,RF, PSFME,RF, and PSIP,RF do not
have to be derived independently. Instead, only the summation of all three terms is
needed. Therefore, only one hardware simulation is necessary to obtain the sum-
mation of all three terms. For algorithms that reduce only two of IME, FME, and IP,
their impact on power saving can be obtained similarly.

To derive PSINTRA, the second term in (2), the power saving in the intra-frame
prediction is analyzed. Note that intra-frame prediction does not use the IME and
FME modules and, consequently, requires less power consumption than that used
by inter-frame prediction. Thus, intra-frame prediction inherently achieves power
saving (PSINTRA,INH) compared to that from inter-frame prediction. Additional
power saving can be achieved by reducing the computational complexity of
intra-frame prediction, which is achieved similarly to the savings described in (6).
Thus, PSINTRA is derived by using:

PSINTRA ¼ PSINTRA;INH þ ½ð1� FIP;RCÞ � PSIP;RC� � PSIP;RF ð8Þ

The power savings estimated from (2) through (8) are compared with results
obtained by simulation in Sect. 5. The comparison indicates that the model esti-
mates are similar to the simulation results.

3.2 Impact of ADF and VLC on Power Consumption

Previous study indicates that the computation complexity of ADF or VLC is much
smaller than that of IME, FME or IP. In [17], the costs of hardware modules are
presented in Table 2. In terms of gate count, ADF (DB in [17] ) is 6.6, 5.01, and
16.65 % of IME, FME, and IP, respectively, whereas VLC (EC in [17] ) is 9.61, 7.3,
and 24.24 % of IME, FME, and IP, respectively. In terms of memory size, ADF is
6.64, 6.58, and 18.16 % of IME, FME, and IP, respectively, whereas VLC is 9.26,
9.19, and 25.35 % of IME, FME, and IP, respectively. Thus, the power consumption
of ADF and VLC may not make a big impact on the total power consumption.

A comparison of the computational complexity of deblocking filter with ME and
intra prediction is presented in [18] by utilizing the number of processor cycles to
execute various functions for compression. Inter Prediction, Intra Prediction, and
Deblocking Filter are compared and the complexity of Deblocking Filter is much less
than both Inter Prediction and Intra Prediction. Thus, the amount of power con-
sumption by Deblocking Filter may be much smaller than ME or Intra Prediction.

4 Power-Scaling Algorithms

In this section, four power-scaling algorithms are used to generate a power level
table. The procedures used in the example are applicable to other power-scaling
algorithms.
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4.1 Four Power-Scaling Algorithms

This subsection briefly explains the four power-scaling algorithms chosen for this
example. These algorithms are reported to be effective in the control of power
consumption in trading off the complexity of an encoder. The selected four algo-
rithms are briefly described in the following.

FME Prediction Mode Reduction The prediction mode reduction for FME
decides the number of FME modes to be performed based on IME results [13].
A decreased FME complexity leads to the reduction of the power consumption.
When the prediction mode reduction is not applied, FMEs are performed all pre-
diction modes including 16 × 16, 16 × 8, 8 × 16 and four 8 × 8 partitions. This full
FME operation is denoted by Mode 7. Mode 5 represents that two are selected from
16 × 16, 16 × 8 and 8 × 16 partitions and three are selected from four 8 × 8
partitions for FME operation. Mode 3 represents that one is from 16 × 16, 16 × 8,
and 8 × 16 partitions and two are from four 8 × 8 partitions [13]. Mode 1 denotes
that just one mode which is determined as the best mode in IME operation is chosen
for FME operation.

IME Search Range Control The search range of ME significantly affects the
power consumption, which increases in proportion to the data transferred from
external memory and in proportion to the amount of ME computation. When the
search range is small, ME is performed for a small number of positions in the
reference frame. Therefore, power consumption for memory access is reduced
because the data size as loaded from the external memory is decreased. Therefore,
the power consumption can be controlled by adjusting the search range. To this end,
the search range is reduced to 1/2, 1/4, 1/6 or 1/9 to increase the degree of power
control. Table 1 shows the proposed scheme for the adjustment of the search range.
The first column represents the ratio of the search range reduction. PMVX and
PMVY in the second column denote the horizontal and vertical components of the
PMV, respectively. If the magnitude of PMVX is larger than that of PMVY, an
object in a video very likely moves in the horizontal direction. Thus, the width of
the search range is set to a value that is equal to or greater than the height of the
search range, which increases the probability that the best matched object is
included in the search range. The adjusted width and height of the search range are
presented in the third and fourth columns, respectively. Here, SRX and SRY denote

Table 1 Search range control Adjustment range PMV condition X size Y size

1/2 |PMVX| >= |PMVY| SRX SRY/2

|PMVX| < |PMVY| SRX/2 SRY

1/4 – SRX/2 SRY/2

1/6 |PMVX| >= |PMVY| SRX/2 SRY/3

|PMVX| < |PMVY| SRX/3 SRY/2

1/9 – SRX/3 SRY/3
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the width and height of the original search range, respectively. The values of SRX

and SRY are obtained from the algorithm presented in [19], where the center
position of the search range is the position at which the PMV points.

Early SKIP Mode Decision If the SKIP mode is determined early before ME
operation, not only the computation time but also the power consumption is sig-
nificantly reduced because both inter- and intra-frame predictions are skipped. Such
a method is referred to as an early skip mode decision. However, the compression
efficiency is degraded when the early skip mode decision is not correct. To this end,
the early skip mode decision in this study is made after the IME. The three con-
ditions for early skip decision are checked based on the result obtained from the
IME. If the conditions for early skip decision are satisfied, the following FME and
IP are skipped. Otherwise, the original skip mode conditions are tested again after
all inter-frame predictions are finished.

For the proposed early skip mode decision, the best mode of the IME, denoted by
ModeIME, should be 16 × 16 (Condition 1). In Condition 2, the MV resulting from
IME as denoted by MVIME is compared with the PMV. As the skip mode decision is
made before FME, only MVIME is available for the decision. Condition 2 is divided
into two cases depending on the motion characteristic of the video sequences. One is
used for slow-motion videos and the other is for fast-motion videos. Let RatioSKIP
denote the ratio of the number of MBs encoded as the SKIP mode in the previous
frame to the number of all MBs in the frame. If RatioSKIP is greater than or equal to a
threshold, the previous frames may have low image complexity and slow-motion
characteristics. Assuming that successive frames have a high temporal correlation,
the current frame may also have low image complexity and slow-motion charac-
teristics. In this case, Condition 2 is satisfied when the difference between the
MVIME and the PMV is less than or equal to 1. In the case of slow-motion images
with low complexity, the value of the MV is relatively small. Therefore, the image
quality loss by an incorrect skip mode decision is insignificant. If RatioSKIP is less
than the threshold, the characteristic of the current frame is assumed to be complex
with fast motion. In this case, the MVIME should be equal to the PMV, where the
condition is checked more strictly. THLOW, which is the threshold of RatioSKIP, is set
to 30 % experimentally. Finally, Condition 3 is proposed to predict zero CBP using
the sum of absolute differences (SAD). Let SADIME_16×16 denote the SAD of an MB
from IME. Let SADIME_4×4 denote the SAD of a 4 × 4 block in the current MB. If
SADIME_16×16 is less than the threshold, TH16×16, and sixteen SADIME_4×4s in the
current MB are less than the threshold, TH4×4, it is highly probable that the CBP of
the MB is zero. If Conditions 1, 2 and 3 are all satisfied, the current MB is encoded as
the SKIP mode and the computations for FME and IP are skipped.

Intra-frame Period Control Among the video frame types, the power consump-
tion for I-frame compression is very small compared to that for P-frame or B-frame
compression. This is because the loading of the reference data from external
memory is not necessary. Furthermore, complex ME operations are not performed
for an I-frame. Therefore, power consumption is reduced as the intra-frame period
is decreased (i.e., as the intra-frame insertion frequency is increased).
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4.2 Example Power Estimation Model

By applying the above four algorithms to (2), (7), and (8), an example power
consumption model is derived. To that end, (2), (7), and (8) are re-formulated to
consider the power savings of the four selected algorithms; that is, the FME pre-
diction mode reduction (PSPMR), IME search range control (PSSR), early SKIP
mode decision (PSES), and intra-frame period control (PSINTRA,INH) algorithms. For
the derivation in (4) (i.e., the power saving resulting from the IME operation), the
following values in (9) are obtained for this example because the IME search range
control is the only algorithm that affects the power saving associated with IME and
the IME search range control is never skipped.

FIME;RC ¼ 0; PSIME;RC ¼ PSSR; PSIME;RF ¼ 0 ð9Þ

For the derivation in (5) (i.e., the power saving resulting from the FME oper-
ation), both the FME mode reduction and the early SKIP schemes affect the amount
of power saving. The FME prediction mode reduction decreases the power con-
sumption of FME itself (i.e., PSPME,RC = PSPMR) whereas the early SKIP affects the
operation frequency of FME. Let TNUM denote the total number of MBs and
ESNUM denote the number of SKIP mode MBs as determined by the early SKIP
mode decision algorithm. Then, the FME execution frequency is ESNUM/TNUM

(i.e., FFME,RC = ES NUM/TNUM).

FFME;RC ¼ ESNUM=TNUM; PSFME;RC ¼ PSPMR ð10Þ

In contrast, the early SKIP mode algorithm affects both FME and IP. Thus, it
also contributes to the derivation in (6) (i.e., the power saving associated with
intra-frame prediction). Thus, the power saving for the early SKIP mode decision
algorithm is obtained by using:

PSES ¼ PSFME;RF þ ½ð1� FIP;RCÞ � PSIP;RC� þ PSIP;RF ð11Þ

Thus, the total power saving associated with the inter-frame prediction is for-
mulated as follows:

PSINTER ¼ PSSR þ ð1� ESNUM=TNUMÞ � PSPMR þ PSES ð12Þ

For the derivation in (8) (i.e., the power saving resulting from the intra-frame
prediction operation), no special power-scaling scheme is adopted. Therefore, only
the inherent power saving from the intra-frame prediction (PSINTRA,INH) contributes
to the total power saving (PSINTRA = PSINTRA,INH). Therefore, the total power
saving for both inter-frame and intra-frame prediction is determined by using:

PSTOTAL ¼ð1� 1=IP)� ½PSSR � ð1� ESNUM=TNUMÞ
� PSPMR þ PSES� þ ðPSINTRA;INH � 1=IP)

ð13Þ
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4.3 Power Simulation of Individual Algorithms

The amount of power saving and the corresponding R-D loss associated with
application of the four power-scaling algorithms are obtained independently by
simulation. For the power simulation, the hardware-based H.264/AVC encoder [20]
is synthesized by using a Synopsys Design Compiler with a 0.13 µm library and the
power consumption is measured with post-layout simulation. The R-D performance
is obtained by software simulation of the hardware reference model, which gives
exactly the same result as that from the hardware-based encoder. For derivation of
the R-D performance, twelve video sequences are used (Table 2): three slow-motion
CIF videos (Container, News, and Sean), three fast-motion CIF videos (Table, Bus,
and Stefan), three slow-motion HD videos (Aspen, Sunflower, and Intotree), and
three fast-motion HD videos (Factory, Pedestrian area, and Tractor). The number of
frames in each video is 100 while the quantization parameter (QP) values are 20, 24,
28, and 32. The encoding configuration uses a base profile and the group of pictures
(GOP) structure is “IPPP…”. The operating clock frequency is 50 MHz for CIF
videos and 166 MHz for HD videos in order to obtain a frame rate of 30 frames per
second (fps) for the hardware-based H.264 encoder [20].

4.3.1 FME Prediction Mode Reduction

Table 3 shows the power saving and R-D loss resulting from application of the
FME mode reduction algorithm. The twelve test videos (Table 2) are grouped by
size and motion characteristics in the first and second columns. The third column
represents the number of prediction modes used during the FME operation. The
fourth, fifth, and sixth columns show the average power savings achieved, the
Bjontegaard Delta PSNR (BDPSNR) [21] change, and the Bjontegaard Delta
Bitrate (BDBR) [21] change from the values obtained from application of Mode 7,
respectively. The seventh column presents BDBR per power saving ratio, which
reflects the effectiveness of the mode reduction scheme.

Among all FME mode reductions, the average BDPSNR drop is less than 0.1 dB
while the average BDBR increase is 2.52 % (Table 3). When Mode 1 is used, the
BDBR difference between the CIF and HD sizes is very large. The BDBR/power
saving ratio in the seventh column also shows a similar trend. The differences in
prediction error caused by application of the various modes are not as large in HD

Table 2 Test video
sequences

Motion—size CIF(352 × 288) HD(1280 × 720)

Slow Container Aspen

News Sunflower

Sean Intotree

Fast Table Factory

Bus Pedestrian area

Stefan Tractor
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videos as it is in CIF videos. This is due to the low spatial complexity in HD videos
compared to that in CIF videos. Thus, in HD videos, the R-D loss from making an
erroneous reduction mode decision is less critical than that in CIF videos.

4.3.2 IME Search Range Control

Table 4 shows the power saving and R-D performance obtained by applying the
IME search range adjustment. The applied search range adjustment rates are 1/2,

Table 3 Performance of the prediction mode reduction

Size Motion Mode Power saving
(%)

BDPSNR
(dB)

BDBR
(%)

BDBR/PS

CIF Slow 5 6.79 −0.02 0.46 0.067

3 13.59 −0.1 2.56 0.188

1 18.12 −0.31 8.17 0.451

Fast 5 6.66 −0.02 0.45 0.068

3 13.32 −0.08 1.84 0.138

1 17.76 −0.31 7.19 0.405

HD Slow 5 6.73 −0.01 0.26 0.039

3 13.45 −0.06 1.9 0.141

1 17.94 −0.08 2.71 0.151

Fast 5 6.47 −0.01 0.41 0.063

3 12.94 −0.06 1.85 0.143

1 17.26 −0.08 2.46 0.143

Table 4 Performance of the search range control

Size Motion Adj
Rate

Power saving
(%)

BDPSNR
(dB)

BDBR
(%)

BDBR/PS

CIF Slow 1/2 6.43 −0.01 0.22 0.034

1/4 9.64 −0.02 0.4 0.041

1/6 10.71 −0.03 0.73 0.068

1/9 11.43 −0.14 3.66 0.321

Fast 1/2 7.28 −0.05 1.22 0.168

1/4 10.92 −0.44 9.9 0.907

1/6 12.14 −0.52 11.99 0.988

1/9 12.95 −1.08 24.35 1.88

HD Slow 1/2 6.86 −0.01 0.42 0.061

1/4 10.29 −0.03 0.9 0.087

1/6 11.43 −0.06 1.97 0.172

1/9 12.2 −0.2 5.98 0.49

Fast 1/2 8.5 −0.16 4.59 0.541

1/4 12.75 −0.31 9.34 0.733

1/6 14.17 −0.51 14.55 1.027

1/9 15.11 −0.77 22.09 1.462
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1/4, 1/6, or 1/9 of the original range in both horizontal and vertical directions.
Among the slow-motion video sequences, the average power saving is 9.87 %,
whereas the average power saving in fast-motion sequences is 11.73 %. The
average BDBR increases are 1.78 and 12.26 % for the slow-motion and 12.26 % for
the slow-motion and fast-motion sequences, respectively. The BDBR/power saving
ratio in the seventh column is smaller for the slow-motion sequences than that for
the fast-motion sequences. This result is expected because the search range for IME
is sensitive to motion characteristics; consequently, the presented IME search range
control is particularly effective in a power-aware design for slow-motion sequences.

4.3.3 Early SKIP Mode Decision

Table 5 shows the power saving and R-D performance obtained by applying the
early SKIP mode decision algorithm [14]. In the third column, the effect of the
algorithm on power saving differs markedly between slow-motion and fast-motion
CIF sequences. This is because there are many MBs determined as SKIP modes in
slow sequences and it is easy to determine the SKIP mode by applying an early
SKIP mode decision. However, fast sequences have a small number of MBs
determined as SKIP modes. Thus, the results obtained by applying the early SKIP
mode decision are somewhat inaccurate. The average BDPSNR drop is less than
0.06 dB and the average BDBR increase is 1.89 %. The CIF sequences show an
average BDBR/power saving ratio of 0.025, whereas the average ratio for the HD
sequences is 0.576, a marked difference. In addition, the slow-motion sequences
show an average ratio of 0.199, whereas the fast-motion average is 0.402, markedly
larger than that of the slow-motion sequences. Thus, application of an early SKIP
mode decision scheme in a power-aware design is effective for CIF and
slow-motion videos.

4.3.4 Intra-Frame Period Control

Table 6 shows the power saving and R-D performance obtained by applying the
intra-frame period control scheme. The third column represents selected intra-frame
period which varies among 10, 15, 30 and 60. The R-D performance as indicated by
BDPSNR and BDBR decreases substantially as the number of intra-frame periods

Table 5 Performance of the early skip mode decision

Size Motion Power saving (%) BDPSNR (dB) BDBR (%) BDBR/PS

CIF Slow 14 −0.01 0.24 0.017

Fast 5.15 −0.01 0.17 0.032

HD Slow 8.67 −0.09 3.3 0.381

Fast 5 −0.12 3.86 0.772
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decreases (i.e., as the intra-frame insertion frequency is increased). This result
shows that the frequent insertion of I-frames has a significant effect on both power
consumption and bitrate. The HD sequences have an average BDBR/power saving
ratio of 1.505, whereas the CIF sequences have a markedly higher average
BDBR/power saving ratio of 4.192. This is because the inter-frame prediction cost
of CIF sequences is smaller than that of HD sequences due to the higher spatial
complexity in CIF sequences. Moreover, fast-motion and slow-motion sequences
show an average BDBR/power saving ratios of 1.295 and 4.402, respectively. This
result demonstrates that the intra-frame period control scheme is useful in HD,
fast-motion video sequences.

4.4 Estimation of the Combined Power Saving
and Derivation of the Optimal Operating Conditions

This subsection describes the generation of a power level table based on the results
of the four power-scaling algorithms described in Sect. 2.2. As a result of steps 2, 3,
and 4 in Sect. 2.2, the relationships between BDBR and power saving obtained
from various combinations of algorithm operation conditions are plotted in Fig. 2.
The horizontal axis represents the power saving, whereas the vertical axis does the
BDBR change. Each point in Fig. 2 represents the BDBR change and power saving
derived from a given operation condition. The power savings are obtained from

Table 6 Performance of the intra-period control scheme

Size Motion Period Power saving
(%)

BDPSNR
(dB)

BDBR
(%)

BDBR/PS

CIF Slow 60 1.44 −0.27 6.79 4.713

30 2.87 −0.87 21.62 7.533

15 5.75 −1.85 44.47 7.735

10 8.62 −2.84 67.62 7.845

Fast 60 1.47 −0.06 1.4 0.955

30 2.95 −0.2 4.56 1.546

15 5.9 −0.41 9.52 1.614

10 8.84 −0.62 14.11 1.596

HD Slow 60 1.46 −0.06 2 1.372

30 2.91 −0.18 5.52 1.896

15 5.82 −0.39 11.45 1.967

10 8.73 −0.66 18.86 2.16

Fast 60 1.53 −0.04 1.34 0.874

30 3.05 −0.12 3.62 1.188

15 6.11 −0.25 7.81 1.278

10 9.16 −0.4 11.97 1.307
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(13) which is used to obtain the power simulation results of individual scaling
algorithms. For estimation of BDBR change, all combinations of possible operation
conditions are simulated by using reference software which gives exactly the same
result as that from the hardware-based encoder. In Fig. 2, the points at the
lower-right portion of the plots represent better power saving performance than
those at the upper-left because the lower-right points have small BDBR increases at
the same or similar power saving levels. Among the gray points in Fig. 2, the points
that have the smallest BDBR change relative to the obtained power savings are
connected with a segmented line. The points along the segmented line represent the
operation conditions providing the least power consumption for a given BDBR
change.

4.5 Generation of a Power Table

The final step in this example of the power-aware design is the generation of power
levels that are associated with the optimal operating conditions of the four algo-
rithms. To this end, a set of 10 operating conditions is chosen so as to have a regular
interval of power saving. One advantage of a regular interval is that it can apply the
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Fig. 2 BDBR change versus power consumption for various combinations of power-scaling
schemes: a CIF slow-motion, b HD slow-motion, c CIF fast-motion, d HD fast-motion reproduced
with permission from Kim et al.
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most appropriate power level to the encoder based on the available power. In
addition, changes in compression efficiency resulting from the use of different
power levels are accomplished smoothly due to the regularity of the intervals. In
this study, there are 10 power level entries in each power table, which result in
power level intervals of approximately 5 % of power saving, similar to the interval
used in [8].

The 10 operating conditions are selected from those represented in Fig. 2.
Among the optimal operating conditions, those with regular power saving intervals
are selected (marked with + in Fig. 2). From these operating conditions, power level
tables are developed as shown in Table 7. In Table 7, the ten power levels are
designated as level 0 to level 9. At level 0, none of the four power-scaling schemes
is applied. Level 9 offers the largest amount of power saving among the ten power
levels. The PMR, SR, ES, and IP columns represent the operation conditions of the
prediction mode reduction, search range control, early SKIP mode decision and
intra-frame period control, respectively. The PMR operation condition affects CIF
and HD videos differently. For the CIF video sequences, prediction mode 1 (see
Table 7) is used from level 7 to level 9 in slow-motion and from level 6 to level 9 in
fast-motion, whereas for HD sequences prediction mode 1 is used from level 6 to

Table 7 Power level table
reproduced with permission
from Kim et al.

Level CIF slow-motion HD slow-motion

PMR SR ES IP PMR SR ES IP

0 – – – – – – – –

1 – – O – 5 – – –

2 – 1/2 O – 5 1/2 – –

3 – 1/4 O – 5 1/4 – –

4 5 1/4 O – 3 1/2 – –

5 5 1/6 O – 3 1/4 – –

6 3 1/6 O – 1 1/4 – –

7 1 1/6 O – 1 1/4 O –

8 1 1/9 O – 1 1/6 O 30

9 1 1/9 O 60 1 1/6 O 15

Level CIF fast-motion HD fast-motion

PMR SR ES IP PMR SR ES IP

0 – – – – – – – –

1 5 – – – 5 – – –

2 5 – O – 3 – – –

3 5 1/2 – – 1 – – –

4 5 1/2 O – 3 1/2 – –

5 3 1/2 O – 1 1/2 – –

6 1 1/2 O – 1 1/4 – –

7 1 1/2 O 30 1 1/4 – 30

8 1 1/6 O 60 1 1/4 – 15

9 1 1/6 O 10 1 1/4 O 10
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level 9 in slow-motion and from level 5 to level 9 in fast-motion sequences. In CIF
videos, errors in the coefficients affect video quality more severely than errors in
MVs because of the high spatial complexity of CIF videos. Thus, prediction mode
reduction directly leads to degradation of R-D performance. In contrast, in HD
videos, MV errors are more important than those in coefficients due to the low
spatial complexity. As a result, R-D performance is not markedly degraded when
the number of prediction modes is reduced. Therefore, the application of PMR is
more useful for high resolution videos.

The ES algorithm is selected for use at lower power levels in CIF videos than
those in HD videos as shown in the fourth, eighth, twelfth and sixteenth columns of
Table 7. This is because the proportion of the 16 × 16 mode selected as the IME
mode is higher in the low resolution videos than that in the high resolution videos.
Thus, the ES algorithm is more useful for low resolution videos. The effects of SR
and IP differ depending on the video’s motion characteristics. The slow-motion
video uses SR from level 2 to level 9 for both CIF and HD sequences and IP at level
9 in the CIF video and in levels 8 and 9 in the HD video. In contrast, fast-motion
videos use SR from level 3 to level 9 in the CIF video and from level 4 to level 9 in
the HD video and utilize IP for levels 7–9 for both CIF and HD videos. The
maximum SR ratio is smaller in slow-motion (1/9) than in fast-motion (1/6) videos.

In slow-motion videos, a wide search range is not necessary because the MVs
are relatively small. Thus, a degradation of R-D performance is not large when the
search range is reduced. In contrast, the difference in the bit rate between
intra-predicted and inter-predicted frames is very large due to the high temporal
correlation between successive frames. Therefore, the SR algorithm has a great
impact on power level selection, whereas the IP algorithm is not as effective due to
its large R-D degradation. In contrast, most fast-motion videos require a wide
search range compared to slow-motion videos due to their large MVs. Thus, a
search range reduction directly leads to degradation of R-D performance. Also, the
difference in bit rates between intra-predicted and inter-predicted frames is rela-
tively small in fast-motion videos compared to that in slow-motion videos due to
the low temporal correlation between successive frames. Therefore, the IP algo-
rithm plays an important role in power saving for fast-motion videos, whereas the
effect of SR in those videos is relatively small. In summary, the SR algorithm is
more useful in slow-motion than fast-motion videos and the IP algorithm is more
useful in fast-motion than slow-motion videos.

5 Performance of Power-Aware Design

In this section, the performance of the power-aware design is estimated and a
comparison with the previous power-aware design is performed.
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5.1 Performance Estimation of the Power-Aware Design

The performance of the power-aware design is assessed by performing simulations
with 12 test video sequences. Each sequence consists of 100 frames and is encoded
with four QP values (i.e., 20, 24, 28, and 32).

Table 8 summarizes the power savings and R-D performances for the 10 power
levels presented in Table 7. From level 1 to level 9, the increases in power savings
and the changes in BDPSNR and BDBR are presented in comparison to the power
consumption and R-D performance at power level 0 (at which no power-saving
algorithms are applied). For the slow-motion videos, the power savings for CIF and
HD increase by 14 and 6.73 %, respectively, at level 1 while the corresponding R-D
loss is insignificant. The largest power savings (38.137 and 37.138 % for CIF and
HD videos, respectively) and the greatest increases in BDBRs (17.95 and 18.91 %
for CIF and HD videos, respectively) are achieved at power level 9.

Table 8 Performance of the power level table

Level CIF slow-motion HD slow-motion

Power
saving (%)

BDPSNR
(dB)

BDBR (%) Power
saving (%)

BDPSNR
(dB)

BDBR (%)

0 – – – – – –

1 14 −0.01 0.24 6.7 −0.01 0.26

2 20.4 −0.02 0.46 13.6 −0.03 0.78

3 23.6 −0.03 0.71 17 −0.04 1.17

4 27.7 −0.05 1.34 20.3 −0.08 2.46

5 28.8 −0.06 1.62 23.7 −0.09 2.78

6 32.9 −0.12 3.19 28.2 −0.11 3.42

7 35.6 −0.32 8.39 32.4 −0.23 8.19

8 36.3 −0.44 11.68 35.3 −0.42 13.79

9 38.1 −0.7 17.95 37.1 −0.6 18.91

Level CIF fast-motion HD fast-motion

Power
saving (%)

BDPSNR
(dB)

BDBR (%) Power
saving (%)

BDPSNR
(dB)

BDBR (%)

0 – – – – – –

1 6.7 −0.02 0.45 6.5 −0.01 0.41

2 10.8 −0.03 0.61 12.9 −0.06 1.85

3 13.9 −0.06 1.55 17.3 −0.08 2.46

4 18.1 −0.07 1.8 21.4 −0.21 6.3

5 23.8 −0.13 3.17 25.8 −0.23 6.9

6 27.5 −0.33 7.91 30.3 −0.38 11.49

7 29.6 −0.51 12.16 32.1 −0.5 14.72

8 33.3 −0.82 18.55 34.1 −0.63 18.5

9 38 −1.31 29.69 38.3 −0.88 26.83
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In fast-motion CIF videos, power level 1 saves 6.66 % of the power con-
sumption with a concomitant 0.45 % increase in BDBR, whereas power level 9
saves 38 % of the power consumption along with a 29.69 % an increase in BDBR.
For the HD videos, power level 9 results in a maximum 38.3 % power saving and a
BDBR increase of 26.83 %. At a BDPSNR loss of less than 0.1 dB, about 28 and
23 % power savings are achieved for slow-motion CIF and HD videos, respec-
tively, whereas about 18 and 17 % power savings are achieved for fast-motion CIF
and HD videos, respectively. These results show that the R-D loss by power saving
is larger in fast-motion videos than in slow-motion videos.

A further simulation evaluates the effectiveness of the four different power level
tables according to video size and motion characteristics. For that comparison, a
new power table (Table 9) is generated by using the procedure described in
Sect. 2.2. Table 9 is obtained from the power saving and BDBR values averaged
over all video sequences in Table 2, regardless of video size or motion character-
istics. Figure 3 shows the relationships between power savings and BDBR values
for the average power levels (i.e., those in Table 9) and the presented power levels
(i.e., those in Table 7) for CIF slow-motion, CIF fast-motion, HD slow-motion, and
HD fast-motion videos. For each of the video types in Fig. 3, the increase in BDBR
from application of the optimized power levels is equal to or less than that obtained
by using the average power levels. Compared to the optimized power level results,
application of the average power levels increases the BDBR by more than 33 %
when the power saving is 38 % as shown in Fig. 3a, whereas the BDBR is increased
by more than 8.6 % when the power consumption is reduced by 34 % as shown in
Fig. 3d.

Other simulations evaluate the accuracy of the total power saving model for-
mulated by using (13). To evaluate the accuracy of the total power saving model,
the amount of power saving obtained from (13) is compared to that obtained from
measurement. Figure 4 compares the power levels and power savings for the four
types of videos. The black curves labeled “Measured” show the average power
savings obtained from measurements using the operation conditions in Table 7. The
gray curves labeled “Model” show the power saving derived from (13). As shown

Table 9 Power level table
without video classification

Level PMR SR ES IP

0 – – – –

1 5 – – –

2 5 1/2 – –

3 3 1/2 – –

4 3 1/2 O –

5 1 1/2 O –

6 1 1/4 O –

7 1 1/6 O 60

8 1 1/6 O 15

9 1 1/6 O 10
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in Fig. 4, the measured and modeled results for each of the four video types are
nearly identical at most power levels. The maximum difference between the mea-
sured and optimized is 2.941 % at power level 3 for the CIF fast-motion video.

A further simulation evaluates the effectiveness of adaptively controlling the
power level. In that simulation, power consumption is estimated at every 30 frames
and the current power budget PCUR in (1) is updated accordingly. Subsequently, the
power level is adjusted adaptively according to the remaining power budget.
The simulation results from the optimized adaptive approach are compared with the
results from an approach in which a fixed power level is applied throughout the
simulation from the beginning to the end. For both adaptive and fixed level
approaches, the power saving target is 30 %. To achieve this goal, the fixed level
control uses power levels 7 and 6 for CIF slow-motion and fast-motion videos,
respectively. To achieve the 30 % goal from the adaptive approach, the total power
PTOTAL is chosen to achieve a 30 % power saving and PCUR is chosen adaptively by
using (1). A second, similar simulation with a power-saving target of 35 % is also
performed. In this case, power levels 9 and 8 are chosen at the fixed power levels
for the CIF slow-motion and fast-motion videos, respectively. For both simulations,
three CIF-size fast-motion sequences and three CIF-size slow-motion sequences are
used with each sequence comprising 1500 frames.
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Fig. 3 Comparison of results from the proposed method and from the average power levels: a CIF
slow-motion, b CIF fast-motion, c HD slow-motion, d HD fast-motion reproduced with
permission from Kim et al.
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Table 10 presents the results of the adaptive power level approach compared
with those from fixed power level approach. The test video sequences include
FAST1 (a concatenated sequence of Foreman, Soccer, Crew, Ice, and Football
sequences), FAST2 (a Bigbuckbunny sequence), FAST3 (an Elephants dream
sequence), SLOW1 (a concatenated sequence of Akiyo, Coastguard,
Mother_daughter, Silent, and Weather sequences), SLOW2 (a concatenated
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Fig. 4 Comparison of measured and modeled power level saving results: a CIF slow-motion,
b CIF fast-motion, c HD slow-motion, d HD fast-motion reproduced with permission from
Kim et al.

Table 10 Increase of BDBR and BDPSNR by application of the adaptive level control

Sequence 30 % saving 35 % saving

BDBR (%) BDPSNR (dB) BDBR (%) BDPSNR (dB)

FAST1 1.51 0.056 2.58 0.101

FAST2 9.98 0.504 16.59 0.951

FAST3 2.28 0.1 5.84 0.257

SLOW1 2.76 0.115 5.71 0.228

SLOW2 1.38 0.062 6.88 0.327

SLOW3 10.08 0.368 13.03 0.47
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sequence of Hall monitor, Flower, Waterfall, Tempete, and Paris sequences), and
SLOW3 (a Highway sequence). Overall, the results from the optimized adaptive
control approach improve R-D performance compared to that from the fixed
approach. The experimental results show that, in comparison with the fixed
approach, BDBR decreases by an average of 6.46 % and BDPSNR increases by an
average of 0.328 dB for fast sequences, whereas BDBR decreases by an average of
6.64 % and BDPSNR increases by an average of 0.262 dB for slow sequences when
the adaptive approach is applied. Thus, the optimized adaptive approach produces
better performance than the fixed approach because it consumes the available power
as much as possible.

Table 11 presents the average percentage of the available power consumed after
all video encoding is finished. For both the fast and slow sequences, the simulation
results show that the optimized adaptive approach consumes more than 99.8 % of
the power budget whereas a maximum of 95.4 % of the available power budget is
consumed by the fixed power level approach. The remaining unused power budget
results in R-D degradation, which is greater when the fixed power level approach is
used.

5.2 Comparison with a Previous Power-Aware Design

In this subsection, the presented power-aware control system is compared to a
previous power-aware design described in [8]. To compare the performance of the
presented power-aware design and the one reported in [8], comparison of the R-D
performance is made under the same power consumption targets.

Figure 5 presents the R-D performance of the original videos in comparison with
that from the presented power-aware design and that reported in [8] when the
power-saving target is a 35 % reduction. In this study and in [8], R-D curves for the
slow-motion and fast-motion CIF-size Akiyo and Foreman sequences, respectively,
are available. Thus, those videos are used for the comparison. In Fig. 5, the curve
labeled “Original” represents the R-D performance with no power-scaling scheme
applied, the curves labeled “Level 7” or “Level 8” represent the R-D results when
the level 7 or level 8 operating conditions for CIF slow-motion or fast-motion,
respectively, in Table 7 is applied, and the curve labeled “[8]” is the R-D curve
from [8]. In Fig. 5a, the differences among the three curves are very small, as the
Akiyo sequence is very static; moreover, the R-D performance does not change

Table 11 Ratio of the consumed power to the available power

Sequence 30 % saving 35 % saving

Proposed method (%) Fixed level (%) Proposed method (%) Fixed level (%)

FAST 99.93 95.38 99.9 95.33

SLOW 99.8 92.7 99.87 95.35
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markedly even when the two power-scaling schemes are adopted. In Fig. 5b, the
R-D curves show significantly higher performance when applying level 8 rather
than the scheme in [8]. The difference in PSNR represented in Fig. 5b is about
0.5 dB at 1600 kbps.

In Fig. 6, the R-D performances in the original videos, as well as that obtained
from the presented power-aware design and that in [8] are shown when the
power-saving target is a 40 % reduction. Figures 6a, b show the results with Akiyo
and Foreman sequences, respectively. For both sequences, level 9 in Table 7 is
applied. Large differences between the results from the optimized power saving
scheme and that in [8] are shown in Fig. 6. In the Akiyo sequence, the PSNR
difference is larger than 2 dB at 200 kbps. In the Foreman sequence, the PSNR
difference is larger than 2 dB at 1600 kbps. Note in Fig. 6 that the algorithm used in
[8] results in a significant R-D performance degradation at a power saving target
reduction of 40 %. In contrast, the optimized power-aware system incorporating
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four types of algorithms can reduce power consumption by approximately 40 %
without a marked R-D performance decrease.

The drop-off of the R-D performance for 40 % power saving in [8] may be
caused by a significant increase of the number of blocks that are encoded as IP
mode. In [8], the algorithm decides whether to perform IME or not based on the
following condition. If IME is not performed, then the block is encoded as the intra
prediction mode. For the decision, the following criterion is used

if(PowerLefgAvg [ PIME + POTHERS) perform IME

else perform Intra Prediction
ð14Þ

where PowerLeftAvg represents the remaining power budget which is calculated as
follows.

PowerLefgAvg ¼
PowerBudget �

Pk�1
i¼1 Power

i
Usage

n� ðk � 1Þ ð15Þ
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PIME represents the power consumption by IME and POTHERS represents the
power consumption of HW modules other than IME, FME, and IP modules. In [8],
it seems that the if-condition in (14) is satisfied for most blocks when the target
power saving is 35 %. However, the power saving of 40 % causes the if-condition
not to be satisfied for a substantial number of blocks. As a result, IME is not
performed for these blocks and then these blocks are encoded as intra prediction
mode which is the only possible option in [8] when IME is not performed. The
increase of IP blocks consequently increases the bitrate significantly.

The main difference of the proposed design from [8] is that the presented
power-aware design offers a much larger number of possible options than the
algorithm in [8] does. This large number of options makes it possible to avoid a
significant drop of the R-D performance for a small increase of target power saving.
In the optimized power-aware design presented in this chapter, the power con-
sumption model of (7) and (8) speeds up the estimation of power consumption for
various operating conditions. Without this power consumption model, it may take
too much time to estimate the power consumption of all these various options.

In order to justify this reasoning, the presented algorithm is modified to be very
similar to that in [8]. To this end, the modified algorithm uses the same Eq. as (14)
and selects whether to perform IME or not. For FME, just two options are used as in
[8]: the most complex FME option for Mode 7 and the simplest FME option for
Mode 1. The early skip mode decision is somewhat similar to the pre-skip in [8].
The resulting graph is shown in Fig. 7 with its graph denoted by “TEST”. The R-D
performance is very similar to the result in [8] for both Akiyo and Foreman videos.
Figure 8 compares the number of blocks encoded in the IP modes. The result shows
that the modified version similar to [8] results in a significant increase of intra
blocks which degrades the R-D performance. This simulation draws a conclusion
that the skip of IME may cause a significant degradation of R-D performance so
that it is important to have a power-scaling algorithm that gradually decreases the
complexity of IME without a complete removal of IME operation.
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Part II
Event/Object Detectors for Smart Sensing



Low-Power Operation for Video Event
Data Recorder

Jinyoung Yang, Jongpil Jung and Chong-Min Kyung

Abstract Due to limited battery capacity, reducing power consumption of mobile
surveillance camera like a video event data recorder is important to extend surveillance
time. In this chapter,we propose a design of low-power video event data recorderwhich
records events such as movement of objects, or impact to the camera itself.
Duty-cycling of two different encoders, which are a low-power encoder and a
high-compression encoder, are employed to implement the low-power video event data
recorder. Operating time of the proposed system is considerably extended by
duty-cycling of the two encoders in the event-driven operation; the systemmainly stays
in event detectionmode andwakes up onlywhen an event is detected. Because themost
valuable information in the event is right before or at themoment of event detection, the
proposed system records video from 10 s before the event detection. According
to experiment, the energy consumption of the proposed system is decreased up to
25.1 % (by 33.2 % on average) of conventional video event data recorder. As energy
consumption of the proposed system is reduced by 66.8 % on average, the surveillance
time of the proposed system can be increased by three times consequentially.

Keywords Video event data recorder � Duty-cycling of heterogeneous codecs �
Low-power operation � Event-driven mode � Low-energy surveillance camera �
DCT coefficient � Event occurrence rate

1 Introduction

With the growth of the surveillance camera market, demand on portable surveil-
lance camera grows due to increasing needs in places where power line is not
available. The portable surveillance camera usually operates in event-driven mode
for reducing energy consumption. However, focus of conventional researches based
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on event-driven operation has been to raise operators’ attention rather than reducing
energy consumption. Video surveillance system [1] is proposed to detect aban-
doned or removed objects. Traffic surveillance framework [2] is proposed for
detection, classification, and tracking of vehicles. Pedestrian detection [3] is still
another active research topic. The objective of research is to automatically detect
abnormal events and inform the operators of the events [4].

In [5], energy consumption of the surveillance camera is considerably decreased
due to the event-driven operation. The system is mostly in sleep mode and wakes up
only when an event is detected. However, the system in [5] is not practical from the
viewpoint of video event data recorder (VEDR), because it takes some time for the
system to wake up. As the system starts recording after an event is detected, it cannot
record the most valuable scenes which is the moment of event detection or scene
prior to the detection. According to [6], it is required for VEDR to save video data
starting from 10 s before the time of event and ending 10 s after the time of event.
The 10 s video prior to the event is crucial to find out how the event occurred.

Optimizing video encoders [7, 8] and adopting low-resolution image sensors [1,
9] were proposed to reduce power consumption of surveillance camera. However,
because the video encoder is just one of power consuming components,
system-level optimization beyond codec is more effective to reduce power con-
sumption of surveillance camera. The resolution of cameras in commercial smart-
phone has already reached 2 K QHD, i.e., 2560 × 1440. High definition video is
increasingly required in surveillance applications as well.

In this chapter, we propose a design of low-power and event-driven surveillance
camera which records events. The objective of the proposed design is to maximize
the operating time of battery-based surveillance camera system by minimizing the
energy consumption. Duty-cycling of two different video encoders is employed to
record the events starting from 10 s before the event.

In order to verify energy reduction of the proposed design, we applied the design
to VEDR and compared energy consumption of the proposed system with that of
conventional VEDR. VEDR started from car black box system which records data
from various sensors of vehicle such as speed sensor, water sensor, brake sensor,
and light sensor [10, 11]. Recently, high-end VEDRs, which record high definition
video as well as the values of sensors on vehicle, have been released. Since the
VEDR is operated by battery in the vehicle, it is critical to save energy. When the
weather is cold, performance of car battery is significantly degraded [12]. If the
power consumption of the event data recorder of the parked vehicle is excessive, it
can lead to a failure to start engine in such a situation.

2 Operation of the Video Event Data Recorder

The VEDR shown Fig. 1 is an electronic device installed in a vehicle to sort out the
cause of accident. It applies the concept of a blackbox in an airplane which works as
the most important tool to find causes of aircraft crash. In the event of car accident,
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it facilitates judgment on arguing liability for the accident. The main function of the
VEDR is to record video data of the pre-accident and post-accident. The market of
the VEDR in Korea has grown up more than 30 times; from 47,000 devices in 2008
to 1.5 million devices in 2012.

The VEDR operates as follows: When a car engine is on, the VEDR is operated
in driving mode. When a car engine is off, the VEDR is operated in parked mode. In
the driving mode, the VEDR records video continuously and saves them in
AlwaysMovie folder. If AlwaysMovie folder becomes full, the oldest file of
AlwaysMovie folder is overwritten by the newest one. When an impact is applied to
the vehicle or user presses ‘record’ button in the driving mode, recorded file in
AlwaysMovie folder is copied in the EventMovie folder. In the parked mode, the
VEDR continuously records video data and stores them for 10 s in temporary
buffer, which are discarded unless an event occurs. If the VEDR detects an event,
which either motion event in the camera or impact event on the car, the VEDR
starts to save the video in MotionMovie or EventMovie folder according to the type
of events.

In early VEDR, video from camera is always saved even during parked mode.
The VEDR in parked mode should monitor car’s surroundings to detect car’s
damage and potential threat as long as possible. According to [13, 14], the average
driving time in Korea and Europe is under 2 h and the average daily car trips in
Europe is 2.5 trips. It means the average daily parking time is more than 22 h.
According to [14], parking time can be split in two parts. One part can be named
‘active parking’ which is the time when the car is parked after a trip. The other part
can be named ‘inactive parking’ which is the time when the car is parked before the
first trip of the day or after the last trip of the day. The average daily total active
parking time is 4 * 7 h and the average daily total inactive parking time is
16* 19 h. From surveillance camera’s point of view, the VEDR is at least required
to satisfy the daily maximum monitoring time which is 19 h. However, if the VEDR
consists of Full HD camera, 32 GB storage, and video encoder with 60 MB/min
compression rate, the VEDR stores recent 8 h 52 min video depicted as A point in
Fig. 2. If the VEDR adopts 16 GB storage, it only stores recent 4 h 26 min depicted
as B point in Fig. 2. Based on the actual storage capacity requirement of the VEDR

Fig. 1 Block diagram of an event-driven VEDR
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in Fig. 2, the VEDR operation which saves data continuously in parked mode is not
acceptable. To satisfy the basic requirement of surveillance camera, i.e., monitoring
time, the VEDR needs to operate in event-driven scheme in parked mode. In
event-driven scheme in parked mode, the VEDR stores video in the storage only at
the occurrence of the event.

2.1 Power Consumption of Conventional
Event-Driven System

To analyze power consumption of the VEDR, we measured power consumption of
a commercial VEDR in driving mode and parked mode shown in Tables 1 and 2,
respectively. The VEDR consumes 4.05 W in driving mode with Full HD input
(1920 × 1080) and 30 frames per second. If we change input video quality to HD or
VGA in Table 1, then the average power consumption of the VEDR is slightly
reduced. Not surprisingly, the power consumption of a commercial VEDR in
parked mode shown in Table 2 is only about 10 % lower than the power con-
sumption in driving mode shown in Table 1. This results from the fact that the
operation in driving mode is the same as operation in parked mode except for the
event-driven scheme. Event-driven scheme in parked mode consists of three phases:
standby phase, motion detection phase, and impact detection phase. In Table 2,
standby phase (phase 1) is normal operation state before event occurrence. Phase 2
and 3 are states after impact detection and motion detection, respectively. Phase 2
and 3 are considered as event phase.

Fig. 2 Storage capacity of VEDR
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From this measurement, we can get information about total power consumption
in each mode. In order to measure detailed-power consumption of major parts of the
VEDR, we developed an evaluation board using a cortex-A8 application processor
(AP) [15]. Key features of the AP we used for our VEDR are cortex-A8 processor
embedded, 2D/3D graphic engine, dual camera interface, Full HD
encoding/decoding, and advanced low-power technology. Typical VEDR consists
of CMOS image sensor (CIS), image signal processor (ISP), video encoder,
microprocessor, memory system, video data storage, and communication module.
We measured actual power consumption of major parts of the VEDR as shown
Fig. 3. Major parts of the VEDR in Fig. 3 can be categorized into three parts.
Core-related part including H.264 codec, DRAM with core DDR, core I/O, ARM
processor constitutes one part, while camera part and LCD part are other parts. The
core-related part and the camera part are always turned on in each mode, but LCD
part can be turned off in parked mode. The core part consumes around 60 % of total
power consumption. So, in order to reduce total power consumption of the VEDR,
we need to reduce power consumption of the core-related part first. The main
functions of the core-related part are event detection and video compression. If we
have low-power event detector and video codec (LPEDVC) module as a substitute
for the core-related part in standby phase of the parked mode, we can reduce
average power consumption in parked mode.

In wireless sensor networks, MAC protocols [16–19] were developed to con-
serve energy consumption of the sensor nodes through duty-cycling scheme. By
using duty-cycling of the sensor node, the sensor node extends its lifetime. Similar
concept can be used in the proposed VEDR design. If the LPEDVC module

Table 1 Power consumption of VEDR in driving mode

Video mode Average power consumption (W)

Resolution Frame rate (frames per second)

1920 × 1080 30 4.05

1280 × 720 30 3.88

640 × 480 30 3.77

1920 × 1080 15 3.90

1280 × 720 15 3.80

640 × 480 15 3.75

1920 × 1080 10 3.86

1280 × 720 10 3.77

640 × 480 10 3.72

Table 2 Power consumption
of VEDR for each phase of
the event-driven scheme in
parked mode

Phase in the event-driven scheme

Phase 1 Phase 2 Phase 3

Average power
consumption (W)

3.68 3.75 3.75
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implemented in FPGA is added to the conventional VEDR as shown in Fig. 4 and
duty-cycling of the LPEDVC module and the core-related parts are employed based
on the event-driven scheme, average power consumption of the system in the
parked mode can be significantly reduced to Ppark as shown in Fig. 5b. In standby
phase with no event detected, i.e., in Tstbyi, only the event detector and CIS/ISP are
turned on. Since power consumption of event detector is much less than that of
video encoder or microprocessor, system power consumption in standby phase, i.e.,
Pstby, is much less than that of conventional VEDR. When an event is detected,
power consumption of event-driven VEDR, i.e., Pevt, is slightly more than that of
conventional VEDR because of the event detector. Figure 5 shows how power
consumption of both systems varies with time. Average power consumption of
event-driven VEDR is much less than power consumption of conventional VEDR
unless events are detected too frequently.

Fig. 3 Power consumption breakdown of conventional VEDR

Fig. 4 System diagram of a proposed VEDR
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For event-driven VEDR, type of events must be defined. Motion in captured
scene is the most widely used type of event for surveillance camera. If there is no
moving object in video, then the video does not provide any events. Another
important event for vehicle is acceleration. If a vehicle is physically damaged by
another vehicle or pedestrian, momentary acceleration is detected. In this chapter, we
assume that event has occurred when a change of motion or acceleration is detected.

2.2 Proposed Method

As mentioned in the introduction, the VEDR is required to start recording 10 s
before the detection of an event. In conventional video surveillance systems [1, 2,
4], it is possible to have video before an event. Because they do not have storage
and energy constraints, they record every video regardless of event. While the
VEDR has storage and energy constraints, the VEDR must operate with
event-driven scheme and low power consumption. However, as shown in Table 2,
event-driven scheme itself does not provide substantial lifetime gains. Our approach
to satisfy storage constraint and relax energy constraint simultaneously in
event-driven scheme is as follows: We add an LPEDVC module in front of the
core-related parts, and turn on the LPEDVC module and turn off the core-related
part. After detecting an event, the LPEDVC module turns on the core-related
part. Then AP boots itself as quickly as possible and the core-related part com-
presses the video data delivered from the LPEDVC module and AP saves the

Fig. 5 Comparison of power consumption (a conventional VEDR, b proposed VEDR)
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compressed video data into storage. After completing recording, the core-related
part is turned off again.

Similar approaches [20–22] like ours have been proposed to save energy con-
sumption in wireless sensor networks and surveillance camera system. If we replace
the LPEDVC module with motion detector using Passive Infrared (PIR) sensor like
in [20], this system may save energy consumption dramatically but cause other
problem. Because this system wakes up after an event is detected, it can only have
video after the event. Considering that it takes some time for this system to wake
up, it starts recording few seconds after an event is detected. In such a case, the
most important portion of video will not be recorded. In [21, 22], they can reduce
power consumption in event-driven scheme of the surveillance system and record
video for 10 s before an event as well. However, they use buffer memory instead of
the LPEDVC module to record temporary video. After an event, they compress the
temporary video in the buffer memory and save compressed video data into storage.
In order to record video for only 10 s, they need 829.4 MB and 1.87 GB buffer
memory to record HD and Full HD video, respectively. These buffer memory sizes
are too big to be used practically.

In order to implement system based on our approach, we need to resolve
practical issues as follows: (1) How to send pre-event data to AP, (2) How to boot
AP as soon as possible after detecting an event, (3) How to implement event
detection function, i.e., motion detection, using low-power image or video codec.
The issue 2 can be resolved using Linux fast booting technology [23]. For sim-
plicity, we assume AP’s booting time is zero. To resolve the issue 3, we have to
decide which codec will be used first. We have considered two candidates as
low-power image or video codec, which are light-weight compression [24] and
JPEG [25]. The two candidates are comparable from the viewpoint of low-power
image codec, i.e., gate count and power consumption. However, according to [26],
JPEG encoder can be used as motion detector as well. On the other hand, we need
to devise motion detection algorithm if we adopt light-weight compression [24]. In
the proposed design, we choose JPEG as low-power image codec and motion
detector in the LPEDVC module. Here we describe the issue 1 in detail.

We devise three methods to transfer pre-event data to AP as shown in Figs. 6, 7,
8. First, we consider scheme 1 shown in Fig. 6. During Tstbyi, only CIS/ISP, JPEG
Encoder, and DRAM for JPEG are in operation. After detecting an event, H.264
encodes post-event video for a while, saves the post-event video file and pre-event
JPEG file into storage simultaneously shown in Fig. 6b. Additional data path from
DRAM for JPEG to storage is required and two different file formats coexist in
storage. To overcome the problems, we devise scheme 2 as shown Fig. 7. During
Tstbyi, only CIS/ISP, JPEG Encoder, and DRAM for JPEG are working. After
detecting an event, H.264 encodes post-event video for a while and saves the
post-event video file first as shown in Fig. 7b. After saving the post-event video file,
JPEG decodes pre-event JPEG file and transfers the decoded format into H.264
input as shown in Fig. 7c. Then H.264 part encodes pre-event video and AP saves
the pre-event video file. However, if several events occur with 10 * 20 s
inter-event interval, control logic processing event-driven operation got to be
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complicated. For simple and robust operation, we devised scheme 3 shown in
Fig. 8. During Tstbyi, the operation is the same as scheme 1 and 2. After detecting an
event, AP is turned on. JPEG encodes post-event image into DRAM for JPEG,
JPEG decodes pre-event image from DRAM for JPEG, and transfers the decoded
image into H.264 input as shown in Fig. 8b. Then H.264 part encodes

Fig. 6 Pre-event data transfer idea 1 a Operation in Tstbyi, b Operation in Tevt

Fig. 7 Pre-event data transfer idea 2 a Operation in Tstbyi, b Operation in the first half of Tevt,
c Operation in the second half of Tevt
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pre/post-event video and AP saves the pre/post-event video file. A problem with
scheme 3 is time difference between event detection time and record starting time.
This can be solved if we can delay video data for a few seconds. If the few seconds
of video are temporarily saved in volatile memory, the system is capable of having
all required data even after the event is detected. In conventional VEDR, this is
done by using buffer memory between H.264 encoder and data storage. Video
captured by CIS/ISP is encoded in H.264 format and saved in the buffer at all time.
If an event happens, the data in the buffer is written to data storage. In such a
system, however, energy consumption is wasted because all system components
including power-hungry core-related part including H.264 encoder must stay on.

To save power consumption of VEDR, we need to turn off as many components
as possible. The most power consuming parts such as H.264 encoder and processor
must be turned off for considerable energy reduction. However, CIS/ISP must
remain on for following reasons even though there is no event detected:
(1) pre-event video data is important, (2) nobody knows when the event happens,
and (3) the event detector needs video data for event detection. In order to turn off
H.264 encoder, uncompressed data from CIS/ISP must be temporarily saved.
However, data size of uncompressed video data from CIS/ISP is too large to be
saved in memory practically. The size of uncompressed 10 s Full HD video with 30
frames per second is 1.7 GB.

In the proposed design, power consumption of the proposed system can be
reduced by adding light-weight image codec to conventional system with H.264
video encoder. The light-weight codec, i.e., JPEG in this case, is added between
CIS/ISP and H.264 encoder. The video data from CIS/ISP is transferred to JPEG
encoder, and JPEG encoder compresses the video data and temporarily saves the data
in DRAMwhich is directly connected to the JPEG encoder. Other power-consuming
blocks such as H.264 encoder, processor, memory, storage, and communication
module can all be turned off in this state. After an event is detected, H.264 encoder,
processor, memory, storage, and JPEG decoder are turned on. JPEG decoder decodes
JPEG-compressed data in DRAM, H.264 encoder encodes the video data, and AP
saves them in storage. Details of system design are explained in Sect. 3.

Fig. 8 Pre-event data transfer idea 3 a Operation in Tstbyi, b Operation in Tevt
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Because most components in conventional VEDR are turned off at standby
phase, power consumption of the proposed system is significantly lower than
otherwise. However, since event detector, JPEG codec, and memory are added to
the proposed system, power consumption during the event phase in parked mode is
slightly more than conventional VEDR. If events happen infrequently, average
power consumption of the proposed system in parked mode is much less than
conventional system. Results on energy reduction in various situations are
explained in Sects. 4 and 5.

3 Low-Power System Design

Block diagram of the proposed system is shown in Fig. 9. Like a conventional
VEDR system, the proposed system uses CIS/ISP, H.264 encoder, main processor,
event detector, accelerometer, memory, storage, and communication module.
Micro SD card is used as storage of video data for user convenience. The addition
of the LPEDVC module which includes JPEG encoder, decoder, and DRAM for
JPEG is the main difference of the proposed design compared to conventional
system. The video data flow starts from CIS and ends at the storage in typical video
surveillance system. In the proposed system, the video data flow has two different
paths: (1) one passing through JPEG encoder, and (2) the other bypassing the JPEG
encoder. These paths are decided by operation modes of VEDR, which are driving
mode and parked mode. To decide operation modes of VEDR, VEDR takes ACC
signal (on/off signal for accessories) of the vehicle as an input. If a driver turns on

Fig. 9 Proposed system overview
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the engine, ACC signal rises high and the VEDR operates as driving mode. When a
driver stops engine, ACC signal falls and VEDR changes its operation mode to
parked mode.

In addition to the change of video data flow, information flow is also changed. In
conventional VEDR, always-on AP deals with the information from accelerometer
and video data for event detection. However, in the proposed design, the event
detector in parked mode deals with the information from accelerometer and video
data. For motion detection, the event detector uses DCT coefficients [26]. To detect
physical impact on the vehicle, the event detector utilizes values from the accel-
erometer. When an event is detected, the event detector passes the information to
the processor.

3.1 Parked Mode

The proposed design featuring the addition of the LPEDVC module in Sect. 2.2 is
employed during parked mode. Depending on the detection of events, the system
switches its mode between standby phase and event phase. Since the video data
path which goes through JPEG encoder is selected during parked mode, mux and
demux between CIS/ISP and H.264 encoder are switched accordingly.

If there is no event detected, the system operates in standby phase which is
shown in Fig. 10a. In the standby phase, the system is in the state of waiting for an
event. When the system is in standby phase, we can turn off many components in
the system. As shown in Fig. 5b, the power consumption of system in standby
phase significantly affects total energy consumption of the system. Only the min-
imally required components are turned on for event detection and temporary video
saving: CIS/ISP, event detector, micom, accelerometer, JPEG encoder, and
low-power memory for DRAM for JPEG-encoded data.

Like a conventional VEDR, the proposed system should record video prior to the
detection of event. The proposed system saves the 10 s of data in the memory which
is connected to JPEG encoder. For temporary saving, CIS/ISP always takes a picture
even though there is no event. Then a series of images from CIS/ISP are temporarily
saved in memory. The data structure in memory for the images is like circular buffer
conceptually. Only the recent 10-second images are kept in the memory, and old data
is overwritten by new data. The size of uncompressed data from CIS/ISP is a
problem in terms of energy consumption and cost. According to [27], read/write
power consumption of LPDDR memory is quite significant, while the power con-
sumption of deep power down (DPD) mode of LPDDR is very small. So, for
reducing energy consumption of data read/write, it is important to reduce the size of
data to be written and read, so that DPD mode of LPDDR is utilized as much as
possible. And since large-capacity memory device is more expensive than
low-capacity memory device, it is required to reduce the data size. This is one of the
reasons why JPEG encoder is employed in the proposed design. Uncompressed data
from CIS/ISP is transferred to JPEG encoder. After the JPEG encoding, data size is
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reduced by up to 95 % with quality of PSNR 36 dB. Thus, the size of 10-second
Full HD video can be reduced from 13.6 to 0.7 Gb. If we consider margin for
variable compression rate, 1 Gb LPDDR1 memory is enough for implementation.

Since the event detector always consumes power during the standby phase, it is
also important to design the event detector as simple as possible. We apply basic
motion detection method based on inter-frame difference [28, 29]. Motion is
detected when difference between two consecutive frames exceeds defined
threshold. Previous frame data is saved to get inter-frame difference. If all
uncompressed data from CIS/ISP is passed on to the even detector, power con-
sumption of event detector is enormous due to huge data size. In the proposed
design, movement within captured scene is detected by using DCT coefficients in
compressed domain, not data in pixel domain. DC coefficient from 8 × 8 block
DCT represents average intensity of the block. This has additional effect of
downsizing image from 1920 × 1080 to 240 × 135. Since only luminance infor-
mation is sufficient for motion detection (i.e., color information can be discarded),
data size required for a frame is reduced down to 32.4 KB. Conventional motion

Fig. 10 Operation of a proposed system in parked mode a Operation in Tstbyi, b Operation in Tevt
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detection is usually implemented using luminance information in the processor. For
example, the processor scales down input image into QVGA (320 × 240) grade
using scaler block and compares inter-frame difference, and data size required for a
frame is 76.8 KB.

The event detector also detects physical impact on a vehicle using accelerometer.
The accelerometer is initialized by the processor at the very beginning so that it
operates stand alone. It operates even when processor is in sleep or power-off mode.
The accelerometer triggers an interrupt signal when acceleration at any direction
exceeds threshold. When any kind of events is detected by the event detector, the
system switches to event phase. In this phase, the system starts encoding in H.264
format and saves encoded file in the storage. All components that were turned off
during the standby phase are turned on except for communication module. When
the event detector issues enable signal for wake-up, processor wakes up. Then other
blocks including H.264 encoder and storage become ready for H.264 encoding.
After the system is ready for H.264 encoding, JPEG decoder starts decoding data at
low-power memory which are a series of images prior to the event detection. The
10-second delayed images are delivered to the H.264 encoder and finally it is saved
in the storage. In the meanwhile, a series of images from CIS/ISP are still saved in
memory which will be saved in storage through H.264 encoder at the end. At 20 s
after event, the system switches back to the standby phase. Timing diagram
between two phases is described in the Fig. 11.

3.2 Driving Mode

In driving mode, the system operates as shown in Fig. 9. The system operates similar
to conventional VEDR which does not have the LPEDVC module. When a driver
turns on the engine, the proposed system reads ACC signal from vehicle (which

Fig. 11 Timing diagram between standby phase and event phase
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switches from low to high at the moment) and the mux after CIS/ISP is set to skip the
LPEDVCmodule. The components for the LPEDVCmodule such as JPEG encoder,
JPEG decoder, and low-power memory, are turned off during the driving mode.
Other components such as CIS/ISP, H.264 encoder, processor, event detector, and
storage are always turned on. The function of this mode is very simple because it is
just required to capture and save. The video data from CIS/ISP module is directly
delivered to the H.264 encoder, and they are saved at the storage in H.264 format.

Since the vehicle moves in the driving mode, motion detection is meaningless
for an event. The accelerometer is used as the only input of event detector in the
driving mode. As mentioned earlier, the main function of VEDR is to record video
data of the pre-accident and post-accident. To detect accident, the accelerometer
seems to be enough. However, any threat to the vehicle deserves to be recorded.
Nobody knows when accident or threat happens. So, saving important data in more
secure place is more important than saving energy consumption in the driving
mode. The role of event detection in this mode is quite different from the parked
mode. Every video in the driving mode is saved in AlwaysMovie folder. If an event
is detected, the video of the event is duplicated and saved in separate space of
storage. It helps to be prepared for memory failure.

The power consumption of the driving mode is significant because the most
power-consuming parts, AP with H.264 encoder and processor, are always turned
on. The only event-driven feature in this mode is the storage. Considering energy
consumption of micro SD card is very small compared with total energy con-
sumption, it can be said that the system constantly consumes a lot of energy.

4 Power Analysis in Parked Mode

In the proposed system, we apply power-gating to minimize the power consumption
of system. Total energy consumption of the proposed system depends on which
components are turned on for how long. And total power consumption is the sum of
power consumption of components which are turned on at the time. We assume that
power consumption of each component is constant.

In the proposed design of VEDR, there are two different operating modes:
driving mode and parked mode. As shown in Fig. 9, most components including
CIS/ISP, H.264 encoder, processor, main memory, micro SD card, and other
peripherals are turned on during driving mode. Since power consumption in the
driving mode (Pdrv) is constant according to our assumption, energy consumption in
the driving mode (Edrv) is simply equal to power consumption multiplied by
duration of the driving mode (Tdrv) as shown in (1).

Edrv ¼ Tdrv � Pdrv ð1Þ

Power consumption of whole system in the driving mode is the sum of power
consumption of components that are turned on in the mode as expressed in (2)
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Pdrv ¼ PCIS þ PH264 þ PPROC þ PDRAM þ PSD þ PPERI; ð2Þ

where PCIS, PH264, PPROC, PDRAM, PSD, and PPERI are power consumption of
CIS/ISP, H.264 encoder, processor, main memory, micro SD card, and other
peripherals, respectively.

Energy consumption in the parked mode is different from the driving mode
because some components or blocks are turned on or off according to the event
detection. Total energy consumption in the parked mode (Epark) can be divided into
energy consumption in the standby phase (Estby) and energy consumption in the event
phase (Eevt). Total energy consumption also depends on the number of detected
events (Nevt). Total energy consumption in the parked mode can be shown in (3).

Epark ¼ Estby þ Nevt � Eevt ð3Þ

Energy consumption of the standby phase (Estby) is equal to power consumption
of the standby phase (Pstby) multiplied by duration of the standby phase (Tstby) as
expressed in (4).

Estby ¼ Tstby � Pstby ð4Þ

Equation (5) shows power consumption in the standby phase, which is the sum
of power consumption of CIS/ISP (PCIS), JPEG encoder (PJPEGENC), low-power
DRAM connected to JPEG encoder (PLPDRAM), and event detector (PED). Other
components are turned off in the standby phase.

Pstby ¼ PCIS þ PJPEGENC þ PLPDRAM þ PED ð5Þ

Energy consumption for recording one event video (Eevt) is equal to power
consumption of the event phase (Pevt) multiplied by average duration of an event
(Tevt) as shown in (6).

Eevt ¼ Tevt � Pevt ð6Þ

Power consumption of the event phase is the sum of power consumption of all
block including CIS/ISP, event detector, JPEG encoder, JPEG decoder (PJPEGDEC),
low-power DRAM connected to JPEG encoder (PLPDRAM), H.264 encoder, pro-
cessor, main memory, micro SD card, and other peripherals.

Pevt ¼PCIS þ PED þ PJPEGENC þ PJPEGDEC þ PLPDRAM

PH264 þ PPROC þ PDRAM þ PSD þ PPERI
ð7Þ

If we divide Eq. (3) by Tpark, we can get Ppark. Tstby can be expressed using Tpark
and Tevt. If we define f as event occurrence rate (i.e., total event duration divided by
total parked mode duration), power consumption in the parked mode can be
expressed in (8).
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Ppark ¼ Tstby
Tpark

� Pstby þ Nevt � Tevt
Tpark

� Pevt

¼ Tpark � Nevt � Tevt
Tpark

� Pstby þ Nevt � Tevt
Tpark

� Pevt

¼ Pstby þ Nevt � Tevt
Tpark

ðPevt � PstbyÞ

¼ Pstby þ Nevt � Tevt
Tpark

ðPH264 þ PPROC þ PDRAM þ PSD þ PPERI þ PJPEGDECÞ

�Pstby þ f � Pdrv

ð8Þ

To reduce power consumption in the parked mode, we should decrease Pstby as
much as possible and decrease the event occurrence rate as well according to
Eq. (8). Using Eq. (8), we can draw Fig. 12. Lower bound of power consumption is
Pstby at f = 0, upper bound is the sum of Pdrv and Pstby, and power consumption
depending on f is somewhere under solid line. If Pstby is designed as a quarter of
Pdrv, Ppark is equal to Pdrv at f = 3/4. Assuming that we design Pstby as a quarter of
Pdrv, the system applying our approach seems to be effective until three quarters of
f, which is depicted in gray area in Fig. 12. Conventional VEDR in the parked mode
consumes around 90 % of power consumption in the driving mode shown in
Eq. (9). If the LPEDVC module consumes 25 % of power consumption of the
driving mode, we can get effective range of f as Eq. (10) using Eq. (8). This means
our approach with Pstby as a quarter of Pdrv remains competitive with conventional
VEDR until 65 % of event occurrence rate in terms of power consumption.

Ppark;CONV ffi 0:9 � Pdrv ð9Þ

0:9 � Pdrv � 0:25 � Pdrv þ f � Pdrv Pstby ¼ 0:25 �Pdrv

��
f � 0:65 ð10Þ

Fig. 12 Power consumption
in parked mode according to
event occurrence rate
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5 Performance Evaluation

Experimental results on how much energy can be saved by the proposed method are
given in this section. The energy consumption is calculated by the energy model in
the previous section. With the model, we compared the energy consumption of the
proposed system with the energy consumption of conventional VEDR on various
event occurrence scenarios. The value of each component’s power consumption is
based on the measurement from the prototype shown in Fig. 13. In our prototype,
commercially available AP [15] is used. The AP includes ARM Cortex-A8 pro-
cessor which operates at 800 MHz and H.264 encoder which encodes 1080p video
at 30 frames per second. In order to implement the LPEDVC module, we utilize
low-power FPGA [30]. According to power simulation of the FPGA and other
measurements shown in Fig. 3, Pstby is estimated around 820 mW which is about a
quarter of Pdrv. The energy consumption of the proposed system depends on the
frequency of event occurrence, while energy consumption of conventional VEDR is
almost constant regardless of event occurrence frequence rate.

To obtain the statistics of frequency of event occurrence, we need to know the
distribution of parking place. According to [14], however, the distribution of
parking places looks different in each country. For fair comparison, scenarios for
parking places are carefully selected considering following parameters. The fre-
quency at night is much lower than the frequency during daytime. Type of location

Fig. 13 Prototype design
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is another important factor. In crowded areas such as parking lots at mall, stadium,
and main street, the frequency of event occurrence is extremely high. The frequency
in residential area is relatively low compared with crowded area. It also depends on
whether the parking lot is indoor or outdoor. Considering all, 11 scenarios were
selected for the experiment, which are described in Table 3. Superscript on parking
place type in the table is used to discriminate different locations of the same type.

Experimental results are shown in Fig. 14. To compare energy consumption of
the proposed system with that of conventional VEDR, each value for the proposed
system is normalized to the value for conventional VEDR. As shown in Fig. 14,
energy consumption is significantly reduced in every scenario. The energy con-
sumption of proposed design is reduced by up to 74.9 % in scenario ID 1, and by
66.8 % on average. Reduction of the energy consumption is most significant in the
case of public area during night because event occurrence rate is very low as 0.6
events per hour. The energy consumption is reduced even in the crowded area.
However, the degree of reduction is 30.6 % which is not as significant as residential
area at night. Using the results, we can get normalized power consumption by

Table 3 The frequency of event occurrence in scenario

Scenario ID Day/night Indoor/outdoor Parking place type Events per hour

1 Night Outdoor Public area1 0.6

2 Day Outdoor Own place at Home1 27.1

3 Night Outdoor Kerbside unregulated1 1.5

4 Day Indoor Reserved at work1 1.0

5 Day Indoor Shopping mall 89.5

6 Day Outdoor Kerbside unregulated1 22.4

7 Night Indoor Reserved at work1 7.9

8 Day and night Outdoor Own place at Home2 19.6

9 Day Indoor Reserved at work2 2.2

10 Night Outdoor Public area2 2.4

11 Night Outdoor Kerbside regulated2 17.0

Fig. 14 Normalized energy consumption in selected scenarios

Low-Power Operation for Video Event Data Recorder 135



dividing total parked mode duration. We can calculate f for each scenario ID from
Table 3, e.g., 89.5 × 20/3,600 = 0.4972 for scenario ID 5. The normalized power
consumption based on f is shown in Fig. 15. The power consumption of the pro-
posed system is below the solid line which is the analytical upper bound given in
Eq. (8).

Among detected events in the crowded area, not every event was meaningful.
Important video in this application is about moving objects which can damage the
vehicle of interest. Most of events detected in the crowded area were pedestrians at
a distance, which are not a threat to the vehicle. If we design better event detector
which eliminates false positive effectively based on region of interest, total energy
consumption will be reduced further.

6 Conclusion

In this chapter, an energy-aware low-energy VEDR is proposed. It is crucial for
video surveillance system like the VEDR to extend its operating time under limited
storage and energy constraint. To overcome the limited storage constraint, the
proposed system records video only when defined events are detected. Like con-
ventional VEDR, the proposed system always catches important moment, because
it records the video of defined event starting from 10 s prior to the event. The
energy consumption of the proposed system under selected scenarios is up to 25.1
and 33.2 % on average of that of conventional VEDR due to duty-cycling of the
LPEDVC and the core-related part based on event occurrence. Since energy con-
sumption of the proposed system is reduced by 67 % on average, the monitoring
time of the proposed system can be extended by three times. The energy con-
sumption of proposed system is expected to be reduced even more when less power
consuming LPEDVC module and an event detector with less false positive are
incorporated.

Fig. 15 Normalized power consumption versus f
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The proposed design can also be used in wearable streaming cameras [31] and
the blackbox camera for bike [32]. In these applications, event-driven scheme can
be very helpful in extending products’ operating time.
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Low-Power Face Detection for Smart
Camera

Hyung-Il Kim, Seung Ho Lee and Yong Man Ro

Abstract Recently the development of intelligent surveillance system increasingly
requires low power consumption. For power saving, this chapter presents an event
detection function based on automatically detected human faces, which adaptively
changes from low-power camera mode to high performance camera mode. We
propose efficient face detection (FD) method being operated under the low-power
camera mode. By employing two-stage structure (i.e., region-of-interest
(ROI) selection and false positive (FP) reduction), the proposed FD method
requires very low computational complexity and memory requirements without
sacrificing the face detection robustness. Experimental results demonstrated that the
proposed FD could be implemented in low-power video cameras with promising
performance.

Keywords Face detection � Intelligent surveillance system � Low power hardware
architecture � Event detection � Smart camera � Two-stage structure

1 Overview of Face Detection for Smart Camera

The advances in computing, communication, and sensor technology are recently
pushing the development of many new applications in pervasive computing, sensor
networks, and embedded systems [1]. As one example of the innovation, smart
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cameras are equipped with high-performance onboard computing and communi-
cation functionalities by combining video sensing, processing, and communications
in a single embedded device. Thanks to the functionalities, the smart cameras can
support more complex and challenging applications including smart rooms, intel-
ligent surveillance, tracking, and motion analysis [1].

Among the applications, intelligent surveillance system has become increasingly
important for the purpose of public safety and security [2]. For example, a main
function of the system is to detect and analyze specific events such as suspicious
actions or an unidentified object [3]. The surveillance system, where sensor nodes
are equipped with low-power cameras, can be utilized in an intrusion detection
scenario [4]. In the application, it is crucial to get visual information about an event
area [4] under consideration. For that purpose, face detection (FD) can be one of the
key techniques in intelligent surveillance systems [2]. FD is a necessary step for all
the face related applications such as access control, person-specific identification,
etc. In addition, FD is useful for reliable surveillance because FD is widely known
as a relatively mature technique [5].

There have been several works [6–10] on FD. In [6, 7], a support vector machine
(SVM) classifier [11] based FD was proposed. Due to the exhaustive computation
for comparison between test feature vector and support vectors in every scaled
image of the input frame, this method is inefficient in terms of computational
complexity. In order to speed-up the computation time, the methods in [12, 13]
incorporated a skin-color filtering. However, the memory cost increased due to the
requirement of additional use of color information.

Since early 2000’s, considerable research efforts have been dedicated to devel-
opment of FD methods [14]. In [8], Viola and Jones proposed the first real-time FD
based on Haar-like features and the adaptive boosting (AdaBoost)-based learning
algorithm [8]. Due to its effectiveness, boosting learning-based FD methods have
been regarded as de facto standard of FD in real-world applications [14]. A number
of researchers have addressed challenges in boosting learning [9, 10, 12, 13]. To
speed-up testing of FD, the number of features (or weak classifiers) was reduced [9]
or skin-color filter was incorporated into FD, which could significantly reduce the
search area in an input image [12, 13]. To deal with large variation in face pose,
multi-view FD was proposed with a “divide and conquer” strategy. To enable
multi-view FD, individual classifier was learned for each view. Given a scan
window was passed to all classifiers (i.e., parallel cascade [10]) or sequentially
passed to classifiers of pyramid structure [15]. However, this approach needs a quite
large memory space for storing training models (e.g., feature information and
thresholds [16]), which is not preferred for use in surveillance system. Furthermore,
since the training process is too complicated, it is not easy to update the training
model according to the change of surveillance environment. In addition, a common
limitation of the previous works [8, 12, 13, 15] is that they only consider faces
larger than 20 × 20 pixels or 24 × 24 pixels although much smaller faces are often
encountered in surveillance systems [17].

Modern surveillance systems require a compact design and low power operation
[3, 18] (e.g., in terms of the memory cost which is known to be dominant portion of
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power consumption in a digital system [19]). In reality, various surveillance
environments introduce large variations in illumination and camera view angles,
which require adaptive change of training models. The previous FD methods in
[6–10] could not be appropriate for the surveillance system requirements mentioned
above.

In this chapter, we describe a new FD method aiming to cope with the above-
mentioned limitations in surveillance system. For efficient and smart surveillance
system, we introduce a new event detection function based on detected human faces
in surveillance system. The function remains in a low-power standby mode (i.e., FD
operating on an extremely low-power camera) until an intrusion alarm is made by a
detected face. The intrusion alarm immediately wakes up the surveillance system so
that the system can perform a more sophisticated analysis such as person-specific
identification on the intruder in a high performance camera. This structure allows
surveillance system to operate on a minimal power budget (refer to the Fig. 1).

In particular, we propose a two-stage FD framework for the low-power camera
mode in the introduced event detection. Since a strong classifier in the second stage
is conducted for only selected region-of-interests (ROIs) from the first stage with
low computational cost, the FD algorithm can be efficiently operated in real-time. In
addition, the described FD framework is well suited for operating on a low-power
camera (e.g., detecting faces in small sized low-power monochrome camera).
Further, the detector explained in this chapter requires pre-training for only a single
classifier in the second stage, which is much more efficient than most existing face
detectors. Furthermore, the hardware architecture of the proposed algorithm is
implemented and validated in the gate level simulation. In particular, the unified
static random access memory (SRAM) structure reduces gate counts for memory
usage. In addition, the pipelined structure contributes to speed-up the process
considerably.

Fig. 1 Operation scenario using the face-based event detection two camera modes [22]. © 2014
IEEE
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Experimental results show that the proposed face detector is useful for event
detection function of surveillance, which requires both low-computation and
memory complexities. It is also shown that the proposed method is robust to
variations in video acquisition condition (e.g., pose or illumination variation).
Further, the feasibility of adopting the proposed method in hardware has been
successfully validated by using hardware design verification. Note that this chapter
is restructured based on the paper published in [22]. In addition, some of the figures
and tables listed in this chapter are derived from [22].

The rest of the chapter is organized as follows: Sect. 2 presents human
face-based event detection for intelligent surveillance system. Section 3 describes
the proposed ROI-based two-stage FD algorithm. In Sect. 4, the comparative
experiments and hardware architecture are present. Finally, Sect. 5 provides some
concluding remarks.

2 Human Face-Based Event Detection for Low Power
Operation

There are two essential steps in intelligent surveillance systems [2]: (1) object
detection and (2) object recognition. Object detection is basically a very
time-consuming task due to exhaustive search in every scaled image of input image.
Furthermore, object detection requires high memory consumption because it is
performed on whole and scaled image regions.

In this section, we introduce an event detection function which aims to reduce the
power consumption required for object detection in intelligent surveillance systems.
Figure 1 shows an operating scenario of the proposed event detection. It contains
low-power camera mode and high performance camera mode. The low-power
camera mode (with QVGA [20] monochrome frames) is always turned on for
continuously sensing human intrusions while keeping power consumption low. Only
when a face is detected by the FD module, an intrusion alarm is made to wake up the
high performance camera mode. The object recognition (i.e., person identification) is
performed on this camera mode for further analysis on the intruder. The facial
feature and other useful personal attributes, such as clothing information, are
extracted. The extracted features are then used to match the unknown intruder with
persons in a human database, determining the identity label. For reliable analysis,
video frames of sufficiently high resolution (e.g., HD [20]) are used in the high
performance camera mode. Color information is also available in this mode because
it can provide useful discriminative information for person identification (facial
color, clothing color, etc. [12, 13]). The use of the two different camera modes (i.e.,
low power and high performance) is able to achieve significant power savings over
traditional video surveillance systems which use a single camera mode.

In the next section, we present a very efficient and robust FD method suited for the
low-power camera mode, which has not been deeply investigated in literature. Note
that many effective methods developed for person identification can be found in [21].
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3 Low-Power Face Detection Algorithms

To detect various sizes of faces from an image, the proposed FD method finds
face-like patterns by sliding 16 × 16 pixels scanning window through every
downscaled image from the original input image, where the image is quantized to
4-bit to reduce the power dissipated in image sensor. Herein, all of the generated
scan windows are the input of the FD framework. As shown in Fig. 2, the proposed
method is comprised of two stages, ROIs selection and false positive
(FP) reduction. In the first stage, each scan window is rapidly checked whether to
be a face candidate (ROI) or not. In the second stage, only the ROIs are further
examined by using a strong classifier [22].

The proposed FD method is suitable for operating under the low-power camera
mode in the following aspects: (1) the two-stage design enables to speed-up FD
without using additional skin color information; (2) the proposed method deals with
very small sized faces (e.g., 16 × 16 pixels) due to a robust feature extraction (refer
to Sect. 3.1); (3) As demonstrated in our simulation results in Sect. 4, the proposed
FD itself requires very low power consumption (especially in terms of memory).
The detailed descriptions of the two stages (i.e., ROI selection and FP reduction) are
given in the next subsections.

3.1 The First Stage: Region-of-Interest (ROI) Selection

This section describes the ROI selection method which is based on pre-filtering,
feature extraction, and feature templates matching. For a given scan window, the
pre-filtering step is to speed-up FD by rejecting many negative scan windows in
early stage. Then, the feature extractor generates the facial features to be used for
the classification using feature templates matching.

Feature 
extractor

Pre-filtering
Feature

templates 
matching

FP reduction

Stage 1: ROI Selection

T

F F F

Training 
model

Multiple
templates

All scan windows
Stage 2: FP reduction

Less or more variation than face
and different structure from face

...
Face

Too far from templates
(Non-face)

Less confidence for the 
strong classification

T T

Fig. 2 Overview of the proposed FD method for low-power camera mode

Low-Power Face Detection for Smart Camera 143



3.1.1 Pre-filtering Step for Speed-up

A human face image contains a certain amount of variance due to the presence of
the facial components (e.g., eyes, nose, mouth etc.). An image variance filter
measures the variance of the pixel luminance values within a scan window to reject
the ones that are unlikely to contain a face. For measuring image variance, we
define a 6 × 6 pixels region Rvar as shown in Fig. 3a. The region Rvar contains the
facial components but not the background region. As the image variance measure,
we adopt a standard deviation r as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

ðxi � �xÞ2
vuut ; ð1Þ

where �x is the mean of the all pixel intensity values xi ði ¼ 1; . . .;NÞ: In addition,
N (8� 8 ¼ 64 in this chapter) is the number of pixels within the region Rvar: In
Eq. 1, r represents how spread out the pixel intensity values are within the region
Rvar: Using the r value, we determine if a given scan window is face or non-face. In
other words, if the r value of the scan window is larger than tmin and smaller than
tmax; the scan window is passed, otherwise, the scan window is rejected. Herein, the
tmin and tmax are a lower and an upper decision threshold values, respectively.

As the second filtering step, we use another facial characteristic that eye region
in the human face is likely to be dark. This structural information can be used to
reject negative scan windows that have erroneously passed the image variance filter.
To capture facial structural information, we make use of the difference of pixel
intensity values between the two rectangle regions, which is motivated by Haar-like

Fig. 3 a 6 × 6 facial region for measuring image variance. b Two rectangle regions for capturing
facial structure
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features in [8]. The two rectangles are defined as 8� 3 pixels upper region Ru (that
corresponds to two eyes) and the 8� 2 pixels lower region Rl (that corresponds to
cheeks and nose) for a given 16 × 16 scan windows (see Fig. 3b). To determine if a
given scan window is face or non-face, we first compute the difference c of mean
pixel intensity value between the upper region and the lower region:

c ¼ �xl � �xu; ð2Þ

where �xl and �xu are the mean pixel intensity values of the lower region Rl and the
upper region Ru; respectively. Then, if the difference c is larger than the predefined
decision threshold value cth; the scan window is passed, otherwise, the scan win-
dow is rejected.

3.1.2 Feature Extraction

For a given scan window (passed window from the previous pre-filtering stage), the
feature extractor generates the facial features to be used for the classification using
feature templates matching. For effective face representation, we propose block
texture features that emphasize facial components (i.e., two eyes and mouth). We
divide each window region to three blocks ðRL eye;RR eye; and RmouthÞ as shown
in Fig. 4. The individual block regions are separately represented by histogram
feature vectors. It is important to note that the histogram-based features are less
susceptible to subtle rotation and translation in face representation [23]. Hence,
histogram based features could increase the tolerance of the FD.

For the histogram feature vectors, we adopt a local micro texture like local
binary pattern (LBP) [24] which can efficiently encode facial texture pattern. The
main advantages of LBP include [24]: (1) low computational complexity and
(2) invariance against monotonic illumination variation. Note that any other
histogram-based texture features could be used for the proposed FD scheme.

Block 1 Block 2 Block 38

16

8 8 L_eyeR R_eyeR mouthR

L_eyeh R_eyeh mouthh

8

Fig. 4 Illustration of the block texture feature extraction [22]. © 2014 IEEE

Low-Power Face Detection for Smart Camera 145



For extracting LBP histogram, the uniform LBP operator [24] is used with
parameters (P, R) = (4,1), where P is the number of neighboring pixels equally
spaced on a circle of radius R [24] (In this chapter, horizontal and vertical neigh-
boring pixels are considered.). It produces a 15-dimensional ð¼ PðP� 1Þ þ 3Þ
[25] feature vector of LBP histogram for each block region, where each value has
an integer value. In order to eliminate the effect of different sizes of block, we
normalize the histogram obtained from each block region. Herein, we multiply the
number of pixels within each region for efficiently implementing the hardware
by using only integer programming instead of dividing each value for the
normalization.

Finally, in order to reflect facial structural information in face feature, the three
histogram feature vectors hL eye; hR eye; and hmouth; are concatenated resulting in
45-dimensional global histogram feature vector hSW for a scan window:

hsw ¼ ½ðhL eyeÞTðhR eyeÞTðhmouthÞT �T ; ð3Þ

where T denotes the transpose operator.
The feature vector is fed into the binary classification based on feature template

matching, which will be explained in the next subsection.

3.1.3 Multiple Template Matching

Using the feature vector hSW with type of integer, the decision is made through the
feature templates matching. In order to detect faces with various poses, we propose
multiple feature templates, each of which represents a single face pose (e.g., frontal
and 45 degrees in yaw). As shown in Fig. 5, the feature vector ðhswÞ is compared
with each feature template one by one. The comparison is repeated until the
best-matched feature template is found (e.g., 3rd feature template in Fig. 5). Note
that the number and types of feature templates can vary according to the image
acquisition conditions or target applications. The method for feature templates
generation is explained in Sect. 4. In order to classify the feature vector hsw; we
compute the distance (l1-norm distance in this paper for computational efficiency)

distðkÞ between hsw and the k-th feature templates hðkÞft ðk ¼ 1; . . .;KÞ in order, where
we can decrease the computational load by using Manhattan distance (integer
operation) instead of using Euclidean distance (floating point operation). For each
template, the computed distance distðkÞ is compared with the pre-determined deci-
sion threshold values. If the distance distðkÞ is smaller than s, the scan window is
classified as a face candidate. Otherwise, the distance computation for the next

feature templates hðkþ1Þ
ft (for k þ 1�KÞ is performed and the comparison is

continued.
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3.2 False Positive (FP) Reduction

To reduce unnecessary wake-up of the high performance camera mode, this section
describes the FP reduction stage using a strong classifier. As the strong classifier,
we adopt the linear support vector machine (SVM) [11] due to its robustness and
high generalization capability [26]. The SVM is learnt by minimizing the classi-
fication error as well as maximizing a margin which represents a distance between
support vectors and optimal hyperplane [11]. In order to obtain the SVM training
model, the SVM learns the following quadratic optimization functions [27]:

min

ai

1
2

Xn

i¼1

Xn

j¼1
aiajyiyjUðhiÞTUðhjÞ �

Xn

i¼1
ai;

subject to 0� ai �C;
Xn

i¼1
aiyi ¼ 0;

ð4Þ

where ai; yi; hi; and C are the i-th Lagrangian multiplier, the i-th class label
(yi 2 �1; þ1f g; ‘+1’ for positive and ‘−1’ for negative), the feature vector of the i-
th training sample, and the regularization parameter, respectively. In Eq. 4, the
kernel function UðhjÞ represents the mapping of feature space into a higher
dimensional space. Note that in the linear SVM, for efficient and simple compu-
tations, UðhjÞTUðhjÞ becomes the inner product operation, i.e., hTi hj:

It is important to note that the training images used to train the SVM classifier
correspond to the output scan windows from the ROI selection stage. Hence, huge
variation contained in scan windows which the SVM classifier should handle can be
significantly reduced. The reduced variation allows the SVM classifier to be trained
more efficiently and effectively.

Fig. 5 Illustration for the proposed multi-view face detection using feature templates matching
[22]. © 2014 IEEE
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Using the obtained SVM training model (i.e., support vectors ðhi; i ¼
1; � � � ; nSVÞ and Lagrangian multipliers ðaiÞ), the SVM confidence value η for hSW
is computed by using the following equation:

g ¼
XnSV
k¼1

aihTi hsw ¼ wThsw; ð5Þ

where the weight vector (w) can be defined by the linear combination of support
vectors with the Lagrangian multipliers. We can see that the computation of the
SVM confidence value η in Eq. 5 requires only one inner product operation in the
linear SVM. This means that the second stage of the proposed FD method needs to
store only a 45-dimensional feature vector for w, which leads to very low memory
complexity. Furthermore, we calculate down to six places of decimals by rounding
off for the computational efficiency. This contributes to minimize the cost of
multiplier in hardware implementation. For the final decision on a given scan
window, η is compared with the predefined confidence threshold value gthrs: The
scan window is determined as a face if the η is larger than gthrs; otherwise, it is
determined as a non-face.

4 Experiments

In this section, we evaluated the effectiveness of the proposed FD method for
low-power camera. For the evaluation, videos were acquired by using a web camera
(Microsoft LifeCam) and a closed-circuit television (CCTV) camera (NCD-2000P)
in experiments. The information of the videos used in the experiment is summarized
in Tables 1 and 2.

For the proposed FD method, the downscaled images for scanning face windows
were obtained from the original input images with scale factor of 1.4 by a
nearest-neighbor interpolation method. To detect faces in the image, the window
was scanned left to right with two-pixel shift. To reduce FPs, the detection results
overlapped at a location were merged to form a final detection result, i.e., FD was
valid only when the number of overlapped detection results was more than four.

As discussed in Sect. 3.1, two simple pre-filtering methods were adopted to
speed-up FD. First, we reject scan windows that have too large spatial variances or

Table 1 Test videos used in the experiments [22]. © 2014 IEEE

Video id V1 V2 V3 V4

Place Hall Entrance Lab Stair

Frame size (pixels) 320 × 240 320 × 240 293 × 240 426 × 240

No. of frames 135 457 90 209

No. of subjects 5 3 1 1
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too small spatial variances compared to face. Standard deviation is used as an image
spatial variance measure. Second, we reject scan windows that have different
structure from face in which the eye region is brighter than the cheek region [8].

To this end, we subtract mean pixel value of upper rectangle region (8 × 3 pixels
corresponding to two eyes) from that of lower rectangle region (8 × 2 pixels
corresponding to cheek and nose). If the subtraction value of a scan window is
smaller than a predefined value (21 is used in this paper), the scan window is
rejected. The feature extraction step takes only the scan windows that have passed
the pre-filtering step.

In order to construct the feature templates, we collected 64 face images of
various styles, which were not present in the test video. To deal with variation in
facial pose, we considered the three different poses, i.e., frontal, +45° in yaw, and
−45° in yaw. In each pose, the block texture feature was extracted from every face
image, using the method in Sect. 3.1. After that, the feature templates were obtained
by averaging the block texture features.

We conducted the SVM training using the publicly available LIBSVM library
[27], based on the quadratic optimization function in Eq. 4. For training data, we
collected the face and non-face images from random web images, video frames
captured by the web camera under CCTV environments, and images from the
public face databases (e.g., FERET DB [28]). The number of face samples for
training is 1,084 images and the number of non-face samples is 7,120 images.

For the comparative evaluation, we presented the two existing well-known FD
methods: (1) Viola-Jones face detector (termed as Viola-Jones) [8] and
(2) AdaBoost based on LBP feature (termed as LBP + AdaBoost) [29]. Both
methods were executed with OpenCV (open computer vision library) version 2.4.2.
The FD parameters, i.e., scale factor, minimum neighbor, and minimum face size
were set to 1.1, 3, and 24 × 24 pixels, respectively. As the measures of FD
performance, we used a recall [30], precision [30], and F1-score [31]. The ground
truth of a video frame was annotated manually (only faces larger than 16 × 16
pixels have ground truth values assigned).

In addition, we designed the FD hardware for a low-power camera mode. For the
evaluation, we performed the gate level simulation by using DongBu 0.11um cell
library. The details on the design are described in Sect. 4.2.

Table 2 Test videos used in the experiments with different types of challenges [22]. © 2014 IEEE

Video id V5 V6

Frame size (pixels) 320 × 240 426 × 240

No. of frames 135 209

Type of challenge Illumination variation Pose variation
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4.1 Face Detection Performance Evaluation

In this section, we performed comparative experiments using four videos (V1 to V4
in Table 1) shown in Fig. 6. In each video, the subjects move towards camera. The
videos contained very challenging frames with occlusion, blurring, highlighting,
head tilting, etc. Because the minimum detectable size of the two comparison
methods (i.e., LBP + Adaboost and Viola-Jones method) was 24 × 24 pixels, the
comparison results were obtained only for faces larger than 24 × 24 pixels for fair
comparisons. As shown in Table, 3, the proposed FD outperforms the other two
methods. In addition, the proposed FD method could achieve an acceptable per-
formance (87.62 % of F1-score) for faces larger than 16 × 16 pixels.

To examine the robustness of the proposed FD method to illumination variations
and pose variations, we performed FD on the V5 (for the illumination variation) and
the V6 (for the pose variation). The information for the V5 and V6 can be found in
Table 2. V5 included frames acquired from the different illumination conditions
ranging from 5 lux to 250 lux with camera exposure value set to ‘−8’. In V6, the
subject performed a slow head rotation ranging from +60° (looking at right) to −60°
(looking at left). Table 4 shows the comparative results for faces with varying
illumination. We observe that the proposed FD method clearly outperforms the
Viola-Jones method. Some FD results are shown in Fig. 7a (the face was detectable

Fig. 6 Example of video frames with the results of the proposed method [22]. a For V1 with
occlusion between multiple subjects. b For V2 with blurred and flashed face. c For V3 with shaded
face. d For V4 with tilted face by high camera angle. © 2014 IEEE
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Table 3. Experimental result for V1–V4. a For faces larger than 24 × 24 pixels. b For faces larger
than 16 × 16 pixels [22]. © 2014 IEEE

(a)

Method Recall Precision F1-score

Viola-Jones 72.48 % 79.02 % 75.61 %

LBP + AdaBoost 43.18 % 96.50 % 59.66 %

Proposed 90.07 % 94.01 % 92.00 %
(b)

Recall Precision F1-score

Proposed 81.75 % 94.40 % 87.62 %

Table 4. Experimental result for V5 with illumination variation [22]. © 2014 IEEE

Method Recall (%) Precision (%) F1-score (%)

Viola-Jones 17.68 93.59 29.74

Proposed 57.14 100.00 72.73

Fig. 7 Example of video frames with the results of the proposed method [22]. a For V5. b For V6.
© 2014 IEEE
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in the illuminations between 15 lux and 150 lux). Table 5 shows that the proposed
FD method is also robust to pose variations achieving much higher performance
than Viola-Jones method. This stems from the fact of the relative robustness of
texture feature to illumination variation and the use of multiple templates with the
different poses. These results demonstrate that the proposed FD method is tolerable
in terms of moderate pose and illumination variations.

4.2 Face Detection Simulation for Hardware
Implementation

In this section, we present a hardware implementation for the proposed FD method
and its simulation results. In general, most of power consumption in a digital system
is directly affected by memory usage, i.e., data transfer and storing a large amount
of data in a memory [19]. In particular, digital systems with image processing and
computer vision techniques are likely to conduct memory-based operation. They
unavoidably require a lot of memory usage. In order to reduce memory usage, our
designed FD system optimizes the system architecture and reduces the number of
required gate counts. Especially, the image scaler for obtaining multi-scale images
for the FD task is implemented by a line memory (e.g., SRAM)-based design unlike
the previous implementations based on a frame memory (e.g., dynamic RAM
(DRAM)). In this way, we can considerably reduce the number of gate counts for
low-power consumption. In addition, our FD system can process all of the scaled
data simultaneously through merging line memories for each scaled image.
Moreover, to increase the speed of the operation and parallelism, our FD system
uses a pipelined structure for the block texture feature extraction, and the compu-
tations of the mean and the standard deviation used in the pre-filtering.

Figure 8 shows the block diagram for the hardware implementation of the
proposed FD method. The system is largely comprised of four modules: image
pyramid scaler, block texture feature extractor, feature templates matching, and FP
reduction. Herein, the input signal is “PI[7:0]” with 8-bit monochrome QVGA
image and the output signals are “PO_X[6:0]” and “PO_Y[6:0]” with 7-bit, where
“PO_X” and “PO_Y” are upper left horizontal and upper left vertical positions of
the detected window. For the input image signal, the first module generates image
pyramids that consist of multi-scale images with the scale factor of 1.4. In this
module, the unified SRAM based scaler generates four scaled images with the
integer scale factor for the original image and 1.4 times scaled image. Then, the line
mergers combine the line data stored in line memories into one data stream via

Table 5. Experimental result for V6 with pose variation [22]. © 2014 IEEE

Method Recall (%) Precision (%) F1-score (%)

Viola-Jones 29.47 25.45 27.32

Proposed 75.26 95.97 84.37
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SPSRAMs (single ported SRAMs). It enables to process the line data of multi-scale
at the same time. Using a multiplexer (MUX), the data stream is controlled. The
data stream per line enters the block texture feature extractor and statistic compu-
tation blocks. By pipelining the two blocks and data flows, we can obtain the
pipelined histogram vector and statistics (i.e., mean and standard deviation for
pre-filtering). Then, the extracted feature vector is matched with the feature tem-
plates in the feature templates matching module. Finally, FP reduction (i.e., inner
product) using the linear SVM is conducted sequentially.

To verify the effectiveness of the hardware implementation of the proposed FD
method, the designed FD system was evaluated by gate level simulation using
DongBu 0.11um cell library. From the simulation result, we can see that the FD
system can be implemented with 83 K gates. In particular, only 7 K gates are
required for generating a 320 × 240 pixels image scaled pyramid, which is much
more efficient than the FD system of [32] where 75 K gates are required for
processing a 160 × 120 pixels input image. In [33], the authors implemented QVGA
input image-based FD system with edge feature using Sobel filtering and a Naïve
Bayes classifier. In the FD system [33] 268 KB were used for SRAM. On the other
hand, our FD system requires only 10 KB for SRAM. These simulation results
demonstrated that our FD system is very efficiently designed.

5 Conclusion

In this chapter, we introduced an event detection function for low-power intelligent
surveillance system. The function remains in a very low-power camera mode except
when human intruder is detected by automatic face detection. When a face is
detected, a higher performance camera mode becomes available for further reliable
analysis on the human intruder. We also proposed an efficient ROI-based two-stage
face detection (FD) method suitable for operating on low-power camera mode. The
comparative experiments showed that the proposed FD framework outperformed
the widely used FD methods for the challenging videos in surveillance

Fig. 8 Overall block diagram of the implemented hardware architecture [22]. © 2014 IEEE
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environments. Moreover, as the implemented FD hardware uses 83 K gate counts,
the proposed FD method could be adopted for low-power event detector. As future
work, we will further investigate the FD hardware implementation by using field
programmable gate array (FPGA).
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Accurate Face and Human Detection
Using Hybrid Local Transform Features

Daijin Kim and Bongjin Jun

Abstract We propose two novel local transform features: local gradient patterns
(LGP) and binary histograms of oriented gradients (BHOG). LGP assigns one if the
neighboring gradient of a given pixel is greater than the average of eight neigh-
boring gradients and zero otherwise, which makes the local intensity variations
along the edge components robust. BHOG assigns one if the histogram bin has a
higher value than the average value of the total histogram bins, and zero otherwise,
which makes the feature computation time fast due to no further post-processing
and SVM classification. We also propose a hybrid feature that combines several
local transform features by AdaBoost feature selection method where the best local
transform feature among several local transform features (LBP, LGP, and BHOG),
which has the lowest classification error, is sequentially selected until we obtain the
required classification performance. This hybridization makes the face and human
detection robust to the global illumination change by LBP, the local intensity
change by LGP, and the local pose change by BHOG, which improves the detection
performance considerably. We apply the proposed local transform features and the
hybrid feature to the face detection problem using MIT+CMU and FDDB face
database and the human detection problem using INRIA human database. The
experimental results show that the proposed LGP and BHOG features attain
accurate detection performance and fast computation time, respectively, and the
hybrid feature provides a considerable improvement of face detection and human
detection.
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1 Introduction

Face and Human detection is one of the important topics in computer vision. It has
been widely used for the practical and real-time applications in many areas such as
digital media (cell phone, smart phone, smart TV, digital camera), intelligent user
interfaces (Wii, MS Kinnect), intelligent visual surveillance, and interactive games.
Conventional face and human detection methods usually take the pixel color (or
intensity) [37] directly as the information cue. However, these cues are sensitive to
the illumination changes and noises [29]. To tackle this problem, many researchers
have introduced the transform features that convert the pixel color (or intensity) by
a certain nonlinear transformation function. They can be categorized into two
transform features: the intensity-based transform features and the gradient-based
transform features.

First, the intensity-based transform features convert the pixel color (or intensity)
into the encoded value by comparing the pixel value with the neighboring pixel
value. Papageorgiou and Poggio [26] introduced the Haar-like features that encoded
the differences in average intensities between two rectangular regions and they
applied to extract the textures irrespective of pixel color (or intensity). Viola and
Jones [39, 40] used the Haar-like features to detect the faces. They used an integral
image [40] to compute the Haar-like features efficiently and an efficient scheme for
constructing a strong classifier by cascading several weak classifiers using
AdaBoost training. Yan et al. [41] proposed the binary Haar feature that kept only
the directional relationship in the Haar feature computation. However, the dis-
criminating power of a single binary Haar feature was too weak to construct a
robust classifier. They also proposed the assembled binary Haar (ABH) feature that
integrated three binary Haar features to improve the discriminative power of the
binary Haar feature. However, the dimensionality of ABH feature is very huge.
Furthermore, they proposed the locally assembled binary (LAB) Haar feature that
combined 8 locally adjacent 2-rectangle to reduce the size of feature dimensionality.
The LAB Haar feature represented the local intensity differences at various loca-
tions, scales, and orientations. Ojala et al. [24] proposed the local binary patterns
(LBP) feature that was derived from a general definition of texture in a local
neighborhood of the image. They encoded an image pixel into a 8-bit binary pattern
that compared the intensity of center pixel within the 3 × 3 block with the intensity
values of 8 boundary pixels with the 3 × 3 block and representing the comparison
result as 1 or 0. One important advantage of the LBP feature was that it was
invariant to the monotonic change of illumination. Zabin and Woodfill [42] pro-
posed the census transform (CT) that is similar to the LBP feature. The LBP feature
and its variants have been widely used in many applications: face detection [19, 43],
face recognition [1, 44], facial expression recognition [12, 33], gender recognition
[36], face authentication [16], gait recognition [21], image retrieval [38], texture
classification [14, 25], shape localization [17], and object detection [15].

Second, the gradient-based transform features convert the pixel color (or intensity)
into the gradient magnitude and orientation. Lowe [22] proposed the SIFT descriptor
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that extracted distinctive invariant features from images and was invariant to image
scale and rotation. The SIFT descriptor computed a histogram of local oriented
gradients around the key point and represented the histogram in a 128 dimensional
vector. It was obtained by computing the gradient magnitude and orientation on the
key points, where the key points were obtained by finding the maxima and minima of
the difference of Gaussian (DOG) images among three adjacent layers. It also
required an image pyramid to make the SIFT descriptor scale invariant. Ke and
Sukthankar [20] proposed the PCA-SIFT that used the principal component analysis
(PCA) instead of histogram to normalize gradient patch. The feature vector was
significantly smaller than the SIFT feature vector. They showed that PCA-based local
descriptors were distinctive and robust to image deformations but it took a long
computation time to extract the local descriptors. Bay et al. [2] proposed the speeded
up robust features (SURF) that was an efficient implementation of SIFT by using the
integral image. The SURF descriptor was obtained by computing the gradient
magnitude and orientation on the key points, where the key points was obtained by
finding the maxima of the Haar-like box filtered images. It did not require the image
pyramid because it used many different sized box filters using integral image. Dalal
and Triggs [4] proposed the histogram of oriented gradients (HOG) that divided the
object into many fixed sized blocks, computed the HOG of each block, and repre-
sented the object by a concatenation of the block’s HOG vectors. The HOG feature
has been widely used in many applications: human detection [4, 6, 46], face rec-
ognition [5], object detection [10, 11] and emotion recognition [3]. Many researchers
[9, 34, 45, 46] have also extended the original HOG to use variable-sized blocks,
which improved the detection performance greatly.

In this chapter, we take two representative local transform features: local binary
patterns (LBP) and histogram of oriented gradients (HOG) because LBP is robust to
the global illumination change and HOG is robust to the local pose change.
However, the local transform features have some limitations such that LBP is
sensitive to local intensity changes due to makeup, wearing of glasses, and a variety
of background and HOG requires a long processing time to compute the feature
transformation.

To overcome these limitations, we propose two new local feature transforms:
LGP and BHOG. LGP assigns one if the neighboring gradient of a given pixel is
greater than the average of eight neighboring gradients, and zero otherwise, which
makes the local intensity variations along the edge components robust. We show
that LGP has a higher discriminant power than LBP in both the difference between
face histogram and non-face histogram and the detection error based on face/face
distance and face/non-face distance. BHOG assigns one if the histogram bin has a
higher value than the average value of the total histogram bins, and zero otherwise,
which makes the feature computation time fast due to no further post-processing
and SVM classification.

We also propose a hybrid feature that combines several local transform features
by AdaBoost feature selection method where the best local transform feature among
several local transform features (LBP, LGP, and BHOG), which has the lowest
classification error, is sequentially selected until we obtain the required
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classification performance. This hybridization makes the face and human detection
robust to the global illumination change by LBP, the local intensity change by LGP,
and the local pose change by BHOG, which improves the detection performance
considerably.

This chapter is organized as follows. Section 2 describes the LGP feature to
overcome the limitation of the LBP feature. Section 3 describes the BHOG feature
to speed up the computation of the HOG feature. Section 4 describes a hybrid-
ization of several local transform features that combines them by AdaBoost feature
selection method. Section 5 describes the experimental results of face and human
detection that demonstrates the usefulness of the proposed local transform features
and the hybrid feature. Finally, Sect. 6 presents conclusions.

2 Local Gradient Patterns

Many variants of LBP have been applied to tasks such as face detection, face
recognition, facial expression recognition, gender recognition, face authentication,
gate recognition, image retrieval, texture classification, shape localization, and
object detection. However, they are sensitive to local intensity variations that occur
commonly along edge components such as eyes, eyebrows, noses, mouths, whis-
kers, beards, or chins due to internal factors (eye glasses, contact lenses, or makeup)
and external factors (different backgrounds). This sensitivity generates many dif-
ferent patterns of local intensity variations and makes training of the face and human
detection by AdaBoost difficult. To overcome this problem, we propose a novel face
and human representation method called Local Gradient Patterns (LGP), which
generates constant patterns irrespective of local intensity variations along edges.

The LGP operator uses the gradient values of the eight neighbors of a given
pixel, which are computed as the absolute value of intensity difference between the
given pixel and its neighboring pixel. Then, the average of the gradient values of
the eight neighboring pixels is assigned to the given pixel and is used as the
threshold value for LGP encoding as follows. A pixel is assigned a value of 1 if the
gradient value of a neighboring pixel is greater than the threshold value, and a value
of 0 otherwise. The LGP code for the given pixel is then produced by concatenating
the binary 1s and 0s into a binary code (See Fig. 1).

The LGP operator is extended to use different sizes of neighborhoods. We
consider a circle of radius r centered on a specified pixel and take p sampling points
along on the circle (See Fig. 2). To obtain the values of pixel positions in the
neighborhood for r and p, bilinear interpolation is necessary. It uses a 2 × r + 1 by
2 × r + 1 kernel that summarizes the local structure of an image. At a given center
pixel position ðxc; ycÞ, it takes the 2 × r + 1 by 2 × r + 1 neighboring pixels
surrounding of the center pixel. Here, we define the gradient value between the
center pixel ic and its neighboring pixel in as gn ¼ jin � icj, and set the average of
p gradient values as �g ¼ 1

p

Pp�1
n¼0 gn. Then, LGPp;r xc; ycð Þ can be expressed as
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LGPp;r xc; ycð Þ ¼
Xp�1

n¼0

s gn � �gð Þ2n; ð1Þ

where

sðxÞ ¼ 0; if x\0;
1; otherwise:

�
ð2Þ

Figure 3 illustrates that LBP and LGP generate the same codes and the different
codes depending on the global and local intensity changes. When the intensity
levels of both the background and the foreground are changed together (globally),
LGP and LBP both generate invariant patterns (See Fig. 3a). However, when the
intensity level of the background or the foreground is changed locally, LGP gen-
erates invariant patterns but LBP generates variant patterns (See Fig. 3b, c). This
difference occurs because LGP generates patterns using the gradient difference
(sðgn � �gÞ), whereas LBP generates patterns using the intensity difference
(s in � icð Þ). For the nearly uniform color region, there exist the small variations of
absolute intensity differences between two neighboring pixels. We can suppress
these small variations of absolute intensity differences by setting the threshold as a
predefined value that is a little greater than the average absolute difference.

Fig. 1 The original LGP operator. © 2013 IEEE

Fig. 2 Three examples of neighboring pixels: LGP4,1, LGP8,1 and LGP8,2. © 2013 IEEE
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3 Binary Histograms of Oriented Gradients

Dalal and Triggs [4] showed that the HOG feature combined with a linear SVM
was a good detection performance of human beings. They took the overlapped
block division method, the 1-D centered mask [−1, 0, 1], and the L2-Hys nor-
malization method. However, it showed a slow processing speed of 1 fps for the
320 × 240 image although it took very small number of search windows (800
windows per image).

Fig. 3 LBP and LGP patterns when the intensity levels are changed globally or locally. © 2013
IEEE
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Q. Zhu et al. [46] used a cascade of rejectors and AdaBoost training to select the
features which needed to be evaluated in each stage. This method could process
320 × 240 images over the speed of 5 fps, while maintaining an accuracy level
similar to the existing HOG methods. However, it was still not enough to run in
real-time, because each HOG feature consisted of 36 dimensional histogram vectors
for each block and the weak classifiers of AdaBoost were the linear SVMs with
HOG features.

To overcome this problem, we propose a novel face and human representation
method called the binary histograms of oriented gradients (BHOG) that assigns one
if the histogram bin has a higher value than an average value of the total histogram
bins and zero otherwise, where threshold is just . Therefore, the BHOG feature for a
given block is represented by concatenating the binary 1s and 0s into a binary code
(See Fig. 4). While the HOG feature represents each block by the 256 bit vector (8
bins × 32 bits), the BHOG feature represents each block by the 8 bits, which makes
the processing time efficient.

The BHOG feature is generated as follows. First, we compute the square of
gradient magnitude and orientation of all pixels within the block. Second, we build
the orientation histogram HOGðbÞ; b ¼ 0; 1; . . .; 7 in the same way of generating
the HOG feature. Third, we encode the orientation histogram into 8 bit vector,
where each bit is determined by thresholding: If the histogram bin has a higher
value than a given threshold, the 1 bit is assigned. Otherwise, the 0 bit is assigned.
The decimal form of the 8 bit BHOG feature for a given block is expressed as

BHOG ¼
X7
n¼0

sðHOGðnÞ � ThÞ2n; ð3Þ

where Th denotes the average of HOG as Th ¼ 1
8

P7
n¼0 HOG nð Þ and a sign function

sð�Þ is defined as

s xð Þ ¼ 1; if x[ 0;
0; otherwise:

�
ð4Þ

Fig. 4 Binary histograms of oriented gradients. © 2013 IEEE
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The BHOG feature has several advantages over the HOG feature as follows.
First, the BHOG featuer does not require the square root operation in computing the
gradient magnitude because it just compares the value of histogram bin with a given
threshold. Second, the BHOG feature does not perform normalization of the ori-
entation histograms which is the essential part in the original HOG, since it just
requires the relative comparison between the value of histogram bin and a given
threshold value. Third, the BHOG feature can be obtained by the AdaBoost training
because it can be represented as one dimensional scalar value.

However, the HOG feature cannot use the Adaboost training because it is rep-
resented by a N × M dimensional vector that is obtained by concatenating N blocks,
where each block is M dimensional vector. Therefore, the HOG feature is obtained
by applying the linear SVM to the vector and then applying the Adaboost training
to the scalar value of the SVM result. Finally, the BHOG feature uses the
variable-sized blocks from 3 × 3 to W × H, where W and H denote the width and
height of the image, which can capture a lot of useful information that is spread
over different scales and it can capture a large sized part of the human body (e.g.
head, arm, leg).

4 Hybridization of Local Transform Features

We propose a hybridization of local transform features that combines them by
AdaBoost feature selection method, where the best local transform feature among
several local transform features (LBP, LGP, and BHOG), which has the lowest
classification error, is sequentially selected until we obtain the required classifica-
tion performance. The pool of feature candidates consists of a large set of point
features in the case of LBP and LGP features and a huge number of block features
with a variety of sizes from 3 × 3 to W × H in the case of BHOG feature. The
selected features should not be redundant and characterize both intra-class vari-
ability and inter-class variability well. This hybridization makes the face and human
detection robust to the global illumination change by LBP, the local intensity
change by LGP, and the local pose change by BHOG, which improves the detection
performance considerably. To select discriminative features from LBP, LGP, and
BHOG, we use AdaBoost based on LBP, LGP, and BHOG.

The overall procedure of selecting the hybrid feature using the AdaBoost
training is given below. First, we prepare the positive and the negative training
images. Second, we initialize the weight values of the positive and the negative
training images. Third, we obtain the positive and the negative training feature
images of three different local transform features: LBP, LGP and BHOG. Fourth,
we compute the classification errors for all feature images. Fifth, we select the best
local transform feature that has the minimum classification error. Finally, we update
the weight values of all the training images such that the training images incorrectly
classified by the selected feature have large weight values and the training images
correctly classified by the selected feature have small weight values in the
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subsequent iterations. We prevent to re-select the previously selected feature by the
other feature type by sharing the weight values among LBP, LGP and BHOG
features.

After AdaBoost training, we obtain a strong classifier HðCÞ, where C includes
LBP, LGP, and BHOG feature images. Then, it is represented by the sum of weak
classifiers as

H Cð Þ ¼
X
x2SLBPT

hx L xð Þð Þ þ
X

x2SLGPT

hx GðxÞð Þ þ
X

x2SBHOGT

hx BðIHðxÞð Þ; ð5Þ

where L is an LBP feature, G is an LGP feature, IH is an integral histogram [27]
of the HOG feature whose size is w� h of one detection window, Bð�Þ is a binary
HOG feature value computed from HOG feature vector, SLBPT , SLGPT , and SBHOGT are
the sets of selected LBP, LGP and BHOG features at the final iteration, respec-
tively, x denotes the selected feature as x ¼ ðtype; x; y;w; hÞ (If type is LBP or LGP,
x and y represents feature location, while w and h has no meaning, if type is BHOG,
x and y represent the center position of the selected block, while w and h represent
the width and height of the selected block.), and hxð�Þ is the weak classifier that
consists of a lookup table with a dimensionality of 2N 0; 2N � 1f g, N is bit length of
LBP, LGP, and BHOG) whose index is just the LBP, LGP, or BHOG value.

The value at each index of the lookup table indicates that the smaller it is, the
more positive training images have the index and the larger it is, the more negative
training images have the index. The weak classifiers are constructed using
AdaBoost training [13], which updates the weight of each training sample such that
misclassified instances are given a higher weight in the subsequent iteration.
Table 1 shows an overall procedure of selecting the hybrid feature using the
AdaBoost training procedure and Table 2 shows a detailed sub-procedure of
selecting the best feature.

5 Experimental Results and Discussion

5.1 Face Detection

5.1.1 Data Preparation

We prepared 30,000 images from the FDD061 database, which contained the faces
with the race, illumination, color and texture variations. We detect the faces in the
image manually and normalized the detected faces to the face images with a fixed
size of 22 × 24 pixels using the manually marked both eye’s center positions. We
generated 300,000 training face images by shifting slightly the face images, scaling

1See database(http://imlab.postech.ac.kr/faceDB/FDD06/FDD06.html.
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the face images with 0.95, 1.0, and 1.05 scale-factors, and rotating the face images
by −15, 0, and 15 degrees in order to detect the faces irrespective of positions and
scales. In addition, we mirrored the training face images to make them doubled.
Figure 5 shows some typical training face images that were normalized by two
eyes.

We prepared 17,000 non-face images from the FDD06 database, which did not
contain the faces and generated 300,000 training non-face images by resizing the
non-face images and taking the image patches with a fixed size of 22 × 24 pixels
from the resized non-face images at random positions. These non-face images were
used to train only the 1st stage of the cascade of face detectors, which will be
explained later. From the 2nd stage of the cascade of face detectors, only the
non-face images that were classified as false positives in the previous stage, were
used to train the current stage face detector.

Table 1 Hybrid feature selection using AdaBoost training. © 2013 IEEE

1. Prepare the training images Ti; cið Þji ¼ 1; 2; . . .; Np þ Nn
� �

,

where Np and Nn denote the number of positive and negative training images, respectively,
ci ¼ 0 for Ti 2 P and ci ¼ 1 for Ti 2 N, where P and N denote positive and negative training
images, respectively.

2. Initialize the weights of the positive and negative training images as wi ¼
1
Np

for ci ¼ 0;
1
Nn

for ci ¼ 1;

 

define the set of selected features S1 ¼ fg, set the number of selected features to Ns, and set the
values of the weak classifier hxt cð Þ ¼ 0, where xt denotes one of LBP, LGP, and BHOG features,
t ¼ 1; 2; . . .; Ns and the feature index c ¼ 0; . . .; 2N � 1.

3. Apply LBP, LGP, and HOG to all positive and negative training images.

Let Li, Gi, and IHi be the positive and negative training LBP, LGP and integral histogram of
HOG feature images, respectively.

4. For t ¼ 1; 2; . . .; T

(a) Select the best feature xt with the classification error epsilont, by performing the tasks in
Table 2.

(b) Update the weak classifier at the selected feature xt as hxt cð Þ ¼ hxt cð Þ þ atzt cð Þ;
where c ¼ 0; . . .; 2N � 1 and at ¼ 1

2 ln
1�et
et

� �
.

(c) Update the weights of positive and negative training images as

if the type of xt is LBP, wtþ1 ið Þ ¼ wt ið Þ � e�at ; if zt Li xtð Þð Þ ¼ ci;
eat ; if zt Li xtð Þð Þ 6¼ ci;

�

if the type of xt is LGP, wtþ1 ið Þ ¼ wt ið Þ � e�at ; if zt Gi xtð Þð Þ ¼ ci;
eat ; if zt Gi xtð Þð Þ 6¼ ci;

�

if the type of xt is BHOG, wtþ1ðiÞ ¼ wtðiÞ � e�at ; if zt B IHi xtð Þð Þð Þ ¼ ci;
eat ; if zt B IHi xtð Þð Þð Þ 6¼ ci;

�

(d) Normalize the weights of positive and negative training images as wtþ1 ið Þ ¼ wtþ1 ið ÞPNpþNn

i¼1
wtþ1 ið Þ

.

5. The final strong classifier is the sum of weak classifiers as

H Cð Þ ¼Px2SLBPT
hx L xð Þð Þ þPx2SLGPT

hx G xð Þð Þ þPx2SBHOGT
hx B IH xð Þð Þð Þ;

where SLBPT , SLGPT , and SBHOGT are the set of selected feature positions at the final iteration T.
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We also prepared 15,000 images from the internet, which were not used for
training and generated 150,000 validation face images in the same way of gener-
ating the training face images. We also prepared 15,000 non-face images from the
internet, which were not used for training and generated 250,000 validation
non-face images in the same way of generating the training non-face images.

Table 2 A sub-procedure of selecting the best feature. 2013 IEEE

1. Generate the weight tables from the positive and negative training LBP, LGP, and BHOG
feature images as Wk;LBP

t x; cð Þ ¼Pi;x;c wt ið ÞI LiðxÞ ¼ cð ÞI ci ¼ kð Þ; Wk;LGP
t ðx; cÞ ¼P

i;x;c wt ið ÞI Gi xð Þ ¼ cð ÞI ci ¼ kð Þ; Wk;BHOG
t x; cð Þ ¼Pi;x;c wt ið ÞI B IHi xð Þð Þ ¼ cð ÞI ci ¼ kð Þ;

where k = 0 or 1 for positive or negative training samples, respectively, and Ið�Þ is an indicator
function that takes a value of 1 if the argument is true, and 0 otherwise.

2. Compute the error et xð Þ for each lookup table as eLBP ¼
P

c min W0;LBP
t x; cð Þ;W1;LBP

t x; cð Þ
n o

; eLGP ¼Pc min W0;LGP
t x; cð Þ;W1;LGP

t x; cð Þ
n o

; eBHOG ¼
P

c min W0;BHOG
t x; cð Þ;W1;BHOG

t x; cð Þ
n o

; et xð Þ ¼ min eLBP; eLGP; eBHOGf g:

3. Select the best feature position xt as xt ¼ x ¼ minxetðxÞ; if jStj\Ns;
x ¼ minx2St etðxÞ; otherwise;

�

where Ns is the allowed number of selected feature positions.

4. Update the set of selected features as

if the type of xt is LBP, SLBPtþ1 ¼ SLBPt [xt
� �

,

if the type of xt is LGP, SLGPtþ1 ¼ SLGPt [xt
� �

,

if the type of xt is BHOG, SBHOGtþ1 ¼ SBHOGt [xt
� �

, Stþ1 ¼ SLBPtþ1 [SLGPtþ1 [SBHOGtþ1

� �
.

5. Determine the dominant class indicator ztðcÞ of the feature value c at the selected feature xt as

zt cð Þ ¼ 0; if W0
t xt; cð Þ[W1

t xt; cð Þ;
1; otherwise:

�

Fig. 5 Normalized training face images. © 2013 IEEE
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5.2 Training Procedure

We have three different face detectors that use different features such as LBP, LGP
and LBP+LGP+BHOG hybrid features, respectively. The AdaBoost training pro-
cedure of three face detectors is explained below.

First, we transform the training face and non-face images into the training face
and non-face LBP, LGP, and BHOG feature images. Second, we compute the
classification errors of all features. Third, we select one best feature with the
minimum classification error at the current iteration. Fourth, we update the weight
values of the training face and non-face feature images. Fifth, we check the stop
condition that we achieve 99 % detection rate and 4 % false positive error rate using
the validation face and non-face feature images. If the stop condition is satisfied,
then we stop and obtain the selected features: the positions features in the case of
LBP and LGP and the position and block features in the case of hybrid feature.
Otherwise, we normalized the weight values of the training face and non-face
feature images and go to the second step.

5.2.1 Cascade of Face Detectors

Since the proposed face detection method is based on classifying every possible
window in the image as positive images or negative images, it takes long com-
putation to detect the face in the high resolution image. To make the detection fast,
we can employ the cascade of face detectors using the AdaBoost training method
used by Viola and Jones [39].

In the real experiments, we trained three different cascades of face detectors
using the LBP, LGP, and the hybrid feature images. However, we failed to train the
cascade of face detectors using the BHOG feature images because the BHOG
feature has only 8 different patterns in the case of 3 × 3 size of block. We set the
maximum number of selected features of stage 1, 2, 3, and 4–26, 60, 120, and 400,
respectively.

Figure 6 shows the selected features of three different cascade of face detectors
using the LBP, LGP, and hybrid features, where white dots denote the positions of
the selected point features in case of the LBP and LGP features and the center
positions of the selected block features in the case of BHOG feature, and the
rectangular boxes denote the sizes of the selected block features. We represent the
center points of all the selected block features but did not represent the sizes of all
the selected block features because it is very difficult to draw the boxes of all the
selected block features within the face image. From Fig. 8, we know that (1) the
LBP features are mostly selected from eye and mouth endpoints because they
capture the common characteristics to all training face images, (2) the LGP features
are widely selected from all face regions because they capture the locally changing
gradient information and (3) the BHOG features are mostly selected from the eye,
nose and mouth regions because they capture the common block information to all
training face images.
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Table 3 shows the number of selected features in each stage that is determined
from the training of the cascade of face detectors using the hybrid feature images.
From Table 3, we know that (1) the LGP features are selected more than the LBP

Fig. 6 Selected features of three cascades of face detectors. © 2013 IEEE
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and BHOG features because they are widely distributed over the all face region and
(2) the BHOG features are rarely selected because they cover the large face com-
ponents such as eyes, nose, and mouth.

Table 4 shows the computation time in each stage that is executed for the
training of three different cascades of face detectors using the LBP, LGP and hybrid
feature images, which run on the 2.83 GHz Intel Pentium IV PC system with 8 GB
RAM. From Table 4, we know that the training time for the cascade of face
detectors using the LBP and LGP feature images takes about one day while the
training time for the cascade of face detectors using the hybrid feature images takes
about four days.

5.2.2 Detection Performance

After training the proposed four-stage cascaded face detector, we evaluated the face
detection accuracy using two kinds of face databases: the MIT+CMU database [30]
(130 images with 483 faces), the Face Detection Data Set and Benchmark (FDDB2)
database [18] (2,845 images with 5,171 faces). The face images in the MIT+CMU
database are easy to detect because they are frontal and upright, and have mild
illumination variations. The face images in the FDDB database are very difficult to
detect because they include many occluded images and have large pose/illumination
variations.

We considered six face detection methods for performance evaluation: the LBP
feature-based face detector (LBP), the LGP feature-based face detector (LGP),

Table 4 The computation time in each stage for training three different cascades of face detectors.
2013 IEEE

Cascade Training time (LBP or LGP) Training time (Hybrid)

Stage 1 ≈1 min ≈6 min

Stage 2 ≈5 min ≈40 min

Stage 3 ≈30 min ≈4 h

Stage 4 ≈23 h ≈3 days

Table 3 The number of selected features in each stage. 2013 IEEE

Feature Stage 1 Stage 2 Stage 3 Stage 4 Total

# of LBP 8 19 39 146 212

# of LGP 12 34 76 242 364

# of BHOG 6 7 5 12 30

Total 26 60 120 400 606

2See http://vis-www.cs.umass.edu/fddb/results.html.
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the LBP+LGP feature-based face detector (LBP+LGP), the hybrid feature-based
face detector (HYBRID). We compared four face detection methods (LBP, LGP,
LBP+LGP, and HYBRID) with other existing face detection methods:
Rowley-Baluja-Kanade [31], Viola-Jones [39], Mikolajaczyk et al. [23],
Subburaman et al. [35].

Figure 7a, b show two receiver operating characteristic (ROC) curves that are
obtained from several different face detection methods using the MIT+CMU
database and the FDDB database, respectively. From Fig. 7a using the MIT+CMU
database, we know that (1) the detection rate of the proposed HYBRID face
detection method was the highest among all face detection methods by 0.959 when
the false positive per image (FPPI) is one and (2) the number of false positives of
the HYBRID, LBP+LGP, LGP, LBP, Viola-Jones, and Rowley-Baluja-Kanade
methods at the 0.9 detection rate is 4, 7, 26, 67, 78, and 166, respectively,

From Fig. 7b using the FDDB database, we know that (1) the detection rates
using the FDDB database are lower than those using the MIT+CMU database
because the face images in the FDDB database has higher variations in the pose,

Fig. 7 ROC curves using (a) the MIT+CMU database and (b) the FDDB database. © 2013 IEEE
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illumination, expression, and occlusion than those in the MIT+CMU database,
(2) the detection rate of the proposed HYBRID method was the highest among all
face detection methods by 78.9 % when the false positive per image (FPPI) is 0.1,
(3) the detection rate of the HYBRID, LBP+LGP, LGP, LBP, Viola-Jones,
Mikolajaczyk et al., and Subburaman et al. methods at the 0.1 FPPI are 78.2, 76.3,
74.2, 72.1, 46.2, 45.6, and 42.3 %, respectively.

Figure 8 shows the face detection results using the MIT+CMU database (top
row) and the FDDB database (bottom row), where (a), (b) and (c) are obtained from
the LBP feature-based face detector, the LGP feature-based face detector and the
hybrid feature-based face detector, respectively. From Fig. 8, we know that the
HYBRID feature-based face detector succeeds to find most of faces, even tiny faces
with a size of 22 × 24, but the LBP and LGP feature-based face detectors fail to find
them occasionally.

Figure 9 shows several face detection results using the hybrid feature-based face
detector on the MIT+CMU and FDDB database, respectively.

5.2.3 Memory Size

Each weak classifier must store the confidence value at each LBP, LGP, and BHOG
value in the lookup table, where the confidence value is represented by a real
number, which consists of 8 bytes. Therefore, each weak classifier requires a
memory space of 2,048 bytes (= 256 LGP patterns × 8 bytes). Because stages 1–4

Fig. 8 Comparison of face detection results from (a) the LBP feature-based face detector, (b) the
LGP feature-based face detector, and (c) the hybrid feature-based face detector. © 2013 IEEE
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Fig. 9 Face detection results. 2013 IEEE
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consist of 26, 60, 120 and 400 weak classifiers respectively, the total required
memory space is 1.2 Mbytes (= 606 × 2,048 bytes), which is a burden for
low-performance embedded systems. Furthermore, most low-performance embed-
ded systems do not support the floating point operation. To overcome this limita-
tion, we propose an encoding scheme of reducing the required memory space that
quantizes the confidence value into 256 intervals and represents it as one byte value
from 0 to 255. This encoding reduces the required memory size to 152 Kbytes
(= 606 × 256 LGP patterns × 1 byte).

5.2.4 Computation Time

We represent the computation time of our face detector as a linear function
TðtÞ ¼ N � t þ C, where N is the number of possible detection windows in the
image, t is the average computation time to process one detection window, and C is
a constant time that includes the image loading time, the preprocessing time (the
time for transforming the input image into the LBP, LGP, BHOG feature image, the
time for making integral histogram of HOG in the case of the hybrid-based face
detector, the time for making the integral image in the case of Viola-Jones face
detector, the time for constructing the pyramid image).

We measured the computation time on a 2.83 GHz Intel Pentium IV PC system
with 8 GB RAM. Table 5 shows the preprocessing time and the average compu-
tation time of several face detectors, where it is the average of the computation time
of 10,000 320 × 240 input images.

The average computation times of the Rowley-Baluja-Kanade face detector [31]
and the Schneiderman-Kanade face detector [39] were referred from [39], which
stated that their face detector was roughly 15 times faster than the
Rowley-Baluja-Kanade face detector and roughly 600 times faster than the
Schneiderman-Kanade face detector. The proposed LGP feature-based face detector
is slightly slower than the LBP-based face detector due to the gradient computation
for LGP feature transformation. However, the LGP feature-based face detector is
seven times faster than the Viola-Jones face detector because the LGP feature-based

Table 5 Comparison of average computation time among several face detectors (unit: 10−3 s).
2013 IEEE

Detector Pyramid Feature Face Total

Image Transform Detection Time

LBP feature-based [24] 1.7 1.76 6.20 9.66

LGP feature-based 1.7 2.05 6.07 10.12

HYBRID feature-based 1.7 9.78 25.78 37.26

Viola-Jones [39] 0.0 0.16 70.06 70.22

Rowley-Baluja-Kanade [31] – – – 1053.3

Schneiderman-Kanade [32] – – – 42132.0
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face detector computes the weak classifier by one array reference to the lookup
table, whereas the Viola-Jones face detector computes the weak classifier by more
than six array references even with integral image.

The proposed hybrid feature-based face detector is roughly 2 times faster than
the Viola-Jones face detector. Since most of the features of hybrid feature-based
face detector consist of LBP and LGP features, there are a few number of BHOG
features. Accordingly, hybrid feature-based face detector requires a few number of
integral histogram computations which take much computation time. In contrast, all
the weak classifiers of Viola-Jones face detector consist of Haar-like features which
require high number of integral image computation.

5.3 Human Detection

5.3.1 Data Preparation

We prepared 618 images from the INRIA database [4], which contained 1,208
humans with the pose, illumination, appearance, and occlusion variations. We
detect the human in the image manually and normalized the detected humans to the
human images with a fixed size of 32 × 64 pixels using the manually marked head
and toe positions. We generated 59,180 training human images by shifting slightly
the human images and scaling the human images with 0.95, 1.0, and 1.05
scale-factors in order to detect the humans irrespective of positions and scales. In
addition, we mirrored the training human images to make them doubled. Figure 10
shows some typical training human images that were normalized by the head and
toe.

We prepared 1,218 nonhuman images from the INRIA database [4], which did
not contain humans and generated 100,000 training nonhuman images by boot-
strapping and resizing the nonhuman images and taking the image patches with a
fixed size of 32 × 64 pixels from the resized nonhuman images at random positions.
These nonhuman images were used to train only the first stage of the cascade of
human detectors. From the 2nd stage of the cascade of human detectors, only the
nonhuman images that were classified as false positives in the previous stage, were
used to train the current stage human detector.

5.3.2 Training Procedure

We have two different human detectors that use different features such as BHOG
and LBP+LGP+BHOG hybrid features, respectively. The BHOG feature uses the
variable size of blocks from 4 × 4 to W � H, where W and H denote the width and
height of the window image, which it can capture a lot of useful information that is
spread over different scales and it can capture a large sized part of the human body
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(e.g. head, arm, leg). The AdaBoost training procedure of two human detectors is
explained below.

First, we transform the training human and nonhuman images into the training
human and nonhuman LBP, LGP, and BHOG feature images. Second, we compute
the classification errors of all feature images. Third, we select one best feature with
the minimum classification error at the current iteration. Fourth, we update the
weight values of the training human and nonhuman feature images. Fifth, we check
the stop condition that we achieve 96 % detection rate and 8 % false positive error
rate using the validation human and nonhuman feature images. If the stop condition
is satisfied, then we stop and obtain the selected features: the position features in the
case of LBP and LGP and the position and block features in the case of hybrid
feature. Otherwise, we normalize the weight values of the training human and
nonhumane feature images and go to the second step.

5.3.3 Cascade of Human Detectors

We also take the cascade of human detectors to make the human detection fast. In
real experiments, we trained two different cascades of human detectors using
BHOG and LBP+LGP+BHOG hybrid feature images because the LBP and LGP
features failed to train the human detectors. We set the maximum number of
selected features of stage 1, 2, 3, 4, and 5–40, 80, 160, 320, and 1,600, respectively.

Figure 11 shows the selected features of two different cascade of human
detectors using the BHOG and hybrid features, where white dots denote the

Fig. 10 Normalized training human images. © 2013 IEEE

176 D. Kim and B. Jun



positions of the selected point features in the case of the LBP and LGP features and
the center positions of the selected block features in the case of BHOG feature, and
the rectangular boxes denote the sizes of the selected block features. We represent
the center points of all the selected block features but did not represent the sizes of
all the selected block features because it is very difficult to draw the boxes of all the
selected block features. From Fig. 11, we know that (1) the LBP features are mostly
selected from the shoulder because they capture the common characteristics to all
training human images, (2) the LGP features are mostly selected from the arms and
legs with high variations because they capture the locally changing gradient
information, (3) the BHOG features are widely selected from all-human regions
such as head, arms, legs, and torso because they capture the common block
information to all training human images.

Table 6 shows the number of selected features in each stage that is determined
from the training of the cascade of human detectors using the hybrid feature images.
From Table 6, we know that (1) the LGP features are selected more than the LBP
features because they are widely distributed over the all- human region and (2) the
BHOG features are most widely selected over the whole body region because they
cover the large body part components such as arms, legs and torso.

Table 7 shows the training time of two different cascade of human detectors
using the BHOG and hybrid features, which runs on the 2.83 GHz Intel Pentium IV
PC system with 8 GB RAM. From Table 7, we know that the training of the
cascade of human detectors using the BHOG feature images takes about seven days
while the training of the cascade of human detectors using the hybrid feature images
takes about nine days.

5.3.4 Detection Performance

After training the proposed five-stage cascaded human detector, we evaluated the
human detection accuracy using the INRIA database [4] that contained 288 test
images with 1,132 humans.

We considered four human detection methods for performance evaluation: the
BHOG feature-based human detector (BHOG), the LGP+BHOG feature-based
human detector (LGP+BHOG) the hybrid feature-based human detector
(HYBRID). We compared three human detection methods (BHOG, LGP+BHOG,
and HYBRID) with other existing human detection methods: HOG [4] and VJ
(Viola-Jones) [7] using the evaluation protocol based on Pascal measure [8].

Figure 12 shows the receiver operating characteristic (ROC) curve that is
obtained from several different human detection methods using the INRIA data-
base. From Fig. 12, we know that (1) the detection rate of the HYBRID, LGP
+BHOG, BHOG, HOG64�128, HOG32�64, and VJ at the one false positive rate per
images (FPPI) was 85.5, 83.5, 79.5, 78.9, 41, and 58 %, respectively, which means
that the proposed HYBRID human detection method was the highest among all
other human detection methods, and (2) the number of false positives of the
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Fig. 11 Selected features of two cascades of human detectors. © 2013 IEEE
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HYBRID, LGP+BHOG, BHOG, and HOG at the 70 % detection is 70, 92, 120, and
145, respectively.

Figure 13 shows the human detection results using the INRIA database, where
(a), (b) and (c) are obtained from from the HOG-based human detector, the
BHOG-based human detector, and the hybrid feature-based human detector,
respectively. From Fig. 13, we know that the HYBRID feature-based human
detector succeeds to find most of humans even small sized human with a size of
32 × 64, but the HYBRID and HOG-based human detectors fail to find them
occasionally.

Figure 14 shows several human detection results using the hybrid feature-based
human detector on the INRIA database.

Table 6 The number of selected features in each stage. 2013 IEEE

Feature Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Total

# of LBP 8 12 17 16 12 65

# of LGP 14 18 31 43 54 160

# of BHOG 18 50 112 261 1,534 1,975

Total 40 80 160 320 1,600 2,200

Table 7 The training time of two different cascades of human detectors. 2013 IEEE

Cascade Training time (BHOG) Training time (Hybrid)

1 stage ≈8 min ≈10 min

2 stage ≈30 min ≈50 min

3 stage ≈4 h ≈4 h

4 stage ≈1 day ≈2 days

5 stage ≈5 days ≈6 days

Fig. 12 ROC curves using the INRIA database. © 2013 IEEE
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We also evaluated the human detection accuracy using the MIT-CBCL3 database
that contained 924 front/back-view positive images (no negative images). Instead of
training on the MIT-CBCL database, we use our trained detectors on the INRIA
database and tested them on the MIT-CBCL database. We achieve that (1) the
detection rate of the HYBRID, LGP+BHOG, BHOG, and HOG at the zero false
positive rate per images (FPPI) was 93.1, 92.6, 90.2, and 84.5 %, respectively,
which means that the proposed HYBRID human detection method was the highest
among all other human detection methods, and (2) this indicates that our detectors
have good generalization performance.

5.3.5 Computation Time

We measured the computation time of the HOG human detector [4], the proposed
BHOG-based human detector, and the proposed hybrid-based human detector on a
2.83 GHz Intel Pentium IV PC system with 8 GB RAM. Table 8 shows the average

Fig. 13 Comparison of
human detection results. ©
2013 IEEE

3See http://cbcl.mit.edu/software-datasets/PedestrianData.html.
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computation time of two human detectors, where it is the average of computation
time of 1,000 320 × 240 input images. From Table 8, we know that (1) the existing
HOG-based human detector works slowly in that it takes about 490 10�3 s (�2 fps)
and the BHOG-based human detector works fast in that it takes about 52 10�3 s
(�20 fps), which implies that the proposed BHOG-based human detector is about

Fig. 14 Human detection results using the INRIA database. © 2013 IEEE
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10 times faster than the existing HOG-based human detector, and (2) the hybrid
feature-based human detector is roughly three times slower than the BHOG-based
human detector because it uses the hybrid features. One interesting point is that the
BHOG-based human detector shows 1 % higher detection rate than the HOG-based
human detector in spite of its faster computation time.

6 Conclusion

The most commonly used face and human detection method was local transform
feature-based method. Many researchers have introduced many different approa-
ches using local transform features: specifically local binary patterns (LBP) and
histograms of oriented gradients (HOG). Each approach had its own advantage in
that LBP was robust to monotonic illumination variations and HOG was robust to
local pose variations. However, these methods have some limitations such that LBP
was sensitive to locally changing intensity changes and HOG required a huge
computation time for the feature transformation.

To overcome the limitations of the previous approaches, we proposed two novel
local feature transformation methods: local gradient patterns (LGP) and binary
HOG (BHOG) and proposed a hybridization of local transform features that
combined several local features (LBP, LGP, and BHOG or HOG) by AdaBoost
feature selection method to improve the face and human detection performance
given below.

LGP encoded an image pixel into a 8-bit binary pattern by comparing the
gradient of the given pixel and the average of its 8 neighboring gradients. It was
invariant to the local gradient variations that were caused by makeup, wearing of
glasses, and a variety of background, and had higher discriminant power than LBP.

BHOG binarized the histogram values of HOG by thresholding them with the
average value of the total histogram bins. It did not require the square root operation
in computing the gradient magnitude and the normalization of the orientation
histograms because it just compared the value of histogram bin with a given

Table 8 Comparison of average computation time among several human detectors (unit: 10−3 s).
2013 IEEE

Detector Pyramid Feature Human Total

Image Transform Detection Time

HOG feature-based 1.7 87 401.3 490

BHOG feature-based – 6.01 46 52.01

Hybrid feature-based 1.7 9.78 165.78 177.26

Cascade+HOG [46] – – – 214

GPU implementation of HOG [28] – – – 19
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threshold and enabled to obtain the face and human detectors by the AdaBoost
training because it was represented as one dimensional scalar value.

The hybridization of the multiple local transform features selected relevant
features from the feature pool of LBP, LGP, and BHOG in order to improve the
detection performance considerably. It took advantages of each local transform
feature: LBP’s robustness to local illumination change, LGP’s robustness to locally
changing intensity, and BHOG’s robustness to local pose change.

We applied the proposed local transform features and its hybridization to face
and human detection to validate the usefulness of the proposed methods First, the
face detection rates of LBP, LGP and the hybridization of LBP, LGP, and BHOG
features using MIT+CMU database were 90, 93, and 96 %, respectively, which
showed that the LGP feature resulted in better face detection rate than the LBP
feature, and the hybrid feature resulted in the best face detection rate among them.
Second, the human detection rates of HOG, BHOG and the hybridization of LBP,
LGP and BHOG features using INRIA database were 79, 80, and 86 %, respec-
tively, which showed that BHOG feature had similar detection rate but 10 times
faster than HOG feature and the hybrid feature resulted in the best human detection
rate among them. From all the results, we can conclude that the proposed local
transform features and its hybrid feature are very effective for the face and human
detection rate in terms of the performance and operating speed.

Acknowledgements This work is supported by the Center for Integrated Smart Sensors funded
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Adaptive Resource Management
for Sensor Fusion in Visual Tracking

Bohyung Han, Seong-Wook Joo and Larry S. Davis

Abstract Sensor fusion for visual tracking is attractive since the integration of
multiple sensors and/or features with different characteristics has potential to
improve tracking performance. However, there exist several critical limitations to
sensor fusion techniques: (1) the measurement cost increases typically as many
times as the number of sensors, (2) it is not straightforward to quantify the confi-
dence of each source and give each sensor a proper weight for state estimation, and
(3) there is no principled algorithm for dynamic resource allocation to achieve
better performance. We describe a method to combine information from multiple
sensors and estimate the current tracker state by using a mixture of sequential
Bayesian filters (e.g., particle filter)—one filter for each sensor, where each filter
makes a different level of contribution to estimate the combined posterior in a
reliable manner. In this framework, multiple sensors interact to determine an
appropriate sensor for each particle dynamically; each particle is allocated to only
one of the sensors for measurement and a different number of particles may be
assigned to each sensor as a result. The level of the contribution of each sensor
changes dynamically based on its prior information and relative measurement
confidence. We apply this technique to visual tracking problems with multiple
cameras or multiple features, and demonstrate its effectiveness through tracking
results in real videos.

Keywords Visual tracking � Resource allocation � Sensor fusion � Multiple
cameras � Multiple features � Kernel-based bayesian filtering � Mixture model

B. Han (&)
Department of Computer Science and Engineering, POSTECH, Pohang, Korea
e-mail: bhhan@postech.ac.kr

S.-W. Joo
Google Inc., Mountain View, CA, USA
e-mail: swjoo@google.com

L.S. Davis
Department of Computer Science, University of Maryland, College Park MD 20742, USA
e-mail: lsd@umiacs.umd.edu

© Springer Science+Business Media Dordrecht 2016
C. Kyung (ed.), Theory and Applications of Smart Cameras,
KAIST Research Series, DOI 10.1007/978-94-017-9987-4_9

187



1 Introduction

Rapid progress of video processing algorithms and the reduction of sensor prices
make it possible that many computer vision systems, such as autonomous driving,
visual surveillance, video conferencing, virtual/augmented reality, natural user
interface system, etc., employ multiple cameras or sensors to develop new functions
and improve system performance. For visual tracking, the combination of multiple
sensors and/or tracking algorithms has the potential benefit by fusing comple-
mentary properties of heterogeneous sensors and algorithms. However, the inte-
gration process may not be straightforward, and typically requires additional cost
for measurement and subsequent processing. Moreover, it is even more difficult
how to allocate finite amount of resources to each sensor or algorithm and how
much each source should be trusted to obtain the final solution, especially in
large-scale systems.

Dynamic resource allocation is not a completely new problem in visual tracking.
Kembhavi et al. [18] define the interaction groups of multiple targets using the
Similarity Graph (SG) and allocate adaptive amount of resources to each group
depending on the status of the groups and the associated targets. Tran and Davis
[38] introduce a probabilistic framework of multiple resolution trackers in both
spatial and temporal domain to achieve robustness and efficiency of trackers. An
articulated object tracking algorithm is discussed in [30], where the amount of
measurement for individual body parts and image frames are adjusted within a
particle filter framework. Song et al. [36] present an algorithm to minimize the
number of particles by monitoring the quality of the particles based on ranking
SVM. However, these algorithms have not been investigated within a sensor fusion
framework.

There are various types of sensor fusion algorithms for visual tracking. Fusion in
the measurement step is the most typical one, where a single posterior is estimated
by integrating multiple cues. Most tracking algorithms based on sensor fusion
employ heuristic merge processes. For example, edge and color features are inte-
grated to track elliptical objects in an ad hoc manner [3]. Slightly more advanced
algorithms [37, 39] are proposed to combine multiple cues—motion, color, shape,
etc., and they reduce the limitations of the individual modalities in practice. Simple
sequential Bayesian filtering is adopted for tracking by fusion [2], where color,
motion, and shape features are integrated using a variation of the Extended Kalman
Filter (EKF).

The particle filter is an effective tool for fusion-based tracking, where a number
of samples are drawn and the likelihood of each sample is typically computed based
on the observations from all sensors. To improve observation quality, [44] proposes
a straightforward method to combine color rectangle and edge features and [32, 41]
describe fusion techniques of video and audio sensors for object tracking. Isard and
Blake [16] employ skin color detection results to obtain better proposal distribution
for contour tracking. A generic importance sampling mechanism for data fusion is
discussed in [31], and a combination of top-down and bottom-up approaches is

188 B. Han et al.



proposed in [8] to fuse multiple sensing modalities such as color, sound, and
contour.

Although particle filter has been usefully applied to tracking by sensor fusion,
their implementations have been mostly limited to

• combining observations of a particle from multiple sensors using the simple
product of likelihoods based on independence assumption, and/or

• allocating the predefined number of particles to each sensor regardless of its
reliability and usefulness.

More robust observations would be expected by such integration strategy of
multiple sensors, but it is obvious that the cost of the measurement increases in
proportion to the number of sensors. More importantly, assigning a fixed number of
particles to each sensor, regardless of its reliability and usefulness, results in a
potential waste or shortage of samples. This problem would be critical in large-scale
systems that involve many sensors, and an intelligent resource allocation algorithm
would be required. Note that the overall likelihood can be corrupted by the blind
integration of the observations from multiple sensors if measurement process
involves some noisy and/or non-discriminative sensors.

Graphical models have also been adopted to perform more sophisticated infer-
ences for tracking by sensor fusion. Cue dependency is defined using a graphical
model and Bayesian inference is employed for cue integration in [34, 45]. Tracker
states with respect to shape and color are jointly optimized through co-inference
technique in [43]. The relation between multiple modalities is used as a heuristic to
estimate the reliability of each one in [34]. However, the relations are subjective and
difficult to be generalized, and there is no discussion of their performance. The
graphical model used in [45] might not be practical in systems with many sensors
due to its complexity.

Another class of tracking by sensor fusion methods are in algorithm level ones,
where trackers run independently and the final target state is estimated by merging
their results through a post-processing step. People tracking results from multiple
algorithms are combined using a heuristic in [35], and feature motions observed
independently are merged by classification between inliers and outliers and
cross-validation between trackers in [24]. Also, [22] proposed a fusion technique of
multiple tracking algorithms within a Bayesian framework.

Although existing fusion-based tracking algorithms have been proposed to
integrate multiple cues robustly, it is still not straightforward to handle how to
measure the reliability of each cue and how to estimate target state and allocate
resources based on the measured reliability. To address these problems, we intro-
duce a mixture kernel-based Bayesian filter, where a mixture of the posteriors is
propagated in a sequential Bayesian filtering framework and a useful sensor is
selected for measurement probabilistically. Mixture models for posterior estimation
in sequential Bayesian filtering is not new. The mixture particle filter is employed to
maintain multi-modality in particle filters by modeling the posterior density as a
nonparametric mixture model [40]. This technique is applied to multi-object
tracking in a single camera setting [29, 40]. The mixture Kalman filter [7] and the
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Interacting Multiple Model (IMM) algorithms [27] have similar ideas but contin-
uous density functions such as Gaussian mixture are integrated instead of discrete
ones. Unfortunately, these methods have not been discussed in the context of sensor
fusion.

The mixture kernel-based Bayesian filtering (mKBF) was first proposed for
sensor fusion in [12], which extended in [13] by presenting a new analysis of the
update step for the fusion process and resource allocation. This chapter is based on
[13]. The important features of our technique are discussed below.

• Our algorithm can be regarded as algorithm level fusion since a mixture of
individual posteriors, which are continuous density functions, constructs the
combined posterior for fusion in the update step.

• The individual posteriors have the different levels of contribution to the com-
bined posterior; the weight of each posterior is determined by the prior and
measurement confidence. The posterior estimation is expected to be more
accurate by adopting a weighted mixture model instead of a single probability
density function. This is because this method is effective to represent
multi-modal density by giving more weight to reliable sensors for robust state
estimation. Therefore, the performance of tracking algorithm can be improved,
especially in the presence of clutter and occlusion.

• In our algorithm, significant interactions among sensors in the measurement step
happen, and not all sensors are necessarily involved in the measurement of each
sample. Instead, the sensor for the actual observation is determined probabi-
listically based on the expected likelihood of each sample. The proposal dis-
tribution is constructed from prediction as well as partial observations in each
sensor. The sensor selection provides a framework to allocate an adaptive
number of particles to each sensor based on its reliability.1 It is not straight-
forward to implement this in conventional particle filters based on discrete
distributions, since the density at an arbitrary location in the state space may not
be available, so the expected likelihoods cannot be obtained; it is possible in our
kernel-based Bayesian filtering, where all the relevant density functions are
represented with a mixture of Gaussians.

Our approach is applied to a visual tracking problem with multiple cameras or
multiple features. In addition, tracking in the presence of sensor failures is tested,
where we assume that one of the cameras or features sometimes sends completely
noisy signals and we expect that dynamic sensor weighting and adaptive particle
allocation within mixture kernel-based Bayesian filtering framework handle the
problem naturally.

The remaining sections of this chapter are organized as follows. Section 2
reviews kernel-based Bayesian filtering [14], and we discuss our sensor fusion

1The sample depletion in a sensor does not happen since a minimum number of particles is always
allocated to each sensor and the sensor reliability can be obtained effectively with the minimum
number of particles in our framework.
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technique based on the mixture kernel-based Bayesian filtering in Sect. 3. The
application of the proposed algorithm to visual tracking problem is illustrated in
Sect. 4.

2 Background

In this section, we summarize Kernel-based Bayesian Filtering (KBF), which was
originally introduced in [14]. The kernel-based Bayesian filtering is a state esti-
mation technique, where a Gaussian mixture density function is propagated over
time in the sequential Bayesian filtering framework. This framework is different
from Kalman filter or extended Kalman filter in the sense that the posterior is not a
Gaussian distribution any more and the multi-modal state estimation is achieved
using a Gaussian mixture density function.

2.1 Overview

Let x t and z t ðt ¼ 0; . . .; TÞ be the state and measurement variables. In the
sequential Bayesian filtering, the conditional density function of x t given the his-
tory of measurement z1:t is propagated through two steps—prediction and update,
which are given by

Prediction: p x tjz1:t�1ð Þ ¼
Z

p xtjxt�1ð Þp xt�1jz1:t�1ð Þdxt�1 ð1Þ

Update: pðx tjz1:tÞ ¼ 1
C
pðztjx tÞpðxtjz1:t�1Þ; ð2Þ

where C ¼ R pðztjxtÞpðxtjz1:t�1Þdx t is a normalization constant that does not
depend on x t. The posterior density at time step t denoted by p xtjz1:tð Þ, is used to
estimate the prior term in the next time step.

In kernel-based Bayesian filtering, when the posterior density function at the
previous time step is given by a weighted mixture of Gaussians, the same mixture
representation is obtained in the posterior at the current time step through the
prediction and update steps as discussed in [14].

2.2 Kernel-Based Bayesian Filtering

Denote by x i
t 2 R

d and Pi
t 2 R

d�d i ¼ 1; . . .; ntð Þ a set of mean vectors and their
corresponding covariance matrices, respectively, at time step t. Let each Gaussian
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have a weight xi
t with

Pnt
i¼1 x

i
t ¼ 1, and let the posterior density function at time

step t–1 be given by

p x t�1jz1:t�1ð Þ ¼
Xnt�1

i¼1

xi
t�1;N xit�1;P

i
t�1

� �
; ð3Þ

where N m ;Cð Þ represents a normal distribution with mean m and covariance C.
In the prediction step, we employ the Unscented Transformation (UT) [17, 25] to

each mode of the density function in Eq. (3) to make a prediction based on non-
linear process models accurately. After applying the UT, we obtain the prior density
function, which is also a mixture of Gaussians, as

p x tjz1:t�1ð Þ ¼
Xnt�1

i¼1

x̂i
t;N x̂ i

t; P̂
i
t

� �
; ð4Þ

where x̂i
t is identical to xi

t�1, and x̂it and P̂
i
t are the transformed mean and

covariance by the UT, respectively.
The measurement density function is parameterized with a Gaussian mixture,

which is achieved by density interpolation based on the Nonnegative Least Square
(NNLS) technique [1, 6, 21]. The estimated measurement density function is
denoted by

p ztjxtð Þ ¼
Xmt

i¼1

sitN xit;R
i
t

� �
; ð5Þ

where sit is the unnormalized weight of each Gaussian obtained from the NNLS and
Ri

t 2 R
d�d is the covariance matrix corresponding to the mean xit i ¼ 1; . . .;mtð Þ.

In the update step, the posterior is computed by the products of a pair of
Gaussian mixtures, which correspond to prior and measurement density functions
(Eqs. (4) and (5), respectively). It is true that the derived density function is also a
weighted Gaussian mixture, but the number of components in the mixture density
increases exponentially over time, which is prohibitive in sequential Bayesian fil-
tering framework. To figure out this issue, we employ kernel density approximation
technique [11], which enables us to maintain a compact and accurate representation
of a Gaussian mixture density function even after many stages of density propa-
gation. Note that, although there are a few alternative techniques to reduce the
number of components in a Gaussian mixture [33, 42], kernel density approxi-
mation is more principled and effective conceptually. After the update step, the final
posterior distribution is given by the following equation:

p xtjz1:tð Þ ¼
Xnt
i¼1

xi
tN xit;P

i
t

� �
; ð6Þ
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where nt is the number of Gaussian components at time step t and the sum of xi
t is

equal to 1.

2.3 Discussion of Kernel-Based Bayesian Filtering

Kernel-based Bayesian filtering is advantageous compared to conventional methods
based on discrete density functions such as particle filtering. It is generally known
that a continuous proposal distribution would be helpful to improve sampling
quality [10], so the natural filtering algorithm based on continuous density functions
may reduce inherent limitation of particle filter—degeneracy or loss of diversity
problem. In practice, the kernel-based Bayesian filter demonstrates equivalent
accuracy with a smaller number of samples compared to conventional particle filters
[14].

Another important characteristic of kernel-based Bayesian filter is that, unlike
the particle filters based on a discrete representation of probability density func-
tions, the probability at an arbitrary location in the state space can be computed
straightforwardly regardless of sample locations. This property plays a crucial role
in our sensor fusion framework, where the expected likelihood of each sample is
supposed to be estimated even before the ``real” observation. In the next section, we
describe how the kernel-based Bayesian filtering is utilized in sensor fusion for
visual tracking.

3 Fusion Tracking by Mixture KBF

Suppose that we have K sensors and hope to fuse data from those sensors. If the
mixture weights of the sensors are given by pit�1 i ¼ 1; . . .; Kð Þ at time t � 1, the
posterior at time step t � 1 is given by

p xt�1jz1:t�1ð Þ ¼
XK
k¼1

pkt�1pk xt�1jz1:t�1ð Þ; ð7Þ

where pk xt�1jz1:t�1ð Þ is the posterior of an individual sensor at time t–1, which is
represented by a mixture of Gaussians.

Mixture density propagation in the sequential Bayesian filtering framework has
been employed to maintain multi-modality. Interacting Multiple Model
(IMM) filters are used to handle multiple process models [5, 23, 27, 28] or multiple
measurements [15] effectively. The mixture particle filter presents reasonable per-
formance in preserving and maintain multiple modes in the posterior [40]. Explicit
mixture modeling is often useful to maneuver multi-modal characteristics observed
in multi-sensor tracking. In our framework, each mixture component in Eq. (7),
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pk xt�1jz1:t�1ð Þ, belongs to an independent dynamic system2 that has a separate
measurement model. Note that the fusion of the posteriors by the weighted sum is a
reasonable choice to estimate target state with multiple sensors as discussed in
[5, 15, 23, 27, 28] although it is not a standard method to combine the measure-
ments from multiple sensors by Bayesian way using an independent assumption—
product of likelihood densities.

Our goal is to preserve the mixture representation through the iterations of
sequential Bayesian filtering. The procedure for an individual Bayesian filter is
similar to the description in Sect. 2, and we next explain how to combine the
information from multiple sensors and how sensors interact with each other for
resource allocation.

3.1 Prediction Step and Proposal Distribution

We make an independent prediction for an individual Bayesian filter using the
unscented transformation as described in 2.2, and obtain the prior density function,
which is given by

p x tjz1:t�1ð Þ ¼
XK
k¼1

pkt�1

Z
pk xtjxt�1ð Þpk x t�1jz1:t�1ð Þdxt�1

¼
XK
k¼1

pkt�1pk xtjz1:t�1ð Þ:
ð8Þ

The proposal distribution is a critical factor to overall performance of our
algorithm since it probabilistically selects a sensor for observation of each sample.
There are several techniques to improve the proposal distribution in particle filter,
which include use of an auxiliary tracker with different features [16], unscented
particle filter [25, 32], and multi-stage sampling [14, 29].

We employ a 2-stage sampling technique to improve the effectiveness of par-
ticles, which combines the prior and partial observation distributions from each
individual filter to construct the proposal distribution. The first proposal distribution
denoted by q1 xtjxt�1; z1:tð Þ is common for every sensor and is equal to the prior
density in Eq. (8):

2It is not completely independent since there are substantial interactions in sampling and mea-
surement steps, but the posterior density function is propagated independently.
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q1 xtjxt�1; z1:tð Þ ¼ pk xtjz1:t�1ð Þ: ð9Þ

The main idea behind this strategy is that, since the posterior in the previous step
in Eq. (7) is based on the information from all sensors, it should be more reliable
than the individual posteriors. In the second stage, the proposal distribution for each
sensor, q2k xtjxt�1; z1:tð Þ, is based on the combination of the initial proposal distri-
bution and the partial observation in each sensor, which is formally given by

q2k xtjxt�1; z1:tð Þ ¼ 1� að Þq1 xtjxt�1; z1:tð Þ þ ap1k ztjxtð Þ; ð10Þ

where p1k ztjxtð Þ denotes the initial normalized measurement density and a is a
constant in 0; 1½ �. Then, the combined proposal distribution is given by

q2 xtjxt�1; z1:tð Þ ¼
XK
k¼1

pkt�1q
2
k xtjxt�1; z1:tð Þ

¼
XK
k¼1

pkt�1 1� að Þq1 xtjxt�1; z1:tð Þ þ ap1k ztjxtð Þ� �
:

ð11Þ

This 2-stage sampling strategy typically improves the sampling quality and
reduces the number of samples required for robust observation since the proposal
distribution uses the information from the priors of all sensors and the partial
observations in the current step.

3.2 Measurement Step

The measurement step also has two stages in accordance with the 2-stage sampling
strategy. The main purpose of the 2-stage sampling is to improve the proposal
distribution and observation quality in a progressive manner. By assigning a fixed
number of particles to all sensors in the first stage, the degeneracy problem—the
situation that no particle is assigned to one or more sensors for observation and the
measurement densities corresponding to the sensors do not become available—can
be avoided.

In the first stage, the samples are drawn from the common proposal distribution
in Eq. (9), and the observations are performed at the same locations in all sensors.
Then, the initial observation in each sensor p1k ztjxtð Þ k ¼ 1; . . .; Kð Þ is reflected in
the second proposal distribution, as shown in Eq. (11), from which additional
samples are drawn. In the second stage, each sample is used for observation in only
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one sensor, which is determined probabilistically by considering the prior and
likelihood expectation. The probability that the kth sensor is selected is given by

p sel ið Þ ¼ kð Þ ¼
pkt�1 bpk xðiÞt jz1:t�1

� �
þ 1� bð Þp1k ztjxðiÞt

� �� �

PK
j¼1

p j
t�1 bpj xðiÞt jz1:t�1

� �
þ 1� bð Þp1j ztjxðiÞt

� �� � ; ð12Þ

where selðiÞ is the selected sensor index for the ith sample and b 2 ½0; 1� is a

constant. Note that pk xðiÞt jz1:t�1

� �
is the prior density of the ith sample in the kth

sensor, and p1k ztjxðiÞt
� �

is the likelihood of the ith sample given the initial mea-

surement density. The sensor selection for the ith sample is performed by the
following equation:

sel ið Þ ¼ argmin
s

Xs
k¼1

p sel ið Þ ¼ kð Þ[ ri

 !
ð13Þ

where ri is a random number from a uniform distribution on ½0; 1Þ.
It is not straightforward to perform this procedure in conventional particle filters

since it is difficult to obtain probabilities at arbitrary locations from discrete rep-
resentation of density. The sensor that is likely to produce the highest likelihood is
prioritized for observation, and receives more particles to improve the quality of the
measurement density. The sampling and measurement procedure in the second
stage is illustrated in Fig. 1.

The multi-stage measurements in the individual filter is identical to the
kernel-based Bayesian filter [14], where the nonnegative least square method is
used to approximate measurement density functions. The un-normalized measure-
ment density function of the k-th sensor at time step t, denoted by ~pk ztjxtð Þ, is given
by

~pk ztjxtð Þ ¼
Xmt;k

i¼1

jit;kN x i
t;k;R

i
t;k

� �
; ð14Þ

where mt;k is the number of components, jit;k is an un-normalized weight of each

Gaussian component, and xit;k and Ri
t;k are the mean and covariance in the k-th

measurement density, respectively.
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3.3 Update Step

The update step combines the prior and the measurement information to construct
the individual posteriors, which are integrated to derive the overall posterior
probability density function. Recall Eq. (7), where the overall posterior is given by
a mixture of normalized individual posteriors. After one more step of sequential
Bayesian filtering, we obtain the un-normalized posterior of each sensor, which
models the relative confidence for target state estimation induced only from the
current time step. Therefore, the fusion-based posterior is estimated by the sum of
the product of mixture weight at the previous time step and un-normalized pos-
terior, and is converted to the same kind of representation of Eq. (7).

Suppose that ~pk xtjz1:tð Þ and ~pk ztjxtð Þ are un-normalized posterior and mea-
surement density for the k-th sensor at time step t, respectively; then the overall
posterior is given by

Fig. 1 An example of sampling and measurement procedure in the second stage. The proposal
distribution q2kð x tj x t�1; z1:tÞ is constructed based on the prior and the partial measurement
density function of the kth sensor, and q2ð x tj x t�1; z1:tÞ is the mixture of q2k , (k ¼ 1; 2). (Top)
The samples such that pðselðiÞ ¼ 1Þ� pðselðiÞ ¼ 2Þ are represented with red (shaded) circles, and
the rest are represented with blue (hollow) circles. The sensor selection for each sample is
performed by Eq. (13). (Bottom) Because the sensor selection for each particle is probabilistic, red
and blue particles are mixed in each sensor. Based on the measurements of each sensor, the final
measurement density functions are constructed by the nonnegative least square method
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p xtjz1:tð Þ � 1
C

XK
k¼1

pkt�1~pk xtjz1:tð Þ

¼ 1
C

XK
k¼1

pkt�1~pk ztjxtð Þpk xtjz1:t�1ð Þ

¼ 1
C

XK
k¼1

pkt�1w
k
t pk ztjxtð Þpk xtjz1:t�1ð Þ

¼ 1
C

XK
k¼1

pkt�1w
k
t

Z
pk ztjxtð Þpk xtjz1:t�1ð Þdxt pk ztjxtð Þpk xtjz1:t�1ð ÞR

pk ztjxtð Þpk xtjz1:t�1ð Þdxt

¼ 1
C

XK
k¼1

pkt�1w
k
t

Z
pk ztjxtð Þpk xtjz1:t�1ð Þdxtpk x tjz1:tð Þ

¼
XK
k¼1

pkt pk xtjz1:tð Þ

ð15Þ

where

C ¼
Z XK

k¼1

pkt�1~pkðxtjz1:tÞdxt ð16Þ

is the normalization constant,

wk
t ¼

Xmt;k

i¼1

jit;k ¼
Z

~pkðztjxtÞdxt ð17Þ

is the measurement confidence for each sensor, and

pkt ¼
1
C
pkt�1w

k
t

Z
pkðztjxtÞpkðxtjz1:t�1Þdxt ð18Þ

is the new mixture weight for the kth component at time t. Note that, as illustrated in
Fig. 2, the measurement density function and the measurement confidence denoted
by ~pkðztjxtÞ and wk

t , respectively, are hardly affected by the number of particles.
This is because the measurement density function can be reconstructed using a
small number of control points based on the nonnegative least square technique; the
extra samples typically improve the details of the density function, but its overall
shape is modeled effectively by the small number of samples with high likelihoods.
This is a very important property in our algorithm since it allocates a different
number of samples to each sensor, and the sensor confidence computed by inte-
gration of measurement density function should be invariant to the number of
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samples for accurate weight estimation of the sensor; otherwise, the sensors with
more samples are likely to have more weight consistently or we need to normalize
the confidence of each sensor based on the number of samples, which is not stable
enough according to our simulation.

The new mixture weight pkt is proportional to three terms—previous mixture
weight, measurement confidence, and an integration term. Note that the integration
term,

R
pkðztjxtÞpkðxtjz1:t�1Þdxt, reveals the coherency between prior and mea-

surement density functions. Since both densities are Gaussian mixtures, their
product is also a mixture of Gaussians and the integration is equal to the sum of the
weights of Gaussians in the new mixture. Let pkðxtjz1:t�1Þ ¼

Pnt�1
i¼1 x

i
t;kNðx i

t;k;P
i
t;kÞ

and pkðz tjxtÞ ¼
Pmt

i¼1 s
i
tNðxit;k;Ri

t;kÞ be the prior and measurement density function,
respectively. Then, the product of two density functions is given by
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Case 2: measurement density with 25 (left) and 100 (right) samples

Fig. 2 Comparison of measurement density functions with different number of samples. As
illustrated, the measurement density functions based on the nonnegative least square are almost
invariant to the number of samples. Note that the measurement confidences, w, are approximately
1.4 with 100 samples and 1.3 with 25 samples for both cases in average. a Case 1: measurement
density with 25 (left) and 100 (right) samples. b Case 2: measurement density with 25 (left) and
100 (right) samples
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Xnt�1

i¼1

Xmt

j¼1

xij
t Nðmij

t ;C
ij
t Þ; ð19Þ

where

xij
t ¼ jits

j
t Nðxit;Pi

t;k þ R j
t;kÞ ð20Þ

mij
t ¼ Cij

t ðPi
t;kÞ�1xit þ ðR j

t;kÞ�1x j
t

� �
ð21Þ

Cij
t ¼ ðPi

t;kÞ�1 þ ðR j
t;kÞ�1

� ��1
: ð22Þ

Therefore, the integration term is given by

Z
pkðztjxtÞpkðxtjz1:t�1Þdxt ¼

X
i

X
j

jits
j
t Nðxit;Pi

t;k þ R j
t;kÞ; ð23Þ

where it will be larger when two density functions are similar to each other.

4 Experiments

We apply the proposed sensor fusion technique to visual tracking problem with
multiple cameras and multiple features, where the weighted mixture density func-
tion is propagated in the framework of mixture Kernel-based Bayesian Filtering
(KBF).

4.1 Sensor Fusion with Multiple Cameras

4.1.1 Implementation Issues

Multi-camera tracking is useful compared to single camera tracking especially for
handling occlusion. There have been a large number of prior studies on tracking
using multiple cameras [4, 9, 19, 20, 26], but little efforts have been made to control
the degree of contribution from each cameras. Our sensor fusion technique adjusts
the degree of contribution of each camera dynamically based on observation history
and improves tracking performance by adaptive resource allocation. We describe
implementation details about our probabilistic sensor fusion framework based on
multiple cameras, and demonstrate tracking results compared to the conventional
algorithm.

200 B. Han et al.



We assume that objects are moving on a ground plane and all cameras share
some field of view of those objects. The common state space is defined as the 2D
location (x, y) in the canonical top view, and the state vector can be transformed into
each view for observation using the ground plane homography. Even though the
cameras are static, no background subtraction is performed for tracking.

In our algorithm, the process model is the random walk, and the likelihood of
each sample is computed by the similarity of the RGB color histograms between the
target and the candidates. The distance measure of two histograms is Bhattacharyya
distance. The measurement process is performed in each camera independently, so
the measurement density of camera k is given by

pkðztjxtÞ ¼ pkðzkt jTkðxtÞÞ; ð24Þ

where zkt represents the observation data in camera k and Tkð�Þ denotes the ho-
mography transformation of the common state into the corresponding view.

A tricky problem in the measurement is that the absolute values of likelihoods
are not normalized properly across cameras. Therefore, the measurement confi-
dence wk

t may have a significantly different order of magnitude in each camera due
to its characteristics, and it may not be appropriate to use the likelihoods directly.
So, instead of simply computing distances between target and candidate histograms,
the likelihood of each sample is obtained by computing the ratio of candidate-target
distance to candidate-uniform distribution distance. Then, the likelihood of the i-th

sample, pkðzðiÞt jxtÞ is given by

pkðztjxðiÞt Þ / exp �k
D2ðq; piÞ
D2ðq; uÞ

� �
; ð25Þ

where D2ð�; �Þ is squared Bhattacharyya distance between two histograms, and λ is a
constant. Also, p, q, and u are normalized target, candidate, and uniform histo-
grams, respectively. Note that the denominator in Eq. (25) can be pretty different
across each camera, especially when the color characteristics of camera sensors are
different. This method provides a practically reasonable solution for normalizing the
likelihoods from different cameras.

Throughout our experiments, the RGB color histograms are constructed based
on 16� 16� 16 bins and we used fixed parameter values : a ¼ b ¼ 0:5 and
k ¼ 30. According to our experiments, small changes to these parameters have
negligible effects on tracking results; the performance is slightly worse with
a ¼ b ¼ 0:3, but is essentially unaffected over variations when 15� k� 30.

4.1.2 Results

We tested our algorithm on an indoor sequence captured by two cameras, where
walking people are tracked. The appearance model of a target is constructed based
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on two separate histograms—one for the upper and the other for the lower body,
and we compute the joint likelihood.

Figure 3 illustrates the result of tracking two persons using two cameras in an
indoor environment. Note that we employed the approximate height information of
each person for measurement and visualization. In this example, we constructed a
measurement density from 50 observations—5 samples are given to each camera in
the first stage (5� 2 ¼ 10 observations) and 40 samples are dynamically allocated
to the two cameras in the second stage (40 observations). Despite frequent occlu-
sion and clutter, the persons are successfully tracked throughout the sequence by
the active collaboration of two cameras. Obviously, the mixture weights and the
number of particles assigned to each camera are updated at each frame depending
on visibility and the discriminativeness of the target in each view, which are
illustrated in Fig. 4.

We also compared tracking performance of our method with a conventional
product-of-likelihood fusion algorithm by particle filter, which is presented in
Fig. 5. The sequence for this experiment is similar to that used for Fig. 3, but
multiple severe dynamic occlusions occur between two people whose appearances
are pretty similar because both are wearing white T-shirts. The same number of
measurements (50 altogether) are performed for both methods; in the case of our
method, 5 samples are drawn at the first stage of measurement step, and 40 samples
are then dynamically allocated to both cameras at the second stage. After the first
occlusion, both tracking algorithms recovered from short-term failures successfully
but the conventional fusion method based on particle filtering lost the target after
the second occlusion. On the other hand, our algorithm succeeded in tracking the
target even after the second occlusion.

Fig. 3 A tracking example. Results in camera 1 (top) and 2 (bottom) are presented at 3 different
time steps. Person 1 and 2—blue and green bounding box, respectively—are successfully tracked
in the presence of multiple dynamic occlusions. a t ¼ 158. b t ¼ 215. c t ¼ 284
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In our method, the mixture weight and the number of observations in camera 2
during occlusion (around t ¼ 60) are consistently higher than those in camera 1 as
illustrated in Fig. 6. It suggests that tracking by mixture KBF is successful because
the the more reliable sensor (camera 2) is prioritized for observation by our dynamic
sample allocation technique.
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Fig. 4 Mixture weights and particle allocations for each person and each sensor in each frame.
Blue and red lines represent camera 1 and camera 2, respectively. Note that the mixture weights
and particle assignments mostly correspond to visibility of targets. a Mixture weights and particle
assignment for person 1. b Mixture weights and particle assignment for person 2
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In many computer vision systems, it is fairly common that some sensor data are
temporarily missing or become totally unreliable due to sensor noises, occlusion,
hardware/software failures, etc. To investigate the performance of our algorithm in
this challenge, we used another video sequence captured by three outdoor cameras.
The temporary failures in one of the cameras are simulated by replacing the original
image with completely noisy signals in some frames shown in Table 1.

The performance of our sensor fusion tracking algorithm, denoted by mKBF, is
also tested in the presence of sensor failures and compared with the following other
fusion-based tracking algorithms:

Fig. 5 Comparison between mixture KBF and conventional fusion by particle filter. The results at
time t ¼ 18; 54; 67 are presented for each algorithm in (a) and (b), where the first and second
rows represent results in camera 1 and camera 2, respectively. Note that the target is lost after the
second occlusions around t ¼ 60 in (b). a Tracking by mixture KBF. b Tracking by conventional
fusion method
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• KBF: Tracking by KBF based on the standard sensor fusion technique (same
number and locations of samples in each sensor, product-of-likelihood fusion)

• PF: Tracking by Particle Filter (PF) based on the standard sensor fusion tech-
nique (same number and locations of samples in each sensor,
product-of-likelihood fusion)

• mKBFe: Tracking by mKBF without adaptive resource allocation (same
number of samples in each sensor, but different locations, sum-of-posterior
fusion)

To track people in our algorithm, 10 particles are used at the first stage of
measurement and 30 particles are distributed over three cameras dynamically,
resulting in a total of 60 observations. On the other hand, 20 particles are distributed
evenly to each camera in the other three algorithms, and the total number of
observations is the same as our method.
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Fig. 6 Mixture weights and particle assignments for each sensor in each frame. Blue and red lines
are for camera 1 and camera 2, respectively. Note that the mixture weight and the number of
particles are significantly larger in camera 2 during the second occlusions around t ¼ 60.
a Mixture weights. b Particle assignment

Table 1 Frames with camera
failures

Camera Frames with camera failures

1 From 581 to 670

2 From 501 to 575

3 From 366 to 415
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Figure 7 illustrates the result of multi-object tracking using three cameras in the
outdoor scene. Even with frequent occlusions amongst the group of people and
temporary simulated sensor failures, tracking by mKBF with adaptive resource
allocation is successful for the entire 900 frames. Note that results by three com-
pared algorithms are less stable than the proposed technique.

Fig. 7 Comparison of people tracking in presence of temporal sensor failures. (Col1) mKBF
(Col2) KBF (Col3) PF (Col4) mKBF with even sample distribution. (Top) camera1 (Middle)
camera2 (Bottom) camera 3. The errors are significant in person 2 (green) and 4 (yellow) at t ¼ 529
and person 3 (magenta) at t ¼ 685. Note that the signal from camera 2 is completely noisy t ¼ 529
but we presented a normal image to show tracking performance effectively. a Tracking results at
t ¼ 529. b Tracking results at t ¼ 685
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The mixture weight for each camera is illustrated in Fig. 8. As observed, the
mixture weight of the failed sensor was negligible so that only the minimum
number of particles was allocated.

Figure 9 illustrates the trajectories of four tracked people, where numerous
dynamic occlusions are observed.

We also performed a quantitative performance evaluation for the four different
algorithms, where the ground-truths are created manually and the error is measured
by the Euclidean distance between the ground-truth and tracking results computed
in the canonical top-view plane. The quantitative comparison results are illustrated
in Fig. 10, which are the average of 10 independent runs for each algorithm due to
randomness of particle filtering. As a result, the performance of our method turns
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Fig. 8 Mixture weight for each sensor in people tracking sequence. Blue, red and green area
denote camera 1, 2, and 3, respectively. The mixture weights changes dynamically due to various
reasons such as target visibility, appearance changes, and so on. a Person 1 (blue bounding box).
b Person 2 (green bounding box). c Person 3 (magenta bounding box). d Person 4 (yellow
bounding box)
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out to be better than other algorithms with the same number of measurements in
general. The variance of tracking errors in KBF is high although tracking results are
sometimes very accurate, and the errors and their variations of PF are consistently
higher than our method. The performance of mKBFe is close to our algorithm, but
it exhibits noticeably higher errors in tracking person 3.

Now, we present the benefit of mKBF by comparing the tracking errors of
mKBF to the errors of KBF and PF with more observations; tracking with 60, 90,
and 120 measurements are performed 10 times and averaged, where 20, 30, and 40
samples are given to each sensor, respectively. The accuracy of mKBF with 60
measurements is almost equivalent with that of KBF and PF with 120 measure-
ments although KBF is slightly better than PF; the error variance of mKBF with 60
measurements is lower than that of KBF and PF with 120 observations by more
than 30 %. These results are presented in Fig. 11.
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Fig. 10 Quantitative comparison of the four different sensor fusion algorithms in terms of errors
and error variations for each person. The labels in x-axis denote person IDs (the colors of bounding
boxes in Fig. 7). a Error for each person in the four sensor fusion methods. b Error variation for
each person in four sensor fusion methods
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Fig. 9 Space-time trajectories for four people in the outdoor sequence
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4.2 Sensor Fusion with Multiple Features

We also applied our sensor fusion technique to object tracking using multiple
logical sensors, i.e., features; the logical sensors employed in our experiment are
color, gradient, template, and contour. For the color and the gradient sensor, the
target appearances are modeled by histograms and the Bhattacharyya distance is
used to compute likelihoods. The template sensor measures the mean squared
differences of the color pixels between the smoothed image templates of target and
candidates. Finally, the contour sensor computes the sum of the gradient magni-
tudes along the several normal direction around the perimeter of an ellipse. For each
sensor, we performed tracking independently by KBF, but all the sensors interact
actively and compete for particle allocation as discussed in Sect. 3. The object is
tracked in a 4D state space consisting of image location ðx; yÞ, in-plane rotation, and
scale, and the random walk is adopted as the process model.

Figure 12 presents the results of tracking with four different sensors by the
mKBF. Our algorithm tracked a target successfully under significant pose variations
and severe appearance changes throughout the entire 500 frames. The number of
samples for observation is 90 altogether—10 in the first stage and 80 in the second
stage, so the total number of observations in all sensors is 10� 4þ 80 ¼ 120. The
mixture weight and sample allocations results for each sensor are presented in
Fig. 13, where the dynamic changes in the mixture weights and the number of
samples are observed. It is interesting that the mixture weight for contour feature is
significantly high when the back of woman’s head is shown and the gradient feature
has high weights occasionally.
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Fig. 11 Error comparison between mKBF, KBF, and PF by varying the number of measurements.
The error bars of KBF and PF are obtained for the three different numbers of measurements, and
the error for mKBF with 60 measurements is illustrated with a blue dotted horizontal line
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Fig. 12 Tracking results by logical sensor fusion. (Top) Results in the color images (Bottom)
Results in the gradient images. Note that the gradients in the x and y direction are mapped to R and
G space in the gradient images, respectively. a t ¼ 49. b t ¼ 208. c t ¼ 440
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Fig. 13 Mixture weights and resource allocation results in each frame. (Blue) Color, (Red)
Gradient (Green) Template (Magenta) Contour. The mixture weight of contour feature is
significantly high when the back of woman’s head is shown around at t ¼ 90	 110 and
t ¼ 180	 240. a Mixture weights for each sensor in each frame. b Number of samples for each
sensor in each frame
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5 Conclusion

We presented a probabilistic framework of sensor fusion based on the mixture
kernel-based Bayesian filtering. This framework provides a methodology to select
effective sensors for measurements probabilistically and to maintain the
multi-modality of the combined posterior density function effectively. By assigning
particles to a sensor based on its reliability, we can expect more robust observations
and improve the effectiveness of particles. We applied our algorithm to various
sensor fusion scenarios in multi-camera and multi-feature tracking scenarios, and
demonstrated tracking results in the presence of severe occlusions, clutter, and
sensor failures. Our experiment shows that tracking by the proposed algorithm,
mKBF, is advantageous over other sensor fusion techniques such as KBF, PF, and
mKBFe, qualitatively and quantitatively.
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Traffic Pattern Analysis and Anomaly
Detection via Probabilistic Inference
Model

Hawook Jeong, Youngjoon Yoo, Kwang Moo Yi and Jin Young Choi

Abstract In this chapter, we introduce a method for trajectory pattern analysis
through the probabilistic inference model with both regional and velocity obser-
vations. By embedding Gaussian models into the discrete topic model framework,
our method uses continuous velocity as well as regional observations unlike the
existing approaches. In addition, the proposed framework combined with Hidden
Markov Model can cover the temporal transition of the scene state, which is useful
in checking violation of the rule that some conflict topics (e.g., two cross traffic
patterns) should not occur at the same time. To achieve online learning even with
the complexity of the proposed model, we suggest a novel learning scheme instead
of collapsed Gibbs sampling. The proposed two-stage greedy learning scheme is
not only efficient at reducing the search space but also accurate in a way that the
accuracy of online learning becomes not worse than that of the batch learning. To
validate the performance of our method, experiments were conducted on various
datasets. Experimental results show that our model explains satisfactorily the tra-
jectory patterns with respect to scene understanding, anomaly detection, and
prediction.
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1 Introduction

1.1 Objective and Contribution

Analyzing motion patterns and detecting abnormal activities are essential functions
for intelligent surveillance. In most cases, moving objects follow specific motion
patterns, for example, most cars and pedestrians move according to specific traffic
rules. Abnormal events are defined as outliers that are far from the typical patterns
(e.g., go straight, U-turn, turn right, etc.) following traffic rules. Hence detection of
anomalies in this case becomes a process of finding motions which do not obey
these rules. To achieve automatic detection of this anomaly without human labor,
the surveillance system should learn the normal patterns in an unsupervised way
from a large amount of crude data as shown in Fig. 1. Many researchers have
proposed various learning models to discover the typical normal motion patterns
from raw data in video [1, 7, 10, 11, 14, 17, 19, 32, 33].

Through analyzing strength and weakness of the existing works on unsupervised
learning of motion patterns, we establish the following five requirements that the
learning model should satisfy to work well in actual environments. First, the model
should recognize regions showing normal movement patterns. The regions should
be categorized into semantic regions representing typical activities (e.g., go straight
upward, turn right, walk across the street, etc.). This is important for explaining the
activities in an intersection, detecting intrusions of restricted areas, and detecting
illegal U-turns. Second, the model should include not only direction information but
also speed information for each activity region. This would increase the

Fig. 1 An example of motion pattern analysis. a Crude motion data (unlabeled trajectories) in a
surveillance scene. b Results of learning typical activities. The typical patterns are denoted with
red and blue coloring, where objects move from red to blue. Some typical patterns occur at the
same time, and their occurrences have temporal rules (best viewed in color)

216 H. Jeong et al.



discrimination ability of the model to detect abnormal patterns such as pedestrians
walking along the path of vehicles, bikes running in pedestrian road, cars driving
with over-speed, cars stopping in a railroad crossing, and so on. Third, spatio-
temporal relationship between typical activity patterns needs to be considered. For
instance, it is impossible for two straight movements, “moving from left to right”
and “moving from top to bottom,” to occur in an intersection at the same time. The
model also needs to recognize the temporal order of activities such as governed by a
traffic signal. Fourth, the algorithm should be robust to crowded scenes. In crowded
scenes, it is hard to extract motions of individual objects. Even the current
state-of-the-art methods for multi-object tracking [20, 29] are still limited for
applying to the crowded scenes. Fifth, the model should be able to adapt itself to
temporal changes of the scene (e.g., reversible lane, traffic volume changes). Online
learning approach will not only enable the adaptation but also save memory and
computational load because the model does not need to keep old data.
A surveillance system running over months or even years, for example, would
require an online model if it needs to keep running.

According to the authors’ survey, there is no existing work satisfying all of the
aforementioned requirements until now; the details on this issue will be described in
related works of Sect. 2 and here we would give a brief mention. Object tracking
based approach [1, 11, 17, 19, 33], whose observations are actual velocity from
trajectories, can satisfy the first and second requirements but hardly fulfill the third
and fourth requirements. On the other hand, the topic model based approach [7, 10,
14, 32], whose observations are quantized directions in a local region, are partic-
ularly useful for the first, third and fourth requirements. These kinds of observa-
tions, however, cannot deal with precise velocities (second requirement).
Furthermore, most of the motion learning methods are restricted to offline learning
not allowing to adapt to the changing situations (fifth requirement). The crowd
motion approach [13, 21, 30] does not fulfill the first and third requirements since it
is designed to understand only the crowd motion rather than typical motion paths.

In this article, we propose an approach to meet all of the aforementioned
requirements for motion pattern analysis. This purpose is achieved through embed-
ding the precise velocity pattern model, spatiotemporal pattern transition model, and
the topic model into a probabilistic graphical framework. In particular, the newly
defined continuous velocity model is distinctive from the existing models [7, 10, 14,
28, 31, 32], which do not provide satisfactory performance on the second require-
ment. In addition, to achieve online learning even with the enormous complexity of
the proposed model, we suggest an efficient two-stage greedy learning method. The
learning method of collapsed Gibbs sampling [8] restricts the existing models to
offline learning. On the other hand, our learning method is designed to infer latent
variables step by step in a greedy manner to reduce the search space. Moreover, the
sub-model in each step is learned in a way that the online learning should not lose the
learning capabilities shown in the offline learning. The whole learning process allows
online adaptation of themodel quickly and accurately.We evaluate ourmethod on six
datasets for activity pattern modeling and anomaly detection, showing that our
method outperforms the state-of-the-art methods.
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1.2 Related Works

One of the conventional approaches used for unsupervised activity analysis is to
learn trajectory patterns through clustering. This approach defines distance measure
between two different trajectories and groups similar ones together [11, 17–19, 33].
These methods use a similarity measure to group similar trajectories and can model
trajectories in a whole path. Therefore, they can deal with the long-term charac-
teristics of trajectories. However, these methods suffer from errors due to projective
distortions and fragmentation of trajectories. In addition, the computation to obtain
the distance for every pair of trajectories is heavy.

Another trajectory based approach learns the transition probabilities of each
pixel to its nearby pixels using Gaussian mixture models (GMM) [1] or kernel
density estimation (KDE) [23]. This approach statistically learns the velocities and
the sizes of moving objects at each position. It is more invariant to scene variation
and more robust to trajectory fragmentation than similarity based approach.
However, these methods may fail to detect anomalies in regions where movements
are diverse, such as the center of an intersection. In such situations, the trained
model would count all patterns as normal because it is not fully aware of mutual
dependence among trajectories; that is, it does not handle spatiotemporal rela-
tionship among typical activity patterns (third requirement). Moreover, object
tracking based methods have difficulty in extracting individual object trajectories in
a crowded scene due to the inevitable tracking failures.

On the other hand, optical flow based methods have been proposed recently to
overcome the problem of object tracking failure in a crowded scene. These methods
adopt mixture of Gaussians [22], sparse coding [35], Markov random field [2],
dynamic textures [16], probabilistic topic models [7, 10, 14, 28, 32], and so on. In
particular, the topic models have been prevalently employed to learn motion pat-
terns because they can well discover typical activities using co-occurrence property.
The Dual Hierarchical Dirichlet Process (Dual-HDP) [32] discovers typical activity
patterns by modeling spatial relation of activities. Markov Clustering Topic Model
(MCTM) [10] additionally considers temporal relationships between activities, and
Dependent Dirichlet Process Hidden Markov Model (DDP-HMM) [14] solves the
same problem in a non-parametric manner. However, the above methods ignore the
temporal order of low-level motion features, which leads to incomplete modeling of
long-term path. This approach has been extended by considering the temporal
information inside the topic [7, 28]. Nevertheless, all of these topic model based
approaches cannot completely address the precise velocity of a whole trajectory
since they only use quantized directions obtained from optical flows in a local cell
(i.e., it does not fulfill the second requirements). Moreover, the collapsed Gibbs
sampling, which is commonly utilized for learning of the topic models, is not only
ineffective in dealing with a large solution space of a complex model but also
restricted to offline learning making it unable to adapt to a changing situation (i.e., it
does not fulfill the fifth requirements).
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Crowd motion analysis [13, 21, 30] has also been conducted to detect strange
motion patterns in an extreamly crowded scene. Probabilistic Crowd Model [21]
allows objects to be tracked even in extremely crowded scenes, and local spatio-
temporal motion pattern [13, 30] is modeled in the dense crowded scenes. These
methods, however, allow their model to understand only the crowd motion rather
than typical motion paths (i.e., it does not fulfill the first and the third requirements).
Hence, this approach is not suitable for the task of deducing traffic rules though it
gives good performance on anomaly detection in the crowded scene.

2 Proposed Approach

Figure 2 shows the schematic diagram of the proposed framework. We first apply a
simple background subtraction [24] to extract foreground map and detect corner
points on the foreground pixels. We perform KLT [25] on these corner points to
extract trajectories. By using the KLT trajectories, we can reduce the tracking error
in a crowded scene because KLT tracks corner points, which are relatively easier to
track than each object in a crowded scene. Of course, the tracking of corner points
under the far-field view may generate broken trajectories. Despite the broken tra-
jectories, our framework can cope with this problem by considering co-occurrence
property of many corner point trajectories. After KLT tracking, consequent tra-
jectories are collected during a time interval. The trajectories in the same time
interval compose a collection that is a mixture of diverse activities. The dozens of
trajectory collections are piled as in Fig. 2, and a recent set of collections is used as
an input to the proposed inference model for online update.

The proposed inference model is formulated in a probabilistic graphical
framework including trajectory pattern model, spatiotemporal relation of trajecto-
ries, and velocity model of each trajectory. To infer this model in online manner,
instead of exact inference, an approximate method is proposed by two-stage greedy
inference with three sub-models of trajectory clustering, spatiotemporal dependency
modeling, and velocity learning. Lastly, the recently observed scene is tested by the
trained model to detect anomalies in the current scene.

Fig. 2 Overall scheme of the proposed method
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2.1 Probabilistic Inference Model

In this section, we describe the proposed model denoted with green in Fig. 2. The
main frame of our approach is topic model such as Latent Dirichlet Allocation
(LDA) [4], which is proposed for analysis of relationships between a set of doc-
uments and words in the documents. In this approach, the frequency of occurrence
of each word in a document is used as a feature to train the model. For example, a
word “relativity” tends to co-occur with words such as “Einstein”, “energy”,
“gravity”, “universe” in each document, so a set of the words is interpreted by the
viewer as the physics-related topic. Because of the ability of co-occurrence mod-
eling, LDA is adopted as a baseline of many motion pattern learning frameworks [7,
10, 14, 28, 32]. In these works, quantized local motions are treated as words, a set
of the local motions in a video clip is treated as a document, and the topic can be
treated as typical motion patterns.

In our approach, we also have to define variables corresponding to “word”,
“document”, and “topic” in the topic model literatures. We define “words” as grid
cells dividing a scene, where all of the cells in a scene have the same height and
width. Instead, we newly define the velocity of trajectory (details are defined in the
following), which can handle not only quantized direction inside a cell but also
long-term actual velocity over dozens of frames. The trajectory is denoted by a set
of grid cells as in Fig. 3 and velocity vector defined as in Fig. 4. A “document” in
the topic model corresponds to a collection of trajectories defined by a set of
trajectories collected in a time interval. The trajectories are categorized into multiple
typical patterns (topics), referred to as trajectory patterns (e.g., turn left from south
to west, gostraight downwards, etc.).

The indexed variables for the proposed model are defined as following. The
index of i-th cell of j-th trajectory in t-th collection of trajectories is denoted by
ctji 2 f1; 2; . . .;Cg, where C is the number of grid cells in a scene. As depicted in
Fig. 4, the velocity vector vtjif 2 R

2 is defined as a relative vector from a point in
the i-th cell on the j-th trajectory to the point at the frame of f-steps ahead.

Fig. 3 Example of a single trajectory corresponding with a set of cells
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Following the above definition of variables, observed trajectories in the collection

of the t-th time interval can be expressed by a set of cells fctjigNtj;M
i¼1;j¼1 and a set of

velocity vectors fvtjif gFtji;Ntj;M
f¼1;i¼1;j¼1, where M is the number of trajectories in the

collection, Ntj is the number of cells where the j-th trajectory passes, and Ftji is the
maximum value of f according to the length of the observed trajectory. We also
define a design parameter F, acting as the maximum possible value for Ftji.

The state of t-th collection st 2 f1; 2; . . .; Sg is a set of trajectory patterns that can
occur at the same time, such as a vertical moving state (a mixture of go straight
upwards and downwards) governed by a traffic light. The sequence of the state st is
modeled so that it transits from one state to another over time, according to mul-
tinomial distribution with transition probability matrix p as follows:

stjst�1 �Multiðpst�1Þ; ð1Þ

For this example, the sequence of states fstg is formed according to the change
of a traffic signal as time passes. The constant S is a design parameter determining
the number of states, usually selected to 2 or 3 according to the traffic changes in an
intersection case. If the state st is given, the distribution of topic occurrence in the
state can be determined. The topic occurrence probability vector for t-th collection
is defined by ht 2 R

K , where K is a design parameter that stands for the number of
typical trajectory patterns in a scene. The ht is represented with a histogram that
must sum to 1, and the distribution of ht is assumed to be Dirichlet distribution with
given parameter a, i.e.,

htjst; a�DirðastÞ: ð2Þ

The ht is used as the parameter of multinomial distribution over the K trajectory
patterns (topics) for the t-th collection. The trajectory pattern of the j-th trajectory in
the t-th collection is denoted with ztj 2 f1; 2; . . .;Kg, which is assumed to follow a
multinomial distribution with the parameter ht, i.e.,

ztjjht �MultiðhtÞ: ð3Þ

Fig. 4 Synthetic trajectory with marked points and relative vectors from origin coordinate in cell
ctji
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We design the cell ctji to be generated by a multinomial distribution with the
parameters /ztj 2 R

C being related to the pattern ztj, given by:

ctjijztj;/�Multið/ztjÞ: ð4Þ

The multinomial parameter /k 2 R
C in Eq. (4) holds information about which

cell has high probability to appear in the k-th trajectory pattern. The distribution of
/ztj is assumed to be Dirichlet distribution with parameter b, i.e.,

/kjb�DirðbÞ: ð5Þ

Also, the velocity vector vtjif is modeled to be drawn from a Gaussian distri-
bution with its mean lctjiztjf and variance Rctjiztj f as follows:

vtjif jztj; ctji; l;R�Nðlctjiztj f ;Rctjiztj f Þ: ð6Þ

Using variables and their dependence defined in the above, the overall model to
consider trajectory patterns (topics), velocity patterns of the trajectories, and spa-
tiotemporal transition patterns of the states is graphically represented as shown in
Fig. 5. The figure can be interpreted in a top-down order through the generative
process [4], where the nodes denote random variables, and the edges denote pos-
sible dependence between random variables.

The primary goal of our framework is to infer the latent variables and parameters
from the given observations fctjig and fvtjif g in a surveillance video through an
online unsupervised learning scheme.1 This task can be done by posterior inference,
which can be regarded as a reversal of the generative process that the graphical
model illustrates. The posterior inference for all latent variables s;/; h; z; l;R given
the observations c; v and hyper-parameters a; b is as follows:

s�;/�; h�; z�; l�;R� ¼ argmax
s;/;h;z;l;R

pðs;/; h; z; l;Rjc; v; a; bÞ; ð7Þ

where,

pðs;/; h; z; l;Rjc; v; a; bÞ ¼ pðs;/; h; z; l;R; c; vja; bÞ
pðc; vja; bÞ : ð8Þ

The numerator on the right-hand side in Eq. (8) corresponds to a joint probability
distribution represented by the proposed model. Also, using the chain rule and

1To concisely represent notations, the set notation f�g without the range of index is defined as a
set of variables containing all possible indices. Also, the variables without indices imply that
they deal with all possible indices, such as,

c ¼ ctji
� � ¼ ctji

� �T ;M;Nj

t¼1;j¼1;i¼1; pðsÞ ¼ p fstgTt¼1

� � ¼ QT
t¼1

pðstÞ:.
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assumptions of independence among variables, the joint probability can be fac-
torized into Eq. (9), which consists of the probability distributions defined in
Eq. (1)–(6).

pðs;/; h; z; l;R; c; vja; bÞ ¼
YK
k¼1

pð/kjbÞ
 !

YT
t¼1

pðstjst�1Þpðhtjst; aÞ
YM
j¼1

pðztjjhtÞ

YNtj

i¼1

pðctjijztj;/Þ
YFtji

f¼1

pðvtjif jztj; ctji; l;RÞ:

ð9Þ

The learning of distribution parameters (/; h; l;R) for the proposed model can
be achieved by maximizing the probability pðs;/; h; z; l;R; c; vja; bÞ with latent
variables s, /; h, z, l;R to be inferred under the given observations c, v and the
hyper-parameters a; b. However, the exact inference is intractable due to
non-convexity of the joint probability function and a tremendous search space
caused by calculating the joint probability for all possible configurations of the
latent variables to find the best case. Instead of exact inference, we propose an
approximate inference method that will be presented in the Sect. 2.2.1.

As for an application of inference results of the proposed model, anomaly
detection can be performed. Using the distribution parameters l;R;/; h inferred
from the learning phase and the current observations fct0jig, fvt0jif g at the current

Fig. 5 Graphical representation of the proposed model. The hidden variables are unshaded and
the observed variables are shaded. The rectangles are plate notation which denotes replication
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time t0,2 the a state s�t0 and a topic assignment z�t0j for each trajectory j are estimated
by maximizing a posterior:

s�t0 ; z�t01; z
�
t02; :; z

�
t0M

� � ¼

argmax
st0 ; zt0 jf g

pðst0 ; fzt0jgjfct0jig; fvt0jif g; l;R;/; h; a; bÞ
� �

: ð10Þ

Here,

pðst0 ; fzt0jgjfct0jig; fvt0jif g; l;R;/; h; a; bÞ

¼ pðst0 ; fzt0jg; fct0jig; fvt0jif g; l;R;/; hja; bÞ
pðfct0jig; fvt0jif g; l;R;/; h; a; bÞ : ð11Þ

The denominator of Eq. (11) is constant to the variation of optimization variables
s, z, so it is enough to maximize the numerator (joint probability) of Eq. (11) to
achieve Eq. (10). Therefore, the joint probability in Eq. (9) can substitute for the
posterior in Eq. (10) by fixing t ¼ t0 and removing

QT
t¼1. The observations are

extracted from trajectories of the current frame and j 2 ½1;M�; i 2 ½1;Nj�;
f 2 ½1;Fji�. Indeed, if the joint probability pðs�t0 ; fz�t0jg; fct0jig; fvt0jif g; l;R;/; hja; bÞ
in Eq. (9) has low value even with the optimal s�t0 ; fz�t0jg, the current scene is decided
to be abnormal. However, as in case of model learning, exact inference of Eq. (10)
is intractable. The details for anomaly detection with approximate method are
described in Sect. 2.2.2.

2.2 Two-Stage Greedy Inference

2.2.1 Model Learning

An exact learning of the proposed model by maximizing the joint probability
Eq. (9) is intractable because of the aforementioned reasons in the previous section.
Hence, many conventional methods using various topic models [7, 10, 14, 31, 32]
commonly employ collapsed Gibbs sampling (CGS) for an approximate learning of
the models. CGS is a popular Markov Chain Monte Carlo (MCMC) approach for
topic model learning. However, on the results of online MCMC learning for topic
models [5], the results have shown that online MCMC learning is inferior to the
offline learning. According to [34], in case of distributed processing for the learning
of the topic models, variational inference (VI) [3, 4] gives better results than CGS.

2Because the anomaly detection task should be performed for every frame, we compose t0-th
trajectory collections from the trajectories on the current frame.
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To achieve an online learning of the proposed topic model, a large set of the
trajectory collections for the offline learning needs to be separated by time. Because
each separated set of the collections can be an input to the distributed processing,
VI method can be a better option for the online learning of our model than CGS. VI
assumes that each variational distribution used to approximate the posterior and to
treat each document (in our case, collection of trajectories) is independent. For this
reason, it is difficult to apply VI directly to our model because the model has the
states for each collection which is dependent on the previous state. Moreover,
inferring all latent variables all together is not efficient to real-time computation in
terms of a search space.

In our greedy inference approach, in order to directly apply VI to the proposed
model in Fig. 5, we utilize the fact that the state st is hardly changed in a short time
for the online inference; thus, ht can be inferred without knowing the current state
st. Also, to reduce the search space for the solution, we assume that each velocity
pattern l;R in a cell c of each typical pattern z is inseparable. On the assumption,
we can find the typical patterns z based on the cells c at first, and then velocity
patterns are mined on the regions of each typical pattern. This assumption is rea-
sonable from the fact that activity regions c are more susceptible to the typical
pattern z than precise velocity v. As a result, three simple sub-models are obtained
as shown in Fig. 6. The first sub-model in Fig. 6a is the same graphical model of
Latent Dirichlet Allocation (LDA) [4], so it is straightforward to adopt online VI [9]
to the sub-model. If latent variables z and h are given from the learning of the first

(a) (b)

(c)

Fig. 6 Three sub-models for two-stage learning
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sub-model in Fig. 6a, remaining latent variables fstg and flckf ;Rckf g in Fig. 5 are
conditionally independent by d-separation property [3]. In other words, fstg does
not influence flckf ;Rckf g and vice versa for the given z and h. Therefore, we can
reasonably optimize the sub-model of the first stage and then use these results to
optimize the remaining two sub-models in Fig. 6b, c in a greedy manner.

First, we optimize /; h, and z of the first sub-model in Fig. 6a using LDA.
The LDA can be used to cluster trajectories effectively, since it is robust to broken
trajectories using the co-occurrence property. To be specific, because the collection
is composed of concurrent trajectories in short time duration, the LDA can cluster
co-occurring cells (words) in trajectory collections (documents) into the same tra-
jectory patterns (topics). Using the inference result in the first stage, we use fhtg as
observations to infer hidden variables fstg and state transition matrix p in Fig. 6b.
In addition, the pattern assignments of each trajectory z inferred in the first stage is
also used as observations to infer Gaussian parameters per cell c, typical pattern k,
and frame f in Fig. 6c. By this procedure, the search space to solve the complex
model can be reduced effectively. Detailed description for each sub-model is pre-
sented in the following.

A. Online Trajectory Clustering
Leaning of the first sub-model takes a role of online trajectory clustering. For
the online processing, the entire T collections of trajectories for the proposed
model in Fig. 5 should be separated into a small set of collections by time. The
small set that consists of the D collections is used as an input for the mini-batch
learning whose results allow the model to be updated online. In other words,
D is the number of collections for the mini-batch, so T

D times of mini-batches
should be performed for the whole video. Because the proposed model in Fig. 5
is assumed to be divided by ignoring the dependence between s and h and
between z and v, the full joint probability of the proposed model in the Eq. (9)
can ignore pðstjst�1Þ, pðvtjif jztj; ctji; l;RÞ and can approximate
pðhtjst; aÞ � pðhtjaÞ. Thus, the objective function of each mini-batch and joint
probability of the first sub-model for the D collections is given by:

/�; h�; z� ¼ argmax
/;h;z

pð/; h; zjc; a; bÞ; ð12Þ

where,

pð/; h; z; cja; bÞ ¼
YK
k¼1

pð/kjbÞ
 !

YD
t¼1

pðhtjaÞ
YM
j¼1

pðztjjhtÞ
YNtj

i¼1

pðctjijztj;/Þ:
ð13Þ
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Also, in order to make Eq. (13) to be the same as the joint probability of LDA,
the topic assignment ztj for each trajectory is changed to be assigned for each
cell (i.e. ztji), and then ztj is obtained by post-inference using ztji.
To find the optimal points of Eq. (12) in online manner, we use online varia-
tional inference (VI) using mini-batch LDA using the small set of D collections
coming in as time goes on. For details, refer to [4, 9]. After finding the optimal
points, we get z�tji indicating the topic assignment of each cell as shown in
Fig. 6a. This result cannot be directly used in the next stage because the
inference result of the full model (of Fig. 5) is the latent variable z�tj indicating
the most typical pattern of the j-th trajectory among the K clustered patterns. To
resolve the incompatibility, we consider the mode of the inference results of the
first sub-model as the results of the original model. For example, if we have
fz�tj1; z�tj2; z�tj3; . . .; z�tjNj

g and fctj1; ctj2; ctj3; . . .; ctjNjg for a j-th trajectory in t-th

collection, then we assign z�tj as

z�tj ¼ Modefz�tjigNtj

i¼1: ð14Þ

This is a reasonable assignment since choosing the mode would give least error
with respect to maximum likelihood estimation [6].

B. Spatiotemporal Dependency of Activities
The spatiotemporal relationship among the typical patterns is represented in

Fig. 6b. From the set z�tj
n oM

j¼1
obtained in the first stage inference, h�t per

trajectory collection is also obtained. Given a set of histogram h�t
� �D

t¼1, where
D is the number of collections, we partition the D observations into S sets
fH1;H2; . . .;HSg. The objective function to minimize is the within-cluster sum
of squares:

argmin
fHngSn¼1

XS
n¼1

X
h
�
t 2Hn

h
�
t � mn

���
���2; ð15Þ

where mn 2 R
K is the mean of vectors in a set Hn and fh�t g is the

dimension-wise normalized version of fh�t g. In the normalization, different
observation frequencies in topics are set to the same scale. To minimize the
objective function, we perform K-means clustering with K = S. Then with the
clustering results, we obtain the cluster indices fs�t gDt¼1 for all fh�t gDt¼1, where
s�t 2 f1; 2; . . .; Sg corresponds to cluster index of h�t . The state transition matrix
p also can be obtained by counting the frequency of transition in the cluster
indices. The parameter mn implies general patterns about spatial co-occurrences
of trajectory patterns, such as cars are moving horizontally (m1) or cars are
moving vertically (m2). The mn is also used to estimate a current state at the
anomaly test phase.
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In the online process, only h�t
� �D

t¼1 residing inside a sliding time window is
kept so that the model adapts to the changes in time. A size of the sliding
window is designed to be bigger than the size of mini-batch for online-LDA in
order to increase the clustering performance. As K-means performance depends
much on initialization, we perform this multiple times with random initial
conditions and use the best result. As the K-means algorithm is very fast, it
scarcely affects entire computational time of the proposed method.

C. Velocity Learning
As in Fig. 6c, given clustered trajectory information fz�tjg and the observations
fctjig and fvtjif g, Gaussian models learn velocities of the trajectory. The
velocities can be modeled for each pixel in the scene, but it is a waste of
memory and needs extremely large amount of data. Assuming adjacent pixels
in the scene have similar motions, we learn these motions based on each cell. In
our modeling scheme, Gaussian models exist not only for each cell but also for
each typical pattern. Therefore, since multiple typical patterns may exist for the
same cell, multiple Gaussian models may exist to describe the complex motions
of a single cell. An example of this case would be a cell in the center of an
intersection. The Gaussian model learns the statistical information about the
position of a trajectory at f frame before. Figure 4 is an illustration of obtaining
the relative vector vtjif 2 R

2 for a trajectory. Then for each Gaussian model, we
update the Gaussian parameters l 2 R

2 and R 2 R
2�2 with each trajectory

using the typical moving average concept. To avoid the model from being
overly stiff, we keep lower bound for the learning rate.

2.2.2 Anomaly Detection

The optimization problem of Eq. (10) for anomaly detection is related to find the
most appropriate st0 , zt0j from the observations fct0jig, fvt0jif g and the distribution
parameters obtained through learning procedure in Sect. 2.2.1. The distribution
parameters are assumed to be fixed in the anomaly detection phase. Since the
computational complexity for exact inference for Eq. (10) is heavy with complexity
of OðSKMÞ, we present approximate inference method. For the approximation, we
make two assumptions: 1) the typical pattern (topic) of each trajectory is inde-
pendent from others in a state; 2) activity regions c are more dominant to determine
the typical pattern than precise velocity v. Using the first assumption, we can
estimate the topic assignment zt0j of j-th trajectory without knowing the current state
st0 ; thus, zt0j is not dependent on st0 , ht0 . The second assumption makes the depen-
dence between z and v to be ignored; thus l and R can be also ignored. Using the
assumptions, a posterior of topic assignment zt0j can be approximately computed by
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only given regional observations c and the learned multinomial parameters / as
follows:

pðzt0jjfct0jigNj

i¼1; fvt0jif g
Nt0 j;Ft0 ji
i¼1;j¼1; l;R;/; h; a; bÞ

� pðzt0jjfct0jigNt0 j
i¼1;/Þ:

ð16Þ

Also, the approximate posterior can be factorized into likelihood and a prior by
Bayes’ rule,

pðzt0jjfct0jigNt0 j
i¼1;/Þ / pðfct0jigNt0 j

i¼1jzt0j;/Þpðzt0jj/Þ: ð17Þ

Because the likelihood pðfct0jigNt0 j
i¼1jzt0j;/Þ follows multinomial distribution

defined as in Eq. (4) and the prior is uniform, we can find the proper topic
assignment z�t0j given by:

z�t0j ¼ argmax
k2f1;...;Kg

pðfct0jigNt0 j
i¼1jzt0j;/kÞ

h i
: ð18Þ

Likewise, the state s�t0 is estimated by utilizing fmngSn¼1 obtained in Eq. (15) and
the K-dimensional histogram h�t0 calculated from the frequency of fz�t0jgMj¼1 as follows:

s�t0 ¼ argmin
s2f1;...;Sg

h�t0 � ms

�� ��: ð19Þ

As a result, the computational complexity of the posterior optimization in
Eq. (10) can be reduced from OðSKMÞ into OðKMÞ þ OðSÞ via the proposed
approximation.

By using the estimated s�t0 and fz�t01; z�t02; . . .; z�t0Mg, we can assume all latent
variables are given, so the observations fct0jig and fvt0jif g are tested based on the
trained model in reverse:

pðfct0jig; fvt0jif gjs�t0 ; fz�t0jg; l;R;/; h; a; bÞ /
pðfct0jig; fvt0jif g; s�t0 ; fz�t0jg; l;R;/; hja; bÞ:

ð20Þ

The right-hand side of Eq. (20) can be factorized into the six pre-defined dis-
tributions Eq. (1–6) by conditional independence as in case of Eq. (9). In fact, the
probability of learning parameters p /kjbð Þ, pðh�t0 js�t0 ; aÞ does not have influence on
the Eq. (20). Thus, we check the remaining four conditions in Eqs. (1, 3, 4, 6) to
decide whether the current state or each trajectory is normal or not:

(a) For the current state, pðs�t0 js�t0�1Þ defined in Eq. (1) is tested using the state
transition matrix p and the given the previous state s�t0�1. It is to examine the
temporal relation among the typical patterns of trajectories.
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(b) For the topic assignment z�t0j of j-th trajectory in the current scene, pðz�t0jjms�
t0
Þ

defined in Eq. (3) is tested. Even though each trajectory is assumed to be
independent of others when the inference of Eq. (10) is approximated, after
estimating the dominent current state s�t0 , an abnormal trajectory violating the
current state can be detected. It can consider the spatial relation among the
typical patterns of trajectories.

(c) For a set of cells ct0ji
� �Nt0 j

i¼1 passed by j-th trajectory, p ct0ji
� �Nt0 j

i¼1jz�t0j;/
	 


defined in Eq. (4) is tested given the topic assignment z�t0j. It is to examine the
overall path of the trajectory.

(d) For a set of velocities vt0jif
� �Nt0 j;Ft0 ji

i¼1;f¼1 obtained as in Fig. 4, the conditional

probability p vt0jif
� �Nt0 j;Ft0 ji

i¼1;f¼1 z�t0j; ct0ji
� �Nt0 j

i¼1; l;R
���

	 

in Eq. (6) is tested. It is to

detect an trajectory with abnormal speed although its overall path is similar to
one of the typical patterns.

If the current state has low probability on the condition (a), the state of the
current frame is decided to be abnormal. Also, a trajectory that has low probability
under at least one of the conditions (b)–(d) is determined to be abnormal; thus, a
cell containing current position of the abnormal trajectory is regarded as an
abnormal region.

2.3 Summary of the Proposed Method

Given the observations defined in the Sect. 2.1, the proposed inference method can
be summarized as Algorithms 1 and 2.
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3 Experiments

We have done experiments on six different videos to analyze motion patterns and to
detect abnormal activities. The MIT dataset is from [32], the QMUL Junction
dataset is from [10], Wide Intersection (WI) video is our own dataset of an
eight-lane road with heavy traffic, the UCSD dataset is from [26], the UMN dataset
is from [27], and the level crossing is from [15]. The first three datasets are of
intersections used to evaluate the validities of the unsupervised modeling results of
our method. In these videos, traffic flows are governed by a trafic signal which has
been modeled with state transition in our model. The other three datasets were used
to detect abnormal activities in scenes. These videos contain abnormal activities
which are hard to detect in case of using quantized directions and conventional
topic modeling methods [7, 10, 14, 28, 31, 32].

The cell size of each video was identically fixed to 10 × 10 and the mini-batch
size D is fixed to 10 in the all experiments. We equally set the number of topic K to
12 for three intersection videos and K to 3 for other videos. This is because, unlike
intersection datasets, the latter three datasets are in narrow field-of-view situations
where moving objects have only a few typical patterns. Furthermore, we experi-
mented with different K on the state estimation and the prediction task to be
described in Sect. 3.1 and 3.3, but the variation of K did not have a significant
impact on the performance as long as K is not significantly far from the actual
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number of typical patterns. The experiments were conducted on a computer with
Intel i5 2500, 3.3 GHz CPU. In spite of non-optimized C++ implementation and
single core processing, the proposed method could run on almost real-time
(18-20fps), including motion extracting, model learning, and anomaly testing tasks.

3.1 Result of Scene Understanding

WI dataset: Modeling results for the WI dataset are shown in Fig. 7. The number
of state S is set to 3, and each state is represented by red, blue, and green. The latent
variable set fstgDt¼1 inferred by the Eq. (15) is graphically represented with the
colored bar on the top of the figure. The horizontal axis of the bar, namely, rep-
resents time interval index t of the collection of trajectories. In this bar, we can find
that each state changes regularly depending on time. The change of states coincides
with the traffic lights which controls movement of vehicles and pedestrians. The
state transitions are not well learned at first, but as a result of online learning, the
model well describes the state and the transition of states as more data comes in.
Our online learning correctly updates the model as more data is observed.

The transition matrix p is shown on the right of the bar. The probability for a
transition from state i to state j is pij. Higher probability is denoted as white, whereas
black denotes low probability. The matrix shows that except staying on the same
state, the most probable state transition occurs in the order of 1→ 2→ 3→ 1. Each

Fig. 7 Typical patterns and their spatiotemporal relationship for the WI video sequence. The
colored bar on the top shows state estimation. The transition matrix is shown on the top-right,
where higher probability is denoted as white. The typical moving patterns are denoted with red and
blue coloring, where objects move from red to blue (best viewed in color)
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state is represented by a mixture of co-occurring typical activity patterns. Since the
width of the road in WI video is wide (eight-lanes), each pattern appears per single or
double lane. Typical patterns are shown on the bottom three subfigures in Fig. 7. The
patterns are denoted with red and blue coloring, where objects move from red to blue.
State 1 is composed of four typical activity patterns: cars coming and going from
northwest to southeast. In state 2, cars are coming and going from northeast to
southwest, which cannot happen at the same time with state 1. State 3 is a mixture of
turning left and going-straight from southwest. During left turn signal, which is state
3, there is no activity going from northeast to southwest. We can also find left turn
signal is very short compared to other states as shown in the bar.

In fact, even if K = 12 is not strictly the same as the actual number of typical
patterns, scene understanding performance of the proposed method is not critically
affected. For instance, when K is designed to be smaller than the actual number of
typical patterns, co-occurring similar two typical patterns are sometimes merged
into one as shown in the first typical pattern in state 2. On the other hand, with a
large K, a typical pattern (e.g., go straight) can be split into multiple sub-patterns
(e.g., go straight in each lane) as long as K is not significantly far from the actual
number. These cases hardly disturb the automatic understanding of traffic patterns.
To confirm this, we conducted additional experiments by measuring the state
estimation error and by conducting the prediction task with different K, which will
be covered later in detail.

QMUL Junction dataset: QMUL Junction Dataset is the footage of objects
crossing an intersection which has four-lane and right-turn signals. Three states are
used for this experiment. Results are shown in Fig. 8. In the figure, state 1 describes
activities with right-turn signal. State 2 includes activities corresponding to vertical
movements. Similarly, state 3 captures horizontal movements of cars. As shown in
the colored bar and the transition matrix p, states repeatedly change in order of
1 → 3 → 2 → 1. This transition shows well a change of activity controlled by the
signal in the scene. Vertical movements of cars appear when right- turn signal is
finished, and the horizontal straight signal starts after the vertical straight patterns.

MIT dataset: We applied two-stage greedy learning to extract two global states
from MIT junction dataset. Figure 9 shows the results. Unlike WI and QMUL
videos, strict state classification caused by traffic signal is impossible in MIT video
because turning and crossing movements is not protected. Hence, we set S = 2 for
the MIT data so that only rough state assignments (vertical and horizontal moving)
could be done. State 1 represents vertical activities and state 2 describes horizontal
car movements. These two states are alternately repeated, closely related to the
traffic rules in the dataset. In this case, however, KLT tracker performs poorly for
objects turning right, which come from bottom and go to right, because they are
occluded by the traffic light pole. Although the proposed model can deal with
general cases of broken trajectories by co-occurrence property, it still has a limi-
tation in the case that trajectories are always broken at the same position. In this
case, a collection cannot often include the trajectories in both sides of the breaking
position (e.g., occlusion) at the same time because the collection just covers short
duration. Hence, it is difficult to apply co-occurrence property to the consistently
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Fig. 8 Typical patterns and their spatiotemporal relationship for the QMUL video sequence. The
colored bar on the top shows state estimation. The transition matrix is shown on the top-right,
where higher probability is denoted as white. The typical moving patterns are denoted with red and
blue coloring, where objects move from red to blue (best viewed in color)

Fig. 9 Typical patterns and their spatiotemporal relationship for the MIT video sequence. The
colored bar on the top shows state estimation. The typical moving patterns are denoted with red
and blue coloring, where objects move from red to blue (best viewed in color)

234 H. Jeong et al.



broken tracks. Performance improvement is expected if a more robust feature
tracker such as [21] is used.

From the above results of three datasets, the proposed method gives an inter-
pretation of activities in the scene (e.g., finding typical activities in unsupervised
way, learning spatiotemporal relation among the typical activities), which are
essential tasks of topic model based approach [7, 10, 14, 28, 32]. Although the
quantitative results of our scene understanding are not so different from the results
of the existing methods, there are two main distinctions between the proposed
model and the similar methods. First, the proposed method incrementally takes
trajectory data with online learning, which is differentiated from the batch learning
methods. For example, an existing similar method such as [10] estimates state
assignments at once using all data from beginning to end; on the other hand, our
method lengthens the state estimation bar as time goes on. In addition, the exper-
iments are conducted with different K, and our method showed consistent results
even for the variations of K (= 8,12,16,20). Our online learning method not only
enables the adaptation of scene changes but also saves memory because our model
does not need to keep old trajectory collections. Second, our novel model utilizes
precise velocity as an observation beyond quantized direction. As the merit of
adding precise velocity to the model is difficult to display on the scene under-
standing of results, subsequent sections will show the effect of using velocity
observations.

3.2 Applications in Anomaly Detection

This section provides anomaly detection results using the proposed model. Detected
abnormal events for MIT, QMUL and WI datasets are as shown in Fig. 10a–d.
Figure 10a illustrates a detection of an illegal U-turn action. In Fig. 10b, an
ambulance uses improper lanes and goes on the opposite direction. Our method
detects these events as abnormal because these activities are not modeled as typical
patterns. Figure 10c shows a vehicle ignoring the traffic signal and turning right
through opposite traffic. Though this vehicle would be considered normal in state 2
(as Fig. 8), it is detected as abnormal since the activity occurred when state 3 is
dominant. Also, bike driving on the opposite direction is detected in Fig. 10d.

In addition to former three videos, we conducted anomaly test for UCSD, UMN
and level crossing datasets to confirm the performance of our model. These datasets
contain abnormal activities that are difficult to detect when using methods based on
conventional topic models with quantized directions (e.g., over-speeding objects,
cars stopping on a railroad crossing for a long time, and so on). UCSD dataset
captures people, cars, and bicycles showing various velocity patterns. The scene is
usually crowded with pedestrians, but bikes and cars drive on pavements rarely.
Our method shows good performances by the model with the precise velocity
observations. Figures 10e–f illustrate detection of a bike and a car driving on
pavement. Since these objects have much faster velocity than others, they are
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detected as abnormal. On the other hand, because the quantized directions have no
information about speed, the methods based on the quantized direction feature
cannot detect an object moving with over-speed. Figure 10g shows a detection
result for the UMN dataset. In the video, people are loitering slowly in a square, and
then suddenly scatter. The proposed method well detects the event. In Fig. 10h, the
result shows detection of a potentially dangerous region, where a car stops on a
railway for a long time. Note that other cars stopping before railroad are determined
as normal. On the contrary, conventional topic models have difficulty in under-
standing long-term motion of a single object because they are based on local
motions extracted between two frames.

For further analysis of the strength of the velocity observations, we look into the
likelihood of trajectories in the scene of Fig. 10f from the UCSD dataset. In this
example, we examine six trajectories (two abnormal trajectories and four normal
trajectories), and each trajectory is depicted in different color. The first trajectory
(blue) and the second trajectory (green) are extracted from a car going from top to
bottom, which is faster than usual motion of pedestrians. The third and fourth
trajectories (red and sky) are extracted from pedestrians walking from bottom to
top, and the fifth and sixth trajectories (purple and yellow) are from a pedestrian
walking from top to bottom. In case of the proposed method, which utilizes actual
velocities of the trajectories and trains them with Gaussian models, the
log-likelihood of trajectory 1 and 2 is lower than that of other trajectories as shown
in the first row of Fig. 11. On the other hand, other topic model based methods such
as MCTM [10] covert the actual motions between two frames into quantized
directions at a grid position. Each quantized direction is depicted as one of the four
directions (up, down, right, left) at the grid position as shown in left-bottom of
Fig. 11, where the same colored arrows denote that they are extracted from the same
object. This motion representation method, however, cannot distinguish over-speed
from walking speed. Therefore, all trajectories have similar likelihoods as shown in
the lower graph of Fig. 11 because overall paths of the trajectories without velocity
information are likely to occur in the scene.

Fig. 10 Example of anomaly detection for various video dataset a illegal U-turn; b, d driving on
the opposite direction; c disordering the traffic signal; e, f over-speed on a pavement; g unusual
crowds speed; h a car stops on a railway (best viewed in color)
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3.3 Prediction Task

The number of abnormal activities in the actual traffic video datasets is not enough
to give meaningful quantitative results. This is because the model would prefer
over-fitting to only a few events, harming the credibility. Therefore, in order to
quantitatively compare the performance of our method against other algorithms, we
conducted activity prediction tasks presented in [7]. The prediction task can test the
whole video sequence although abnormal activities did not happen in the video. For
this reason, the prediction tasks can be used for a general evaluation of the model’s
plausibility. For the task, future observations are estimated using given past
observations. For example, if the upward motions are observed in the bottom of the
scene and the right-turn pattern is learned at the position, future observations
(maybe rightward motions in the right-side of the scene) can be estimated based on
the trained model. The estimated future observations are represented as a proba-
bility histogram whose summation must be 1, and then the similarities to the actual
observations are measured using Bhattacharyya coefficient.

MIT dataset was used for the comparison and the existing methods [7, 10] using
29 past time instances (seconds) to estimate the observations of the 30th time
instances. Unlike the existing topic models [7, 10], whose observations are repre-
sented by quantized local motions between only two frames, the proposed model
utilizes trajectories as observations. This type of observation allows our method to
do the prediction task with trajectories from the current frame (not observations
obtained from 29 past time instances) and the trained model. Also we validated the

Fig. 11 Comparison of motion likelihood between proposed model (actual velocity of
trajectories) and MCTM (quantized direction) [10]. The first row: actual trajectories in the
UCSD dataset (left) and motion likelihood of each trajectory (right). The second row: quantized
direction converted from each trajectory denoted with different color (left) and their motion
likelihood (right) (best viewed in color)
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prediction accuracy on the different design parameter K, representing the number of
topics. Comparison results are shown in Fig. 12. The figure shows that the proposed
method outperforms Temporal Motif [7] and MCTM [10] even though we conduct
the prediction task with observations only in the current frame. This result is caused
by the fact that Temporal Motif [7] and MCTM [10] utilize quantized local motions,
but our model mines actual velocity of trajectories. This provides the validity of the
use of accurate velocity observations, allowing more plausible scene model and
giving precise predictions.

We also provide the result of comparison with GMM-based trajectory modeling
[1], whose trajectory representation method is similar to ours (i.e., it also uses actual
velocity observations). The reason why the proposed method is more accurate than
[1] is that we have inter-related multi-Gaussian models based on typical patterns
(topics). For example, in the center of intersection, the GMM would estimate a
future position of the trajectory based on only the previous path. Thus, in some
cases, the GMM model may have difficulty in predicting whether an object will go
straight or turn right. On the contrary, the prediction of our method (including other
topic model based methods) is based on not only previous path but also mutual
dependence among typical activities. Therefore, the proposed method can give a
confident prediction whether an object will go straight or turn right.

4 Conclusion

This paper introduced a new method for analyzing traffic patterns in a scene and
detecting anomalies. By investigation on previous studies we identified the essential
requirements for the traffic pattern modeling in actual environments. The proposed
method met those requirements by modeling the scene with a graphical inference
model which uses the point trajectories of the scene considering the overall path,

Fig. 12 Comparison of average accuracy on a prediction. X-axis indicates number of topics
denoted as K in our paper. Exceptionally, in case of the GMM based methods, X-axis indicates the
number of Gaussian components

238 H. Jeong et al.



their spatiotemporal dependency, and their precise velocities. The problem of high
dimensionality of the proposed model was relaxed with the proposed two-stage
greedy inference, allowing the solutions to be obtained efficiently. This approximate
inference strategy is a meaningful attempt to find an alternative outperforming CGS
which is conventionally used to learn topic models for scene understanding.

As shown in the experiments, the effects of the proposed approach are sum-
marized as follows. The scene understanding results showed that the proposed
method could automatically discover not only typical patterns but also spatiotem-
poral relations among them. Also, the state estimation results of the proposed online
inference maintained comparable performance to the batch learning method. In the
experiment on the likelihood evolvement of a trajectory over time, the proposed
method was able to distinguish the speed of moving objects, which is impossible
with the quantized directions. Using the proposed velocity model with regard to
typical patterns, our method also gave outstanding accuracy on the prediction task.
On comparison to the online sampling method, the two-stage online inference
guaranteed more robust results than the sampling-based learning.

Although we could not find misdetection cases caused by the assumptions for
online inference in our experiments, misdetection cases could occur when rigorous
validation with more various video is performed. As for the future work, we will
validate our sub-model optimization strategy and pursue a relaxation of the
assumptions.
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Event Detection Module for Low-Power
Camera

Byung-geun Lee and Moongu Jeon

Abstract In this chapter, we first propose an effective low-power image sensor
system for event detection. The system consisting of a low-resolution auxiliary sensor
and a high-resolution main sensor operates in two different modes, sleep and
wakeup. In the sleep mode, only the auxiliary sensor works for event detection and
the main sensor remains off for power saving. In the wake-up mode, the main sensor
turns on based on the data sensed by the auxiliary sensor and into normal operation.
Second, a new background subtraction algorithm which can be used for event
detection is proposed. The algorithmworksmuch faster than conventional algorithms
and requires less computation which is critical for low-power operation. In addition,
utilization of depth information in background subtraction for 3-D image applications
is also presented. Finally, hardware implementation of a low power low-resolution
CMOS image sensor (CIS) is presented. The CIS fabricated in 0.18 μmCIS process is
designed to be used as an auxiliary sensor in the proposed system. The CIS generates
4-bit image data and consumes only 1.45 mW out of 3 V supply.

Keywords Low-power image sensor � Low-power event detection � Background
subtraction � Depth information � CMOS � FPGA

1 Event Detection Framework

In this section, we introduce our event detection framework in detail. The proposed
low-power intelligent image sensor system comprises two modules. The first is the
low-power event detection module, as depicted in Fig. 1a, and the other is the main
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sensor module, as shown in Fig. 1b. The low-power event detection module is
implemented using (1) a field-programmable gate array (FPGA) control chip, (2) a
low-power image sensor, and (3) an integration module. The research content for
this module is described in detail as follows.

• FPGA control chip: implementation of a developed intelligent image analysis
algorithm and an electric power (operating mode) control signal system on the
FPGA.

• Low-power image sensor: research and development of a low-power image
sensor to receive signals from the electric power control chip as an input and
send low-power images as an output.

• Integration module: implementation of the low-power event detection module
by integrating the FPGA control chip with the low-power image sensor.

The main sensor module contains an abnormal situation recognition module that
is based on color and depth information. The module function comprises (1) image
preprocessing and (2) abnormal situation recognition. The process for this module
is described in detail as follows.

• Image preprocessing: De-noising and background subtraction from the image
(color and depth information) from the main sensor module to make the
abnormal situation recognition performance more accurate.

• Abnormal situation recognition: Research and detection of any image sequence
likely to contain an abnormal situation and classification of the detected image
sequence.

Figure 1 shows the overall procedures used for the proposed low-power image
sensor system. When the system is started, the low-power event detection module
checks whether an event exists or does not exist in the scene. If an event is detected,
then the low-power module turns on the main image sensor module and the
abnormal situation recognition process is executed. Otherwise, the main sensor is
turned off. We developed a new background subtraction method that uses color and
depth information, this method will be described in detail in Sect. 2.1. Also, state-
of-the-art recognition techniques can be applied to the main module because we
plan to use a commercial embedded system in this module. Finally, by combining

Fig. 1 The flowchart of the proposed low-power event detection system, composed of a the
low-power event detection module, and b the main image sensor module
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this low-power event detection module with the main sensor module, we were able
to develop an integrated low-power image sensor system based on color and depth
information.

2 Event Detection Algorithm

2.1 Background Subtraction Using Color and Depth
Information

2.1.1 Introduction

Moving object detection is the essential step in visual surveillance research. Among
the various techniques used for moving object detection, numerous background
subtraction (BGS) methods have conventionally been used for this purpose.
Basic BGS methods, using temporal medians of image frames [4] and statistical
approaches using a Gaussian mixture model (GMM) [5] have previously been
proposed. More recently, self-organizing maps [6, 7] and multiple features-based
methods have been devised [8, 9].

However, these BGS techniques have certain fundamental limitations because
they use human perception (visible light)-based color spaces, such as the RGB (red,
green, blue) space, the HSV (hue, saturation, value) space, and the YUV space, in
which Y and UV represent luminance and chrominance, respectively. Basically,
these methods are weak in color camouflage situations and are sensitive to changes
in illumination.

To handle these problems, other BGS approaches [10–12] have been proposed
using other types of information along with the color information. In particular,
depth information from stereo cameras, Microsoft Kinect sensors or time-of-flight
(ToF) sensors has been used along with the color information. Harvile et al. [10]
proposed the use of foreground segmentation using the YUV color space with
additional depth values. However, the method proposed by Harvile et al. [10] has
difficulty in determining the correlation between the YUV space and the depth with
the covariance matrix. Fundamentally, color and depth are totally different types of
information. There are obvious limitations because the method simply adds the
depth value to the color vector and uses a single feature vector. In the state-of-the
art research, Fernandez-Sanchez et al. [12] and Camplani et al. [11] applied color
and depth in each background model (e.g., P(xc), P(xd)) while not using color and
depth in the same model (e.g., P(xcd). Camplani and Salgado [11] and
Fernandez-Sanchez et al. [12] used background modeling based on a GMM and on
a codebook, respectively, and built final classifiers that combine the color model
and the depth model. In our paper, we present a fast BGS method based on the
GMM using both color and depth. The background/foreground models are esti-
mated in a manner similar to that proposed in [13]. For reasonable combination of
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the color and the depth, the likelihood of the background/foreground model was
determined from the product of the likelihood’s of the color and depth models.
Also, to achieve fast and real-time implementation, these three-channel color
vectors were converted into one-channel gray scale values. Nevertheless, our
algorithm demonstrated better performance than conventional BGS techniques for
our own dataset, including color, depth, and ground truth images. We used a
Microsoft Kinect to obtain color and depth information with OpenNI SDK soft-
ware, but the Kinect generated noisy data. However, while there is no pre- or
post-processing for depth noise reduction, our probabilistic model could deal with
this noise.

2.1.2 Background Subtraction Method

Our approach begins from the idea that the correlation between the color and the
depth is difficult to determine. This leads us to the question of why we should find
the correlation between the color and the depth. Many BGS methods have already
been devised based on color information alone, but these color-based BGS tech-
niques have definite limitations. They basically cannot segment objects from sim-
ilarly-colored backgrounds (i.e., color camouflage) and they are very sensitive to
illumination changes. To solve these problems, other approaches [10–12] using
depth information have been proposed. For example, Harvile et al. [10] simply
extended the dimensions of each pixel vector X = (Y,U,V) to be (Y,U,V,D) by
adding the depth (D) value and built a background model based on a GMM using
one-dimensional added pixel vectors, in which each pixel corresponds to a GMM,
and then, the same number of GMMs as the image resolution (width height) were
formed. A GMM can be initialized using clustering methods such as the expectation
maximization (EM) algorithm and K-means clustering on the observed T frames.
However, the depth information obtained from current devices such as the Kinect,
TOF sensors and stereo cameras still contains a lot of noise and thus these are not
reliable. Also, clustering requires rather too much processing time to be used in
real-time applications, and assumes a situation without any moving object during
the initialization time to obtain a good background model. Thus, to reliably com-
bine color with depth, we designed a probabilistic background model based on a
Gaussian distribution and used a de-noised depth image with the model. Our
algorithm follows two basic steps. The first step is background modeling, and the
second is background subtraction using the model obtained.

Background Modeling

Stauffer and Grimson [13] initialized their background models using the recent
history of t frames, but we initialized our background models using the first
K frames on a pixelwise level. K is the number of Gaussians in a GMM, and Xi
indicates a particular pixel located at (x, y) in the ith frame I in Eq. (1).
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X1; . . .Xkf g ¼ Iðx; y; iÞ : 1� i�Kf g ð1Þ

Our proposed initialization method can skip the clustering process and thus can
save a great deal of time. Each pixel has a corresponding mixture of K Gaussians.
Heuristically, K varies from 3 to 5. However, we did not add update procedures.
The probability function at the given pixel value at time t is then given as follows:

P Xtð Þ ¼
XK
i¼1

xi � g Xt; li; r
2
i

� � ð2Þ

In Eq. (1), Xt is the observed pixel at time t, and ωi is the weight related to the ith
Gaussian distribution with mean μi, t and standard deviation σi

2. η is a Gaussian
probability density function as in

g Xt; l; r
2� � ¼ 1

2pr2ð Þ1=2
e�

ðXt�lÞ2
2r2 ð3Þ

Here, μi is the pixel value in the ith image sequence and σi is the user parameter.
We set the latter parameter in a range from 10 to 20. After all models are initialized,
we separate the background and foreground models as follows:

B ¼ argminb
Xb
k¼1

xk [ T

 !
ð4Þ

where the first B distributions are selected as the background models when the sum
from ω1 to ωb exceeds a threshold T, and the remaining distributions are the
foreground models. We applied grayscale color (0−255) and depth (0−255)
channels to these Gaussian distributions for a single variable. Each channel builds
each probability function based on a GMM. The stochastic meaning of each these
functions is the likelihood. Let the color model and the depth model be P(ct) and P
(dt), respectively, as follows:

P xtð Þ ¼ P ctð Þ � P dtð Þ ð5Þ

We will introduce the method used to subtract the background using this
probabilistic model in the next section.

Background Subtraction

In this section, we explain background/foreground segmentation using the proba-
bilistic background models. First, the color model Bc and the depth model Bd

classify the observed pixels, ct and dt, individually at time t, as shown in Fig. 1.
A pixel finds a matched Gaussian model by using the Euclidian distance:
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abs xt � lið Þ� k ð6Þ

where k is a constant threshold equal to 2.5. A survey of background modeling
using a mixture of Gaussians in Bouwmans et al. [14] introduced [13] concepts
such as user parameter values in their implementation details [13]. They used the
Mahalanobis distance to enable pixel classification. However, we used the
Euclidean distance because each feature grayscale color (0−255) and depth value (0
−255) on each model has one dimension in which there is no correlation. Each pixel
is classified as one of the three cases as in Table 1.

In the case of the color value ct, after all the pixels at time t are classified as
either background or foreground, the pixel values are then computed probabilisti-
cally using the inequality for the matched Gaussian distribution as follows:

h � gðct; li; r2i Þ�maximum pixel value ð7Þ

θ is a constant used to scale the Gaussian probability density function values. When
the maximum pixel value is 255, θ is equal to 10,000. For example, we assume that
the minimum pixel value is 0 and the maximum value is 255. In case 1 and case 2,
if the inequality is satisfied, then the pixels have values of 0 and 255, respectively.
Otherwise, in case 1 and case 2, the pixels are equal to θ · η and 255−θ · η,
respectively. In case 3, the value becomes 255. Eventually, the BGS result Rc

consists of pixel values 0–255, where the probability P(ct) is higher and the value is
closer to 0 (background), as shown in Fig. 2a. However, for the BGS result Rd
based on Bd, the probabilistic pixel values allocation is applied in case 2, as shown
in Fig. 2b. Thus, the final BGS results Rfinal, as shown in Fig. 2c, are computed as
follows:

If Rc x; yð Þ � Rd x; yð Þ[minimum pixel value

thenRfinal x; yð Þ is foreground
esleRfinal x; yð Þ is background

ð8Þ

Depth Image De-noising

Our method can handle the depth image noise. We discovered the phenomenon
where Rc(x,y) correctly classified as background at a location (x,y), where false
foreground detection occurs in Rd as a result of depth noise. Thus, we designed the

Table 1 Pixel classification
according to the matched
model

Case Matched model Classified result

Case 1 Background (a match is found) Background

Case 2 Foreground (a match is found) Foreground

Case 3 No one (no match is found) Foreground
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pixel classification method shown in Eq. (8). Even if false positive regions exist in
Rd because of depth noise, most of these regions belong to the background in Rfinal,
as shown in Fig. 2c.

2.1.3 Dataset for Performance Evaluation

We built a new dataset to evaluate the BGS algorithm using color and depth and to
compare it with conventional color-based BGS techniques. The dataset contains
three categories: (i) normal situation, (ii) color camouflage, and (iii) depth
camouflage, which have one scene, two scenes, and one scene, respectively, as seen
in Table 2. We focused here on solution of the color camouflage problem, and thus
formed one more scene in the color camouflage category. Each scene consists of
color, depth and ground truth image sequences, as shown in Fig. 3. The videos were
taken in the conditions of resolution 640 by 480 (VGA) and 30 frames per second
(fps).

Fig. 2 BGS results based on a color model Bc, b depth model Bd, c the proposed method, d the
ground truth
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Table 2 Three categories of the dataset: (i) Normal situation, (ii) color camouflage, and (iii) depth
camouflage

Category Color camouflage regions Depth camouflage regions

(i) Normal situation X X

(ii) Color camouflage O X

(iii) Depth camouflage X O

Fig. 3 Dataset samples of a color camouflage 1, b color camouflage 2, c normal situation, and
d depth camouflage. For each situation (a), (b), (c) and (d), the color, depth and ground truth
images are on the left, center, and right, respectively
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2.1.4 Experimental Results

We introduce the evaluation results for our algorithm found by comparing them
with other color-based conventional BGS techniques [4–9] while using our dataset.
We used three main measures, precision, recall, and F-measure [16], as follows

Precision(PÞ ¼ true positive alarm ðTP)
TP + false positive alarm ðFP) ð9Þ

Recall Rð Þ ¼ TP
TP + false negative alarm ðFN) ð10Þ

F�measure = harmonicmean of P andR ð11Þ

in them TP, FP, and FN denote the true positive rate, the false positive rate and the
false negative rate, respectively. F-measure indicates the harmonic mean of preci-
sion and recall.

The experimental results show that our approach is the best, as shown in Table 3
in terms of both precision and F-measure. However, from the viewpoint of recall,
our algorithm was ranked second. This is because our method detected fewer
camouflage regions than the first algorithm. In contrast, the second ranked algo-
rithm [7] in recall was ranked from second to fourth in terms of precision and
F-measure because the method segmented the background as the foreground.
Although our algorithm was not ranked firsst in terms of all measures, it showed the
best overall performance.

2.1.5 Conclusions

We developed a BGS method based on a GMM using both color and depth
information to overcome the limitations of color-based BGS, and color camouflage
in particular. We built a probabilistic background model to combine color and depth
in a reasonable manner. Additionally, we produced a new dataset to evaluate BGS
algorithms using color and depth. Using this dataset, we compared our method with
several conventional color-based BGS methods [4–9] in terms of precision, recall
and F-measure [16]. The proposed method didn’t only show better performance
than the other methods but also reduced the depth noise. In our future work, our
probabilistic background models will be extended to use multi-model data pro-
cessing, such as that used in thermal imaging cameras and night vision, in addition
to depth data. Also, our method can be used for preprocessing to detect regions of
interest before high-level applications (e.g., object detection, object tracking and
action recognition) in color-based problems such as dynamic color change and low
illumination in addition to color camouflage.
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Table 3 Quantitative evaluation results table in terms of (a) precision, (b) recall, and
(c) F-measure by comparing the proposed method with the methods of [4–9]

(a) The results based on precision
Algorithms Normal

situation
Color
camouflage 1

Color
camouflage 2

Depth
camouflage

Multi-cues, ACCV2012 [9] 0.754526 0.789207 0.765730 0.768464
Adaptive SOM, TIP2008 [6] 0.678925 0.716150 0.705992 0.748570
Fuzzy adaptive SOM,
NCA2010 [7]

0.668636 0.715354 0.711421 0.764075

Adaptive GMM, PRL2006
[5]

0.801492 0.833232 0.764047 0.754855

Temporal median,
PAMI2003 [4]

0.652183 0.657870 0.652529 0.702824

Multi-layer, CVPR-VS2007
[8]

0.338086 0.423075 0.480103 0.185146

Proposed method 0.836480 0.877724 0.849011 0.829063
(b) The results based on recall
Algorithms Normal

situation
Color
camouflage 1

Color
camouflage 2

Depth
camouflage

Multi-cues, ACCV2012 [9] 0.777955 0.770264 0.702065 0.846751
Adaptive SOM, TIP2008 [6] 0.962481 0.939113 0.919591 0.930680
Fuzzy adaptive SOM,
NCA2010 [7]

0.943736 0.924956 0.897145 0.919343

Adaptive GMM, PRL2006
[5]

0.772382 0.797471 0.603326 0.845297

Temporal median,
PAMI2003 [4]

0.468372 0.408679 0.445172 0.266032

Multi-layer, CVPR-VS2007
[8]

0.092907 0.339863 0.373178 0.101987

Proposed method 0.853854 0.881338 0.842226 0.861781
(c) The results based on F-measure
Algorithms Normal

situation
Color
camouflage 1

Color
camouflage 2

Depth
camouflage

Multi-cues, ACCV2012 [9] 0.752894 0.763279 0.700721 0.805171
Adaptive SOM, TIP2008 [6] 0.795814 0.812047 0.796957 0.829031
Fuzzy adaptive SOM,
NCA2010 [7]

0.781971 0.806416 0.789939 0.833832

Adaptive GMM, PRL2006
[5]

0.772826 0.814323 0.627482 0.796503

Temporal median,
PAMI2003 [4]

0.479137 0.413890 0.477570 0.376613

Multi-layer, CVPR-VS2007
[8]

0.137997 0.363238 0.406819 0.131379

Proposed method 0.844056 0.879383 0.843082 0.844631
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2.2 BGS Performance Evaluation Software

In this section, we present new software that was developed to evaluate the per-
formance of various BGS methods at pixel level and at frame level. To evaluate the
accuracy of a diverse range of conventional BGS techniques, users should first
select a BGS method, its fundamental parameters and a test data set. Then, the
software performs the implemented analysis procedures to output qualitatively and
quantitatively for evaluation of results in terms of precision, recall and F-measure.
The proposed software will be very useful for evaluation of user-provided BGS
methods against existing BGS methods for a variety of test data sets.

2.2.1 Introduction

In visual surveillance research, many BGS techniques have been proposed. Basic
methods using the temporal medians of the n previous frames [4] and statistical
approaches using GMMs [5] have been proposed. More recently, self-organizing
map-based [6, 7] and multiple features-based methods are devised [8, 9]. We
integrated open source versions [15] of these methods in our software, and designed
the user interfaces and functionalities so that the methods can be evaluated under a
diverse range of conditions. The following sections describe the developed evalu-
ation software in more detail.

2.2.2 User Interface and Functionalities

There are four types of main functionality in our software, which are shown in
Fig. 4.

BGS-Type Selection

Users can select a BGS technique from six types of BGS algorithm. We ported the
BGS libraries from open sources [15] into our software (see Fig. 4a).

Main Evaluation Mode Selection

Using this option, users can select whether they will evaluate the chosen BGS
algorithm at pixel level or at frame level, as shown in Fig. 4b.
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• Pixel-level mode

– If this mode is chosen, then the software compares the BGS results with the
ground truth in a pixel-wise manner. Both the BGS results and the ground
truth images consist of binary pixel values of 0 and 255, where the former
and the latter represent the background and the foreground, respectively.

• Frame-level mode

– In this mode, the performance of the BGS-based change detection algorithm
is measured. In this mode, the software considers that changes have occurred
in a scene if the number of foreground pixels is more than 0.14*P, where P
indicates the total number of pixels in a frame.

Input Image Conversion Selection

The software also offers three user-selective options. The first is to control the
temporal resolution, i.e., the frame rate (from the original frame rate to one-tenth of
that rate). The second option is to adjust the spatial resolution, i.e., the frame size
(from the original image size to 100 × 100). Finally, the color resolution

Fig. 4 The user interface: a BGS type selection, b main evaluation mode selection, c input image
conversion selection, d pre- and post-processing selection, e display for quantitative evaluation
results, and f display for qualitative evaluation results
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(color-depth) is also variable, from the original resolution to 1-bit grayscale. The
details are as shown in Fig. 4c.

Pre and Post-Processing Selection

Before running the selected BGS algorithm, users can activate pre- and post-pro-
cessing methods (see Fig. 4d). In pre-processing, Gaussian filtering is applied with
smoothing-sigma 0.7. If the user turns on post-processing, morphology operations
(i.e., erosion and dilation) are performed.

2.2.3 Simulation

We present several simulation results for BGS based on the GMM [5] shown in
Figs. 5, 6 and 7.

• Quantitative evaluation

– Several quantitative results are shown in Fig. 5. We used three main mea-
sures, i.e., precision, recall, and F-measure [16] to evaluate the quantitative
performance.

Fig. 5 Detailed example of
Fig. 4e
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• Qualitative evaluation

– The BGS results are presented qualitatively in the user interface. When BGS
algorithms are evaluated at the pixel level, a display window shows the
subtraction results, as shown in Fig. 6a, where the red areas indicate the
background regions. Figure 6b shows the ground truth-based evaluation
results. Here the white, red, and blue regions indicate true positive, false
negative and false positive alarms, respectively. As shown in Fig. 7a, when
the evaluation is performed at the frame level, the display window shows the
BGS results in a binary format, where the black and white regions represent
the background and foreground, respectively. In Fig. 7b, the ground truth
based frame-level evaluation results are displayed using text. ON means that
change is observed, while OFF means that no changes occurred in the given
scenes.

Fig. 6 Detailed example of Fig. 4f in pixel-level mode: a BGS results, and b evaluation Results

Fig. 7 Detailed example of Fig. 4f in frame-level mode: a BGS results, and b evaluation results
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2.2.4 Conclusions

We developed software to evaluate the performance of various BGS techniques.
This software can be useful for evaluation of diverse BGS algorithms [4–9] using a
variety of data sets. Also, because this software provides quantitative evaluation
results in terms of precision, recall and F-measure as the evaluation measures [16],
it helps users to easily produce supporting data to analyze a new BGS algorithm and
compare the new algorithm with other traditional methods at both pixel level and
frame level. Also, because the users can vary the input image conditions, such as
the frame rate, image size, and color depth, the evaluation can be carried out more
flexibly. In our future work, we will add more algorithms and test data sets to have
the quantitative evaluation results automatically drawn from software in the form of
statistical charts.

3 Hardware Framework

In this section, a low-power complementary metal-oxide-semiconductor (CMOS)
image sensor is designed for event detection. The sensor includes a pixel array,
pixel timing controller and analog signal processors. To enhance the sensors noise
performance, correlated double sampling (CDS) is adopted in the analog readout
circuits. An analog pixel signal is converted to digital values by column shared
successive approximation register (SAR) analog-to-digital converters (ADCs).
A 64 × 64 image pixel array is used for motion detection and image acquisition.
A low-power, hardware-friendly event detection algorithm is implemented using
the FPGA. The proposed design is fabricated in 0.18 μm three-metal one-poly
(3M1P) standard CMOS technology, occupying a silicon area of 1.4 × 1.2 mm2.

3.1 Introduction

The CMOS image sensor (CIS) has been successfully developed to replace charge
coupled device sensors. Because the CIS offers advantages in on-chip functionality,
system power reduction, cost, and size aspects. As the CIS can integrate multiple
function blocks on a single chip and reduce component and packaging costs, it is
preferred for various applications. A desire to reduce cost and optical issues has
driven a steady reduction in pixel size. Pixel sizes are becoming smaller, which
means that high-resolution image arrays can be integrated. However, when the
amounts of data from the pixel array that are processed to produce the final image
increases, the image sensors power consumption also increases; research is there-
fore focused on improving the sensor power performance, particularly for battery
operated devices such as cameras for smart phones and for automobile black boxes
that record events occurring outside the vehicle. However, limitations exist for
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long-term recording using conventional architecture of image sensors. Commercial
automotive black box products can record videos for 3 days when powered by a car
battery. In this article, we propose an image recording system that minimizes the
system power consumption by adding an ultralow power image sensor to perform
motion detection. So the car black box can record over 2 months with the car
battery in extreme case. The proposed system can also be used for battery-operated
surveillance cameras to save energy.

3.2 System Overview

A block diagram of the entire system is shown in Fig. 8. The system includes the
low-power CIS with an off-chip interface. The CIS consists of a 64 × 64 pixel array,
CDS read-out circuits, SAR ADCs, logic and control circuits for timing generation.
The image array used is a standard three-transistor (3T) pixel, also called a pho-
todiode-type active pixel sensor (APS), as the photodetector for light intensity
sensing. Although a 4T pixel structure which is named a photo gate-type APS has
strong points such as an inherent CDS function, low thermal noise and high sen-
sitivity, 4T structure requires additional special processes so a cost of manufac-
turing is higher. Also the fill factor is lower because of the additional transistor. We
decide to use 3T pixel structure because it has enough performance for the event
detection and low cost. The CDS read-out is used to reduce fixed pattern noise from
the pixel. The data from each 64 × 16 pixel array is processed in a single analog
data readout circuit and SAR ADC. Therefore, four readout circuits and four SAR
ADCs are required to process all the pixel information. The event detection algo-
rithm is implemented in an off-chip FPGA, and the pixel integration time can be
configured from the FPGA board. The parameter influences the exposure of the
captured images and thus must be controlled appropriately. The off-chip FPGA also
generates a clock signal to operate the CIS. An event detection result is displayed
on both, a light-emitting diode (LED) indicator and display devices. The detailed
description of the system operation is in next section.

Fig. 8 System block diagram of CIS with an off-chip interface
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3.3 Circuit Implementation

3.3.1 Image Array and Analog Data Readout

The proposed image sensor has been developed using a 0.18-μm CMOS standard
logic process with additional process steps for photodiode fabrication. The pixel
size is 10 × 10 μm2 and the chip area is 1.68 mm2. The power supply voltages used
are 1.8 V for the digital logic gates and 3.3 V for the analog circuits and the pixels.
The maximum frame rate is 240 frames per second (fps) with a main clock fre-
quency of 5 MHz .The image sensor enables an analog readout proportional to the
light intensity to be produced. The block diagram of the proposed image sensor is
shown in Fig. 9. The photodiode-type (PD) APS is composed of one photodiode,
one reset transistor (M1), one source follower (M2), and one switch (M3) for the
output, which are all integrated in a single pixel [1],[2]. The image sensor consists
of pixel circuits, column switching transistors, and a CDS circuit at the output stage
for fixed-pattern noise (FPN) reduction [3]. The pixel circuits output both a signal
level and a reset level voltage, and the CDS circuits receive and subtract these
signals to generate the output signal without the FPN. The pixel operation scheme
for this image sensor can be explained as follows. A row of pixel circuits is selected

Fig. 9 Block diagram of the
CIS
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in a single period of Row_sel (i). Because a pulse selects a column switching
transistor, one pixel in the image area is selected to output its signal to the hori-
zontal signal line in a single pixel period. If a pixel circuit outputs a pixel signal
with both a reset level and a signal level in one pixel period, then a CDS circuit at
the output stage can subtract the signal level from the reset level of the pixel signal.

As a result, the CDS circuit outputs a signal without pixel signal offset variation,
and thus functions as an FPN-reduction circuit. The analog readout is then digitized
by the four SAR ADCs. The light intensity acquisition process begins from a reset
phase when Row_ rst (i) is high, which is indicated as phase 3 in Fig. 10, and the
photodiode voltage has been pulled up to VDD. During phase 3, the reset voltage is
settled as switch S1 is closed and the SAR ADC is ready for conversion of the pixel
reset voltage. 4-bit digital data is then produced during phase 4, and this data is
used for digital CDS, which can eliminate errors produced by the mismatch of the
four SAR ADCs, which originated from process variations. After the reset phase,
the photodiode voltage decreases as photon-generated charges accumulate on the
photodiode capacitance. The integration phase indicated by phase i can be con-
trolled by the integration time control unit. The integration voltage readout process
starts when the switch integrated in the pixel Row_sel (i) and the column switch
Col_sel (i) are turned on in phase 1. After settling of the integration voltage, the
pixel data is converted by the ADCs in phase 2.

Fig. 10 Timing for CIS operation
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3.3.2 ADC Design

The proposed SAR ADC is shown in Fig. 11 and uses a capacitive digital-to-analog
(C-DAC)-based structure that is suitable for low power applications. A resistive
DAC-based SAR ADC can be implemented in a smaller chip area than a
C-DAC-based SAR ADC. However, the resistive DAC-based SAR ADC consumes
more power and makes it difficult to adopt the reference voltage control technique.
The ADC is set to have 4-bit resolution because the purpose of this sensor is simply
to detect events and not to capture high-resolution images. The size of the com-
parator input transistor and the unit capacitance of the DAC are calculated by noise
simulations using the transient noise simulations. Based on the simulation results,
the unit capacitor size was chosen to be 50 fF to enable the desired performance to
be achieved. The SAR ADC is operated in a synchronous manner. When a digital
value is determined, the SAR ADC is designed such that a maximum of only two
switches are selected and thus the noise generated by switching is minimized. The
input-referred capacitances of the two comparator nodes are matched to achieve
accurate comparison results.

3.4 Measurement Results

The prototype chip was implemented in 0.18-μm standard 3M1P CMOS technol-
ogy, occupying a silicon area of 1.4 × 1.2 mm2. A microphotograph of the fabri-
cated chip is shown in Fig. 12. Event detection is performed in the FPGA test
board, which includes the event detection algorithm. The FPGA receives the digital
data from the CIS and calculates whether an event has occurred. All the digital
outputs from the chip are also used to communicate with a personal computer
(PC) using a universal asynchronous receiver/transmitter (UART) serial port, and
the image data can thus be stored by the PC as image files. Figure 13 shows the

Fig. 11 Schematic of the SAR ADC
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Fig. 12 Microphotograph of the fabricated chip

Fig. 13 Images captured by the image sensor

Fig. 14 Measured results
using event detection
algorithm
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images captured by the designed sensor node. The resolution used is 64 × 64, which
is high enough for the event detection application. Images captured under various
light conditions are shown in Fig. 13. Image captured in a single frame by the event
detection algorithm is shown in Fig. 14.

4 Conclusions

A BGS method based on a GMM using both color and depth information to
overcome the limitations of color-based BGS such as color camouflage has been
presented. A probabilistic background model which utilizes both color and depth
information has also been built. To compare our method with conventional color
based BGS methods, we first produced a new dataset to evaluate BGS algorithms.
Then, using the dataset, we evaluated the proposed algorithms and color-based
conventional BGS techniques in terms of precision, recall, and F-measure using the
developed software in a pixel-wise manner. The algorithm achieved better perfor-
mance than the others and reduced the depth noise. The probabilistic background
models can be extended to be used in multi-modal data processing, such as thermal
imaging cameras and night vision. Also, our method can also be used for prepro-
cessing to define detect regions of interest before high-level applications (e.g.,
object detection, object tracking, and action recognition) in color-based problems
such as dynamic color change and low illumination in addition to color camouflage.
Implementation details of CIS as an axillary sensor for event detection have also
been explained. The CIS fabricated in 0.18 μm CIS process has a 64 × 64 pixel
array and occupies 1.2 mm2. Column parallel architecture was adapted to convert
pixel data into 4-bit digital codes. A SAR ADC architecture has been chosen for a
column ADC due to its simplicity and low-power operation and each ADC
sequentially processes 16 columns in the array.

Acknowledgments This work is supported by the Center for Integrated Smart Sensors funded by
the Ministry of Science, ICT and Future Planning as the Global Frontier Project.

Appendix

See Figs. A.1, A.2, A.3 and A.4
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Fig. A.1 Evaluation dataset examples of a color, b depth image, and c ground truth, and
qualitative evaluation results of d [10], e [7], f [8], g [6], h [5], i [9], and j the proposed method in
color camouflage 1, as shown in Fig. 3a

Fig. A.2 Evaluation dataset examples of a color, b depth image, and c ground truth, and
qualitative evaluation results of d [10], e [7], f [8], g [6], h [5], i [9], and j the proposed method in
color camouflage 2, as shown in Fig. 3a
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Fig. A.3 Evaluation dataset examples of a color, b depth image, and c ground truth, and
qualitative evaluation results of d [10], e [7], f [8], g [6], h [5], i [9], and j the proposed method in a
normal situation, as shown in Fig. 3c

Fig. A.4 Evaluation dataset examples of a color, b depth image, and c ground truth, and
qualitative evaluation results of d [10], e [7], f [8], g [6], h [5], i [9], and j the proposed method in
depth camouflage, as shown in Fig. 3d
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Advanced Human Detection Using Fused
Information of Depth and Intensity Images

Gyu-Hong Lee, Dong-Suk Kim and Chong-Min Kyung

Abstract Human detection systems have been applied to many applications such
as intelligent vehicles and surveillance cameras with increasing demands on safety
and security. The scope of previous works has been confined usually in color (or
intensity) images. In this chapter, we present a complete human detection system
using the information on both depth and intensity images. First, we apply a seg-
mentation algorithm to a depth image. Then we merge the segmented regions and
generate Region-Of-Interests (ROIs) which may contain a human, considering
experimentally determined horizontal overlap and aspect ratio, respectively.
Second, we use a newly proposed feature descriptor, Fused Histogram of Oriented
Gradients (FHOG), to extract feature vectors from the ROIs applied in both depth
and intensity images. Finally, we check the presence of humans in the ROIs with
linear SVM. Following the basic principles of Histogram of Oriented Gradients
(HOG), we develop this FHOG descriptor to utilize both gradient magnitudes of
depth and intensity images. With our datasets obtained from Microsoft Kinect
sensor, the FHOG descriptor and overall system achieve a miss rate of 1.44 % at
10−4 FPPW and of 10.10 % at 1 FPPI, respectively. The computing time of pro-
posed system is also significantly reduced. Experimental results show our system is
able to detect humans accurately and fast.
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1 Introduction

Human detection is one of the most interesting research topics in computer vision. It
has traditionally been developed for robotics because the human detection algo-
rithm can extend the perception ability of a system. Further, with growing interest
on safety and security, human detection has received considerable attention for
surveillance cameras and intelligent vehicles. However, human detection in
visible-spectrum images has great difficulty in applying it to those real applications
because of insufficient detection performance and high computational cost.
According to the pedestrian detection benchmark [1], pedestrian detection perfor-
mance in visible spectrum images marked over 0.15 of miss rate at 1 false positive
per image (FPPI) and took more than 6 s to process a single frame.

It is difficult to address the problems using visible-spectrum images alone,
because there are a lot of discouraging factors to build a robust human detector in
visible-spectrum images such as illumination changes, complex background, and
various human clothing. Further, computing time for human detection is not a
negligible issue. Running a heavy algorithm in real time requires additional hard-
ware resources such as GPU (Graphic Processing Unit). This leads to the degra-
dation of power efficiency of overall system. So, the final goal of our research is
designing human detection system satisfying both accuracy and computing times.
Many researchers have been tried to reach the goal and find various methods for
detecting humans. Owing to the development of affordable RGB-D cameras such as
Microsoft Kinect and Mesa SR4000, depth information has become a new clue for
designing advanced human detection system. (Details in Sect. 2)

In this chapter, we propose complete human detection system using both depth
and intensity images. Our contributions are as follows:

• We generate segment-based ROIs on depth images. It reduces the number of
candidate windows to classify whether a given image contains human or not. As
a result, both false positives and computing times can be reduced.

• We develop a new feature called FHOG which is based on Histogram of
Oriented Gradients (HOG). By fusing the depth and the intensity information,
contours of human are intensified and thus detection rate can be increased.

The rest of this chapter is organized as follows. Section 2 describes the related
work. Section 3 presents our ROI generation method and new feature descriptor,
FHOG. Section 4 shows experimental results compared with other approaches.

2 Related Work

A typical human detection system starts detecting regions that are highly likely to
contain humans. Then, features that describe a human are derived from the win-
dows and the descriptors are classified by a pre-trained classifier. The advent of
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affordable RGB-D cameras which provide reliable depth information brought
advantages to the human detection systems. The advantages are apparent for two
modules: feature extraction and ROI generation.

Typically, features have been mainly extracted from intensity (or color) images.
They use texture or gradient information in the image. Haar-like feature is a rep-
resentative feature of texture-based method [2, 3]. It considers the difference of sum
of intensity values in pre-determined rectangles. It works well for face detection but
does not work satisfactorily for detecting humans. For human detection, HOG is the
well-known descriptor [4]. It focuses on the discontinuities in image intensity.
Local gradient orientation histograms are computed and normalized to make the
feature more robust to the illumination changes in the image. The shape of head,
shoulder, and legs is the most fundamental feature of a human in the HOG
descriptor.

After depth information is widely used, new features are introduced which
utilize depth information. In [5], Spinello et al. proposed Histogram of Oriented
Depths (HOD) descriptor which locally encodes the direction of depth changes.
They showed that detection accuracy increases because depth data is not affected by
illumination changes unlike visible-spectrum images. Fusing features of intensity
and depth images were proposed in [6]. They simply concatenate HOG features
with HOD features. As a result, detection performance is improved, but it needs
more computing time because feature dimensions are increased.

In visible-spectrum camera-based human detection system, fixed-size window is
densely scanned through entire intensity (or color) image to extracting ROIs of
including human [4]. To cover various heights of humans, images are scaled up or
down, so the number of ROIs is significantly increased. Hence, it decreases overall
speed of human detection system. To solve this problem, Q. Zhu et al. capture
salient features of humans automatically and discriminate the appropriate regions
[7]. In [5], they distinguish compatible scales likely to fit a height of human from a
predetermined scale map and test the scaled windows.

Unlike intensity information, depth information is advantageous for extracting
ROIs. In [8], they utilize graph-based segmentation algorithm on depth image to
generate ROIs by merging segments based on their location.

We take a similar approach with B. Choi et al.’s methods. In our approach, the
segments are merged perpendicularly as overlap ratio and ROIs are generated based
on the aspect ratio of human body. Then the proposed FHOG descriptor is applied
to these ROIs for classification.

3 Proposed Method

The proposed system consists of three stages as shown in Fig. 1. In the first stage,
image segmentation is applied to depth images and ROIs are generated by com-
bining the segments. Then features are extracted using fused information of
intensity and depth images within ROIs, and finally ROIs are classified using a
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linear Support Vector Machine (SVM). Depth images are obtained from Microsoft
Kinect sensor. This sensor provides both color and depth images. To use both
images in the same image coordinate, image rectification is performed offline.

3.1 ROI Generation Using Depth Images

In depth image, intensity variation within same object is smaller than that of gray
(or color) image because depth is not affected by textures on object. So the same
object tends to have similar depth values. The characteristic becomes a motivation
to utilize image segmentation to depth images for clustering similar depth regions.

(1) Depth image segmentation

We use the mean shift algorithm to segment depth images. The mean shift
algorithm is a mode seeking algorithm that was made popular for image segmen-
tation by Comaniciu et al. [9]. The size and the number of segments are decided
according to the parameter set. The spatial, range and minimum size parameters for
mean shift segmentation are determined experimentally to separate human body
from background in depth images. As a result, labeled segments are acquired. Then
we find the left-uppermost coordinate and the right-lowermost coordinate of each
segment and calculate the width and height. The information is used to merge
segments.

(2) Segment merging

In this step, we merge segments to obtain human candidates. Ideal results of the
segmentation are that human is represented in one segment. However, human is
usually separated into several segments (see Fig. 2). To elicit an intact human
candidate from these segments, the horizontal overlap ratio (ro) is used to combine
pairs of segments. The horizontal overlap ratio is defined as

ro ¼ hlengthða\ bÞ
hlengthða[ bÞ ð1Þ

where hlengthða\ bÞ and hlengthða[bÞ are horizontal intersection and union of
pairs of segments, respectively. If horizontal overlap ratio between two segments is
greater than a threshold, two segments are merged as depicted in Fig. 3. We set the
threshold value as 0.35.

Fig. 1 Flows of the proposed human detection system
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(3) ROI generation

A large set of candidates are generated from previous steps (Fig. 4a). Here, we
investigate the aspect ratio (ra) of candidates to filter out impractical candidates.
The aspect ratio of a segment (a) is defined as

ra ¼ widthðaÞ
heightðaÞ ð2Þ

Fig. 2 Image segmentation results. (a) and (c) are depth images. (b) and (c) are segmented results
of (a) and (c), respectively. A human in (b) is separated as one segment, but (d) is not

Fig. 3 Concepts for merging segments. a Parameters for calculating horizontal overlap ratio,
b before merging, and c after merging
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where, width ðaÞ and height (a) are the width and height of candidates (a),
respectively. All the candidates of satisfying the predetermined aspect ratio are
selected as ROIs. The aspect ratio is determined as the ratio of human body
(between 0.25 and 1 in our system). The ROIs are confined in a bounding box with
their coordinates acquired in step 1. As illustrated in Fig. 4b, ROIs of containing
human are successfully generated with a small number of total ROIs.

3.2 Feature Extraction from Depth and Intensity Image

We propose a new feature extraction method which is an extended version of HOG
for human classification in depth and intensity images. In this section, we introduce
our feature called FHOG after a summary of the HOG descriptor.

(1) Histogram of Oriented Gradients (HOG)

HOG is the most popular feature for human detections. HOG feature expresses a
sample image on the basis of its local shape and appearance using histograms of
gradient orientation. It computes gradient magnitude and orientation in a fixed-size
window called detection window. Then it builds histograms with orientation bins
for each cell which is densely subdivided regions in the detection window. Votes of
the histograms are accumulated into the orientation bins. The histograms are nor-
malized within a group of cells, which is called a block. The normalization process
is necessary to make the feature more robust to the effect of illumination changes.
Finally, extract the HOG descriptor by a feature vector concatenation of all the
normalized histograms.

(2) Fused Histogram of Oriented Gradients (FHOG)

We developed a new feature extraction method for human classification in depth
and intensity images based on HOG descriptor. Our descriptor takes advantage of

Fig. 4 ROI generation results. a Example of candidate generation, b final result of ROI
generations
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the information from both depth and intensity image. The reasons for using both
images are as follows: Generally, intensity image gives detailed information of an
object because it has abundant textures. But it is vulnerable to illumination changes,
and also when the background is complex, the rich textures can increase the false
positives. In contrast, depth image is robust to illumination changes and can alle-
viate the effect of the complex background. However, it is sensitive to low return
signals and may give insufficient data for detecting humans. Thus, the feature of
using both complementary images can be very powerful and promising.

In a depth image, the gradient magnitude of a human contour appears relatively
stronger because textures of object and background are ignored. So we can obtain
amplified gradient magnitudes around human contours by adding the gradient
magnitude of depth image to the intensity image (Fig. 5a). The amplified gradient
magnitude (Ms) at pixel(x, y) can be defined as:

Ms x; yð Þ ¼ Mi x; yð Þ þ x �Mdðx; yÞ ð3Þ

Fig. 5 a Procedure used for extracting fused histogram of oriented gradients, b an overview of our
feature extraction method
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where Miðx; yÞ and Mdðx; yÞ are the gradient magnitude at pixel(x, y) of intensity
and depth image, respectively, and ω is a weighting factor to control the amount of
effect of depth’s gradient magnitude. We use the amplified gradient magnitude (Ms)
to build histograms for each cell. The overview of our feature extraction procedures
is illustrated in Fig. 5b.

In a similar method, S. Wu et al. extract features by combining depth and
intensity images [6]; while their method increases the dimensions of feature vectors,
our method maintains the dimensions of feature vectors although the descriptors are
more discriminative. As a result, we can save memory space and decrease the
execution time. The FHOG parameters which are used in this experiment are
described in Table 1.

3.3 Classification with Model

We use linear SVM for classification. The linear SVM is a binary classifier looking
for the most suitable hyperplane as decision function defined as

h xð Þ ¼
X

wixi þ b ð4Þ

The optimal h(x) is sum of the inner product of the feature vectors xi and the
weight vectors wi. Here, wi and b are obtained from supervised learning with a
training set. The sign of h(x) decides whether the features are in-class or
out-of-class. We use two sets of training examples which are externally and
internally obtained from Kinect sensors.

4 Experimental Results

The proposed human detection system was tested on two different datasets that are
externally and internally obtained from Kinect sensors. In this section, we introduce
these two datasets and show the evaluation results in terms of the performance of
ROI generation, feature extraction, and overall system.

Table 1 FHOG parameters Cell size 12 × 12 pixels

Block size 2 × 2 cells

Overlap of block 1

The number of bins 9 (unsigned)

Vote method for histogram Gradient magnitude

Normalization factor L2-norm

272 G.-H. Lee et al.



4.1 Dataset

(1) Public dataset

The first dataset is RGB-D dataset provided by Spinello et al. [5]. The dataset
has been taken in a university hallway using three vertically mounted Kinect
sensors. It includes three sequences of videos and a total of 1648 people in 1088
frames are labeled. As shown in Fig. 6, people in this dataset are upright and
completely visible or partially occluded. We use this dataset to compare the per-
formance of our ROI generation method with the method proposed by B. Choi et al.
[8]. 1000 positive examples and 4500 negative examples are extracted in depth
images for training, and 200 depth images are used for testing (Fig. 6).

(2) Our dataset

We have used Kinect sensor mounted at a height of 1.7 to 2 m from the ground to
collect our own RGB-D dataset. The dataset was taken in various indoor places (such
as university hallway, laboratory, underground parking-lots, and classroom). Our
dataset includes people who are upright and fully visible or partially occluded. We
use the dataset to evaluate the performance of feature extraction and overall system.
To evaluate feature extraction method, 1025 positive samples and 5000 negative
samples are used for training and 1325 positive samples and 11774 negative samples
are used for testing. To evaluate the overall system performance, 1175 images
containing 1316 people are used. Figure 7 shows some examples of our dataset.

Fig. 6 Examples of public dataset
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4.2 Evaluation of ROI Generation Method

In this section, we evaluate our ROI generation performance by comparing to the B.
Choi et al.’s method which is based on graph-cut algorithm [8]. They use the HOD
descriptor and it is tested on the public dataset which was mentioned in previous
section. To compare the performance, we implemented the HOD algorithm and
used the same dataset. To quantify performance, we plot Equal Error Rate
(EER) curves. The EER is the matching point between recall and precision. In the
EER curves, if the matching point is located on the right-uppermost areas, it can be
considered that the accuracy of the detection system is relatively high. Our method
achieved an EER of 87 %, which performs slightly better than the 84 % of
graph-based ROI (Fig. 8).

Fig. 7 Examples of our dataset

Fig. 8 Equal Error Rate
(EER) curves
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4.3 Evaluation of Feature Extraction

We compare the performance of our FHOG feature with HOG [4], HOD [5] and
HOG-HOD [6]. These features are tested on our dataset and we see the per-window
performance. Detection Error Tradeoff (DET) curves on a log–log scale are used to
evaluate the performance of features, i.e., miss rate (1-recall) versus false positives
per window (FPPW). First, we test our FHOG feature to determine the optimal
weighting factor (ω) by varying the value from 1 to 100. As shown in Fig. 9a, when
the ω is 10, FHOG achieved the lowest miss rate (1.44 %) at 10−4 FPPW. For the
other features, HOG, HOD, and HOG-HOD achieved a miss rate of 10.94, 8.31,
and 6.72 % at 10−4 FPPW, respectively (Fig. 9b). It seems that using depth images
for detecting human is helpful to improve the detection rate. Further, FHOG
reduces the miss rate by 5.28 % as compared to the HOG-HOD. This means that
our fusion method strengthens the features better than simple feature concatenation
approach.

Fig. 9 Detection Error
Tradeoff (DET) curves. a The
effect of ω, b different
descriptors on our dataset
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Further, we evaluate the computing time of each features. Figure 10b shows that
FHOG is computed faster than HOG-HOD, but slower than HOG (or HOD).
Interestingly, our feature can detect better to the partially occluded human (see Fig. 11).
This result indicates that fused feature of depth and intensity works robustly on com-
plex background and in the case that the contours of human are lost in an image.

Fig. 10 Computing time of
each descriptor

Fig. 11 Examples of detecting a partially occluded human
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4.4 Evaluation of Overall System

In this section, our human detection system is compared against a reference system
on our data set. Ideally, comparing our system to the system proposed in [8] is more
precise since they use a similar strategy (graph-based ROI + HOD) to ours.
However, we did not compare our system to [8] since the original implementation
of graph-based ROI was not available to us. So we designed a system using FHOG
descriptor and sliding window technique for extracting ROIs. To avoid the cir-
cumstances that the ROIs do not contain humans, we scanned the image as densely
as possible. We plot DET curves by the miss rate versus false positives per image
(FPPI) to evaluate per-image performance. As shown in Fig. 12a, our system
performs better than the reference system. Further, our system takes 2.65 s to
process a frame, while the reference system takes 6.95 s. The experiments were
conducted on a computer with an Intel core i5 processor (Fig. 12b). Figure 13
shows the examples of human detection.

Fig. 12 a DET—human
detection performance
comparison results,
b computing time of each
system
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5 Conclusions

In this chapter, we introduced an advanced human detection system using depth and
intensity images. First, we applied image segmentation to depth images and gen-
erated feasible ROIs in consideration of the predetermined aspect ratio. This process
significantly reduces the false positives and the computing times. Further, a new
descriptor (FHOG) that fusing depth and intensity images is proposed for feature
extraction. The FHOG achieved a recall of 98.56 % at 10−4 FPPW and it takes
about 6 ms for processing a detection window (48 × 96 pixels). Further, the FHOG
worked well for detecting partially occluded person. The overall system (mean-shift
based ROI + FHOG) achieved a recall of 89.90 % at 1 FPPI and it significantly
reduces the computing time by 61.87 % compared to the reference system (Sliding
window + FHOG).
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Time Synchronization for Multi-hop
Surveillance Camera Systems

Hyuntae Cho

Abstract In recent years, surveillance systems designed for public safety have
become more intelligent by providing context awareness. Traditional surveillance
camera systems require access to energy and networking infrastructure in order to
operate and to transmit the recorded video data. Since such requirements can increase
the costs incurred when installing and maintaining surveillance systems, a wireless
surveillance camera system is hereby introduced. The system can operate with low
power consumption and also provides network connectivity. The battery life of the
system is improved by separating the system into master and slave subsystems. The
master subsystem provides Wi-Fi connectivity and records video while the
slave-subsystem provides low-power event detection with ZigBee connectivity. The
system uses Wi-Fi mesh networks to transmit video data and ZigBee networks to
define the network topology and to synchronize multiple surveillance camera sys-
tems. Time synchronization is a fundamental issue for distributed surveillance camera
systems, so this chapter details a method to synchronize time among multiple sur-
veillance camera systems by using ZigBee radio communications.

Keywords Time synchronization � Clock synchronization � Wireless mesh
networks � Wireless surveillance systems � Zigbee

1 Introduction

The increase in crime in residential areas and in public spaces has resulted in an
increase in demand for surveillance systems, such as those provided by CCTV or by
security services [1, 2]. Recently, the market for surveillance camera systems has
shifted from CCTVs to IP-based cameras because IP-based cameras offer advantages
over CCTVs in terms of resolution, cost, potential applications, etc. [3]. Furthermore,
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big data, cloud, and IoT services have extended the potential applications of IP-based
cameras [4]. However, these camera systems have many technical requirements, so it
can be difficult to use them under specific circumstances. In particular, surveillance
systems that are based on traditional cameras require access to power and network
infrastructure,which results in high installation andmaintenance costs for surveillance
systems.

This chapter describes a wireless surveillance camera system that provides IP
connectivity through use of a wireless networking platform. The proposed system
captures images and video and then transmits the recorded data to a remote point
through a self-organized wireless network. Since wireless networks consume large
quantities of energy to provide network connectivity and to transmit video data, the
proposed system is equipped with a dual radio system to conserve energy [5].
The system comprises two subsystems: a master subsystem and a slave subsystem.
The master subsystem records and processes video and then transmits the recorded
video by using a Wi-Fi mesh network. The slave subsystem turns the master
subsystem off to maintain the entire system in a low-power mode as long as
possible when no events require video to be captured and transmitted. The slave
subsystem also determines the network topology, including synchronizing time, by
using a control channel based on energy-efficient ZigBee communications. Time
synchronization affects the performance of the entire system and the network for
such distributed surveillance camera systems, and so it is a fundamental issue. Time
synchronization can be generally achieved by exchanging time information. The
exchange of time information via wireless networks can result in uncertainty due to
signal delay and jitter, particularly when using a ZigBee network. Therefore, this
chapter analyzes uncertainties in the ZigBee network protocol stack and introduces
basic techniques to eliminate or minimize them.

This chapter is organized as follows. In Sect. 2, we present conventional
approaches used for surveillance camera systems with wireless networking. In
Sect. 3, we describe the proposed system and the corresponding network platform,
and then we present with basic techniques to synchronize time across distributed
wireless surveillance camera systems.

2 Related Work

The recent introduction of low-cost CMOS image sensors has resulted in an
increase in the range of applications of wireless video networks [6]. Devices can use
these sensors to capture pictures or video from the environment, and one such use
case involves wireless sensor networks that provide surveillance and security by
using a network of nodes to identify and track objects according to visual infor-
mation. Wireless video sensor networks can also greatly improve applications in the
area of environmental monitoring [7, 8]. Visual information from the environment
is important for such applications, including for precision farming or habitat
monitoring. Wireless video sensor networks will also enable new forms of
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entertainment where real-time visual information can be provided at a large scale
from a remote location, such as for a digital zoo [9].

Wireless cameras can be used to monitor and track objects in the field, such as in
construction sites, harbors, forests, and campuses, and Firetide Inc. [10] and Strix
Systems [11] are well-known commercial vendors of traditional wireless mesh
products. Current products focus on conventional problems and focus on features
that improve performance in terms of coverage, quick mobility, reliability, security,
and solid networking. In such products, the camera is simply mounted on a wireless
mesh platform.

Several studies [12, 13] have investigated issues relevant to these systems,
including video transmission, multi-channel operation, and improvements in net-
work bandwidth. Raniwala and Chiueh [12] presented a multi-channel WMN
architecture that effectively improves the bandwidth by exploiting nonoverlapped
radio channels available through IEEE 802.11 standards. S. Yang constructed
multi-radio, multi-hop wireless mesh networks by developing a Linux-based
implementation of a WLAN mesh system [13]. The main design goal for our
system is to fully exploit link layer characteristics in order to improve the config-
uration flexibility as well as the network performance. Although some research has
been performed to date for wireless mesh networks for surveillance purposes, such
studies have only focused on traditional mesh networking problems.

3 Wireless Surveillance Camera System for Public Safety

Low-power surveillance systems and network platforms require different approa-
ches from those used in conventional systems. This section describes new
approaches to reduce power consumption to provide wireless communications for
surveillance camera systems. The proposed system consists of two subsystems: a
high-performance master subsystem and a low-power slave subsystem, as shown in
Fig. 1. The master subsystem is based on an ARM Cortex A9 processor [14] and
uses OpenWRT [15] to manage the system. The master subsystem records video
and transmits video data by using an FHD camera, a microphone, a high-speed
application processor, and Wi-Fi network interfaces. The Ubiquiti Networks
SR71 WLAN card [16] and Ath9k are used to provide Wi-Fi communications. For
load balancing, the communications radio is separated into four modules: two
up-links and two down-links. The master subsystem can also be connected to the
Internet via Ethernet, which is more reliable than wireless networks. In addition, the
GPU on the main processor helps the system recognize objects and mitigates the
load on the main processor core.

The slave subsystem is responsible for topology management and low-power
maintenance of the entire system. It includes a VGA camera, a low-power MCU, a
microphone, an RTC, memory, and a power management circuit with a solar cell. It
also includes gas, temperature, humidity, ozone, UV, and smoke sensors to detect
external events and a ZigBee transceiver to provide channel control. The slave
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subsystem uses an ARM Cortex M4 processor (STM32F407 [17]) as its main
processor and FreeRTOS [18] to manage tasks. The detailed architecture is pre-
sented in Fig. 1 with (a) the network protocol stack of the entire video sensor
system and (b) the hardware block diagram of the system.
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The proposed system transmits recorded video to a remote user through
multi-hop communications via the Wi-Fi mesh network. To reduce energy con-
sumption during transmission, we additionally separate the communications
channel over dual radios because traditional Wi-Fi mesh networks consume a high
amount of energy. Figure 2 shows the conceptual overview of the wireless video
sensor network platform. The proposed system uses ZigBee for channel control and
a Wi-Fi mesh channel to transmit video data. The system initially operates in its
low-power mode by turning the master subsystem off since the master subsystem
consumes more energy by several orders of magnitude higher than the slave sub-
system does. The network topology and the route to the sink are constructed
through the control channel. A number of routing and topology management pro-
tocols have been previously developed, including OSLR, AODV, DSR, or

 Topology construction and management via the ZigBee control channel

Routing and video data transmission

Fig. 2 Wireless video transmission for low-power communication
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BATMAN-advanced [5, 19]. The OSLR and BATMAN protocols are frequently
used for Wi-Fi mesh networks.

When the slave subsystem detects an event (whether from the camera, the
microphone, the other sensors, or the ZigBee radio), it wakes up the master sub-
system to record the ambience and to transmit the recorded data. The master
subsystem processes more visual data and extracts much more information than the
slave subsystem because the master subsystem has a higher performance processor
and a GPU, such as ARM’s Mali, with higher data processing capability. The
captured video is compressed by system in a manner according to the detected level
of importance or the bandwidth available. In addition, the system and the network
platform mitigate traffic over the wireless mesh networks by adopting
multi-channel, multi-radio, and multi-path approaches.

The systemwakes up the neighboring nodes before transmitting the recorded data,
and it is important to quickly synchronize time across the nodes to in order to properly
organize their schedule in the network. The proposed system would consume a large
quantity of energy if Wi-Fi were used to maintain the topology and time synchro-
nization. Therefore, a ZigBee radio is used to perform topology maintenance and to
synchronize time, thereby reducing energy consumption. The next section describes
the uncertainties introduces by the ZigBee network protocol stack and the methods
through which these can be reduced to provide precise time synchronization.

4 Time Synchronization Over ZigBee Networks
for Surveillance Camera Systems

Time synchronization is critical for wireless surveillance camera systems as it is for
modern computer networks where transmissions must be managed and scheduled
while handling contention, among other things. Time synchronization is achieved
by sending and receiving time information and frequency over the packet network.
A synchronization protocol is used to exchange the time information, such as the
offset and propagation delay, and to synchronize all clocks. This section describes
the basic principles for ZigBee-based time synchronization, which is used for the
wireless surveillance camera systems.

4.1 Time Synchronization Methods

The global positioning system (GPS) enables precision time-keeping through its
satellite clocks because timing is based on a standard atomic clock that uses the
oscillations of a particular atom, such as Cesium or Rubidium, as a metronome.
Such clocks provide the most stable and accurate time reference. This timing
information is obtained by GPS receivers, which require precision timing to
compute their distance to each satellite in order to derive their position on Earth.
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The Network Time Protocol (NTP) [20] is widely used to synchronize time over
computer networks. NTP timestamps are numbered and are exchanged between
peers, and messages are then exchanged to calculate the time offset and to syn-
chronize clocks by correcting for the offset. The propagation delay is calculated by
using the round trip time.

The IEEE 1588 precision time protocol (PTP) [21] provides a standard method
to synchronize devices in a network with submicrosecond precision. The protocol
synchronizes slave clocks to a master clock, ensuring that events and timestamps
for all nodes use the same timer values. Since a time difference between a master
clock and a slave clock is a combination of the clock offset and the message
transmission delay, the clock skew is corrected in two phases: offset correction and
delay correction. The master node initiates the offset correction by using a sync
message and a follow-up message. When the master node sends a sync message, the
slave uses its local clock to timestamp the arrival of the sync message. The slave
then compares the local timestamp to the actual sync transmission timestamp from
the master clock’s follow-up message. The difference between the two timestamps
represents the offset for the slave, plus the message transmission delay. The second
set of messages is necessary to account for variations in the network delay. The
slave then timestamps the instant when a delay request message is sent, and the
master clock timestamps the arrival of the delay request message. It then sends a
delay response message with the delay request arrival of the timestamp. The dif-
ference between the timestamps is the slave-to-master delay. The slave averages the
two directional delays and then adjusts the clock by the time of the delay to
synchronize the two clocks. Since the master and slave clocks drift independently,
the offset correction and delay correction are periodically repeated to maintain the
clock synchronized (Fig. 3).

In WSNs, sensor nodes synchronize their time according to a reference clock,
such as that of the sink node or coordinated universal time (UTC), which is the time
standard by which the world regulates clocks and time in time synchronization. For
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WSNs, time synchronization requires clocks to be synchronize across a set of
sensor nodes connected to one another over single-hop or multi-hop wireless net-
works. To date, various protocols have been designed to address this problem [22–
31]. Time synchronization may be classified into three types: (a) simple unidirec-
tional broadcast, (b) receiver-receiver synchronization, and (c) bidirectional
pair-wise synchronization, as shown in Fig. 4.

In the unidirectional reference broadcast method, a reference node simply
broadcasts a reference clock signal to other nodes, and these other nodes correct
their times to match the reference clock. This method is the oldest and simplest
method to synchronize time across a network. The flooding time synchronization
protocol (FTSP) [32] is the most well-known approach. FTSP uses a fine-grained
clock, media access control (MAC) layer time stamping to reduce jitter and clock
drift estimation in order to achieve a relatively high level of precision.

Receiver–receiver synchronization uses an external beacon node that periodically
sends beacon messages to the sensor nodes. The sensor nodes that receive the beacon
messages exchange the arrival times of the messages among themselves to compare
and correct their clocks. Reference broadcast synchronization (RBS) [33] and
adaptive clock synchronization (ACS) [34] are receiver–receiver synchronization
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protocols. RBS does not utilize an explicit timestamp, but rather receivers use the
arrival times as points of reference to compare their clocks, as shown in Fig. 4b. This
approach directly removes two of the largest sources of non-determinism involved in
message transmission: the transmission time and the access time in the network
protocol stack. ACS extends RBS and focuses on reducing the number of the
messages that are used to exchange the message arrival times. In order to reduce the
number of messages, the beacon node is used instead of the sensor node to gather
and compare the message arrival times.

Third, bidirectional pairwise synchronization, which can also be referred to as
sender–receiver synchronization, uses the round trip time of the message to correct
the offset and the propagation delay. This approach uses a handshake protocol
between a pair of nodes. That is, sensor nodes achieve clock synchronization with
their parent node unlike receiver–receiver synchronization where sensor nodes
synchronize their clocks with other sensor nodes on the same level. Figure 4c
depicts an example of the basic operation of this method in three sequential phases.
First, node A sends its local time at time T1, and node B receives the message at
time T2 and records its local time. Then, time T2 is calculated as T2 = T1 + d + δ,
where d is the propagation delay between two nodes and δ denotes a clock offset
between them. Next, node B responds to node A with an ACK message containing
times T2 and T3. After receiving the ACK message at time T4, node A determines
time T4 as T4 = T3 + d–δ. Finally, node A can calculate the clock offset and the
propagation delay between two nodes, as below:

d ¼ ½ðT2� T1Þ þ ðT4� T3Þ�
2

d ¼ ½ðT2� T1Þ � ðT3Þ�
2

ð1Þ

The timing-sync protocol for sensor networks (TPSN) [35], lightweight time
synchronization (Tsync) [36], tiny-sync and mini-sync (TS/MS) [37], and level
synchronization by sender, adjuster, and receiver (LESSAR) [38] are well-known
bidirectional pairwise synchronization protocols for WSNs while NTP is a form of
bidirectional pairwise synchronization protocol used over the Internet. TPSN pro-
vides synchronization for an entire network. First, a node is elected as a synchro-
nization master, and a spanning tree with the master at the root is constructed by
flooding the network. In the second phase, the nodes synchronize to their parent in
the tree by means of round-trip synchronization. TSync has a centralized version
and a decentralized version. Both protocols use a dedicated radio channel to syn-
chronize messages in order to avoid inaccuracies due to packet collisions. TS/MS
uses multiple pairwise round-trip measurements and a line-fitting technique to
obtain the offset and drift of two nodes, rather than directly calculating the offset.
LESSAR is able to achieve accuracy within a given limitation while also retaining
low power consumption, affordable storage, and small computation complexity due
to the reduction in packet transmissions.
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4.2 Uncertainty in Time Synchronization

Uncertainty is inserted communication within the network protocol stack from the
application to the physical layer, including the communications link, as shown in
Fig. 5. The time uncertainty in the network protocol stack is dependent on the
determination of an instant of time, and such a determination during time syn-
chronization is referred to as time stamping. The time stamping point is critical
because it affects the accuracy of the time synchronization procedure. The time
stamping point can be determined for any point within the network layers.
However, time stamping at an upper layer, such as the application layer, has a
disadvantage in that the protocol stack can cause delays that may not be deter-
ministic. The delay between the time stamp and the transmission can vary between
a minimal value and a maximal value, depending on the network and protocol
states. Transmission can be delayed if it causes a collision, and time stamping by
the receiver can be performed at the start of an interrupt, after receiving a frame.
The delay in the reception can vary according to the protocol stack and the kernel
activity. The delay and jitter can be reduced by performing time stamps as close to
the wires as possible [39, 40].

The lowest time stamp point with software is at the MAC layer. However, time
stamping at the MAC layer also suffers from delay and jitters. We deal with IEEE
802.15.4 and ZigBee, which is based on carrier sense multiple access (CSMA).
Bidirectional pairwise synchronization has an advantage in that uncertainties at the
network protocol stack and the propagation delay can be mitigated by using
exchange messages. However, this approach requires additional traffic, and the
number of messages increases as the scale of the network increases. That is, sur-
veillance cameras contend among themselves to access the channel, as shown in
Fig. 6. Thus, a busy channel leads to nondeterministic latency in the MAC layer and
finally diminishes the accuracy and precision of the time synchronization. In other
words, the MAC verifies whether the channel is clear before it sends a sync or ACK
message. If the channel is busy as a result of transmitting other messages, MAC
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waits for a random back-off period. After waiting for this random back-off period,
the node resends the message, including the time stamp value. This delay introduces
a serious uncertainty. Thus, the number of messages should be reduced and colli-
sions between the messages must be avoided in order to increase the accuracy and
precision of time synchronization.

Tsync [36] and LESSAR [38] are lightweight time synchronization protocols
(Fig. 7). These protocols use three message types: sync, delay_req, and delay_resp.
A sync message is initially sent by the reference clock node, which is defined as
level 0 and acts as the root node. The reference node inserts time T1 into the sync
message, and each sensor node receives the packet at time T2 and records their local
clock. Then, the sensor node determines the clock offset as δ = T2–T1. When
calculating the delay between the reference node and other nodes, delay calcula-
tions from all of the child nodes can produce a high amount of traffic, which results
in inaccurate synchronization.

Thus, the uncertainties in the propagation speeds are assumed to be the same in
different nodes, and the uncertainty of the propagation delay is less than that of
other uncertainties, such as the send, access, receive time, etc. This assumption
underlies the proposed method, where only one child node responds in order to
calculate the propagation delay from the reference node or the parent node. The
reference node determines which node responds to the sink node in order to
measure the delay by consulting its neighbor list. This selection is based on a
min-ID selection. The information used for the responding node is inserted into the
sync message, and the node receiving the sync message first checks whether it itself
is the target for the message. If so, the node sends a delay_req message that
includes times T2 and T3. Otherwise, it will be discarded. Then, the reference node
receives the delay_req message at time T4 and records the arrival time for the
message. Next, the reference node determines the propagation delay between its
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one-hop children nodes and itself, as shown in Eq. (1), and the dealy is broadcast to
its one-hop nodes. Finally, the child nodes can correct the propagation delay by
receiving the delay_resp message from the reference node. As a result, these
methods can mitigate random delays at the MAC layer.

However, minimizing the messages is not the optimum solution to remove the
random back-off delay. In order to eliminate the delay and the jitter at the MAC
layer, it is important to implement hardware-assisted time stamping. Time stamps
that use a hardware-assisted stamper can be performed at the media-independent
interface between the MAC layer and the Zigbee physical (PHY) layer. When a
Zigbee device receives MAC protocol data from the upper layer, it generates a four
byte preamble with a one-byte start of frame delimiter (SFD) and a one-byte frame
length. Then, the device transfers data to the MAC protocol data unit (MPDU) and
performs a cyclic redundancy check (CRC), as shown in Fig. 8. After the last bit of
the SFD is transferred at this point, the ZigBee transceiver causes the SFD pin to
increase. The time-stamping unit of the sensor node detects the rising edge of the
SFD pin, and then the hardware-assisted time stamping unit can detect and store the
value of the local clock counter in an internal register.

Figure 9 depicts the time stamping points of the SFD from the time processing
unit. Figure 9a illustrates the hardware-assisted time stamping unit and (b) shows
that the hardware-assisted time stamping unit eliminates uncertainty at the MAC
layer and has the same delay. The time stamping unit is independent of the pro-
cessor of the main module of the system, and this time stamping unit can be
implemented by using an independent processor or FPGA. However, it should be
connected to the main processor, which executes the time synchronization protocol.

After hardware-assisted time stamping is performed, the stamped time should be
inserted into the message to be transmitted to the receivers. The time captured from
the SFD signal is inserted into the MAC protocol data, as shown in Fig. 10a. For the
wireless bit-stream, most of the wireless controllers (ZigBee transceiver) provide
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FIFOs to transmit and receive data. The processor communicates with the controller
(e.g., TI CC2420 and CC2520) by using a synchronous peripheral interface (SPI).
Generally, when a message is transmitted, the processor loads up the transmit FIFO
with the entire message and then enables transmission.

The timestamp is inserted into the message, and the rest of the message is placed
in the FIFO. Assuming that this can all be done quickly enough, the entire message
is transmitted properly. If, however, the process is too slow, the FIFO will underrun
and the message transmission will abort. This is a real concern since ZigBee
specifies a fairly speedy effective bit rate of 250 kbps, where 4 µs is required to
transmit 1 bit. In order to insert a time stamp into the payload, the communication
speed between the processor and the FIFO of the ZigBee transceiver should be
faster than 250 kbps. Generally, the speed of ZigBee transmissions is lower than the
actual data rate due to coexistence with Wi-Fi and other radios. Furthermore, since
ZigBee-based systems target low-power operation, such systems use low-power
processors with a low clock speed. Therefore, these low-speed processors do not
achieved the speed required to insert the time stamp into the message.

The message that is used to synchronize time can be separated into two mes-
sages, as shown in Fig. 10b. The reference clock sends a sync message, and after
passing the sync message at T1, the time stamping unit reads and stores the local
time of the reference clock. The time T1 is not inserted into the sync message. After
receiving the sync message, the receiver clock records the value of the local clock
counter at T2. If the receiver node has information for T1 and T2, it can calculate the
offset between the reference and the receiver clock. However, it does not have
information for T1, and the reference clock inserts the time stamp for T1 into the
consequent message. The reference clock may also send the consequent message,
which it always associates with a specific sync message and contains a more precise
estimate for the reference time. The receiver clock uses the information contained in
the consequent message to correct its local clock, so as to synchronize time with the
reference clock. Such an approach can reduce the uncertainty at the MAC layer
during time synchronization.

The propagation delay is also measured, calculated, and corrected according to
the round-trip time based obtained using a hardware-assisted time stamping unit, as
shown in Eq. (1).

Fig. 8 Frame of IEEE 802.15.4 [41]
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4.3 Drift and Correction

A system clock is controlled by a crystal oscillator that operates in a pre-determined
manner. Under ideal circumstances, physical clocks oscillate at a constant fre-
quency, but in the real world, manufacturing variations and exposure to
out-of-tolerance conditions (e.g., mechanical shock) result in permanent frequency
errors in the crystals. In addition, variations in the temperature, age, humidity, etc.,
result in short-term errors in the crystals. An oscillator with a 1 parts-per-million
(PPM) frequency tolerance has a one microsecond drift every second. In general,
cheap oscillators have a frequency tolerance from 20 to 50 PPM, where the max-
imum drift rate is between 20 and 50 microseconds per second. Such a value is
inadequate to provide precise time protocol. Thus, for most cases, a
temperature-compensated crystal oscillator (TCXO) with a 1.5 PPM frequency
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tolerance reduces the drift rate. Even if two clocks are initially synchronized by
correcting the time offset and delay, a difference can accumulate between them as
time progresses [42].

Assume that the local clocks at two nodes, i and k, are ci(t) and ck(t). If
ci(t) = ck(t), the two clocks are synchronized at time t. If the algorithm for time
synchronization could know the relative offset between ci(t) and ck(t) at time t,
ck(t) can be synchronized to ci(t) at each epoch by correcting for the relative offset.
Figure 11 represents the synchronized clock ck

o(t). Although ck(t) is exactly syn-
chronized to ci(t) through a periodic correction, clock ck

o(t) pursues a line derived
from a variation in clock ck(t) because this synchronization did not consider clock
drift. Thus, LESSAR assumes that clock drift quickly changes, and therefore, the
synchronization procedure is frequently conducted. However, this eventually
reduces the synchronization accuracy because the channel remains busy with
excessive synchronization messages [42, 43].

Frequent sync messages can help calculate the drift from the reference clock, as
shown in Fig. 12. Equation (2) presents the drift compensation correction for the
receiver nodes.

Dm ¼ Tmþ1 � Tm

Ds ¼ Tsþ1 � Ts

Ddiff ¼ Ds � Dm

Dm
ð2Þ

where Δm is the clock drift of the reference clock node that applies to clocks
between Tm (the first time stamp) and Tm + 1 (the consequent time stamp). Δs is the
clock drift of the sensor node, and it applies to clocks between the arrival time of
the sync message, Ts, and the arrival time of the consequent sync message, T2. Δdiff

c(t)

ck(0) =ci(0)

ck(t)

ci(t)

ck
o(t)

t

ck
od(t)ak

ai

ck
d(t)

Fig. 11 Clock difference by the local clock drift
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indicates the difference between the two nodes that are to be corrected. The
approach makes it possible to calculate the drift rate by using only one synchro-
nization procedure, which dramatically reduces the number of messages that are
needed for synchronization.

The period of time it takes to correct the clock drift between the two nodes is
defined according to Eq. (3).

Syncinterval ¼
errtolerance � 106

fdrift
ð3Þ

where fdrift is the drift rate of the crystal oscillator including its stability, and
errtolerance is the tolerance of the time error between the two nodes.

4.4 Time Representation Error

Most of the uncertainty introduced in the network protocol stack can be reduced by
using a precise time stamping unit. This means that the accuracy during time
synchronization is determined by the time stamping point and the time stamping
unit. However, this time stamping unit also contains a time representation error
comprised of the delay and jitter in the signal. The time representation error is the
difference between the actual time of an event and the nearest time value that can be
represented. Figure 13 shows an example of the time representation error. Assume
that the time processing unit operates at 1 MHz. The interval between the clocks is
of one microsecond, and the time stamping unit detects an event at either the rising
edge or at the falling edge of the clock. When the system uses the rising edge, the
timer for the stamping unit is also determined at the rising edge. When an event,
such as an SFD occurs at TE, the timer of the time processing unit does not record
the time at which the event occurs, but counts it at the consequent rising edge at
TDE. The time representation error is a maximum of one microsecond at a 1 MHz
clock speed, but it is difficult to remove the time representation error unless a higher

Reference clock Receiver

Syncinterval

Tm

Tm+1

Tm+2

Ts

Ts+1

Ts+2

Pdelay

tm ts

offset  = ts - tm - Pdelay

Fig. 12 Frequent time
synchronization
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clock speed can be used. For example, a 37.5 MHz oscillator reduces the time
representation error to 26.7 ns, which is adequate for submicrosecond accuracy time
synchronization. For applications that require a higher time resolution, a higher
frequency clock can be used to reduce the time representation error.

The second time representation error occurs at the RF transceiver, as shown in
Fig. 14. The RF transceiver requires a certain amount of time to encode and decode
the message into electromagnetic waves and vice versa. The encoding time is the
time required for the radio chip to encode and transform a part of the message to
electromagnetic waves, and this time starts when the radio chip initiates the transfer
at an idealized point. The decoding time is the time that is required for the radio
chip at the receiver side to transform and decode the message from electromagnetic
waves to binary data, and this time ends when the radio chip raises an interrupt
indicating reception at the idealized point.

For example, the TI CC2420 radio supports the IEEE 802.15.4/ZigBee standard
and has no jitter uncertainty at the transmitter side and a ± 0.125 μs uncertainty at
the receiver side because it has an 8 M chip(s). It is impossible to remove the

Local clock

Event
1us @ 1MHz

TE TDE

Fig. 13 Time representation error at the time stamping unit

Transceiver 
clock

SFD signal

TRF TSFD

Ttimestamping

Radio Communication Unit
(8MHz resolution)

Time Stamping Unit by 
FPGA

(100MHz resolution)

errRF

errTSU

Fig. 14 Time representation error at the ZigBee transceiver
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uncertainty at the receiver side. However, a many-to-many message handshake can
achieve a reasonable value. Jitter can occur during encoding and decoding, and it
can be reduced by using filtering methods, such as a mean, a median, and a learned
function of multiple measurements.

The time representation error and the clock skew between the transmitter and the
receiver cannot be eliminated. The Kalman filter is an algorithm that operates
recursively on streams of noisy input data to produce a statistically optimal estimate
of the underlying system state [44]. Although the Kalman filter can produce a better
time estimate, we do not describe how to use a Kalman filter for time synchroni-
zation in detail. Figure 15 illustrates a general example where a Kalman filter is

Fig. 15 The Kalman filter architecture
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used for precise time synchronization. The Kalman filter is also used in NTP for
accurate compensation.

We evaluate the performance of using a Kalman filter during time synchroniza-
tion (Fig. 16). We minimize most of the uncertainties in the ZigBee network protocol
stack and obtain precision time synchronization with sub-microsecond accuracy, as
shown in Fig. 16a, where the standard deviation is of approximately 53 ns. However,

Fig. 16 Performance evaluation: precision time synchronization with and without a Kalman filter
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when using a Kalman filter, we obtain a standard deviation of 2.9 ns in single-hop
communications. Figure 16b exhibits the case where the time representation error is
minimized down to half. The result indicates a value of approximately 29.65 ns
when a Kalman filter is not used, and 1.76 ns when the Kalman filter is used. As a
result, Kalman filtering is an important procedure that is necessary to reduce
uncertainty during time synchronization.

5 Conclusion

This chapter discussed a wireless surveillance camera system and its corresponding
time synchronization. The proposed system is decomposed into a multi-sensor
environment, video and audio surveillance, and wireless sensor networks. We also
described the essential constraints for wireless surveillance cameras in terms of the
time synchronization. In particular, we provided an analysis of the uncertainties
introduced in the ZigBee network protocol stack, and we also described how to
minimize uncertainties during precision time synchronization.
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Distributed Medium Access for Camera
Sensor Networks: Theory and Practice

Hojin Lee, Donggyu Yun and Yung Yi

Abstract Camera sensor networks (CSN) have recently emerged as an important
class of sensor networks, where each node is equipped with a camera and has a
capability of visually detecting events in its neighborhood. The applications of CSN
are highly diverse, including surveillance, environmental monitoring, smart homes,
and telepresence systems. In this article, we focus on one of the key unique
characteristics of CSN: An event detected by a sensor node can trigger a large
amount of sensing data generation, which should be delivered in a distributed
manner, whereas in “traditional” sensor networks the volume of sensing data is
typically small. Networking protocols to convey the captured image from sensors to
decision making modules consist of from distributed and energy-efficient layers
accessed via a high-throughput and low-delay MAC to fancy routing and transport
protocols. In this article, we focus on the MAC layer and survey the theory and the
practical implementation efforts of CSMA-based MAC mechanisms, referred to as
optimal CSMA, that are fully distributed with the goal of guaranteeing throughput
and delay.
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1 Introduction

1.1 Camera Sensor Network

1.1.1 Definition and Applications

CSN are also called visual sensor networks, whose definition is presented in
Wikipedia [36] as follows (Fig. 1):

A visual sensor network is a network of spatially distributed smart camera devices capable
of processing and fusing images of a scene from a variety of viewpoints into some form
more useful than the individual images.

CSN can be applied to many types of useful applications, including:

• Surveillance: Surveillance has been the primary application of camera-based
networks, where the monitoring of large public areas (such as airports, subways,
etc.) is performed by a large number of security cameras. Cameras themselves
usually produce just raw video streams. Thus, obtaining important and mean-
ingful information from collected images necessitates a huge amount of local
processing in the sensors as well as post-processing of them by delivering the
images to the processing servers. This implies that both high-throughput

Fig. 1 Camera sensor network
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wireless networks and smart processing engines are necessary to run CSNs
efficiently.

• Environmental monitoring: CSN can be used to monitor the areas that are
remote and inaccessible, in which case energy-efficient operations, e.g., by duty
cycling sensor nodes as in the conventional wireless sensor networks, to
lengthen the lifetime of the networks. Traffics are generated on either event or
time basis, depending on which the mechanism of operating the network should
be different.

• Telepresence: Telepresence systems are the ones that enable remote users to
virtually visit some location sensed by cameras. Examples include virtual
museum or exhibition rooms equipped with live video cameras that are con-
nected to the Internet and controlled by remote users. This case differs from the
earlier two applications in that traffic patterns are “bi-directional” between
sensors and users, although the traffic volume may be asymmetric (Fig. 2).

Example: CitySense [23]
As a nice example of CSN, we take CitySense project [23] that is an open,

urban-scale wireless networking testbed with the goal of supporting the develop-
ment and evaluation of novel wireless systems that span an entire city. CitySense
consists of about 100 Linux-based embedded PCs outfitted with dual 802.11a/b/g

Fig. 2 Node deployment in CitySense. Source [23]. Copyright©2008 IEEE
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radios and various sensors, mounted on buildings and streetlights across the city of
Cambridge. The goal of CitySense is explicitly not to provide public Internet
access, but rather to serve as a new kind of experimental apparatus for urban-scale
distributed monitoring systems and networking research efforts.

1.1.2 Networking and Data Delivery

The key difference of CSN from other conventional sensor networks is the nature
and the amount of information generated by each sensor. The captured visual data
can be generated either periodically or on an event basis. In particular, sensor nodes
capture a large amount of visual information which may be partially processed with
the visual data from other cameras in the network, and thus changing the volume
and the information from individual sensors. However, despite such in-network
data processing, the volume of sensed data often still remains high, requiring
high-performance wireless sensor networks. Also, it is often the case that the
end-to-end data transmissions should satisfy low latency, thus requiring stable
routing paths.

Figure 3 shows a reference architecture of CSN, proposed by [1], where a variety
of connection types can be designed. Sensors can form a single-tier, flat, or clus-
tered network. A multi-tier architecture is also possible, where a group of sensors

Fig. 3 Reference architecture of camera sensor network. Source [1]. Copyright©2007 Elsevier
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form one tier, connected to another tier through a gateway node. The network
architecture can be selected differently, depending on different target applications,
resource budget, and the scale size of the network.

1.2 Focus of This Chapter

Motivated by the fact that in CSNs a high volume of data is injected to the network
by asynchronous events or periodic visual monitoring, and sensors should work in a
fully distributed manner, we focus on how to deliver such large amount of traffic
using a CSMA-based MAC, which is one of the famous, fully distributed MAC in
the current practice. The popular 802.11 DCF, which can be a nice candidate MAC
for CSNs, is a good example based on CSMA. However, this chapter’s focus is on
providing the fundamental theories of running CSMA parameters, which guarantees
a sense of optimal performance in terms of throughput and delay. These approaches
have been extensively attempted in the name of optimal CSMA, as will be elabo-
rated shortly. We note that in this chapter we do not explicitly consider
energy-efficiency, but it can have high potential to be easily merged with optimal
CSMA due to its fully distributed operation.

1.3 Optimal CSMA

1.3.1 Motivation

CSMA (Carrier-Sense Multiple Access)

Carrier Sense Multiple Access (CSMA) is one of the most popular random access
protocols in practice, which we see in most wireless textbooks. The key feature of
CSMA is that each link with a pair of transmitter and receiver senses the medium
and transmits a packet only if the medium is sensed idle. Due to its simple and
distributed nature, it has been regarded as one of the most practical MAC protocols
in wireless networks, e.g., CSMA is a basic medium access algorithm in IEEE
802.11. Thus, there exists a vast array of research results on CSMA in terms of its
analysis under various settings and its applications to practical systems.

Wireless Scheduling: A Rough History

CSMA is referred to as the class of algorithms to schedule links over time in
wireless networks. There are also numerous other types of algorithms in the area of
wireless link scheduling, where their performances are often measured by various
metrics, e.g. throughput, delay, fairness, etc. In the year 1992 a seminal paper by
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Tassiulas and Ephremides [34] was published, in which so-called throughput
optimality was defined, and a scheduling algorithm achieving throughput opti-
mality, referred to as Max-Weight, was presented. Despite its provable optimality,
Max-Weight requires to solve a computationally intractable problem, called
Maximum Weight Independent Set problem, over each time, which has been a
major obstacle to implement it in practice.

Since the work on Max-Weight, a surge of papers on MAC scheduling, which
essentially follows the philosophy of Max-Weight, have been published. They
partially or fully guarantee the performance, typically in terms of throughput and
utility, where the efforts have been classified into (i) ones which trade-off between
complexity and efficiency, (ii) ones which achieve optimality at the cost of
increasing delay, and (iii) random access style algorithms with suboptimality but
worst-case performance (e.g., lower bound of the performance) guarantee, see e.g.,
[37] for a survey. A single sentence summary of the key ideas of all the
above-mentioned research would be: Balancing the supply–demand differential by
prioritizing links with larger differentials in scheduling algorithms, where differ-
entials are quantified by link queue lengths.

However, many aforementioned algorithms still require heavy message passing
or computations, thus remain just theoretical rather than being made practical.
Therefore, it has been a long-standing open problem to find simple random access
(hopefully, without message passing) achieving full optimality in the research
community. About 15 years after Max-Weight, in 2008 a simple CSMA with no
message passing was shown to be provably optimal in terms of throughput and
utility. Since then more and more research interests in this so-called optimal CSMA
area have been taken in the community, whose survey is the major content of this
paper. For convenience, we survey the research results on optimal CSMA based on
the following criteria reflecting different models, proof techniques, and research
methodologies (e.g., theory or implementation).

1.3.2 Taxonomy

Saturate Versus Unsaturated

In unsaturated cases, there is arrival of traffic with finite workload to each link, and
stability is a key metric, whereas in saturated cases, there is infinite backlog behind
each link, and the utility value of equilibrium rate is often the objective to be
maximized. In terms of potential applications in CSN, unsaturated cases correspond
to when sensing traffic is periodically generated, where periods can be deterministic
or random, whereas event-driven visual sensors are well modeled by saturated
cases, where when event occurs, a large volume of data traffic is generated so as to
saturate the network temporarily.
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Synchronous Versus Asynchronous

Synchronous systems have a notion of frames, each of which typically consists of a
control phase and a data phase, where frames are synchronized, whereas in asyn-
chronous systems, each link independently accesses the medium after sensing other
links’ transmissions.

Continuous Versus Discrete

This criterion can also be called with versus without collisions. For mathematical
tractability, continuous models are often used, where backoff and holding times can
be arbitrary real numbers. In practice, the systems are actually discrete, where the
systems evolve over discretized time slots (e.g., 20 μs in IEEE 802.11b) and col-
lisions will inevitably occur, when two links contend at a same time slot.

Time-Varying Channels Versus Static Channels

Static channels are often assumed mainly for analytical simplicity, where every link
capacity is set fixed. Wireless channels, however, are time varying in practice,
where the results on optimal CSMA may significantly change, depending on the
timescale difference between the speed of channel variations and CSMA parameter
controls.

Time-scale Separation Versus not

As will be discussed later in more detail, the behavior of optimal CSMA is modeled
by a Markov chain, and this timescale separation assumption corresponds to
whether the Markov chain reaches a stationary distribution immediately or not.
Results based on this “fake” assumption have been accepted in the community
without much criticism, especially when analyzing the CSMA Markov chain
becomes mathematically intractable.

Theory Versus Implementation

Most of the work in the literature has produced theoretical results with emphasis on
discovering CSMA’s ability toward optimality. There are also some recent resear-
ches which implement and evaluate optimal CSMA, in conjunction with several
redesign proposals to bridge the gap between theory and practice.

Following these six criteria, we summarize the key features of the research
papers on optimal CSMA in Table 1. The rest of the paper is devoted to explaining
their key concepts and brief summaries.
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Table 1 Taxonomy of optimal CSMA

Work Sat/unsat Cont/disc Sync/async TSS Summary and comments

Theoretical
work

[7] Unsat Cont Async O The first optimal CSMA
with partial proofs

[6] Unsat Cont Async × More complete proof of [7]

[8] Unsat Disc Async × Throughput optimal with
collision

[28] Unsat Cont Async × Queue based approach with
full optimality proof
without TSS

[31] Unsat Disc Async × Connecting Max-weight
and CSMA with maximum
queue size estimation

[30] Unsat Cont Async × Continuous time version of
[31]

[21] Sat Cont Async × Utility optimal CSMA
based on stochastic
approximation with
Markovian noise

[26] Sat Cont Async × Utility optimal CSMA
under multiple channels

[25] Unsat Disc Sync O Queue based approach
under synchronous system

[5] Unsat Disc Sync × Bounding delay based on
parallel update of
transmission
aggressiveness

[10] Unsat Disc Async O Throughput optimal for
imperfect carrier sensing

[12] Unsat Cont Async × Delay of optimal CSMA
algorithms based on
asymptotic variance

[27] Unsat Cont Async O MIMO and SINR-based
interference model

[18,
38]

Unsat Cont Async × CSMA over time-varying
channel

[11,
13]

Sat Disc Sync × Delay optimality of a
throughput optimal CSMA

[4] Sat Cont Aync × Game-theoretic
understanding of optimal
CSMA

[9,
39]

Sat Cont Aync × Approaching optimal
CSMA with belief
propagation in the theory
of stochastic mechanics

[19] Unsat Disc Sync ×
(continued)
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2 CSMA: A Theoretical Perspective

2.1 Model

In wireless networks, each link shares the wireless medium with other neighbor
links that interfere with the link. To model this, a wireless network topology is
represented as an interference graph, where links are vertices and undirected edges
are generated between two interfering links. Let G ¼ ðL;EÞ denote the interfer-
ence graph, where L and E are the set of links and the set of edges between
interfering links, respectively. We define by ~r, ½ri : i 2 L�1 a scheduling vector
for links in G. Since interfering links cannot successfully transmit a packet
simultaneously, ~r is called feasible (i.e., there is no collision) if ~ri þ
~rj � 1; 8ði; jÞ 2 E; where ði; jÞ denotes the edge between link i and j. Thus, the set
of all feasible schedules is defined as

IðGÞ, fr 2 f0; 1gn : ri þ rj � 1; 8ði; jÞ 2 Eg; ð1Þ

where n is the number of links. The feasible rate region (or capacity) C ¼ CðGÞ is
convex hull of IðGÞ; namely,

CðGÞ,
X

r2IðGÞ
arr :

X
r2IðGÞ

ar ¼ 1; ar � 0; 8r 2 IðGÞ
8<
:

9=
;:

Table 1 (continued)

Work Sat/unsat Cont/disc Sync/async TSS Summary and comments

Throughput optimal
CSMA with worst-case
delay guarantee

Impl. [17,
24]

Disc Async Evaluation of optimal
CSMA

[2,
16]

Disc Async Study of interaction
between CSMA and TCP

[15] Disc Async A new MAC and
experimental validation on
802.11 hardware

TSS: timescale separation. This table is a extended version of that in [40]

1Let ½xi : i 2 L� denote the vector whose ith element is xi: For notational convenience, instead of
½xi : i 2 L�, we use ½xi� in the remainder of this paper.
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Under CSMA, prior to trying to transmit a packet, links check whether the
medium is busy or idle, and transmit the packet only when the medium is sensed
idle. To control the aggressiveness of medium access, a notion of backoff timer is
used, which is reset to a random value when it expires. The timer ticks only when
the medium is idle. With the backoff timer, links try to avoid collisions by the
following procedure: each link does not start transmission immediately when the
medium is sensed idle, but keeps silent until its backoff timer expires. After a link
grabs the channel, the link holds the channel for some duration, called holding time.
Intuitively, the probability that link i is scheduled is decided by the average backoff
time and the average holding time. Let the backoff and holding times be denoted by
1=bi and hi, respectively.

For tractability, if we assume that backoff and holding times follow memoryless
(i.e., exponential) distributions, the scheduling process frðtÞg of CSMA protocols
becomes a time reversible Markov process. Then, the stationary distribution of a
schedule r is defined by b ¼ ½bi� and h ¼ ½hi�:

pb; h~r ¼
Q

i2LðbihiÞ~riP
~r02IðGÞ

Q
i2LðbihiÞ~r

0
i
; ð2Þ

which is a function of the product bi � hi; for all i 2 L: Let ri ¼ logðbihiÞ and
r ¼ ½ri�; where r implicitly denotes transmission aggressiveness of links. From (2),
the probability siðrÞ that link i is scheduled for r, which is the link i’s throughput, is
computed as follows:

siðrÞ ¼
X

r2IðGÞ:ri¼1

pb;hr ¼
P

r2IðGÞ:ri¼1 expð
P

i2L ririÞP
r02IðGÞ expð

P
i2L r0iriÞ

:

In the discrete time model, where geometric distributions are used for backoff
and holding time instead of exponential, due to collisions, the stationary distribution
is slightly different from (2). However, the stationary distribution becomes close to
(2) when the holding time h is large enough so that the collision time become
ignorable, since the time fraction of collision period declines as the holding time
increases for the same transmission aggressiveness r:

2.2 Objectives

2.2.1 Unsaturated System

When a CSMA-based algorithm can stabilize any feasible arrival rate k 2 CðGÞ, the
algorithm is called throughput optimal. Intuitively, when siðr�Þ[ ki for all link i,
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the arrival k can be stabilized with transmission aggressiveness r�: A question to
address is:

(Q1) For any k 2 CðGÞ; is there any transmission aggressiveness r such that
siðrÞ� ki for all link i? If there exists such r, what are the CSMA algorithms
that provide the transmission aggressiveness r over long-term without any
message passing and explicit knowledge of the given arrival rate k?

2.2.2 Saturated System

In this case, each link is assumed to be infinitely backlogged. Thus, CSMA algo-
rithms are exploited to control the service rate of each link so as to make the
long-term service rate close to some point of the boundary of CðGÞ; formally, a
solution of the following optimization problem:

max
c

X
i2L

UðciÞ subject to c 2 CðGÞ ð3Þ

where Uð�Þ denotes a utility function with the nice properties such as concavity and
differentiability. The question to address in this case is:

(Q2) Let the solution of (3) be c�. How can we make each link have trans-
mission aggressiveness to r�i so that siðr�Þ ¼ c�i ?

3 Optimal CSMA: Survey

The research papers on optimal CSMA to date directly or indirectly address the
questions (Q1) and (Q2). In this section, we summarize them, starting the first two
subsections by summarizing the results which can be arguably representative in
terms of models and algorithms, followed by more extensions according to the
criteria mentioned in Sect. 1. Note that our presentation in terms of positioning and
sequencing the papers cited here may be biased by the authors to some degree, and
there may also be some missing references.
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3.1 Basic Results: Unsaturated

In [7], it is shown that, for any feasible arrival rate k, there exists a finite trans-
mission aggressiveness r� such that siðr�Þ� ki; 8i 2 N: From this, the authors
conjectured that throughput optimality can be achieved by CSMA. We summarize
the results on throughput-optimal CSMAs by classifying them into rate-based and
queue-based approaches.

3.1.1 Rate-Based Approach

The authors in [7] propose a simple rate-based approach which allows transmission
aggressiveness r to converge to the r� with a timescale separation assumption that
the schedules from CSMA immediately follow a stationary distribution at each time
slot. Later, Jiang et al. [6] show that without the timescale separation assumption,
the proposed rate-based approach converges to r� for any strictly feasible arrival.
The algorithm operates as follows:

Step (1): Each link i investigates packet arrival and schedule duration for a
sufficient long time interval. Let link i adjust its transmission aggressiveness
ri(j) at time T(j) for j 2 Z

þ:2 Let {Ai(t)} and fSiðtÞg be arrival and scheduling
process of link i, respectively. Then, the empirical arrival and service rates at
T(j + 1), denoted by k̂iðjÞ and ŝiðjÞ, respectively, are calculated by

k̂iðjÞ ¼ 1
Tðjþ 1Þ � TðjÞ

ZTðjþ1Þ

TðjÞ

AiðtÞdt

ŝiðjÞ ¼ 1
Tðjþ 1Þ � TðjÞ

ZTðjþ1Þ

TðjÞ

SiðtÞdt:

Step (2): Link i adjusts its transmission aggressiveness ri according to the
empirical packet arrival and service rates as follows:

riðjþ 1Þ ¼ riðjÞ þ bðjÞðk̂iðjÞ � ŝiðjÞÞ; ð4Þ

where bðjÞ is a decreasing step size.

2We use j to index the state updates, and TðjÞ is the time of j-th update.
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3.1.2 Queue-Based Approach

The rate-based approach is summarized as the scheme which directly estimates the
demand and then provides the service rates to balance the demand and supply.
A different approach can be developed by implicitly quantifying the supply–
demand differential using a queue-length information, which we call queue-based
approach. This queue-based CSMA can be regarded as an algorithm which emu-
lates Max-Weight in a sluggish manner. By sluggish, we mean that the Markov
chain induced by CSMA requires a time to reach a stationary distribution (close to
what Max-Weight achieves).

In [25], the authors propose a scheme called Q-CSMA where ri = f(Qi), where Qi

is the queue length of link i and f is a weight function. They prove that Q-CSMA is
(throughput) optimal for any increasing function f under the timescale separation
assumption. Although they use a discrete time model, no collision exists due to
synchronous operations (see Sect. 3.4). Thus, the probability that a schedule is
selected at each time slot follows the stationary distribution (2). In other words, due
to the choice of ri = f(Qi), the probability to schedule ~r is proportional to
expðPi2NðGÞ~rif ðQiÞÞ, which becomes negligible if the weight Wð~rÞ ¼P

i2NðGÞ~rif ðQiÞ is far from its maximum value (Max-Weight always chooses a
schedule maximizing the weight).

The queue-based approach without timescale separation was first proposed and
justified in [28] for special choices of weight function f, e.g., f(x) = log log(x). The
key challenge in the work is to analyze a nontrivial correlation between queueing
and scheduling dynamics (operating in the same timescale) induced by a
queue-based algorithm such as Q-CSMA. The authors in [28] resolve the correla-
tion by (i) sufficiently slowing down the speed of the queueing dynamics using a
slowly increasing weight function f, such as f(x) = log log(x) and (ii) showing that
scheduling dynamics run in a much faster timescale than queueing dynamics in a
certain sense. Due to some technical issues, we note that the CSMA in [28] requires
a slight message passing to broadcast certain global information (e.g. the number of
queues, the maximum queue-size) over the network. In the following work [30], the
authors refine their approach toward removing the message passing. However, the
maximum queue-size information still remains to be broadcasted, which was
conjectured to be not necessary. The conjecture has been recently resolved in [31]
using a certain distributed ‘learning’ mechanism: each node runs it to infer the
maximum queue-size information without explicit message passing (and only using
sensing information).

3.1.3 Comparison

The common goal of rate- and queue-based approaches is to control the CSMA
parameters for the desired high performance, where they use the arrival rate or
queue-size information for the control, respectively. The performance guarantees of
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rate-based algorithms are inherently sensitive to the assumption that the arrival rate
is fixed (or very slowly changing), while queue-based ones are more robust against
this issue, i.e., the queue-based results [28, 30, 31] hold even under time-varying
arrival rates. However, analyzing queue-based algorithms are technically much
harder, and hence the timescale separation assumption or the information of the
maximum queue length has been often used for technical convenience.

3.2 Basic Results: Saturated

If each link has infinite backlog, the object of CSMA algorithms is to maximize
network utility rather than stabilize the queues of links. In [8], utility optimality is
considered for flows under the timescale separation assumption. The algorithm in
[8] considers a joint scheduling (via CSMA) and congestion control problem as
follows:

max
l2X;k2½0;1�n

X
i2L

UiðkiÞ � 1
V

X
r2IðGÞ

lr log lr

0
@

1
As:t:Efrig� ki; 8i 2 L; ð5Þ

where V is some constant and X is set of all probability measure on IðGÞ: Then,
the optimal solution turns out to be close to the utility optimal within log jIðGÞj

V
bound.

The formal proofs for saturated case without timescale separation assumption are
proposed in [6, 21]. In [21], the authors provide an algorithm motivated by sto-
chastic approximation controlled by Markov noise.

Time is divided into frames of fixed durations, j ¼ 1; 2; . . .: At the starting
time instance of each frame, similarly with (4), transmission aggressiveness is
updated as follows: Each link i maintains its own virtual queue qi; updated by

qiðjþ 1Þ ¼ qiðjÞ þ aðjÞ U0�1ðqiðjÞ
V

Þ � ŝiðjÞ
� �

; ð6Þ

where V is some constant and α(j) is a decreasing step size. Then, based on
qiðjÞ; CSMA runs with the backoff and holding times satisfying
biðjþ 1Þhiðjþ 1Þ ¼ expðqiðjþ 1ÞÞ:

Similar to (5), V controls the distance from optimality. The virtual queue length
is a Lagrange multiplier that appears from the dual decomposition of the original
objective (3), quantifying the demand-supply differential.
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In [6], they also show that without timescale separation, the optimal solution of
the problem (5) can be achieved by primal–dual relationship as follows:

riðjþ 1Þ ¼ maxf0; riðjÞ þ aðjÞðkiðjÞ � ŝiðjÞÞg
kiðjþ 1Þ ¼ arg max

y2½0;1�
V � UðyÞ � riðjþ 1Þy: ð7Þ

Note that the algorithms in [6, 21] are essentially the same, from the definition of
ri ¼ logðbi � hiÞ; but there exists minor difference in their proof details.

The key rationale for the saturated case lies in the fact that the transmission
aggressiveness is updated by quantifying the supply–demand differential, and the
new aggressiveness is applied to the system with more modest updates with the
belief that the system approaches to what is desired. The extension to multi-channel
networks is provided in [26] without timescale separation based on a much more
simpler optimality proof. For faster convergence, a steepest coordinate ascent
algorithm is proposed in [3]. Under this algorithm, at each time slot j, the trans-
mission aggressiveness of link i is set to be proportional to the first derivative of
utility function at empirical service rate, such that ri ¼ k � U0ðciðjÞÞ where
ciðjÞ ¼ 1

jþ1

Pj
t¼0 ŝiðtÞ:

3.3 Timescale Separation Assumption

In a Markov chain, it takes some time for a state to be close to a stationary regime.
This time is called mixing time. In optimal CSMA algorithms, the transmission
aggressiveness rðtÞ, which determines the transition rates (in continuous cases) and
probabilities (in discrete cases), is time varying, Thus, the main challenge in per-
formance analysis of the optimal CSMA algorithms lies in the fact that the mixing
time can be much longer than the change of transmission aggressiveness. In some
papers, e.g., [7, 10, 25, 27], timescale separation assumption, i.e., the assumption
that a Markov chain can immediately reach a stationary distribution, has been made,
which removes all the dirt in the proof.

As briefly mentioned in Sects. 3.1 and 3.2, two optimality proof techniques exist
when no timescale separation is assumed. First, the change of transmission
aggressiveness is slowed down by taking a function of the parameter that affects the
aggressiveness. For example, in [28, 30, 31], the queue length is such a parameter,
where to represent the link weight, log logðQiÞ is used to make the regime that the
speed of weight changes (thus, the speed of aggressiveness changes) becomes much
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slower than that of the mixing time. Another approach is to have an explicit device
such as a step-size, which decreases with time. Examples include the work by
[6, 21] for the saturated case, where the step-size α(j) plays such a role.

3.4 Continuous/Discrete and Synchronous/Asynchronous

The assumption of continuous distributions of backoff and holding times, where
most of work based on the continuous setting assumes exponential distributions,
conveniently removes the need to consider collisions, leading to simple analysis.
However, a real system is not continuous. For example, 802.11 operates based on
the notion of a slot whose duration is 20 μs. In this discrete system, collisions
naturally occur when two links contend at a same slot. Then, a link i’s throughput
becomes characterized in more complex way by considering the transmission loss
due to collisions. Note that in the discrete case, geometrically distributed backoff
and holding times are used in the modeling because of its memoryless property.

Two directions are taken for discrete time systems in the papers. First, since the
stationary distribution for the given backoff and holding times is decided by their
product, not their individual values, the holding time can be arbitrarily large as long
as the product is chosen as planned. This implies that the throughput loss by
collisions can be sufficiently reduced by enlarging the holding times, so that their
performance is almost close to what has been obtained in the continuous case.
However, this may not be practical, because long holding times are very bad for
short-term fairness. In [20, 21], the tradeoff between throughput and short-term
fairness is asymptotically analyzed, where it is indeed required that a high cost of
short-term fairness should be paid to increase throughput; where short-term fairness
is defined as the inverse of the average delay between two successive successful
transmissions. In [8, 31], for a desired transmission aggressiveness ri for each link
i, the authors propose throughput optimal algorithms with collisions, where the
holding time of link i is proportional to exp(ri) with a fixed backoff time, so that the
holding time consequently increases if a larger aggressiveness is needed. This
approach shares the idea, mentioned earlier, that the enlarged holding time can
reduce the throughput loss due to collisions. Second, as in [25], a synchronous
system with frames, consisting of separate control and data phases, is designed so
that, through slight message passing in the control phase, collisions is resolved.

When links operate under a common clock, the control actions can be
time-synchronized, and thus, more efficient design is possible. Continuous systems,
where continuity is assumed for theoretical purpose, is by nature asynchronous.
More serious issues on synchronization are raised in discrete systems, for example,
slots can be skewed, where guard time needs to be allocated, and loss of efficiency
due to guard time overhead etc. requires more study. However, so far all discrete
time-based papers assume perfect synchronization.
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3.5 Channel: Time-Varying Versus Fixed

In modeling channels, most of the work assume that channel capacity is fixed.
However, the channels are often time varying in practice. Optimal CSMA over
time-varying channels have been recently investigated [18, 38]. In [18], CSMA
under time-varying channels has been studied only for complete interference
graphs, when the arbitrary backoff rate is allowed. The proof is based on the
timescale separation assumption, which does not often hold in practice and extre-
mely simplifies the analysis (no mixing time-related details are needed). In [38], the
authors consider a channel model that the link capacity is randomly varied between
0 and 1 and the channel varying process is independent across links. Under this
model, two canonical CSMA algorithms are considered: (i) A-CSMA which
transmits a packet only if the capacity is 1 and (ii) U-CSMA which operates
independently of the channel variation. Despite the intuition that A-CSMA may
outperform U-CSMA due to its channel tracking ability, it is proved that U-CSMA
can guarantee more throughput than A-CSMA, depending on the speed of channel
variations, in particular, when the speed of channel variation is fast. However, for
slowly varying channel, A-CSMA achieves throughput optimality, whereas
U-CSMA is suboptimal. Such performance difference comes from the mixing time
of Markov chain, i.e., when the channels change faster than mixing time, A-CSMA
may behave in an undesirable manner.

3.6 Imperfect Sensing and MIMO

More practical situations start to be considered for optimal CSMA. First, in [10], the
authors consider the case when sensing is imperfect. An example of imperfect sensing
is the famous hidden terminal nodes. Other examples include false alarm (resp. miss
detection), where a link can sense the idle (busy) medium as busy (idle) with a
positive probability. False alarm is not highly critical to throughput optimality, but
miss detection could reduce throughput since it generates collisions. In [10], the
protocol, which overcomesmiss detection, is proposed, which is provably throughput
optimal, by letting each link operate with small backoff rate and long holding time.

In most of the aforementioned research, the physical layer is abstracted. For
example, for interference model, the protocol model is used, assuming that packet
transmission of a link depends on neighbor links only. In practice, success of a
transmission is decided by whether its SINR is above a threshold or not, called
SINR model. In [27], SINR model is considered with MIMO transmission. Under
this model, each link can select a data rate and the transmission is successful when
total interference is less than the marginal interference for the transmission rate.
Even for the MIMO and SINR model, the authors propose an algorithm that achieve
throughput optimality with an assumption where each link has to have topological
information.
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4 Optimal CSMA: Multi-channel/Multi-radio

So far, we have discussed optimal CSMA for the basic setup, which is the
single-channel/single-radio. However, to cope with a high volume of sensing traffic
in CSN, the networks with more capacity may be necessary. A natural way of
enlarging capacity is to build a network on top of multiple channels over multiple
radios. This multi-channel/multi-radio system is not only important for widening
the network capacity, but also for significantly reducing the delay. It has been
reported that the naive optimal CSMA in general suffers from poor delay perfor-
mance [22], because to achieve high throughput, once a CSMA schedule is
determined, it needs to be frozen for a long time, i.e., high correlation of schedules.
However, once channels are various, links can be “interleaved” appropriately so as
to reduce correlation. In Sect. 4.1, we provide the model and the optimal algorithm
for multi-channel/multi-radio systems, and then in Sect. 4.2, we will present that
such multi-channel systems can significantly decrease delay, even achieving the
order-wise delay optimality.

4.1 Optimal CSMA for Multi-channel/Multi-radio

4.1.1 Model and Objective

Network Model

The network consists in a set V of V nodes and a set L of L links.3 Denote by
sðlÞ 2 V and by dðlÞ 2 V the transmitter and the receiver corresponding to link
l. We also use the notation v 2 l if either v ¼ sðlÞ or v = d(l). Node v has cv radio
interfaces or radios for short. On each link, data transmissions can be handled on
any channel of a set C of C channels. These channels are assumed to be orthogonal
in the sense that two transmissions on different links and different channels do not
interfere. We model interference by a symmetric boolean matrix A 2 f0; 1gL�L,
where Akl ¼ 1 if link k interferes link l when transmitting on the same channel, and
Akl ¼ 0 otherwise.4 A node uses a radio interface to transmit or receive data on a
given channel. Denote by Rcl the rate at which s(l) can send data to d(l) on
channel c.

3Note that the notations on the network model in this Sect. 4.1 slightly differ from those in other
sections, e.g., in Sects. 2.1 and 4.2. For example, in Sects. 2.1 and 4.2, we useL to refer to the set
of nodes in the interference graph G, and V was not used there.
4The results can be readily extended to the case where the interference matrix may be different on
different channels. In such case, interference would be modelled by A 2 f0; 1gL�L�C where
Aklc ¼ 1 iff link k and l interfere each other on channel c.
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Feasible Schedule Set and Feasible Rate Region

Interference and the limited number of radios at each node impose some constraints
on the set of possible simultaneous and successful transmissions on the various
links and channels. We capture these constraints with the notion of schedule.
A schedule r 2 f0; 1gC�L represents the activities of the various links on the dif-
ferent channels: by definition, rcl ¼ 1 if and only if link l is active on channel
c (i.e., s(l) is transmitting on channel c). A schedule m is feasible if all involved
transmissions are successful, i.e., if for all k; l 2 L and all v 2 V,

ðrck ¼ 1 ¼ rclÞ ) ðAkl ¼ 0Þ ðInterference constraintÞX
l2L:v2l

X
c2C

rcl � cv ðRadio interface constraintÞ

We define by IðGÞ 	 f0; 1gC�L the set of the M feasible schedules, which
corresponds to the set of all feasible schedules in (1) for the single channel/single
radio case.

We are now ready to define the feasible rate region C ¼ CðGÞ as the set of
achievable long-term throughputs s ¼ ðsl; l 2 LÞ on the various links:

CðGÞ ¼ s : 9a 2 ½0; 1�M ;
X
r2L

pr ¼ 1; 8l 2 L; sl �
X
r2L

pr
X
c2C

rclRcl

( )
: ð8Þ

In the above expression, pr may be interpreted as the fraction of time schedule
m is activated.

Objective: Saturated Case

Naturally, we can study the optimal CSMA under multi-channel/multi-radio for
both saturated and unsaturated cases, but in this section we focus only on the
saturated case. As mentioned earlier, when the transmitters are saturated (i.e., they
always have packets to send), the objective is to design a scheduling algorithm
maximizing the network-wide utility, as formally given by

max Rl2LUðclÞ; subject to c 2 C: ð9Þ

4.1.2 Optimal CSMA for Multi-channel/Multi-radio

Multi-channel/Multi-radio CSMA with ðkcl; bcl; c 2 C; l 2 LÞ

The following extension of random back-off CSMA protocols can be considered for
multi-channel/multi-radio systems. The transmitter of link l has C independent
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Poisson clocks, ticking at rates kcl, c 2 C. When a clock c ticks, if the transmitter
does have an available radio or if it is already transmitting or receiving on channel
c, it does not do anything. Otherwise, it senses channel c, and checks whether the
receiver has an available radio. If the channel is idle and if the receiver can receive
data, it starts a transmission on channel c, and keeps the channel for an exponen-
tially distributed period of time of average bcl. Define k�l ¼ ðkcl; c 2 CÞ and
b�l ¼ ðbcl; c 2 CÞ, and denote by CSMA(k�l; b�l) the above access protocol. We also
introduce k ¼ ðk�l; l 2 LÞ and b ¼ ðb�l; l 2 LÞ. When each link l runs CSMA
(k�l; b�l), the network dynamics and performance can be analyzed using the theory of
reversible Markov chains.

Let rk;bðtÞ be the active schedule at time t. Then ðrk;bðtÞ; t� 0Þ is a
continuous-time reversible Markov chain whose stationary distribution pk;b is given
by

8r 2 I; pk;br ¼
Q

l2L;c2C ðkclbclÞrclP
g2I

Q
l2L;c2C ðkclbclÞgcl ;

where by convention
Q

l2;ð�Þ ¼ 1. Moreover, the link throughputs are given by

8l 2 L; sk;bl ¼
X
r2I

pk;b~r

X
c2C

~rclRcl:

Optimal Algorithm

We now describe a generic algorithm that dynamically adapts these parameters so
as to approximately solve the utility-maximization problem (9). Similarly to the
optimal CSMA for the saturated case, time is divided into frames of fixed durations,
j ¼ 1; 2; . . .; and the transmitters of each link update their CSMA parameters (i.e.,
kcl; bcl) at the beginning of each frame. To do so, they maintain a virtual queue,
denoted by ql(j) in frame j, for link l. The algorithm operates as follows:

1. During frame j, the transmitter of link l runs CSMA(k�lðjÞ; b�lðjÞ), and records
the sum ŝlðjÞ of the services received during this frame over all channels;

2. At the end of frame j, it updates its virtual queue according to

qlðjþ 1Þ ¼ qlðjÞ þ aðjÞ U0�1 qlðjÞ
V

� �
� ŝlðjÞ

� �� �
;

and sets the kclðjþ 1Þ’s and bclðjþ 1Þ’s such that their products are equal to
expfRclqlðjþ 1Þg.
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The above algorithm is highly similar to that of the single-channel/single-ratio,
except that each transmitter of a link runs a multi-channel/multi-radio CSMA
algorithm. Virtual queues are maintained per link, but per link/radio CSMA
parameters are updated by those per link virtual queue length.

4.2 Delayed CSMA: Virtual Channel Approach

4.2.1 Description for Delayed CSMA

The main idea of the delayed CSMA is to use multiple schedulers in a round-robin
manner in order to effectively reduce the correlations between the link state process,
in an attempt to alleviate the so-called starvation problem, i.e., once a schedule is
chosen, it keeps being scheduled without any change for a large number of slots.
Note that the algorithm and the setting in this section is for the case of
single-channel/single-radio systems, which, however, shows that virtual
multi-channel idea is able to reduce latency significantly. This gives a conjecture
that physical multi-channel systems would have highly good delay performance.
Different from the model in the time in the optimal CSMA for single- and
multi-channel/radio systems, we take a discrete time-slotted model, indexed by
t ¼ 1; 2; . . .: for convenience. Delayed CSMA [11] is described as follows:

Here, Ni ¼ fj 2 L : ði; jÞ 2 Eg as the set of neighbors of link i. In the delayed
CSMA, at each time slot, a decision schedule is chosen DðtÞ 2 IðGÞ, which
corresponds to a selection of an independent set of G. The active links in the
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decision schedule become the candidate links which may change their state. There
are various ways to choose a decision schedule DðtÞ 2 IðGÞ at each time slot. For
example, each link simply attempts to access the medium with a fixed access
probability ai and then i 2 DðtÞ with probability ai

Q
j2Ni

ð1� ajÞ, or a randomized
scheme with light control message exchanges can be used, as in [25]. In general, we
assume that fDðtÞg is a set of independent identical random variables such that
Prfi 2 DðtÞg[ 0 for all i.

As we mentioned in Sect. 2.1, given the transmission aggressiveness r ¼ ½ri�, the
schedule ~rðtÞ : t 
 kðTÞ5 forms a (discrete-time) irreducible and aperiodic Markov
chain for k ¼ 0; 1; . . .; T � 1, e.g., the kth Markov chain is f~rðuT þ kÞ :
u ¼ 0; 1; 2; . . .g. The common stationary distribution p ¼ ½p~r� is given by

p~r ¼ 1
Z

Y
i2L

r~rii ; ð10Þ

where Z ¼ P
r2X

Q
i2L rrii is a normalizing constant. Hence, one can think that the

algorithm utilizes multiple T independent Markov chains (or schedulers). From
their ergodicity, we know that for all i 2 L,

lim
t!1

1
t

Xt�1

s¼0

riðsÞ ¼ Pr pfri ¼ 1g:

There are several ways to find an appropriate transmission aggressiveness ½ri�
such that the long-term link throughput limt!1 1

t

Pt�1
s¼0 riðsÞ is greater than the

arrival rate ki, as we mentioned in Sect. 3.
Thus, we assume that links initially start with the desired transmission aggres-

siveness here. Formally speaking, for given ɛ-admissible arrival rate k, we assume
that

lim
t!1

1
t

Xt�1

s¼0

riðsÞ ¼ Pr p½ri ¼ 1� � ki þ e; for all i 2 L: ð11Þ

4.2.2 Delay-Optimality of Delayed CSMA

For k 2 CðGÞ and given e[ 0, we say that k is e-admissible if ki þ e\li, for all
i 2 L and some l ¼ ½li� 2 CðGÞ. When the arrival rate is ɛ-admissible, we can
define the notion of delay-optimal scheduling algorithm as follows.

5We say t 
 k (mod T) if t − k is an integer multiple of T. It is called congruent modulo.
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Definition 1 (Delay-Optimality) A scheduling algorithm is called per-link delay-
optimal (or simply delay-optimal),6 if for any ɛ-admissible arrival rate k with
e ¼ xð1Þ,

lim sup
t!1

E QiðtÞ½ � ¼ Oð1Þ; for all i 2 L;

where QiðtÞ is the queue length of link i at time t. In the above definition, the orders
xð1Þ and O(1) are with respect to the network size jLj, i.e., delay-optimality means
that the per-link queue-size remains ‘constant’ as the network size grows.

To describe the analysis for the performance of delayed CSMA, we first intro-
duce the necessary definitions of the total variation distance and the corresponding
mixing time of the CSMA Markov chain. The total variation distance between two
probability distributions g ¼ ½gi� and m ¼ ½mi� on state space X is

k g� m kTV¼ 12
X
i2X

jgi � mij:

Using this distance metric, the mixing time of the kth CSMA Markov chain
frðuT þ kÞ : u ¼ 0; 1; 2; . . .g is defined as follows:

MðkÞðdÞ ¼ inffs : max
lðkÞ

klðuT þ kÞ � pkTV � d; 8u� sg;

where d[ 0 is some constant and lðtÞ denotes the probability distribution of
random variable rðtÞ. The mixing time measures how long it takes for the kth
CSMA Markov chain to converge to the stationary distribution for arbitrary initial
distribution lðkÞ. Since we assume the fixed common transmission aggressiveness
across the Markov chains, the mixing time MðkÞðdÞ is identical for
k ¼ 0; 1; . . .; T � 1. Hence, we use MðdÞ ¼ MðkÞðdÞ.

The following theorem states the delay-optimality of the delay-optimality of the
delayed CSMA algorithm.

Theorem 1 For any e-admissible arrival rate k, there exists T� ¼
O 1

e3 logMðe=2Þ� �
such that for all T > T*, the corresponding delayed CSMA

algorithm is delay-optimal, more formally,

lim
t!1E½QiðtÞ� ¼ O

1
e4

� �
; for all i 2 L:

6This per-link optimality is much stronger than the ‘network-wide’ optimality defined by the
averaged delay over all links.
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The above theorem states that the per-link average queue-size is bounded by a
constant for sufficiently large T, the number of independent CSMA schedulers. The
purpose of choosing large T is to effectively reduce the dependency among con-
secutive link states, which promotes much faster link state changes and hence
alleviates the starvation problem. For the proof of the Theorem 1, refer to [13].

4.2.3 Related Work on Delay Reduction

In addition to the “first-order” metric such as throughput or utility, the delay per-
formance of optimal CSMA has been studied recently. Delay in optimal CSMA has
been largely under-explored, where only a small set of work has been published
with emphasis on the asymptotic results. Shah et al. [32] show that it is unlikely to
expect a simple MAC protocol such as CSMA to have high throughput and low
delay. Thus, to achieve O(1) delay, in [22, 29], modified CSMA algorithms are
proposed. In [29], a modified CSMA requiring coloring operation achieves O(1)
delay for networks with geometry (or polynomial growth). A reshuffling approach,
which periodically reshuffles all on-going schedules under time synchronized
CSMA, leads to both throughput-optimality and O(1) delay for torus (inference)
topologies [22].

Without any modification, the algorithms that split the holding and backoff times
for a desired transmission aggressiveness determine the delay. In this approach,
mixing time has been a popular toolkit for delay analysis [5, 29]. Jiang et al. [5]
proved that a discrete-time parallelized update algorithm achieves O(log n) delay
for a limited set of arrival rates. However, it was shown very recently [33] that
mixing time based approach may not be the right way to capture delay dynamics
even in the asymptotic sense. In [12], asymptotic variance is used for the other
metric that measures delay. In this work, they arrange the CSMA algorithms by
asymptotic variance and show that the algorithm reducing asymptotic variance
enhances delay performance.

5 Practical Protocol and Implementation

5.1 Research on Optimal CSMA Practice

A limited number of work on the implementation of optimal CSMA exists, mainly
with focus on evaluation [17, 24]. They show that multiple adverse factors of
practical occurrence not captured by the assumptions behind the theory can hinder
the operation of optimal CSMA, introducing severe performance degradation in
some cases [24]. In [2, 16], the interaction between TCP and optimal CSMA has
been investigated due to the window based congestion control of TCP. Two
algorithms each based on multiple sessions [2] or virtual queue mechanism [16],
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respectively was proposed. Very recently, a protocol, called O-DCF [15], reflecting
the rationale of optimal CSMA, has been designed and implemented on the legacy
802.11 hardware, and shows significant performance improvement over the 802.11
DCF. Recently, an enhanced version of O-DCF, called A-DCF [14], was proposed
to work better with TCP.

5.2 O-DCF

This subsection describes O-DCF [15], which effectively bridges the gap between
practice and theory in optimal CSMA. In O-DCF, a product of access probability
(determined by contention window (CW) size in 802.11) and transmission length is
set to be proportional to the supply-demand differential for long-term throughput
fairness. A combination of access probability and transmission length is smartly
taken, where an access probability is initially selected as a sigmoid function of
queue length and searched by Binary Exponential Backoff (BEB) in a fully dis-
tributed manner to adapt to the contention levels in the neighborhood. Then,
transmission length is suitably selected for long-term throughput fairness. The
explanation of O-DCF is elaborated in the following.

5.2.1 System Architecture of O-DCF

In O-DCF, each node runs a per-neighbor control for accessing the medium by
maintaining per-neighbor states, as shown in Fig. 4. Those states are used to
determine how aggressively the node should access the medium in transmitting
frames in a (link-level) destination-dependent manner. To this end, O-DCF main-
tains two per-neighbor queues: CQ (Control Queue) and MAQ (MAC Queue). CQ
has the role of buffering the packets from upper layers, where each packet from
upper layers is first classified according to its destination, and then enqueued into its
per-neighbor CQ as frames. MAQ functions as a per-neighbor state that is
importantly used to determine frames’ medium access aggressiveness. A notion of
Rate Controller (RC) resides between a CQ and a MAQ, and controls the dequeuing
rate from the CQ to the MAQ. How the dequeuing rate is decided is critical in
achieving fair medium access in O-DCF (see Sect. 5.2.2). Then, the service from a
MAQ occurs when the HOL (Head-Of-Line) frame of the MAQ is moved into IQ
(Interface Queue). 802.11 DCF parameters such as CWmin and TXOP are appro-
priately set for controlling access aggressiveness. For multiple neighbors, the lon-
gest MAQ is served first; If the chosen transmission length exceeds a single frame
size, multiple frames from the same MAQ are scheduled in succession.
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5.2.2 Key Mechanisms of O-DCF

The MAQ maintains the supply–demand differential, and the dequeuing rate and
the access aggressiveness are controlled by its queue length. For high performance,
O-DCF translates the access aggressiveness into an adaptive combination of access
probability and transmission length.

Rate Control

Let Ql(t) denote the length of MAQ for each link l at time t. O-DCF controls the
dequeuing rate from CQ to MAQ as follows:

Rate fromCQ toMAQ for link l ¼ V
qlðtÞ ; ð12Þ

where ql(t) = bQl(t), and b and V are some constants. Intuitively, O-DCF decreases
the rate for the long MAQ, and increases the rate when the MAQ is well-served. b is
a small value that corresponds to a step size, being responsible for slowing down
the variations of queue length. V is the constant that controls the sensitivity of
dequeuing rate from CQ to MAQ. This form of dequeuing pattern is for achieving

Fig. 4 System architecture of
O-DCF
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proportional fairness, derived from the log utility maximization; the dequeuing rate
is U0�1ðqlðtÞ=VÞ, where Uð�Þ is a utility function, and Uð�Þ ¼ logð�Þ thus,
U0�1ðqlðtÞ=VÞ ¼ V=qlðtÞ. By suitably choosing the form of the utility function,
various fairness criteria can be achieved.

Access Aggressiveness Control

CSMA has two critical parameters for controlling its aggressiveness: (i) access
probability and (ii) transmission length. In many practical MACs such as 802.11,
access probability is typically controlled by contention window (CW) size, and
transmission length corresponds to the number of consecutive transmitted frames
without separate media sensing. Aggressiveness simply means the product of access
probability and transmission length, which are controlled differently for different
neighboring links. Aggressiveness in O-DCF is basically controlled by the fol-
lowing simple rule:

Aggressiveness ðaccess prob:� trans: lengthÞ for link l ¼ expðqlðtÞÞ: ð13Þ

Intuitively, qlðtÞ tracks how well a link has been served over time. When a link
has not been served for a long time, then it has high access aggressiveness by
having either small CW size and/or long transmission length. How to choose the
combination of CW size and transmission length is described next.

Adaptive Combination

The key design aspects of O-DCF lies in which combination of access probability
and transmission length should be chosen in practice to achieve high performance.
When a frame (or a multiple of frames) from a MAQ is moved to IQ by the
intra-scheduling for being ready for actual transmission, O-DCF’s procedure of
setting CSMA parameters is divided into the following three steps:

1. Initial access probability: For a frame f enqueued to IQ, using its per-neighbor
state (i.e., its MAQ’s length), an initial CW is smartly selected, where the basic
principle is that the frames from under-served MAQs in terms of queue length
are assigned smaller CWs. First, in order to effectively prioritize an under-served
link, access probability of the link is calculated from a sigmoid function as
shown in Fig. 5a. Then, the access probability is converted into CW size con-
forming to the restriction of the 802.11 chipset7 as in 5b.

2. BEB for actual CW: Once the initial CW size is chosen as a function of MAQ’s
length, the actual medium access is attempted, allowing BEB (Binary

7CW sizes are one of values in f2iþ1 � 1 : i ¼ 0; . . .; 9g.
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Exponential Backoff) to occur, which corresponds to a distributed search of the
actual access probability.

3. Transmission length selection: Once the actual CW is obtained after BEB, it is
converted to an access probability, and then the transmission length is deter-
mined from (13) by considering the corresponding MAQ’s length and the
maximum transmission length specified in the legacy 802.11 chip.

5.2.3 Performance Evaluation

O-DCF is compared with (i) 802.11 DCF, (ii) two versions of optimal CSMA in
theory, and (iii) DiffQ [35]. For the standard optimal CSMA, two versions are tested
to show the effect of the adaptive CSMA parameter combination in O-DCF: (i) CW
adaptation in which the transmission length μ is fixed with a single packet and the
access probability pl(t) is controlled, such that plðtÞ � l ¼ expðqlðtÞÞ [7], and (ii) μ
adaptation with BEB (shortly, μ adaptation in this paper) in which the selection of
pl(t) is delegated to 802.11 DCF and llðtÞ ¼ expðqlðtÞÞ=plðtÞ. Note that to under-
stand the effect of different methods for the adaptation of CWs, μ adaptation is
evaluated with BEB using 802.11’s CW size, and is compared with O-DCF. DiffQ
is a heuristic harnessing the 802.11e feature, and schedules the interfering links
with different priorities based on queue lengths.

For performance comparisons, 16-node testbed is deployed as shown in Fig. 6a.
Each node is a netbook platform (1.66 GHz CPU and 1 GB RAM) running Linux
kernel 2.6.31 and equipped with a single 802.11a/b/g NIC (Atheros chipset) run-
ning the modified MadWiFi driver for O-DCF’s operations. To avoid external
interference, a 5.805 GHz band in 802.11a is selected. The default link capacity is
fixed with 6 Mb/s. In the 16-node testbed topology, two cases of five and seven
concurrent flows under the default capacity are tested. This random topology
enables to see how the algorithms perform in the mixture of hidden terminals and
heavy contention scenarios including flow-in-the-middle (FIM) scenarios. The
source and destination of each single-hop flow is chosen randomly. For each case,
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ten runs are repeated and error bars in all plots represent standard deviation. The
duration of each run is 60 s.

Figure 6b compares Jain’s fairness achieved by all the algorithms for two sce-
narios. Over all the scenarios, O-DCF outperforms others in terms of fairness (up to
87.1 % over 802.11 and 30.3 % over DiffQ). The fairness gain can be manifested in
the distribution of per-flow throughput, as shown in Fig. 6c, d. O-DCF effectively
prioritizes the flows with more contention degree (e.g., flow 10 ! 9 forms flow-in-
the-middle with flows 7 ! 8 and 15 ! 14) and provides enough transmission
chances to highly interfered flows (i.e., 8 ! 9, 10 ! 13, and 14 ! 13), compared
with 802.11 DCF and DiffQ. The experimental topology is somewhat limited in
size, tending to be full-connected. This leads to a small performance gap between
the standard optimal CSMA and O-DCF, but 802.11 DCF yields severe throughput
disparities of more than 40 times between flows 12 ! 11 and 10 ! 13 in the
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second scenario. Compared with 802.11, DiffQ performs fairly well in the sense
that it prioritizes highly interfered flows. However, its access prioritization is
heuristic, so there is still room for improvement compared with O-DCF.

6 Summary

An extensive array of analysis and protocols are proposed on what are efficient
MAC schemes. Efficiency can be measured by control overhead, throughput,
fairness, etc. This survey demonstrates that a simple, fully distributed MAC with no
or little message passing, such as CSMA, can be designed to achieve optimality,
where various findings have been explored, and people are starting to looking at
their practical values by evaluation and implementation in real hardware. Despite a
long history of MAC research, there still exist under-explored areas toward simple,
yet highly efficient MAC. We hope that this survey paper helps the readers with
summarizing the current research progress on optimal CSMA.
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Wireless Sensor Network
for Video Sensors
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Abstract This chapter reviews various wireless sensor networks that have been
proposed in the literature or have been widely used as experimental or commercial
networks. It then analyzes topologies of sensor networks and compares various
routing protocols for classical wireline networks and wireless sensor networks.
While many types of wireless sensor networks have been developed, most of them
are targeted for low data rate sensor devices with sparse events. In such networks,
only one RF channel is often used, and they still can find routing solutions that
provide data throughput enough for all the sensors and also meet their low power
requirements. As the speed and range of wireless networks improve, wireless
networks have been adopted for video sensors such as surveillance cameras, and
factory or field monitoring cameras. These video sensors usually have much higher
data rate and tighter power requirements than the above low rate sensors, and so
demand more complex routing schemes. The goal of routing for video sensor
network is also different from the low rate sensor network. Its goal is usually the
real-time delivery of high data rate bursty video streams from all active video
sensors. This chapter introduces new routing and channel allocation methods that
use multiple channels and realistic link utilization models. It discusses how to
extend the multi-channel routing methods for video sensor networks to various
future applications including smart grid and vehicle-to-vehicle wireless networks.
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1 Introduction to Wireless Sensor Networks

This section reviews the structure and operation of wireless sensor networks, and
compares them with other wireless networks. It also describes the demand for new
wireless sensor networks.

1.1 Applications of Wireless Sensor Networks

The best method to transfer the data from many sensors over a long distance is
widely considered to be wireless sensor network. A variety of sensors are increas-
ingly used to automatically monitor factories and chemical plants, detect wild fire or
disaster, measure environmental data such as temperature, atmospheric pressure, and
humidity, and also monitor building and home automation, etc. Efficient network
protocols that establish and manage the wireless networks to connect all these
sensors are the key to a successful deployment of a large number of sensors [1–3].

Lately, surveillance cameras are also often connected through wireless networks.
Such wireless networks usually need high data rate and real-time delivery, and so
impose a difficult problem that conventional protocols for wireless sensor networks
cannot address effectively [4–6].

Other new applications of wireless sensor networks include precision agricul-
ture, which can provide fertilizer, pesticides, irrigation only where and when nee-
ded. Wireless sensor networks can also be used for medicine and health care. For
example, monitoring sensors on patients can form a wireless sensor network to help
intensive care of postoperative patients and long-term monitoring of patients with
chronic disease.

1.2 Review of Existing Wireless Networks

To better understand the properties and requirements of wireless sensor networks,
we will review various types of wireless networks here. Wireless networks can be
categorized into infrastructure networks, ad hoc networks, and sensor networks.

Infrastructure networks have one or multiple central stations, often implemented
as base stations or access points, which wirelessly connect with mobile or portable
stations and also connect to a wire-line backbone network. In infrastructure net-
works, all mobile stations can communicate only with central stations which are, in
general, stationary. Examples of infrastructure networks are cellular networks such
as 3GPP WCDMA and LTE networks for mobile phone services. Wi-Fi networks
based on access points are also infrastructure networks commonly found [7, 8].

Ad hoc networks, on the other hand, do not have central stations, instead they allow
the mobile or portable stations to communicate directly with other mobile stations.
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Examples of ad hoc networks are Wi-Fi networks configured as ad hoc mode. Since
there is no central station in ad hoc networks, finding destination node and routing
path to the destination is up to each of the stations. Therefore, broadcasting or flooding
of packets is often used to blindly forward packets to the destination. Ad hoc networks
whose stations move around are called Mobile Ad hoc Network (MANET) [9].

In infrastructure networks and ad hoc networks, the stations are usually
human-carried devices such as PCs, laptops, mobile phones, or portable monitoring
systems with human interfaces like keyboard or LCD screen [7, 8].

Wireless sensor networks are distinguished from these networks, since in
wireless sensor networks the stations are mostly autonomous sensor nodes. These
sensor nodes usually have only sensing circuits and wireless transceiver circuit (and
sometimes actuator) and usually do not have human interfaces. Due to the nature of
applications, the sensor nodes of sensor networks are often battery powered. Since
the sensor nodes are expected to operate for a long time unattended, the battery
lifetime must last a long period of time. While infrastructure and ad hoc networks
may also have battery-powered stations, these nodes can be recharged easily by
humans [7, 8].

Wireless sensor networks often have network topology similar to ad hoc net-
works. Unlink ad hoc networks, however, wireless sensor networks usually have
routing protocols that are optimized for long battery lifetime. Wireless sensor
networks are often required to cover a large area of building, factory, field, or
mountains. Therefore, the research focus for wireless sensor networks has been on
efficient network topology and routing protocols to deliver sensor data to the
destination node through other nodes, in other words, a multi-hop routing [7, 8].

Other requirements for wireless sensor networks are operation of sleep modes,
auto-configuration or self-organization of networks, fault tolerance, data centric
network protocol, energy harvesting or scavenging, and in-network processing (or
pre-processing of data in intermediate nodes). In most of low rate sensor applica-
tions, wireless sensor networks usually do not provide real-time delivery or data
processing [7, 8].

Due to the recent surge in demand for wireless sensor networks, the activity of
new standards for more efficient wireless sensor networks is increasing. A few
examples of such standards are Zigbee, WirelessHART, ISA100A, IETF
6LowPAN, and IEEE 802.11ah. Here Zigbee, WirelessHART, and ISA100A share
the IEEE 802.15.4 standard for their MAC and PHY definition, while they use
different network layer and application layer profiles targeting different application
goals. The IEEE 802.11ah is an extended Wi-Fi standard under development to
modify existing IEEE 802.11ac standard to cover a wider range of sensor networks
with low data rate [10–17]. Comparison of these wireless sensor network standards
is given in Table 1.
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1.3 Demands for New Wireless Sensor Networks

The wireless sensor networks described above may work effectively for sensor
nodes with low data rate and non-real-time data, or networks with relatively small
number of sensor nodes.

There is a growing demand for wireless video sensor networks (WVSN) for the
purpose of building or facility surveillance, factory or agriculture monitoring, and
disaster prevention. These WVSN need new schemes of routing and channel
allocations for optimal data delivery with lower power [4–6].

Even for the case of low data rate sensors, if the number of sensor nodes
becomes extremely large, a common situation of Internet of Things, their routing
problem tends to behave like high data rate networks. In such networks, the clas-
sical routing methods developed for low rate sensors often lead to very poor results.

To provide better solutions for WVSN and large-scale sensor networks such as
Internet of Things (IoT), new research is demanded in the areas of network
topology, better power saving methods, more efficient routing methods, and effi-
cient allocation and scheduling of multi-channels [10].

In the later sections of this chapter will introduce such research effort.

2 Wireless Sensor Network Topology and Routing
Protocols

This section describes various topologies and routing protocols of wireless sensor
networks. It will begin with well-known topologies and routing protocols of clas-
sical Internet, and then extend the subjects to wireless sensor networks.

2.1 Review of Wireless Sensor Network Topology

The topology of a wireless sensor network is to allow which nodes of the network to
connect with which nodes. In other words, topology control determines the con-
nectivity of each node by turning on and off the activities of certain nodes or the links
between the nodes. The topology becomes more important as the size of wireless
sensor network increases, as the decision of connecting which node to which node is
becoming a very complex problem in a network with a large number of nodes.

Topologies can be categorized into the following three groups:

• Flat networks: All nodes in the network are at the same level. Flat networks
need a method to determine which link to enable. Some links are removed by
lowering transmit power or deliberately turning off certain connections between
two nodes [7]. See Fig. 1a for example.
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• Backbone-based hierarchical networks: Some nodes are selected as domi-
nating node set, so they control their neighbor nodes. The nodes in the domi-
nating set are connected to form a backbone path. Every other node connects
only to one of the backbone nodes. The backbone carries all traffic of
non-backbone nodes to the sink node [18]. See Fig. 1b for example.

• Cluster-based hierarchical networks: All nodes are partitioned into a set of
clusters. Each node belongs to only one cluster, except a bridge node which may
belong to multiple clusters to forward traffic between clusters. Each cluster has a
central node called a clusterhead. All nodes in a cluster connect with only their
clusterhead. Then the clusterhead forwards data to other cluster’s clusterhead or
a bridge node. Figure 1c gives an example of a cluster-based hierarchical net-
work [19].

Fig. 1 a An example of flat
wireless network;
b Backbone-based
hierarchical network;
c Cluster-based hierarchical
network
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In flat networks, the network structure is usually mesh or tree network, which
need multiple hops to forward data to the destination or sink node. In
backbone-based or cluster-based networks, the connection from regular nodes to a
backbone or clusterhead node are often configured as multi-hop to allow a shorter
backbone or a larger cluster.

In the following section, therefore, we assume the entire network (flat network
case) or a portion of the network (backbone or cluster-based network case) is a
multi-hop tree or mesh structure. Given such multi-hop tree or mesh structured
networks, we will review routing protocols to find optimal forwarding paths.

2.2 Routing Protocols of Wireless Networks

Routing protocols for classical wireline networks are usually categorized into two
groups: link state protocols and distance vector routing protocols. In the classic link
state protocols, routing is to find a complete path from one node to all possible
destination nodes using Dijkstra’s shortest path algorithm. Each node of a network
constructs complete routing paths from itself to every other node in the network.
Example commercial routing protocols based on this category are OSPF (Open
Shortest Path First) protocol and IS-IS (Intermediate System to Intermediate
System) protocol.

On the other hand, in the distance vector routing category, each node of a
network periodically informs its neighbor nodes of topology changes such as
direction and distance. These routing protocols often use the Bellman Ford shortest
path algorithm. Example Internet protocols based on distance vector routing are
RIPv1 (Routing Information Protocol), RIPv2, IGRP (Interior Gateway Routing
Protocol).

The classical routing protocols, however, have drawbacks to be applied to
wireless sensor networks. They are often too slow to react to the changes in the
wireless sensor networks, and their complex protocols impose heavy burden on the
low computation power sensor nodes.

Wireless network routing protocols that are enhanced to alleviate these problems
can be grouped to proactive routing and on-demand routing protocols. The pro-
active routing protocols always keep the routing table up-to-date, while the
on-demand routing protocols, also called reactive routing protocols, find the routing
paths only when needed.

Well-known proactive routing protocols include: DSDV (Destination sequence
distance vector) routing [20, 21], OLSR (Optimized Link State Routing) [22], FSR
(Fisheye State Routing). DSDV routing improves the classic DV routing by using
distributed Bellman-Ford algorithm, therefore it can be applied to ad hoc wireless
networks. It also considers aging information by adding a sequence number to
routing information, which is propagated through distance vector exchange process.
It allows fast routing table updates by sending immediate advertisement upon
significant changes in the topology. Another enhancement is introducing a damp
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function to avoid unnecessary fluctuation of routing paths when unstable changes
occur in the topology. The damp function delays new route information until all
such information is received, and selects the best route path. OLSR enhances the
classic link state routing protocol by limiting the dominating set of each node to its
two-hop neighborhood, and thus reducing its flooding overhead.

Popular reactive (on-demand) routing protocols are DSR (Dynamic source
routing) [23], AODV (Ad hoc on-demand distance vector) routing [24], TORA
(Temporally ordered routing algorithm) [25]. DSR enhances the classic Link State
Routing by discovering the complete or partial path from a source node to the
destination instead of updating routing table in every node. It also uses Route
Request/Route Reply packets to find a path. An intermediate node can send Route
Reply if it already has a path. In case an error occurs, the route path can be updated
locally instead of redoing the entire route process. See Fig. 2a for an example of
DSR.

AODV improves the classic DV routing by controlling Route Request flooding
within a region. Each node sends a Route Request only once. Unlike DSR, in
AODV each node remembers where a packet came, and records this information in
its route table instead of source routing information. It introduces a sequence
number to avoid stale cache information and also to break a loop in the route paths.
In AODV, when a Route Reply from the destination node is forwarded back to the
source node, a forward path is formed. It also allows an intermediate node that
knows a route to destination also to send Route Reply to the source, and thus reduce
Route Request flood. An example of AODV routing processing is given in Fig. 2b.

3 Low Power Multi-hop Routing Algorithm for Video
Sensor Networks

This section highlights a new demand for low power wireless sensor networks for
the real-time delivery of high rate video streams. The earlier conventional wireless
sensor network protocols are not suitable for such networks. This section later
introduces a new approach to solving a more complex and demanding problem of
finding an optimal routing and channel allocation for WVSN.

We first describe properties of a WVSN, where each node generates
event-driven video sensor data, and forwards the video data toward a designated
sink node. Battery powered video camera sensors are often connected wirelessly to
cover a large area. Such WVSN are considered as major applications of IoT. We
analyze the power consumption model for a WVSN. We then describe an algorithm
to route the sensor nodes and allocate channels in a way that minimizes the overall
power consumption while satisfying the required data transmission. We then
describe a WVSN simulator that proves the performance advantage of the algorithm
introduced in this section. Simulation results are provided with wireless sensor
networks of various sizes.
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3.1 Properties of Wireless Video Sensor Networks

Today, wireless cameras are increasingly adopted in CCTV and home networks,
and also for IoT in the near future. Most past wireless cameras use wireless net-
works such as Wi-Fi based on IEEE 802.11 standards with an access point system
operating in infrastructure mode [6]. However, such wireless networks have many
restrictions in their data rate, wireless range, and traffic congestion level. When used
for WVSNs, their power consumption also becomes a serious issue, because their
camera nodes would be battery powered.

A promising solution to these problems is to use a wireless mesh network with
each camera acting as each node. Multi-channel routing schemes are often used to
reduce the RF interference and traffic congestion, and to enhance the video data rate
while minimizing the power consumption [4–6].

Fig. 2 a An example of DSR protocol; b AODV routing
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In the past, much research has been done to minimize the total energy con-
sumption in wireless sensor networks, to reduce the total delivery time in wireless
mesh networks, and to minimize the size of camera data transferred through
WVSNs [4–6].

Prior techniques have also attempted to reduce energy consumption by selecting
or combining overlapped field of views (FoVs) if such overlapped images are
frequently observed [26].

In this section, we describe a new method of multi-channel allocation and
routing selection in a wireless mesh network where each node has an event-driven
surveillance camera—a camera that operates (active mode) only when it detects a
motion, sound, or perturbation, and otherwise stays dormant (sleep mode). We
present its simulation results proving that it can minimize the power while allowing
maximal data rate using only the active video nodes whenever possible.

Often cameras are battery powered, and so it is required to reduce the energy
consumption while delivering their real-time video streams as fast as possible [27–
31]. Multi-channel radios can either reduce the interference among neighbor nodes
or reduce the data delivery time by concurrently transferring the video streams. It
has been proven, however, that the multi-channel allocation and routing problem is
NP-hard [6]. In the mesh network of our concern, each node generates intermittent
video data (driven by events). Only the nodes currently transmitting data are active
while all others are in sleep mode. New constraints are added to minimize the
energy consumption. Event-driven video data is delivered through active-mode
nodes avoiding sleep-mode nodes whenever possible. This makes it even harder to
solve the multi-channel routing problem.

In general wireless networks, the dominant source of the power consumption is
the transmit power of each wireless link. Most prior work, however, proposed
routing and channel allocation methods assuming each node uses the same unit Tx
(transmit) power and the same unit data rate regardless of the channel condition and
the distance of the wireless link [4–6, 32, 33]. While this assumption allows simpler
optimization formula, it can lead to results drastically different from realistic power
consumption. In reality, the path loss increases exponentially along with the dis-
tance, and so requiring Tx power to increase in order to keep the equal data rate. In
general, since Tx power cannot be increased infinitely, wireless modems also lower
their MCS (modulation and code scheme)—in other words lowering the data rate—
as the transmit distance increases. In this section, we introduce a routing technique
taking into account realistic link data rates and Tx power as a function of the distance
between nodes. We introduce a concept of link utilization ratio, which is a succinct
but realistic method of calculating Tx power during active time duration of each link.

3.2 Utilization-Based Routing and Channel Allocation

In general, battery powered video camera sensors wake up and transmit video data,
onlywhen events are detected, while they are placed in their sleepmode at other times.
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A WVSN covers a large area but it has only one or a few data collection gate-
way nodes, which collect all video data and send it to a data center by a wire-line
internet.

A. Consideration of Wi-Fi Networks for WVSN
In this section, we assume without loss of generality that in a WVSN, only a

subset of the nodes wake up during a short period of time (e.g., 10–25 % are active
among all nodes), and then go back to sleep mode after data transmission. We
assume there is only one data collection gateway node, which we call a sink node
s. Each active node transmits video data toward the sink node via multi-hop routes.

Each node has multiple IEEE 802.11n (Wi-Fi) modem and transceiver that can
connect to multiple neighboring nodes using different channels. Each wireless link
between two nodes is called an edge e. Each edge uses one Wi-Fi modem with one
channel.

Figure 3 shows an example wireless sensor network. It has a total of 100 nodes,
but only 9 nodes are active for a given time duration. Each active node generates its
own video data and transmits to the sink node n0 (red circle) through neighboring
nodes within its wireless range. Wireless ranges are indicated by dotted circles.

Figure 4 shows potential edges between nodes in their wireless ranges. A routing
algorithm, therefore, needs to select a set of active edges from Fig. 4 in a way that
the selected edges construct multi-hop paths from every active node to the sink.
These paths should deliver all video data to the sink with minimal power con-
sumption. In this example, the potential edges are selected such that the next hop of
the edge has shorter distance than the previous hop to prune the edges unlikely to
give an optimal routing path.

Fig. 3 Example WVSN with
an array indicating location of
all sensor nodes. Small circles
indicate nine active nodes.
Large circles indicate the
wireless range of each active
node. The red node (node 0)
is a sink node (data collection
gateway node). Reproduced
with permission from IEEE
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Since Wi-Fi modem, like other wireless technologies, can interfere with others if
operated in the same RF channel, different edges within a wireless range, therefore,
must be allocated to different channels. In this section, we use IEEE 802.11n with
5 GHz spectrum, and we use 11 nonoverlapped channels of 40 MHz channel band-
width. For a single stream Wi-Fi modem configuration, the maximum physical layer
data rate is 150 Mbps. Based on the results measured with commercial Wi-Fi mod-
ules, the overhead of MAC and IP layer is commonly considered as 1/3 of the overall
data rate.We, therefore, assume that themaximum link rate of each edge is 100Mbps.

B. Link Utilization Analysis and Power Model
Given a wireless network described above, we can fomulate the problem of

finding channel allocation and routing as an optimization problem that minimizes
the total Tx power. While sleep-mode links have no Tx power, active-mode links
consume Tx power only during they transmit actual data. Hence, we calculate the
time duration of data transmission by deriving a link utilization rate from a max-
imum link rate and the total amount of current data rate on each link.

We then introduce a heuristic algorithm that finds a low power routing solution
while ensuring delivery of all video data through multi-hop routes. In this way, the
proposed method ensures each sensor node’s maximal battery life, and avoids data
congestion in the sensor network.

We will also present a simulator WiSeSim, which implements the routing and
channel allocation algorithm in a C program with network models based on IEEE
802.11n. We present simulation data, which proves that the proposed method gives
routing results with lower power compared to conventional routing algorithm.

Each edge’s link rate varies depending on the distance between two nodes, and
the radio channel condition. From the measurement of wireless modem modules,
we can observe the following relations.

Fig. 4 Wireless video sensor
network with its potential
active connections (edges)
within wireless ranges.
Reproduced with permission
from IEEE
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Let D be the distance from a source node to a destination node. A general
formula for the path loss for a wireless link is given by (in unit of dB):

Path Loss; Lp ¼ 20log10
4pD
k

� �
ð1Þ

Here k is wavelength of the RF signal. The TX power PTX eð Þ for each edge can
then be represented as follows (in unit of mW):

TX Power PTXðeÞ ¼ 10LP

10a
ð2Þ

Here a is a channel factor. As described above, the maximum link rate is
assumed as 100 Mbps, which is Rmax

e . Then with distortion factor b, a possible link
rate for each edge e can be defined by

Link Rate RðeÞ ¼ Rmax
e

PTXðeÞ � b
ð3Þ

In the simulation provided in Sect. 3, a and b are determined impirically using
the measurement of Wi-Fi modules.

The total data rate traversing an edge e is defined as U eð Þ. Then the link utili-
zation ratio UR eð Þ for edge e is defined by

Utilization Ratio URðeÞ ¼ UðeÞ
RðeÞ ð4Þ

Here R eð Þ is a possible link rate for edge e.
For each edge e, the effective TX power Peff eð Þ is defined by

PeffðeÞ ¼ PTXðeÞ � URðeÞ ð5Þ

This reflects the important condition that each wireless modem turns on Tx
power only when its link transmits data, and otherwise it goes down to power
saving mode. Hence, the total effective power consumption Pnet

eff of the entire net-
work is defined as

Pnet
eff ¼

X
8e PeffðeÞ ð6Þ

We use the above analytical model for the following routing and allocation
algorithm and its simulator.

C. Routing and Channel Allocation Formulation
For a wireless video sensor network, suppose only a set N of active nodes ni

have video event and send data to the sink node s. We search for an optimal set E of
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edges ei (a wireless link between two nodes). The proposed routing and channel
allocation method can be formulated as follows.

Minimize (Objective): X
8e2E PTXðeÞ � URðeÞ

for all active edges in E
ð7Þ

Such that (constraints):

For 8n 2 N and 8ei 2 Pathn;s;

satisfy ei 2 E
ð8Þ

For 8n 2 N and 8e 2 Pathn;s;

satisfy RðeÞ � UðeÞ[ rsensor
ð9Þ

For 8e 2 E and 8 f 2 VðeÞ;
satisfy CðeÞ 6¼ Cðf Þ ð10Þ

Formula (7) is an objective to minimize, where E is a set of all active edges e. If
we find a set E in a way that minimizes the sum of PTXðeÞ � URðeÞ for all e’s in E,
then E gives an optimal routing for all active nodes.

Formulas (8)–(10) define the constraints that we must satisfy while minimizing
the objective (7). Here Pathn;s is defined as a multi-hop path from node n to the sink
node s. Constraint (8) ensures that E contains all the required edges comprising a
complete path from n to s. Constraint (9) ensures that the remaining link capacity
ðR eð Þ � U eð ÞÞ on each edge e can still hold new sensor data rate rsensor. In
Constraint (10), V eð Þ is a set of vicinity edges of e, which are within the wireless
range of e. Also, C fð Þ is a channel assigned to edge f. All the edges in V eð Þ, hence,
are assigned with channels different from e’s. Otherwise, the edges in V eð Þ may
interfere with e causing collision and so loss of data rate.

Since finding an optimum routing and channel allocation is NP-hard, we propose
a heuristic approximation to find a near-optimal solution.

D. Routing and Channel Allocation Algorithm
We propose an approximated cost metric CMpath

n;s and a heuristic algorithm based

on CMpath
n;s . This algorithm alleviates the complexity of the optimization formula

(7)–(10) in Sect. 3.2C.

CMpath
n;s ¼

X
8 e2Pathn;s PTXðeÞ � URðeÞ ð11Þ

The proposed heuristic algorithm selects, for each active node n, the best edges
in a way that minimizes CMpath

n;s . The algorithm starts finding paths for nodes near
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the sink first, and then paths for nodes farther from the sink. This way it can reuse
the cost metric values calculated earlier for the previous paths.

For each active node n, the algorithm forms a graph of edges in E, by searching
through all the egress edges from n toward sink node s to select the edge with
lowest CMpath

n;s . When evaluating each edge, it ensures that the constraints (8)–(10)
are satisfied. If any of the constraints cannot be met, it backs off from the selected
egress edge, and searches through other egress paths.

Since the algorithm finds paths for nodes closer to the sink first, the condition in
(9) can be easily calculated with prior values of R eð Þ � U eð Þ for edges that have
been already chosen. This is an important property of the proposed algorithm,
which allows its rapid routing speed.

E. Routing and Channel Allocation Example
Figure 5 shows a routing and channel allocation result obtained by the proposed

algorithm for the example network in Fig. 4. It first calculates the possible mini-
mum number of hops from each active node to the sink node. For each egress edge
e of node n, with distance D, it calculates U eð Þ;R eð Þ;PTX eð Þ; PeffðeÞ and then cost
metric from them.

For edge e2 from node n2, D ¼ 2 (indicating 20 m), U eð Þ ¼ 20Mbps;
R eð Þ ¼ 90Mbps;PTX eð Þ ¼ 276mW, Peff eð Þ ¼ PTXðeÞ � URðeÞ ¼ 276� 20=90 ¼
61:3 mW (indicated by EP). Here edge e2 is selected and added to E, since it is the
only path from n2 to n0 (sink).

In the same way, for edge e4 from node n5, Peff eð Þ ¼ 56:4. For edge e18 from n9,
Peff eð Þ ¼ 48:6, while for edge e19 from n9 to n5 (not shown in Fig. 4),
Peff eð Þ ¼ 56:4. Therefore, cost metric CMpath

n9;s ¼ 61:3þ 48:6 ¼ 109:9 for the path

n9 ! n2 ! n0, while CMpath
n9;s ¼ 56:4þ 56:4 ¼ 112:8 for the path n9 ! n5 ! n0.

The algorithm selects the former path since it has a lower cost metric.
In this fashion, the algorithm selects the best edges of E as shown in Fig. 3. At

the same time, it allocates minimal number of channels to the edges, so the edges in
vicinity V eð Þ would not interfere with each other. In Fig. 5, different channels are
indicated by different colors and also by channel ID, C0–C10.

The final routing paths in Fig. 5 are:

\n2 ! n0[ ;\n5 ! n0[ ;\n6 ! n0[ ;\n1 ! n0[ ;\n7 ! n0[ ;

\n9 ! n2 ! n0[ ;\n3 ! n1 ! n0[ ;\n8 ! n7 ! n0[ ;

\n4 ! n3 ! n1 ! n0[

Figure 6 shows a routing result with different routing algorithm that selects paths
that maximize each route’s data throughput. It produces routing paths different from
those of Fig. 5. The path for n4 is changed to:

\n4 ! n3 ! n7 ! n0[
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Figure 7 shows another routing result with a routing algorithm that finds each
link that has maximal link rate. Its routing results are:

\n2 ! n0[ ;\n5 ! n2 ! n0[ ;\n6 ! n0[ ;\n1 ! n0[ ;

\n7 ! n1 ! n0[ ;\n9 ! n5 ! n2 ! n0[ ;\n3 ! n6 ! n0[ ;

\n8 ! n3 ! n6 ! n0[ ;\n4 ! n8 ! n3 ! n6 ! n0[

It can be observed that Figs. 6 and 7 result in route paths with higher power
consumption than those of Fig. 5.

The total Tx power consumption is 1.66 W for Fig. 5 (the proposed algorithm),
1.70 W for Fig. 6, and 2.38 W for Fig. 7. (See the 2nd column of Table 2).

3.3 Experimental Results of Routing and Channel
Allocation

We implemented a simulator (WiSeSim) based on the the proposed algorithm. We
experimented with an extensive set of WVSN. Tables 1 and 2 show the simulation
results of 10 networks whose size ranges from 100 to 400 nodes. The number of
active nodes ranges from 9 to 100 nodes. (See Table 1). The positions of active
nodes are randomly generated.

Table 1 shows the number of routable paths. For some networks of large size,
some paths turned out as unroutable owing to its high congestion. WiSeSim pro-
duced all paths routable except the two largest network cases. This is better than
conventional algorithms.

Fig. 5 Example routing and
channel allocation result from
the proposed algorithm, when
applied to the wireless video
sensor network of Fig. 4.
Reproduced with permission
from IEEE
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Fig. 6 A result using a
routing algorithm that selects
paths maximizing each
route’s data throughput.
(Applied to the network in
Fig. 4). Reproduced with
permission from IEEE

Fig. 7 A result using a
routing algorithm that selects
links that have maximal link
rate. (Applied to the network
in Fig. 4). Reproduced with
permission from IEEE

Table 2 Simulation result of WiSeSim: Comparison of the number of routable paths for 3
different routing algorithms. Reproduced with permission from IEEE

Number of routable paths

Network size (Num of nodes) 100 144 169 196 225 256 289 324 361 400

Num of active nodes 9 20 30 40 50 60 70 80 90 100

Routing for high rate link 9 20 30 40 49 53 66 76 83 94

Routing for route throughput 9 20 30 40 50 60 70 79 88 98

Proposed routing for low
power

9 20 30 40 50 60 70 80 85 99
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Table 2 and Fig. 8 compare the total Tx power consumption of the three
algorithms described in Sect. 3C. WiSeSim has the lowest Tx power in all cases.
WiSeSim has up to 30 % lower power than the routing algorithm for high rate link,
and up to 10 % lower power than the routing algorithm for high throughput.

Figure 9 shows the average link utilization ratio for the three algorithms.
WiSeSim shows about 10 % higher link utilization than the high throughput
algorithm, while 20 % lower link utilization than the high rate link algorithm. This
result indicates that the proposed algorithm minimizes Tx power by selecting fewer
number of edges, but allocating more data on the selected fewer paths.

In this section, we assume that the routing and channel allocation are processed
in a central node. We hence assume that a central node collects other node’s
information periodically (e.g., wake-up or sleep mode, data rate, and
event-detection information), and then broadcasts routing results (Table 3).

The proposed algorithm can also be implemented as a distributed routing
method. In this case, a node with an event detected broadcasts its information to its
vicinity nodes, so the node and its vicinity nodes can recalculate their routing and
channel allocation.

Fig. 8 Simulation result of
WiSeSim: comparison of total
Tx power consumption for the
three different algorithms
(Same result as Table 3).
Reproduced with permission
from IEEE

Fig. 9 Simulation result of
WiSeSim: Comparison of
average link utilization ratio
for three different algorithms.
Reproduced with permission
from IEEE
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3.3.1 Summary of Routing and Channel Allocation of WVSN

Networks of surveillance cameras with an event-driven wake-up function is
becoming increasingly important for efficient deployment of low power wireless
security networks—one of major research areas for Internet of Things (IoT). We
presented a modeling technique for routing wireless sensor network with realistic
transmission (Tx) power. We also described a method of formulation for optimal
routing and channel allocation with minimal Tx power. We then presented an
efficient heuristic algorithm and implemented it in a simulator (WiSeSim). The
experimental results have shown Tx power savings up to 30 % compared to a
conventional method. The proposed work is expected to contribute to the new IoT
research areas of WVSN.

4 Multi-channel Allocation for Low Power Sensor
Networks

In the previous section, we described a method of finding routing paths of a WVSN
assuming there are a large number of channels available. We allocated different
channels to all the selected links within the wireless range to avoid interference
between the links. In most real networks, however, the channels are expensive
resource and usually limited. In this section, we describe an extended routing and
channel allocation method that allows multiple links within the same wireless range
to share the same channel. This is possible by allowing the different links to occupy
the same channel in different time periods as introduced below.

4.1 Properties of Channel Utilization

We begin by revisiting the notion of utilization ratio of Sect. 3.1, and extend the
concept of utilization from link to channel considering the case of wireless links
sharing the same channel.

Table 3 Simulation result of WiSeSim: Comparison of total Tx power consumption for 3
different algorithms. Reproduced with permission from IEEE

Total power consumption (W)

Network size (Num of nodes) 100 144 169 196 225 256 289 324 361 400

Num of active nodes 9 20 30 40 50 60 70 80 90 100

Routing for high rate link 0.77 2.38 4.48 6.46 8.59 8.36 11.6 14.3 18.9 20.1

Routing for high throughput 0.59 1.7 2.91 4.83 5.96 7.57 8.91 10.4 12.9 15.5

Proposed routing for low
power

0.58 1.66 2.82 4.35 5.81 6.89 8.38 10.3 12.7 14.7
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A. Concept of Channel Utilization
The formula of utilization ratio (Eq. (4) in Sect. 3.1) holds when edge ei has no

interference in its wireless range Aei . This is the case when ei is allocated a channel
different from all other edges in Aei . When ei shares a channel ck with other edge ej
in Wei , however, the effective link utilization of ei is increased by the utilization of
ej. This is due to the fact that ei and ej compete each other to use the same channel
ck in CSMA fashion. From ei’s perpective, ei is called a victim, while ej is called an
aggressor. The effective link utilization of a victim edge is the sum of the victim’s
link utilization and all aggressor’s link utilization.

Figure 10 illustrates an example network, where each node has up to 4 Wi-Fi
modules. The dotted circle indicates the wireless range W7 of node n7. Consider a
victim edge e13 using channel c4. The aggressors of e13 are the edges that interfere
with the received signals of e13’s receiver (destination) node n7. To determine the
aggressors of e13, therefore, we need to use the wireless range W7 of the receiver
node n7. The aggressors are the edges e3 and e5 which use channel c4 and are within
W7.

Figure 11 compares data transmission of edge e13 when there is no aggressor and
when there are aggressors e3 and e5. Here we assume link rates R(ei) and utilization
UL(ei) for the victim and aggressors as indicated in Fig. 11. When e13 alone uses
channel c4, the effective utilization for c4 is 20 % utilized (UL(e13) = 0.2) as shown
in Fig. 11(1). On the other hand, when the two aggressor edges share the same
channel c4, the effective utilization for c4 is the sum of UL(ei) of the victim and
aggressors. As a result, c4 is 77 % utilized.

In summary, the formula of calculating effective utilization URC(ev) of a victim
edge ev for channel ck is given below:

For 8na 2 Wv; e
egress
a;k 2 Av for victim ev ð12Þ

For 8eegressa;k 2 Av;URC evð Þ ¼
X

URLðeegressa;k Þ ð13Þ

In formula (12), Wv is a set of all nodes within the wireless range from the
destination node of victim edge ev. Av is a set of all aggressor edges in Wv:e

egress
a;k are

Fig. 10 Example wireless
video sensor network with
channel sharing. Reproduced
with permission from IEEE
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egress (out-going) edges from node na that use the same channel ck. Formula (13)
gives effective utilization URC evð Þ for the victim ev.

B. Formulation of Multi-channel Allocation
For a wireless video sensor network, suppose only a set N of active nodes ni

have video events and send data to the sink node s. We search for an optimal set
E of edges ei (a wireless link between two nodes) with channel ci allocated to ei.
The proposed routing and channel allocation method can be formulated as follows.

Minimize (Objective): X
8e2E PTXðeÞ � URCðeÞ
for all active edges inE

ð14Þ

Such that (constraints):

For 8n 2 N and 8ei 2 Pathn;s;

satisfy ei 2 E
ð15Þ

For 8n 2 N and 8e 2 Pathn;s;

satisfy RðeÞ�UðeÞ ð16Þ

For 8e 2 E and 8f 2 VðeÞ;
satisfy CðeÞ 6¼ Cðf Þ or ð17Þ

For 8eegressa;CðeÞ 2 Av; URCðeÞ ¼
X

URLðeegressa;CðeÞÞ ð18Þ

Formula (14) is an objective to minimize, where E is a set of all active edges e. If
we find a set E in a way that minimizes the sum of PTXðeÞ � URCðeÞ for all e’s in E,
then E gives an optimal routing for all active nodes.

Fig. 11 Example of effective
utilization. Data transmission
of the victim edge with no
aggressors (1) and with two
aggressors (2). Reproduced
with permission from IEEE
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Formulas (15)–(18) define the constraints that we must satisfy while minimizing
the objective (14). Here Pathn;s is defined as a multi-hop path from node n to the
sink node s. Constraint (15) ensures that E contains all the required edges com-
prising a complete path from n to s. Constraint (16) ensures that U(e) of all the
selected edges in E does not overflow after transmitting all data with sensor rate
rsensor passing through those edges.

In Constraint (17), V(e) is a set of vicinity edges of e, which are within the
wireless range of e. Also C(f) is a channel assigned to edge f. All the edges in V(e),
hence, are assigned with channels different from e’s, if possible. The edges e that
have the same channel as edges in V(e), however, share the channel in a CSMA
fashion to avoid collision and so resulting in increased effective utilization. For such
edge e with C eð Þ ¼ C fð Þ, Constraint (18) must be satisfied, where URC eð Þ gives a
formula for the effective utilization of e as in Constraint (13).

Since finding an optimum routing and channel allocation is NP-hard, we propose
a heuristic approximation to find a near-optimal solution.

4.2 Multi-channel Allocation Based on Channel Utilization

Cost Metric Calculation: We propose an approximated cost metric CMpath
n;s and a

heuristic algorithm based on CMpath
n;s . This algorithm alleviates the complexity of the

optimization formula in Sect. 4.1B.

CMpath
n;s ¼

X
8e2Pathn;s PTXðeÞ � URCðeÞ ð19Þ

Routing Edge Selection: The proposed heuristic algorithm selects, for each
active node n, the best edges in a way that minimizes CMpath

n;s . The algorithm starts
finding paths for nodes near the sink first, and then paths for nodes farther from the
sink. This way it can reuse the cost metric values calculated earlier for the previous
paths.

For each active node n, the algorithm forms a graph of edges in E, by searching
through all the egress edges from n towards sink node s to select the edge with
lowest CMpath

n;s . When evaluating each edge, it ensures that the constraints (15)–(18)
are satisfied. If any of the constraints cannot be met, it backs off from the selected
egress edge, and searches through other egress paths.

Figure 12 illustrates a result of the routing and channel allocation algorithm for
the network of Fig. 4. On the selected edge, edge ID (channel ID), distance D, used
data rate U, link rate R, and effective TX power EP are indicated.

Incremental Utilization Updates: While selecting each edge e as a route, the
algorithm allocates a channel that is disjoint from its neighbor edges if possible. If
no disjoint channel is left, it reselects a channel in a way that minimizes URC eð Þ.
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Each time an edge e is selected as a route, the heuristic algorithm incrementally
updates URC eð Þ by the following formula:

For 8nv 2 Wa; For 8eingv 2 Va for aggressor ea

URC eingv

� �
ce½ � ¼ URC eingv

� �
ce½ � þ DULðeaÞ=R eað Þ ð20Þ

For edge e selected as a route, formula (20) considers e as an aggressor and finds
potential victim edges eingv among its neighbor edges within wireless range Wa of
e. The algorithm finds potential victim edges eingv by selecting all the ingress edges
to every victim node nv in Wa. Va is a set of all victim edges in Wa. Formula (20)
incrementally adds to the effective utilization URC eingv

� �
ce½ �, the utilization growth

due to ea. Here ce½ � is the index (channel ID) to array URC½�. Every edge maintains
an array of URC eingv

� �
ce½ �; 1� ce � cmax, where cmax is the max number of channels

available.
Channel Allocation for Lowest Utilization: Once URC eingv

� �
ce½ � of candidate

edges have been calculated by formula (20), the routing and channel allocation
algorithm selects a route edge by taking URC eingv

� �
ce½ � in place of URC eð Þ of

routing cost metric Eq. (19). This way, it selects edges with lowest effective uti-
lization. It also guarantees that the utilization of the previously selected edges
would not overflow. Figures 13, 14 illustrate an example.

In Fig. 13, the algorithm selects e2 with channel 1. It then finds a victim set Ve2

of neighbor edges, which are ingress edges eingv to all the nodes within Wa from the
source node of e2. It then updates URC eingv

� �
1½ � for Ve2 with DUL e2ð Þ=R e2ð Þ.

In Fig. 14, edges, e3; e4; and e7 are selected with new channels 5, 4, and 6.
When edge e6 is selected, however, no new channel is available, and so channel 2 is
selected again. Then it increases URC eingv

� �
2½ � of all victim edges by adding

Fig. 12 Example routing and
channel allocation result of
the proposed algorithm
applied to Fig. 4. Reproduced
with permission from IEEE
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DUL e6ð Þ=R e6ð Þ. Similarly it selects old channels 4 and 1 for selected route edges
e5 and e8.

Fast but Highly Accurate Algorithm: To avoid an exhaustive search, the
proposed algorithm, in each step, selects the best route edge and channel using
partial URC eingv

� �
ce½ � which has accumulated utilization changes DUL eað Þ=R eað Þ for

partial route edges selected only until the current step. It, however, ensures that
URC eingv

� �
ce½ � of the previously selected edges would not overflow by the newly

selected edge; an important property of the proposed cost-metric-based search
algorithm.

This property allows very fast routing and channel allocation, while the recur-
sively calculated effective utilization is accurate enough for the edges within the
wireless range.

Fig. 13 Channel allocation
Example (Step1) for the
network of Fig. 4.
Reproduced with permission
from IEEE

Fig. 14 Step2: allocating
channels to the next selected
edges following step1 in
Fig. 13. Reproduced with
permission from IEEE
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4.3 Experimental Results of Multi-channel Allocation

We implemented a simulator (WiSeR: Wireless Sensor network Router) based on
the the proposed algorithm. We experimented with an extensive set of WVSN.
Table 4 and Figs. 15, 16 show simulation results of 10 networks whose size ranges
from 100 to 400 nodes. The number of active nodes ranges from 9 to 100 nodes.
(See Table 4). The positions of active nodes are randomly selected.

In the channel allocation experiment, we used 3 channel allocation methods with
different cost metric:

Round-Robin: Select one channel in round-robin fashion among all channels
whose URC eingv

� �
ce½ � do not overflow for all pre-selected edges.

Minimum Utilization: Select a channel of the lowest URC eingv

� �
ce½ � among all

channels whose URC eingv

� �
ce½ � do not overflow for all pre-selected edges.

Table 4 Routing results of WiSeR under given channel limits. Reproduced with permission from
IEEE

Routing under given channel limits

Network size (Num of nodes) 100 144 169 196 225 256 289 324 361 400

Num of active nodes 9 20 30 40 50 60 70 80 90 100

Sensor data rate 15 15 10 10 5 7.5 7.5 7.5 5 5

Channel limits 4 12 12 16 10 18 28 36 30 32

Round robin channel allocation 9 17 27 33 50 54 67 72 84 93

Min utilization channel
allocation

9 19 28 36 49 54 67 73 84 93

Min neighbor util. channel
allocation

9 20 30 40 50 60 70 80 90 100

Fig. 15 Comparison of the
number of channels required
to finish routing and
allocation. Reproduced with
permission from IEEE
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Min. Neighbor Utilization: First find, for each ce;URC;max eingv

� � ¼ MAXðURC

eingv

� �
ce½ �, for 8eingv 2 Va). Then select channel ce that corresponds to the minimum

value of URC;max eingv

� �
.

Table 4 gives routing results of WiSeR under given channel limits: the number
of routable paths for the 3-channel allocation methods. The min. neighbor utili-
zation method finds all routes for all active nodes. For the other two methods, on the
other hand, some paths turned out as unroutable owing to high congestion under the
limited channel count.

Figure 15 shows the number of channels required to complete the routing and
channel allocation for the 10 networks. The min. neighbor utilization method gives
the best results for all cases. The other two methods, however, could not finish the
channel allocation for some networks.

Figure 16 compares the total Tx power consumption of the 3-channel allocation
methods. The min. neighbor utilization method has the lowest Tx power in most of
the networks. It has up to 30 % lower power than the round-robin method, and up to
15 % lower power than the min. utilization method.

4.3.1 Summary of Multi-channel Allocation for WVSN

We introduced a multi-channel routing and channel allocation for wireless networks
of battery-powered camera nodes with an event-driven wake-up function. We
presented a modeling technique for routing and channel allocation of wireless
sensor networks with realistic transmission (Tx) power based on link utilization.
We then introduced formulation for optimal routing and channel allocation for
minimal power. A heuristic utilization-aware algorithm (WiSeR) has been pre-
sented. Experimental results have been illustrated with three different channel

Fig. 16 Comparison of total
Tx power consumption for the
three different channel
selection methods.
Reproduced with permission
from IEEE
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allocation methods; one of them saved 30 % more TX power than others. More
research is demanded in the areas of routing and channel allocation for WVSN to
achieve low power network operation.
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