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Abstract The stem cell epigenome reflects a sensitive balance of chromatin
(de-)modification processes. Here, we review our recent achievements towards a
mechanistic understanding of this balance.

We introduce a computational model of stem cell populations, where each
cell contains an artificial genome. Transcription of the genes encoded by this
genome is controlled by DNA methylation, histone modification and the action of
a cis-regulatory network. Model dynamics are determined by molecular crosstalk
between these different mechanisms.

The epigenetic states of the genes are subject to different types of fluctuations.
We demonstrate that the timescales of these fluctuations control whether the state
associated with a particular gene will undergo drifts during ongoing cell replication.
In particular, our model suggests that changes in DNA methylation states are
determined by histone modification dynamics. Herewith, our model provides a
mechanistic understanding of the origin of tissue, age and cancer-specific DNA
methylation profiles.
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7.1 Introduction

Among the plethora of known chromatin modifications, DNA methylation is proba-
bly the one that has been analyzed in most detail. Changes in DNA methylation are
observed during stem cell differentiation and ageing and also in the course of many
diseases (Bergman and Cedar 2013). A particular well-documented phenomenon
is hyper-methylation of CpG-rich promoters during cancer development (Berdasco
and Esteller 2010). This local increase of CpG methylation is often associated with
a down-regulation of expression of the affected genes and thus can induce cancer
phenotypes. In fact, DNA methylation patterns have been used in several tissues to
classify cancer subtypes with different clinical outcomes (Hinoue et al. 2012; Sturm
et al. 2012) (see Fig. 7.1).

Regardless of the enormous amount of molecular data collected so far, a
mechanistic understanding of how the observed changes in DNA methylation are
induced and how they impact gene expression is still largely missing. Within the last
years, many experimental groups observed correlations between DNA methylation
and other chromatin marks. One of the first examples here was an observation made
for a certain group of genes whose promoters become hyper-methylated during
ageing and cancer development. It was found that the nucleosomes associated with
the promoter of these genes are often tri-methylated at lysine 4 and 27 of histone

Fig. 7.1 Hierarchical clustering of DNA methylation pattern of human colorectal cancer (CRC)
samples. Shown are methylation levels (red: low, white: high) that have been calculated based on
27k Illumina methylation arrays from 37 healthy and 53 tumour samples (columns). They have
been clustered using the 200 most variant CpGs (rows). Data were taken from the TCGA data
repository (Network 2012). Most of the CpGs become hyper-methylated in CRC, while only a few
become hypo-methylated. The patterns allow to distinguish two or three different CRC methylation
patterns. The origin of this epigenetic reorganization remains largely unknown
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3 (Teschendorff et al. 2010; Rakyan et al. 2010). Such findings suggest that there
exists a complex molecular crosstalk between the machinery of DNA methylation
and that of histone modification. Some specific molecular interactions have been
identified in the meanwhile (Rose and Klose 2014).

Here, we will demonstrate that mathematical modelling of this kind of molecular
crosstalk can provide new insights into regulatory principles of the epigenome and
can help to establish a mechanistic understanding of epigenetic reorganization,
e.g. following loss of tissue homeostasis. For this purpose, in the following, we
provide a brief introduction into a multi-scale model of epigenetic regulation of
transcription. First, we introduce its molecular components enabling to describe
DNA methylation, histone modification and cis-regulatory networks. Afterwards,
we explain its extension to the cell population level. Finally, we provide some
first simulation results on epigenetic changes during stem cell ageing and tissue
transformation.

7.2 Modelling DNA Methylation Dynamics

7.2.1 Background

The role of DNA methylation (here: 5-mC methylation) in cancer development has
been recognized already more than 40 years ago (Magee 1971); yet, the molecular
details of the enzymatic machinery leading to establishment and maintenance of
DNA methylation in normal tissue remained unknown for a long time. Despite
missing knowledge about the enzymes involved, first mathematical models for
DNA-methylation dynamics were proposed already in the 1990s (Otto and Walbot
1990; Pfeifer et al. 1990).

These models tried to explain the conservation of methylation states given the
fact that all CpGs on the de novo synthesized DNA daughter strands are initially
unmethylated. They proposed that this passive de-methylation is compensated by
simultaneous action of maintenance and de novo methylation, leading to a genome-
wide methylation equilibrium after a finite number of replication cycles. DNA
methyltransferases (Dnmts) involved in these processes were identified experimen-
tally some years later. Three types of Dnmts were identified in mammals, namely,
Dnmt3a, Dnmt3b and Dnmt1. De novo methylation has been attributed to the action
of the isoforms Dnmt3a and Dnmt3b (Okano et al. 1999), while Dnmt1 was found to
be mainly responsible for maintaining the parental methylation pattern in daughter
cells (Pradhan et al. 1999).

Improved models of DNA methylation, which considered these experimental
findings, were introduced by Sontag et al. (2006). They introduced a linear model
for independent action of Dnmt1 and Dnmt3a/b and a nonlinear model assuming
cooperative dynamics between them.
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Fig. 7.2 Model of DNA methylation. (a) Sketch of the processes considered in our model. Mainte-
nance methylation by Dnmt1 and de novo methylation by Dnmt3a,b are either active with rate Dmain

and Dnovo, or inactive with rate 1-Dmain and 1-Dnovo, respectively. (b) Different pairs (Dnovo, Dmain)
can result in the same methylation level as seen for solutions of the deterministic system applying
(0.05/� , 0.95/�), red curve, and (0.3/� , 0.7/�), yellow curve. Stochastic simulations for 30 CpGs
show large fluctuations (magenta, cyan, blue lines) around the solution of the deterministic system
(black line). (c) Transition probabilities for the stochastic system and the basic set of equations for
the deterministic system

7.2.2 Basic Model of DNA Methylation

Since experimental support for cooperation between Dnmts is still limited, we
designed a first layer of our multi-scale model adopting a simple version of the
linear model by Sontag et al. (see Fig. 7.2a). We assume a single-stranded DNA
molecule. Accordingly, all CpG sites of a finite DNA region (NCG CpG sites) are
either methylated or not. CpG methylations existing in the mother cell (nCG) are
restored by maintenance methylation with probability Dmain in their daughters, while
CpG sites that are unmethylated in the mother (NCG � nCG) might become de
novo methylated in the daughters with probability Dnovo. In our model, de novo
methylation acts only on CpG sites that were unmethylated in the mother and not
on those where methylation has not been restored in the daughters.

We assume that DNA methylation can occur only immediately after cell replica-
tion, in a short time frame compared to the cell cycle time � . This effectively makes
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DNA methylation levels a direct function of the number of successive replication
events. Therefore, following Sontag et al., we implemented a probabilistic model
with discrete time steps and discrete updates of CpG-methylation states. Formally,
this defines a discrete Markov chain model with transition probabilities Dnovo and
Dmain. The transition scheme for our model is shown in Fig. 7.2c (left part). The
thin-lined curves in Fig. 7.2b show the results of three different simulations of the
stochastic model. Shown is the fraction m (given by nCG/NCG) of methylated CpGs
that has been observed by analyzing the methylation dynamics of 30 CpGs.

Alternatively, changes of m during ongoing replication can be analyzed using a
differential equation approach (see Fig. 7.2c, right part). Such a time continuous
approach is helpful to estimate methylation equilibria and convergence times. The
solution of this equation yields an exponential increase or decrease to an equilibrium
methylation level, depending on the initial methylation level m0. The equilibrium
methylation is given by Dnovo/r. Examples of the temporal dynamics are shown in
Fig. 7.2b. Note that Dnovo and Dmain represent modification rates per cell cycle time
� . Different combinations of them can lead to convergence to the same methylation
level; yet, the time needed for convergence differs.

Our stochastic DNA methylation model is limited in some regards. For instance,
the model alone cannot explain the coexistence of hyper- and hypo-methylated
states after a large number of replications, as observed in aged tissues and during
cancer development (Bergman and Cedar 2013). In their nonlinear model, Sontag et
al. explained these phenomena suggesting that the efficiency of de novo methylation
depends on the density of hemi-methylated sites observed after DNA replication
but before maintenance and/or de novo methylation. A similar model was recently
proposed by Haerter et al. (2014). Here, we use a different approach.

It is well known that recruitment of de novo Dnmts strongly depends on local
histone modification states (Rose and Klose 2014). This suggests that coexisting
DNA methylation states are controlled by local histone modification states. In the
following, we introduce a model of cooperative histone modification dynamics
which enables us to describe such regulation.

7.3 Modelling Histone Modification Dynamics

7.3.1 Background

Today, a huge number of chemical modifications on histone tails are known, includ-
ing methylation, acetylation, phosphorylation, sumoylation and ubiquitination.
These modifications can contribute to activation or repression of gene expression.
Their combinatorial complexity is further increased by the possibility of different
modification levels, e.g. mono-, di- or tri-methylation (me1, me2 or me3). Thereby,
different levels of modification might have different effects on chromatin structure
and transcription (Hoffman et al. 2013).
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Several theoretical models of histone methylation and acetylation dynamics
have been proposed so far (Dodd et al. 2007; Sedighi and Sengupta 2007). For
a review of these models, see Rohlf et al. (2012). A common feature of these
models is that they are based on cooperative modification dynamics. In our model
of histone methylation, we enable cooperative behaviour by assuming that modified
nucleosomes cooperatively recruit their own histone methyltransferase (HMT).

In the following, we first introduce a model of histone methylation for a finite
number of cooperatively acting nucleosomes (Binder et al. 2013). Afterwards, we
outline our strategies to integrate crosstalk between histone and DNA methylation
into the model.

7.3.2 Basic Model of Histone Methylation

In our model, we only consider modification complexes that can write and read a
specific modification. This is motivated by properties of polycomb group (PcG) and
trithorax group (trxG) proteins (Kundu and Peterson 2009). The basic assumptions
of our model regarding a reader–writer complex catalyzing histone modifications,
in the following called ‘interaction complex’ (IC), are summarized in Fig. 7.3a. The
regulatory processes are explained for an activating modification.

We assume that each IC binds to one DNA-response element (RE) which
contains a variable number nBS of binding sites (BS). Specifically, we identify
BS with CpGs. Binding to CpGs depends on their methylation state. Adjacent
REs form cooperative units (CUs) of length LCU, given in units of the number of
base pairs (bp) involved. Formation of CUs might occur via chromatin looping
as proposed by Tiwari et al. (2008). Each CU is associated with NH D LCU/200
nucleosomes, where nHM of them are in a modified (HM) histone state and the
remaining NH � nHM are in an unmodified (H0) histone state. We call a nucleosome
modified if one of its histones is modified. In addition to the DNA BS, also the nHM-
modified nucleosomes within a CU facilitate IC binding. Bound ICs catalyze histone
modifications, giving rise to a positive feedback loop between IC binding and
histone modification. Gene transcription is activated after IC binding and repressed
after IC release.

In our multi-scale model, we implemented a stochastic version of this model at
the single nucleosome level. The transition probabilities for the nucleosome states
per simulation time step �t are given in Fig. 7.3c (left part). We assume that de
novo modification of a histone can occur only if an IC is bound to a nearby RE.
The probability of this state is quantified by the RE-occupancy ‚, which can take
values between 0 and 1. Accordingly, the probability of de novo modification is
given by kM ‚, where kM is a constant. De-modification events are assumed to
occur permanently with probability kD.

Using arguments from mass action kinetics, the binding process of an IC can
be formalized (Binder et al. 2013). The resulting equation for the RE-occupancy
� is given in Fig. 7.3c (Eq. D1). It is governed by the free enthalpy change �g
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Fig. 7.3 Model of histone methylation. (a) Sketch of the regulatory interactions between ICs and
chromatin. For an explanation, see text. (b) Fluctuations of the methylation level within a CU
containing 48 nucleosomes, as derived from a stochastic model realization (blue curve). Appreciate
the sudden switch from high to low modification level after about 5,000 simulation time steps and
back about 3,500 steps later. The two stable solutions of the deterministic system are shown for
comparison (red and green curves). (c) Basic equations of the model. In S1–S4, the X labels the
lysine, e.g. 4 or 9

of IC binding, which can be decomposed into a basic repulsive term "0 >0, and
two attractive terms nBS"BS <0 and nHM"HM <0 representing the enthalpy changes
according to binding of the IC to nBS DNA-binding sites and to nHM nucleosomes
of the CU which already carry the IC-specific modification, respectively.

In Fig. 7.3b, simulation results are given for a realization of the stochastic
modification process within a single CU of 48 nucleosomes. For the chosen
parameter set, the system shows bistable behaviour. Stochastic fluctuations lead to
switches between the two attractor states.

The temporal dynamics of the fraction �HM (given by nHM/NH) of modified
histones in a CU can be described by a differential equation (Eq. D2 in Fig. 7.3c),
similar to the DNA methylation process. Here, the terms kD, kM‚ describe rates
per simulation time step �t. Again this approach allows estimating equilibrium
states of the system. It can be shown that, for relatively wide parameter ranges, the
system exhibits bistable behaviour (Rohlf et al. 2012; Binder et al. 2013). Thereby,
the solutions strongly depend on the number NH of nucleosomes contained in the
CU. In Fig. 7.3b, the solutions of the deterministic system (red and green lines) are
compared with those of the stochastic process.
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The above model can be extended easily to combinations of histone modifica-
tions. For this purpose, one has to take into account sets of transition probabilities
and model parameters for every modification. Thereby, different modifications
might influence each other, either directly or indirectly. In the following, we study
tri-methylation of lysine 4 at histone 3 (H3K4me3) in parallel with tri-methylation
of lysine 9 at histone 3 (H3K9me3). We assume that these two modifications affect
each other only indirectly via their effects on DNA methylation. This kind of
crosstalk is described in the following.

7.3.3 Crosstalk Between DNA and Histone Methylation

It is in general accepted that there is a complex crosstalk between histone modi-
fications and DNA methylation (D’Alessio and Szyf 2006). For example, several
HMTs have been demonstrated to include binding motifs either for unmethlyated
(CXXC, e.g. HMTs writing H3K4me3 (Thomson et al. 2010; Fujita et al. 2003)) or
for methylated (MDB, e.g. HMTs writing H3K9me3 (Fujita et al. 2003)) CpGs. So,
on the one hand, local DNA methylation status impacts the recruitment of HMTs.
On the other hand, the recruitment of Dnmts is affected by histone modifications.
For example, H3K4me3 has been demonstrated to repel Dnmt3a (Ooi et al. 2007),
whereas H3K9me3 recruits it (Feldman et al. 2006).

We model this kind of crosstalk by accounting for effects of DNA methylation
on IC (i.e. HMT) recruitment. We assume that unmethylated and methylated CpGs
throughout the CUs act as binding sites for the ICs catalyzing H3K4me3 and
H3K9me3, respectively. In addition, we account also for effects of the histone
modifications on the recruitment of Dnmts. This is achieved by modifying the de
novo Dnmt probability by a factor that depends on the actual histone methylation
level of the associated nucleosomes. For details, see Przybilla et al. (2013, 2014).

Simulation of the impact of DNA methylation and histone modifications on
gene transcription requires model representations of the genes controlled by these
epigenetic marks. For this purpose, we adopt an artificial genome model, which
defines a transcription factor (TF) network that exhibits realistic gene expression
properties.

7.4 Modelling TF Networks: The Artificial Genome
Approach

Artificial genomes (AGs) were originally introduced to generate gene regulatory
networks that cover important biological features of real TF networks. The first
idea of building an AG was published by Reil (1999). In extension, we introduced
mechanisms to analyze structural evolution in AGs (Rohlf and Winkler 2009).
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Moreover, we added a thermodynamic model of transcriptional regulation (Binder et
al. 2010), which was adapted from Bintu et al. (2005). In its present form, the model
allows calculations of gene expression based on the DNA binding and regulatory
action of two types of TFs, namely, repressors and activators. Moreover, it enables
straightforward integration of our DNA and histone methylation model. Thus, it
represents an ideally suited backbone of our multi-scale model of transcriptional
regulation.

7.4.1 Construction of an AG

According to the suggestions by Reil (1999), we generate an AG of length Lgenome

by calculating a random string composed of four different digits [0,1,2,3], where
each digit denotes one DNA base [A,T,C,G] (Fig. 7.4a). We consider a single strand
DNA only, neglecting all effects caused by the second DNA strand. We are using
Lgenome D 400.000 ‘bases’. Motivated by the frequent association of promoters with
TATA-boxes, we assume all short sequences [010100] that are found on the AG

Fig. 7.4 The artificial genome (AG). (a) All sequences [010100] are considered to represent base
promoters. They divide the genome into genes of different length. The 8 digits downstream this
sequence ([01201312] for the most right gene) define a transcript, which is translated into a protein
with a specific DNA binding motif (here [12312023]). The protein can bind to DNA wherever this
motif occurs. Bound proteins act as TF and regulate the nearest downstream gene (green arrow).
(b) Distribution of the transcription values of AG genes for a fraction of repressors pa D 0.74.
Shown is an average over 100 AGs (black line) applying the data set described in the text (green
line: smoothed version). The result is compared with a distribution measured for colon tissue by
RNA-seq (Network 2012) (red line). (c) Basic equations enabling calculation of expression Ti of
gene i. The product in D2 runs over all TFs j regulating gene i



150 J. Przybilla et al.

to represent base promoters of genes. The next Lcod D 8 bases downstream of the
promoters are assumed to represent their coding regions. All bases upstream of a
gene up to the end of the coding region of the preceding gene define the regulatory
region Lreg of the gene. Its length can be different for every gene. According to these
assumptions, each gene of the AG is divided into three regions, a regulatory, a base
promoter and a coding region. All genes potentially encode TFs.

All TFs together form a TF network. This network is constructed by the following
rules: Each coding region of a gene defines a transcript. The transcript is translated
into a protein with a specific binding motif. This motif is calculated by applying
a simple transition rule: each digit of the coding region is updated by adding 1, if
the sum is 4 it is replaced by 0. Accordingly, a coding sequence (01201312) will
be translated to binding motif (12312023). The protein can bind to identical DNA
motifs in the regulatory regions of all genes and act as a TF. Bound TFs regulate the
next downstream gene.

According to these building rules, each AG has an intrinsic TF-network structure,
which is completely defined by the promoter length, the length of the coding region,
and the length of the genome. Using the parameters given above, each TF can
regulate on average 6 different genes and each gene can be regulated on average
by 6 TFs. For statistical properties of such kind of TF networks, we refer to Binder
et al. (2010).

Whether a TF binds to DNA or not depends on the binding energies "TF and on
the concentration of the TF which is set to be equal to the expression level T of
its transcript. Bound TFs regulate the occupancy �Pro of the nearest downstream
promoter by RNA-polymerase II by changing the polymerase binding energy.
Activators increase it and repressors decrease it. Whether a TF is an activating or a
repressing one is chosen with probability pa and (1-pa), respectively. The promoter
occupancy �Pro,i of the base promoter of gene i is assumed to be proportional to the
transcription of the gene. A typical distribution of the expression values of an AG is
shown in Fig. 7.4b. It agrees very well with experimentally measured distributions.

The equations describing how the transcription Ti of an individual gene i is
calculated for our AG are given in Fig. 7.4c. Here, ı is the degradation constant
of the transcript and Pmax is the maximum promoter activity. Both parameters are
assumed to be identical for all genes of the AG.

7.4.2 Crosstalk Between Chromatin Modifiers and Polymerase
II Binding

Our AG model describes regulation of gene expression by a TF network. However,
experimental results indicate that there is in addition a complex interplay between
the expression of genes and their epigenetic status (Cui et al. 2009). In the following,
we summarize our assumptions regarding this kind of crosstalk. A sketch describing
the interactions considered in the model is given in Fig. 7.5.
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Fig. 7.5 Epigenetic crosstalk. The epigenetic regulation is described by two positive and one
negative feedback loop. The sketch denotes the mechanisms that are considered to create these
loops

First of all, implementing such crosstalk requires linking the AG model to our
model of epigenetic regulation of transcription. For that one has to specify the
nucleosomes whose status can contribute to the regulation of a particular gene.
Given the structure of our AG, we assume that the modification of all nucleosomes
associated with the regulatory region of gene i affect the transcription of this gene.
This means that we identify the regulatory regions of the genes of our AG with the
CUs of our histone model. The modification state of a particular gene is thus the
modification state of the nucleosomes associated with the regulatory region of this
gene.

As already pointed out in Sect. 7.3, histone modifications can activate as well
as repress gene expression. The H3K4me3 mark has been suggested to contribute
to gene activation via an improved recruitment of polymerase II in presence of this
modification (Vermeulen et al. 2007). In our model we assume that the transcription
level of gene i is proportional to the occupancy ‚i

H3K4me3 of the REs of this gene by
H3K4me3-specific ICs; i.e. by H3K4-HMTs. Accordingly, we replace Pmax in Eq.
D1 in Fig. 7.4 by Pmax ‚i

H3K4me3
. H3K9me3 is frequently associated with silenced

genes. However, we assume that it affects transcription only indirectly via its activity
in recruiting de novo DNA methylation.

Recently, it has been shown that not only transcription depends on the histone
modification state of the gene but that, vice versa, also the stability of the histone
modification states is affected by the transcriptional activity of the associated genes.
Experimental findings suggest that the C-terminal domain of the RNA polymerase
II subunit Rpb1 undergoes dynamic phosphorylation and that this process helps
recruiting the H3K4-HMT complex during early elongation (Buratowski and Kim
2010). In our model, we assume that the recruitment of H3K4me3-specific ICs is
enforced at transcribed promoters. Actually, we assume that the basic repulsive
term "0 of the free enthalpy of binding of H3K4me3-specific ICs is equal to "1-
ln(Tı/Pmax), where "1 is a constant. This leads to a positive feedback, stabilizing
H3K4me3 at transcribed regions. Binding of H3K9me3-specific ICs is assumed to
be not affected by transcription. Accordingly, we assume "0 D "2 to be constant for
this modification.



152 J. Przybilla et al.

The assumed crosstalk determines the dynamics of our multi-scale model. In
particular, it controls the stability of its regulatory states. In the next section, we
describe how these states can be inherited through iterative replication cycles and
how regulatory states evolve on the population scale.

7.5 Modelling Cell Population Behaviour

7.5.1 Model of Cell Replication

In our model, gene expression depends on the histone modification states of
the genes. These states are coupled to the local DNA methylation status, which
changes during cell division. These changes are different between the daughter cells.
Consequently, long-term drifts of transcription, DNA and histone methylation states
of the cells can be captured by explicit simulation of cell replication only, and their
analysis requires the simulation of large cell populations. We model cell replication
assuming that each cell undergoes stochastic growth steps with rate R and divides
after NR successful growth steps.

The changes in DNA methylation during cell division (after initial equilibra-
tion) due to limited maintenance and de novo methylation are rather moderate
perturbations of the regulatory state of the cells. Much stronger changes can result
in parallel from processes of nucleosome re-assembly. During cell division, the
core nucleosomes of the mother cell are distributed onto the daughter cells and
there become complemented by de novo synthesized, unmodified nucleosomes.
This leads to a strong dilution of the modified nucleosomes in the daughter cells.
These changes can be different in each daughter due to an unequal distribution
of modified nucleosomes of the mother cell onto its daughters (Margueron and
Reinberg 2010). In accordance with experimental results (Xu et al. 2010), we
assume a random distribution (see Fig. 7.6). In parallel, we assume that de novo
synthesis of unmodified nucleosomes guarantees that in the daughter cells the same
number of nucleosomes is established as in the mother cell. Thus, we neglect any
variance in this property.

The histone modification states immediately after cell division are non-
equilibrium states and drift until stable states are reached. If the modification
state of a particular gene is bistable, the strong dilution of modified histones after
cell division can lead to spontaneous de-modification of the histones. As a result, an
asymmetry of the daughters with respect to the modification state of these genes will
become manifest. These changes might induce subsequent transcriptional changes
and those even further regulatory changes. The regulatory states approached after
cell division can be different across daughter cells and thus can induce a strong
heterogeneity in an expanding cell clone on all levels of regulation. In order to cover
this heterogeneity, we model cell populations, where in each cell the same regulatory
network is active but undergoes independent development of its regulatory states.
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Fig. 7.6 Epigenetic changes during cell replication. During cell replication, the mother nucleo-
somes are randomly distributed onto the daughter strands and there become complemented with
de novo synthesized, unmodified nucleosomes. Thus, the number of modified nucleosomes on each
daughter strand becomes diluted. In parallel, DNA methylation state becomes updated separately
on each strand. Both processes can induce an asymmetric phenotype in the daughter cells

7.5.2 Regulatory States at the Population Level

Transcriptional states (Wu et al. 2014) and in part DNA methylation states (Guo et
al. 2013) of individual cells can be measured experimentally. In contrast, histone
modification states are currently accessible on the population level only. In our
model, all these states are calculated on the single cell level. Thus, to compare model
results with available experimental data, we have to average the regulatory states of
the individual genes over a population of cells.

An example of such a calculation is given in Fig. 7.7a showing simulated
epigenetic drifts in a proliferative population. The parameter set used in this
simulation is given in Table 7.1. In this example, two histone modification states,
the H3K4me3 and H3K9me3 state, have been considered. Initially all nucleo-
somes were marked by both modifications. Due to the dynamics described above,
H3K4me3 as well as H3K9me3 is lost within the regulatory region of many genes
over time. Loss of H3K4me3 induces decreasing transcription and enables, as de
novo DNA methylation is no longer blocked, stabilization of the repressed state
by DNA methylation. Thereby, the stability of the modification depends on the
number of cooperative nucleosomes. In order to visualize this phenomenon, we have
sorted the genes from bottom to top by the increasing number NH of cooperatively
acting nucleosomes associated with the gene. For low numbers, loss of H3K4me3
occurs fast, while for higher numbers it slows down and modified states become
stable. Similar effects are observed for H3K9me3. Here, conservation of the initial
modification state is associated with DNA methylation.
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Fig. 7.7 Simulated drifts on the population level. Shown is the development of regulatory states
for a proliferative active (a) and a quiescent (b) cell population. Regulatory states of individual
genes are characterized by their transcription level (Log10(T)), their DNA methylation level and
by the level of H3K4me3 and H3K9me3 modification of the associated nucleosomes. In their
initial state, the expression of all genes was set to the equilibrium state of the isolated AG; DNA
methylation level was set to 0 (red) and the histone modification levels to 1 (white). The genes
have been sorted from bottom to top by the increasing number NH of nucleosomes associated with
them. Drifts of the regulatory states are seen for both compartments. In the quiescent population,
no changes of the DNA methylation status can occur

The effect of cell division on the regulatory states can be analyzed comparing
the dynamics of the regulatory states of proliferative active (Fig. 7.7a) with that
of quiescent cells (Fig. 7.7b). In a quiescent cell, the number of cooperating
nucleosomes that is required to ensure stable modification decreases and more
genes remain stably modified. This is due to inactive DNA methylation, allowing
de-modified nucleosomes to become modified again following fluctuations in their
histone modification status.

Recently, we have shown that, according to this mechanism, age-dependent drifts
in histone modification states are partly reversible if the cells become located in a
quiescent niche (Przybilla et al. 2014). In this study, we simulated hematopoietic
stem cells in their niche. In order to cope with experimental data (Dykstra et
al. 2011; Verovskaya et al. 2013), we enabled the cells to switch between a
compartment where they are proliferative active and one where they are quiescent.
We assumed the transition rates per simulation time step between the compartments
to depend on the number of cells in the compartment they leave. This enables a
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Table 7.1 Model parameters. Typical model parameters used in the simulation of Fig. 7.7. Energy
terms are scaled by the Boltzmann unit. Rates are given per simulation time step �t. The
parameters of the AG are set as described in the text; those of the TF network were chosen as
in Binder et al. (2010)

Symbol Value Meaning

Pmax 1,000 Maximum promoter activity
ı 0.1 Degradation rate of transcripts
Dmain 0.8 DNA maintenance methylation probability
Dnovo 0.3 DNA de novo methylation probability
kD 0.005 De-modification rate for H3K4me3 and H3K9me3
kM 0.05 Modification rate for H3K4me3 and H3K9me3
"K4 6 Interaction energy between DNMT and HMT: H3K4me3
"K9 6 Interaction energy between DNMT and HMT: H3K9me3
"HM �1.5 Free enthalpy change of HMT binding to H3K4me3, H3K9me3
"BS �5.5 Free enthalpy change of HMT binding to unmethylated (H3K4me3) or

methylated (H3K9me3) CpGs
"1 7 Ground enthalpy per bound HMT: H3K4me3
"2 10 Ground enthalpy per bound HMT: H3K9me3
R 0.1 Growth rate
NR 10 Number of growth steps towards cell division

stabilization of the number of cells in each compartment. Alternative assumptions
are described by Glauche et al. (2009).

7.6 Application of the Model: DNA Methylation Profiles
in Tumours

Simulation of stem cell ageing and tissue transformation were major objec-
tives guiding the development of our multi-scale model. In such simulations, we
derive hypotheses about the mechanisms underlying the associated changes of the
epigenome. So far, we have linked ageing to the limited inheritance of histone
modification states (Przybilla et al. 2014) and suggested that epigenetic drifts during
tissue transformation originate in an accelerated ageing process, which is often par-
alleled by drifts induced by mutation of epigenetic pathways (Przybilla et al. 2013).

Figure 7.8 summarizes some of our simulation results. Shown are results of
a hierarchical clustering of DNA methylation pattern. These results have been
obtained analyzing the consequences of changing activity and of mutations of
chromatin modifiers. It can be see that changes of the modifiers can induce both
DNA hyper- and hypo-methylation phenotypes. As expected, hypo-methylation is
seen for inefficient DNA maintenance methylation (Dmain D 0.5). However, similar
patterns are induced also by a knock-out of the H3K4 histone demethylase (HDM)
activity (90 % reduction). Hyper-methylation is induced by a knock-out of the
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Fig. 7.8 Hierarchical clustering of simulated DNA methylation pattern. Shown are results for five
different simulation scenarios, each of them in three replicates. The colour code quantifies the
average methylation of CpGs within the regulatory region of genes at a defined time point (red: low,
white: high). We have selected the 40 most variant genes. The characters denote different regulatory
conditions, A normal ageing, B slow histone modification velocity, C inefficient maintenance DNA
methylation, D knock-out of the H3K4 HDM activity, E knock-out of the H3K9 HDM activity.
Replicates cluster together on the first level. At the second level, conditions C and D and F and B
cluster, due to their similar hypo- and hyper-methylation pattern, respectively. Hyper-methylation
pattern F and B can be distinguished by the methylation of the CpG subset X

H3K9 HDM activity (90 % reduction) and also in case of decelerated histone
modification dynamics (90 % reduction). The latter two patterns are distinguished
by the methylation level of only a few genes (compare: cluster X). This suggests
that even small groups of CpGs could be very important markers for specific kinds
of deregulation.

Overall these results demonstrate that our model is capable of explaining
complex changes in DNA methylation pattern by changes in individual chromatin
modification pathways. The model suggests that changes in DNA methylation
pattern are governed by histone modification dynamics.

7.7 Discussion

Transcriptional changes during stem cell differentiation and also during tissue
transformation are commonly thought to be induced by changes in cis-regulatory
networks. Chromatin modifications appear to function in stabilization of these
changes (Wutz 2013). However, chromatin reorganization can neither establish
completely stable nor perfectly inheritable transcriptional states because cell repli-
cation induces strong perturbations of the regulatory states. As a consequence,
continuous replication results in epigenetic drifts that contribute in controlling the
emergence of age-related phenotypes.



7 Towards a Mechanistic Understanding of Epigenetic Dynamics 157

We here have introduced a multi-scale model of transcriptional regulation
that combines models of DNA and histone methylation with a model of cis-
regulatory networks. The combined model enables to analyze the temporal changes
of global regulatory states and their dependence on the activity of the individual
regulatory layers. Moreover, it allows to generate substantial hypotheses about the
interrelations between the different layers of transcriptional regulation and about the
potential changes following loss or gain of function in chromatin modification. We
have shown how this model can be extended to simulate regulatory phenomena in
proliferative active cell populations and that proliferation does strongly feedback on
the states of the epigenome.

Our multi-scale model clearly contains various simplifications. For instance:
(1) our cis-regulatory model is based on a single strand AG that does neglect
evolutionary developed non-random structures, (2) our model of DNA methylation
does not consider active DNA de-methylation, (3) the model of histone modification
describes only a specific kind of potentially inheritable modifications, namely those
set by reader-writer complexes, and focuses on modifications of the cis-regulatory
regions only.

Regardless of these simplifications our model provides new insights into tran-
scriptional regulation, e.g. by pointing to the importance of the timescale ratio
between proliferation and histone modification for the stability of regulatory states
(Przybilla et al. 2013, 2014). Moreover, our model adds new arguments to the
histone code debate, suggesting that chromatin computation acts on a very restricted
state space, because only a few of the possible combinatorial states are stable.

Although covering several time and length scales of transcriptional regulation,
our model still might lack some important regulatory processes. As an example
we like to highlight 3D chromatin organization. Changes in the 3D organization
potentially affect the cooperative behaviour of the histone modification process,
and thus might substantially impact the regulatory states. Actually, we and others
observed a dramatic change in the length distribution of specifically modified
chromatin during stem cell differentiation processes (Steiner et al. 2012).

In the model, simulations presented here we largely neglected extrinsic reg-
ulation of the epigenome. In fact, environmental effects have been considered
only by assuming compartment-specific signals that support or block proliferation.
However, there are many more environmental signals affecting DNA and histone
methylation (Burgess et al. 2014). These signals often depend on the spatial position
of the cells in the tissue. For example, stem cells in spatially structured niches,
e.g. intestinal stem cells, have been shown to receive local signals that trigger
their phenotype. The associated regulatory changes involve also epigenetic changes
(Sheaffer et al. 2014). As a first example of a spatially structured model, we plan
simulating an intestinal crypt where an artificial genome is transcribed in each of
the cells.

Models of the transcriptional regulation by epigenetic processes, as mathematical
models in general, will never be comprehensive. However, even at the current
state of the art, they allow to generate experimentally testable hypotheses about
the mechanisms driving global re-organization of the stem cell epigenome. Thus,
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computational model approaches, as that presented here, are well on the way to
support a better understanding of epigenetic dynamics during differentiation, ageing
and tissue transformation.
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