
Chapter 9
Generalizing Mechanistic Explanations Using
Graph-Theoretic Representations

William Bechtel

Abstract Mechanistic explanations appeal to the parts, operations, and organiza-
tions of mechanisms to explain the phenomena for which they are responsible.
Scientists have developed accounts of myriads of mechanisms thought to be
operative in biology, each involving distinctive parts and operations organized
in idiosyncratic ways. The focus on specific mechanisms (e.g., those found in a
particular cell type in a given model organism) appears opposed to the idea that
explanations ought to be generalizable to new instances. Some generalizability
can arise from the fact that many biological mechanisms inherit their parts and
operations from mechanisms found in ancestral species and one can often identify
commonalities in these parts and the operations they perform. But organization
seems to be idiosyncratic to specific mechanisms, thwarting attempts to develop
generalizations about how mechanisms organized in a specific way will behave. For
example, as a result of different genes being expressed, the organizational pattern
of interactions between proteins varies in different tissues or in the same tissue
in different strains of a species. This poses an even greater problem when it is
recognized that many biological mechanisms exhibit non-sequential organization
of non-linear operations, making it difficult to use mental simulation to determine
the behavior of the mechanism. Instead researchers resort to computational models,
resulting in dynamic mechanistic explanations that integrate mathematical modeling
with empirically ascertained details of parts and operations. These models, though,
appear to be even more idiosyncratic, revealing only the behavior of the specific
organization employed in a specific mechanism.

In recent years, however powerful tools have been developed for abstracting from
the details of individual networks, providing a basis for informative generalizations
about how networks employing the same abstract design will behave. These
involve developing graph-theoretic representations of mechanisms and analyzing
the properties of classes of graphs. Watts and Strogatz, Barabási, and Sporns have
shown that large networks (e.g., neural circuits or gene networks) often exhibit
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a scale-free, small-world organization capable of efficient, flexible coordination
of operations and appeal to these properties to explain behaviors of specific
mechanisms. Alon and Tyson, focusing on sub-networks with just two to four nodes,
have identified different motifs (distinctive micro-architectures such as feedforward
loops and double negative feedback loops) that are specialized for particular types of
processing. These tools offer abstract organizational principles to which researchers
appeal in their efforts to explain the behaviors generated by the mechanisms in
which they are implemented. In this paper I show how these projects provide a basis
for developing generalizable accounts of complex mechanisms and their dynamical
behavior.

Keywords Dynamic mechanistic explanations • Generalizing explanations •
Graph-theory formalizations • Motifs • Scale-free small worlds

1 Introduction: Formalizing Mechanisms in Graphs

In a broad range of biological disciplines the explanations researchers have pursued
over the past two centuries have taken the form of characterizing the mechanisms
responsible for various phenomena and demonstrating how they are able to generate
the phenomenon. For example, metabolic research has described mechanisms for
phenomena such as glycolysis or fatty acid metabolism, molecular biology has
proposed mechanisms for cell division and protein synthesis, and neuroscience
has investigated mechanisms for generating action potentials in neurons and for
spatial navigation by animals. Although during much of the past two centuries
philosophers had little to say about such explanations, over the last two decades
several philosophers have advanced accounts of what mechanistic explanations
are, how they are discovered and revised, and how they are evaluated (Bechtel
and Richardson 1993, 2010; Bechtel 2011; Craver 2007; Glennan 1996, 2002;
Machamer et al. 2000).1

A fundamental step in developing a mechanistic account is to characterize the
phenomenon to be explained and to identify a mechanism taken to be responsible
for its occurrence in the situations in which it occurs. This is often a non-trivial
endeavor requiring experimental manipulation and quantitative analysis of the
results. Research then seeks to decompose this mechanism into its components
and operations. Biologists have developed powerful tools and inference strategies
for decomposing mechanisms into their component parts and determining the
operations for which these parts are responsible. But explanation also requires
recomposing the mechanism to show that, in a given situation, it is able to produce
the phenomenon (Bechtel 2011; Bechtel and Abrahamsen 2009). Recomposing the

1See Théry (2015, this volume) for a critical assessment of mechanistic explanations. See also
Baetu (2015, this volume) and Brigandt (2013) about how mathematical models and mechanistic
explanations may mutually support each other.
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mechanism requires determining how the mechanism is organized and demonstrat-
ing that when so organized the operations identified are capable of jointly producing
the phenomenon.

Researchers often approach the task of recomposition by assuming that the
operations are organized sequentially. In such cases researchers can simulate the
behavior of the mechanism mentally by representing the effects of each operation in
the mechanism successively. In many cases, however, researchers come to recognize
that sequential organization is insufficient—multiple operations may be performed
simultaneously and individual components may have effects on other components
responsible for other operations. The result is that individual components function
differently depending on the context within the mechanism or beyond it. As various
operations modulate the execution of other operations, the behavior of the whole
mechanism may begin to produce a complex dynamic pattern such as oscillatory
behavior or synchronization of independent oscillators. Mental simulation, even
when assisted by a diagrammatic representation of the mechanism, commonly fails
to provide accurate accounts of how such mechanisms will behave. In these circum-
stances it often proves highly useful to represent the mechanism in a computational
model and to run computer simulations to determine how the mechanism will
behave. I refer to explanations that rely on computational models to understand the
dynamic behavior of a mechanism as dynamic mechanistic explanations (Bechtel
and Abrahamsen 2010, 2011).2 In the case of complicated mechanisms, these
models may involve dozens or hundreds of differential equations. If appropriate
parameter values are employed, these equations may together accurately simulate
the behavior of the target mechanism. But often this accuracy comes at the expense
of reducing the intelligibility of the explanation.3

A further problem with mechanistic or dynamic mechanistic explanations of
mechanisms is that they are often developed for specific instances of the mechanism
that have been investigated. Typically in biology mechanistic research is pursued on
specific model systems or model organisms, which may not be the target of interest.
A model organism may be chosen because of what is already known about the model
organism, tools that have been developed for intervening on it, and the hope that the
mechanisms in it will be simpler (although not simple) and so more tractable than

2While recognizing that one might integrate them, Woodward (2013) emphasizes the differences
between more prototypical mechanistic approaches and those that adopt a more holistic perspective
in, for example, explaining the robustness of a biological system or the dynamical behavior of
a complex network. Woodward is right to emphasize the difference in research strategies and
assumptions of the two approaches. More traditional mechanistic approaches assume modularity of
the mechanism and dependence on the fine-tuned details of the system. In developing dynamical
models of integrated systems researchers typically abstract away from these details. My reason
for emphasizing their integration in dynamic mechanistic explanations is that many contemporary
biological explanations draw on both details about the components of the mechanism and the
dynamics of the integrated system, attempting to integrate the approaches that on their own make
different assumptions and pursue different research strategies.
3See Issad and Malaterre (2015, this volume) for a discussion of the explanatory force of dynamic
mechanistic explanations.
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those in the target. This raises the question of whether the mechanistic or dynamic
mechanistic account developed on the basis of research on the model system will
generalize to the target system. Typically there will be differences between the
model system and the target system, and researchers must assess whether these
differences matter. Researchers working with computational models involving non-
linearities recognize that often small changes lead to unpredicted major changes in
the behavior of the model. This points to the challenge in generalizing from the
model to the target.

To support generalizing results from the model to the target, researchers often
appeal to the conservation of the mechanism through phylogeny—the mecha-
nisms in contemporary are treated as variants that evolved through descent with
modification from a common ancestor. When the model organism has evolved
fewer additional components (as a result, for example, of gene duplications), it is
expected to provide a less complicated version of the mechanism of interest in the
target organism. The fact that the model is less complicated, however, points to
differences between the model and the target, making it important to independently
test the applicability of the explanation in the target system. The important issues
in generalizing from model organisms are increasingly the focus of philosophical
inquiry (Ankeny 2001; Ankeny and Leonelli 2011; Leonelli et al. 2014; Meunier
2012).

Another mode of generalization, which will be my focus here, is to abstract
from the specific details of the mechanism to identify the pattern of organization
(Levy and Bechtel 2013; Overton 2011). This has proven particularly valuable when
the non-sequential organization of a mechanism results in dynamical behavior and
researchers can explain that dynamical pattern as an expected consequence of a
particular mode of organization. As I will demonstrate, computational modeling
of the abstract mode of organization can contribute to the explanation of why
mechanisms implementing the form of organization exhibit the behavior they do.
But the key step is abstraction—leaving out details about the component parts and
operations so as to focus only on the organization and determine its implications.
Generalization then applies the information acquired through analyzing the abstract
pattern of organization to different mechanisms that implement that pattern.

A particularly powerful means of identifying the abstract organization of a
mechanism is to formalize the organization of the mechanism in graph-theoretical
terms.4 A graph consists of a collection of nodes connected by edges. The nodes
represent entities, which in the case of a mechanism will include the component
parts but may also include any other entities with which the mechanism or its parts
interact. By treating different types of entities as nodes, a graph abstracts from the

4Jones (2014) discusses graph representations of the topology of a system that are not intended to
be mechanistic but to identify such things as vulnerabilities of a system to disruption. While the
diagrams he discusses and those discussed below often abstract from the details of the mechanism
and thus provide a different type of understanding than do accounts of the parts and operations
of a mechanism, they nonetheless play an important role in understanding how, as a result of its
organization, a mechanism behaves either normally or when disrupted.
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specific nature of the parts. Edges represent relations between nodes, which in many
cases will be causal, although they may reflect correlations or even just the presence
of physical connections. When the edges are causal, they are directional and in the
case of a mechanism reflect the fact that an operation performed by one part or entity
has effects on another. As in the case of nodes, edges abstract from the specific
character of the operation.

As a basis for the discussion in subsequent sections, I present two examples
in which, in the pursuit of research on a mechanism, researchers formalized the
organization graph-theoretically. My goal at this stage is not to discuss the ways
in which such graphs are analyzed, but simply to show contexts in which they are
introduced. Working from slices examined with the confocal electron microscope,
White et al. (1986) mapped the entire nervous system of the nematode worm
Caenorhabditis elegans. The researchers identified 302 neurons and over 7,000
synapses. In the course of presenting their analysis, they employed many figures,
including microscopic images, showing individual neurons and their projections
in context. The last set of figures, however, abstracts from this detail and offers
six circuit diagrams of the nervous system, of which the one relating amphids
involved in chemoreception is shown on the top in Fig. 9.1. This circuit diagram
does maintain some detail of the actual nervous system (chemical synapses are
distinguished by arrows whereas gap junctions are represented by bar-ended lines,
sensory neurons are shown as triangles and interneurons by hexagons, and the
prominence of synapses is indicated by the number of cross-hatches on arrows using
a scale from 1 to 4), much of the detail has been removed so as to focus on the pattern
of connections.

Graph representations have also been developed to represent interactions
between genes and proteins in a number of organisms (for pioneering work in
this project, see Kauffman 1969, 1974). In developing the graph on the bottom in
Fig. 9.1, Jeong et al. (2001) drew upon four datasets of possible interactions between
proteins in Baker’s yeast Saccharomyces cerevisiae. The datasets mostly relied on
two-hybrid analyses to determine which proteins could interact. The nodes in this
graph represent 1,870 individual proteins and the edges show 2,240 interactions
(the coloring of the nodes will be discussed below).

In the sections that follow I will focus first on graphs such as these representing
whole mechanisms or even the larger systems in which mechanisms of interest
might be situated. In a later section I will turn to sub-graphs that show relations
between components within the larger graphs. In both cases, the focus will
be on how graph-theoretic tools for analyzing network organization reveal how
mechanisms that instantiate the organization exhibited in the graph will behave.
Although such analyses often employ mathematical models and simulations using
those models, I focus on the qualitative conclusions that are reached. In the final
section I show how the tools for sub-graphs can be employed after performing
suitable manipulations of whole-graphs of a mechanism.
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Fig. 9.1 On the top White et al. (1986) constructed a graph representation of that part of the
nervous system of C. elegans involved in chemoreception. chemoreception (Reprinted from White
et al., The Structure of the Nervous System of the Nematode Caenorhabditis elegans, Proceedings
of the Royal Society B, Biological Sciences, 314, Figure 21, by permission of the Royal Society).
On the bottom Jeong et al. (2001) proposed a graph representation of the largest cluster in the
protein interaction network of Saccharomyces cerevisiae, containing approximately 78 % of all
proteins (Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright (2001))
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2 Whole-Graph Organization: Scale-Free Small Worlds

Since graphs such as those shown in Fig. 9.1 are based on evidence about a
particular set of entities and their connections or interactions, each is different.
At first it might not be apparent that one could develop generalizable insights
into how different networks will behave. Instead, one might expect that when
mechanisms have sufficient parts, the graph showing the interactions will be
different for each mechanism. Researchers might take advantage of the graph to
develop a computational model of how a mechanism instantiating that graph might
behave (Jones and Wolkenhauer 2012, demonstrate how scientists utilize graph
representations as guides in developing computational models), but not be able to
use them to generalize results from one mechanism to another. But pioneering graph
theorists in the mid-twentieth century developed ways of analyzing the behavior
of a few idealized forms of network organization that have proven very useful. A
common concern for much of this work was to understand how individual entities
(neurons or fireflies) that exhibit oscillatory behavior are able to synchronize their
oscillations depending on how the nodes are connected. Winfree (1967) developed
one of the first analyses by assuming that each of the nodes in the network is an
oscillator with its own intrinsic frequency and that each is weakly connected to
all the others. In his mean field model, each oscillatory node is treated as being
affected by the mean activity of the other nodes. He investigated what happened as
the strength of the connections between nodes is increased and demonstrated two
global transitions. At first some of the oscillators begin to exhibit synchronization
in their oscillation while later all of the oscillators become phase and amplitude
locked. Kuramoto (1984) further advanced the analysis of mean field models.

Although the mean field approach is often used as a first approximation, a
connection between each pair of nodes is not common in actual biological systems.
Connections are more likely to develop between some pairs of nodes than others.
Accordingly, Erdös and Rényi (1960) investigated networks in which connections
are established randomly and showed that if the number of connections is much
less than the number of nodes, only small, disconnected clusters of connected
nodes appear in which oscillators would synchronize. However when the number of
connections increases to approximately half the number of nodes, a phase transition
occurs and a single giant cluster emerges in which nodes all synchronize. Even
though most biological networks do not appear to exhibit random connectivity, the
idea that a giant cluster will emerge at such a phase transition has been applied
in analyzing networks such as protein interaction networks in yeast; the network
shown on the right in Fig. 9.1 shows such a giant cluster and leaves out nodes not
included in the giant cluster.5

5A special case on which extensive research has been conducted are Boolean networks (networks
in which the behavior of a node is a Boolean function of the state of other nodes). See Derrida and
Pomeau (1986), Flyvbjerg (1988), Kauffman (1993), Luque and Solé (1997), Rohlf and Bornholdt
(2002) for analyses of Boolean networks.
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Yet other graph theorists focused on networks organized as regular lattices in
which nodes are connected only to their neighbors around a ring. Ermentrout and
Kopell (1984) demonstrated that such networks could generate traveling waves in
which oscillatory nodes around the ring would reach their maximum in succession.
This approach provided a powerful tool for explaining the traveling waves exhibited
in neuromuscular rhythms in the mammalian intestine as well as in the motor
behavior of species such as the lamprey (Kopell and Ermentrout 1988).

Not only do random networks and regular lattices exhibit different types of
behavior (synchronized activity versus traveling waves), they also exhibit patterns
of connectivity that have enabled subsequent researchers to place them along a
continuum. In the giant cluster of a random network, the number of edges that
must be traversed on average to get from one node to another (referred to as the
characteristic path length) is quite small whereas in regular lattices it is much
greater. On the other hand, around each node in a regular lattice there is a cluster
of highly interconnected nodes, whereas in a random network these clusters are
much smaller. The clustering coefficient measures the size of these clusters. The
short characteristic path length of random networks entails that activity across such
a network is integrated over a relatively short period of time but the low clustering
coefficient entails that there are no concentrated sets of nodes able to work together.
With the high clustering in regular lattices, nodes can collaborate on a given process,
but it takes much longer to relate the activity in one cluster to that occurring in
others.

Watts and Strogatz (1998) explored the region between these endpoints. Starting
from a regular lattice such as is shown on the left of Fig. 9.2 they investigated
what happened as they replaced local connections with long-range connections and
discovered that the characteristic path length dropped rapidly as the percentage of
connections were replaced but that the clustering coefficient remained high until
a much higher percentage was replaced. Watts and Strogatz referred to networks
in this intermediate range as small-world networks. They argued that a host of
real world networks exhibited small-world properties including not only the neural

Fig. 9.2 The graphs on the left illustrate how small world networks are intermediate between
regular lattices and random networks. One can view small-world networks as resulting from
rewiring a few edges in a regular lattice. As illustrated on the right, as the probability of rewiring
increases, the characteristic path length drops rapidly but the clustering coefficient remains
high. This intermediate region is where small worlds are found. (Reprinted by permission from
Macmillan Publishers Ltd: Nature, copyright (1998))
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network in C. elegans shown in Fig. 9.1, but also the electric power grid of the
Western U.S. and networks of co-appearance of actors in films. They also addressed
the functional significance of small-world organization, showing for example that
infectious diseases would spread much more rapidly in a small-world network than
in a regular lattice. In addition, they highlighted the computational power of such
networks. The key idea is that nodes that are highly clustered can be organized into
appropriate sub-networks for executing particular information-processing tasks but
that, as a result of the short characteristic path length, the nodes can be modulated
by activity occurring elsewhere.

The two measures Watts and Strogatz introduced—characteristic path length and
clustering coefficient—provide potent general measures for assessing the behavior
of any systems, including mechanisms, organized in such networks. Subsequently
Barabási and his colleagues addressed another measure of network architecture—
node degree. This is a measure of the number of edges linking a given node.
Specifically, Barabási focused on how node degree is distributed in a network.
Investigations of random networks by researchers such as Erdös and Rényi assumed
that node degree was distributed in a Gaussian fashion over a fairly narrow range. In
such cases there is a characteristic scale at which the network can be analyzed—that
is, at which component patterns can be identified. But Barabási and Albert (1999)
discovered that in many real world networks, including the protein interaction
network shown on the bottom in Fig. 9.1, node degree is distributed according to a
power-law function so that most nodes have only a limited number of connections to
other nodes while a very few have a very large number. These networks are referred
to as scale-free since there is no characteristic scale at which the pattern of network
activity can be identified. Barabási’s initial interest seemed to be in the robustness
of scale-free networks to random damage. A random removal of a node or edge
would typically have little effect on the overall network. For example, mutations in
the proteins shown in yellow and green in the protein interaction network in Fig. 9.1
have little or no detectable effects on the life of the yeast. These are by far most of
the proteins. Those shown in red, on the other hand, are required for the cell to live
while eliminating those shown in orange significantly affect growth. The red and
orange nodes typically have a far higher node degree.

When node degree is distributed according to a power-law, networks tend to have
modules organized around hubs. Hubs are highly connected nodes through which a
large amount of the activity in a system flows. Two different types of hubs can be
distinguished. Those with high clustering coefficients serve to coordinate activity
within a module and are often referred to as provincial hub. Others, however, serve
primary to link between modules, and are referred to as connector hubs. In many
networks, including brain networks that I discuss below, there are not sufficient
numbers of units to demonstrate true scale-freeness. But as long as some units have
many more connections than others, hubs will likely result and will be important
for understanding the behavior of the network. These networks can thus be regarded
as having scale-free characteristics even if they are too small to show true scale-
freeness.
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I will illustrate the use of these different tools for understanding the functioning
of mechanisms by focusing on research on the primate brain. Beginning with
the pioneering research of Hubel and Wiesel (1962, 1968), who recorded from
individual neurons in the region now known as V1 while presenting visual stimuli
and demonstrated that neurons in this region responded to edges in visual scenes,
researchers have identified a large number of brain regions important to visual
processing, extending from the occipital lobe into the parietal and temporal cortex,
and including a few frontal areas. Felleman and van Essen (1991) synthesized
information about 32 cortical regions in the Macaque monkey involved in visual
processing and the anatomical connections between them into the matrix shown on
the left in Fig. 9.3. Pluses indicated the existence of a connection between the area
listed on the left of each row and the area indicated at the top of each column. Visual
inspection reveals clusters of areas that are interconnected. Although Felleman and
van Essen did not themselves apply the measures discussed above, Sporns and Zwi
(2004) calculated path length and clustering and showed the network described
met the conditions for a small world. They applied similar measures and reached
a similar conclusion about the matrix they developed for the whole Macaque
brain based on data from Young (1993), shown on the right in Fig. 9.3. They
also focused on sub-regions in these matrices and showed that some regions have
different properties. Thus, V4 exhibits both a short path length and a low clustering
coefficient, characteristic of random networks. This suggests it is a connector hub.
Area A3a in the somatosensory cortex, on the other hand, is only connected to
A1 and A2, which are themselves connected, giving it a long path length but high
clustering. It is a provincial hub.

Techniques such as diffusion imaging and tractography have made it possible
to identify in non-invasive ways interconnections of brain regions, enabling the
extension of the approach to humans. Analyses of the networks identified through
these techniques indicate again the existence of a small-world architecture with
scale-free properties. Sporns et al. (2005) introduced the term connectome for these
efforts at identifying and analyzing connectivity of the brain. One particularly
intriguing finding from these studies which exhibits the usefulness of analyzing
brain connectivity in a graph-theoretical manner was the discovery by Hagmann
et al. (2008) of a set of hub regions along the anterior-posterior medial axis of the
human brain which includes the rostal and caudal anterior cingulate, the paracentral
lobule, and the precuneus. These regions are connected to each other and taken
together connect to virtually all the other cortical areas in both hemispheres. This
suggests the existence of a central network that is important for directing and
coordinating information processing throughout the brain. Focusing on these areas
promises to reveal how the brain coordinates specialized processing mechanisms
located in different areas of the brain, enabling them to work together as needed to
perform specific tasks.

The connectome project has focused primarily on anatomical connections, but a
major reason for identifying anatomical connections is the assumption that these
connections are likely to be important in coordinating functional activities in
the brain. Bullmore and Sporns (2009) have proposed a strategy for developing
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Fig. 9.4 Bullmore and Sporns (2009) proposal of a method for integrating structural and
functional connectivity analyses. From each approach a graphical representation is constructed
whose similarities can then be accessed. Reprinted by permission from Macmillan Publishers Ltd:
Nature Reviews Neuroscience, copyright (1991)

comparable graphs of functional relations that can then be correlated to the structural
graphs (see Fig. 9.4). The key to doing so is to employ techniques that provide time-
series data of brain activity. EEG, which detects oscillations in electrical potentials
in the 1–100 Hz range, offers one such measure. However, it is difficult to link EEG
activity to specific brain regions. fMRI provides far greater localization of activity
in the brain, but in initial applications was not used to support time-series analysis.
When Biswal et al. (1995) did perform time series analyses on successive scans,
they discovered ultraslow oscillations (<0.1 Hz) in sensorimotor areas that were
correlated across hemispheres. At about the same time Raichle and his colleagues
began studying people lying quietly in the scanner not performing a task (a condition
referred to as the resting state). Shulman et al. (1997) identified several regions
that exhibited greater BOLD signal in the resting state than in task conditions: the
junction of precuneus and posterior cingulate cortex, the inferior parietal cortex,
the left dorsolateral prefrontal cortex, a medial frontal strip that continued through
the inferior anterior cingulate cortex, the left inferior frontal cortex, the left inferior
frontal gyrus, and the amygdala. Since these areas were more active in the absence
of a task, they interpreted them as constituting the brain’s default mode network
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(the network of brain regions active in non-task conditions).6 Cordes et al. (2000)
developed the technique of functional connectivity MRI (fcMRI) analysis in which
they identified correlations in the oscillations in resting state BOLD signal between
regions and interpreted those areas whose activity was correlated as constituting
functional networks. Greicius et al. (2003) applied this approach to the default
mode network and demonstrated correlated resting state activity between the regions
identified as part of the default mode network. In a subsequently study Greicius
et al. (2009) integrated fmMRI studies to diffusion tensor imaging of structures to
establish structural connections between regions identified as parts of the default
mode network, thereby implementing Bullmore and Sporns’ proposed approach.

Other researchers have identified several additional networks whose activity
is correlated in the resting state (Mantini et al. 2007). van den Heuvel et al.
(2009) directly compared nine networks found in the resting state with diffusion
tensor imaging scans and found that “well-known anatomical white matter tracks
interconnect at least eight of the nine commonly found resting-state networks,
including the default mode network, the core network, primary motor and visual
network, and two lateralized parietal-frontal networks.” Analyzing these networks
graph-theoretically, He et al. (2009) found that the combined networks exhibited a
small-world architecture with modules characteristic of scale-free networks, but that
the individual modules exhibited different architectures that might be appropriate for
the computations each performs.

In this section I have focused on graph-theoretical formalization of whole
networks that represent mechanisms either individually or as constituents of larger
systems such as the brain. Starting with tools to analyze random networks or regular
lattices, graph theorists have developed measures such as the characteristic path
length, the clustering coefficient, and the distribution of node degree. Using these
measures, they have revealed small-world networks with scale-free characteristics
such as nodes and hubs in many biological systems. Appeals to such features
support generalizing conclusions about how mechanisms behave across different
mechanisms that instantiate the same graph structure with different component parts
and operations.

3 Sub-graph Organization: Motifs

In addition to ways of characterizing the organization found in whole graphs
and showing the consequences different organizations have for the functioning of
mechanisms exhibiting such organization, researchers have also begun to focus on
sub-graphs embedded in these larger graphs that can be shown to yield specific

6The one type of task that yields comparable activation in these regions are episodic memory tasks,
resulting in the suggestion that while resting quietly in the scanning individuals are remembering
events in their lives or planning future events (see Buckner et al. 2008).
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types of behavior. Until near the end of the twentieth century, only one such pattern,
negative feedback, in which an edge from a subsequent node in a pathway has
an inhibitory effect on one earlier in the pathway, had been subject to systematic
analysis. Pioneering cyberneticists saw this as a mode of organization that could
keep a process at a target level and Rosenblueth et al. (1943) argued that it was a
design capable of explaining the apparent teleology or goal directness of various
biological or engineered systems. While negative feedback was soon recognized
as a common mode of organization in many biological systems, few biologists
attended to another feature of negative feedback that physicists and engineers had
identified—its capacity to support oscillations. Among the exceptions was Goodwin
(1965), who analyzed negative feedback with a particular emphasis on conditions,
such as non-linear interactions, that would generate sustained oscillations.

A major impetus for research on additional sub-graph structures with char-
acteristic effects on mechanism behavior was a mode of analysis developed by
Alon in his investigation of gene transcription and protein interaction networks
in bacteria and yeast (for a comprehensive overview, see Alon 2007a). Figure 9.5
shows a network that represents about 20 % of the transcription interactions in E.
coli; the nodes are genes and edges are included when the product of one gene
regulates the transcription of another. Alon and his collaborators identified a number

Fig. 9.5 Network representation of approximately 20 % of the transcription interactions in E. coli.
The nodes represent genes and an edge indicates that the product of one gene exhibits regulatory
effects on those of another. (Figure from Professor Uri Alon, who kindly has provided permission
to reproduce it here)
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of “recurring, significant patterns of interconnections” within sub-graphs (of 1–
4 nodes) that appeared far more frequently than would be expected by chance
(Milo et al. 2002, p. 824). He calculated the frequency expected by chance by
counting how often these patterns occurred in randomly constructed networks of the
same degree of node connectivity and devised an algorithm for searching databases
specifying network connectivity for unusually frequently occurring subgraphs.
Shen-Orr et al. (2002, p. 64) applied the term motif to these sub-graphs: “We
generalize the notion of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of interconnections that recur in
many different parts of a network at frequencies much higher than those found in
randomized networks.”7

Figure 9.6 illustrates three variations of a three-node sub-graph known as the
feedforward loop that Mangan et al. (2003) reported as occurring in “hundreds of
non-homologous gene systems” in the full transcription network of E. coli. This
motif consists of three nodes representing operons in which the first (X) responds to
an input signal (S) by producing a transcription factor that both regulates an operon
for producing an output protein (Z) and an intermediate operation (Y) which also
produces a transcription factor that regulates the output. The edges between operons
can represent situations in which the first activates or inhibits the second. Making

Fig. 9.6 Three versions of the feedforward loop motif investigated by Alon and his collaborators

7See also Braillard (2015, this volume) for a discussion of the heuristic and explanatory role of
such motifs and more generally of modules in biology.
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only very general assumptions about the component parts and operations (e.g., that
each node represents a molecule that is synthesized proportional to the input that
is received on the edges coming into it, that it takes time for the concentration of
the molecule to build up, and that the triangular nodes operate as either AND or
OR gates), Shen-Orr et al. (2002) demonstrated with a Boolean analysis that the
motif on the left operates as a persistence detector. That is, it ensures that synthesis
of product Z does not begin unless the input to X endures for some time. Only then
will Y also accumulate so that both inputs to the AND-gate regulating Z are present.
If the input to X is transient, by the time Y responds sufficiently to provide input to
Z the input from X will have degraded.

By changing the AND-gate to an OR-gate, as illustrated in the middle of Fig. 9.6,
the motif provides a buffer against interruption of the input to X. Keeping an AND-
gate for the output operon but making the effect of Y on Z repression results
in a motif that generates pulses.8 These motifs are simple enough that one can
simulate their functioning mentally. But Alon and his collaborators also provide
computational simulations to support their assessment. They further identified
specific instances in which the motif occurs in E. coli and showed how the imputed
function is appropriate for controlling the particular operon occurring at Z. Thus,
Mangan et al. (2003) identify the network on the left in Fig. 9.6 as occurring in the
operon regulating the arabinose operon in which it is important not to commence
the synthesis of the enzymes required to metabolize arabinose unless the absence of
glucose, that plays the role of X, is sustained. Kalir et al. (2005) report that the motif
in the middle occurs in the system regulating the construction of the flagellum where
it ensures that the construction will continue until completion even if the initiating
signal is interrupted. Finally, Mangan et al. (2006) identify the motif on the right
as occurring in the galactose utilization system to generate a pulse of the needed
enzyme galE when glucose is absent and galactose is present.

Alon and his colleagues have explored various ways in which motifs can be
extended (Alon 2007b). For example, X could be replaced by two units, each
of which sends inputs to Y and Z. This pattern occurs frequently in the E. coli
transcription network. Or Z could be replaced by two or more outputs. This occurs
frequently in the C. elegans neural network. A variant occurs in the mechanism
for creating the flagellum in bacteria such as E. coli. The flagellum is a complex
structure of nearly three-dozen parts that is built, for the most part, from the
membrane out (Berg 2004; Macnab 2003). Each part must be added in sequence,
which Shen-Orr et al. (2002) demonstrate can be achieved by a multi-output
feedforward loop where the different outputs are regulated by parameters that set
thresholds for response (see Fig. 9.7). By increasing threshold parameters K1 to

8In his analysis of the neural network in C. elegans that he helped identify (discussed above),
White (1985) identified the frequent occurrence of the feedforward loop and considered the case in
which the connection from Y to Z was inhibitory. He proposed X would initially elicit a response
from Z, but this would be soon be suppressed as a result of the negative connection from Y to Z.
He suggests: “The whole system would therefore act as a differentiator, the output from [Z] being
proportional to the rate of change of stimulus. As the animal is constantly moving, this reformation
is probably of more value to it than an absolute measure of the stimulus.”
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Fig. 9.7 Multi-output feedforward loop. Threshold parameters K1 to Kn determine the order in
which operons Z1 to Zn are activated while threshold parameters K

0

1 to K
0

n determine the order in
which they are turned off

Fig. 9.8 Five different 3-node subgraphs that occur especially frequently in different networks
and so qualify as motifs on Alon’s approach

Kn on the connection between X and each of Z1 to Zn it is possible to begin
each synthesis in order as the input from X increases over time (each successive
Z becomes active only when the input from X has exceeded its threshold). If K1

to Kn were the only thresholds employed, when X declined, Zn would be the first
to stop. But it is also important to stop the activity required to build the first part
when it is completed. This is achieved by decreasing the parameters K

0

1 to K
0

n on the
connection between Y and each of Z1 to Zn. Now the first Zn to fall below threshold
will be Z1. The resulting arrangement Shen-Orr et al. refer to refer to as first in, first
out.

A key point of Alon’s analysis is that different sub-graphs meet the frequency
condition for being a motif in different systems. Of the 13 possible sub-graphs
connecting 3 nodes, in the E. coli transcription network only variants of the
feedforward loop occur at a frequency more than 10 standard deviations above the
mean frequency found in randomly constructed networks (and just 1 of 199 possible
sub-graphs connecting 4 nodes, the bi-fan, meets this condition). But in food web
networks, a simple chain (shown on the top in Fig. 9.8) meets this standard, and in
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electronic circuits the feedback loop (second from the left) qualifies. In their analysis
of the connectivity of brain regions in the cat and monkey cortex, Sporns and Kötter
(2004) report that the dual dyad (middle) occurs frequently, although its occurrence
is most frequent when the apex node is a hub region.9 In the C. elegans nervous
system the two sub-graphs shown on the right are especially frequent.

In differentiating sub-graphs as motifs, Alon required that they occur in a given
graph far more frequently then would be expected by chance. The motivation for this
appears to be to provide the basis for proposing that motifs are adaptations promoted
by natural selection. Several commentators have challenged use of random networks
as a basis for establishing that motifs are adaptations (Artzy-Randrup et al. 2004;
Solé and Valverde 2006).10 However, one need not be an adaptationist to look to
the analysis of sub-graphs to understand the design principles found in biological
mechanisms (see Green et al. 2015). The analysis that Alon provides as to how
sub-graphs function does not depend on motifs being adaptations or even occurring
frequently. Even if a sub-graph occurs infrequently in a network, it can still perform
the function revealed by mental or computational simulation of it. Accordingly,
several researchers have generalized the concept of a motif to apply to small sub-
graphs independently of their frequency of occurrence. Tyson and Novák (2010),
for example, have developed differential equation models to explore the behavior of
all two and three unit sub-graphs over a range of parameter values. A particularly
interesting example from their analysis is the double-negative feedback sub-graph
shown on the left in Fig. 9.9. For a range of parameter values, as illustrated on the
right, this motif yields a bi-stable toggle switch—it has two stable configurations
between which it can flip between but where the activation of S needed to turn on
unit R is much higher than that which turns it off. In the case shown, S must be
increased above Qactivate to turn R on, but it must decrease below Qinactivate to turn
R off. Such a sub-graph is extremely useful in situations in which it is important
to maintain directionality in a process that will eventually repeat (such as the
eukaryotic cell cycle) as it prevents temporary drops in the input from reversing
the output but allows substantial drops to do so.

Beginning with Alon’s work, researchers have analyzed sub-networks of 2–4
units and shown distinctive ways each functions by means of mental simulations
and computational analyses. This provides a powerful tool for analyzing how
different modes of organization found in mechanisms will affect the behavior of
these mechanisms. As with whole-graph analyses, these analyses abstract from the
details of the components found in the network and so, subject to certain minimal
conditions, can be applied to any networks in which the sub-graphs are found.

9They report that computational analyses show that dual dyads are particularly effective in
promoting zero phase-lag synchrony over long distances, which is important if hubs are to
coordinate synchronous activity between brain regions.
10Ward and Thornton (2007) propose a possible origin of feedforward loops from another motif
the authors term the bi-fan array to genome-wide duplication followed by random rewiring. This
provides an explanation for their occurrence that doesn’t depend on selection, although Ward and
Thornton do not deny that selection may have also favored these motifs.
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Fig. 9.9 The double negative feedback loop. The signal S and the response R each inhibit the
other. With appropriate parameter values, this motif gives rise to a bi-stable switch in which the
value of the signal must rise above Qactivate for R to turn on, but once on it must decrease below
Qinactivate before R turns off

4 Manipulating Whole-Graph Representations
to Extract Motifs

In the examples discussed above, motifs were identified directly by analyzing
the graphical representation of the mechanism. But in some cases investigators
need to perform a series of operations on an initial graphical representation to
identify motifs. I offer an example from circadian rhythm research in which such
manipulations of a graphical representation have provided new insights into the
working of the mechanism.

Circadian rhythms are endogenously generated oscillations of approximately 24-
h that can be entrained to local cues such as light exposure and that regulate a wide
range of physiological activities and behaviors. The critical mechanism is located
within individual cells. As a result of the discovery of a gene (period or per) in which
mutations resulted in aberrant circadian behavior in fruit flies (Konopka and Benzer
1971) and subsequent discovery that the mRNA and proteins synthesized from
this gene oscillated with an approximately 24-h period, researchers hypothesized
a transcriptional-translational feedback mechanism (Hardin et al. 1990). On this
proposal, the protein PER synthesized from per mRNA feeds back to inhibit the
transcription of per by interfering with activities at its promoter site (see the left
side of Fig. 9.10). When PER finally breaks down, the inhibition is relaxed and
transcription begins again. With appropriate time delays and non-linear interactions,
Goldbeter (1995) showed that this mechanism could generate sustained circadian
rhythms. However, subsequent research has revealed many more components to
the mechanism involving multiple interacting feedback loops. The feedback loop
involving Per is shown in the upper quadrant of the diagram on the right in Fig. 9.10
where it is now accompanied by, among other things, a positive feedback loop that
produces the CLOCK:BMAL1 dimer that binds to the promoter on Per.
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Fig. 9.10 The simple transcription-translation feedback loop as initially proposed by Hardin et al.
(1990) is shown on the top. On the bottom is a representation by Zhang and Kay (2010) of the
mammalian clock mechanism as it was understood circa 2005. (Reprinted by permission from
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology, copyright (2010))

A notable feature of both representations in Fig. 9.10 is that time is not explicitly
represented. Rather, the viewer must follow through the sequence of operations
to understand how the processes are carried out over a 24-h period. With one
feedback loop, as on the top in Fig. 9.10, this is not too difficult, but with multiple
feedback loops, as shown on the bottom, this becomes increasingly challenging.
Activities are occurring in several feedback loops at the same time, and the figure
provides no support for determining when each occurs in relation to the other. As
a result, it becomes increasingly hard to understand what about the mechanism
generates oscillation. In an attempt to understand the systemic organization of this
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mechanism that generates oscillation, Ueda and his colleagues developed a different
technique for representing the mechanism. Instead of focusing on the feedback loops
themselves, they focused on what they call clock controlled elements (CCEs): the
short DNA sequences shown near the promoter region of clock genes on the right in
Fig. 9.10 and labeled E-box, D-box, and RRE. Each of these adjoins the promoter
of a number of clock genes and in turn is regulated positively or negatively by
another, partially overlapping set of clock genes. Using a cell-culture system in
which a firefly luciferase reporter was inserted downstream of the clock-controlled
promoters, Ueda et al. (2005) determined the circadian time of peak activity for each
CCE: the E/E0-box regulates gene expression in the morning, the D-box regulates
gene expression 5 h later in the evening, and the RRE regulates expression 8 h later
during the night.

Given the distinctive timing at which each CCE regulates transcription, Ueda
and his colleagues put them at the center of their graphical formalization of the
mechanism (see the left side of Fig. 9.11). Time can be visualized as moving
clockwise around the triangle formed by the three CCEs. The various transcription
factors that regulate a CCE are shown around it—those that serve to activate a
particular CCE are shown in green ovals and linked to it with green arrows while
those that repress it are shown in red ovals and linked to it with bar-ended lines.
There is a grey line from the node for the CCE to the transcription factors of
the genes with which the CCE is associated. As an illustration, there are grey
lines between the E/E0-box and the D-box to Per1 (indicating that both boxes
figure in its regulation). There is also a red arrow back to the E/E0-box, indicating
that Per1 represses the E/E0-boxes. This graphical formalization renders the clock
genes/proteins simply as intermediaries between the three CCEs. This is further

Fig. 9.11 On the left is Ueda’s re-representation of the mammalian circadian clock mechanism
in which the clock controlled elements (CCEs) are shown as rectangles in the center with grey
lines linking the CCEs to the transcription factors whose genes they regulate and green and red
arrows represent the effect of these transcription factors on other CCEs. On the right the details of
the intermediary transcription factors are removed to reveal the minimal circuit shown at the top,
which is then decomposed into two component circuits (Reprinted from Minami et al. 2013, With
kind permission from Springer Science and Business Media)



220 W. Bechtel

illustrated by the minimal circuit diagram shown on the right in which there are
excitatory and inhibitory arrows between two CCEs if there is a gene/protein
associated with one CCE that has such an effect on the other CCE. For example,
there is a green arrow between the E/E0-box and the D-box since the E/E-box is
associated with Dpb and DPB is an activator of the D-box.

The point of this graphical formalization of the clock mechanism is to advance
an explanation of how this mechanism is able to generate oscillatory behavior. Ueda
shows that the minimal circuit can be treated as a composite of the two component
circuits shown on the bottom right in Fig. 9.11—the repressilator and delayed
negative feedback. Although these circuits are intended to be simplifications of
complex networks, they have the same form as motifs for specific circuits. In both
computational models and synthetic models, each has been shown to give rise to
sustained oscillations (Elowitz and Leibler 2000; Stricker et al. 2008). When their
analysis reveals the same circuit structure in these larger networks, Ueda and his
colleagues conclude that the occurrence of the circuit structure in those networks
explains their oscillatory behavior.

As this case indicates, researchers sometimes find it useful to modify the initial
graphical formalization of a mechanism to reveal the underlying graph structural
that explains the behavior of the mechanism. Thus, in this case, researchers started
with a graph formalization in which all of the transcription factors were indicated
(although this formalization already simplified by not distinguishing between the
genes and the transcription factors). This was already an innovative formalization
since it put the CCEs at the center. But the researchers then abstracted further,
collapsing all the transcription factors linking one CCE to another into a single
edge. This resulted in a minimal circuit that the researchers could further decompose
into two motifs, already known from work on sub-graphs to be able to generate
oscillations. The fact that they were able to reduce the whole network as formalized
in a graph to two motifs known to generate oscillations enabled researchers to
advance an distinctive explanation of how the much more complicated whole
mechanism operates as a circadian clock. On their account, it is the fact that
the relations between CCEs instantiate appropriate motifs that explains circadian
rhythmicity.

5 Conclusions

A challenge in mechanistic research is how to generalize explanations developed
for particular mechanisms occurring in specific tissues or organisms to mechanisms
that employ similar modes of organization. Each type of mechanism (e.g., the
mechanism for generating circadian rhythms in mouse SCN cells) employs its own
mode of organization and this would seem to require an idiosyncratic explanation
for each specific mechanism. When mechanisms employ parts that behave similarly,
this knowledge can be generalized, but it has not been clear how one could do this
for organization. Graph-theoretic approaches, however, are providing powerful tools
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for formalizing organization patterns. By formalizing a given mechanism in a graph
in which the parts are nodes and the interactions are edges, investigators abstract
from the details of the specific parts and operations. Making minimal assumptions
about the operations represented in edges, researchers can often draw inferences
about how any mechanism exhibiting that organization will behave. Moreover, they
can generalize across graphs by showing, for example, that despite differences, a set
of properties is shared by the graphs that result in the same pattern of behavior. Once
researchers have analyzed how mechanisms instantiating a graph structure or related
graph structures behave, they can generalize that explanation to other mechanisms
that instantiate the same abstract structure.

I have focused on graph theoretic analyses both of graphs representing whole
mechanisms or networks of mechanisms and of sub-graphs found within larger
graphs. By employing measures such as the characteristic path length, the clustering
coefficient, and degree distribution, researchers have been able to classify whole-
graphs and demonstrate some of the expected properties of these graphs when
realized in different systems. In particular, research on scale-free small-world
networks provides ways to understand both the specialized processing capacities
within a larger system and the ways in which these modulate each other to achieve
coordinated function. By focusing on sub-graphs of just a few nodes, researchers
have demonstrated patterns of behavior different sub-graphs or motifs are expected
to produce such as buffering against noise or executing operations in sequence.
These can be applied to any network in which the motif is realized. I concluded with
an example that showed how researchers have found ways to manipulate whole-
graphs to reveal patterns of organization whose behavior is well understood. They
then appealed to these organizational patterns to explain the behavior of the whole
mechanism.

As biologists have discovered more and more complicated mechanisms incor-
porating non-linear interactions of components, the challenge of explaining their
behavior has increased. Computational modeling has resulted in dynamical mech-
anistic analyses that attempt to integrate details about parts and operations and
information about how these are organized. Graph theoretic approaches provides
additional resources, enabling researchers to identify common abstract graph
structures in different mechanisms and generalize the results developed for one
mechanism to other mechanisms sharing that structure.
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