
Chapter 15
From Mechanisms to Mathematical Models
and Back to Mechanisms: Quantitative
Mechanistic Explanations

Tudor M. Baetu

Abstract Despite the philosophical clash between deductive-nomological and
mechanistic accounts of explanation, in scientific practice, both approaches are
required in order to achieve more complete explanations and guide the discovery
process. I defend this thesis by discussing the case of mathematical models in
systems biology. Not only such models complement the mechanistic explanations
of molecular biology by accounting for poorly understood aspects of biologi-
cal phenomena, they can also reveal unsuspected ‘black boxes’ in mechanistic
explanations, thus prompting their revision while providing new insights about the
causal-mechanistic structure of the world.

Keywords Scientific explanation • Quantitative-dynamic explanation • Mecha-
nism • Mathematical model • Systems biology

1 Introduction

Inspired by the deductive-nomological tradition, some philosophers suggested that
at least some mathematical models explain biological phenomena by applying the
laws and theories of physics and chemistry to biological systems (Smart 1963;
Weber 2005, 2008). Knowledge of the peculiarities of a given biological system
supplies a list of parameters corresponding to the various parts of the system,
their interactions and organization, as well as the initial and boundary conditions
to which the system is subjected under experimental or physiological conditions.
The laws and theories associated with the model provide a set of rules describing
the relationships between parameters and how these relationships change with
time. These rules, suitably expressed in mathematical language, play a key role
in explanation by making possible the derivation of descriptions of phenomena by
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means of analytic and, more recently, computational methods. For example, using
the Hodgkin and Huxley (1952) model as a case study, Marcel Weber (2005) argues
that the mechanistic descriptions of molecular and cellular entities, activities, and
organizational features (e.g., cell membranes, ions) specify how a physicochemical
theory should be applied, while the explanatory burden falls on the regularities that
describe the behavior of the system (in this case, a physicochemical law known as
Nernst equation), and on how a description of the phenomenon of interest can be
derived from these regularities.

Drawing on the highly influential view that biological phenomena are explained
by showing how they are produced by mechanisms1 (Bechtel 2006; Craver 2007;
Darden 2006; Wimsatt 1972), Carl Craver (2006, 367) defends a very different
view of the explanatory role of mathematical models: “[m]odels are explanatory
when they describe mechanisms.” In response to Weber, Craver points out that
the Hodgkin and Huxley model also includes hypothetical assumptions and unin-
terpreted parameters whose purpose is to render the model empirically adequate.
Empirical adequacy could have been obtained by appealing to a different set of
assumptions and parameters (e.g., a different number of ion currents), while a
different physical interpretation of certain parameters would have yielded a different
mechanistic explanation of the phenomenon under investigation. Craver concludes
that the Hodgkin and Huxley model is an incomplete ‘how-possibly’ account
providing some preliminary insights about the possible mechanisms responsible
for generating and propagating action potentials along axons, but should not be
confused with the explanation of the phenomenon. In order to be explanatory, a
model should provide a complete description of the mechanism actually responsible
for a phenomenon. This description must “include all of the relevant features of
the mechanism, its component entities and activities, their properties, and their
organization” (Craver 2006, 367),2 and “exhibit productive continuity without gaps
from the set up to termination conditions” (Machamer et al. 2000, 3). In turn,
a complete inventory of the explanatorily relevant mechanistic components and
features, along with a specification of their causal-role and productive continuity
provide an intuitive understanding of how phenomena are produced.3

1Machamer, Darden, and Craver define mechanisms as “entities and activities organized such that
they are productive of regular changes from start or set-up to finish or termination conditions”
(2000, 3). Alternatively, a mechanism is “a complex system that produces that behavior by the
interaction of a number of parts, where the interactions among parts can be characterized by direct,
invariant, change relating generalization” (Glennan 2002), or “a structure performing a function
in virtue of its component parts, component operations, and their organization [ : : : ] responsible
for one or more phenomena” (Bechtel and Abrahamsen 2005). McKay and Williamson (2011)
propose a more generally applicable characterization, according to which a “mechanism for a
phenomenon consists of entities and activities organized in such a way that they are responsible
for the phenomenon.”
2Explanatory relevance is equated to causal relevance and demonstrated by means of experimental
interventions (Baetu 2012a; Craver 2007; Woodward 2003).
3“Intelligibility [ : : : ] is provided by descriptions of mechanisms, that is, through the elaboration of
constituent entities and activities that, by an extension of sensory experience with ways of working,
provide an understanding of how some phenomenon is produced” (Machamer et al. 2000, 22).
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Both Weber and Craver agree that mathematical models can be explanatory,
but they attribute explanatory value to very different features of these models.
For Weber, the explanation lies specifically in the derivation of a description of
phenomena from mathematically formulated law-like regularities, while for Craver
a mathematical model is explanatory only to the extent it identifies the physical
structures actually responsible for causing the phenomena.4 Ultimately, propositions
can be derived from other propositions whether or not these derivations reflect the
causal structure of the world, while mechanistic structures can be identified exper-
imentally without relying on any kind of conceptual derivation. This divergence
about what counts as an explanation often translates into a direct contradiction: the
same model may be deemed explanatory under a deductive-nomological approach,
but not under a mechanistic one, as demonstrated in the case of the Hodgkin and
Huxley model; conversely, qualitative descriptions of biological mechanisms count
as explanations under a mechanistic approach, but have no explanatory value under
a deductive-nomological approach.

I argue that despite this philosophical clash between deductive-nomological
and mechanistic accounts, scientific practice can rely on an explanatory pluralism
in which the two approaches are not only complementary, as recently argued
by William Bechtel and Adele Abrahamsen (2010, 2011), but also dynamically
integrated in a process of reciprocal validation. The view defended in this paper
is that mathematical models play an explanatory role by attempting to provide an
answer to the question “Can the proposed mechanism generate the phenomenon
of interest in all its minute quantitative/dynamic details?” Using examples from
the recent scientific literature, I show how the answer to this research question
reveals both agreements and disagreements between mechanistic explanations and
mathematical models of mechanisms involving derivations of descriptions of phe-
nomena. Agreements are used to infer or reinforce the completeness of mechanistic
explanations; conversely, disagreements between models and mechanisms prompt
revisions of either or both models and mechanisms. I argue that, at least in some
cases, attempts to reach an agreement between models and mechanisms generate
progressive research programs, in the sense that these cycles of modifications and
revisions reveal novel ways of thinking about the ontology of mechanisms, as well
as surprising explanations to seemingly unrelated scientific puzzles. For additional
discussions on the relationship between mechanistic and mathematical models see
chapters in the present volume by William Bechtel (2015, Chap. 9), Pierre-Alain
Braillard (2015, Chap. 14), Ingo Brigandt (2015, Chap. 7), Tobias Breidenmoser
and Olaf Wolkenhauer (2015, Chap. 11), Fridolin Gross (2015, Chap. 8), Tarik Issad
and Christophe Malaterre (2015, Chap. 12), and Frédérique Théry (2015, Chap. 6).

4Both views admit gradations in explanatory value. Models incorporating fundamental laws
provide deeper explanations than models relying on more superficial regularities describing
the behavior of a certain type of systems. Likewise, under a mechanistic approach, a model
incorporating a more complete description of a mechanism is better than a model relying on a
sketchier description. For an account of the completeness of mechanistic explanations, see (Baetu
2015)

http://dx.doi.org/10.1007/978-94-017-9822-8_9
http://dx.doi.org/10.1007/978-94-017-9822-8_14
http://dx.doi.org/10.1007/978-94-017-9822-8_7
http://dx.doi.org/10.1007/978-94-017-9822-8_11
http://dx.doi.org/10.1007/978-94-017-9822-8_8
http://dx.doi.org/10.1007/978-94-017-9822-8_12
http://dx.doi.org/10.1007/978-94-017-9822-8_6
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The paper is organized as follows: I begin with a brief introduction of mathe-
matical models of molecular networks in systems biology (Sect. 2), followed by a
discussion of how mathematical models combine the application of laws, modeling
and analysis strategies from chemistry, cybernetics, and systems theory (Sect. 3)
with knowledge of mechanisms (Sect. 4). In Sect. 5, I show how mechanistic
explanations and mathematical models complement each other. I then proceed in
Sect. 6 to show that mechanisms and models don’t always coexist in a state of
static complementarily, but can also contradict each other. Based on an analysis
of recent examples from science, I argue that mathematical models can provide
criteria for assessing the completeness of mechanistic explanations and I show how
the disagreements between models and mechanisms prompt important revisions of
the current understanding of the molecular-mechanistic basis of biological activity.
Finally, in Sect. 7, I summarize my findings and arguments.

2 A Brief Introduction to Mathematical Models of Molecular
Networks

Molecular biology is one of the most important scientific achievements of the
twentieth century. In conjunction with biochemistry and cell biology, it succeeded in
explaining biological phenomena in mechanistic terms. Nevertheless, the approach
pioneered by molecular biology has one important shortcoming: it yields primarily
a qualitative understanding of mechanisms acting in isolation. The challenge for
the twenty-first century biology is to integrate current knowledge of mechanisms
into a conceptual framework that is “holistic, quantitative and predictive” (Kritikou
et al. 2006, 801). This challenge was answered by an emerging field of investigation,
dubbed ‘systems biology.’

One strategy by means of which systems biologists hope to achieve their goals
relies on mathematical modeling of molecular networks. Networks are abstract
representations of physical systems consisting of parts connected by a web of rela-
tionships. Molecular networks represent molecular mechanisms broadly construed,
including signal transduction pathways, metabolic pathways, as wells as more com-
prehensive systems composed of several mechanisms. The nodes of the network rep-
resent mechanistic entities (proteins, genes), while the connections between nodes
represent mechanistic activities (chemical reactions rates, activation/inhibition).
Other information about the modeled mechanisms (e.g., structural details of pro-
teins, their tridimensional configuration, chemical mechanisms of reaction) is
usually ignored, hence the abstract representational nature of molecular networks.

Mathematical modeling quantifies qualitative descriptions of networks, with
most models falling in two distinct categories: discrete and continuous. Discrete
quantification works on the assumption that the behavior of the network is
determined by thresholds (e.g., a gene can be either expressed or not expressed). The
same network can also be modeled in such a way that its nodes can take continuous
values (e.g., the concentration of gene products can take any values within given
intervals). Once the nodes are quantified, one can mathematically represent all the
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possible states of the network; that is, all the possible combinations of the values of
the nodes. The next step is to determine how the state of the network changes over
time because of its internal wiring and external inputs, something which is achieved
by introducing transition rules for each node. In discrete networks, the rules by
means of which nodes act on each other are represented by logical functions.
In continuous networks, systems of differential equations represent the rates of
change of the value of any given node in terms of the values of other nodes and
external inputs.5

It is interesting to note that while Craver allows for mathematical models of
mechanisms, we are never told what, if anything, quantification and mathematical
formalism add to the explanatory value, the completeness, or the intelligibility
of the model. We are now in a better position to answer this question. Since
mathematical models incorporate very precise assumptions about how a system
changes from one state to another, we can conclude that they allow for a more
detailed description of productive continuity. The fact that this description deals with
quantitative changes further suggests that mathematical models may be necessary
in order to achieve precise quantitative manipulations of mechanistic components
(as opposed to semi-quantitative ones, such as knockout or over-expression) and
to design synthetic mechanisms that behave in quantitatively precise ways [e.g.,
the repressilator (Baetu 2015; Elowitz and Leibler 2000; Morange 2009)]. Finally,
mathematical models reveal that networks can exhibit a number of unsuspected and
perhaps physiologically significant properties such as attractors and steady states,6

robustness and sensitivity,7 adaptability,8 and hysteresis9 (for the evolutionary
significance of these novel properties, see Brigandt, Chap. 7).

5For a more technical description, consult Shmulevich and Aitchison (2009). Additional assump-
tions are required in order to construct a model of a network. One has to choose between a
synchronic and an asynchronous updating scheme, between a binary, multi-value, or stochastic
logic, between different kinetic laws, between ordinary and partial differential equations, etc.
Without these assumptions, it is impossible to model the dynamic behavior of the network.
6These states amount to long-term behaviors of networks and can be experimentally measured, thus
allowing for precise quantitative predictions, as well as an assessment of the empirical adequacy
of the model.
7Robustness is insensitivity to the precise values of biochemical parameters (changes in reaction
rates, concentrations of substrates), thus allowing a system to function in a wide range of
conditions and resist certain perturbations. Sensitivity denotes the contrary, namely a situation
where a mechanism is operational only if the values of its parameters are fine-tuned to specific
values. Robustness and sensitivity allow for optimization analysis, which is especially useful for
identifying which mechanistic components should be targeted in order to achieve a desired result
with maximal efficiency and minimal side effects.
8Ability to adapt to ‘background noise’: the smallest change in stimulus intensity that can be
sensed (�S) increases with the background stimulus intensity (S), such that �S/S remains constant
(Weber-Fechner law).
9A network may display more than one ‘stable state’, and it is possible that a change in the system’s
state caused by a transient stimulus (e.g., external input, temporary change in gene expression)
is not followed by a return to the initial state when the stimulus is withdrawn. It has been
hypothesized that such states may underlie developmentally differentiated cell types (Kauffman
2004) or physiological cell states [e.g., proliferating vs. apoptotic cells; (Huang 1999)].

http://dx.doi.org/10.1007/978-94-017-9822-8_7
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3 Mathematical Models as Applications of Chemistry,
Cybernetics, and Systems Theory

Early system theorists aimed to formulate a set of general principles governing the
behavior of systems in all fields of scientific investigation. Most famously, von
Bertalanffy (1976, 32) argued that “there exist models, principles, and laws that
apply to generalized systems or their subclasses, irrespective of their particular
kind, the nature of their component elements, and the relationships or ‘forces’
between them.” This view is sometimes echoed by contemporary systems biologists.
For example, in their discussion of a previously proposed continuous model of
the bacterial chemotaxis signal transduction pathway revealing robustness, Baker
et al. (2006, 190) claim that “[o]ne of the primary objectives of systems biology
is to formulate biological laws that are akin to the laws of physics.”10 In turn, a
generally applicable understanding of the relationship between a system’s structure
and its properties can yield ‘design explanations’ showing “why a given structure
or design is necessary or highly preferable in order to perform a function or to
have an important property like robustness” (Braillard 2010, 55); for a discussion
of generalizable mechanistic explanations based on graph-theoretic considerations,
see Bechtel, Chap. 9.

Under this approach, mathematical models in systems biology can be treated
as applications of the modeling, analytic and computational methods of analysis
pioneered by systems theory. This clearly amounts to a form of explanatory
heteronomy of systems biology on systems theory,11 although it is important to
keep in mind that explanatory tools are indirectly borrowed from many fields
of investigation, systems theory being more an interdisciplinary rendezvous point
than a thoroughly unified science. For example, discrete modeling has its roots
in cybernetics, computer science and engineering, while continuous models incor-
porate laws and mathematical models from chemical kinetics, some of which are
themselves applications of statistical mechanics and thermodynamics to the field of
chemistry (see also Braillard, Chap. 14).

It is also interesting to note that any given network may be mathematically
modeled in more than one way, and, depending on the modeling strategy and
associated assumptions, the same network may or may not be shown to possess

10The ‘laws’ to which they refer have a variable degree of generality, ranging from common
features of networks displaying specific properties, such as robustness or adaptability, to more
general properties of generic networks. Examples of the latter are found in Kauffman’s (1993)
seminal work on Random Boolean Networks (networks in which the connections between nodes
are wired randomly). By investigating the behavior of such networks, some general principles
emerged; for instance, networks become chaotic as the number of connections per node increases.
11Weber (2005) argues for an ‘explanatory heteronomy’ of biology on physics and chemistry, and
spells out the sense in which the former reduces to the latter: biology relies on the laws of physics
and chemistry in order to generate explanations, and, in this respect, can be viewed as applied
physics and chemistry.

http://dx.doi.org/10.1007/978-94-017-9822-8_9
http://dx.doi.org/10.1007/978-94-017-9822-8_14
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certain properties. In order to claim that the model explains certain aspects of
biological phenomena, one needs to know to what extent a given set of modeling
assumptions is true or approximately true of a given biological system; this
determines the degree to with which the biological system is expected to behave as
described by its corresponding model. As it turns out, mathematical models tend to
incorporate several unverified, and potentially idealizing assumptions. Idealizations
are problematic in many fields of investigation, yet the problem is more acute
in systems biology. For example, in physics, it is usually clear what exactly is
being idealized and to what extent; think of Newton’s idealization of Earth as a
homogenous sphere or as a material point. By contrast, in systems biology, very
little is known about real time concentrations of substrates and real time kinetics of
reaction, to the point that it is seldom clear to what extent a model idealizes these
features, what are the potential drawbacks of these idealizations, and what can be
done to correct the situation.12

This incertitude creates a paradoxical situation: mathematical models have the
potential to explain, in Weber’s deductive-nomological sense, yet it is often not clear
to what extent they actually explain. Another way to frame this situation is to think
of the explanatory value of a mathematical model as being contingent on additional
evidence demonstrating that the model is a suitable surrogate of the physical system
being modeled, such that knowledge generated by studying the model can be safely
extrapolated to the target physical system and its ability to generate the phenomenon
of interest (Baetu 2014).

Finally, mathematical modeling involves a certain degree of abstraction. Since
a lot is known about the molecular basis of biological activity, the starting point
of current modeling efforts is, more often than not, prior knowledge of molecular
mechanisms. This prior knowledge determines the wiring of molecular networks, as
well as the physical and causal interpretation of nodes and connections. However,
not all that is known about mechanisms is incorporated in molecular networks. As
a general rule, specific modes of action, the structure of mechanistic entities and
other high-resolution biochemical details are not represented in molecular networks,
which tend to amount to simplified schemas consisting of unstructured entities
(proteins, genes) and generic activities (activation/inhibition, increase/decrease in
concentration). Thus, simplified representations of mechanisms, known as ‘mecha-
nism schemas’,13 act as bridges mediating the transfer of knowledge from molecular

12For instance, current discrete modeling strategies assume that a network is either updated
synchronously (the values of all its nodes are updated at the same time) or asynchronously (no
two nodes are updated at the same time). Set aside the difficulty of finding out which of the two
assumptions holds true of the particular system under investigation – a situation that makes it such
that investigators simply test several models until they find one that simulates well characterized
features of the system –, it is also possible that no real biological system will perfectly fall into one
or the other of these two categories.
13“A mechanism schema is a truncated abstract description of a mechanism that can be easily
instantiated by filling it with more specific descriptions of component entities and activities”
(Darden 2006, 111–12).
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biology to other fields of investigation, such as bioinformatics and systems biology
(Baetu 2011b, 2012b).

On the one hand, abstraction generates networks simple enough to allow for
computable solutions, while highlighting those features of biological systems most
amenable to mathematical modeling (Baetu 2011a, 2012b). For example, a Gene
Regulatory Network (GRN)14 representation of signal transduction pathways does
not tell us how a specific repressor protein regulates gene expression; the repressor
may compete with a transcriptional activator for the same DNA binding site, it
may bind the activator and cause a conformational change affecting the activity
of the latter, or it may trap the activator in the cytoplasm. Removing such details
makes it possible to reduce the total number of parameters in the model, thus
increasing computability. At the same time, the network highlights specific features
of the physical system it represents, in this case, the inputs and outputs of genome
expression, showing how each gene module in the GRN behaves like a logic gate
integrating several regulatory inputs in order to yield a single output, namely the
presence or absence of its corresponding gene product.

On the other hand, however, models built from mechanism schemas cannot
account for all the features of the phenomena produced by these mechanisms.
Because specific modes of action and structural details of entities are abstracted, a
mathematical model may tell us which mechanistic components should be targeted
in order to achieve a desired result, but doesn’t tell us how to operate changes in
a physical system.15 For this reason, it seems highly unlikely that mathematical
models can replace current mechanistic explanations.

In summary, we can conclude that mathematical models in biology are not
exclusively applications of what are traditionally deemed to be more fundamental
sciences, such as physics and chemistry, but also of many other fields, such as
systems theory and computer engineering. Second, as applications of other sciences
and fields of investigation, mathematical models tend to yield putative explanations
because it is usually not clear to what extent a given set of modeling assumptions
apply to biological systems and to what extent they introduce idealizations. Finally,
since details accounting for certain aspects of the phenomena under investigation
are abstracted from the model, it seems unlikely that mathematical models can or
are meant to replace mechanistic explanations indigenous to the biological sciences.

14GRNs are “hardwired genomic regulatory codes, the role of which is to specify the sets of
genes that must be expressed in specific spatial and temporal patterns. [ : : : ] these control systems
consist of many thousands of modular DNA sequences. Each such module receives and integrates
multiple inputs, in the form of regulatory proteins (activators and repressors) that recognize specific
sequences within them. The end result is the precise transcriptional control of the associated genes”
(Davidson and Levine 2005, 4935).
15For example, in order to physically inhibit the activity of a repressor, detailed knowledge of its
structure, such as a mapping of the amino acids responsible for DNA binding, is required; the
repressor activity is tempered with by mutating specifically these DNA-binding amino acids.
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4 The Mechanistic Content of Mathematical Models
of Molecular Networks

Craver (2007) correctly points out that the mathematical model developed by
Hodgkin and Huxley had only a partial causal interpretation, and that the model
played primarily a role in discovery by guiding the subsequent elucidation of
the mechanism responsible for generating and propagating action potentials along
axons. Most notably, the model suggested the existence of transmembrane ion
channels and provided some insights about their possible properties. In light of this
kind of historical examples, it might be tempting to conclude that mathematical
models are primarily instrumental constructs eventually superseded by mechanistic
explanations. However, this is not always the case. The starting point of many
modeling efforts, especially in today’s practice, is prior knowledge of molecular
mechanisms. This knowledge provides a straightforward physical interpretation of
the nodes of the network (they correspond to genes and proteins) and the inter-
nodal connections (they are activities of entities affecting other entities in the
system/mechanism). Most modeling assumptions also refer to features of physical
systems (e.g., reaction rates), and therefore have a clear physical interpretation; it is
just that it cannot be easily determined to what extent the modeled systems actually
possess these features, and how realistically these featured are modeled. Thus, many
mathematical models incorporate substantial knowledge of the causal-mechanistic
structure of the world and are not plagued by incomplete or problematic causal
interpretations.

5 How Quantitative Models Complement Qualitative
Descriptions of Molecular Mechanisms

The fact that many models are constructed in light of prior knowledge of molecular
mechanisms raises an interesting question: Why would anyone bother designing and
testing mathematical models when mechanistic explanations are already available?
The simplest solution to the puzzle would be the claim that, despite their mechanistic
content and unambiguous causal interpretation, mathematical models in systems
biology are, after all, primarily meant to generate predictions. This view is certainly
defendable: since it is often the case that realistic models outperform idealized mod-
els in terms of empirical adequacy, the fact that a mathematical model incorporates
substantial knowledge about the causal-mechanistic structure of the world is not
necessarily an indication that the model has explanatory ambitions. Nevertheless, a
survey of the scientific literature suggests otherwise. In many cases, mathematical
models are used not only to generate predictions, but also to account for certain
anomalies and poorly understood aspects of phenomena known to be produced
by mechanisms that have been already elucidated (Bechtel and Abrahamsen 2010,
2011). Building on the earlier suggestion that mathematical models complement
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current mechanistic explanations, I propose that the answer to the puzzle lies in
a refutation of the assumption that a model is complete when it includes all the
relevant features of the mechanism, their causal role, and productive continuity.

In order to understand how and why models of mechanisms fail to explain
certain features of phenomena, let us consider the following example. Leukocytes
exposed to antigens, inflammatory agents, and pathogens express a variety of genes
required for mounting an immune response. After a brief period of activation, gene
expression shuts down. The phenomenon to be explained amounts to a black-box
correlation between input (cells are exposed to pathogens) and output (spike of
gene expression) conditions (Fig. 15.1, top panel). A mechanistic explanation tells
us what happens inside the black box: the spike of gene expression following
stimulation is explained by a negative feedback regulatory mechanism whereby
a transcriptional factor (nuclear factor ›B, or NF-›B) is initially activated, then
subsequently inactivated by an inhibitory protein (inhibitor of ›B, or I›B) coded
by a gene under its transcriptional control (Fig. 15.1, middle panel).16

The above explanation amounts to a qualitatively complete description of the
regulatory mechanism responsible for the peak of gene expression. The causal
contribution of the mechanism to the target phenomenon is well established, the
mechanistic function of its various components is well understood, and there is a
large body of evidence supporting the conclusion that there are no gaps in the causal
chain linking input and output conditions. In sum, it is a typical description of a well
understood mechanism one may very well find among the diagrams of a recent
immunology textbook. Furthermore, the mechanistic explanation is also highly
satisfactory relative to the pragmatic goals of molecular biology, such as treating
illnesses and developing techniques for intervention and manipulation (Craver 2007,
38); for example, it shows how to achieve a loss of NF-›B activity (e.g., mutations
in the DNA binding or nuclear localization domains).

Nevertheless, in some respects, qualitatively complete descriptions remain unsat-
isfactory (see also Brigandt, Chap. 7; Breidenmoser and Wolkenhauer, Chap. 17;
Issad and Malaterre, Chap. 18). For instance, the above explanation supports the
inference that, if the inhibitory protein I›B is synthesized too fast, there is no
spike of activation, and conversely, if the inhibitor is synthesized too slowly or in
insufficient quantity, gene expression is never turned off. However, this does not tell
us whether the mechanism is sensitive or robust relative to the exact amounts of the
inhibitor. If sensitive, the mechanism will malfunction in response to mutations that
affect the amount and stability of the inhibitor; in contrast, if robust, the mechanism
can adapt and continue to operate irrespective of changes in the concentration of
the inhibitor. Likewise, the model doesn’t tell us why there is an increase in the

16In resting cells, NF-›B is held in the cytoplasm by I›B (Huxford et al. 1998). When cells
are stimulated (Fig. 15.1, middle panel, A), a chain of protein-protein interactions leads to the
degradation of I›B (B); NF-›B is freed (C), translocates to the nucleus (D) where it binds ›B
sequences in the promoter regions of target genes drastically enhancing their transcription (Pahl
1999). NF-›B also binds the promoter of the I›B gene (E), and the newly synthesized I›B binds
NF-›B, trapping it back in the cytoplasm (Sun et al. 1993).

http://dx.doi.org/10.1007/978-94-017-9822-8_7
http://dx.doi.org/10.1007/978-94-017-9822-8_17
http://dx.doi.org/10.1007/978-94-017-9822-8_18
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Fig. 15.1 The NF-›B regulatory mechanism (Adapted from Baetu and Hiscott 2002; Hoffmann
et al. 2002)

intensity (but not the duration) of gene expression when cells are exposed to longer
pulses of stimulation (Fig. 15.1, top right graph, solid curves), and only an increase
in the duration (but not the intensity) of gene expression in the case of persistent
stimulation (dashed curve). The failure to account for these minute features of the
phenomenon under investigation stems primarily from a poor understanding of how
the various parts of the mechanism change quantitatively over time.

In more general terms, the experimental data supporting the qualitative descrip-
tion of a mechanism demonstrates the necessary causal contribution of the proposed
mechanism to the phenomenon of interest. This does not prove, however, that
the mechanism can and does generate the phenomenon, exactly as it is measured
in all its quantitative-dynamic details, thus leaving open the question whether
the mechanism is also sufficient to generate the phenomenon. This constitutes
a serious problem for a mechanistic account of explanation: if the mechanism
doesn’t generate the phenomenon, exactly as it is measured, then the mechanistic
explanation fails. The immediate corollary is that quantitative parameters (e.g.,
concentrations of components), as well as their temporal dynamics (e.g., rates of
reactions) must be included in an ideally complete mechanistic explanation, along
with a complete list of mechanistic components, their organization and causal roles,
and evidence for productive continuity. However, the inclusion of this additional
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information in a computationally useful way – that is, in a format that allows the
derivation of the quantitative-dynamic features of the target phenomenon –, requires
mathematical modeling, which has its drawbacks, namely the introduction of unver-
ified or difficult to verify assumptions, potential idealizations, and the abstraction
of some biochemical and molecular details. Thus, it is reasonable to conclude that
qualitatively complete descriptions of mechanisms and their mathematical model
counterparts stand in a relationship of explanatory complementarity rather than
direct competition.

By the same token, this means that a quantitative model, such as the Hodgkin
and Huxley model, cannot be replaced by a qualitatively more detailed description
of a molecular mechanism. The Hodgkin and Huxley model, or rather a version
of it benefiting from the retrospective hindsight of a more detailed causal inter-
pretation, continues to play a very important explanatory role in contemporary
neuroscience: it shows that the molecular mechanism qualitatively described by
currently accepted mechanistic explanations can generate action potentials that
closely fit quantitative experimental measurements. In other words, ‘how-possibly’
mathematical models are not only useful in guiding the subsequent elucidation of
mechanisms or generating predictions, but also provide putative explanations for
precise quantitative-dynamic aspects of biological phenomena.

Recent trends in biology support this interpretation. More and more studies
published in leading journals complement qualitative descriptions of mechanisms
supported by the experimental practice of molecular biology with quantitative
models aiming to demonstrate that the proposed mechanisms can generate the
quantitative-dynamic aspects of the phenomena of interest. For example, recent
studies investigating the development of tubular organs rely on mathematical models
in order to show that the proposed mechanisms can produce the phenomena under
investigation in the right amount/intensity [e.g., precise allometric growth ratio of
bronchioles in the lung (Tang et al. 2011)]. Furthermore, in some cases mathematical
models are required in order to show that no additional mechanisms or mechanistic
components are likely to be needed in order to generate the target phenomenon.
For example, Taniguchi et al. (2011) propose that probabilistic biases in the
distribution of adhesion proteins suffice to generate the right amount of twisting
in the developing gut. Given the stochastic nature of the proposed mechanism,
it is not possible to rely on commonsense mechanistic intuitions to establish
that the mechanism can generate (even approximately) the target phenomenon
(Horne-Badovinac and Munro 2011). The authors of the study reasoned that since
the predictions of the mathematical model match the experimental data, a more
complex model including additional parameters is not needed; since the model
does not include physically uninterpreted parameters, it can be established that
no corresponding mechanistic components are missing; hence a more complex
mechanism, including additional entities and activities, or additional mechanisms
are not likely to be needed to produce the target phenomenon (i.e., the proposed
mechanism is necessary and sufficient to produce the phenomenon).

Due to uncertainties and potential idealizations associated with modeling
assumptions, the above studies offer only putative explanations. The results they
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yield can be safely extrapolated to biological mechanisms and their ability to
generate phenomena on condition that these models accurately describe their
target biological mechanisms. Nonetheless, these putative explanations cover
ground beyond the reach of qualitative descriptions of mechanisms. In order to
determine whether a proposed mechanism can generate a phenomenon exactly as it
is measured, down to minute quantitative-dynamic details, we usually cannot rely
on qualitative descriptions of mechanisms and commonsense intuitions about how
mechanisms work. Numerical computations are required, and this is precisely what
mathematical models make possible.

6 The Integration of Mathematical Modeling
and Mechanistic Explanations

In the previous section, I argued that mathematical models, viewed as applica-
tions of chemistry, cybernetics, and systems theory to biological phenomena, and
mechanistic explanations, viewed as descriptions of causal-mechanistic structures,
complement each other. As a rule of thumb, qualitative descriptions embody
experimental evidence of the causal contribution of mechanisms (entities, activities,
and their organization) to the target phenomenon, while mathematical models
provide further ‘proof or principle’ demonstrations that the mechanisms in question
can generate phenomena down to minute quantitative-dynamic details. The former
rely on actual experimental control over the mechanism and its components,
while the latter rely on the ability to mathematically/computationally derive close
approximations of quantitative descriptions of phenomena.

I will now go a step further and argue that mathematical models and qualitative
mechanistic descriptions don’t always stand in a state of passive complementarity
whereby each explains aspects of a phenomenon inaccessible to the other. Rather,
there is a constant interaction between the two. Since molecular networks are
abstract representations of molecular mechanisms, revisions of the latter may entail
revisions of the former; in such situations, mathematical models of molecular
networks are revised as well. Conversely, mathematical models can reveal anomalies
and unsuspected explanatory holes in previously accepted mechanistic models,
thus prompting their revision. This interaction is progressive,17 in the sense that
it addresses not only the immediate research aims – in this case, accounting for
quantitative-dynamic aspects of phenomena produced by molecular mechanisms –,
but provides unexpected explanations to seemingly unrelated and thus far unex-
plained phenomena.

Mathematical models can support current mechanistic explanations by show-
ing that the proposed mechanisms can generate phenomena down to minute

17By analogy with Lakatos’ (1978, 33) notion of ‘progressive research programme’ in which “each
new theory [ : : : ] predicts some novel, hitherto unexpected fact.”



358 T.M. Baetu

quantitative-dynamic details. They can also reveal discrepancies and anomalies.
Let us consider again the spike of gene expression in leukocytes. According to
the mechanistic explanation depicted in the middle panel of Fig. 15.1, the spike
is generated by a negative regulatory feedback loop mechanism (NF-›B activates
I›B, and I›B inhibits NF-›B). However, a mathematical model of a generic
negative feedback loop mechanism [e.g., (Goodwin 1963)] has three possible
outputs, namely perpetual oscillation, damped oscillation, or a plateau of activation
(Fig. 15.1, bottom right graph); none matches the observed spikes of gene expres-
sion (Fig. 15.1, top right graph). Hoffmann et al. (2002) interpreted this mismatch
between the simulated results of the quantitative model and the experimental data
as an indication that the currently accepted mechanistic explanation is inadequate.

It is not question of doubting the causal relevance of the NF-›B regulatory
mechanism, or that this mechanism consists of a negative feedback loop. Exper-
imental evidence clearly shows that the mechanism, as described in Fig. 15.1, is
necessary for the generation of normal immune responses in vitro (in cell models)
and in vivo (in animal models). In this particular case, it is also hard to doubt
the results of the mathematical model or that the model employed is a suitable
model of a negative feedback loop. Models of negative feedback loop systems have
been extensively validated in physics, engineering and cybernetics. Thus, there is
a direct explanatory conflict here. The explanandum is always the same, namely
the characteristic spike of gene expression associated with an immune response,
yet the mechanistic explanation shows that the NF-›B feedback mechanism is a
necessary cause of this spike, while the mathematical model of the mechanism fails
to accurately predict the quantitative-dynamic description of the spike, thus pointing
to the opposite conclusion, that the phenomenon is not explained.

In order to solve the puzzle, researchers had to resort to a seemingly irrelevant
piece of information. It was known for some time that there are three isoforms of
I›B present in mammalian cells, and that only the gene coding for the ’ isoform
is under the transcriptional control of NF-›B. The other two isoforms, “ and ", are
expressed constitutively. There are, therefore, two overlapping versions of the NF-
›B regulatory mechanism, one with a negative feedback loop, and one without. The
“ and " isoforms were largely ignored because the results of knockout experiments
suggested that they may play a different physiological role,18 and, most importantly,
the version of the mechanism without a feedback loop doesn’t explain in any way
how a spike of activation could be produced (one can only expect a plateau, like the
one depicted at the bottom of Fig. 15.2).

Hoffmann et al. (2002) observed that cells that express only the ’ isoform
generate a damped oscillation pattern of gene expression, closely matching the one
predicted by the mathematical model. This suggested that when the “ and " isoforms

18In mice, I›B’�/� is associated with exacerbated inflammation and embryonic lethality, while
I›B“/"�/� females have a shorter fertility span. Nevertheless, other experiments suggest that
the three forms are partially redundant. For a review of the original scientific literature, consult
Hoffmann (2002, 1241–42).
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Fig. 15.2 The revised model of the NF-›B regulatory mechanism (Adapted from Hoffmann et al.
2002)

are also present, the damped oscillation pattern is somehow transformed into the
characteristic wild-type spike of gene expression (Fig. 15.2). In order to test the
combined contribution of two overlapping mechanisms, it is not possible to rely on
a qualitative understanding of mechanisms. Precise numerical computation is nec-
essary, and this requires mathematical modeling. Explorations with mathematical
models showed that the observed spike, as well as a differential temporal dynamics
of gene expression following pulse and persistent stimulation, can be derived from a
mathematical model of a molecular network combining the two versions of the NF-
›B regulatory mechanism, one involving a negative regulatory loop and the other a
constitutive expression of the inhibitor I›B.

From a philosophical point of view, this is an extremely interesting result. It
shows that mathematical models can prompt revisions of mechanistic explanations;
in this case, the initial negative feedback loop mechanism was augmented to include
a parallel pathway of activation not subjected to negative feedback. I take this
two-way interaction whereby mathematical models are revised as mechanisms are
elucidated in more detail, while mechanistic explanations are revised as a result
of mathematical modeling to be a strong indication that a mixed, mechanistic and
deductive-nomological approach is necessary in order to achieve more complete
explanations, as well as to guide the discovery process in biology.
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More important, the back and forth interaction between mechanistic and
deductive-nomological approaches is progressive, in the sense that it generates
new insights about the ontological status of mechanisms while offering unexpected
explanations to seemingly unrelated and thus far unexplained phenomena. In
the above example, the overlapping mechanisms explanation challenges our
metaphysical intuitions about the nature of mechanisms. While we might be tempted
to treat molecular mechanisms as neatly individuated objects, such as clocks
and other man-made mechanical devices, they are in fact populations consisting
of a large number of identical mechanisms collectively generating a biological
phenomenon. As a general rule, each ‘individual mechanism’ in the population has
a physiologically insignificant contribution to the target phenomenon; is ephemeral
(Glennan 2010), not only because molecular components have a relatively short life-
time, but also because, after having fulfilled its causal contribution, a component
is randomly replaced with another copy of the same kind; and doesn’t necessarily
operate in perfect synchrony with other ‘individual mechanisms.’ The study by
Hoffmann et al. further suggests that some mechanistic components come in several
variants, with each variant acting along a partially distinct causal pathway, such
that molecular mechanisms may in fact amount to heterogeneous populations of
partially overlapping mechanisms.19

In turn, this renewed appreciation of the internal variability of molecular mecha-
nisms suggests an unexpected explanation for a seemingly unrelated phenomenon.
Many genes and gene products come in several copies displaying very small differ-
ences in terms of sequence, structure, and biochemical function. The physiological
role of these seemingly redundant molecular components is poorly understood. The
overlapping mechanisms explanation suggests that they are not mere spare parts
or evolutionary accidents, but may in fact play a very important physiological
role: generate partially overlapping versions of the same mechanism, collectively
required in order to generate highly complex patterns of gene expression and
associated phenotypes, adaptive responses to external stimuli, and other biological
phenomena. Heterogeneous populations of partially overlapping mechanisms may

19Furthermore, there are cases when significantly distinct mechanisms responsible for distinct
phenomena nevertheless share mechanistic components. Thus, in addition to a modular mode
of organization whereby systems of mechanisms are organized serially or in parallel, the output
of a mechanism serving as input for one or more other mechanisms (Bechtel 2006; Craver 2007;
Darden 2006), significantly distinct mechanisms may also be firmly interlocked in the same manner
as the partially overlapping mechanisms described above. The lessons learned form the NF-›B
regulatory mechanism raise the possibility that non-modular sharing of mechanistic components
plays a physiologically relevant role in adjusting quantitative-dynamic aspects of the phenomena
produced by these mechanisms. If this turns out to be the case, then molecular mechanisms are
unlike any man-made mechanisms, first because they are heterogeneous populations rather than
individual objects, and second because they operate both in a modular and a non-modular fashion.
In other words, there is a sense in which a cell or organism cannot be decomposed into a set of
mechanism-modules, but is one integrated mechanism consisting of heterogeneous populations of
mechanisms overlapping to various degrees.
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also account for fine grained phenotypic variability, thus bridging the gap between
variability required for evolution, and the seemingly monolithic explanations in
molecular biology.

7 Conclusion

The emergence of systems biology is marked by a renewed interest in mathe-
matical modeling. From a philosophical standpoint, this ‘mathematical turn’ in
biology constitutes an excellent opportunity to investigate the relationship between
deductive-nomological and mechanistic accounts of scientific explanation. I argue
that mathematical models in systems biology combine substantial knowledge
of molecular mechanisms with the application of laws, modeling and analysis
strategies borrowed from chemistry, cybernetics and systems theory. Mechanism
schemas obtained by abstracting high-resolution biochemical details act as bridges
between molecular mechanistic explanations and mathematical models of networks.
In turn, mathematical models account for poorly understood aspects of biological
phenomena, most notably minute quantitative-dynamic features. Thus, in scientific
practice, deductive-nomological and mechanistic approaches to explanation are not
mutually exclusive, but complementary. Furthermore, mathematical models can
reveal unsuspected ‘black boxes’ and motivate revisions of mechanistic expla-
nations. This interplay between mechanistic explanations and their mathematical
counterparts constitutes a progressive research approach that generates explanations
of novel phenomena, and reveal strange properties of molecular mechanisms that
have thus far escaped our attention.
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