
Chapter 13

Support Vector Machines for Land Cover
Mapping from Remote Sensor Imagery

Dee Shi and Xiaojun Yang

Abstract Land cover mapping is an important activity leading to the generation of

various thematic products essential for numerous environmental monitoring and

resources management applications at local, regional, and global levels. Over the

years, various pattern recognition techniques have been developed to automate this

process from remote sensor imagery. Support vector machines (SVM) as a group of

relatively novel statistical learning algorithms have demonstrated their robustness

in classifying homogeneous and heterogeneous land cover types. In this chapter, we

review the status and potential challenges in the SVM implementation for land

cover classification. The chapter is organized into two major parts. The first part

reviews the research status of using SVM for land cover classification, focusing on

some comparative studies that demonstrated the algorithm effectiveness over other

conventional classifiers. We identify several areas for additional work, which are

mostly related to appropriate treatments of some parametric and non-parametric

factors in order to achieve improved mapping accuracies particularly for working

over heterogeneous landscapes. Then, we implement the support vector machine

technique to map various land cover types from a satellite image covering an urban

area, and demonstrate the robustness of this pattern recognition technique for

mapping heterogeneous landscapes.

Keywords Land cover • Image classification • Support vector machines •

Heterogeneous landscapes • Thematic accuracy assessment

13.1 Introduction

Land cover is the pattern of ecological resources and human activities dominating

different areas of Earth’s surface (Turner and Meyer 1994). It is a critical type of

data source essential for many environmental monitoring and natural resources

management applications at local, regional, and global scales (Foley et al. 2005;
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Alberti 2008). Land cover patterns are observable and therefore can be mapped by

ground surveys or remote sensing. While ground surveys are largely limited by

logistical constraints, remote sensing makes direct observations across large areas

of the land surface, thus allowing land cover patterns to be mapped in a timely and

cost-effective mode. Both visual interpretation and computer-based digital classi-

fication can be used to extract information on land cover from a variety of remotely

sensed data varying in spatial, spectral, radiometric, and temporal resolutions.

Digital pattern classification is generally preferred over visual interpretation for

mapping land cover in large areas (Jensen 2005).

While conventional pattern classifiers (e.g., maximum likelihood) have been

widely used, they generally work well with medium-resolution images and in

relatively homogeneous areas rather than highly heterogeneous areas (Yang

2002). Over the years, substantial research efforts have been directed to improve

the performance of land cover mapping in heterogeneous areas (e.g. Hoffer 1978;

Richards et al. 1982; Skidmore et al. 1997; Duda et al. 2001; Yang and Lo 2002;

Schmidt et al. 2004; Del Frate et al. 2007; Foody 2008; Heikkinen et al. 2010; Zhou

and Yang 2011; Liu and Yang 2013).

This study targets support vector machines (SVM), a group of relatively novel

machine learning algorithms based on statistical learning theory that have not been

extensively exploited in the remote sensing community. They are found to

outperform most of the conventional classifiers (Huang et al. 2002; Keuchel

et al. 2003; Kavzoglu and Colkesen 2009; Su and Huang 2009). Moreover, SVM

were found to even outperform some novel pattern recognition methods, such as

neural networks (Huang et al. 2002; Foody and Mathur 2004a, b). Nevertheless,

there are some parametric and non-parametric factors that can affect the perfor-

mance of SVM, and there is a need to investigate them so that SVM could be used

with improved performance (Yang 2011).

In this chapter, we examine the utilities of support vector machines (SVM) as a

pattern recognition technique for landscape mapping particular for heterogeneous

areas. It is organized into two major parts, beginning with a brief introduction of

some basic knowledge on SVM and a review on the research status and possible

challenges of using SVM for land cover mapping. The review focuses on some

comparative studies that demonstrated the effectiveness of SVM over other con-

ventional classifiers. Based on the review, we further discuss several areas that need

additional research in order to improve SVM classification accuracies and reduce

computational burdens, which are mostly related to appropriate treatments of some

parametric and non-parametric factors. The second part of the paper discusses our

implementation of SVM to map various land cover types from a remote sensor

image covering an urban area, demonstrating the robustness of this type of pattern

recognition technique for mapping heterogeneous landscapes.
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13.2 Support Vector Machines

13.2.1 Basics

The basic idea behind the support vector machines (SVM) is to construct separating

hyperplanes between classes in feature space through the use of support vectors

which are lying at the edges of class domains; SVM seek the optimal hyperplane

that can separate classes from each other with the maximum margin (Vapnik 1995).

SVM were originally designed as a binary linear classifier, which assumes two

linearly separable classes to be partitioned. In most cases, the best separable

hyperplane may not be located exactly between two classes. To account for this,

an error item is introduced to manipulate the tradeoff between maximizing the

separation margin and minimizing the count of training samples that locates on the

wrong side. SVM are further extended to deal with non-linear classification by

using a non-linear kernel function to replace the inner product of optimal hyper-

plane. Several commonly used kernel functions include linear kernel, polynomial

kernel, radial basis function (RBF), and sigmoid kernel (Haykin 1999). Each of

these kernel functions is constructed with multiple parameters, and the parameter

settings can influence the performance of a specific support vector machine (Yang

2011).

Moreover, SVM have been used for multi-class mapping through reducing the

multi-class problem into a set of binary problems so that the basic SVM principles

can be still applied. Two commonly used strategies for this purpose include one-

against-one and one-against-all (Foody and Mathur 2004b; Kavzoglu and Colkesen

2009). The former is generally preferred because of its less computational intensity

and comparable accuracy to the later. The one-against-all method can result in

unclassified instances (Huang et al. 2002; Hsu and Lin 2002; Pal and Mather 2005;

Mountrakis et al. 2011), which is not suitable for land cover mapping.

13.2.2 SVM for Land Cover Classification

The performance of SVM has been examined through some comparative studies

with other pattern classifiers for various land cover types (e.g., Huang et al. 2002;

Foody and Mathur 2006; Keramitsoglou et al. 2006; Su and Huang 2009). Huang

et al. (2002) found that SVM substantially outperformed maximum likelihood

(MLC) or decision tree (DC) in terms of classification accuracy and even surpassed

multilayer perceptron neural networks (MLP). Su and Huang (2009) implemented

SVM and MLC on a Multi-angle Imaging SpectroRadiometer (MISR) image to

differentiate eight semi-arid vegetation types, and found that SVM significantly

outperformed MLC. Keramitsoglou et al. (2006) mapped various vegetation types

using IKONOS data, and compared the performance of SVM with radial basis

(RBF) neural networks. They found that SVM had strengths in terms of
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classification accuracy and training time. Foody and Mathur (2006) also found that

SVM can produce a more accurate classification of cultivated landscape types.

Dixon and Candade (2008) compared SVM, MLC, and backpropagation neural

networks (NN) for classifying a Landsat scene, and found that SVM and NN

performed identically in the classification accuracy but SVM was more efficient

in the training phase. They also noted that SVM can be quite attractive when

working with high-dimensional data. This seems to be in line with an earlier

work conducted by Huang et al. (2002) who found that SVM performed better for

an image with seven bands than with three bands. The effectiveness of SVM for

working with high-dimensional data classification was also confirmed by several

other studies (e.g., Bazi and Melgani 2006; Camps-Valls et al. 2007), indicating

that they could provide a solution to dealing with the problem of “curse-of-

dimensionality” (Hughes 1968). Although SVM have demonstrated strengths

when comparing with other classifiers, their performance can vary across different

land cover types (Foody and Mathur 2004a, b; Keramitsoglou et al. 2006; Su and

Huang 2009).

The performance of SVM can be affected by both parametric and

non-parametric factors (Foody and Mathur 2006; Yang 2011). Existing studies on

SVM classification have largely concentrated on either improving classification

accuracy on specific land cover types or reducing computational burdens, both of

which can be manipulated at the SVM configuration stage and at the training stage.

The inner-product kernel between the support vectors in feature space and in input

space largely determines the separability of optimal separable hyperplane (Haykin

1999). While introducing non-linear kernel functions could help deal with complex,

non-linear classification, it can also lead to the difficulty in choosing the most

appropriate kernel type and in the subsequent kernel parameterization (Huang

et al. 2002; Kavzoglu and Colkesen 2009; Yang 2011). Yang (2011) conducted

an empirical study assessing the performance of several most commonly used

kernel types, along with their internal parameterization, and found that the kernel

type and error penalty can substantially affect image classification accuracy. Some

customized kernels, particularly those incorporating both spatial and spectral infor-

mation, were found to be quite promising when comparing with spectral-based

kernel types (Camps-Valls et al. 2006, 2007; Plaza et al. 2009).

Since the SVM is a supervised classifier by nature, both the size and quality of

training sample can affect the classification accuracy (Foody and Mathur 2006). For

land cover mapping from remote sensor imagery, training samples should consist of

relatively pure pixels, and should be identified from homogeneous areas in large

fields, which can be applicable for a variety of classifiers (Foody and Arora 1997).

SVM performance can be sensitive to the noise in training samples due to the use of

support vectors at the edges of class domains in feature space (Rodriguez-Galiano

et al. 2012). A minimum of 10–30 pixels per class per waveband should be used to

meet the assumption of normal distribution and be representative of the subclass

(Foody and Mathur 2004a, b, 2006). Like other non-parametric classifiers, there is

no need to maintain normal distributions in training samples for a SVM classifica-

tion. Since only the support vectors are actually needed in constructing separate
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hyperplanes for SVM, it may be highly possible to reduce training sample size to a

small number of the most informative samples that are used to fit the decision

hyperplanes. Several studies have been conducted to identify these critical samples.

For example, Foody and Marthur (2004a, b, 2006) incorporated ancillary informa-

tion of soil types and geographical boundary pixels of mixed spectral characteristics

of two crop types in the selection of useful training samples, which dramatically

reduced training samples before being applied to classification. They also examined

the usefulness of applying other ancillary information (e.g., landform, moisture, and

spatial texture) in targeting support vectors. Various techniques have been identi-

fied to automatically reduce the training sample size and hence help reduce the

computational burden for SVM. For example, clustering-based algorithms are

applied in training pattern selection to remove samples locating at the high density

regions or to detect support vectors at the clustering centers (Demir and Ertürk

2009; Su 2009). With these support vectors obtained from clustering preprocessing,

the computational load has been substantially reduced, while the classification

accuracy was much higher than using the full training samples.

13.3 Implementation of SVM for Land Cover Mapping

In order to demonstrate the effectiveness of SVM for heterogeneous land cover

mapping, we implemented SVM to map land cover types in an urban area. In this

section, we will discuss the specific procedures, including the study site and data

acquisition, classification scheme design, SVM configuration, and classification

and accuracy assessment (Fig. 13.1).

13.3.1 Study Site and Data Acquisition

The study site covers the entire Gwinnett County, a suburban county located at

northeastern Atlanta metropolitan area, Georgia, USA (Fig. 13.2). The county has

an area of about 1,122 km2 and its population was 805,321 according to the 2010

census survey. The majority of topography is relatively flat and has primarily a

humid subtropical climate. Gwinnett has been one of America’s fastest-growing

counties and the second most populated county in Georgia. Its landscape is char-

acterized by a mosaic of complex land use and land cover types, and therefore

Gwinnett is an ideal site to examine the effectiveness of SVM for heterogeneous

landscape mapping.

A cloud-free Landsat-5 Thematic Mapper (TM) image dated on 19 May 2007

was acquired from USGS EROS Data Center, and a subset of this scene covering

the entire Gwinnett County was actually used in our study (Fig. 13.3). The image

has been geometrically corrected at the EROS data center, and no further

preprocessing was conducted. The spatial resolution of this image is 30 m for all
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six non-thermal infrared bands, and 120 m for the thermal band. It was projected

into the Universal Transverse Mercator Zone 16N with NAD 83 as the horizontal

datum. Only six non-thermal infrared bands were used for land cover classification.

13.3.2 Classification Scheme and Training Samples

We designed a land use/cover classification scheme based on the Anderson scheme

(Anderson et al. 1976) and our field surveys across the Atlanta metropolitan area.

The study area covers a mosaic of different land use cover types, and our classifi-

cation system includes ten major categories: high-density urban, low-density urban,

barren or fallow land, pasture and cropland, grassland, shrub and scrub, evergreen

forest, deciduous forest, mixed forest, and water (Table 13.1 and Fig. 13.4).

Fig. 13.1 Flowchart of the working procedural route used in this study
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After the classification scheme was adopted, we carefully selected training

samples for each of the ten major categories by using several reference sources

such as the high-resolution images from Google Earth and the 2006 National Land

Cover Data (NLCD). Note that each information class listed in Table 13.1 may

include multiple spectral classes. For the information classes with multiple spectral

classes, we collected at least one training set with 25–35 pixels for each spectral

class. Specifically, eight information classes, namely, high-density urban,

low-density urban, barren or fallow land, pasture and cropland, grassland, ever-

green forest, mixed forest, and water, are comprised of training data from multiple

spectral classes. For the high density urban class, training samples were collected

for three spectral classes with one for large roofs and the other two for parking lots

Fig. 13.2 Location of the study site. It covers the entire Gwinnet County in the State of

Georgia, USA
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with various pavement materials. For grassland, training samples were collected for

two spectral classes with one for golf course with a bright color and the other for

urban green spaces with low woody cover. Two spectral classes were defined

for evergreen forest with one for highland evergreen forest and the other for

wetland evergreen forest. For mixed forest, training samples were collected for

two spectral classes that vary due to soil types. We calculated the spectral separa-

bility for each pair of the spectral classes, and finally selected 20 classes for use in

the training phase of the SVM classification that will be discussed later.

13.3.3 SVM Configuration and Classification

As discussed before, SVM parameter settings can affect the classification perfor-

mance (Huang et al. 2002; Kavzoglu and Colkesen 2009). Among them, the kernel

type, error penalty, and Gamma term are the three most critical parameters (Yang

2011). We configured a support vector machine with radial basis function as the

kernel type, a moderate error penalty value (C¼ 100), and a Gamma term equaling

Fig. 13.3 The Landsat Thematic Mapper (TM) image used in this study. It was clipped to match

the geographic coverage of Gwinnett County, Georgia. Note that the image is displayed in false

color composite
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to 0.143 (Yang 2011). We used this SVM configuration to classify the Gwinnett

subset of the 7-band TM image with the training samples described above. For

comparison purpose, we also used the same training samples to classify the same

image by using the maximum likelihood classifier (MLC) that has been widely

used. After the implementation of SVM and MLC, we combined the 20 spectral

classes into 10 information classes prior to the thematic accuracy assessment

(Fig. 13.5).

Table 13.1 Land cover classification system, training sample size and reference data size

Class name Description

Training

sample size

(# pixels)

Reference

sample size

(# pixels)

High-den-

sity urban

More than two-thirds impervious surfaces,

mainly commercial, industrial, institutional

facilities with large roofs, and public retail

buildings, large transportation facilities

60 52

Low-den-

sity urban

Residential areas with impervious surfaces

account for lower than two-thirds of total

cover, including residential developments,

smaller urban service buildings, such as

detached stores and restaurants, state highways

54 84

Barren or

fallow land

Urban areas with low percentages of

constructed materials, vegetation, and low

level of impervious surfaces, including bare

soil lands, small amount fallow lands, exposed

rock, mines and quarries

71 48

Grassland Herbaceous cover, trees and shrub less than

10 %. Parks, lawns and golf courses

55 86

Pasture

and

cropland

Grazing area, field crops, horticulture, and

vegetable

41 52

Shrub and

scrub

Residential and agricultural shrub, scrub,

orchards, groves, and transitional vegetation

areas

27 47

Evergreen

forest

Trees remain green throughout the year, wet-

land evergreen forests included, mainly cedar

and pine trees

47 55

Deciduous

forest

Trees lose their leaves when the dry or cold

season, wetland deciduous forests included,

mainly oak, maple, elm, and hickory

31 50

Mixed

forest

Either evergreen or deciduous trees also mixed

with shrub and scrub less than 10 %

49 114

Water Rivers, streams, lakes, reservoirs 125 54
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13.3.4 Accuracy Assessment

The accuracy assessment was conducted by using visual comparison and the error

matrix approach. The visual comparison is qualitative by nature, while the error

matrix approach is a quantitative method that compares the classification map with

the ground reference information (Congalton 1991). A total of 498 reference

Fig. 13.4 Major land cover types shown in the very high resolution image (Source: Google Earth)

and the corresponding Landsat Thematic Mapper (TM) image used in this study. For each image

pair, the left is a very high resolution image displayed in natural color composite and the right is a
TM image subset in false color composite
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samples were generated through the stratified random sampling method

(Table 13.2). The identity of each sample was determined by the combined use of

high spatial resolution data from Google Earth, USGS 2006 National Land Cover

Data, and our field survey data. Kappa coefficients were calculated to quantify the

overall and categorical accuracies (Congalton 1991).

13.3.5 Results and Analyses

The classification maps from SVM and MLC are displayed in Fig. 13.5. Both maps

were geographically linked with the original remote sensor image, and specific land

cover categories were further checked. In general, both maps show an overall

correct land cover classification but misclassified areas or pixels can be clearly

observed. While the two maps do not show much different large landscape patches,

the one from SVM shows many scattered, isolated patches being correctly classi-

fied. In terms of specific classes, grassland and low density urban are classified

differently, as shown on the two maps. Some grassland patches on the map from

SVM were misclassified as low density urban class on the other map. And some

mixed forest patches were classified as low density area, and some small patches of

evergreen forests and shrubs were classified as mixed forest. Thus, if the spectral

characteristics of a class are similar to other classes or if a class is dominated by

mixed pixels, SVM clearly performed better than MLC.

Fig. 13.5 Land cover maps produced by using support vector machines (SVM) (Left) and

maximum likelihood classifier (Right)
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To further assess the performance of SVM when separating spectrally complex

landscape categories, several sites were selected for a closer look. Figure 13.6

illustrates the original TM image, high resolution image from Google Earth, the

two classified maps from SVM and MLC, for each of the three sites. For the two

spectrally complex categories, namely, low density urban and mixed forest, MLC

tended to include more neighboring pixels into these classes. MLC also

misclassified some evergreen forest patches into water, barren land patches into

high density urban, and grassland patches into low density urban and cropland.

Contrastingly, SVM seemed to have done a better job in mapping spatially scattered

patches. And SVM had correctly classified the residential patches on all the three

sites and the pasture patches on Site 2.

For quantitative accuracy assessment, Kappa coefficient and conditional Kappa

coefficients were calculated and summarized in Table 13.2. If judging by the

overall Kappa coefficient, SVM significantly outperformed MLC. As for specific

classes, SVM significantly surpassed MLC in terms of classification accuracy for

most classes, except evergreen forest and water. And the largest improvements

were with the categories of high density urban, low density urban, pasture, and

mixed forest, of which the second and last classes are most spectrally complex.

SVM also showed a moderate improvement for grassland. However, SVM and

MLC had almost identical classification accuracies for several relatively homoge-

nous classes, such as evergreen forest and water.

Table 13.2 Summary of the thematic accuracy assessment for the two land cover maps produced

by support vector machines (SVM) and maximum likelihood classifier (MLC), respectively

Class name

Conditional kappa coefficient (K)

100�(KSVM-

KMLC)/KMLC

Support vector

machines (SVM)

Maximum likelihood

classifier (MLC)

High density

urban

0.80 0.57 40 %

Low density

urban

0.69 0.39 77 %

Barren/fallow

land

0.71 0.80 �11 %

Grassland 0.70 0.55 27 %

Pasture 0.81 0.56 45 %

Shrub/scrub 0.76 0.69 10 %

Evergreen forest 0.94 0.94 0 %

Deciduous forest 0.95 0.88 8 %

Mixed forest 0.77 0.55 40 %

Water 1.00 1.00 0 %

Overall kappa

coefficient

0.80 0.58 38 %
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13.4 Conclusion

In this chapter, we have reviewed the research status of using support vector

machines (SVM) for land cover mapping with special attention on heterogeneous

landscape types. Then, we have implemented this technique to map various land

cover types in an urban area from a satellite remote sensor image. Our studies

further confirm that SVM can significantly outperform the maximum likelihood

classifier (MLC), the most widely used pattern recognition method in the remote

sensing community. We found that SVM can significantly improve mapping

accuracy, particularly for spectrally and spatially complex land cover categories.

Acknowledgements The authors like to thank the Florida State University for the time release in

conducting this work. The research was partially supported by the Florida State University Council

on Research and Creativity, CAS/SAFEA International Partnership Program for Creative

Research Teams of “Ecosystem Processes and Services”, the Natural Science Foundation of

China through the grant “A Study on Environmental Impacts of Urban Landscape Changes and

Optimized Ecological Modeling” (ID 41230633).

Fig. 13.6 Visual comparison of the land cover classification by support vector machines (SVM)

and maximum likelihood classifier (MLC) at the three selected sites. Note that a1, a2, and a3 are

natural color composites of very high resolution satellite images from Google Earth; b1, b2, and b3

are false color composites of the Landsat TM image used in this study; c1, c2, and c3 are subsets of

the land cover classification by SVM; and d1, d2, and d3 are subsets of the classification by MLC.

See Fig. 13.5 for specific legends for the land cover maps
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