
Chapter 1

Land Change Modeling: Status
and Challenges

Ting Liu and Xiaojun Yang

Abstract Over the past years, land change science has emerged as a fundamental

component of global environmental change and sustainability research, and model-

ing of land change has been recognized as a premier research area in land change

science. Various land change modeling approaches have been developed to explore

the functioning of land changes at aggregated and individual levels, across various

spatiotemporal scales, as well as in human, natural, or the coupled systems. This

chapter will review a collection of land change modeling approaches including

statistical regression models, artificial neural networks, Markov chain models,

cellular automata, economic models, and agent-based models. For each approach,

the theoretical and methodological basics and major characteristics will be exam-

ined. Moreover, several important issues challenging the successful implementa-

tion of land change modeling will be discussed, which include coupling human and

environmental systems, scale dependency and multilevel interactions, and temporal

dynamics and complexity. Finally, a review on the progress of integrating land

change models with other environmental modeling techniques for global environ-

mental change research will be provided.

Keywords Land change modeling • Land change science • Global change • Land

use and land cover change • Coupled human-environmental systems

1.1 Introduction

The process of global change is altering the earth system and its capacity to sustain

life (U.S. Global Change Research Program 2014). Rapid human population

growth, along with their increasing demand for food, water, energy, and other
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benefits, has become the main drivers of global change, especially since the second

half of twentieth century (Turner et al. 2007). Well-documented global changes

include concentrations of carbon dioxide in the atmosphere; alterations in the

biochemistry of the global nitrogen cycle; and on-going land use and land cover

change (Vitousek 1994). Land use and land cover change is a pervasive factor of

global importance not only because it represents a major component of global

change but also it strongly interacts with other components of global environmental

change. To date, as much as 50 % of the earth’s ice-free land has been transformed

or degraded (Haberl et al. 2007). Only between 2000 and 2010, approximately

13 million hectares of land area (about the area of Greece) were converted each year

to other land cover types (FAO 2010). Moreover, land changes have far-reaching

influences on the structure and function of the earth’s ecosystems, with equally

significant implications for the human society (Steffen et al. 2004). On the one

hand, land changes affect the ecosystems in several ways, such as reducing native

habitat and species, accelerating soil decomposition, disrupting freshwater

resources and quality, as well as leading to additional greenhouse gas release

(Turner et al. 1993; Camill 2010). For example, deforestation is thought to contrib-

ute to nearly 20 % of the global carbon dioxide release (1.5–2 billion tons of carbon)

(Camill 2010). On the other hand, rapid urbanization and the concentration of

human populations into large metropolises have altered the city’s cultures, politics,
and economics, which are just beginning to be fully recognized as a significant

global problem.

Over the past years, land change science has emerged as a fundamental compo-

nent of global environmental change and sustainability research (Turner

et al. 2007). This interdisciplinary field seeks to understand land use and land

cover dynamics through integrating the human, environmental, and geographical

information-remote sensing sciences. Challenges lie in the complexity of land

change processes, in which human and environmental systems interact over space

and time to reshape the earth’s surface. Research in land change science has been

dedicated to enhance our understanding of land changes through: (i) monitoring

land changes at different spatiotemporal scales, (ii) exploring the driving forces

(both human and environmental) and feedbacks underlying land changes, (iii)

spatially explicit modeling of land changes, and (iv) assessing system outcomes

(Turner et al. 2007). Land change modeling is a promising research area which can

support an integrated earth system science enterprise. Models allow us to link

human behaviors with landscape patterns for simulating the processes of land

changes in the past and present, for forecasting future landscape dynamics under

different scenarios, and for informing decision-making towards sustainable land

and resource management.

This chapter examines a collection of land change models (LCM) for global

environmental change research. To a large degree, modeling is a way of thinking

more than a technology. Over the past several decades, various modeling

approaches have been developed, which provide insights into the functioning of

land changes at aggregated and individual levels, across various spatiotemporal

scales, as well as in human, natural, and the coupled systems. Meanwhile, there are

numerous theoretical and technological challenges for the modeling of land
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changes given the complexity of the coupled human-environmental systems

(Rindfuss et al. 2004). Advances in geospatial theories, technologies and data

provide great opportunities for addressing various challenges and for developing

the next generation of LCMs. In the following sections, we first discuss the

theoretical foundations and major characteristics of various modeling approaches.

We then identify some outstanding issues for the LCM communities. Finally, we

describe several examples to illustrate how land change modeling can be coupled

with other ecological modeling techniques for integrated global environmental

change research.

1.2 Land Change Modeling Approaches

This section discusses several frequently used land change modeling approaches,

including statistical regression models, artificial neural networks, Markov chain

models, cellular automata, economic models, and agent-based models. The above

modeling approaches were identified based on the authors’ knowledge and a

personal archive of relevant publications, and a search on Web of Science using

the Keywords: (Topic¼ “land change” or “land use change” or “land cover

change” or “land use and land cover change” or “urbanization” or “urban growth”

or “urbanization” or “deforestation” or “farmland”) AND (Topic¼model or sim-

ulation). In the following subsections, we will briefly present the theoretical and

methodological basics and the relative strengths and weaknesses of each modeling

approach with selected examples.

1.2.1 Statistical Regression Models

The basic structure of statistical regression models is based upon empirical analyses

that link between land use and land cover changes (i.e., dependent variable) and a

set of environmental and socio-economic explanatory variables. The derived rela-

tionships are usually used to generate maps of land transitional probability to

predict potential land changes in the future. Some frequently used statistical

methods for land change modeling include logistic regression (Hu and Lo 2007),

generalized linear models (Aspinall 2004), generalized additive models (Brown

et al. 2002), and Bayesian statistics (Agarwal et al. 2005). A popular example is the

CLUE-S (Conversion of Land Use and its Effects at Small regional extent) model

developed by Verburg et al. (2002). The CLUE-S model consists of a non-spatial

demand module and a spatially explicit allocation module. The non-spatial module

estimates the aggregate demand of land changes, and the spatial module allocates

the land demands at various locations on a raster space based on stepwise logistic

regression. Logistic regression is a form of multivariate models when the dependent

variable has a categorical output, e.g., change or no-change of land use. Logistic

1 Land Change Modeling: Status and Challenges 5



regression can be binomial or multinomial. It takes the logit transformation of the

categorical dependent variable to ensure that the dependent variable of the regres-

sion is continuous.

Given the less demand of computational resources and easy operability, statis-

tical regression models have become one of the most popular approaches for land

change research communities. Statistical methods provide valuable information on

key factors of land changes but are relatively deterministic compared to more

advanced forms of model. It can also contribute to theory building and testing

(Lesschen et al. 2005). However, it has very limited capability to represent the

complex interactions and the temporal dynamics within the coupled human-

environmental systems.

1.2.2 Artificial Neural Networks

Artificial neural networks (ANN) are developed based on machine learning algo-

rithms (e.g., Li and Yeh 2002; Liu and Seto 2008). The functioning of ANN is

relating to regression models in that they both seek to associate land change and its

potential drivers. ANN is characterized by its ‘learning’ ability which can be used to
detect non-linear relationships through the incorporation of a hidden layer. The

algorithms of ANN calculate weights for input layers, hidden layers, and output

layers by introducing the input in a feed-forward manner. For example, Liu and

Seto (2008) presented an ART-MMAP neural network model for urban growth

prediction from historical data. A set of proximity, neighborhood, and physical

factors were included. This paper also applied a multi-resolution analysis to test the

model’s performance. In general, spatial aggregation results in higher accuracies.

By comparing with a null model, two random models and a naive model, neural

network outperforms other models at finer resolution.

The strength of neural networks lies in their flexibility and non-linearity

(Lesschen et al. 2005) in predicting future changes. However, it provides little

interpretability because the relationships between variables remain invisible, crit-

icized as a “black box”. ANN is commonly used for predicting future land cover/

use changes based on the ‘knowledge’ learned from the patterns and behaviors

observed from historical data. The assumption here is that past and present trend

will continue into the future (i.e., stationarity), which tends to oversimplify the

temporal complexity of land change processes.

1.2.3 Markov Chain Modeling

The Markov chain modeling approach employs a discrete stochastic process to

determine the transition probability of land conversion. There is a set of discrete

states in the modeling structure. In the context of land change modeling, each state
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usually represents different types of land cover/use. The model moves from one

state (e.g., land cover/use type) to the other with some transition probability

depending on the current state but not the previous ones (often called a process

without memory). Transition probabilities are computed based on the observed land

change data which represent the probability that the land cover/use type within a

cell (i.e. spatial unit) will convert (or, move) to another land type within the same

period of time in the future. For example, Muller and Middleton (1994) applied

Markovian analysis to time series data to quantify land use changes over a human-

dominated landscape. Markovian analysis can represent all the multi-directional

land use changes between land use categories. Sequential time series data were used

to simulate land use change over a longer time period.

Markov models usually do not account for specific drivers of land changes,

which assume that collective forces functioning to produce the observed patterns in

the past will continue to do so in the future. In other words, Markov models are used

to project future land changes based on the assumption of stationarity. Markov

model can be dynamic by changing the transition probabilities in some sort of

regular patterns over time (Howard et al. 1995). Given the capability of automat-

ically computing land transition probability with time series data, Markov chain

models are often integrated with more complex forms of models such as cellular

automata and agent-based model that will be discussed shortly.

1.2.4 Cellular Automata

A conventional modeling framework describes systems in equilibrium or as moving

between equilibriums. However, the evolution of land changes usually does not

reach a stable equilibrium but exhibits features of complexity (e.g., edge of chaos,

emergence, and non-linearity). The concept of complexity emphasizes on the

interdependence among constituent parts. Therefore, complex adaptive system

(CAS) is a system composed of interconnected parts that as a whole exhibits one

or more properties that are not obvious from the individual parts. Cellular automata

(CA) models are built upon static cell-based environment where each cell has a

state and can transfer to others based on the current state and the interactions with

its neighborhoods using a set of transition rules (Batty and Xie 1994; Clarke

et al. 1997; Miller and Page 2007). The four major components of CA therefore

are state, landscape/space, neighborhoods and transition rules. For each of the four

components, their structures vary from simple to more complex forms (e.g., Stevens

and Dragicevic 2007). The transition rules are usually set to represent spatial and

temporal constraints (Sante et al. 2010). One of the well tested CA models is the

SLEUTH (Slope, Land use, Exclusion, Urban extent, Transportation, Hillshade)

model developed by Clarke et al. (1997) for simulating urbanization. This model

defines complex rules representing control parameters that allow the model to self-

modify under the circumstances it generates. More applications of this model are
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found in Clarke and Gaydos (1998), Yang and Lo (2003), Jantz et al. (2004),

Mahiny and Clarke (2012), and Akin et al. (2014).

As a dynamic modeling tool, CA model has gained great popularity among all

modeling approaches. Although offering a framework for studying complex sys-

tems, CA modeling does not explicitly incorporate drivers of change except for the

neighborhood interactions and transition rules. In addition, CA does not explicitly

account for human decision makings in their modeling structures as the cells cannot

move and their transition in states mainly represent the physical processes of land

conversion.

1.2.5 Economic Models

Economic models generate land use patterns as aggregate outcomes from the

underlying microeconomic behavior that determines demand and supply relation-

ships. These models explicitly involve human choices and economic behaviors and

thus address the human dimension of land changes, mainly focused on land uses.

The basic idea of economic models of land changes is based on market equilibrium

(e.g., market clear with zero excess demand and zero excess supply). Economic

models can operate at aggregate scale (e.g., sector-based models) and disaggregate

scale (e.g., spatially disaggregate models). Sector-based models represent the

global economy and the interactions between different sectors (i.e., general equi-

librium models) or only some specific sectors as a closed system (i.e., partial

equilibrium models). Therefore, sector-based models describe the amount of land

allocated to different uses by demand-supply structures (Sohngen et al. 1999).

Spatially disaggregate models simulate the optimal land use decision based on

profits or utility maximization or cost minimization (Bockstael 1996; Wu

et al. 2004). These models explicitly represent individual decision-making at the

micro level that will lead to land change outcomes at the aggregate level.

Economic models explicitly represent human land use decisions based on

market and price mechanism compared with most statistical, machine learning

and cellular models. The spatially disaggregate models are promising in accounting

for the market feedbacks and dynamics within the land change systems. These

models are often used in the agent-based framework to simulate the decision-

making processes of human agents. Economic models are useful for

non-marginal land change simulation and prediction. However, given the complex-

ity of human choices and data scarcity, it is quite challenging for economic models

to build the underlying assumptions.
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1.2.6 Agent-Based Models

Agent-based models (ABM), or the multi-agent system models (MAS), are devel-

oped based upon the assumption that “agent” is the major driver of a system (e.g.,

Parker et al. 2003; Batty 2005; Torrens and Benenson 2005; Xie et al. 2007). ABMs

are similar to CAmodels which are both spatial transition models built on a bottom-

up perspective for the simulation of emergent properties of complex adaptive

systems (Couclelis 2001). The three primary components of an ABM are the agents,

landscape and their interactions. Within the modeling structure, the agents can

interact with each other as well as the environment across multiple scales. Agents

could employ high degree of rationality and information-processing ability in

decision making which will influence the behavior of the systems (Miller and

Page 2007). A number of ABMs apply the utility function to represent agents’
decision-making on location choices (e.g., Brown and Robinson 2006; Xie

et al. 2007; Ligmann-Zielinska 2009). Usually, an agent will select a location that

can maximize the utility or profit. Although traditional ABM is built on the bottom-

up perspective, researchers in geographic and ecological modeling have proposed

that ABM should not be restricted to the bottom-up simulation (Xie et al. 2007). In

the paper by Xie et al. (2007), the author considers both macro level and micro level

spatiotemporal urban dynamics. The macro level model is based on a stepwise

regression model to project the aggregated rate of change at township level. The

micro level model is to allocate the changes at the cellular level. The interaction

among the two levels is also modeled through incorporating township competition

in the utility function.

The structure of ABM is promising for land change research in that it explicitly

represents human-nature interactions and feedbacks which are essential compo-

nents for simulating land changes as coupled human-environmental systems. How-

ever, given its complexity in model design and implementation, much effort needs

to be done to examine its operability for simulating real world processes and to fully

realize the potential of ABM. Moreover, the advancement of ABM is challenged by

the lack of detailed data to represent and validate complex human decision-making

processes and interactions among agents at the micro level.

1.3 Major Issues in Land Change Modeling

The usefulness and complexity of land change modeling lie in the necessity to treat

land changes as coupled human-environmental systems with complex interactions

and feedbacks at multiple spatiotemporal scales (Turner et al. 2007). This section

discusses several important theoretical and methodological issues in land change

modeling: (i) coupling of human decision-making and environmental conditions,

(ii) scale dependency and multilevel interactions, and (iii) temporal dynamics and

complexity. These proposed issues are important for developing a comprehensive
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understanding of land changes in an integrated framework for global environmental

change.

1.3.1 Coupling Human and Environmental Systems

Land changes are both causes and consequences of earth system changes, including

the biophysical and the socioeconomic processes. Models taking specific drivers

into considerations have tried to include factors from both subsystems. One major

challenge arises from the integration of data and processes representing biophysical

conditions and human decision making. Difficulty lies in the different levels of

aggregation and spatial unit of observation (Rindfuss et al. 2004). In social-

demographic analysis, data are usually collected at some levels of aggregation,

whereas direct measurements and remote sensing techniques have been more

commonly used in extracting biophysical variables (Jensen 1983). As a result,

research of the coupled human-environmental systems has to deal with the problem

of (i) integrating different types of data (e.g., raster and vector), (ii) integrating

spatial data at different scales, (iii) integrating spatial data from different dimen-

sions (e.g., point, line, polygon), and (iv) integrating data acquired at different

locations (Gotway and Young 2002). These four types of spatial data integration

problems are often intertwined, which leads to even more challenges.

The issue of coupling human and environmental systems is also related to the

scale issues in that statistical modeling and machine learning are designed at the

scale of the coupled system as a whole while cell-based models can represent

multilevel dynamics in both dimensions. Moreover, it is quite challenging to fully

represent the processes in the human subsystems due to the lack of specific data on

human decision-making and a high level of uncertainty. Towards a comprehensive

understanding of the coupled system, the potential interactions and feedbacks

within the land change system need to be incorporated in the models. In this

sense, the structures of agent-based models and integrated models seem promising

for integrating human behaviors and biophysical feedbacks. Its capability in

representing temporal dynamics further facilitates the realization of simulating

system feedbacks in land change processes.

1.3.2 Scale Dependency and Multilevel Interactions

Research on the coupled human-environmental systems is further complicated by

the issue of scale dependency and the multilevel interactions within the system. One

of the early steps in spatially explicit modeling is to identify an appropriate scale

(e.g., extent and resolution) for analyzing the spatial phenomena, such as land

changes. This is known as the Modifiable Areal Unit Problem (MAUP) in

geospatial science, that is, the correlation between variables may change with scales
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(Openshaw and Taylor 1979). The common approach to deal with the MAUP issue

is to apply a multi-scale analysis to examine how the relationships among variables

change with varying levels of aggregation and different ways of zoning (e.g.,

Veldkamp and Fresco 1997; Walsh et al. 2001; Evans and Kelley 2004; Hu and

Lo 2007). Multilevel statistical modeling has also been used for analyzing land

change driving factors at nested hierarchical levels (Hoshino 2001).

Land change modeling is further complicated by the potential interactions and

feedbacks among different levels of processes (Verburg 2006). In simulating the

multilevel interactions, the modeling frameworks of cellular automata and agent-

based model allow for the representation and incorporation of processes at multiple

levels. The current land use models focus on two types of cross-scale dynamics:

top-down and bottom-up simulation. The top-down control is represented by the

government policies and global interactions affecting land demand and growth

suitability. From the bottom-up perspective, human makes decisions on land

allocation which produces the aggregate land use patterns. Further exploration on

their capabilities is needed given the challenges in theoretical development and data

availability, as well as the high computing demand of agent-based modeling.

1.3.3 Temporal Dynamics and Complexity

Simulating temporal dynamics is another critical issue for land change modeling,

which brings about the need to handle time lags and feedback responses in the

temporal dimension of land change processes (Agarwal et al. 2002). Under the

assumption of stationarity, statistical modeling and machine learning have very

limited capability to represent temporal dynamics and complexity of the land

change processes. They often assume the factors leading to the observed patterns

and processes in the past will continue to do so in the future. This assumption is

problematic as it is very likely the factors will alter their future behaviors given

changes in the landscape or some exogenous conditions. To the contrary, the

framework of cellular automata and agent-based models allows for the temporal

dynamics to be considered as the behaviors at individual level may alter in response

to landscape changes or incorporated external variables at each simulation

time step.

The ecological and socioeconomic responses within the coupled human-

environmental systems may not be immediately observable or predictable because

the existence of time lags between the human-nature interactions and the appear-

ance of ecological and socioeconomic consequences. To address this issue, a

temporally lagged variable can usually be included in some models such as the

statistical regression models. More complex models have the flexibility to represent

time lags in land use decisions. For example, Irwin and Bockstael (2002) treat the

interactions among neighboring agents making a residential conversion decisions as

a temporally lagged process to better represent the real world decision-making

processes.
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1.4 Land Change Modeling for Global Environmental
Changes

The use and integration of models will lead to a comprehensive understanding of

the complexity of the coupled human-environmental systems (i.e., synthesis and

assessment issues). In the context of global environmental change and sustainability

science, increasing concerns are given to research on sustainability that can inform

practice and decision making in planning and management domains. The develop-

ment of the next generation of LCMs needs to take these concerns into consider-

ation towards an integrated research framework for land change and earth system

studies. In this section, we review four research articles that illustrate the progress

of coupling land change modeling with other environmental analysis and modeling

techniques for studying the interactions between land change and other components

of global environmental changes, such as climate change, hydrological processes,

soil degradation, and biodiversity loss.

Kerr et al. (2003) described an integrated process-based modeling approach that

couples ecological modeling of Carbon dynamics with economic modeling of land

use for the prediction of land use and Carbon storage. This integrated model

contains three components to simulate the interactions and feedbacks between

ecosystems and human land-use activities. The ecological model and economic

model were coupled through the land manager’s choice of land use at each time

step. The complex interactions were then realized through the exchange of individ-

ual model outputs as endogenous variables that will affect the next step of simula-

tion. For example, the ecological model provides inputs to the land use choice

model through estimates of biomass productivity. The key outputs from the inte-

grated model include both land use and Carbon stocks.

Lin et al. (2007) developed an approach for modeling the impacts of future land

use and climate changes on hydrological process through integrating the CLUE-S

model (Verburg et al. 2002) and the generalized watershed loading functions model

(Haith and Shoemaker 1987). The structure of the CLUE-S model was described

earlier in Sect. 1.2.1. The hydrological model is a combined distributed/lumped

parameter watershed model that simulates runoff, sediment, and nutrient loadings

in a watershed using variable sized source areas of different land use/cover types.

The simulated land use/cover types have different coefficient values that are used to

determine the evapotranspiration in the hydrological model. Moreover, climate

change scenarios generated from general circulation models (GCM) simulations

have also been included to examine the impacts of climate change on the hydro-

logical cycle.

Van Rompaey et al. (2002) loosely coupled land use change model with soil

erosion model to predict future soil degradation and its on-site and off-site conse-

quences. They firstly applied stochastic simulations to simulate future land changes

based on the calculated afforestation and deforestation probabilities from historical

land use maps. Then a spatially distributed soil erosion/sediment delivery model,

SEDEM, was used to quantify the effects of afforestation or deforestation on soil
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erosion and sediment delivery. Land use classes are not directly involved in

calculating the soil erosion component of SEDEM. But the probability of land

conversion and soil erosion rate are both affected by the same factor of slope

gradient. The simulated future land use patterns were used as input for the sediment

transport component in SEDEM, with a transporting capacity coefficient estimated

for each land use class.

Reidsma et al. (2006) assessed the relationship between land use intensity and

related biodiversity in agricultural landscapes. For land use simulation, an inte-

grated model was applied to quantify the area changes in agricultural land use and

the CLUE model was used for land use allocation. Biodiversity in this study was

measured using the ecosystem quality, which is expressed as the mean abundance

of species originally present in the natural ecosystems relative to their abundance in

undisturbed situations. Following the land use scenarios, the ecosystem quality of

agricultural landscapes can be calculated as conditioned by land use. Then the

impact of agricultural land use changes on overall biodiversity was assessed by

comparing the relative size of nature area and the average ecosystem quality of

natural ecosystems.

1.5 Conclusions

Land changes are processes in which human and natural systems interact over space

and time to reshape the earth’s surface. They are both causes and consequences of

global change that interacts with other components of the earth system. Land

change science has recently emerged as a fundamental component of global

environmental change and sustainability science. However, the complexity of

land systems leads to many challenges for the research communities. Among the

research components in land change science, land change modeling appears to be

promising in improving our understanding of land use and land cover change as a

coupled human-environmental system.

A wide variety of modeling approaches has been developed to simulate the

processes of land changes. This chapter has reviewed some commonly used

approaches, including statistical regression models, artificial neural networks

(ANN), Markov chain modeling, cellular automata, economic models, and agent-

based models (ABM). These different approaches are built upon various theoretical

and methodological foundations. The order of these approaches generally repre-

sents the theoretical transition of land change modeling from aggregate to individ-

ual modeling frameworks. The best model to use depends on specific applications

given their unique strengths and weaknesses.

The complexity for land change modeling is owing to their need to represent the

spatiotemporal dynamics of the coupled human-environment systems. For coupling

the factors from human and environmental systems, development of data integra-

tion techniques can help address the differences in spatial data. However, more

comprehensive understanding and representation of the integrated processes within
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the coupled system is one of the major challenges for land change modeling. To

deal with the influences of spatial dependency, multi-scale analysis is necessary to

address the Modifiable Areal Unit Problem (MAUP). Another important issue is

to model the interactions and feedbacks among multiple scales in the land change

processes. New models need to take into consideration of the multilevel processes

and to integrate alternative perspectives into the existing modeling framework. In

modeling land change processes, a temporally dynamic modeling framework is

critical to capture the necessary behavior changes during the modeling time

periods. Moreover, the factor of time lags needs to be considered to avoid biased

simulation.

The advances in land change modeling offer great opportunities to study global

environmental change in an integrated framework. The examples reviewed in this

chapter should shed light on the progress of coupling land change modeling with

other ecological modeling and analysis techniques for analyzing the interactions

between land changes and other components of global environmental change. Many

of the integrated frameworks are based on the use of simulated land use patterns or

other land use/cover derived variables as input to the ecological models. More

complex examples make use of the process-based models that integrate land change

models and ecological models through individual decision-making using outputs

from each model.
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