
Chapter 17
Discrete and Continuous Growth of Deformable
Cylinder

Sergei A. Lychev, Alexander V. Manzhirov, and Pavel S. Bychkov

Abstract The finite deformations of the growing cylinder of incompressible elastic
material are under consideration. We assume that the deformations are axisymmetric
and do not change along the axis of cylinder. The discrete and continuous types
of growing are studied. The analytical solutions of the corresponding boundary-
value problems are derived. The results of numerical simulation of both discrete
and continuous growth are given.
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1 Introduction

Additive manufacturing technologies include stereolithography, electrolytic depo-
sition, laser and thermal 3D printing, production of 3D integrated circuits and a
number of other technologies [1–3]. Actually there is a real boom in the develop-
ment of additive manufacturing technologies since they allow to reproduce a 3D
object of arbitrarily complicated shape (theoretically from any material) with high
accuracy and low expenses in short time. However, problems of deformation and
strength of products manufactured using such technologies remain still unsolved.

It is essential that the residual stresses can occur in growing bodies through a
variety of mechanisms. For example, in layer-by-layer welding technology a heat
from parts being welded may cause localized expansion. When the finished melt
cools the incompatible distortion appears that cause the residual stresses. Another
example occurs during an additive manufacturing when thin film materials with
different thermal and crystalline properties are deposed sequentially under different
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process conditions. In general it is impossible to avoid residual stresses. It leads
to undesirable consequences, such as a shape distortion, local discontinuity, loss
of stability. In particular, the estimation (and minimization) of possible distortions
in stereolithography, the analysis of stability of epitaxial thin-walled structures
applicable in micro-electromechanical systems (MEMS) are significant.

In the design of mentioned above additive technologies it is often desirable to
minimize distortion and residual stresses, or to produce structures with a predefined
distributions of initial stresses. This may be achieved through mathematical model-
ing of the stress-strain state evolution of a growing body. The present paper deals
with the development of this theory.

In the paper the concept of the growth of a solid is used. This concept refers to
a new branch of continuum mechanics [4–8], therefore it seems appropriate here to
clarify the definition of a growing solid. In a broad sense growing process defines
the alteration of the body composition occurring in the course of deformation.
The growing process may be accompanied by a change of topological properties
of the body. We say that the altering of the body composition is the accession
of new material points and (or) formation of new constrains between particles
already included into the composition. It also should be noted that the change of
topological properties can occur without the influx of material and can be caused by
the transition of the boundary points into the interior.

In modern continuum mechanics there are a number of different approaches to
the studying of the growth phenomenon. For today a large number of papers devoted
to mechanics of growing solids have been published. References may be found in the
review [9]. Some works of direct relevance to the issues discussed in the paper are
mentioned below. In the paper [10] the volumetric grows, in particular the growth of
biological tissues, is studied. Article [11] is devoted to the development of geometric
methods adopted for the mechanics of incompatible strains arising as the result of
the growing process. In the works [4–7, 12] growth is investigated as the continuous
process of deposition of strained material surfaces to a deformable 3D body.

It is known that under certain additional assumptions on the continuity of
functions defining the stress-strain state of adhered material surfaces the continuous
growing process can be considered as the limit of a sequence of discrete processes.
However, one can find only few examples concerning the finite deformations of
growing solids and comparison of discrete and continuous growth. The aim of the
paper is to give such example.

2 Common Definitions

In what follows the geometrical concept of a body that is represented in terms of
smooth manifolds is used [13–17]. Let the body B be the connected abstract subset
of a topological space such that the image of Bmay be imbedded into physical space
as a region with regular boundary. Furthermore, assume that the body B exhibit
properties of differentiable manifold [18]. We say that p 2 B are material points.
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Assume that they are simple, i.e. the local response of the body depends only on first
deformation gradient [19].

In the classical continuum mechanics bodies are treated as permanent sets of
material points. In mechanics of growing solids one consider the evolution of
the set B. Note that the evolution of growing body in the abstract topological
(material) space can be very complex and may be described in general in terms of
discontinuous mappings [20]. However, under some restrictions on the smoothness
of functions describing the growing process the evolution of the body can be
presented by a continuous family of bodies ordered with respect to inclusion. In
general this family can be associated with a smooth bundle. The dimension of
a base of this bundle defines the class of a growing body [5]. In present paper
we will considered the simplest class that corresponds to the three-dimensional
bundle over one-dimensional base. It has the following interpretation in the terms
of continuum mechanics. For a sufficiently large class of additive technologies the
growing process may be modelled as a continuous influx of prestressed material
surfaces [21] to a growing three-dimensional body. Due to this assumption the
growing body can be represented by a one-parameter family of smooth bodies

C D fB˛g˛2I:

Here I is a set of indices that can be finite, countable or continual.
We introduce the notion of total body B� and initial body B� as follows

B� D
[

˛2I
B˛; B� D

\

˛2I
B˛:

We shall say that the elements of C corresponding to interior points of the interval
I are the intermediate bodies.

We will distinguish discrete and continuous growth. In the case of a discrete
growth the family C is a finite sequence of nested sets:

C W B1 � B2 � : : : � BN : (17.1)

If the growth is continuous then the family C is represented by continuous family
of bodies over the interval I D .˛; ˇ/ � R, that satisfy the following condition.
There are two-dimensional smooth manifolds ˝k and no more than a countable set
of homeomorphisms such that

�k W .˝k; ˛/ ! B�; ˛ 2 R;

8˛ < ˇ B˛ � Bˇ; 8˛ 9k @B˛ D �k.˝k; ˛/;
[

k

�k.˝k � Ik/ D B�;
[

k

Ik D I : (17.2)
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Obviously, the set C has countable cardinality jCj D @1. Note that manifolds
˝k represent the preimage of growth boundary. Relations (17.2) introduce on the
manifold B� the structure of a smooth bundle [5, 18]. The interval I represents the
base of the bundle while the manifolds ˝k represent the fibers. If there is a single
(universal) homeomorphism � D �1 and a single manifold ˝ D ˝1, then the
bundle becomes trivial. Otherwise topological structure of the growing boundary
can vary. Changes in the topology of the preimage of growth boundaries correspond
to the phenomenon of selfcontact of the image ˝k , e.g. the transformation of a
cylinder to a torus under the joining of the bases of the cylinder.

Arguing as above we see that growing body can be represented as a bundle
over the total body B�. Considering the fact that the base of the bundle is one-
dimensional we denote the fiber by M˛ , where ˛ is the base coordinate of the fiber.
Structural properties of the bundle implies that the fibers are disjoint, and their union
coincides with total body B�, i.e. B� D S

�2I
M� .

In the process of growth the body B˛ is presented by open subsets of total body
B�, whose boundary @B˛ is a union of two separate fibers M˛0 and Mˇ0 , i.e.
@B˛ D M˛0 [ Mˇ0 . In this case the body B˛ can be presented as the union of
fibers over an open interval .˛0; ˇ0/ � I :

B˛ D B.˛0; ˇ0/ D
[

�2.˛0;ˇ0/

M� : (17.3)

Under the above mentioned assumptions we can define the growing body as the
one-parameter family

C D ˚
B˛ D B.˛0; ˛/

ˇ̌
˛ 2 I

�
:

Here ˛ is a continuous parameter that characterizes the evolution of the growing
body. As ˛ ! ˛0 the body degenerates into an infinitely thin film or a point. The
obvious generalization of this definition is the following

C D ˚
B� D B.˛� ; ˇ� /

ˇ̌
.˛� ; ˇ� / � I

�
;

where .˛� ; ˇ� / is a family of nested intervals.
According to the above definition the boundary of the growing body should be

topologically equivalent to a typical fiber, which should be a smooth manifold.
Hence the growing boundary must be topologically equivalent to a geometrically
closed surface. If the growing boundary is topologically equivalent to a manifold
with edge, then the growing body can be defined as follows

C D ˚
B� D B0 \ B.˛� ; ˇ� /

ˇ̌
.˛� ; ˇ� / � I

�
:

Here B0 is a fixed subset of the material manifold with smooth edge.
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In present paper we consider the growth of a hollow circular cylinder of fixed
height h. Suppose that the additional material is attached to the lateral surface of the
growing cylinder. If the coordinate charts correspond to the placement coordinates
in an actual configuration then the image of the set B0 corresponds to a sufficiently
large parallelepiped which height is equal to the height of the growing cylinder.

3 Stress-Strain State of the Body-Fiber

The stress-strain state of a growing body fundamentally differs from the stress-strain
state of solids considered in classical solid mechanics. The most important is the fact
that growing body has no natural (stress-free) configuration. Stress-strain state for
growing bodies may be modelled in the framework of the theory of inhomogeneity
developed in [13–15].

The representation of a body as a bundle of a smooth manifold allows one to
use additional hypothesis concerning the properties of the fibers. In particular one
can assume that each individual fiber has a natural configuration. Such hypothesis
is adopted in present paper.

In order to describe stress-strain of a growing body it is necessary to determine
the stress-strain state for a fiber as its structural element. In the case of discrete
growth this structural element is a three-dimensional body BnC1 n Bn, correspond-
ing to the increment of the sequence (17.1). In the case of continuous growth the
material surface M� , which corresponds to a fiber of a bundle (17.3), plays the role
of structural element. Within the present work we assume that each separate body-
fiber has a natural configuration immersed in Euclidean space. It is clear that the
assembly of body-fibers have no such configuration.

In the case of discrete growth each assembly consists of a finite number of nested
hollow cylindrical bodies. The second case is more abstract. It corresponds to the
assembly of the continuum family of two-dimensional material surfaces.

We assume that the material of a body-fibers is hyperelastic and incompressible.
Then the stress-strain state can be determined analytically by universal solutions of
Rivlin–Ericksen type [19].

Let the image of stress-free (natural) configuration of the body-fiber BnC1nBn is
embedded into physical (Euclidean) space E . This embedding can be defined by the
vector field of placements presented in Cartesian basis fi1; i2; i3g by decomposition
X D Xmim. Here fX1; X2; X3g are Cartesian coordinates. Suppose that the
deformation of the body-fiber is defined by the map X 7! x. We assume that this
map has a symmetry relative to the axial axis of the cylindrical fibers and does not
depend on coordinate X3.

For a more compact formulation of the kinematic relations we use cylindrical
coordinates fR; �; Zg:

X1 D R cos �; X2 D R sin �; X3 D Z:
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The cylindrical coordinates define the local basis feR; e�; eZg and reciprocal basis
feR; e�; eZg. Elements of them can be presented by the decompositions

eR D eR D i1 cos � C i2 sin �;

e� D �i1R sin � C i2R cos �; e� D e�

R2
; eZ D eZ D i3:

The reference positions of material points in simplest form can be written as
X D ReR C ZeZ . Taking into account the central symmetry, the independence with
respect to vertical coordinate Z, and the condition of incompressibility jdx=dXj D
1 we arrive at the following family of mapping (universal deformations belonging
to the family 3 according to the classification given in [19])

x.X/ D eR

p
.eR �X/2 C a C eZ ˝ eZ �X: (17.4)

Here a is a deformation parameter that represents the change of the outer cylindrical
surface radius. The deformation gradient F and left Cauchy–Green tensor B D
F �F � (hereinafter the symbol � denotes the transpose) are determined in terms of
local basis corresponded to the reference position as follows

F D Rp
R2 C a

eR ˝ eR C
p

R2 C a

R3
e� ˝ e� C eZ ˝ eZ:

The decomposition of tensor B and its inverse in the terms of the elements of the
local basis corresponded to the actual position, i.e.

eR D er ; e� D
p

r2 � a

r
e� ; eZ D ez;

have the forms

B D r2 � a

r2
er ˝ er C 1

r2 � a
e� ˝ e� C ez ˝ ez; (17.5)

B�1 D r2

r2 � a
er ˝ er C r2 � a

r4
e� ˝ e� C ez ˝ ez:

If the cylindrical body-fiber is produced from an incompressible material of
Mooney–Rivlin type then the strain energy can be presented as a linear function
of the first I1 D I1.B/ and second I2 D I2.B/ invariants of tensor B, i.e.:

W.I1; I2/ D C1.I1 � 3/ C C2.I2 � 3/;

I1 D TrB D 3 C a2

r2.r2 � a/
; I2 D I1:
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Here C1, C2 are material constants. Under the conditions of incompressibility we
have the following decomposition of Cauchy stress tensor [22]

T D �pI C J1B C J�1B
�1;

where p is hydrostatic pressure, J1 D 2@W=@I1 D 2C1 and J�1 D �2@W=@I2 D
�2C2 are coefficients of reaction, and I is a unit tensor. Note that constants C1, C2

can be defined by pair of engineering constants �, ˇ, i.e.:

C1 D �.1 C ˇ/=4; C2 D �.1 � ˇ/=4:

Here � corresponds to the shear modulus and ˇ defines the additional parameter
for nonlinear response. From thermodynamical restriction it follows that �1 < ˇ <

1 [19].
After simple calculations we obtain the following:

T D T rrer ˝ er C T �� e� ˝ e� C T zzez ˝ ez; T rr D�p C J1

r2 � a

r2
C J�1

r2

r2�a
;

T �� D� p

r2
C J1

1

r2 � a
C J�1

r2 � a

r4
; T zz D�p C J1 C J�1:

Hydrostatic stress component p can be determined by the equilibrium equation
r � T D 0. Integrating this equation with respect to r we get

T rr D �

2

�
ln

r2 � a

r2
� a

r2

�
C p0; T �� D T rr

r2
C �

r2

�
r2

r2 � a
� r2 � a

r2

�
;

T zz D T rr C � a
r2 � .1 C ˇ/ a=2

r2.r2 � a/
; (17.6)

where p0 is the constant of integration. Note that in the terms of physical basis
ehri D er ; eh�i D e� =r; ehzi D ez the stresses have the form

Thrri D T rr; Th��i D T �� r2; Thzzi D T zz:

Thus, the deformations and stresses can be defined up to the parameters a and
p0. This implies that the boundary conditions may be satisfied exactly only on the
cylindrical surfaces if the constant hydrostatic load intensity pi and pe are given

T �er
ˇ̌
rDri

D pi er ; T �er
ˇ̌
rDre

D peer ; (17.7)

Here ri , re are the radii of the inner and outer cylindrical boundary surfaces.
Substituting expressions for the radial component of the stress (17.6) to the

boundary conditions (17.7) and taking into account the kinematic relations (17.4)
we obtain the system of equations
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8
<

:

�

2

�
ln R2

i

R2
i Ca

� a

R2
i Ca

�
C p0 D pi ;

�

2

�
ln R2

e

R2
e Ca

� a
R2

e Ca

�
C p0 D pe;

(17.8)

where Ri D
q

r2
i � a, Re D p

r2
e � a are reference values of the radii of the

boundary surfaces. After eliminating of the parameter p0 from the resulting system
we obtain the equation with respect to the parameter a:

ln

�
R2

i

R2
e

R2
e C a

R2
i C a

�
D 2

pi � pe

�
C a

R2
e � R2

i

.R2
i C a/.R2

e C a/
:

Let x D a=R2
e be a new variable that can be interpreted as a relative deformation

parameter. Potentiating the left and right hand-sides of the resulting expression we
obtain the equation with respect to x

F D 0; F D 1 C x

� C x
� A

�
e

x
1��

.1Cx/.�Cx/ : (17.9)

Here � D R2
i =R2

e , A D expŒ2.pi � pe/=��. Because the internal radius in the
reference configuration has always positive value then 0 < � < 1. Furthermore
x > �� . Limit relations

lim
x!��

F D 1; lim
x!1 F D 1 � A

�

show that Eq. (17.9) has a solution only if A > � , i.e. there is a limit for the
difference of hydrostatic load intensities: pi � pe > �=2 ln � .

If the value of x is determined then the absolute deformation parameter a D R1
ex

can be calculated and the corresponding value p0 may be also determined. Thus, for
given values of hydrostatic loads pi ; pe and radii of the boundary surfaces Ri ; Re

one can define the parameters a; p0 and all components of strain tensors (17.5) and
stresses (17.6) as well.

4 Discrete Growing

Consider a finite set of bodies. Let the elements of this set be the circular hollow
cylinders of equal height h (in natural configuration). The motion (17.4) transform
them to the hollow cylinders of the same height, but of another radii. Such
deformation can be realized, e.g. by expanding the hollow cylinder which base lie
on the smooth rigid slabs. We assume that the images of the actual configuration
of the cylinders are pairwise disjoint and their union is a connected set. The final
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composite body can be treated as a result of discrete growth because cylindrical
parts cannot deform independently after joining.

Let N be the number of cylindrical parts. Assume that the following scenario of
growth is realized. On the first step the joining of the first and second body-fibers
is performed. A composite body appears which we call the first assembly. Then the
third body is joint to the composite body, etc. On the internal r D r1

i;n and the outer
boundary r D rn

e;n of this composite bodies the uniformly distributed pressure pi;n

and pe;n are defined

T �er
ˇ̌
rDr1

i;n
D pi;ner ; T �er

ˇ̌
rDrn

e;n
D pe;ner : (17.10)

Index n indicates the number of assembly. The indexing in the notation of intensity
of hydrostatic loads pi;n, pe;n shows that they may vary during the growing process.
Suppose that the contact between body-fibers is ideal, i.e. inner surface of k-th fiber
and the outer surface of k C 1-th fiber in the actual configuration are the same and
stresses on them are in equilibrium:

T �er
ˇ̌
rDrk

e;n
D T �er

ˇ̌
rDr

kC1
i;n

; rk
e;n D rkC1

i;n ; k D 1; 2; : : : n � 1: (17.11)

The deformation parameters ak
n and parameters pk

0;n, k D 1; 2; : : : ; n may be
found from the system of 2n nonlinear equations (17.10) and (17.11). Taking into
account (17.4) and (17.6) we get

�

2

�
ln

.R1
i /2

.R1
i /2Ca1

n

� a1
n

.R1
i /2Ca1

n

�
Cp1

0;n Dpi;n;

�

2

�
ln

.Rn
e /2

.Rn
e /2Can

n

� an
n

.Rn
e /2Can

n

�
Cpn

0;n Dpe;n;

�

2

�
ln

.Rk
e /2

.Rk
e /2Cak

n

� ak
n

.Rk
e /2Cak

n

�
C pk

0;n D

D �

2

"
ln

.RkC1
i /2

.RkC1
i /2CakC1

n

� akC1
n

.RkC1
i /2 C akC1

n

#
CpkC1

0;n ;

.Rk
e /2 C ak

n D .RkC1
i /2 C akC1

n ; k D 1; 2; : : : ; n � 1: (17.12)

The system of equation (17.12) may be transform to simpler form if one introduce
the following variables and parameters:

˛k D 1 C Ak=.Rk
e /2; ˇk D �k C Ak=.Rk

e /2; �k D .R1
e/2=.Rk

e /2; xn D a1
n=.R1

e/2;

Wn De
2

pi;n�pe;n
� A1 D0; Ak D

kX

pD2

	
.Rp�1

e /2�.R
p
i /2



; k D2; 3; : : : ; n; �k D

�
Rk

i

Rk
e

�2

:
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Eliminating pk
0;n and potentiating of the left and right hand sides of above

equation, we obtain

nY

kD1

�k

˛k C �kxn

ˇk C �kxn

D Wn exp

"
nX

kD1

.1 � �k/
�kxn C ˛k � 1

.ˇk C �kxn/.˛k C �kxn/

#
: (17.13)

We distinguish the following types of growth

1. Growth with a prescribed reference geometry. Here we suppose that the geo-
metrical characteristics of body-fibers in the image of natural configuration are
given, i.e. the reference radii of the unstrained body-fibers Rk

i and Rk
e are known.

2. Growth with a given actual geometry. The position of growing boundaries in
the image of the actual configuration Rn and the thickness of body-fibers in the
reference configuration are known, i.e. the values 	k D Rk

e � Rk
i , k D 1; : : : ; n

are prescribed.

Let us consider these types of growth in detail.

Type 1. Growth with a given reference geometry. Using given values of the refer-
ence radius Rk

i , Rk
e , k D 1; : : : ; n one can calculate values of ˛k , �k , ˇk , �k , and

taking into account given values of hydrostatic load pi;n, pe;n calculate the values
of Wn. As a result one obtain a series of uncoupled non-linear equations (17.13).
The solutions of this equations determines deformation parameters xn indepen-
dently. Thereafter one may calculate ak

n , k D 1; : : : ; n and define stresses by the
relations (17.6).

Type 2. Growth with a given actual geometry. In this case the reference radii of the
body-fibers are not known a priori, and Eqs. (17.13) have to be supplemented
by additional equations that define the radius of growing boundary Rn in actual
configurations

rn
e;n D

q
.Rn

e /2 C an
n D Rn:

To analyze the system of equations firstly allocate in the left and right hand sides of
Eq. (17.13) the terms corresponding to the n-th body-fiber, i.e.:

�n

˛n C �nxn

ˇn C �nxn

n�1Y

kD1

�k

˛k C �kxn

ˇk C �kxn

D

D Wn exp

"
.1 � �n/ .�nxn C ˛n � 1/

.ˇn C �nxn/.˛n C �nxn/
C

n�1X

kD1

.1 � �k/ .�kxn C ˛k � 1/

.ˇk C �kxn/.˛k C �kxn/

#
:

(17.14)

Unlike type 1 the values of �n, ˛n, ˇn, �n, can’t be defined a priori, because they
depend on the dimensionless deformation parameter xn. In fact, since

.Rn
e /n D R2

n � an
n D R2

n � .R1
e/2xn � An; Rn

i D Rn
e � 	n;
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the expression for An

An D An�1 C .Rn�1
e /2 � .Rn

i /2

is the algebraic equation whose solution determines An through the parameters
with indices m < n, actual radius of the growing border Rn and the deformation
parameter xn. Substituting these expressions into Eq. (17.14) leads to the explicit
form of non-linear equations:

�
1 C 2 
n

�n � xn

�2
�n

n�1 C xn

n�1Y

kD1

�k

˛k C �kxn

ˇk C �kxn

D

D Wn exp

"
�n � xn � 
n

n�1 C xn

�
1 � .�n � xn/2

4�n
n

�
C

n�1X

kD1

.1 � �k/ .�kxn C ˛k � 1/

.ˇk C �kxn/.˛k C �kxn/

#
;

(17.15)

where


n D
�

	n

R1
e

�2

; �n D Hn

.R1
e/2

; �n D
�
Rn

R1
e

�2

;

n�1 D An�1 C .Rn�1
e /2

.R1
e/2

; Hn D R2
n � An�1 � .Rn�1

e /2 C .	n/2:

5 Continuous Growth

In the case of continuous growth it is convenient to introduce an intermediate
configuration which image is not free from stresses but it may be immersed in
Euclidean space. If such intermediate configurations perform additional conditions,
i.e. the local configuration in the neighborhood of any interior point does not change
during the growing process, then the total local deformation, which transforms
the neighborhood of material point to the actual state, can be presented as a
multiplicative decomposition

H D F � K ; rot F D 0; rot K ¤ 0; PK D 0;

where PK denotes the derivative with respect to time, or to a time like parameter.
In general, the intermediate configuration is not compatible with actual external

fields acting on the growing body. Thus one must attach a system of fictitious mass
and surface forces which have the character of Eshelby forces [16].

Bearing in mind the idea of a bundle as a continual family of material surfaces,
which separately has natural (stress-free) configuration in Euclidean space, we can



250 S.A. Lychev et al.

present the system of fictitious forces by continuous family of surface loads that
hold the material surfaces in assembly.

Thus, with each material surface one can associate the deformation that trans-
forms the surface from the intermediate configuration to the unstressed state

K D R
p

R2 C ˛.R/
eR ˝ eR C

p
R2 C ˛.R/

R
e� ˝ e� C eZ ˝ eZ:

Note that the union of these fields determines a single field of linear transformations
(a three-dimensional field of second-rank tensors) which are not gradients of any
vector field in Euclidean space.

The body deforms from the intermediate configuration to the actual in conven-
tional sense. So it is subjected to the deformation F which has the form

F D Qr
p Qr2 C A.t/

eQr ˝ eQr C
p Qr2 C A.t/

Qr e Q� ˝ e Q� C eQz ˝ eQz:

Here variable with tilde corresponds to the intermediate configuration. In this case
the total distortion and corresponding strain are the following

H D F � K D
p Qr2 � ˛. Qr/
p Qr2 C A.t/

eQr ˝ eQr C
p Qr2 C A.t/
p Qr2 � ˛. Qr/

e Q� ˝ e Q� C eQz ˝ eQz:

Considering the general case we assume that growth starts on a non-empty initial
body which is a hollow cylinder that is free of stresses at initial instant. Its inner
and outer radii are Qri , Qre respectively. Cylindrical material surfaces are attached
to the outer surface of the body continuously increasing its external radius in the
intermediate configuration. Let actual value of this radius is rg . Suppose that on
cylindrical surfaces of the growing body we have hydrostatic load pe and pi , i.e.

T �eQr ˇ̌
QrDQri

D pi eQr ; T �eQr ˇ̌
QrDQre

D peeQr ; (17.16)

Then physical components of stresses can be presented by the formulas

T<Qr Qr> D

8
<̂

:̂

I. Qr; A/ C pi ; Qr0 � Qr � Qr1

I. Qr1; A/ C pi C
QrR

Qr1

�
�

1
�2�˛

� �2�˛

.�2CA/2

�
d�; Qr1 � Qr � Qrg

T
< Q� Q�>

D T<Qr Qr> C
( Qr2CA

Qr2 � Qr2

Qr2CA
; Qr0 � Qr � Qr1

Qr2CA
Qr2�˛

� Qr2�˛
Qr2CA

; Qr1 � Qr � Qrg

(17.17)
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T<QzQz> D T<Qr Qr> C
8
<

:

Qr2CA�.1Cˇ/A=2

.Qr2CA/Qr2 A; Qr0 � Qr � Qr1

Qr2CA�.1Cˇ/.AC˛/=2

.Qr2CA/.Qr2C˛/
.A C ˛/; Qr1 � Qr � Qrg

I. Qr; A/ D
QrZ

Qr0

�
� 1

�2
� �2

.�2 C A/2

�
d� D ln

Qr
q

A C Qr2
0

r0

p
A C Qr2

� A

2

� 1

A C Qr2
0

C 1

A C Qr2

�
:

(17.18)
Radial stresses T<Qr Qr> in the neighborhood of growing boundary are defined by

the formula

T<Qr Qr> D I. Qr1; A/ C pi C
QrgZ

Qr1

�
� 1

�2 � ˛
� �2 � ˛

.�2 C A/2

�
d�: (17.19)

Circumferential stress T
< Q� Q�>

in the neighborhood of growing boundary is

T
< Q� Q�>j

Qr DQrg
D pe C Qr2 C A

Qr2 � ˛. Qrg/
� Qr2 � ˛. Qrg/

Qr2 C A
: (17.20)

Radius of the outer cylindrical boundary in the actual configuration is defined by

rg D
q

Qr2
g C A: (17.21)

The rate of change of the material composition of the body can be given a
function V.t/, which determines the increasing of the volume of the growing body
during the growing process. For incompressible material it is an invariant with
respect to the change of configuration. Under the assumption that the inner radius
of Qri does not change, the outer one can be defined as follows

Qrg D
q

V.t/=.�h/ C Qr2
0 : (17.22)

Consider the types of growth like in the case considered for discrete growth. We
assume that in all cases the dependence of the volume V.t/ is known.

Type 1. Growth with given distortion. The distortion function ˛ D ˛. Qr/ is pre-
scribed. To determine stress field one must find parameter A.t/ which is defined
implicitly by the equation

F.A/ D 	p; F.A/ D I. Qr1; A/ C
QrgZ

Qr1

�
� 1

�2 � ˛
� �2 � ˛

.�2 C A/2

�
d�:
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Here 	p D .pe � pi /=�. Stresses that arise in the body in the process of growth
can be determined by relation (17.17).

Type 2. Growth with a predefined displacements of growing boundary. The posi-
tion of the image of growing boundary in the actual configuration is known,
i.e. the function z D rg.t/ is given. Since the radial coordinate of the growing
boundary in intermediate configuration is given by (17.22), the parameter A can
be determined from Eq. (17.21), i.e.

A D z2 � Qr2
g : (17.23)

Substituting expressions (17.23) and (17.19) into the boundary conditions (17.16)
we get integral equation with respect to ˛. Qr/

xZ

Qr0

�
� 1

�2 � ˛
� �2 � ˛.�/

.�2 C z2.x/ � x2/2

�
d� D

D 	p � I. Qr; z2.x/ � x2/; 	p D .pe � pi /=�:

As a result of change of variables 
 D �2, y D �2 � ˛.�/, � D x2 we obtain the
integral equation

�Z

a

� 1

y.
/
� y.
/

.
 � A.�//2

�
d
 D Q.
/ (17.24)

with respect to function y.
/. Here the functions A.�/ D z2.
p


/ � � Q.�/ D
2.	p.

p

/ � I. Qr1; A.�/// are prescribed.

The solution of this equation defines function ˛.�/ and therefore all
stresses (17.17).

6 Numerical Examples

In this section some results of numerical simulation of both discrete and continuous
growth are given.

The rubbery material with the following mechanical characteristics J1 D
4:419 105 Pa, J�1 D �3:009 105 Pa and � D 7:928 105 Pa, ˇ D 0:241 is
considered. The inner and outer diameters are R1

i D 1:8h, R1
e D 2h in all

calculations. In the discrete growth case it is studied three scenarios: 5, 10 and 25
layers joined to the initially body. The thicknesses of the layers were chosen from
the following condition: the volume of final body was fixed. The pressure on inner
and outer surface of initially body are taken as zero. The time of growth in the
continuous case and the thickness of layers in the discrete one were chosen from the
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a b

Fig. 17.1 (a) Relative radial stresses, (b) The difference between relative radial stresses for
continues and discrete growth

a b

Fig. 17.2 (a) Relative circumferential stresses, (b) The difference between relative circumferential
stresses for continues and discrete growth

condition that volume of initially body is doubled. The graphics of relative radial
stress and circumferential stress distributions for discrete and continuous growth
are shown in Figs. 17.1a and 17.2a. The graphics of the differences between relative
stresses for discrete and continues growth (N D 5 – dashed, N D 10 – doted, N D 25
– solid line ) are shown on Figs. 17.1b and 17.2b.

The computational examples show the convergence of solutions obtained for
the discrete growth to corresponding solutions for continuous growth under the
following conditions: the number of discrete body-fibers increases while their
thickness decreases such that the final volume of growing solid is fixed.
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