
Chapter 7
Computer Simulations: A New Mode
of Scientific Inquiry?

Stéphanie Ruphy

Abstract Computer simulations are everywhere in science today, thanks to ever
increasing computer power. By discussing similarities and differences with experi-
mentation and theorizing, the two traditional pillars of scientific activities, this paper
will investigate what exactly is specific and new about them. From an ontological
point of view, where do simulations lie on this traditional theory-experiment map?
Do simulations also produce measurements? How are the results of a simulation
deem reliable? In light of these epistemological discussions, the paper will offer
a requalification of the type of knowledge produced by simulation enterprises,
emphasizing its modal character: simulations do produce useful knowledge about
our world to the extent that they tell us what could be or could have been the case, if
not knowledge about what is or was actually the case. The paper will also investigate
to what extent technological progress in computer power, by promoting the building
of increasingly detailed simulations of real-world phenomena, shapes the very aims
of science.

1 Introduction

In 2013, two projects were selected by the European Commission as “Flagships”
projects, receiving each a huge amount of funds (about one billion euros over
10 years). It is telling that one of these two top-priority projects, the Human Brain
Project, aims at digitally simulating the behaviour of the brain. Computer simu-
lations have not only become ubiquitous in the sciences, both natural and social,
they are also more and more becoming ends in themselves, putting theorizing and
experimenting, the two traditional pillars of scientific activities, into the background.
This major addition to the range of scientific activities is in a straightforward
sense directly linked to technological advances: the various epistemic roles fulfilled
by computer simulations are inseparable from the technology used to perform
it, to wit, the digital computer. Asking to what extent technology (in that case
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ever increasing computing power) shapes science requires assessing the novelty
and the epistemological specificities of this kind of scientific activities. Sure
enough, computer simulations are everywhere today in science – there is hardly
a phenomenon that has not been simulated mathematically, from the formation of
the moon to the emergence of monogamy in the course of evolution of primates,
from the folding of proteins to economic growth and the disintegration of the Higgs
boson, but what exactly is specific and new about them?

There are two main levels of assertions about their novelty in the current
philosophical landscape. A first kind of assertions concerns the extent to which
computer simulations constitute a genuine addition to the toolbox of science.
On a second level, the discussion is about the consequences of this addition for
philosophy of science, the question being whether or not computer simulations
call for a new epistemology that would be distinct from traditional considerations
centered on theory, models and experiments.

Given the topic of this volume and the direct link between technological progress
made in computational power and simulating capacities, I will be mainly interested
in this paper in the first kind of assertions, the ones that state the significant
novelty of computer simulations as a scientific practice.1 Here’s a sample of those
claims, coming both from philosophers of science and scientists. For the philosopher
Ronald Giere for instance, the novelty is quite radical: “[ : : : ] computer simulation
is a qualitatively new phenomenon in the practice of science. It is the major
methodological advance in at least a generation. I would go so far as saying it is
changing and will continue to change the practice not just of experimentation but
of science as a whole” (2009, 59). Paul Humphreys, also a philosopher of science,
goes even one step further by talking about revolution: “[ : : : ] computer modelling
and simulation [ : : : ] have introduced a distinctively new, even revolutionary, set
of methods in science” (2004, 57. My italics). On the scientific side, the tone is
no less dramatic as for instance in a report a few years ago to the US National
Academy of Sciences: “[But] it is only over the last several years that scientific
computation has reached the point where it is on a par with laboratory experiments
and mathematical theory as a tool for research in science and engineering. The
computer literally is providing a new window through which we can observe the
natural world in exquisite detail.” (J. Langer, as cited in Schweber and Wächter
2000, 586. My italics).

In their efforts to further qualify the novelty of computer simulations and the
associated transformative change of scientific activities, philosophers of science
have engaged into descriptive enterprises focusing on particular instances of simu-
lation. Given the widespread taste of professional philosophers for accumulation of
definitions and distinctions, as well as for fine-grained typologies, efforts have also
been made to offer scientifically informed definitions of simulations (distinguishing
them in particular from models), as well as typologies ordering the variety of

1See Humphreys (2009) and Reiss and Frigg (2009) for discussions of the second kind of
assertions.
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scientific enterprises coming under the banner of computer simulation, by typically
classifying them according to the type of algorithm they employ (“Discretization”
mathematical techniques, “Monte Carlo” methods, “Cellular automata” approaches,
etc.). However interesting and useful these philosophical studies are, I won’t talk
much here of the various definitions and distinctions they propose, being more
concerned by the challenging epistemological and ontological issues common to
many kinds of simulations. And a widely-discussed first set of issues refers to
the relationship between computer simulations and experimenting and theorizing.
From an ontological point of view, where do simulations lie on this traditional
theory-experiment map? Simulations are often described as “virtual” or “numerical”
experiments. But what are the significant similarities or differences between com-
puter simulations and experiments? Do simulations also produce measurements? Do
they play similar epistemological roles vis-à-vis theory? Another set of challenging
issues concerns the sanctioning of a computer simulation. How do computer
simulations get their epistemic credentials, given that they do not simply inherit
the epistemic credentials of their underlying theories (Winsberg 2013)? Is empirical
adequacy a sure guide to the representational adequacy of a simulation, that is,
to its capacity to deliver reliable knowledge on the components and processes at
work in the real-world phenomenon whose behaviour it purports to mimic? As we
shall see, this kind of issues are especially acute for what I will call composite
computer simulations, developed to integrate as much detail of a given phenomenon
as computing power allows. In light of these epistemological discussions, I will
offer a requalification of the type of knowledge produced by simulation enterprises,
emphasizing its modal character. And I will conclude with tentative remarks on the
way ever increasing computing power, by promoting the building of fully detailed
simulations of real-world phenomena, may progressively transform the very aims of
science.

2 Hybrid Practice

A good starting point to discuss the similarities and differences between simulations
on the one hand, and experiments and theories on the other, might be to ask scientists
how they would describe their activities when they build and use simulations.
Fortunately, some science studies scholars have done just that and I will draw
here on Dowling’s (1999) account based on 35 interviews with researchers in
various disciplines ranging from physics and chemistry to meteorology, physiology
and artificial life. One of the most interesting, if not totally surprising lessons of
Dowling’s inquiry is that for its practitioners the status of this activity is often
hybrid, combining aspects partaking of theoretical research and of experimental
research. Simulations are commonly used to explore the behaviour of a set of
equations, constituting a mathematical model of a given phenomenon. In that case,
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scientists often express the feeling that they are performing an experiment, by
pointing out that many stages of their digital study are similar to traditional stages
of an experimental work. They first set some initial conditions for the system, vary
the values of parameters, and then observe how the system evolves. To that extent,
as in a physical experiment, the scientist interacts with a system (the mathematical
model), which sometimes may also behave in surprising ways. In other words, in
both cases, scientists engage with a system whose behaviour they cannot totally
anticipate, and that is precisely the point: to learn more about it by tinkering and
interacting with it. In the case of a simulation, the unpredictability of the system is
no mystery: it usually comes from the nature of the calculations involved (often
dealing with non linear equations that cannot be solved analytically). Scientists
sometimes talk about “the remoteness of the computer processes”: they cannot
fully be grasped by the researcher who “black-boxes” them while performing the
simulation run (Dowling 1999, 266).

Mathematical manipulation of a theoretical model is not the only experimental
dimension of a computer simulation. Producing data on aspects of a real-world
system for which observations are very scarce, inexistent or costly to obtain is
another widespread epistemic function of a computer simulation. To the extent
that these simulated data are then often used to test various hypotheses, computer
simulations share with experiments the role of providing evidence in support or
against a piece of theoretical knowledge.

As for the similarities with theories, the point has been clearly, if somewhat
simplistically, made by one of the physicists being interviewed: “Of course it’s
theory! It’s not real!” (Dowling 1999, 265). In other words, when the issue of
the relationship to reality is considered, that is, when simulations are taken as
representations, the manipulation dimension of the simulation gives way to the
conjectural nature it inherits from its theoretical building materials. So from the
point of view of the practioners, computer simulations combine significant features
of both theories and physical experiments, and that might explain why simulation
practioners are sometimes less inclined than philosophers to describe computer
simulation as a radically new way of finding out about the world. That might also
explain why expressions such as “in silicon experiments”, “numerical experiments”,
“virtual experiments” have become so common in the scientific discourse. But from
an ontological point of view, to what extent exactly should these expressions be read
literally?

Philosophers of science have further explored the similarities between computer
simulations and physical experiments by asking three kinds of (related) questions.
First, can one still talk of experiment in spite of the lack of physical interactions
with a real-world system? Second, do simulations also work as measurement
devices? Third, does the sanctioning of a computer simulation share features with
the sanctioning of an experiment?
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3 The ‘Materiality’ Debate

The first kind of questions is often referred to as the ‘materiality’ debate (see
e.g. Parker (2009) for a critical overview of it).2 This debate builds on the claim
that the material causes at work in a numerical experiment are (obviously) of a
different nature than the material causes at work in the real-world system (the target
system) being investigated by the simulation, which is not the case with a physical
experiment as explained by Guala:

The difference lies in the kind of relationship existing between, on the one hand, an
experiment and its target system, and on the other, a simulation and its target. In the former
case, the correspondence holds at a “deep”, “material” level, whereas in the latter, the
similarity is admittedly only abstract and formal. [ : : : ] In a genuine experiment, the same
material causes as those in the target system are at works; in a simulation, they are not, and
the correspondence relation (of similarity or analogy) is purely formal in character (2005,
214–215).

This ontological difference emphasized by Guala has epistemic consequences. For
Morgan (2005) for instance, an inference about a target system drawn from a
simulation is less justified than an inference drawn from a physical experiment
because in the former case, and not in the latter case, the two systems (the simula-
tion/experimental system and the target system) are not made of the “same stuff”. In
other words, as Morgan puts it, “ontological equivalence provides epistemological
power” (2005, 326). And computer simulations, if conceived as experiments, must
be conceived as non-material experiments, on mathematical models rather than
on real-world systems. This lack of materiality is precisely what Parker wants to
challenge. Parker makes first a distinction between a computer simulation and a
computer simulation study (2009, 488). A computer simulation is a “sequence of
states undergone by a digital computer, with that sequence representing the sequence
of states that some real or imagined system did, will or might undergo” (2009, 488).
A computer simulation study is defined as “the broader activity that includes setting
the state of the digital computer from which a simulation will evolve, triggering that
evolution by starting the computer program that generates the simulation, and then
collecting information regarding how various properties of the computing system
[ : : : ] evolve in light of the earlier information” (2009, 488). Having defined an
experiment as an “investigative activity involving intervention” (2009, 487), Parker
then claims that computer simulation studies (and not computer simulations) do
qualify as experiments: when performing a computer simulation study, the scientist
does intervene on a material system, to wit, a programmed digital computer. So
in this particular sense, concludes Parker, computer simulation studies are material
experiments: ‘materiality’ is not an exclusive feature of traditional experiments that
would distinguish them from computer studies.

For all that, acknowledging this kind of materiality for computer simulation
studies does not directly bear on Morgan’s epistemological contention. Recall that

2See also Barberousse et al. (2009) and Norton and Suppe (2001).
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the epistemic advantage granted to traditional experiments follows from the fact that
the system intervened on and the target system are made of “the same stuff” and not
only from the fact that both systems are material systems. In the case of a computer
simulation study, the system intervened on and the target system are both material
but obviously they are not made of the same kind of “stuff”. Parker does not deny
this distinction but contends that its epistemological significance is overestimated.
What is significant is not so much that the two systems (the experimental and the
target systems) are made of “the same stuff”, it is rather that there exist “relevant
similarities” between the two. And being made of “the same stuff”, in itself, does
not always guaranty more relevant similarities between the experimental system and
the target system. In the case of a traditional experiment, scientists must also justify
making inferences from the experimental system to the target system.

4 Measurements

Another well-discussed kind of similarities between experiments and simulations
concern the status of their outputs, and that leads us to our second issue – can
the output of a computer simulation count as a measurement? Philosophers of
science provide various and sometimes conflicting answers, depending on how they
characterize measurements.

Morrison (2009) offers an interesting take on the issue by focussing on the role
of models in a measurement process. Models do not only play a role when it comes
to the interpretation of the outputs of an experiment; the measurement process
itself involves a combination of various kinds of models (models of the measuring
apparatus, correction models, models of data, etc.). This close connection between
models and experiment is commonly acknowledged by philosophers of science.
But Morrison (2009) goes one step further by adding that models themselves can
function as “measuring instruments”. To ground her claim, Morrison gives the
example of the use of the physical pendulum to measure the local gravitational
acceleration at the surface of the Earth. In that case (as in many other experiments),
a precise measuring of the parameter under study (here the local gravitational
acceleration) requires the application of many corrections (taking the air resistance
into account for instance). So that many other, sometimes complex models are
used, in addition to the simple model of a pendulum, to represent the measuring
apparatus in an appropriate way. In other words, says Morrison, “the ability of the
physical pendulum to function as a measuring instrument is completely dependent
on the presence of these models.” And she concludes: “That is the sense in which
models themselves also play the role of measuring instruments” (2009, 35). To
reinforce her point, Morrison gives another, more intricate example of measurement,
where the role of models is even more central. In particle physics, when measuring
a microscopic property such as the spin of an electron or the polarization of a
photon, Morrison stresses that the microscopic object being measured is not directly
observed. On the one hand, there is a model of the microscopic properties of the
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target system (the electron or the photon). On the other hand, an extremely complex
instrument is used together with a theoretical model describing its behaviour by
a few degrees of freedom interacting with those of the target system. And this is
the comparison between these models that constitutes the measurement (Morrison
2009, 43). So for Morrison, in this kind of experimental settings, models function as
a “primary source of knowledge”, hence their status of “measuring devices”. This
extension of the notion of measuring goes hand in hand with the downplaying of the
epistemological significance of material interaction with some real-world system:
“Experimental measurement is a highly complex affair where appeals to materiality
as a method of validation are outstripped by an intricate network of models and
inferences” (Morrison 2009, 53).

Dropping the traditional emphasis on material interaction as characterizing
experiment allows Morrison to contend that a computer simulation can also be
considered as a measurement device. For once you have acknowledged the central
role played by models in experimental measurement, striking similarities, claims
Morrison, appear between the practice of computer simulation and experimental
practice. In a computer simulation, you also start with a mathematical model of the
real-world target system you want to investigate. Various mathematical operations
of discretization and approximation of the differential equations involved in the
mathematical model then give you a discrete simulation model that can be translated
into a computer programme. Here too, as in a physical experiment, tests must
be performed, in that case on the computer programme, to manage uncertainties
and errors and make sure that the programme behaves correctly. In that respect,
the programme functions like an apparatus in a traditional physical experiment
(Morrison 2009, 53). And those various similarities, according to Morrison, put
computer simulations epistemologically on a par with traditional experiment: their
outputs can also count as measurements.

Not everybody agrees though. Giere (2009) for instance readily acknowledges
the central role played by models in traditional experiment but rejects Morrison’s
extension of the notion of measuring on the ground that the various correcting
models involved in the measurement process remain abstract objects that do not
interact causally with the physical quantity under study (in Morrison’s pendulum
example, the Earth’s gravitational field). And that suffices to disqualify them as
measuring device. The disagreement thus seems to boil down to divergent views on
the necessity of having some causal interaction with a physical quantity to qualify
as a measurement. Consider a computer simulation of the solar system (another
example discussed by Morrison and Giere). Do the outputs of this simulation (say,
the positions of Saturn over the past 5,000 years) count as measurements? The laws
of motion of the planets being very well established, the values provided by the
simulation are no doubt more precise and accurate than the actual measurements
performed by astronomers. Are they nevertheless only calculations and not mea-
surements? It seems that legitimate answers and arguments can be given on both
sides, depending on what you think is central to the notion of measurement. If
you give priority to the epistemic function of a measurement, that is, providing
reliable information of the values of some parameters of a physical system, then
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Morrison’s proposed extension seems appealing (provided that the reliability of the
information can be correctly assessed in the case of a simulation – I will come back
on this important issue later). But if you give priority to the ontological criteria
stipulating that a measurement must involve some kind of causal interaction with a
real-world physical quantity, then Morrison’s proposition will seem too far-fetched.
In any case, the very existence of this debate indicates a first way in which computer
technology shapes scientific practice: the growing use of computer simulations
directly bears on what it means to perform a measurement in science.

Another well-debated issue concerns the similarities – or lack thereof – between
the way the output of an experiment is deemed reliable and the way the output of a
computer simulation is. And that will lead us to the general issue of assessing the
reliability of a simulation.

5 Internal Validity (Verification)

As briefly mentioned earlier, management of uncertainties and errors and calibration
are essential components of a simulation enterprise. Simulationists must control
for instance errors that might result from the various transformations the initial
equations must go through to become computationally tractable (e.g. discretization),
or errors resulting from the fact that a computer can store numbers only to a
fixed number of digits, etc. And, as Winsberg (2003, 120) puts it: “developing an
appreciation for what sorts of errors are likely to emerge under what circumstances
is as much an important part of the craft of the simulationist as it is of the
experimenter”. Drawing on Alan Franklin’ work (1986) on the epistemology of
experiment, Winsberg adds that several of the techniques actually used by experi-
menters to manage errors and uncertainties apply directly, or have direct equivalents,
in the process of sanctioning the outputs of a simulation. For instance, simulationists
apply their numerical techniques on equations whose analytical solutions are known
to check that they produce the expected results, just as experimenters use a new piece
of experimental apparatus on well-known real-world systems to make sure that the
apparatus behaves as expected. Also, simulationists may build different algorithms
independently and check that they produce similar results when applied on the same
mathematical model, just as experimenters use different instrumental techniques on
a same target (say, optical microscopes and electronic microscopes) to establish the
reliability of the techniques.

These various strategies aim at increasing our confidence in what is often called
the internal validity or the internal reliability of a computer simulation. The point
is to ensure that the solutions to the equations provided by the computer are close
“enough” (given the limits put by computing power) to the solutions of the original
equations. When refering to these checking procedures, scientists usually talk of
verification. But verification is only (the first) half of the story when one wants
to assess the reliability of a computer simulation. The other half, usually called
validation, has to do with the relationship between the simulation and the real-world
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target system whose behavior it purports to investigate. And assessing this external
validity will depend on what kind of knowledge about the target system you expect
from the simulation.

6 External Validity (Validation)

A distinction similar to the traditional distinction between an instrumentalist view
of the aims of a scientific theory and a realist one can be made about simulations.
By instrumental aims, I mean here the production of outputs relative to the past
(retrodictions) or future (predictions) observable behaviour of a real-world system.
Retrodictions are very common in “historical” natural sciences such as astrophysics,
cosmology, geology, or climatology, where computer simulations are build to
produce data about past states of the simulated system (the spatial distribution of
galaxies one billion years after the Big Bang, the position of the continents two
billion years ago, the variation of the average temperature at the surface of the
Earth during the Pliocene period, etc.). A very familiar example of predictions made
by computer simulation is of course weather forecast. Realist aims are – it is no
surprise – epistemically more ambitious. The point is not only to get empirically
adequate outputs; it is also to get them for the right reasons. In other words, the
point is not only to save the phenomena (past or future) at hand, it is also to provide
reliable knowledge on the underlying constituents and mechanisms at work in the
system under study. And this realist explanatory purpose faces, as we shall see,
specific challenges. These challenges are more or less dire depending on how the
simulations relate to well-established theoretical knowledge, and especially their
degree of ‘compositionality’, that is the degree to which they are built from various
theories and bits of empirical knowledge.

6.1 Duhemian Problem

At one end of the compositionality spectrum, you find computer simulations built
from one piece of well-established theoretical knowledge (for instance computer
simulations of airflows around wings built from the Navier-Stoke equations). In
most cases, the models that are directly “read-off” a theory need to be transformed to
be computationally tractable. And, depending on the available computer resources
in terms of speed and memory, that involves idealizations, simplifications and, often,
the deliberate introduction of false assumptions. In the end, as Winsberg (2003, 108)
puts it, “the model that is used to run the simulation is an offspring of the theory,
but it is a mongrel offspring”. Consequently, the computer simulation does not
simply inherit the epistemic credentials of its underlying theory and establishing its
reliability requires comparison with experimental results. The problem is that when
the simulated data do not fit with the experimental data, it is not always clear what
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part of the transformation process should be blamed. Are the numerical techniques
the source of the problem or the various modelling assumptions made to get a
computationally tractable model? As noticed by Frigg and Reiss (2009, 602–603),
simulationists face here a variant of the classical Duhemian problem: something
is wrong in their package of the model and the calculation techniques, but they
might not know where to put the blame. This difficulty, specific to computational
models as opposed to analytically solvable models, is often rephrased in terms
of the inseparability of verification and validation: the sanctioning of a computer
simulation involves both checking that the solutions obtained are close “enough”
to the solutions of the original equations (verification) and that the computationally
tractable model obtained after idealization and simplification remains an adequate
(in the relevant, epistemic purpose-relative aspects) representation of the target sys-
tem (validation), but these two operations cannot always, in practice, be separated.

6.2 The Perils of Accidental Empirical Adequacy3

At the other end of the compositionality spectrum lie highly composite computer
simulations. By contrast with the kind of simulations just discussed, yielded by a
single piece of theoretical knowledge, composite computer simulations are built
by putting together various submodels of particular components and physical
processes, often based on various theories and bits of empirical knowledge.
Composite computer simulations are typically built to mimic the behavior of real-
world “complex” phenomena such as the formation of galaxies, the propagation of
forest fires or, of course, the evolution of the Earth climate. Typically, this kind of
simulations combines instrumental and realist aims. Their purpose is minimally to
mimic the observable behaviour of the system, but often, it is also to learn about
the various underlying physical components and processes that give rise to this
observable behaviour.

Composite computer simulations face specific difficulties when it comes to
assess their reliability, in addition to the verification issues common to all kinds
of computational models. The main problem, I will contend, is that the empirical
adequacy of a composite simulation is a poor guide to its representational adequacy,
that is, to the accuracy of its representations of the components and processes
actually at work in the target system. Let me explain why by considering how
they are elaborated throughout time. Building a simulation of a real-world system
such as a galaxy or the Earth climate involves putting together submodels of
particular components and physical processes that constitute the system. This is
usually done progressively, starting from a minimal number of components and
processes, and then adding features so that more and more aspects of the system
are taken into account. When simulating our Galaxy for instance, astrophysicists

3This section (and the following) directly draws on Ruphy (2011).
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started by putting together submodels of a stellar disc and of a stellar halo, then
added submodels of a central bulge and of spiral arms in order to make the
simulations more realistic. The problem is that the more the simulation is made
realistic, the more it incorporates various submodels and the more it will run into
a holist limitation of its testability. The reason is straightforward: a composite
simulation may integrate several inaccurate submodels, whose combined effects
lead to predictions conformed to the observations at hand. In other words, it is
not unlikely that simulationists get the right outcomes (i.e. in agreement with the
observations at hand), but not for the right reasons (i.e. not because the simulation
incorporates accurate submodels of the actual components of the target system).
And when simulationists cannot test the submodels independently against data
(because to make contact with data, a submodel often needs to be interlocked with
other submodels), there is unfortunately no way to find out if empirical adequacy
is accidental. Therefore, given this pitfall of accidental empirical conformity, the
empirical success of a composite computer simulation is a poor guide to the
representational accuracy of the various submodels involved.

6.3 Plasticity and Path Dependency

Looking at simulation building processes reveals other, heretofore underappreciated
features of composite computer simulations that also directly bear on the issue of
their validation, to wit, what I have called their path-dependency and their plasticity.
Let me (briefly) illustrate these notions with the example of a simulation of the
evolution of our universe.4 As is well known, cosmology starts by assuming that
the large-scale evolution of space-time can be determined by applying Einstein’s
field equations of gravitation everywhere. And that plus the simplifying hypothesis
of spatial homogeneity, gives the family of standard models of modern cosmology
the “Friedmann-Lemaître” universes. In itself, a Friedmann-Lemaître model cannot
account for the formation of the cosmic structures observed today, in particular
the galaxies: The “cold dark matter” model is doing this job. To get off the
ground, the cold dark matter model requires initial conditions of early density
fluctuations. Those are provided by the inflation model. This first stratum of
interlocked submodels allows the simulation to mimic the clustering evolution of
dark matter. Other stratums of submodels, linking the dark matter distribution to
the distribution of the visible matter must then be added to make contact with
observations.

The question that interests us now is the following: at each step of the simulation-
building process, are alternative submodels with similar empirical support and

4My discussion is based on an analysis of the Millennium run, a cosmological simulation run in
2005 (Springel et al. 2005), but similar lessons could be drawn from more recent ones such as the
project DEUS: full universe run (see www.deus-consortium.org). Accessed 22 June 2013.

www.deus-consortium.org
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explanatory power available? And the (short) answer is yes (see Ruphy (2011)
for a more detailed answer based on what cosmologists themselves have to
say). Moreover, at each step, the choice of one particular submodel among other
possibilities constrains the next step. In our example, inflation, for instance, is
appealing only once a Friedmann-Lemaître universe is adopted (which requires
buying a philosophical principle, to wit, the Copernican principle). When starting,
alternatively, from a spherically symmetric inhomogeneous model, inflation is not
needed anymore to account for the anisotropies observed in the cosmic microwave
background. So that the final composition of the simulation (in terms of submodels)
turns out to depend on a series of choices made at various stages of the simulation
building process.

A straightforward consequence of this path-dependency is the contingency of
a composite simulation. Had the simulationists chosen different options at some
stages of the simulation building process, they would have come up with a
simulation made up of different submodels, that is, with a different picture of the
components and mechanisms at work in the evolution of the target system. And the
point is that those alternative pictures would be equally plausible in the sense that
they would also be consistent both with the observations at hand and with our current
theoretical knowledge. To deny this would clearly partake of an article of faith.
Path-dependency puts therefore a serious limit to the possibility of representational
validation, that is, to the possibility of establishing that the computer simulation
integrates the right components and processes.

Plasticity is another (related) source of limitation. Plasticity refers to the possi-
bility of adjusting the ingredients of a simulation so that it remains successful when
new data come in. Note, though, that plasticity does not boil down to some ad hoc
fine-tuning of the submodels involved in the simulation. Very often, the values of the
free-parameters of the submodels are constrained independently by experiment and
observation or by theoretical knowledge, so that the submodels and the simulation
itself are progressively “rigidified”. Nevertheless, some leeway always remains and
it is precisely an essential part of the craft of the simulationist to choose which way
to go to adjust the simulation when new data come in.5 It is therefore not possible to
give a general analysis of how these adjustments are achieved (they depend on the
particular details specific to each simulation building process). Analysis of actual
cases suggests, however, that the way a composite simulation is further developed
in response to new data usually does not alter previously chosen key ingredients of
the simulation.6 Hence the stability of the simulation. In other words, there is some
kind of inertial effect: one just keeps going along the same modelling path (i.e.
with the same basic ingredients incorporated at early stages), rather than starting
from scratch along a different modelling path. This inertial effect should come as

5See for instance Epstein and Forber (2013) for an interesting analysis of the perils of using
macrodata to set parameters in a microfoundational simulation.
6This is the case for instance for the astrophysical and cosmological simulations discussed in
Ruphy (2011) and for the Earth climate simulations analyzed in Lenhard and Winsberg (2010).
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no surprise, given the pragmatic constraints on this kind of simulation enterprise.
When a simulation is built over many years, incorporating knowledge from various
domains of expertise, newcomers do not usually have the time nor the competences
to fully investigate alternative modelling paths.

The overall lesson is thus the following: because of its plasticity and its path
dependency, the stability and empirical success of a composite computer simulation
when new data come in cannot be taken as a reliable sign it has achieved its realist
goal of representational adequacy, i.e. that it has provided accurate knowledge on
the underlying components and processes of the target system (as opposed to the
more modest instrumental aim of empirical adequacy).

Let us take stoke here of the main conclusions of the previous epistemological
discussions.

Computer simulations may fail or succeed in various ways, depending on their
nature and on our epistemic expectations. We have seen that sanctioning a computer
simulation involves minimally verification issues. Those issues might be deemed
more of a mathematical nature than of an epistemological nature.7 In any case, they
are clearly directly dependent on the evolution of computing power and technology.
Then come the validation issues, that is, sanctioning the relationship between the
computer simulation and the real-world system whose behaviour it purports to
mimic. A first level of validation is empirical: do the outputs of the simulation
fit with the data at hand? In most cases, however, simulationists are not merely
seeking empirical adequacy, they also aim at representational adequacy. The two
are of course interdependent (at least if you are not a die-hard instrumentalist):
empirical adequacy is taken as a reliable sign of representational adequacy, and
representational adequacy justifies in its turn trusting the outputs of a simulation
when the simulation is used to produce data on aspects of a real-world system
for which observations or measurements are impossible (say, the radial variation
of temperature at the centre of the Earth). When assessing empirical adequacy,
simulationists may face a variant of the Duhemian problem: they might not be able
to find out where to put the blame (on the calculation side or on the representational
side) when there is a discrepancy between real data and simulated data. Sanctioning
the representational adequacy of an empirically successful simulation may be even
thornier, especially for composite computer simulations. For we have seen that,
because of the path-dependency and the plasticity that characterize this kind of
simulations, the more composite a simulation gets to be more realistic (i.e. to take
into account more aspects and features of the system), the more you loose control of
its representational validation. In other words, there seems to be a trade-off between
the realistic ambition of a simulation and the reliability of the knowledge it actually
delivers about the real components and processes at work in the target system.

For all that, taking the measure of these validation issues should not lead to a
dismissal of the scientific enterprise consisting of developing purportedly realistic
simulations of real-world complex phenomena. Rather, it invites to reconsider the

7See the exchange on this topic between Frigg and Reiss (2009) and Humphreys (2009).
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epistemic goals actually achieved by these simulations. My main claim is that
(empirically successful) composite computer simulations deliver plausible realistic
stories or pictures of a given phenomenon, rather than reliable insights on what is
actually the case.

7 Modal Knowledge

Scientists (at least epistemologically inclined ones) often warn (and rightly so)
against, as the well-known cosmologist George Ellis puts it, “confusing computer
simulations of reality with reality itself, when they can in fact represent only a highly
simplified and stylized version of what actually is” (Ellis 2006, 35, My italics). My
point is, to paraphrase Ellis, that computer simulations can in fact represent only
a highly simplified and stylized version of what possibly is. That models and sim-
ulations tell white lies has been widely emphasized in the philosophical literature:
phenomena must be simplified and idealized to be mathematically modelled, and for
heuristic purpose, models can also knowingly depart from established knowledge.
But the problem with composite computer simulations is that they may also tell
non-deliberate lies that do not translate into empirical failure.

The confusion with reality feeds on the very realistic images and videos that
are often produced from simulated data, thanks to very sophisticated visualization
techniques. These images and videos “look” as they had been obtained from
observational or experimental data. Striking examples are abundant in fields such as
cosmology and astrophysics, where the outputs of the simulations are transformed
into movies showing the evolution of the structures of the universe over billions of
years or the collision of galaxies. In certain respects, the ontological status of this
kind of computer simulations is akin to the status of richly realistic novels, which
are described by Godfrey-Smith (2009, 107) as talks about “sets of fully-specific
possibilities that are compatible with a given description”.

The stories or pictures delivered by computer simulations are plausible in the
sense that they are compatible both with the data at hand and with the current state
of theoretical knowledge. And they are realistic in two senses: first because their
ambition is to include as many features and aspects of the system as possible, second
because of the transformation of their outputs into images that “look” like images
built from observational or experimental data. I contend that computer simulations
do produce useful knowledge about our world to the extent that they allow us to
learn about what could be or could have been the case in our world, if not knowledge
about what is or was actually the case in our world. Note that this modal nature of the
knowledge produced by simulations raises resistance not only among philosophers
committed to the idea that scientific knowledge is about actual courses of events
or states of affairs, but also among scientists, as expressed for instance by the well-
known evolutionary biologist John Maynard Smith “[ : : : ] I have a general feeling of
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unease when contemplating complex systems dynamics. Its devotees are practicing
fact-free science. A fact for them is, at best, the output of a computer simulation: it
is rarely a fact about the world” (1995, 30).8

This increasing modal nature of the knowledge delivered by science via the use
of computer simulations is not the only noticeable general transformation prompted
by the development of computing power. Also on a quite general note, it is worth
investigating to what extent ever increasing computing power, by stimulating the
building of increasingly detailed simulations of real-world phenomena, shape the
very aims of science.

8 Shaping the Aims of Science: Tentative Concluding
Remarks

Explanation is often considered as a central epistemic aim: science is supposed to
provide us with explanatory accounts of natural (and social) phenomena. But do the
growing trend of building detailed simulations mean more and better explanations?
There is no straightforward answer to that question, if only because philosophers
disagree on what may count as a good scientific explanation and what it means for
us to understand a phenomenon. Some indicative remarks may nevertheless be made
here. Reporting a personal communication with a colleague, the geologist Chris
Paola wrote recently in Nature: “ : : : the danger in creating fully detailed models of
complex systems is ending up with two things you don’t understand – the system
you started with, and your model of it” (2011, 38). This quip nicely sums up two
kinds of loss that may come with the increasing “richness” of computer simulations.

A much-discussed factor contributing to the loss of understanding of a simulation
is “epistemic opacity”. Epistemic opacity refers to the idea that the computations
involved in many simulations are so fast and so complex that no human or group
of humans can grasp and follow them (Humphreys 2009, 619). Epistemic opacity
also manifests itself at another level, at least in composite computer simulations.
We have seen that these simulations are often built over several years, incorporating
knowledge and contributions from different fields and different people. When using
a simulation to produce new data or to test new hypotheses, the practitioner is
unlikely to fully grasp not only the calculation processes but also the various
submodels integrated in the simulation, which are then treated as black boxes.

As regards the loss of understanding of the target system, at least two reasons
may be put forward to account for it. Recall first one of the conclusions of the
previous epistemological discussion about validation: the more detailed (realistic)
a simulation is, the more you loose control of its representational validation.
So if the explanatory virtue of a simulation is taken as based on its ability to

8I borrow this quotation from Grim et al. (2013), which, in another framework, also discusses the
modal character of the knowledge produced by simulation.



146 S. Ruphy

deliver reliable knowledge about the real components and mechanisms at work
in the system, then indeed, fully detailed computer simulations do not score very
high. But even though the reliability of the representation of the mechanisms at
work provided by the simulation could be established, there would be another
reason to favour very simplified simulations over simulations that include more
detail. This is the belief that attention to what is truly essential should prevail
on the integration of more details, when the simulation is built for explanatory
purpose (rather than instrumental predictive purposes). Simulations of intricate
processes of sedimentary geology, as analysed in Paola (2011), is a case in point.
Paola (2011, 38) notes that “simplified representations of the complex small-scale
mechanics of flow and/or sediment motion capture the self-organization processes
that create apparently complex patterns.” She explains that for many purposes, long-
profile evolution can be represented by relatively simple diffusion models, and
important aspects of large-scale downstream variability in depositional systems,
including grain size and channel architecture, can be understood in terms of first
order sediment mass balance. Beyond the technicalities, the general lesson is that
“simplification is essential if the goal is insight. Models with fewer moving parts
are easier to grasp, more clearly connect cause and effect, and are harder to fiddle to
match observations” (Paola 2011, 38). Thus there seems to be a trade-off between
explanatory purpose and integration of more details to make a simulation more
realistic. If fewer and fewer scientists resist the temptation to build these ever
more detailed simulations, feed on the technological evolution of computing power,
explanation might become a less central goal of science. Predictive (or retrodictive)
power may become more and more valued, since increasingly complex computer
simulations will allow to make increasingly detailed and precise predictions, on
ever finer scales, on more and more various aspects of a phenomenon.

Another general impact calling for philosophical attention is of a methodological
nature: very powerful computer means make bottom-up approaches more and more
feasible in the study of a phenomenon. In these approaches, the general idea is
to simulate the behaviour of a system by simulating the behaviour of its parts.
Examples of these microfoundational simulations can be found in many disciplines.
In biology, simulations of the folding of proteins are built from simulations of
amino-acid interactions; in ecology, simulations of the dynamics of eco-system
are based on the simulations of preys-predators interactions, etc. This shaping of
general scientific methodology by technology sparks sometimes vivid discussions
within scientific communities: bottom-up approaches are charged with reductionist
biases by proponents of more theoretical, top-down approaches. This is especially
the case for instance in the field of brain studies. There has been a lot of hostility
between bottom-up strategies starting from the simulation of detailed mechanisms
at molecular level and studies of emergent cognitive capabilities typical of cognitive
neurosciences. But discussions may end in the future in a more oecumenical spirit,
given the increasing ambitious epistemic aim of brain simulations. Or at least
it is what is suggested by our opening example, the European top-priority HBP
project (Human Brain Project), whose aim of building multiscale simulations of
neuromechanisms explicitly needs general theoretical principles to move between
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different levels of description.9 The HBP project is also representative of the
increasingly interactive character of the relationship between epistemic aims and
computer technology. Simulationists do not only “tune” their epistemic ambitions
to the computing power available: technological evolutions are anticipated and
integrated into the epistemic project itself. The HBP project for instance includes
different stages of multiscale simulations, depending on computing power progress.
Big simulation projects such as the HBP or cosmological simulations also generate
their own technological specific needs, such as supercomputers that can support
dynamic reconfigurations of memory and communications when changing scale
of simulation, or new technological solutions to be able to perform computing,
visualization and analysis simultaneously on a single machine (given the amount of
data generated by the simulations, it will become too costly to move the generated
data to other machines to perform visualization and analysis).10 That epistemic
progress is directly linked to technological progress is of course nothing new,
but the ever increasing role of computer simulations in science makes the two
consubstantial to an unprecedented degree.

References

Barberousse, A., Franceschelli, S., & Imbert, C. (2009). Computer simulations as experiments.
Synthese, 169, 557–574.

Dowling, D. (1999). Experimenting on theories. Science in Context, 12(2), 261–273.
Ellis, G. (2006). Issues in the philosophy of cosmology. http://arxiv.org/abs/astro-ph/0602280.

(Reprinted in the Handbook in Philosophy of Physics, pp. 1183–1286, by J. Butterfield &
J. Earman, Ed., 2007, Amsterdam: Elsevier)

Epstein, B., & Forber, P. (2013). The perils of tweaking: How to use macrodata to set parameters
in complex simulation models. Synthese, 190, 203–218.

Franklin, A. (1986). The neglect of experiment. Cambridge: Cambridge University Press.
Frigg, R., & Reiss, J. (2009). The philosophy of simulations: Hot new issues or same old stew?

Synthese, 169, 593–613.
Giere, R. N. (2009). Is computer simulation changing the face of experimentation? Philosophical

Studies, 143, 59–62.
Godfrey-Smith, P. (2009). Models and fictions in science. Philosophical Studies, 143, 101–126.
Grim, P., Rosenberger, R., Rosenfeld, A., Anderson, B., & Eason, R. E. (2013). How simulations

fail. Synthese, 190, 2367–2390.
Guala, F. (2005). The methodology of experimental economics. Cambridge: Cambridge University

Press.
Humphreys, P. (2004). Extending ourselves. New York: Oxford University Press.
Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169,

615–626.

9As attested by the fact that the HBP project will dedicate some funds to the creation of a European
Institute for Theoretical Neuroscience.
10I draw here on documents provided by the Human Brain Project at www.humanbrainproject.eu.
Accessed 25 June 2013.

http://arxiv.org/abs/astro-ph/0602280
www.humanbrainproject.eu


148 S. Ruphy

Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model
pluralism. Studies in History and Philosophy of Modern Physics, 41, 253–262.

Morgan, M. (2005). Experiments versus models: New phenomena, inference, and surprise. Journal
of Economic Methodology, 12(2), 317–329.

Morrison, M. (2009). Models, measurement and computer simulation: The changing face of
experimentation. Philosophical Studies, 143, 33–57.

Norton, S., & Suppe, F. (2001). Why atmospheric modeling is good science. In C. Miller & P. N.
Edward (Eds.), Changing the atmosphere: Expert knowledge and environmental governance
(pp. 67–105). Cambridge: MIT Press.

Paola, C. (2011). Simplicity versus complexity. Nature, 469, 38.
Parker, W. (2009). Does matter really matter? Computer simulations, experiments, and materiality.

Synthese, 169, 483–496.
Ruphy, S. (2011). Limits to modeling: Balancing ambition and outcome in astrophysics and

cosmology. Simulation and Gaming, 42, 177–194.
Schweber, S., & Wächter, M. (2000). Complex systems, modelling and simulation. Studies in

History and Philosophy of Science Part B: History and Philosophy of Modern Physics, 31,
583–609.

Smith, J. M. (1995). Life at the edge of chaos? New York Review of Books, 42(4), 28–30.
Springel, V., et al. (2005). Simulations of the formation, evolution and clustering of galaxies and

quasars. Nature, 435, 629–636.
Winsberg, E. (2013). Simulated experiments: Methodology from a virtual world. Philosophy of

Science, 70, 105–125.


	7 Computer Simulations: A New Mode of Scientific Inquiry?
	1 Introduction
	2 Hybrid Practice
	3 The `Materiality' Debate
	4 Measurements
	5 Internal Validity (Verification)
	6 External Validity (Validation)
	6.1 Duhemian Problem
	6.2 The Perils of Accidental Empirical Adequacy
	6.3 Plasticity and Path Dependency

	7 Modal Knowledge
	8 Shaping the Aims of Science: Tentative Concluding Remarks
	References


