
Chapter 2
Review of Fundamental Equations

Abstract In this chapter we (re-)familiarize the reader with concepts from
mathematics, thermodynamics, and aerodynamics that are fundamental to the meth-
ods presented in the remainder of the book. This includes a short review of vector
algebra and partial-differential equations to provide the mathematical insight into
the governing equations of fluid flow. Examples include the one-dimensional wave
equation and the one-dimensional heat equation. A basic review of thermodynamics
is given including the equation of state, the first law and the second law of thermo-
dynamics. Also the isentropic relations between pressure, density and temperature
are derived. In the aerodynamics section, the Navier-Stokes equations are derived
in integral and derivative form. To simulate transonic flow, often simplifications of
the Navier-Stokes equations are used. Therefore, it is shown how the Reynolds-
Averaged Navier-Stokes (RANS) equations can be obtained and how the k-epsilon
turbulence model can be used to close the RANS equations. For inviscid flow the
Euler equations, and the full-potential equation are derived. Using examples from
the literature, it is shown how well each of these models can predict the outcome of
aerodynamic experiments in transonic conditions. This chapter contains 11 examples
and concludes with 29 practice problems.

2.1 Introduction

Transonic flow conditions are encountered by the majority of today’s jet aircraft.
Almost all major airlines use high-subsonic jet transports on their medium to long
haul flights. In addition, business jets, fighter aircraft, and military UAVs such as the
Northrop X-47 are also confronted with transonic effects. To comprehend the physics
of transonic flow, this chapter presents a review of physical and mathematical topics
that form a basis for the subsequent chapters of the book. For further reading on these
topics, the reader is referred to the reference list at the end of this chapter, that lists a
number of text books that adequately explain the subject matter in more detail. After
this short introductory section, we will present basic reviews on two mathematical
topics: partial differential equations and vector algebra. Since mathematics is often
referred to as “the language of physics,” a good understanding is mandatory for the
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22 2 Review of Fundamental Equations

subsequent sections where we review the laws of thermodynamics and equations of
motion in fluid flow.

2.2 Review of Partial Differential Equations

As the reader might remember from a course on elementary aerodynamics, the equa-
tions of motion of a particle in a fluid flow can be represented as a set of partial
differential equations (PDEs) called the Navier-Stokes equations. Before we discuss
these relatively complex equations we consider two more elementary equations: the
one-dimensional heat and wave equations. These equations serve as examples of par-
tial differential equations and how they can be solved. At the same time they are also
part of a unique set of PDEs that actually have a closed-form solution. Unfortunately
this is not true for most PDEs that describe physical processes such as the motion of
a fluid. To solve these PDEs we need different solution techniques which often rely
on a (numerical) approximation of the problem. However, to test such a numerical
scheme we can always use the one-dimensional heat or wave equation because we
know their exact solution. They can therefore serve as a test case for our numerical
schemes to gain confidence in the accuracy of the approximation method.

In the subsequent two subsections, we do not attempt to review the broad subject
of PDEs and their solution methods, but merely present a basic review of the topic
within the context of the theory of aerodynamics and computational fluid dynamics.

2.2.1 One-Dimensional Wave Equation and Solution
by D’Alembert

In this section we derive the governing equation that describes the transverse vibration
of an elastic string, such as a guitar string. When solving this governing equation we
should end up with an expression that describes each individual point on the string in
both space (x , u) and time (t). First, consider a string of length L that we perturb and
at time t = 0 we release the string such that it starts to vibrate. We want to evaluate
its vertical displacement, u(x, t) as shown in Fig. 2.1. To simplify this problem we
assume that the mass per unit length (ρ) of the string is constant along the string and
that it does not have any bending stiffness. In addition, we neglect the gravitational
force and assume that the deflections remain small enough to justify the assumption
that each point on the string only moves in the vertical direction.

To come up with the equation of motion for this string, we consider the force
balance on an infinitesimal part within the string itself (P–Q in Fig. 2.1). We have
α and β denoting the deviation angles from the horizontal axis, and T1 and T2 being
the components of the internal forces at points P and Q, respectively. The horizontal
components of the forces at points P and Q must be balanced:

T1 cos α = T2 cos β = T = constant (2.1)
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Fig. 2.1 Arbitrary
transverse deflection, u of an
elastic string at time t
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Directing our attention to the vertical direction we know that the following force and
acceleration balance should hold over the part Δx :

− T1 sin α + T2 sin β = ρΔx
∂2u

∂t2 (2.2)

Using (2.1) we can rewrite (2.2) as follows:

tan β − tan α = ρΔx

T

∂2u

∂t2 (2.3)

Since tan α = ∂u/∂x |x and tan β = ∂u/∂x |x+Δx we can now write a partial
differential equation where both derivatives with respect to x and t appear:

1

Δx

[(
∂u

∂x

)
x+Δx

−
(

∂u

∂x

)
x

]
= ρ

T

∂2u

∂t2 (2.4)

If we subsequently take the limit as Δx → 0 we obtain the well known one-
dimensional wave equation:

∂2u

∂t2 = c2 ∂2u

∂x2 with c2 ≡ T

ρ
(2.5)

The wave equation is a second order (=the highest power of one of the differential
terms), linear partial differential equation. Not only does this equation describe the
transverse motion of a vibrating string it also describes the wave motion of a plane
wave (e.g. acoustic wave) [16]. In that case we replace the excitation of the string by
the sound pressure, p′(x, t) and c becomes the speed of sound, c = √

γRT , where
γ is the ratio of specific heats, R is the gas constant, and T is the static temperature
in the calorically perfect gas.1

1 The speed of sound will be derived in Sect. 2.5.
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We can now proceed with a solution procedure of the wave equation. There are
several approaches to derive a closed form solution of the problem, one of which
is by using D’Alembert’s approach. This approach relies on a transformation to the
characteristic coordinates ξ and η according to:

ξ = x + ct, η = x − ct (2.6)

Therefore, u now becomes a function of ξ and η. The partial derivatives should
therefore be rewritten with respect to these new independent variables. If we apply
the chain rule to either side of the equation we transform (2.5) to:

uξη = ∂2u

∂η∂ξ
= 0 (2.7)

Note that we shift to the notation of denoting a partial derivative as a subscript to
the dependent variable. In the subscript notation the subscripts are written in the
order in which we differentiate, whereas in the “∂” notation the order is opposite.
As the reader can readily observe, the substitution of the new independent variables
have transformed the problem such that it can be (easily) solved by two successive
integration steps:

∂u

∂ξ
= h(ξ),

where h(ξ) is an arbitrary function of ξ. A second step of integration yields the
following:

u =
�

h(ξ)dξ + ψ(η),

where ψ(η) is an arbitrary function of η. Since the integral of an arbitrary function
in ξ is another arbitrary function in ξ, say φ(ξ), the solution is of the form u(ξ, η) =
φ(ξ) + ψ(η). Substituting the original values for ξ and η in the previous equation
results in the following closed form solution:

u(x, t) = φ(x + ct) + ψ(x − ct) (2.8)

If we assume that two arbitrary functions, f (x) and g(x) describe the initial
position and velocity, respectively, we can express the functions φ(x) and ψ(x) in
terms of the these initial conditions. We have:

u(x, 0) = f (x) = φ(x) + ψ(x) (2.9)

ut (x, 0) = g(x) = φξξt + ψηηt (2.10)

Using (2.6), we can evaluate that ξt = c and ηt = −c. Since at t = 0 we have
ξ = η = x , (2.10) reduces to:

ut (x, 0) = g(x) = cφx (x) − cψx (x) (2.11)
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If we integrate both sides of (2.11) between x0 and x and divide both sides by c
we obtain:

φ(x) − ψ(x) = 1

c

� x

x0
g(s)ds with k(x0) = φ(x0) − ψ(x0). (2.12)

Now, to get φ(x) we simply add (2.12) to (2.9) and divide both sides by two. Similarly,
to obtain ψ(x) we subtract (2.12) from (2.9) and divide both sides by two. The
following results are found:

φ(x) = 1

2
f (x) + 1

2c

� x

x0
g(s)ds + 1

2
k(x0) (2.13)

ψ(x) = 1

2
f (x) − 1

2c

� x

x0
g(s)ds − 1

2
k(x0) (2.14)

Substituting φ(x + ct) and ψ(x − ct) in the above expressions and inserting every-
thing back into (2.8) results in the following solution to this initial value problem:

u(x, t) = 1

2
[ f (x + ct) + f (x − ct)] + 1

2c

� x+ct

x−ct
g(s)ds. (2.15)

For a brief moment, let us return to interpretation of this result with respect to
the original problem of the vibrating string and assume that the initial velocity,
ut (x, 0) = g(x) = 0. To come up with a valid solution that satisfies the boundary
conditions (u(0) = u(L) = 0), the following should hold:

u(0, t) = 1

2
[ f (ct) + f (−ct)] = 0 (2.16)

u(L , t) = 1

2
[ f (L + ct) + f (L − ct)] = 0 (2.17)

From (2.16) we learn that the initial shape function f (x) is odd. In other words it
is anti-symmetric with respect to the u-axis. Combining this with (2.17) we obtain
that f (L + ct) = f (−L + ct), which shows that the initial function should have a
period of 2L .

Example 2.1 Calculate the solution to the homogeneous wave equation (2.5) for
u(x, 0) = f (x) = sin(2πx), ut (x, 0) = g(x) = 0, and c = 1.

Solution:

Using D’Alembert’s solution we can directly substitute f (x) = sin(πx) and g(s) =
0 in to (2.15). We obtain:

u(x, t) = sin 2π(x + t) + sin 2π(x − t)

A graphical representation of this string is sketched over the interval [0, 1] between
time t = 0 and t = 0.25 with time increments Δt = 0.05 (Fig. 2.2).
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Fig. 2.2 Solution to the
wave equation corresponding
to the initial conditions of
Example 2.1
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To investigate the effect of a disturbance function on the excitation of the vibrating
string we consider the inhomogeneous wave equation:

utt − c2uxx = f (x, t), (2.18)

where f (x, t) is the disturbance function. We assume that the string is initially
undisturbed, i.e.:

u(x, 0) = ut (x, 0) = 0 (2.19)

Using the characteristic coordinates as in (2.6), we can rewrite u(x, t) as follows:

u(x, t) = u

(
ξ + η

2
,
ξ − η

2c

)
= v(ξ, η) (2.20)

Similarly, we can transform the forcing function: f (x, t) = G(ξ, η). Note that when
t = 0 we have ξ = η and ξ = x . Therefore, we can write the first initial condition:

u(x, 0) = u(ξ, 0) = v(ξ, ξ) = 0 (2.21)

To transform the second initial condition we write the first partial derivative of v with
respect to ξ in terms of ux and ut by employing the chain rule (see Problem 2.5):

vξ = 1

2
ux + 1

2c
ut (2.22)

Substituting the equalities that hold when t = 0 (same as above) we have:

vξ(ξ, ξ) = 1

2
ux (ξ, 0) + 1

2c
ut (ξ, 0) (2.23)
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Now, we know that the second part of the right-hand side of the equation is zero
due to the initial condition ut (x, 0) = 0. And, since u(x, 0) = 0 we know that
1/2u(x, 0)|x=ξ must also be zero. Therefore, we now have the second initial condition
in transformed coordinates:

vξ(ξ, ξ) = 0 (2.24)

Finally, we write the PDE in characteristic coordinates according to:

vξη = − 1

4c2 G(ξ, η) (2.25)

We are interested in the excitation at a particular time and location, u(x0, t0), which
corresponds to v(ξ0, η0). Therefore, we need to integrate the left-hand side of (2.25)
twice with appropriate boundary conditions:

� ξ0

η0

� ξ

η0
vξη(ξ, η)dηdξ

Solving the inner integral by using the fundamental theorem of calculus (FTC)2

results in: � ξ

η0
vξη(ξ, η)dη = vξ(ξ, ξ) − vξ(ξ, η0)

We note that the first term on the right-hand side must equal zero, due to the initial
condition (2.24). The second integration step thus results in:

−
� ξ0

η0
vξ(ξ, η0)dξ = v(η0, η0) − v(ξ0, η0)

Again, due to the initial condition (2.21) for ξ = η0, the first term on the right-hand
side equals zero, which leaves us with the negative of what we were initially looking
for: −v(ξ0, η0). Now, by performing the same integration on the right-hand side
of (2.25) and bringing the minus sign to the other side of the equality sign (which
cancels) we have a solution in characteristic coordinates:

v(ξ0, η0) = 1

4c2

� ξ0

η0

� ξ

η0
G(ξ, η)dηdξ (2.26)

To change back to the original coordinate system, the determinant (for explanation
of the determinant see Sect. 2.3) of the Jacobian, det(J ), needs to be calculated, since
dηdξ = det(J )dxdt . It is left to the reader (Problem 2.6) to show that this equals 2c.To

2 The fundamental theorem of calculus specifies the relationship between the two central operations
of calculus: differentiation and integration [11].



28 2 Review of Fundamental Equations

η

ξ
ξη

η
0

0 0

(η ,η )
0 0

(ξ  ,η )
0 0

(ξ  ,ξ )
0 0

ξ  
0

t (x  ,t  )
0 0

x +ct0 0x  - ct0 0

x

(a)
(b)

Fig. 2.3 Transformation of the area of integration between the characteristic and the original coor-
dinate system. a Region of integration in the (ξ, η)-plane. b Region of integration in the (x, t)-plane

transfer the limits of the integrals it is convenient to look at the region over which we
are integrating G(ξ, η). This region is displayed in Fig. 2.3a. If we look at the vertices
of this triangle, and what they represent in the physical (x, t)-plane, we note that:

(ξ0, η0) → (x0, t0)

(ξ0, ξ0) → (x0 + ct0, 0)

(η0, η0) → (x0 − ct0, 0)

The region of integration in the (x, t)-plane that corresponds to these vertices is
shown in Fig. 2.3b. We therefore have:

u(x0, t0) = 1

2c

� t0

0

� x0+ct0

x0−ct0
f (x, t)dxdt (2.27)

The region of integration in the physical domain can be used to see whether a
point in the domain is influenced by a particular disturbance. When the area under
the graph of the disturbance function and the area of the integration region (partially)
overlap, then the point in the domain is influenced by the disturbance. However,
if there is no overlap at all, the disturbance function does not affect that particular
point in the domain. The characteristic lines (ξ = x + ct and η = x − ct) therefore
mark the boundaries of the so-called domain of dependence. The solution, therefore,
only depends on a disturbance that happens within this domain of dependence. Any
disturbance outside this region does not have any effect on the excitation of this point.
In Example 2.2 this is demonstrated.
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Fig. 2.4 Region of
integration (striped) for
Example 2.2
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Example 2.2 Consider the following problem:

utt − c2uxx = f (x, t) =
{

1 for 0 < t < 1, − 1 < x < 1

0 elsewhere

u(x, 0) = 0

ut (x, 0) = 0

Calculate u(x, t) explicitly for (x, t) satisfying: x > t , x < 1, and x + t > 1.

Solution:

To solve this problem we use (2.27) with c = 1. Due to the simple forcing function,
f (x, t), we can directly see that the solution u(x, t) = 1/2

� �
Δ(x,t) f (x, t)dxdt ,

whereΔ(x, t) represents the region of integration. This region is schematically shown
in Fig. 2.4. Using simple geometry we calculate the area of this region Δ(x, t) =
t2

2 − x2

2 − xt − x − t − 1
2 . The solution then becomes:

u(x, t) = 1

4
(t2 − x2 − 2xt + 2x + 2t − 1)

2.2.2 One-Dimensional Heat Equation and Solution
by Fourier Series

In this section we look at the other famous PDE, the heat equation. In the one-
dimensional case we consider a bar with length L (Fig. 2.5). We are interested in
the temperature, T , and its distribution over the bar with time, depending on the
boundary and initial conditions. We assume that the bar is of constant cross section

0 x=L

Fig. 2.5 Model problem for the one-dimensional heat equation: a bar of length L
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and homogeneous material and that it is perfectly insulated, such that heat flows only
along the x-direction.

The derivation of the heat equation starts with Fourier’s law of heat conduction
that states that the heat flux, q, is negatively proportional to the temperature gradient,
∂T/∂x , according to (in one-dimensional space):

q = −k∂T/∂x, (2.28)

where k is the thermal conductivity of the material. The negative sign indicates
the direction of heat flow is from hot to cold, i.e. in the opposite direction to the
temperature gradient. In the absence of work done, a change in internal energy per
unit volume in the material, ΔE , is proportional to the change in temperature, ΔT .
That is,

ΔE = cρΔT (2.29)

where c is the specific heat capacity andρ is the mass density of the material. Choosing
zero energy at the absolute zero temperature, this can be rewritten as

E = cρT . (2.30)

The increase in internal energy in a small spatial region of the material

x − Δx ≤ ξ ≤ x + Δx (2.31)

over the time period
t − Δt ≤ τ ≤ t + Δt (2.32)

is given by

cρ
� x+Δx

x−Δx
[T (ξ, t + Δt) − T (ξ, t − Δt)] dξ = cρ

� t+Δt

t−Δt

� x+Δx

x−Δx

∂T

∂τ
dξdτ , (2.33)

where the FTC was used. Additionally, with no work done and the absence of any
heat sources or sinks, the change in internal energy in the interval [x −Δx, x +Δx]
is accounted for entirely by the flux of heat across the boundaries. By Fourier’s law,
this is

k
� t+Δt

t−Δt

[
∂T

∂x
(x + Δx, τ ) − ∂T

∂x
(x − Δx, τ )

]
dτ = k

� t+Δt

t−Δt

� x+Δx

x−Δx

∂2T

∂ξ2 dξdτ

(2.34)
again by the fundamental theorem of calculus. In higher dimensions, the divergence
theorem (Sect. 2.3.3) is used instead. By conservation of energy (Sect. 2.5.3),

� t+Δt

t−Δt

� x+Δx

x−Δx
[cρTτ − kTξξ] dξdτ = 0. (2.35)
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This is true for any rectangle [t −Δt, t +Δt]×[x −Δx, x +Δx]. Consequently,
the integrand must vanish identically:

cρTt − kTxx = 0. (2.36)

Which can be rewritten as:

Tt = k

cρ
Txx , (2.37)

or:
∂T

∂t
= k

cρ

(
∂2T

∂x2

)
(2.38)

which is the heat equation. The coefficient k/(cρ) is called thermal diffusivity and
is denoted by α for convenience.

To solve the heat equation (2.38), we use the ‘separation-of-variables’ tech-
nique [18] where we substitute

T (x, t) = F(x)G(t) (2.39)

Denoting ∂/∂t with ˙(. . .) and ∂/∂x with (. . .)′, we can write (2.38) as:

Ġ

αG
= F ′′

F
= −β2. (2.40)

Here we introduce a constant, β, that is conveniently supplied with a minus sign to
aid in the solution procedure. We can see that each fraction in (2.40) can be written
as a separate ordinary differential equation (ODE) according to:

F ′′ + β2 F = 0 (2.41)

Ġ + αβ2G = 0 (2.42)

Equation (2.41) is second order in space and Eq. (2.42) is first order in time.
To find the eigenfunctions of the heat equation we need a set of boundary equations

that give us some details about the heat transfer conditions of the rod at the ends.
In the present case we choose to keep the ends of the rods at zero temperature:
T (0, t) = T (L , t) = 0. A general solution to (2.41) is:

F(x) = A cos(βx) + B sin(βx) (2.43)

Using the specified boundary conditions, we know that A = 0, and B sin βL = 0.
To avoid the trivial solution (B = 0) we know that sin βL = 0 and thus, βn = nπ

L for
n = 1, 2, . . .. We have found the following solution to the boundary-value problem:

Fn(x) = Bn(x) sin
(nπx

L

)
for n = 1, 2, . . . (2.44)
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Let us now return to (2.42) and substitute the eigenvalue λn = βn
√

α:

Ġ + λ2
nG = 0 (2.45)

This has the general solution

Gn(t) = Cne−λ2
n t for n = 1, 2, . . . , (2.46)

where Cn are arbitrary constants. This results in the following final solution of this
problem:

Tn(x, t) = Fn(x)Gn(t) = Dn sin
(nπx

L

)
e−λ2

n t for n = 1, 2, . . . (2.47)

where Dn are arbitrary constants. These are the eigenfunctions of the problem and
λn = cnπ

L are the eigenvalues.
In order to solve the heat equation we need an initial condition, f (x). This initial

condition is prescribing the temperature distribution along the bar at time t = 0
must comply with the boundary conditions. We know that the sum of each of the
solutions in (2.47) is also a solution to (2.38) and we consider the following series
of eigenfunctions:

T (x, t) =
∞∑

n=1

Dn sin
(nπx

L

)
e−λ2

n t (2.48)

Since at t = 0 we need to satisfy the initial condition the following relation must be
satisfied:

T (x, 0) =
∞∑

n=1

Dn sin
(nπx

L

)
=̂ f (x) (2.49)

Multiplying both sides by sin nπx
L and integrating both sides over the interval [0, L]

results in the following coefficients of the Fourier sine series:

Dn = 2

L

� L

0
f (x) sin

(nπx

L

)
dx (2.50)

Example 2.3 Solve the heat equation, Tt = Txx on the interval 0 < x < 1 with
boundary conditions T (0, t) = Tx (1, t) = 0 and initial condition T (x, 0) = 1.

Solution:

Using the same methodology as above we separate the temperature function in the
product of F(x) and G(t). We have

F(x) = A cos(βx) + B sin(βx)
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Again, we state that due to the first boundary condition A = 0. The second boundary
condition implies: Bβ cos(βx) = 0. This equation is satisfied when

β = π

(
n + 1

2

)
for n = 0, 1, 2, . . .

This results in the following general solution:

Fn(x, t) = Bn sin

[
πx

(
n + 1

2

)]

Substituting this in (2.39), with Gn(t) being the same as in (2.46) and λn =
π
(
n + 1

2

)
, we now have the following solution:

T (x, t) =
∞∑

n=0

Dn sin

[
πx

(
n + 1

2

)]
e
−π2

(
n+ 1

2

)2
t

(2.51)

Setting T (x, 0) = 1 and knowing that
� 1

0 sin
[
π
(
n + 1

2

)
x
]

sin
[
π
(
m + 1

2

)
x
]

dx = 0
for n �= m we multiply both sides of (2.51) with sin π

(
m + 1

2

)
x and integrate

between 0 and 1:

� 1

0
sin

[
πx

(
m + 1

2

)]
dx = 1

2
Dm → Dm = 2

π
(
m + 1

2

)

This gives the following final solution (switching back from m to n for convenience):

T (x, t) =
∞∑

n=0

2

π
(
n + 1

2

) sin

[
πx

(
n + 1

2

)]
e
−π2

(
n+ 1

2

)2
t

(2.52)

In Fig. 2.6, we see a graphical interpretation of the solution. Note how the initial
condition is satisfied by showing almost a complete horizontal line at t = 0. The
boundary condition at x = 0 is also satisfied, while we can see that the slope of the
line at x = 1 is zero, indicating that we have also satisfied this boundary condition
correctly.

2.2.3 Conservation Form of PDEs

The equations of motion of fluid flow that are presented in this chapter (and through-
out the text) are in conservation form (also referred to as conservative form). This
implies that the partial differential equations (PDEs) that describe the physics of the
flow have coefficients that are either constant or, if variable, their derivatives do not
appear in the equation. We use the following example to illustrate this form.
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Fig. 2.6 Graphical
representation of (2.52) for
the first 200 components of
the Fourier series expansion
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Example 2.4 To appreciate the difference between the conservative and nonconser-
vative form of a partial differential equation we consider the one-dimensional heat
equation (2.38) without the assumption that ρ, c, or k are constant with x . In other
words, the thermal diffusivity, α is a function of x : α = α(x). First this equation is
formulated in conservative form:

∂T

∂t
= ∂

∂x

(
α

∂T

∂x

)
(2.53)

The non-conservative form of the same equation reads:

∂T

∂t
= α

∂2T

∂x2 + ∂α

∂x

∂T

∂x
(2.54)

Note how in (2.53) the coefficient, α, can vary with position (x) but its derivative does
not appear in the equation. Therefore, (2.53) is in conservation form. In (2.54) the
derivative on the RHS of (2.53) has been expanded and now contains the derivative
term ∂α/∂x , which is a non-conservative term in the equation. Therefore we deem
(2.54) to be in non-conservative form.

The same logic that is used for the one-dimensional heat equation can be expanded
to the equations of motion that describe fluid flows (Sect. 2.5). These governing
equations must hold at any distinct point in the flow. To formulate these equations
we take a Eulerian approach where we consider a fixed control volume through which
the fluid passes. The conservation form for each PDE at such a point also allows us
to formulate finite-difference representations that provide a good approximation to
the PDEs. These, in turn, can be used in an iterative numerical code to obtain the
global properties of a flow field. The conservative formulation is therefore often used
to solve partial differential equations by numerical methods.
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2.2.4 Classification of Partial Differential Equations

A second order partial differential equation (PDE) can be classified based on the
coefficient of its second-order derivative terms. For an arbitrary function, φ, a second-
order differential equation in two dimensions reads:

aφxx + bφxy + cφyy = H (2.55)

where a, b, and c are coefficients and H = H(φ,φx ,φy, x, y). Along the so-called
characteristic curves of the PDE the following should hold:

a(dy)2 − b(dxdy) + c(dx)2 = 0 (2.56)

Solving for dy/dx results in:

dy

dx
= −b ± √

b2 − 4ac

2a
(2.57)

Depending on the term under the radical in (2.57), the family of characteristic curves
displays different behavior. When b2 −4ac > 0 there are two distinct families of real
characteristic curves. In this case the PDE is termed hyperbolic. When b2 −4ac = 0
a single family of real characteristic curves is found and the PDE is called parabolic.
Finally, when b2 − 4ac < 0 the RHS of (2.57) is complex and no real characteristic
curves exist. The PDE is termed elliptic in this case.

Example 2.5 Consider the wave equation (2.5) (using χ for wave speed to avoid
confusion in notation):

utt − χ2uxx = 0

Determine whether this equation is hyperbolic, parabolic, or elliptic, and determine,
if possible, its characteristic curves.

Solution:

The coefficients of the wave equation are: a = 1, b = 0, and c = −χ2. We calculate
the discriminant to be 4χ2 and since χ is real we know that 4χ2 > 0 and that the
wave equation is therefore hyperbolic. Substituting the coefficients in (2.57) gives
the two characteristic curves: dt/dx |1,2 = ± 1

χ .

Every PDE that is represented in an orthogonal coordinate system can be trans-
formed to its canonical form. A coordinate transformation takes place and every
point in the original coordinate system is mapped onto the arbitrary coordinate sys-
tem. In a two-dimensional space, this would imply mapping the x and y coordinates
onto the ξ–η plane: (x, y) → (ξ, η), which we also used for the wave equation. How
do we find these characteristic coordinate transformation? Well, that is quite simple:
we employ (2.57) to find the slope of the characteristic lines and integrating this
results in an expression for the characteristic curves.
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Example 2.6 Find the characteristic curves for the wave equation of Example 2.5.

Solution:

For (2.5) we have dt/dx |1,2 = ± 1
χ . Integrating this gives:

t1 = 1

χ
x + η

t2 = − 1

χ
x + ξ,

where, η and ξ are integration constants. Rearranging these equations results in the
relations of (2.6).

In this arbitrary (orthogonal) coordinate system, the hyperbolic, parabolic, and
elliptic PDEs assume a particular canonical (natural) form. Let us examine these
canonical forms for each class of second order PDEs. We assume that the solution
u(x, t) is written in the transformed coordinates as φ(ξ, η).

Hyperbolic PDE Two characteristic forms exist:

φξξ − φηη = h1(φξ,φη,φ, ξ, η)

φξη = h2(φξ,φη,φ, ξ, η)

Similar to the wave equation, for a two-dimensional problem, two characteristic
lines (or characteristics) can be drawn that intersect at the point of interest (x0, t0)
(see Fig. 2.7a). The region between the characteristic lines that is present in a flow
that is described by hyperbolic PDEs is called the region of influence [1]. A
disturbance in the flow only propagates in the region of influence. Conversely,
any point in the flow is influenced by the initial data that falls between the two
characteristics. As we saw before, this region is termed the domain of dependence.
Any disturbance that occurs in the domain of dependence influences the state of
the point where the characteristic lines cross. Hyperbolic PDEs describe the steady
inviscid supersonic flow, as well as the unsteady inviscid flow (Euler equation).

domain of 
dependence

region of 
influence

characteristics

x

t

(x  ,t  )0 0

domain of 
dependence

region of 
influence

characteristic

x

t

(x  ,t  )0 0 (x  ,t  )0 0

domain of 
dependence

region of 
influence

x

t

=

(a) (b) (c)

Fig. 2.7 Domain of dependence and region of influence for the three different classes of second
order PDEs. a Hyperbolic. b Parabolic. c Elliptic
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Parabolic PDE The characteristic equation in canonical form can be written as
either:

φξξ = h3(φξ,φη,φ, ξ, η) or

φηη = h4(φξ,φη,φ, ξ, η)

Similar to hyperbolic PDEs, the parabolic PDEs have a region of influence. How-
ever, this region is now unbounded by characteristics and therefore spans the entire
space (can also be time) beyond the point where the initial disturbance takes place
(see Fig. 2.7b). In addition, the entire region before this point influences this point
in the flow. Parabolic PDEs describe steady boundary layer equations along with
“parabolized” viscous flows.

Elliptic PDE The canonical form of an elliptic PDE can be written in its charac-
teristic coordinates as follows:

φξξ + φηη = h5(φξ,φη,φ, ξ, η)

Any disturbance in a flow field that is described by elliptic PDEs is felt throughout
the entire flow. In other words, the entire flow domain forms the region of influence.
Conversely, every point in the flow domain influences any other point in the flow
domain. Therefore, the entire flow can also be viewed as the domain of dependence
(see Fig. 2.7c). Elliptic PDEs describe the steady subsonic, inviscid flow along
with an incompressible inviscid flow field.

Consider the two-dimensional potential equation for steady, irrotational, inviscid
flow (we will derive this equation in Sect. 2.7.2):

[
1 − Φ2

x

c2
0

]
Φxx +

[
1 − Φ2

y

c2
0

]
Φyy − 2

ΦxΦy

c2
0

= 0 (2.58)

The velocity potential function is denoted with Φ(x, y), with the velocities, Φx (x, y)

and Φy(x, y), as well as the speed of sound, c0. The three coefficients of interest can
be identified as follows:

a = 1 − Φ2
x

c2
0

b = −2ΦxΦy

c2
0

c = 1 − Φ2
y

c2
0

(2.59)

The discriminant for this second order PDE becomes:

b2 − 4ac = Φ2
x + Φ2

y − c2
0

c2
0

= M2 − 1, (2.60)

where M is the Mach number of the flow. For subsonic flows M < 1 and the
potential equation is elliptic. When the flow is supersonic M > 1 and the equation
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becomes hyperbolic. At sonic condition the equation is parabolic. In transonic flow
the potential equation therefore changes type between the different flow domains.

It is important to distinguish the class of the PDE because different solution
techniques should be used to solve them. The “problem” in transonic flows is that
the most convenient equations in both supersonic and subsonic flow are not of the
same type. Any type of numerical scheme that attempts to approximate one of these
equations is therefore doomed to fail. Steady supersonic and steady subsonic flows
can therefore not be modeled with the same numerical approach. However, unsteady
flows can be described by a hyperbolic scheme whether the flow is subsonic or
supersonic. This is the reason that in transonic aerodynamics the unsteady equations
of motion form the basis for the solution of the flow field. The solution is found by
marching in time until the solution converges to a steady-state value.

2.3 Review of Vector Algebra

As demonstrated in Sect. 2.5 the equations of motion of a fluid flow can be conve-
niently represented in vector form. The vector notation is often used to represent
the governing flow equations and their (numerical) approximations. Vector notation
allows us to represent a set of equations in a single line, which make it easier to
perform mathematical operations in order to derive certain numerical approximation
schemes. The following sections give a review of basic vector algebra including a
review of the most common operations and their notation used in this text.

2.3.1 Vectors, Vector Fields, and Scalar Fields

Some properties of a fluid flow are represented as scalar values (such as p, T , and
ρ). Scalars have a magnitude but no direction. Velocity, however, is represented by
a vector, because it has both a magnitude and a direction. In this text a vector is
denoted with a bold font. For example, the velocity vector is denoted with V , while
its magnitude, V = |V |. In two dimensions, the velocity vector is denoted with

V =
(

u
v

)
, where u and v are the magnitude of the velocity vector components in

the two orthogonal directions.
Addition and subtraction of vectors (and also matrices) is the same as for scalars.

Each entry of the first vector (matrix) is added or subtracted to the corresponding
entry in the second vector (matrix). This does require the two vectors (matrices) to
be of identical dimension. We distinguish different forms of vector multiplication.
For two vectors, a and b the inner product (also called dot product or scalar product)
is defined as:



2.3 Review of Vector Algebra 39

a · b = (a1 · · · an)

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ =

n∑
i=1

ai bi (2.61)

Here (a1 · · · an) = aT , with T denoting the transposition of vector a. When two
vectors are orthogonal to each other, the inner product of these vectors is zero.

The outer product refers to the tensor product of two vectors. Given a vector
a = (a1, . . . , am) with m elements and a vector b = (b1, . . . , bn) with n elements,
their outer product a ⊗ b is defined as the m × n tensor A obtained by multiplying
each element of a by each element of b. Thus, the outer product defines every entry
of A according to Amn = ambn . Notation of the outer product often neglects the “⊗”
symbol. For example, the outer product of the vector V with itself can be denoted as
V V , as we will see in Sect. 2.5.2.

The third form of multiplication is the so called the cross product (also called
vector product). The cross product of two vectors is a vector:

a × b = ab sin θn = v (2.62)

where θ is the measure of the smaller angle between a and b (0◦ ≤ θ ≤ 180◦), a and
b are the vector magnitudes of vectors a and b, and n is a unit vector perpendicular
to the plane containing a and b in the direction given by the right-hand rule. If the
vectors a and b are parallel (i.e., the angle θ between them is either 0◦ or 180◦), by
the above formula, the cross product of a and b is the zero vector 0. In the present
text the cross product in the three-dimensional Euclidian space is considered and
the vectors a and b therefore each have three entries. This allows us to calculate the
entries for v using the third-order determinant:

v =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k, (2.63)

where i, j, and k are the unit vectors in the respective directions x , y, and z.

Example 2.7 For the vectors a = (1, 2, 3) and b = (4, 5, 6), calculate the inner
product, the outer product and the vector product of a with b and b with a.

Solution:

The inner product is calculated according to (2.61):

a · b = 1 · 4 + 2 · 5 + 3 · 6 = 32
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The outer product can be calculated according to:

(1, 2, 3)T ⊗ (4, 5, 6) =
⎡
⎣ 4 5 6

8 10 12
12 15 18

⎤
⎦

To calculate the vector product we use (2.63):

a × b = (2 · 6 − 3 · 5, 3 · 4 − 1 · 6, 1 · 5 − 2 · 1) = (−3, 6,−3)

b × a = −(a × b) = (3,−6, 3)

In vector calculus we have two kinds of functions: scalar functions and vector func-
tions. The output of a scalar function at a particular point P is a scalar:

f = f (P)

Vector function, g, is based on the vectorial function evaluation at a particular point P:

g = g(P) = (g1(P), g2(P), g3(P))

The output of the vector function is a vector. The domain where a vector function is
defined is a region of space (can also be a surface or a curve in space). Within this
region (or on that surface or line) we say that this vector function defines a vector
field. In Cartesian coordinates a vector field can be denoted by

g(x, y, z) = (g1(x, y, z), g2(x, y, z), g3(x, y, z)),

while a scalar function in Cartesian coordinates can be written as f (x, y, z).

2.3.2 Gradient of a Scalar Field

The following sections present various operations that can be performed on vector
and scalar fields. One of these operations is the gradient of a scalar field. The gradient
of a scalar field is a vector field which points in the direction of the greatest rate of
increase of the scalar field, and whose magnitude is the greatest rate of change.
The gradient (grad) of a scalar field is defined as (in three-dimensional Cartesian
coordinates):

grad f = ∇ f =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
(2.64)

The ∇ (read: nabla or del) operator is defined as the following differential vector
operator:
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∇ ≡ ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (2.65)

We can define a scalar function whose gradient forms the three components of the
velocity field for irrotational, inviscid flow. This so-called potential-flow equation
reduces the system of equations to a single equation, thereby simplifying the problem
of finding the velocity field considerably. For example, the velocity distribution in a
fluid flow can be represented by the vector field V. At any point, P , throughout the
fluid this vector field can be related to the gradient of a scalar field, Φ, at this point:
V(P) = ∇Φ(P). Since this is true throughout the entire physical domain we define
the velocity potential function as:

V ≡ ∇Φ (2.66)

Example 2.8 Consider a fluid flow where the velocity vector field is given by V =
(2x, yz2, zy2). Determine the velocity potential function that describes this flow, if
it exists.

Solution:

To find Φ(x, y, z) find the primitive function of each of the components of the vector
field:

Φ =
�

2xdx = x2 + C1(y, z)

Φ =
�

yz2dy = y2z2

2
+ C2(x, z)

Φ =
�

zy2dz = z2 y2

2
+ C3(x, y)

It is possible to combine the above equations into a single expression for the following
potential flow function: Φ = x2 + 1

2 y2z2 + C4, where C4 is a constant. When we
employ (2.66) to Φ, we find V . This confirms that Φ exists and is indeed the potential
function of V .

2.3.3 Divergence of a Vector Field

To assess the magnitude of ‘change’ of a vector field we use the divergence (div) of
a vector field defined as:

div g = ∇ · g = ∂g1

∂x
+ ∂g2

∂y
+ ∂g3

∂z
(2.67)

where g = (g1, g2, g3).
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Example 2.9 For the vector field of Example 2.8 calculate the divergence.

Solution:

Employing (2.67) we obtain the following:

div V = ∇ · V = 2 + z2 + y2

2.3.4 Curl of a Vector Field

To study the rotation of a vector field we employ the curl. The curl is defined as:

curl g = ∇ × g =
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z

g1 g2 g3

∣∣∣∣∣∣ (2.68)

=
(

∂g3

∂y
− ∂g2

∂z

)
i +

(
∂g1

∂z
− ∂g3

∂x

)
j +

(
∂g2

∂x
− ∂g1

∂y

)
k

In a velocity field, the curl is called the vorticity vector and is related to the rotation
of the flow. Rotation of the flow is introduced due to the viscosity of the gas and leads
to turbulent conditions. We will see later that the rotation of a flow field is directly
tied to the formation of curved shock waves in supersonic flow via Crocco’s theorem.

Example 2.10 Determine the curl of the vector field of Example 2.8.

Solution:

We can directly apply (2.68):

curl V = ∇ × V = (2zy − 2zy)i + (0 − 0)j + (0 − 0)k = 0

In Example 2.10 we see that the specified vector field is irrotational. This agrees with
the fact that we can define a potential equation. This confirms that we can define a
potential function only when the vector field is irrotational.

2.3.5 Relation Between Volume, Surface, and Line Integrals

In this section we briefly review the relation between volume, surface, and line
integrals. First, we consider an enclosed volume, V , with an outer surface S. The
divergence theorem (usually attributed to Gauss) states that the flux of a vector field
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through the surface equals the divergence of that vector field inside the enclosed
volume. For a velocity vector field, V , this theorem can be written as follows3:

�
S

V · dS =
�
V

∇ · VdV (2.69)

The gradient theorem states that the gradient of a scalar field, p, integrated over
the control volume, equals the scalar field integrated over the surface vector of the
control volume: �

S

pdS =
�
V

∇ pdV (2.70)

where dS is the element of the surface vector in the normal direction to the surface
pointing outward. Finally, we can relate the curl of a vector field over a control surface,
S, to the closed line integral of the vector field in a counter-clockwise direction over
its boundary, C . This is the Kelvin-Stokes theorem (often referred to as Stokes’
theorem): �

C

V · dC =
�
S

(∇ × V ) · dS (2.71)

2.4 Review of Thermodynamics

Thermodynamics is the science that studies the energy conversion between mechan-
ical work and heat. In fluid flow, thermodynamics plays an important role in trans-
ferring energy from one state to the other. A simple example is a stagnation point at
the leading edge of a wing, where the flow is brought to rest and its kinetic energy is
transferred to heat. Similar effects arise in the boundary layer over the wing where
the friction between the air and the structure also converts kinetic energy into heat.
As we will see in Sect. 2.5 the first law of thermodynamics forms the basis of the
energy equation in fluid flow. This section presents the thermodynamic parameters
that we find in a fluid flow and their interrelation via the state law, the first law of
thermodynamics, and the second law of thermodynamics. It is emphasized that this
section is merely a review of the thermodynamic relations that we will use in sub-
sequent sections and chapters. For a more complete and in-depth discussion of the
topic the reader may consult Sonntag and Van Wylen [21]. For more information on
the application of thermodynamics to aircraft propulsion, the reader is referred to
Farokhi [9].

3 This theorem applies to any vector field, not only V but also mass flow or force fields.
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2.4.1 Perfect Gas Relations

In fluid flow, the thermodynamic properties of fluid are characterized by scalar fields.
The variables of interest for the present discussion are pressure (p in Pa or psi), density
(ρ in kg/m3 or lb/ft3), temperature (T in K or ◦F), and the specific internal energy
(e in J/kg or BTU/lb). According to the state principle of thermodynamics, the local
thermodynamic state is determined by any two independent state variables. If e and
ρ are chosen as those variables, both pressure, p, and temperature, T , are dependent
on these two variables. The subsequent paragraphs present the equations that relate
the state variables to each other via a set of laws.

For a calorically perfect gas (intermolecular forces are assumed negligible and the
volume of individual molecules is infinitesimally small) the equation of state reads:

p = ρRT, (2.72)

where R is the gas constant for a specific gas. In terms of specific volume, v = 1/ρ,
(2.72) can also be expressed as pv = RT . A new thermodynamic state variable is
defined as the sum of internal energy, e, and the product of pressure and specific
volume and is called specific enthalpy:

h = e + pv = e + RT (2.73)

Even though specific enthalpy is introduced here without any physical motivation,
we will see later that it is indeed a fundamental state variable for aero-thermodynamic
analysis. Both specific energy and specific enthalpy (which also has unit J/kg) are
both related to the temperature for a perfect gas:

e = e(T ) (2.74)

h = h(T ) (2.75)

In transonic flow we assume that the gas is perfect and we can consequently find

de = cvdT (2.76)

dh = cpdT (2.77)

where cv is the specific heat at constant volume and cp the specific heat at constant
pressure. These coefficients can be assumed to be constant for air up to temperatures
of 1,000 K, which is the basis for the calorically perfect gas assumption. Based on
this assumption we can now define the following relations between the specific heat
coefficients, cv and cp, the specific internal energy and enthalpy, e and h, the gas
constant, R, and the ratio of specific heats, γ:
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e = cvT, h = cpT, γ = cp

cv
, cv = R

γ − 1
, cp = γR

γ − 1
, R = cp − cv

(2.78)
Using the above relations, the temperature and pressure can now be defined in terms
of the independent state variables e and ρ:

p = (γ − 1)ρe, T = (γ − 1)e

R
(2.79)

For dry air at temperatures that are normally encountered during flight, the gas
constant equals R = 287.04 J/kg/K.

The viscosity (μ) and thermal conductivity (k) are properties of a gas that are
both dependent on the temperature. The viscosity of the fluid is responsible for the
momentum transport on molecular level. The dynamic viscosity of an ideal gas is:

μ = 1

3
ρλc (2.80)

Here λ is the mean free path between molecules and c is the average velocity of the
molecules. Examining this equation we can see that the viscosity increases with the
average velocity and therefore with temperature. Sutherland’s equation states that the
viscosity of air is dependent on its temperature according to the following relation:

μ

μ0
=
(

T

T0

)3/2 T0 + S

T + S
(2.81)

where μ0 and T0 are a reference viscosity and temperature, respectively, and S is the
Sutherland temperature which is S = 110 K for air. For ISA (international standard
atmosphere) conditions these are μ0 = 1.7894 × 10−5 kg/m/s and T0 = 288.16 K.
The thermal heat conductivity was already introduced in Fourier’s law (2.28) and is a
property of the gas. For air k = 0.024 W/m/K at a temperature of 273 K. The Prandtl
number relates the viscosity and the thermal conductivity of a fluid according to:

Pr = cp

k
μ (2.82)

Since k, μ, and cp are dependent on the temperature, the Prandtl number is dependent
on temperature as well. However, for air over a substantial temperature range (up to
600 K) we can assume the Prandtl number remains constant at 0.71 [3]. In Fig. 2.8
the viscosity and conductivity of air are presented as a function of temperature, along
with the assumed values for the constants that have been used. We see that there is
an appreciable change in conductivity and viscosity with temperature, which can be
important if we model high-speed fluid flows.
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Fig. 2.8 Graphical representation of (2.81) and (2.82) for dry air

2.4.2 First Law of Thermodynamics

The first law of thermodynamics states that energy can only be transformed from one
form into another. In other words, the summation of all energies in a closed system
remains constant. The system has hypothetical boundaries to the surroundings that
we can define based on the problem under consideration. The change in specific
internal energy of the system, de, can be related to the increment in specific work
done by the system, δw, and the specific heat added to the system, δQ:

de + δw = δQ (2.83)

As we noted in Sect. 2.4.1, e is a state variable. That means that de is an exact
differential which only depends on the difference between the initial (e1) and final
state (e2) of the process: � 2

1
de = e2 − e1 (2.84)

Contrary to that, the heat and work depend on the path between the two states.
Therefore, their changes are represented with a δ in (2.83). To demonstrate this
process dependency Fig. 2.9 shows how the total amount of work changes with the
path taken from point 1 to point 2. Note that this figure shows expansion processes
where pV n = constant. This is a polytropic process, with p and V representing
the pressure and volume of the gas, respectively. The exponent, n, depends on the
process. For example if n = 0 we have an isobaric process, when n = 1 we have an
isothermal process (using the perfect gas law). Of course, we can define an infinite
number of ways to get from state 1 to state 2, each described by a different value of n.

If work is done by a system under adiabatic conditions (meaning no heat addition
or extraction, hence δQ = 0) the internal energy (read: temperature) of the system
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Fig. 2.9 Work depends on
the path (process) between
state 1 and state 2

p
1

2
Area = reversible work
for process A

A
B

changes according to:
de = −δw (2.85)

For a process that is reversible (no dissipative phenomena occur), we can calculate
the specific work (w) according to:

w =
� 2

1
pdv =

{
p2v2−p1v1

1−n for n �= 1 (non-isothermal condition)

p1v1 ln v2
v1

for n = 1 (isothermal condition)
(2.86)

Substituting the perfect gas law for pv in (2.86), we get the following expression for
non-isothermal processes:

w = − R(T2 − T1)

n − 1
(2.87)

Since we assume that the change in energy equals the work done on the system and
using (2.76), we can write:

Δe = cv(T2 − T1) = −w (2.88)

Combining (2.87) and (2.88) leads, after simplification, to the following statement:

n = cp

cv
= γ (2.89)

which demonstrates that for an adiabatic and reversible process the following is true:

pvγ = constant (2.90)

Let us recap the result of this process. We have made two assumptions in the
previous derivation: (1) no heat addition or extraction; (2) no dissipative phenomena
occur. Finally, we implicitly assumed that the total amount of mass within the system
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remained the same, which is inherent in the definition of a thermodynamic system.
Under these assumptions, the process is adiabatic and reversible. As the reader might
remember from a course on thermodynamics, this process is called isentropic. In an
aerodynamic context this means that the dissipative phenomena such as thermal
conductivity, viscosity and mass diffusion are assumed to be absent from the flow. In
addition, no heat is added or extracted from the flow by means of heating or cooling
the flow, respectively. Flows that exhibit the formation of shock waves are therefore
per definition anisentropic as this process is irreversible and dominated by viscous
properties in the flow.

2.4.3 Second Law of Thermodynamics

The first law of thermodynamics only states that energy is conserved during a thermo-
dynamic process. However, it does not tell us anything about the direction in which
the energy flow is taking place. This is governed by the second law of thermody-
namics that states that over time, differences in temperature, pressure, and chemical
potential tend to even out in a physical system that is isolated from the outside world.
To quantify this ‘evening-out’ process, a property called entropy, S (denoted by s for
specific entropy), is introduced. Entropy is related to the change in heat in a reversible
system:

ds = δQrev

T
, (2.91)

where T is the temperature of the system. Entropy is a state property meaning that
the change in entropy of a system going from one state to another is the same for all
processes. Note that for an irreversible process where dissipative phenomena occur,
we could always assign an effective δQrev that relates the initial state and the end state
to each other. However, it is more revealing to say that these dissipative processes
produce their own entropy, dsirrev, i.e.:

ds = dsrev + dsirrev = δQrev

T
+ dsirrev (2.92)

This statement says that ds has two parts, one is reversible and the other is irreversible
due to dissipation phenomena. The dissipative phenomena within the system always
increase the entropy of the system:

dsirrev ≥ 0 (2.93)

If dsirrev = 0 we have a truly reversible process. If ds exceeds the reversible limit,
the process is irreversible and entropy is produced. Combining (2.92) and (2.93) we
express the second law of thermodynamics as:
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ds ≥ δQ

T
(2.94)

ds ≥ 0 for adiabatic processes (2.95)

When a process is isentropic (literally meaning “equal disorder”) the entropy of the
system and its surroundings remains constant from state 1 to state 2.

Combining the first and second law of thermodynamics, (2.83) and (2.91), respec-
tively, produces Gibbs’ equation:

T ds = de + pdv (2.96)

If we use the chain rule we can find the change in enthalpy (2.73) to be dh =
de + pdv + vdp. Combining this with (2.96) we can now write two alternative forms
for the first law of thermodynamics, one in terms of specific energy and one in terms
of specific enthalpy:

T ds = de + pdv (2.97)

T ds = dh − vdp (2.98)

By inserting the relations between temperature and specific energy (2.76) and specific
enthalpy (2.77), respectively, and by utilizing the state law (2.72) we can find two
expressions for ds: one in terms of specific volume and one in terms of specific
pressure (see Problem 2.22). Integrating both relations between the state properties
at state 1 and state 2 results in the following expressions for the change in entropy
of a calorically perfect gas:

s2 − s1 = cv ln
T2

T1
+ R ln

v2

v1
(2.99)

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1
(2.100)

These forms of Gibbs’ equation are useful in aero-thermodynamic calculations. For
an isentropic flow, i.e. s1 = s2, we can establish the isentropic relations between
temperature, density, and pressure (see Sect. 2.4.4).

Example 2.11 We consider a one-dimensional flow field of air with a discontinuity
in state properties due to the presence of a normal shock wave. In front of the
shock, the static pressure is 50 kPa, while right behind the shock it is 75.6 kPa. The
static temperature over the shock increases with a factor of 1.128. Calculate the
corresponding change in entropy over the shock and the corresponding density ratio
between state 2 and 1.
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Solution:

We calculate the pressure ratio to be p2/p1 = 1.512 and enter this in (2.100) to find
s2 − s1 = 0.746 J/kg/K. Rewriting (2.99) we get the following:

ρ2

ρ1
= v1

v2
= exp

⎡
⎣ (s1 − s2) + cv ln

(
T2
T1

)
R

⎤
⎦

Substitution of the appropriate values and constants gives ρ2/ρ1 = 1.34.

The example above is actually a demonstration of how the state properties of the
flow change when it goes through a normal shock wave. Pressure, density, tempera-
ture, and entropy all increase depending on the Mach number of the flow in front of
the shock wave. In the above example this Mach number is 1.2 and the entropy change
is still relatively small. Notice, though, that even at this relatively low Mach number
the shock wave creates a relatively large pressure, temperature, and density rise.

2.4.4 Isentropic Relations

Based on the relations (2.99) and (2.100) we can investigate the change in state
properties for an isentropic (adiabatic and reversible) process. In this case ds = 0
and we can rewrite (2.99) and (2.100) to show the relation between the pressure,
density and temperature ratios in an isentropic process. We set the LHS of (2.99)
and (2.100) to zero and perform some manipulations to find the following:

v2

v1
=
(

T2

T1

)−cv/R

(2.101)

p2

p1
=
(

T2

T1

)cp/R

(2.102)

By using the relations of (2.78), we can make the following substitutions:

cv

R
= 1

γ − 1
and

cp

R
= γ

γ − 1

With these substitutions and subsequent manipulations (see Problem 2.23) we can
now state the isentropic relations:

p2

p1
=
(

ρ2

ρ1

)γ

=
(

T2

T1

) γ
γ−1

(2.103)
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Now that we have the isentropic relations we ask ourselves: why are they so
important? We know that in reality a gas flow is viscous and thermally conducting
and therefore dissipative phenomena always occur. However, we also know that these
phenomena are only dominant in small regions in the flow: the boundary layer and
inside the shock waves. Outside of these regions the dissipative phenomena are so
small that they can often be neglected when we want to calculate the local state
properties. However, within these regions the isentropic relations do not hold and
we cannot relate the state properties in this simple way. This becomes evident in the
subsequent section and chapters of this text.

2.5 Equations of Fluid Motion

The following sections give an overview of the fundamental equations of motion in
(transonic) fluid dynamics. For a more comprehensive treatment of this subject mat-
ter we refer to introductory texts on aerodynamics such as the work by Anderson [3].
Most of what is presented in this chapter follows the text of Tannehill et al. [19].

Before we start discussing the equations of motion we introduce two non-
dimensional numbers that are often used to characterize a fluid flow: the Reynolds
number and the Mach number. The Reynolds number is a measure for the ratio of
inertial forces to viscous forces in a moving fluid. Its definition is as follows:

Rel = ρV l

μ
(2.104)

where l is a characteristic length, for example the chord length of an airfoil or the
diameter of a pipe. A second non-dimensional number to characterize a fluid flow is
its Mach number. The Mach number is defined as the ratio of the local flow velocity
to the local speed of sound:

M = V

a
(2.105)

The local speed of sound, a, is a function of the state properties of the fluid. For a
perfect gas the speed of sound is solely dependent on the temperature of the gas:

a =
√(

∂ p

∂ρ

)
=
√

γ
p

ρ
= √

γRT (2.106)

2.5.1 Conservation of Mass

We consider a fluid flow through a fixed control volume V . We consider the balance
between the mass flowing in and out of the control volume and the time rate of change
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of the mass inside the control volume. We use the empirical law that mass can neither
be destroyed nor created during this process. Mass can only exit the control volume
through its enclosed surface, S. The resulting mass flowing out of the control volume
can be written as follows: �

S

ρV · dS (2.107)

where V is the velocity vector. Note that the vector dS has a magnitude of dS and
a direction n, which is perpendicular to the surface of dS. We can express the time
rate of increase in mass inside V using the following volume integral:

∂

∂t

�
V

ρdV (2.108)

The change in mass within the control volume should be in balance with the net mass
flux through the control surface. This conservation principle results in the following
continuity equation in integral form:

�
S

ρV · dS + ∂

∂t

�
V

ρdV = 0 (2.109)

Equation (2.109) is the conservation of mass in integral form. Applying the diver-
gence theorem to the surface integral combines both terms within one volume integral
(see Problem 2.24). From this integral the conservation form of the continuity equa-
tion can be found. The conservation of mass law in differential form is:

∂ρ

∂t
+ ∇ · (ρV ) = 0 (2.110)

Let us briefly analyze this equation. It is a first order partial differential equation.
At a particular point in space it describes the change in density with time and the
divergence of the product of density and velocity. We can simplify this equation
even further by introducing the substantial derivative operator, D/Dt . The substan-
tial derivative combines the local derivative (∂/∂t) and the so-called convective
derivative (V · ∇), to represent the “total” derivative:

D

Dt
= ∂

∂t
+ V · ∇ (2.111)

In the case of the density in two Cartesian dimensions it reads:

Dρ

Dt
= ∂ρ

∂t
+ (V · ∇)ρ = ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
(2.112)
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This equation physically states that the change in density is due to temporal and
spatial variations. Using the definition of the substantial derivative (2.111) we can
rewrite the continuity equation (2.110) in substantial-derivative form:

Dρ

Dt
+ ρ(∇ · V ) = 0 (2.113)

When homogeneous, incompressible flow is considered, the first term on the LHS
can be dropped and only have ∇ · V = 0. However, generally speaking this is only a
valid approximation at Mach numbers below M = 0.3 where density variations are
less than 5 %. In transonic flows with typical Mach numbers in the range of 0.8–1.3
we cannot use the incompressible flow assumption.

2.5.2 Conservation of Linear Momentum

The momentum theorem in fluid mechanics is the counterpart of Newton’s second
law of motion in solid mechanics which states that the time rate of change of linear
momentum of a body of mass, m, must be equal to the net forces that act on that body:

F = d

dt
(mV ) (2.114)

Let us again consider a fluid passing through a finite control volume. The forces
on the fluid in this control volume can be divided into forces that are acting on the
fluid (such as gravity) and forces that are acting on the control surface, S (pres-
sure and shear forces). In Fig. 2.10 it is schematically shown how the body force,
pressure and stress vectors act on a control volume in Cartesian coordinates. Note
that τij is the stress on the surface of the control volume with normal vector i in
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Fig. 2.10 Schematic control volume with body force (left), surface pressure (center) and shear
stresses (right)
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the direction j . The stress components for which i �= j are shear stress compo-
nents, while the stress components normal to the surface (i = j) are associated with
the thermodynamic pressure. The thermodynamic pressure can be perceived as the
force exerted on the control volume walls as fluid molecules coincide with it during
their random movement. The latter becomes important only for such effects where
fluid compressibility is essential. Examples would include shock waves and sound
propagation. For incompressible flows the thermodynamic pressure is zero.

If we denote the body forces per unit volume by ρ f we can represent the total
body force by:

body force =
�
V

ρ f dV (2.115)

The most common body force per unit volume is the gravitational force for which
ρ f = ρg. The surface force due to pressure always acts perpendicular to the surface
of the control volume:

surface force due to pressure = −
�
S

pdS (2.116)

Note that the pressure force is negative, since the pressure acts in the opposite direc-
tion to the surface normal vector, n. Finally, the surface force due to friction can be
written as follows:

viscous surface force =
�
S

τ ij · dS (2.117)

whereτ ij is the viscous shear stress tensor. In three dimensions this tensor is expressed
as follows:

τ ij =
⎡
⎣ τ11 τ12 τ13

τ21 τ22 τ23
τ31 τ32 τ33

⎤
⎦ (2.118)

A tensor can be perceived as a multi-dimensional vector. The inner product of a
tensor with a vector therefore results in a vector, rather than a scalar as we noted in
Sect. 2.3. In three dimensions, this tensor consists of three vectors, which form its
columns. The inner product should be applied to each of these vectors. The entries
of the resulting vector correspond to the scalar result of each of these operations. We
can combine each of the force components and form the LHS of (2.114):

F =
�
V

ρ f dV −
�
S

pdS +
�
S

τ ij · dS (2.119)

Now, let us turn our attention to the RHS of (2.114) and look at the time rate of
change of linear momentum. Similar to the components in the continuity equation
we distinguish two contributions to the time rate of change of momentum: first due
to the momentum change with time of the fluid inside the control volume and second
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due to momentum entering and leaving the control volume. These components can
be defined as follows:

d

dt
(mV ) = ∂

∂t

�
V

ρVdV +
�
S

(ρV · dS)V (2.120)

We can now combine (2.119) and (2.120) to obtain a first version of the fluid-flow
momentum balance in integral form:

∂

∂t

�
V

ρVdV +
�
S

(ρV · dS)V =
�
V

ρ f dV −
�
S

pdS +
�
S

τ ij · dS (2.121)

We can expand the shear stress terms in this equation in terms of state variables
and fluid constants, but let us first evaluate the differential form of the momentum
equation.

By applying the gradient and divergence theorems (Sects. 2.3.2 and 2.3.3, respec-
tively) appropriately to each of the individual terms in (2.121) we can rewrite this
equation only in terms of volume integrals, which allows us to evaluate only the
integrand. This results in the following differential form of the momentum equation:

∂

∂t
(ρV ) + ∇ · (ρV V ) = ρ f − ∇ p + ∇ · τ ij (2.122)

Note that V V is the outer product of V with itself, leading to the second-order
velocity tensor. For Newtonian fluids (stress-rate of strain relation is linear) the
relation between the shear stress tensor and velocity the components can be written
as follows:

τ ij = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ δijμ

′ ∂uk

∂xk
i, j, k = 1, 2, 3 (2.123)

where μ is the dynamic viscosity and μ′ is second (or bulk) coefficient of viscosity
of the fluid. Furthermore, ui is the velocity component of V in the direction of i and
δij is the Kronecker delta.4 Following Stokes’ hypothesis:

μ′ = −2

3
μ (2.124)

Therefore, the viscous stress tensor, τ ij, can be written as:

τ ij = μ

[(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
δij

∂uk

∂xk

]
(2.125)

4 The Kronecker delta is defined as follows: δij =
{

1 for i = j

0 for i �= j
.
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By expanding the LHS of (2.122) using the chain rule and subsequent substitution
of the continuity equation (see Problem 2.25), we can write the momentum equation
in substantial-derivative notation according to:

ρ
DV
Dt

= ρ f − ∇ p + ∇ · τ ij (2.126)

Subsequent substitution of (2.123) yields the following set of momentum equations:

ρ
DV
Dt

= ρ f − ∇ p + ∂

∂x j

[
μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
δijμ

∂uk

∂xk

]
(2.127)

We emphasize that (2.127) is a set of three second-order partial-differential equa-
tions (if three-dimensions are considered). These equations are often referred to as
the Navier-Stokes equation named after Claude-Louis Navier and George Gabriel
Stokes.

2.5.3 Conservation of Energy

The first law of thermodynamics (2.83) forms the basis for the energy balance
between a fluid going through a fixed control volume and its surroundings:

de + δw = δQ (2.83)

Note that (2.83) is the balance between the rate of change in internal (or specific)
energy with the sum of the rate of specific heat added to the fluid and the rate of
specific work done by the fluid. In order to express the first law in energy per unit
volume we need to multiply (2.83) by the density:

ρde + ρδw = ρδQ (2.128)

Let us expand each of those terms in terms of state variables of the fluid. We start
with the LHS of (2.128), which is the change of internal energy. Remember, that this
law is written for a gas in stationary condition. Since we are considering a moving
fluid, the kinetic energy per unit mass is to be added. If we denote the total energy
per unit volume with Et we have:

Et = ρ

(
e + V 2

2

)
(2.129)

Since the subject of this text is aerodynamics, we have intentionally omitted a poten-
tial energy term in (2.129). The time rate of change of total energy in the control
volume can now be written as:
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time rate of change of total energy inside control volume = ∂

∂t

�
V

Et dV

(2.130)
Since fluid is entering and leaving the control volume, the kinetic and internal energy
changes. Each particle that leaves the control volume has a volume-specific energy
density of Et . The total rate of volume-specific total energy leaving the control
volume therefore equals the volumetric flux over the boundary dS times Et : Et V ·dS.
Integrating over the entire control surface yields the following:

time rate of energy transfer across control surface =
�
S

Et V · dS (2.131)

Now, let us turn our attention to the heat term in (2.128). First, we consider the
time rate of change of heat inside the control volume. Similar to the energy flux, we
define two components: the time rate of change of heat inside the control volume
and the heat flow going in and out of the volume via the control surface. We switch
in nomenclature from specific heat (δQ, unit: J/kg) to heat per unit volume (ρδQ,
unit: J/m3). The time rate of change of heat inside the control surface is given by:

time rate of change of heat inside control volume = ∂

∂t

�
V

ρQdV (2.132)

By using Fourier’s law of heat conduction (see also (2.28) in Sect. 2.2.2), the heat
flow (q, unit: J/s/m2) is linearly related to the temperature gradient:

q = −k∇T (2.133)

where k is the coefficient of thermal conductivity and T is the temperature of the gas.
The heat flow into the control volume is in opposite direction to the control surface
vector dS. Therefore, the rate of heat addition is negatively related to the heat flux
over the control surface dS:

heat flow across control surface = −
�
S

q · dS (2.134)

Having examined the energy and heat flux in the control volume, the last part of
(2.128) is the rate of work being done on the fluid in the control volume. We consider
three different contributions that are related to the three different forces we defined
in Sect. 2.5.2. First we have the time rate of change in work due to the body forces.
We know that work can be defined as the force times a displacement. Hence, the
time rate of change of work can be expressed as the force multiplied by the velocity.
Therefore, we have the following:

time rate of change of work due to body forces =
�
V

ρ f · VdV (2.135)
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Secondly, we have the pressure on the control surface that does work on the fluid
inside the control surface. We take the inner product of the RHS of (2.116) with V
to obtain the work flux due to this component:

time rate of work done due to pressure on the control surface = −
�
S

pdS · V

(2.136)
Finally, we look at the rate of work done due to the shear stress on the control surface.
Similar to the pressure-induced work flux, the work flux due to the shear stress can
be found by taking the inner product of the RHS of (2.117) with V :

time rate of work done due to shear stress on the control surface =
�
S

(τ ij · dS) · V

(2.137)
Remember that τ ij is the stress tensor as defined in (2.118).

We have now defined the time derivative of each of the components of (2.128) and
we can formulate the first version of the energy balance between the control volume
and its surroundings:

∂

∂t

�
V

Et dV +
�
S

Et V · dS = ∂

∂t

�
V

ρQdV −
�
S

q · dS +
�
V

ρ f · VdV

−
�
S

pdS · V +
�
S

(τ ij · dS) · V (2.138)

We can cast (2.138) in differential form by applying the gradient and divergence
theorems to the appropriate terms and changing everything to volumetric integral
formulation. The integrand of that equation yields the following energy balance:

∂Et

∂t
+ ∇ · Et V = ∂(ρQ)

∂t
− ∇ · q + ρ f · V − ∇(p · V ) + ∇ · (τ ij · V ) (2.139)

The first term on the LHS of (2.139) represents the rate of increase of Et in the control
volume, while the second term represents the total energy lost due to convection
through the control volume. The first term on the RHS is the amount of heat produced
by external factors. The second term is the rate of heat lost by means of conduction.
The third term represents the work done by body forces while the last two terms
represent the work done by normal and shear stresses on the surface, respectively.

By subsequently employing the continuity and momentum equation (see Problem
2.26) we can write the energy equation in a convenient substantial-derivative form:

ρ
De

Dt
+ p(∇ · V ) = ∂(ρQ)

∂t
− ∇ · q + ∇ · (τ ij · V ) − (∇ · τ ij) · V (2.140)

The sum of last two terms in this equation is termed the dissipation function, Φ, and
represent the rate at which mechanical energy is expended due to viscosity when
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the fluid is deformed. The LHS of (2.140) can be rewritten in terms of enthalpy
by employing (2.73) and the continuity equation (see Problem 2.27). The following
energy balance results:

ρ
Dh

Dt
= Dp

Dt
+ ∂(ρQ)

∂t
− ∇ · q + Φ (2.141)

where the dissipation function is:

Φ = ∇ · (τ ij · V ) − (∇ · τ ij) · V (2.142)

From a mathematical point of view we classify (2.141) as a second order partial
differential equation. Note that the second order terms appear only in the dissipation
function (see Problem 2.27).

If we start from (2.139) and assume isentropic conditions (inviscid: μ = 0 and
adiabatic: d(ρQ)/dt = 0 and k = 0), we can write the energy equation as follows:

ρ
D(e + V 2/2)

Dt
= −∇(p · V ) (2.143)

Here, we have assumed the body forces, f , to be negligible. Using the continuity
equation (2.113), we can rewrite this equation as follows:

ρ
D(h + V 2/2)

Dt
= −∂ p

∂t
(2.144)

In steady conditions, we can therefore derive that:

h + V 2

2
= H = constant (2.145)

where H is the definition of the total enthalpy. If we use the relation between enthalpy
and static temperature (2.77), we can write:

cpT + V 2

2
= cpTt = constant (2.146)

where Tt is the total temperature. For a flow where all the streamlines emanate from
the same uniform freestream, the temperature and velocity are therefore uniquely
correlated through (2.146). We can manipulate (2.146) and include the definition of
the speed of sound (2.106) to obtain:

Tt

T
= 1 + γ − 1

2
M2 (2.147)
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Equation (2.147) states that there exists a unique relationship between the Mach
number and the static temperature in the flow. For a given total temperature, Tt , in
the freestream, Eq. (2.147) shows that the static temperature decreases with Mach
number. If we combine (2.147) with the isentropic relations (2.103) we can express
the temperature, density and pressure as a function of the Mach number. We have
tabulated this relation for Mach numbers ranging from 0 through 10 in Appendix A.

2.5.4 Conservation Form of the Navier-Stokes Equations

We now make two assumptions about the nature of the flow we consider. The first
assumption is that the body forces (such as gravity) are so small compared to the
surface forces that it is unnecessary to account for them during calculations. In
addition, we assume that there is no change in heat per unit volume due to volumetric
heating. Accordingly, we declare that:

f = 0
d(ρQ)

dt
= 0 (2.148)

Let us rewrite the three equations that represent the conservation of mass (2.110),
momentum (2.122) and energy (2.139), respectively, and apply the assumptions of
(2.148):

∂ρ

∂t
+ ∇ · (ρV ) = 0 (2.110)

∂

∂t
(ρV ) + ∇ · (ρV V ) + ∇ p − ∇ · τ ij = 0 (2.149)

∂Et

∂t
+ ∇ · Et V + ∇ · q + ∇ p · V − ∇ · (τ ij · V ) = 0 (2.150)

This shortened form permits us to explicitly rewrite all five equations in their con-
servation form:

∂ρ

∂t
+ (∂ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (2.151a)

∂(ρu)

∂t
+ ∂(ρu2)

∂x
+ ∂(ρuv)

∂y
+ ∂(ρuw)

∂z
+ ∂ p

∂x
−
(

τxx

∂x
+ τxy

∂y
+ τxz

∂z

)
= 0 (2.151b)

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2)

∂y
+ ∂(ρvw)

∂z
+ ∂ p

∂y
−
(

τxy

∂x
+ τyy

∂y
+ τyz

∂z

)
= 0 (2.151c)

∂(ρw)

∂t
+ ∂(ρuw)

∂x
+ ∂(ρvw)

∂y
+ ∂(ρw2)

∂z
+ ∂ p

∂z
−
(

τxz

∂x
+ τyz

∂y
+ τzz

∂z

)
= 0 (2.151d)
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∂Et

∂t
+ ∂(uEt )

∂x
+ ∂(vEt )

∂y
+ ∂(wEt )

∂z
+ ∂(up)

∂x
+ ∂(v p)

∂y
+ ∂(w p)

∂z

+
[
∂qx

∂x
− ∂qy

∂y
+ ∂qz

∂z

]
−
[

∂

∂x
(uτxx + vτxy + wτxz)

+ ∂

∂y
(uτxy + vτyy + wτyz) + ∂

∂z
(uτxz + vτyz + wτzz)

]
= 0

(2.151e)

The Navier-Stokes equations consists of a time-dependent continuity equation for
conservation of mass, three time-dependent conservation of momentum equations
and a time-dependent conservation of energy equation. There are four independent
variables in the problem: x , y, z and time t . There are six dependent variables; the
pressure p, density ρ, and temperature T (which is contained in the energy equation
through the total energy Et ) and three components of the velocity vector (u, v, w). All
of the dependent variables are functions of all four independent variables. The dif-
ferential equations are therefore a set of partial differential equations. We can reduce
the number of dependent variables to five by adding two algebraic equations to close
this system, namely (2.72) and (2.76) that together relate pressure, p, to the state
variables ρ and e (see Problem 2.18). We are then left with five partial differential
equations and five unknowns: u, v, w, ρ, and e.

It can be convenient to combine these equations in vector form such that they
become more compact. By doing so, we can formulate this set of equations in the
following vector form (see Problem 2.28):

∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂G
∂z

= 0 (2.152)

where:

U =

⎡
⎢⎢⎢⎣

ρ
ρu
ρv
ρw
Et

⎤
⎥⎥⎥⎦ E =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p − τxx

ρuv − τxy
ρuw − τxz

(Et + p)u − uτxx − vτxy − wτxz + qx

⎤
⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎣

ρv
ρuv + p − τxy

ρv2 + p − τyy
ρvw − τyz

(Et + p)v − uτxy − vτyy − wτyz + qy

⎤
⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎣

ρw
ρuw − τxz
ρvw − τyz

ρw2 + p − τyz
(Et + p)w − uτxz − vτyz − wτzz + qz

⎤
⎥⎥⎥⎦

(2.153)

The first and last row in these vectors represent the continuity and energy equation,
respectively. The three middle rows represent the three components of the momentum
equation. The form above is often used because it is easier to code in numerical form.
It still represents the full equations of motion. Note that this set in the subsequent
text is referred to as the Navier-Stokes (NS) equations.
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2.6 Reynolds-Averaged Navier-Stokes Equations

The Navier-Stokes equations can be solved numerically by using direct numerical
simulation (DNS). This means that the whole range of spatial and temporal scales
of the turbulence must be resolved. All the spatial scales of the turbulence must be
resolved in the computational mesh, from the smallest dissipative scales, up to the
integral scale L, associated with the motions containing most of the kinetic energy.
This requires to have a high spatial density of the volumetric mesh in combination
with a small time step. It can be shown that the number of floating-point operations
required to complete this simulation is proportional to the number of mesh points
and the number of time steps. The number of operations grows with the third power
of the Reynolds number: Re3

L [4]. For practical engineering problems, the number
of required operations would exceed the maximum number of the most powerful
computers that are currently available. To increase the minimum spatial and temporal
scales and hence reduce the number of floating point operations, the Reynolds-
averaged Navier-Stokes equations (RANS) can be used. In this section we show how
the Reynolds-averaged Navier-Stokes equations can be obtained. Because RANS
equations relate the turbulence in the flow to the mean flow properties , we introduce
new dependent variables. Therefore, additional equations are necessary to “close”
the RANS equations. Many turbulence models have been developed to close the
RANS equations. As an example, we present the so-called k-epsilon model, which
is often used in engineering practice.

2.6.1 Incompressible Reynolds-Averaged Equations of Motion

Conventional Reynolds-averaging is done by splitting the flow parameters into a
time-averaged part and a fluctuating part. This is called Reynolds decomposition [15]:

u = ū + u′ v = v̄ + v′ w = w̄ + w′ ρ = ρ̄ + ρ′ (2.154)

p = p̄ + p′ h = h̄ + h′ T = T̄ + T ′ H = H̄ + H ′ (2.155)

Here, the total enthalpy is defined by H = h + ui ui/2 and the barred parameters
represent averages. The fluctuation terms that appear in the equations above become
zero when they are time-averaged. For example:

u′ = 1

Δt

� Δt

0
u′dt = 0 (2.156)

The equations of motion of Sect. 2.5 are modified by substitution of the flow para-
meters that we have defined in (2.155). Subsequently, each of the equations is time
averaged. The result yields a set of equations that have averaged fluctuating terms.
Each of the terms in the equations of motion that have averaged fluctuating terms
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are subsequently set to zero. This yields a more compact version of these equations,
including the fluctuating terms. We briefly discuss each of the governing equations
below.

When substituting the relations of (2.154) in the continuity equation (2.110) the
following averaged equation can be obtained:

∂ρ̄

∂t
+ ∂

∂x j

(
ρ̄ū + ρ′u′

j

)
= 0 (2.157)

For incompressible flow, the fluctuating and unsteady density terms can be dropped
from this equation. Furthermore, ρ̄ = ρ = constant. What we are left with is a much
reduced continuity equation:

∂ū j

∂x j
= 0 (2.158)

Starting from the Navier-Stokes equation (2.127) and neglecting body forces,
the Reynolds-averaged momentum equation can be obtained by substitution of the
relations (2.154) and applying subsequent time averaging:

∂

∂t

(
ρ̄ūi + ρ′u′

j

)
+ ∂

∂x j

(
ρ̄ūi ū j + ūiρ′u′

j

)

= − ∂ p̄

∂xi
+ ∂

∂x j

(
τ̄ij − ū jρ′u′

i − ρ̄ j u′
i u

′
j − ρ′u′

i u
′
j

)
(2.159)

where

τ̄ij = μ

[(
∂ūi

∂x j
+ ∂ū j

∂xi

)
− 2

3
δij

∂ūk

∂xk

]
(2.160)

For incompressible flow, this can be simplified to:

∂

∂t
(ρūi ) + ∂

∂x j

(
ρūi ū j

) = − ∂ p̄

∂x j
+ ∂

∂x j

(
τ̄ij − ρu′

i u
′
j

)
(2.161)

As can be seen from (2.161) the Reynolds-Averaged Navier-Stokes (RANS) equation
exhibits additional terms with respect to the original NS equations. These fluctuating
terms need to be related to the average flow parameters in order to close the RANS
equations. Since the fluctuating terms are in the same bracket as the averaged stress
terms they are often termed Reynolds stresses. Closure of the Reynolds-averaged
equations via turbulence models is the topic of Sect. 2.6.3. To interpret the equations
properly, consider Eq. (2.161) in substantial-derivative form:



64 2 Review of Fundamental Equations

ρ
Dūi

Dt
= − ∂ p̄

∂xi
+ ∂

(
τ̄ij
)

lam

∂x j
+ ∂

(
τ̄ij
)

turb

∂x j
(2.162)

Particle acceleration
of mean motion

Mean pressure
gradients

Laminar-like
stress gradient

for the mean motion

Apparent stress gradients
due to transport of momentum by

turbulent fluctuations

This shows how the Reynolds stresses appear as an addition to the mean flow para-
meters that are very much comparable to the original NS equations. The Reynolds-
averaged stress is related to the fluctuating velocities according to:

(
τ̄ij
)

turb = −ρu′
i u

′
j (2.163)

Since u′
i u

′
j = u′

j u
′
i , the Reynolds stress tensor, τ̄ij is symmetric. Considering three

dimensions, it consists of six new variables. Unfortunately, we do not have six addi-
tional equations. We therefore require additional equations to close this system.

The Reynolds-averaged energy equation can be found by substitution of the rela-
tions (2.154) in (2.140):

∂

∂t

(
ρ̄H̄ρ′ H ′

)
+ ∂

∂x j

(
ρ̄ū j H̄ + ρ̄u′

j H ′ + ρ′u′
j H̄ + ρ′u′

j H ′ + ū′
jρ

′ H ′ − k
∂T̄

∂x j

)

= ∂ p̄

∂t
+ ∂

∂t

[
ūi

(
−2

3
μδij

∂ūk

∂xk

)
+ μūi

(
∂ū j

∂xi
+ ∂ūi

∂x j

)]

− ∂

∂t

[
2

3
μδiju′

i

∂ū′
k

∂xk
+ μ

(
u′

i

∂u′
j

∂xi
+ u′

i

∂u′
i

∂x j

)]

(2.164)

For incompressible flows the energy equation can be written as follows:

∂ρH̄

∂t
+ ∂

∂x j

(
ρu j H̄ + ρu′

j H ′ − k
∂T̄

∂x j

)

= ∂ p̄

∂t
+ ∂

∂x j

[
μūi

(
∂ū j

∂xi
+ ∂ūi

∂x j

)
+ μ

(
u′

i

∂u′
j

∂xi
+ u′

i

∂u′
i

∂x j

)]
(2.165)

Since the last bracketed term within the square brackets on the RHS of (2.165) is often
small compared to the other terms within the square brackets, it is usually neglected.
What remains is an energy equation comparable to the original energy equation
(2.140) except for the fluctuating term ρu′

j H ′. Since this term shares its brackets
with heat flux terms it is often termed the Reynolds heat flux. A similar analysis can
be done for the energy equation where the Reynolds heat flux component is:

− (∇ · q)turb = ∂

∂x j

(
−ρ̄cpT ′u′

j − cpρ′T ′u′
j − ū j cpρ′T ′

)
(2.166)
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The Reynolds-averaged equations form a set of five partial differential equations with
more than five unknowns. As was briefly explained, additional fluctuating terms need
to be related to mean flow properties via appropriate turbulence models. We discuss
a typical turbulence model in Sect. 2.6.3.

2.6.2 Compressible Reynolds-Averaged Equations of Motion

The Reynolds-averaged equations in the previous section assume a constant density
of the fluid. In Mach numbers beyond 0.3 it can be shown that compressibility effects
become important in determining the correct flow parameters [3]. This section shows
how time-averaging along with mass-weighting of the equations of motion results in
an equivalent set of equations that describe an equivalent compressible flow.

In a Reynolds averaged compressible flow, it is convenient to apply a mass-
weighted averaging in addition to the time averaging.Mass-averaging the flow para-
meters can be done by multiplying the parameters by the density, averaging this
product and dividing by the average density:

ũ = ρu

ρ̄
ṽ = ρv

ρ̄
w̃ = ρw

ρ̄
h̃ = ρh

ρ̄
T̃ = ρT

ρ̄
H̃ = ρH

ρ̄
(2.167)

The following fluctuating quantities are defined:

u = ũ + u′′ v = ṽ + v′′ w = w̃ + w′′ ρ = ρ̄ + ρ′

p = p̄ + p′ h = h̃ + h′′ T = T̃ + T ′′ H = H̃ + H ′′ (2.168)

where the primed parameters stand for time dependent deviations from the average
which are zero when integrated over time (i.e. u′ = 1

Δt

� Δt
0 u′dt = 0). The averages

of the doubly primed fluctuating quantities are not zero. Instead the time average
of the doubly primed fluctuations multiplied by the density equals zero (i.e. u′′ =
1
Δt

� Δt
0 ρu′′dt = 0).

We substitute the averaged flow parameters (2.168) in the equations of motion
of Sect. 2.5. Substituting the averaged flow parameters into the continuity equation
(Eq. 2.110) and subsequently time averaging the equation yields:

∂ρ̄

∂t
+ ∂

∂x j

(
ρ̄ũ j

) = 0 j = 1, 2, 3 (2.169)

To develop the Reynolds momentum equation in mass-weighed variables, the
flow parameters defined in (2.168) are substituted in Eq. (2.127). After averaging
and elimination of terms that are zero, the complete Reynolds momentum equation
in mass-weighted variables becomes:
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∂

∂t

(
ρ̄ũ j

)+ ∂

∂x j

(
ρ̄ũi ũ j

) = − ∂ p̄

∂xi
+ ∂

∂x j

(
τ̄ij − ρu′′

i u′′
j

)
i, j = 1, 2, 3 (2.170)

where, neglecting viscosity fluctuations, τ̄ij is as follows:

τ̄ij = μ

[(
∂ũi

∂xi
+ ∂ũ j

∂x j

)
− 2

3
δij

∂ũk

∂xk

]
+ μ

[(
∂u′′

i

∂xi
+ ∂u′′

j

∂x j

)
− 2

3
δij

∂u′′
k

∂xk

]

(2.171)
A brief look at the expression reveals a more complex expression than the original,
non-averaged expression of Eq. (2.125). In practice, however, the viscous terms with
doubly primed fluctuations are likely candidates for being neglected based on their
magnitude compared to the mass-averaged variables. By substituting the Reynolds-
averaged continuity equation (2.169) in the Reynolds-averaged momentum equation
(2.170) and employing the substantial derivative yields the following [19]:

ρ̄
Dũi

Dt
= − ∂ p̄

∂xi
+ ∂

(
τ̄ij
)

lam

∂x j
+ ∂

(
τ̄ij
)

turb

∂x j
(2.172)

Particle acceleration
of mean motion

Mean pressure
gradients

Laminar-like
stress gradient

for the mean motion

Apparent stress gradients
due to transport of momentum by

turbulent fluctuations and
deformations attributed to fluctuations

Note that the Reynolds-averaged momentum equation (above) has the same form
as the original Navier-Stokes equation, Eq. (2.127), with the addition of a turbulent
stress term. Explicitly, the laminar and turbulent stress terms are given by:

(
τ̄ij
)

lam = μ

[(
∂ũi

∂xi
+ ∂ũ j

∂x j

)
− 2

3
δij

∂ũk

∂xk

]
(2.173)

(
τ̄ij
)

turb = −ρu′′
i u′′

j + μ

[(
∂u′′

i

∂xi
+ ∂u′′

j

∂x j

)
− 2

3
δij

∂u′′
k

∂xk

]
(2.174)

To arrive at the Reynolds form of the energy equation, the mass-weighted variables
(2.168) are substituted in (2.140). Subsequent elimination of terms that go to zero
yields the following Reynolds energy equation in mass-weighed variables:

∂

∂t

(
ρ̄H̃

)
+ ∂

∂x j

(
ρ̄ũ j H̃ + ρu′′

j H ′′
j − k

∂T̄

∂x j

)
= ∂ p̄

∂t
+ ∂

∂x j

(
ũi τ̃ij + u′′

i τij

)
(2.175)

A similar analysis can be performed on the energy equation. Apart from the lam-
inar and turbulent stress terms a laminar and turbulent heat flux term can be
defined. The new apparent turbulent stresses and flux terms that appear in both the
Reynolds-averaged momentum and energy equation should be treated as new vari-
ables. Therefore, additional equations are required that make assumptions regarding
the apparent turbulent quantities and the mean flow variables.
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2.6.3 Turbulence Modeling: The k-Epsilon Model

The fluctuation terms that are introduced in the Reynolds-averaged equations of
motion need to be related to the average flow values. Several models have been
introduced that couple those two parameters. Ranging from simple algebraic models
to more rigorous models, each of these approaches attempts to describe the equivalent
behavior of an essentially random flow. The only way to verify whether a turbulence
model is effective, is by experimental verification. This section presents one of the
many turbulence models that are used in practice, the k-epsilon model.

The Reynolds stress in incompressible flow amounts to −ρu′
i u

′
j , see (2.163). For

compressible flow this is −ρu′′
i u′′

j when the molecular viscosity (the second term of
(2.174)) is neglected. The Boussinesq assumption relates the Reynolds stress to the
mean-flow parameters according to:

− ρu′
i u

′
j = 2μT Sij − 2

3
δij

(
μT

∂ūk

∂xk
+ ρk̄

)
(2.176)

where μT is the turbulent viscosity, k̄ is the kinetic energy of turbulence: k̄ = u′
i u

′
i/2,

and the rate of the mean strain tensor Sij given by:

Sij = 1

2

(
∂ūi

∂x j
+ ∂ū j

∂xi

)
(2.177)

To predict the value of the turbulent kinetic energy, k̄, a transport equation is
developed from the Reynolds-averaged Navier-Stokes equations. Using Boussinesq’s
assumption for eddy viscosity (2.176) this transport equation reads (in substantial-
derivative form):

ρ
Dk̄

Dt
= ∂

∂x j

[(
μ + μT

Prk

)
∂k̄

∂x j

]
+
(

2μT Sij − 2

3
ρk̄δij

)
∂ui

∂x j
− CDρ

k̄3/2

l
(2.178)

A derivation of this equation is beyond the scope of this text but can be found in
texts on turbulence modeling (i.e. [22] or [6]). In (2.178) the Prandtl number for
turbulent kinetic energy (Prk) appears as a closure constant (Prk = 1.0). CD is the
dissipation coefficient and has been experimentally shown to be CD = 0.164. The
term on the LHS of this equation represents the particle rate of increase of k̄. The
terms on the RHS of Eq. (2.178) represent the diffusion rate, the generation rate
and the dissipation rate of k̄, respectively. Here l is a characteristic length, referred
to as the mixing length. The mixing length can be interpreted as follows: a fluid
parcel will conserve its properties for a characteristic length, l, before mixingwith the
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surrounding fluid. Prandtl [14] described that the mixing length “may be considered
as the diameter of the masses of fluid moving as a whole in each individual case; or
again, as the distance traversed by a mass of this type before it becomes blended in
with neighboring masses…”

The dissipation rate of k̄ which is embedded in the last term in (2.178) is often
represented with ε: ε = CD

k̄3/2

l . Similar to the analysis of k̄, a transport equation
developed from the Reynolds-averaged Navier-Stokes equations can be established
for ε:

ρ
Dε

Dt
= ∂

∂x j

[(
μ + μT

Prε

)
∂ε

∂x j

]
+ Cε1

ε

k̄

(
2μT Sij − 2

3
ρk̄δij

)
∂ui

∂x j
− Cε2ρ

ε2

k̄
(2.179)

The term on the LHS of Eq. (2.179) represents the particle rate of increase in dissipa-
tion, while the terms on the RHS represent the diffusion, generation and dissipation
rates of ε. In terms of k̄ and ε the terms in Eqs. (2.178) and (2.179) are as follows:

l = CD
k̄3/2

ε
μT = Cμρ

k̄2

ε
Cμ = C4/3

D (2.180)

By appropriate substitution, the k̄-ε model becomes a set of two coupled partial
differential equations with two unknowns: k̄ and ε.

Complementary to closure of the Reynolds-averaged momentum equations, the
k̄-ε closure for the heat flux terms in the energy equation assumes the following
apparent turbulent conductivity:

ρu′
j H ′ = ρcpx ′

j T
′ = −kT

∂T

∂x j
(2.181)

Analogous to the laminar heat conduction coefficient, k, the turbulent heat conductive
heat coefficient is defined according to:

kT = cpμT

PrT
(2.182)

where PrT is the turbulent Prandtl number that is most commonly takes on the value
of PrT = 0.9. The combination of (2.181) and (2.182) form the closure for the
energy equation. That is, if the last bracketed term in (2.175) is neglected because it
is small compared to the other terms within the square brackets. Table 2.1 displays
the constants that are to be used in the k̄-ε model.

Table 2.1 Model constants
for k̄-ε model [19]

Cμ Cε1 Cε2 Prk Prε PrT

0.09 1.44 1.92 1.0 1.3 0.9
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The k-epsilon method that has been presented is tailored towards closure of the
incompressible Reynolds-averaged equations of motion. Similar models have been
developed for the closure of the Reynolds-averaged, mass-weighted equations of
motions that were developed in Sect. 2.6.2. The closure of the compressible Reynolds
equations is beyond the scope of this text. Even though in transonic aerodynamics the
flow is compressible, the incompressible turbulence models have been proven to give
good predictions up to Mach 5 [17]. The k̄-ε method for compressible flow is treated
extensively by Launder and Spalding [12] and Mohammadi and Prionneau [13].

2.7 Equations of Motion for Inviscid Flows

The Reynolds-averaged Navier-Stokes equations can be further simplified if heat
transfer and viscous effects are neglected. This is often done to reduce the number
of independent variables. If cast into a numerical scheme to solve these equations,
the equations of motion for inviscid flow can be solved must faster. This can be
advantageous if the computational domain is large (i.e. the problem is solved on a
grid with a large number of nodes) and/or when the analysis has to be frequently
repeated (e.g. as part of a design optimization loop). In this section we discuss two
reduced forms of the equations of motion: the Euler equations (Sect. 2.7.1) and the
potential flow equation (Sect. 2.7.2).

2.7.1 Euler Equations

In this section a reduced model is presented of the complete Navier-Stoke equations.
By neglecting the heat-transfer terms as well as the viscous terms, these equations
describe the flow of an inviscid, non-conducting fluid. The resulting set of equations
is referred to as the Euler equations, although strictly speaking, the name of Euler
should only be attached to the inviscid momentum equation. In addition to the afore-
mentioned assumptions, it is also assumed that there is no external heat transfer, such
that the ∂(ρQ)/∂t term in the energy equation can be dropped.

The continuity equation is neither dependent on the viscosity nor on the heat-
transfer coefficient. The continuity equation (2.113) remains therefore unchanged in
the inviscid case:

Dρ

Dt
+ ρ(∇ · V ) = 0 (2.113)

When the viscous terms in the momentum equation (2.127) are neglected, the fol-
lowing equations result:

ρ
DV
Dt

= −∇ p (2.183)
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Neglecting the viscous and heat-transfer terms in the energy equation (2.140) results
in the following:

ρ
De

Dt
+ p(∇ · V ) = 0 (2.184)

Alternatively, this equation can be written in terms of enthalpy, h, by modifying
(2.141):

ρ
Dh

Dt
= Dp

Dt
(2.185)

Equations (2.113), (2.183), and (2.184) are generally known as the Euler equations.
The compressible Euler equations can be written in conservation form according
to (2.152). However, the vector representation is now simpler than for the full NS
equations:

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
Et

⎤
⎥⎥⎥⎥⎦ E =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

(Et + p)u

⎤
⎥⎥⎥⎥⎦ F =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv + p
ρv2 + p

ρvw
(Et + p)v

⎤
⎥⎥⎥⎥⎦ G =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
(Et + p)w

⎤
⎥⎥⎥⎥⎦

(2.186)

It is of interest to take a closer look at the momentum equations (2.183). Because
of the cleaner representation of the momentum equations we can say something
about the application of the Euler equations in transonic flow. From kinematics, the
acceleration of a fluid particle, DV/Dt , can be expressed as:

DV
Dt

= ∂V

∂t
+ ∇

(
V 2

2

)
− V × ζ (2.187)

where ζ = ∇ × V is the vorticity of the flow. Equation (2.187) is referred to as
Lagrange’s acceleration formula. It can be substituted in (2.183) to give an alternate
form of the Euler equations:

∂V
∂t

+ ∇
(

V 2

2

)
− V × ζ = −1

ρ
∇ p (2.188)

The vorticity can be related to the specific entropy, s, according to Crocco’s equation:

∂V
∂t

− V × ζ = T ∇s − ∇
(

V 2

2

)
(2.189)

This equation can be derived from the first and second laws of thermodynamics,
(2.83) and (2.94), respectively. Note that the LHS of (2.189) is also present in the
Lagrange form of the momentum equation (2.188). A physical interpretation of
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Crocco’s theorem shows that whenever an enthalpy or entropy gradient is present
in the flow, it must be rotational. This is particularly important for transonic flow,
since a shockwave often terminates a supersonic portion. From the second law of
thermodynamics it is known that there is an entropy discontinuity across the shock-
wave, which means the flow cannot be assumed irrotational [2]. This is an important
finding because it shows that the Euler equations are the simplest formulation of the
equations of motion which still capture the effect of the shock wave on the flow.

In the 1980s the airfoil analysis code ISES was developed by MIT (currently
further developed into the multi-element airfoil code MSES). This program solves
the two-dimensional Euler equations interacting with the boundary layer equations.
As is shown in Fig. 2.11 and from [8], the prediction of the pressure distribution
[C p = (p − p∞)/ 1

2ρ∞V 2∞] and the two-dimensional drag polar is quite accurate.
The sharp pressure gradient on the upper surface at approximately 60 % of the chord
length, indicates the presence of a shock wave. If we focus on the airfoil below the
pressure distribution, we see that the streamline that separates the inviscid flow from
the viscous boundary layer has been drawn. Up to the shock wave this line virtually
coincides with the airfoil contour, indicating a very thin boundary layer. However,
due to the sharp adverse pressure gradient, the boundary layer thickness grows and
the streamline is displaced upwards. The flow outside the boundary layer therefore
‘sees’ a different body than the airfoil. This added thickness (known as displacement
thickness) is important to accurately determine the experimentally obtained pressure
distribution. Note that in this figure the pressure distributions are shown for the same
lift coefficient (cl = 0.743), while the angles of attack are slightly different. In
predicting the pressure distribution over an airfoil it has been shown that this often
gives a better correlation to experimental results. Producing these results can be done
in under a minute of computation time, making this a suitable tool for airfoil design.

To stress the importance of including a boundary layer in the calculations we also
show results for flow about a transonic airfoil without the inclusion of the boundary
layer. In Fig. 2.12 we see that the pressure distribution has been predicted using

Fig. 2.11 Comparison
between predicted and
measured pressure
distribution about the
RAE2822 airfoil (from
[7, 8], respectively)
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Fig. 2.12 Comparison between predicted and measured pressure distribution at constant angle of
attack (left) and constant lift coefficient (right) (after Ref. [5])

the same angle of attack as in the experiment (left) and at the same lift coefficient
as in the experiment (right). None of these predictions gives an accurate result.
This shows that we must be extremely careful when assessing the results from a
purely inviscid solver. Given the short computation time of viscous-inviscid solvers
such as MSES, it is therefore advised to include the presence of the boundary layer
when predicting the pressure distribution over a body. In particular at low-Reynolds
numbers and transonic Mach numbers this is an important prerequisite for obtaining
reliable results.

2.7.2 Potential Flow Equation

Even though the previous analysis showed that the vorticity in transonic flow cannot
be neglected, there is a body of literature that is based on steady, inviscid, irrotational
flow with no body forces [10]. It can be shown that for weak normal shocks (M1 ≈ 1)
the entropy change is relatively small. Based on this finding the approximation can be
made that transonic flow is irrotational and that that therefore the curl of the velocity
field (see Sect. 2.3.4) is zero:

∇ × V = 0 (2.190)

In potential flow we pose that there exists a scalar potential function, Φ, which’
partial derivatives equal the velocity components:

∇Φ = V (2.191)
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In Cartesian coordinates, we align the x-axis with the freestream velocity, V∞, and
represent the local velocity components, u, v and w by

u = ∂Φ

∂x
= Φx (2.192a)

v = ∂Φ

∂y
= Φy (2.192b)

w = ∂Φ

∂z
= Φz (2.192c)

If we assume the flow to be steady, the continuity equation (2.113) reduces to:

∇ · (ρV ) = 0 (2.193)

In Cartesian coordinates this results in the following expression:

∂

∂x
(ρΦx ) + ∂

∂y
(ρΦy) + ∂

∂z
(ρΦz) = 0 (2.194)

Note in this equation that the partials ρx , ρy , and ρz appear. We will find an expression
for each of these density derivatives by considering the potential form of the steady,
inviscid, irrotational momentum equation.

If we assume that the flow is steady (i.e. ∂/∂t = 0) the Lagrange form of the
momentum equation (2.188) can be reduced to:

∇
(

V 2

2

)
= −1

ρ
∇ p (2.195)

In differential form we can rewrite (2.195) as follows:

dp = −ρd

(
V 2

2

)
= −ρd

(
Φ2

x + Φ2
y + Φ2

z

2

)
(2.196)

In isentropic flow the speed of sound (a) is given by (2.106). We can substitute the
expression for the speed of sound (2.106) in (2.196) and obtain:

dρ = − ρ

a2 d

(
Φ2

x + Φ2
y + Φ2

z

2

)
(2.197)

If we return to ∇ρ and consider each of the partials ρx , ρy , and ρz we obtain:

ρx = − ρ

a2

∂

∂x

(
Φ2

x + Φ2
y + Φ2

z

2

)
(2.198a)
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ρy = − ρ

a2

∂

∂y

(
Φ2

x + Φ2
y + Φ2

z

2

)
(2.198b)

ρz = − ρ

a2

∂

∂z

(
Φ2

x + Φ2
y + Φ2

z

2

)
(2.198c)

If we substitute (2.198a–2.198c) in (2.194) we obtain the full potential equation for
steady, inviscid, irrotational and isentropic flow:

[
1 − Φ2

x

a2

]
Φxx +

[
1 − Φ2

y

a2

]
Φyy +

[
1 − Φ2

z

a2

]
Φzz

− 2
ΦxΦyΦxy

a2 − 2
ΦxΦzΦxz

a2 − 2
ΦyΦzΦyz

a2 = 0 (2.199)

In the late 1980s and early 1990s the analysis code Matrics-V was developed by
the National Aerospace Laboratory of the Netherlands to estimate the aerodynamic
forces on wing-fuselage combinations (three-dimensional) in high-subsonic condi-
tions. This code relies on a viscous-inviscid formulation, where the full potential
equation (2.199) is numerically solved in the inviscid domain outside the boundary
layer. In the boundary layer the boundary layer equations are numerically solved.
Subsequently, an interaction algorithm is used to match the flow properties at the
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Fig. 2.13 Comparison of predicted and measured pressure distributions about two sections of the
Fokker 100 wing (from [20]). Note that this is a two-dimensional representation of results that were
obtained from three-dimensional calculations (Matrics-V)
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edge of the boundary layer to the inviscid flow outside the boundary layer [20]. This
analysis code was specifically developed to investigate the flow about wing-body
combinations. The objective was to develop a code that could produce results in less
than week of computation time. Due to the increase in computational power, this has
now (2015) reduced to less than five minutes on a personal computer, including the
generation of the mesh. In Fig. 2.13 a comparison between the predicted and mea-
sured pressure distribution at two spanwise wing stations of the Fokker 100 can be
seen. We see that the prediction of the pressure distribution is in excellent agreement
with the measured data at the same angle of attack. The accurate prediction in com-
bination with the short computation time make this type of code a viable candidate
in the early stages of preliminary wing design.

2.8 Summary

In the preceding sections we have briefly reviewed the fundamental tools that the
reader needs to be familiar with in order to properly understand the material that
is presented in the subsequent chapters. We have done a very basic review of par-
tial differential equations, their solution methods, and their classification. We have
also re-acquainted ourselves with the mathematical operations in vector algebra. We
have explained the fundamental laws of thermodynamics: the state law that relates
the thermodynamic state variables to each other, the first law that balances work,
heat and internal energy, and the second law that tells us the direction in which a
thermodynamic process takes place. Finally, we have applied all this knowledge in
defining the equations of motion of fluid flow. When expanded we have shown that
the equations of motion are a coupled system of five partial differential equations
[(2.110), (2.127) (3 components), and (2.139)] with five unknowns: ρ, e, and the three
velocity components, u, v, w. These equations are often referred to as the Navier-
Stokes equations and they can be cast in different forms: integral form, substantial-
derivative form, and conservative-derivative form. Because solving these equations
requires vast computational resources we have presented derivatives of these equa-
tions. In the Reynolds-averaged Navier-Stokes equations the flow is decomposed into
a mean flow with fluctuating terms. A turbulence model can then be used to relate
those fluctuating terms to the mean flow parameters. A further simplification of the
Navier-Stokes equations is obtained through the assumption of having an inviscid
and non-conducting flow. The resulting equations are often referred to as the Euler
equations and they can provide an accurate prediction of the flow about a body, in
particular when they are used in parallel with the boundary-layer equations. If also
the assumption is made that the flow is irrotational, the Euler equations reduce to
the full-potential equation. Solving the three-dimensional full-potential equation in
combination with the boundary-layer equations can still produce accurate predictions
of transonic flow about bodies, as long as the shock strength is relatively weak.
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Problems

Review of Partial Differential Equations

2.1 Show that (2.7) results from (2.5) by using the chain rule and substituting ξ =
x + ct and η = x − ct .

2.2 Demonstrate that u(x, t) = sin
(

π(x+ct)
L

)
+ sin

(
π(x−ct)

L

)
is a solution to the

following problem:

utt = c2uxx

u(x, 0) = 2 sin
(πx

L

)

u(0, t) = u(L , t) = 0

2.3 Consider a string of steel wire, measuring 1 m in length and weighing 0.5 N. It
is stretched by a force of 100 N. What is the corresponding speed c of the transverse
waves?

2.4 Consider the wave equation (2.5) with the following boundary conditions:
u(0, t) = ux (L , t) = 0 .

(a) Use separation of variables technique to calculate the eigenvalues, eigenfunctions
and general solution.

(b) Now, assume L = π and c = 1. With initial conditions u(x, 0) = 0 and
ut (x, 0) = 1, calculate the solution for u(x, t).

(c) With initial conditions u(x, 0) = sin(x/2) and ut (x, 0) = 2 sin(x/2) −
3 sin(5x/2) calculate the solution for u(x, t).

2.5 Demonstrate that (2.22) can be derived from ut = 0 by using the chain rule and
the transformation (2.6).

2.6 Show that the Jacobian for the change in characteristic coordinates (2.6)
equals 2c.

2.7 For the same problem as in Example 2.2, calculate the solution for:

(a) x < t , t > 0, x + t < 0, and check utt − uxx = 1.
(b) x > 1, t < x < t + 1, and check utt − uxx = 0.

2.8 Show that (2.43) is indeed a solution of (2.41).

2.9 Demonstrate that from (2.49) we can obtain (2.50) by using the method outlined
in the text.

2.10 Using the separation-of-variables technique find a solution to the following
problem:

ut = kuxx (0 � x � L)
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u(0, t) = 0 (t > 0)

ux (L , t) = 0 (t > 0)

u(x, 0) = f (x) (0 < x < L)

2.11 For Problem 2.10, provide calculate Dn in closed form for L = π and
f (x) = x .

2.12 Consider the homogenous heat equation, c2uxx − ut = 0. Determine whether
this equation is hyperbolic, parabolic, or elliptic.

2.13 Consider the potential equation on p. 74 (2.199). When M > 1, determine the
characteristic coordinates and write the equation in its canonical form.

Review of Vector Algebra

2.14 Let a = (−2, 5, − 9) and b = (4, 2, 7). Calculate the following:

(a) a + b
(b) a · b
(c) a × b
(d) b × a
(e) a ⊗ b

2.15 For the following velocity vector fields, find the potential function if it exists.
Check that (2.66) holds in each case. φ(x, y, z): (a) (x, 2y, 3z), (b) (yz, xz, xy),
(c) (yex , ex , 1), (d) (2y, 5x, 0).

2.16 For the vector fields of Problem 2.15, calculate the divergence.

2.17 For the vector fields of Problem 2.15, calculate the curl. Compare your results
to those of Problem 2.15. What do you notice?

Review of Thermodynamics

2.18 With cp as given in Fig. 2.8 and R as given in the text, calculate cv, γ, e, and
h for air at an altitude of 10 km under ISA conditions.

2.19 For the values given in Problem 2.18 also calculate the viscosity of the air, μ
and the thermal conductivity, k.

2.20 Calculate the change in specific internal energy, Δe, for air that is being com-
pressed isentropically. Assume that the initial temperature is 288 K and the final
temperature, due to compression, 340 K.

2.21 Show that (2.97) and (2.98) can be derived by combining the first and second
law of thermodynamics, (2.83) and (2.94), respectively.
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2.22 Derive the following relations by starting from (2.97) and (2.98), respectively.

ds = cv
dT

T
+ R

dv

v
(2.200)

ds = cp
dT

T
− R

dp

p
(2.201)

2.23 Demonstrate that (2.103) can be derived by combining (2.101) and (2.102) and
applying the substitutions as described in the text.

Equations of Fluid Motion

2.24 Use the divergence theorem (2.69) to prove that (2.109) and (2.110) are math-
ematically identical.

2.25 Consider the LHS of (2.122). Show that by using (2.110) this can be simplified
to ρDV

Dt .

2.26 Consider the energy equation (2.139).

(a) By employing the continuity equation (2.110) show that the following is true:

ρ
D(Et/ρ)

Dt
= ∂Et

∂t
+ ∇ · Et V

(b) Demonstrate that also the following relation is true:

ρ
D(Et/ρ)

Dt
= ρ

De

Dt
+ ρ

DV
Dt

V

(c) Use (2.122) to show that the second term in the equation above can be written as:

ρ
DV
Dt

V = ρ f · V − ∇ p · V + (∇ · τ ij) · V

(d) Using the three equations above, demonstrate that (2.140) is identical to (2.139).

2.27 Consider the energy equation in substantial-derivative form (2.140).

(a) Show, by employing the continuity equation, that the following identity is true:

ρ
De

Dt
+ p(∇ · V ) = ρ

Dh

Dt
− Dp

Dt

(b) Explicitly write out the dissipation function, Φ, in terms of the velocity com-
ponents in three-dimensional Cartesian coordinates. Use the assumption that
μ′ = 2

3μ.

2.28 Write out (2.110), (2.149), and (2.150) in three-dimensional Cartesian coordi-
nates and demonstrate that you can write this as (2.152).
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2.29 Consider the system of Eq. (2.152).

(a) Demonstrate that pressure, p, can be expressed as a function of the the state
variables ρ and e and the ratio of specific heats, γ by using (2.72) and (2.76).

(b) Show that the heat flow, q, can expressed in the state variable e. Assume that k
is constant.

(c) Repeat the previous exercise, but now assume that k is variable and related to
temperature according to (2.81) and (2.82). Is this a conservative differential
equation?
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