
Chapter 5
Putting Davidson’s Semantics to Work to Solve
Frege’s Paradox on Concept and Object

Philippe de Rouilhan

Abstract What Frege’s paradox on concept and object (FP) consists in and the man-
ner in which Frege coped with it (the ladder strategy) are briefly reviewed (§ 5.1).
An idea for solving FP inspired by Husserl’s semantics is presented; it results in
failure, for it leads to a version of Russell’s paradox, the usual solution of which
implies something like a resurgence of FP (§ 5.2). A generalized version of Frege’s
paradox (GFP) and an idea for solving it inspired by Davidson’s semantics are pre-
sented; three theorems about recursive definability of truth are put forward and used
to determine whether this idea can be successfully applied to certain putative forms
of the Language of Science (§ 5.3). Proofs of these three theorems, in particular
of the third, which answers a question that does not seem to have drawn logicians’
attention, are then given (§ 5.4). Finally, it turns out that there is a tension between
the proposed solution of GFP and the idea of Language of Science assumed so far
in this paper, and a way of solving it is proposed (§ 5.5).

5.1 Frege’s Paradox on Concept and Object (FP) and How
Frege Put up with it

5.1.1. We all remember Frege’s famous letter to Husserl dated May 24, 1891 (Frege
1976, Brief XIX/1; 1980, letter VII/1), in which the former objects to the latter’s
semantic analysis of concept-words and sums up the main points of his own new
semantics in a chart, reproduced below.1

The ideas presented in this article were first presented at international colloquia held in Paris and
Mexico City in 2003, then in Paris and Nancy, France in 2011. I am particularly grateful to Serge
Bozon, as usual. Thank you to Max Fernandez and Arnaud Plagnol for their comments on one or
another of the earlier formulations of my ideas. Thank you also to Claire O. Hill, who translated
the umpteenth, not quite definitive, French version of this paper into English.

1 The capital letters that I have bestowed upon the translation of certain terms in this paper (“Proper
Name” for “Eigenname”, “Concept-word” for “Begriffswort”, “Sense” for “Sinn”, “Meaning”
for “Bedeutung”, “Truth-Value” for “Warheitswert”, “Object” for “Gegenstand”, “Begriff ” for
“Concept”, etc.) are only there to remind readers that the terms are to be understood in the technical
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Sentence Proper Name Concept-word

↓ ↓ ↓
Sense of the Sentence Sense Sense

(Thought) of the Proper Name of the Concept-word

↓ ↓ ↓
Meaning Meaning Meaning

of the Sentence of the Proper Name of the Concept-word
(Truth-value) (Object) (Concept)a

aAt the bottom to the right of this box of the chart, Frege added: “→ Object that falls under the
Concept”, thus showing where he parted ways with Husserl with regard to Concept-words. For the
former, the relation of Sense to Object was mediated by a Concept, while for the second, let it be
said in Fregean terms, Senses referred directly to Object, which usurped the place of the Concept

The different columns may be understood as corresponding to different categories
of entity. To give an idea of the difference between the different categories, Frege
resorted, from that time on, to the metaphor of the completeness vs. the incomplete-
ness, or the saturatedness vs. the unsaturatedness, of the entities under consideration,
which paradoxically led him to consider Sentences as Proper Names, and the first
column as a particular instance of the second. In the letter to Husserl, however, Frege
did not feel the need to take that step expressly and, in my own presentation, I shall
not do so either.

To each line corresponds one of the three levels—Expression, Sense, Meaning—
of Fregean semantics. Frege defends the thesis of what I shall call the categorial
parallelism of the three levels: Just as a Proper Name (a complete Expression) may
complement a Concept-word (an incomplete Expression) to combine with it to make
a Sentence (a complete Expression), so the Sense (complete) of a Proper Name
may complement the Sense (incomplete) of a Concept-word to combine with it to
make a Thought (a complete Sense), and so again an Object (a complete Meaning)
may complement a Concept (an incomplete Meaning) to combine with it to make a
Truth-Value (sic, a complete Meaning).

Thus, Concepts are not Objects, for example, the Concept horse is not an Object.
In his article “Concept and Object” (Frege 1892b), Frege sought to refute Benno
Kerry’s objection. Kerry used the example: “The concept horse2 is easily attained”.
In this sentence, he argued, the words “the concept horse” designate an object.
Therefore, the concept horse is an object, some objects are concepts, and concepts
are objects.

and more or less deviant, depending on the case, sense that Frege gave to the original. “Eigenname”,
in Frege’s sense, is what is usually called a “singular term”; “Bedeutung” and “Begriff ” are to be
understood in a deviant sense, of which the chart provides an initial idea.
2 Actually Kerry put quotation-marks around “horse” instead of italicizing it, as I do in Frege’s wake
to the same end.
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Frege’s reaction to Kerry’s objection is extremely surprising. On the one hand, he
gives in. Yes, he acknowledges, the words “the Concept horse” designate an Object,
and the Concept horse is that Object. But on the other hand, he resists and persists to
the point of paradox, what I call “Frege’s paradox” (FP). If Concepts are not Objects
and the Concept horse is an Object, then the Concept horse is not a Concept. This
paradox is the price to be paid for holding on to the controversial thesis. Frege pays
the price and holds on to the thesis that Concepts are not Objects.

Long ago, I proposed an in-depth analysis of Frege’s paradox (Rouilhan 1988),
but here (§§ 5.1–5.2) I shall restrict myself to showing readers the shortest path
leading from FP to what I shall call the “generalized Frege’s paradox” (GFP).

5.1.2. The situation, from a pragmatic point of view, is the following, according
to Frege. By using the words “the Concept horse”, one does not succeed in speaking
about what they would like to speak, namely about a Concept, which is an incomplete
entity; they only speak about a complete entity, more precisely, about an Object. Or,
to speak from now on in a more suggestive manner than Frege did, when one uses
the Proper Name “the Concept horse” to speak of the Concept horse itself (in itself,
as it is in itself ), they do not succeed in speaking about it, because they are trying
to speak about it as they would speak of an Object, and they are indeed speaking
only of an Object. In the following chart, which partially sums up the situation, the
schematic Expression “(ξ)” is replaceable by a Concept-word, and the letter “ξ”
but marks the empty place of that Concept-word, liable to be occupied by a Proper
Name in order to obtain a Sentence. The Expression “the Concept horse” must be
construed as a variant of the Expression “the Concept horse (ξ)”, of schema “the
Concept (ξ)”.

Expression “(ξ)” “The Concept (ξ)”

Sense Sense Sense

Meaning (ξ) The Concept (ξ)
(it is the Concept (ξ) itself and it is (it is not the Concept (ξ) itself;

not an Object) it is an Object)

If one uses the Sentence “the Concept horse is not an Object” to illustrate the thesis
that Concepts are not Objects, they do not say what they wanted to say, because
what they are saying is literally false. And if one just states the succession of words
“horse is not an Object” as if it were a Sentence, that does not work either, because
the Concept-word “horse” is an incomplete Expression that cannot complete the
incomplete Expression “is not an Object” so as to form a Sentence. The alleged
Sentence “horse is not an Object” is the result of a category mistake and does not
mean anything at all. In both cases, what one wanted to say was that the Concept
horse itself is not an Object, but that, strictly speaking, cannot be said. It can only
be suggested. And the same is so for Frege’s thesis. If he uses the words “Concepts
are not Objects” in the sense of “for every f, the Concept f is not an Object” (where
“f ” is a variable of the category of Concept-words), he is saying something that is
literally false; and if it is in the sense of “for every f, f is not an Object”, he is making
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a category mistake and is not saying anything at all. Of course, what he wanted to say
was that the Concepts themselves are not Objects, but that, strictly speaking, cannot
be said. It can only be suggested.

Thus, instead of seeing in the paradox of the Concept horse the symptom of an error
to be spotted and corrected, Frege simply takes note of it and holds on obstinately to
the thesis of the categorial difference between Concepts (in themselves) and Objects,
which is at the origin of the paradox and implies its own ineffability. Towards the
end of “Über Begriff und Gegenstand” (Frege 1892b), he lucidly makes the point:

I admit that there is a quite peculiar obstacle in the way of an understanding with my reader.
By a kind of necessity of language, my expressions, taken literally, sometimes miss my
thought; I mention an Object, when what I intend is a Concept. I fully realize that in such
cases I was relying upon a reader who would be ready to meet me half-way—who does not
begrudge me a pinch of salt. (p. 196).

Frege’s strategy for overcoming the obstacle is not essentially different from the
one generally attributed, rightly or wrongly3, to the Wittgenstein of the Tractatus,
the ladder strategy. If one cannot say what they would like to say (for example that
Concepts themselves are not Objects), at least they can suggest it (as I am used to
saying) and count on the good will of the reader or the interlocutor (as Frege more
or less said), at least they can show it (as Wittgenstein would say). One can do so by
temporarily diverting language from its normal function as a means of expressing
Sense in order to use it as a means for suggesting or showing what, strictly speaking,
is an inexpressible non-Sense. When this unconventional usage of language has had
its effect, when it has made it possible to see what needed to be seen, one will be able
to go back to conventional usage and remain there. To say this in terms akin to those
of the early Wittgenstein: what cannot be said, can be shown to those who have not
seen it yet by setting up the ladder of non-Sense for them to climb. Once they have
seen what needed to be seen, they will have to throw away the ladder and they will
finally see the world aright.

5.2 An Idea for Solving FP Inspired by Husserl’s Semantics
and its Failure

5.2.1. A simple way of putting an end, at least temporarily, to the dispute with Kerry
and of solving FP would have been to admit that Kerry was right and to acknowl-
edge with him that Concepts (themselves) are definitely Objects. In fact, Frege’s best

3 In an article of 1991 (Conant 1991), James Conant argued that, despite appearances, the Wittgen-
stein of the Tractatus (1921) did not take up Frege’s lesson. I shall retain only the following from
Conant’s long, subtle analysis: the ladder strategy in the Tractatus is not designed to make people
see what cannot be said and can only be shown, for what someone who has climbed the ladder of
non-sense is supposed to see is that there is nothing to see. The first colloquium mentioned above
(n1), at which Conant was present, focused precisely on this article.
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adversary in such a dispute would have been Husserl, Husserl of Logische Unter-
suchungen (Husserl 1900–1901)4, so close to Frege in many respects. Like Frege,
he distinguished between three levels: expression, meaning (Bedeutung) and object
(Gegenstand) or objectivity (Gegenstandlichkeit)5. Like Frege, he recognized the
categorial parallelism of the first two levels (those of expression and of meaning),
which he explained in terms of dependence and independence. However, unlike
Frege, he denied, with reasons to back it up, the existence of any parallelism be-
tween these first two levels and the third (that of objectivity, see n5). Evoking the
idea that “categorematic expressions represent independent objects, and syncate-
gorematic expressions dependent objects”, Husserl objects that the expression of a
dependent moment immediately provides a decisive counter-example (Investigation
IV, § 8). For, Husserl thinks, as a common noun, this expression has an independent
meaning, and that in no way keeps it from representing those dependent objects that
are the said dependent moments. Admittedly, as his letter of May 24, 1891 precisely
shows, Frege did not agree with Husserl about the semantics of concept-words.
Husserl could, nonetheless, have made an analogous objection to the Fregean idea
that complete Expressions (for example, Proper Names) Mean complete entities (that
is Objects), and incomplete Expressions (for example, Concept-words), incomplete
entities (in this case, Concepts as they are in themselves). He could have objected
that an Expression of schema “the Concept (ξ)” immediately provides a decisive
counter-example.

This, therefore, is what Frege should have acknowledged, he too, to his own
advantage: that the categorial parallelism of the levels of Expression and of Sense
did not extend to that of Meaning. One can definitely say that a Proper Name and a
Concept-word are the constituents of a Sentence and explain that the Proper Name is
precisely the sort of complement that the Concept-word needs to constitute with it the
unity of the Sentence. One can definitely also say that the Sense of the Proper Name
and the Sense (in itself ) of the Concept-word are constituents of the Thought and
explain that the Proper Sense is precisely the sort of complement that the Conceptual
Sense (in itself, therefore incomplete) needs to constitute with it the unity of the
Thought. But, unless possessed by the demon of analogy, one can certainly not say
that the Object and the Concept (in itself ) are constituents of the Truth-value and
explain that the Object is precisely the sort of complement that the Concept (in itself,
therefore incomplete) needs to constitute with it the unity of the Truth-value. One
can do this no more than, more generally, they can say that an Object and a Function
(in itself ) are constituents of the Value of this Function (in itself ) at this Object
as argument and explain that the Object is precisely the sort of complement that
the Function (in itself, therefore incomplete) needs to constitute with it the unity of
the Value. This is, moreover, what Frege would end up understanding, as seen in his

4 See more specifically Logical Investigation IV (in 1st ed., vol. II, 1901; 2d ed., vol. II.1, 1913).
5 Within the context of his analysis, Husserl used “Gegenstandlichkeit” as a technical term having
a certain extension greater than the ordinary term “Gegenstand”.
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1919 notes for Ludwig Darmstaedter (Frege 1919), where he would write that “[o]ne
cannot say that Sweden is part of the Capital of Sweden”6.

If he had done this, nothing, in the discussion with Kerry, would have kept him
from saying that Concepts (themselves) are Objects, that moreover the same is so for
entities of any category, including those whose incomplete nature would not have
come into question, like for example the Sense (itself ) of a Concept-word, and finally
that one can say everything, that one can talk about everything. And in his famous
letter to Husserl, he would have been able to draw up the following chart7:

Expression “(ξ)” “The Concept (ξ)”

Sense Sense Sense

Meaning The Concept (ξ)
(it is Concept (ξ) itself and it is an Object)

The Fregean critique of the Husserlian semantics of concept-words would not for
all that have lost its raison d’être. It would have only gained in simplicity and in
credibility.

The identity of the Meanings of the two Expressions schematized by “(ξ)”
and “the Concept (ξ)” would not have prevented neither of these Expressions
from playing the role corresponding to its category in the formation of a Sentence
or prevented its Sense from playing the role corresponding to its category in the
formation of a Thought. Nothing would have changed in this regard with respect
to Frege. There would just no longer have been a way back enabling one to find
again the category of an Expression and that of its Sense—and thus the role of that
Expression and its Sense in the formation of a Sentence and of a Thought—from the
category of its Meaning.8

5.2.2. The solution to one paradox may hide another, and the solution of this other
paradox may involve the return of the same.

6 Frege was already aware of the difficulty when he wrote, as early as 1892: “One might also say that
judgments (Urteilen) are distinctions of parts (Teilen) within Truth-values. [. . .] However, I have
here used the word ‘part’ in a special sense. [. . .] This way of speaking can certainly be attacked
[. . .]. A special term would need to be invented” (Frege 1892a, pp. 35–36, 1984, p. 165).
7 Without neglecting to add to it at the bottom to the right of the chart: “→Object falling under the
Concept” (compare with the chart of Sect. 5.1.1).
8 For this corrected version of Frege’s semantics under consideration, I am prepared to describe
the role of a Proper Name, (schematized by) “�”, and that of a Concept-word, (schematized by)
“(ξ)”, in the Sentence (schematized by) “(�)” nearly as C. Wright did in 1998 (Wright 1998,
cf. p. 260) (this is not a quotation): the Sense of “(ξ)” so relates it to the Concept (ξ) that it may
be used in concatenation with “�” in order to ascribe the Concept (ξ) to �; and the Sense of “�”
so relates it to � that it may be used in concatenation with “(ξ)” in order to subsume � under the
Concept (ξ). Indeed, the solution of FP inspired by Husserl outlined in Sect. 5.2.1 could be so
presented as to be clearly, essentially equivalent to Wright’s solution. Unfortunately, as we shall see
in Sect. 5.2.2, the theory of Concepts upon which these solutions are based falls prey to a certain
version of Russell’s paradox. More will then be said about Wright.
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For Frege, Concepts obeyed an extensional criterion of identity. Now, if all Con-
cepts are Objects, then nothing any longer safeguards them from a certain version of
Russell’s paradox. It suffices to choose for “(ξ)” the Concept-word:

∃f (ξ = the Concept f (ζ )& ¬f (ξ))

(where “f ” is a variable of the category of Concept-words) and, using “w(ξ)” as an
abbreviation of this Concept-word, to ask the fateful question whether, yes or no,

w(the Concept w(ξ)).

If yes, then

∃f (the Concept w(ξ) = the Concept f (ζ )& ¬f (the Concept w(ξ))),

whence, readily,

¬w(the Concept w(ξ));

and if no, then

∀f (the Concept w(ξ) = the Concept f (ζ ) ⇒ f (the Concept w(ξ))),

whence, readily,

w(the Concept w(ξ)).

From each answer follows the opposite answer.9

One is thus led to acknowledge that all Concepts in themselves are not Objects,
that there are exceptions to the principle that all are. There are, perhaps, Concepts
that in themselves are Objects, for example—let us admit it—, the Concept horse, but
there are surely ones that are not, for example the Concept w(ξ). The Concept w(ξ)
itself is not an Object. One cannot argue any longer, as Frege did, that the Concept
horse is an Object and thus not a Concept, for the very same entity now is both an
Object and a Concept. Nor can one argue that the Concept w(ξ) is an Object and thus
not a Concept, for an Object may now be a Concept. Let me dwell on that point.

If, in spite of the version of Russell’s paradox presented above, the Proper Name
“the Concept w(ξ)” is to have a Meaning, as Frege required of all expressions of the

9 This paradox was notably pointed out by T. Parsons in 1986 (Parsons 1986, pp. 454–455). Wright
mentions it at the end of his article, but deals with it in a somewhat offhand manner: “This, like
the recent resurgence of tuberculosis in the Western world, is a disappointment. But I do not think
it is really an objection—too many of the family of paradoxes that exercised Russell survive the
imposition of Frege’s hierarchy to allow us to think that it gets to the root of that particular one”
(Wright 1998, p. 263). Wright may be right in the second part of the last sentence, but not in the
first one. The first lesson to be learnt from the paradox in question (see the next paragraph in the
text) immediately gives rise to a sort of resurgence of FP itself. So the paradox in question is an
objection.
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Language of Science, this can only be an Object arbitrarily chosen to play this part,
an Object ad hoc. As to whether the use of the Proper Name “the Concept w(ξ)” does
or does not give rise to FP, I mean to the paradox according to which the Concept
w(ξ) is not a Concept (as it is in itself ), this depends on the Object chosen to play the
part of the Meaning of the Proper Name “the Concept w(ξ)”. If it is an Object that
is not a Concept (as it is in itself ), like the Moon—let us admit it—, for example,
that is chosen to play this part, then we are entitled to claim that the Concept w(ξ)
is not a Concept (as it is in itself ), and thus FP is back. But if it is an Object like the
Concept horse—which is nothing other than the Concept horse itself, as admitted at
the beginning of the preceding paragraph—that is chosen for this part, then there is
no reason to claim that the Concept w(ξ) is not a Concept (as it is in itself ).

However, whether the use of the Proper Name “the Concept w(ξ)” gives rise or
not to FP (in the sense specified above), the situation is still paradoxical. Since the
Concept w(ξ) is an Object and the Concept w(ξ) itself is not one, the Concept w(ξ)
is not the Concept w(ξ) itself, or, as Frege would have simply said, the Concept
w(ξ) is not the Concept w(ξ). By using the Proper Name “the Concept w(ξ)”, we do
not therefore succeed in speaking of the Concept w(ξ) itself, we are speaking of an
Object, and even of an Object that has nothing to do with the Concept w(ξ) itself at
all. There are things that one would like to say, but cannot, etc.

The semantics of Concept-words (expressions schematized by “(ξ)”) and Proper
Names obtained by prefixing them with the operator of nominalization “the Concept”
(and thus schematized by “the Concept (ξ)”) is summed up below in terms of
whether the Concept (ξ) itself is or is not an Object.

1st case: the Concept (ξ) itself is an Object (the case, for example—as we have
admitted—, of the Concept horse)

Expression “(ξ)” “The Concept (ξ)”

Sense Sense Sense

Meaning The Concept (ξ)
(this is the Concept (ξ) itself and it is an Object)

2nd case: the Concept (ξ) itself is not an Object (the case, for example, of the
Concept w(ξ)

Expression “(ξ)” “The Concept (ξ)”

Sense Sense Sense

Meaning (ξ) the Concept (ξ)
(this is the Concept (ξ) itself

and it is not an Object)
(this is not the Concept (ξ) itself,

it is an ad hoc Object)
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5.3 Generalized Frege’s Paradox (GFP); an Idea for Solving it
Inspired by Davidson’s Semantics; Putting this Idea to the
Test

5.3.1. What was at stake for Frege in his paradox was the possibility, for an author
writing for readers, or a teacher speaking to students, of explicating the content of
the Expressions of the Language of Science. The teacher was supposed to explain
that there were different categories of Meaning, notably that of Concept and that
of Object, that these categories were pairwise disjoint and that they were not to be
confused, in particular, that no Concept was an Object any more than any Object
was a Concept, etc. However, it transpired that, in saying this kind of thing, the
teacher was ineluctably failing to say what he or she wanted to say, that what he or
she wanted to say involved a category mistake and was therefore impossible to say.

The fact that the categories of Meaning were pairwise disjoint in character was
not essential to FP. Let me here leave Frege and his terminology, but for the phrase
“Language of Science”. Generally, for a language taken to be the Language of
Science to be open to a paradox of the same sort as FP, it suffices for this language
to contain different categories of reference, or denotation, are not all included in a
single category. In terms of variables: it suffices for this language to contain variables
of different types whose domains of variation are not all included in a single domain
of variation. The same reasons, mutatis mutandis, that hold in Frege’s case lead
to the same conclusion, namely, that it is impossible to explicate the content of
the expressions of such a language without making a category mistake (relative to
this supposed Language of Science; the resurgence of FP in Sect. 5.2.2 is a good
example). This is what I call generalized Frege’s paradox (GFP).

More precisely, the category mistake would have the form of surreptitious intro-
duction of a new category of variable irreducible to those available in the supposed
Language of Science. Let us call it the Mistake. If the impossibility in question were
established, there would be no other solution for solving GFP than to require of any
language taken to be the Language of Science that its variables range over domains
that are all included in one of them (as it happens in particular and in the simplest
way when all the variables range over one and the same domain). Then it would
only remain to ascertain that complying with this requirement made it effectively
possible to explicate, without making the Mistake, what expressions of such a lan-
guage mean. But has the impossibility in question been established? Is it true that,
when the requirement in question has not been met, a teacher wishing to explicate
the content of the expressions of the language under consideration to a student is
doomed to make the Mistake? I used to believe this, but I have not believed it for a
long time (see Rouilhan 1988, pp. 186–187, and 2002, pp. 198–199). It is possible
to solve GFP without having to shoulder the requirement in question.

My solution will be grounded on the basic idea of Davidson’s semantics (Davidson
1984). Explicating what the expressions of a language, L, mean is, as Davidson
puts it, (not to translate, but) to interpret them. The interpretation of component
expressions of statement (closed sentence) of L is determined by their contribution
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to the interpretation of the statements of L in which they occur. As for the statements
of L, according to an idea Frege himself had, which was taken up successively by
Wittgenstein, Carnap and Davidson, their interpretation is determined by their truth-
conditions. Davidson more specifically requires that those truth-conditions be stated
in the form of what he calls a recursive theory of truth à la Tarski for L. This is
precisely the basic idea of Davidson’s semantics, and the only one I want to exploit
to solve GFP.

Whence the following idea of solution to GFP for a language, L, taken to be the
Language of Science: Either it is possible to construct a recursive theory of truth à
la Tarski for L without making the Mistake, and GFP is solved; or this is impossible
and GFP is an indirect proof that L cannot be the Language of Science, and again, at
least indirectly, GFP is solved. In the latter case, the impression of paradox is liable
to linger until further, direct reasons are found for not mistaking L for the Language
of Science.

5.3.2. Now, let me speak about Tarski and truth. In his famous 1935 paper (Wb) on
the concept of truth (Tarski 1935), Tarski reasoned within the framework, taken to be
universal, of the extensional, simple theory of types, and examined the possibility of
explicitly defining the concept of truth for object-languages grounded on this theory,
that is to say, obtained from a segment (possibly the totality) of its language by
adding finitely many constants of certain categories. We all remember the results
obtained: (1) Tarski proposed a method for explicitly defining truth for languages of
finite order through an explicit definition of the relation of satisfaction, itself obtained
by a conversion of a recursive definition of this relation; (2) He demonstrated the
impossibility of an explicit definition of truth for languages of infinite order; (3)
He indicated that the nowadays so-called minimal axiomatic theory of truth for an
infinite-order language, whose axioms are the so-called T-sentences for that language,
is too weak for one to be able to prove the semantic version of the fundamental laws
of logic there, and that the same is so of the extensions obtained from this theory
by adding one or another of these laws as new axiom. [In his post-scriptum of 1936
(Tarski 1935), Tarski was to take into consideration languages other than those to
which he had limited himself up to that point, in particular to languages grounded
on some set theory or other of Zermelo and his successors.]

The path that led Tarski to an explicit definition of truth for a language, L, when
such a definition is possible, goes by way of the conversion of a recursive definition
of satisfaction for L into an explicit definition. If one skips this step to go directly
from a recursive definition of satisfaction to the explicit definition of truth in terms of
satisfaction, the two definitions together constitute what I am calling here a recursive
definition of truth à la Tarski for L. In Wb, whenever Tarski constructed an explicit
definition of truth for L, a recursive definition of truth was available, but Tarski
did not turn his attention to this point. If he did not do it, it is because he was
seeking an explicit definition and that, if a recursive definition of truth for L is
possible at all within the chosen framework, that of the extensional, simple theory
of types, it can always be converted into an explicit definition. If L is of finite order,
a recursive definition is quite possible and so is its conversion, why therefore would
he have turned his attention to? And if L is of infinite order, a recursive definition
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is impossible. Otherwise, by conversion, an explicit definition would be possible
as well, which is impossible [see above, result (2)]. Therefore, the question did not
come up.

Yet, recursive definitions have their own advantages, an advantage over minimal
theories, of course, whose essential weakness they do not share, but indeed an
advantage also over explicit definitions. Tarski’s negative theorem mentioned above
is known to hold for many languages. Sometimes, the corresponding positive theorem
for recursive definition of truth holds, but sometimes not.

In the following examples (theorems A-C), ZFC is Zermelo-Fraenkel set theory
with axiom of choice [and without excluding individuals (in the sense of Urele-
mente)]. I note SSTTα the initial (maybe total) segment of order α≤ω of the monadic,
extensional, simple theory of types (with axiom of infinite and axiom of choice).
SSTT= SSTTω is the simplest version of the simple theory of types, to which, as
is well known, STT, the full, extensional, simple theory of types is reducible thanks
to, e.g., Kuratowski’s definition of ordered pairs. Let us say that a language, L, is
an admissible extension of the language of ZFC (SSTTα, respectively) if, and only
if, L is obtained from the latter language by adding finitely many constants each
one of which is either a singular term or a predicate or functor of such a category
that its addition is possible without adding new variables. If L is such an extension
and the same is so of a certain extension, M, of L, let us say, naturally, that M is
an admissible extension of L. ZFC and SSTTα for α≥ 4 (α must be≥ 4 for SSTTα

to contain Russell arithmetic) are of interest for us insofar as, prima facie (but see
below), the Language of Science could plausibly be given the form of an admissible
extension of any one of them. We know from Tarski that, if a language, L, is an
admissible extension of the language of ZFC (SSTTα with α≥ 4, respectively), then
an explicit definition of truth for L is impossible in any admissible extension of L.
On the other hand, the corresponding results concerning recursive definitions of truth
are the following.

Theorem A.—Let L be an admissible extension of the language of ZFC. A
recursive definition of truth for L is possible in some admissible extension of L.

This positive result is well known and very easy to prove, see Sect. 5.4.1.
Theorem B.—Let L be an admissible extension of the language of SSTTω. A

recursive definition of truth for L is impossible in any admissible extension of L.
This negative result is also well known, and hardly less easy to prove than theorem

A, see Sect. 5.4.2.
Theorem C.—Let L be an admissible extension of the language of SSTTn with

n natural number ≥4. A recursive definition of truth for L is possible in some
admissible extension of L.

This result is the positive answer to a question that does not seem to have attracted
logicians’ attention. It is not that easy to prove, see the proof I propose in Sect. 5.4.3.

5.3.3 In a more general way, Tarski supposed a translation of an object-language,
L, into a metalanguage, M, to be given, and sought the conditions of possibility of an
explicit definition of truth for L in M relative to this translation—retrospectively, one
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can say that, in Wb, it went without saying that the translation was homographic10.
He could just as well have taken interest in the less restrictive conditions of possi-
bility of a recursive definition of truth for L in M relative to this translation (comp.
above, § 5.3.2). Davidson starts, inversely, from a language, L, whose meaning
may be unknown to us, and asks for what form an interpretation of L in our used
language, M, supposed to give us this meaning should take. His answer is that such
an interpretation should take the form of a recursive theory of truth à la Tarski for
L in M.

Actually, if such a recursive theory of truth is available, then it is possible recur-
sively to define a (unique up to alphabetical change of bound variables) translation
of L into M by following the clauses of the recursive theory of truth under consider-
ation. Say that this translation canonically corresponds to that theory of truth, or that
it is the canonical translation corresponding to that theory. The idea for a solution
of GFP envisioned in the present paper can now be described in the following two
ways. To solve this paradox for a language, L, taken to be the Language of Science,
it would suffice to show that it is possible, without making the Mistake, to construct
a recursive theory of truth à la Tarski for L in some extension, M, of L, such that
the corresponding canonical translation is homographic—or, equivalently, to con-
struct a recursive definition of truth à la Tarski, corresponding to the homographic
translation, for L in some extension, M, of L. If the latter construction is worked
out for an admissible extension, L, of ZFC (SSTTα, with α≥ 4, respectively) in an
admissible extension, M, of L, then the italicized condition above, relative to the
Mistake, is obviously fulfilled.

It thus follows from theorems A-C that GFP is solvable in this way for any admis-
sible extension of the language of ZFC (th. A) or SSTTn for n≥ 4 (th. C)—but not
for any admissible extension of the language of SSTTω (th. B). I am not prepared
here to enter into a discussion about the very notion of Language of Science, but I
think that there are some direct reasons, independent of GFP, why such infinite-order
languages as admissible extensions of the language of SSTTω could not play the part
of the Language of Science (see above, § 5.3.1, last paragraph).

5.4 Proofs of Theorems About Recursive Definition of Truth
Stated in the Preceding Section11

Let me rest content with giving proof of theorem A (B, C respectively) for a simple,
exemplary, admissible extension of the language of ZFC (SSTTω, SSTTn for n= 6
respectively), for it will become self-evident that the same method of proof could
have been applied to any other explicitly given admissible extension of ZFC (SSTTω,
SSTTn for n≥ 4 respectively).

10 It goes without saying that I am here borrowing this qualifier not from geometry, but from
linguistics.
11 The non-mathematically-minded reader may skip this section and go directly to Sect. 5.5.
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5.4.1 Proof of Theorem A

The intended universe of ZFC is the class of what I shall call objects, viz. individuals
(Urelemente) and sets. In one possible version, the signs of the language of ZFC
are the variables, viz., the terms of a certain sequence (indexed by the set of non-
null natural numbers) of objects, v = (vk)k≥ 1; the constants “¬”, “∨”, “∃”, “=”,
“Set” (monadic predicate of sethood) and “∈” (dyadic predicate of membership);
punctuation marks “(” and “)”. Let L be the admissible extension obtained from that
language by adding, for example, the constant “a” of the category of singular terms,
and the constant “P” of the category of triadic predicates. The rules of formation are
the usual ones. In the definitions below, “x”, “y”, and “z” are (primitive) variables of
L, and non-primitive symbols are contextually definable: “σ”and “τ” are sequence
(of objects) variables; “t1”, “t2 ”, and “t3”, term (of L) variables; “A” and “B”,
(open or closed) sentence (of L) variables; “i”, “j” and “k”, non-null natural number
variables; “�” and “�”, Quine’s quasi-quotation marks; “⇔ij”, the operator of formal
equivalence relative to variables “i” and “j”; etc.

We shall begin with an explicit definition of a predicate of relative denotation,
“DenL”, for L. Then we shall recursively define “SatL” in terms of the eliminable
“DenL”. Finally, we shall explicitly define “TrL” in terms of “SatL”. Thus, “TrL”
will have been recursively defined in an admissible extension obtained from L by
adding constants of the elementary syntax of L and the primitive predicate “SatL”.
There is no need to worry about coding the objects of this syntax. They are simply
supposed to be themselves already there, somewhere in the intended universe of ZFC.

Denotation of a Term Relative to a Sequence The terms of a language are variables
and constants of the same category as some variables; those of L are vk for k ≥ 1
and “a”.

x DenL y, z ⇔df x and z are a term, t, and a sequence, σ = (σk)k≥ 1, respectively,
such that [(t is of the form vk & σk = y) ∨ (t= “a” & a= y)].

Thus, vk DenL y, σ ⇔k σk = y and “a” DenL y, σ ⇔ a= y.

Satisfaction of a Sentence by a Sequence A first clause insures that the dyadic relation
SatL can only hold between a sequence of objects and a sentence of L. Four clauses
then fix the conditions of satisfaction of an atomic sentence of L by a sequence:

• σ SatL �t1 = t2� ⇔ ∃x∃y(t1 DenL x, σ & t2 DenL y, σ & x = y);
• σ SatL �Sett1� ⇔ ∃x(t1 DenL x, σ & Setx);
• σ SatL �t1 ∈ t2� ⇔ ∃x∃y (t1 DenL x, σ & t2 DenL y, σ & x ∈ y);
• σ SatL �Pt1t2t3� ⇔ ∃x∃y∃z(t1 DenL x, σ & t2 DenL y, σ & t3 DenL z, σ & Pxyz).

Three clauses finally fix the conditions of satisfaction of a non-atomic sentence by σ

according to the satisfaction of shorter sentences by this same sequence or by others,
τ = (τk)k≥ 1, connected to it:

• σ SatL �(¬A)� ⇔ ¬(σ SatL A);
• σ SatL �( A ∨ B)� ⇔ (σ SatL A ∨ σ SatL B);
• σ SatL �∃vi (A)� ⇔i ∃τ((j �= i⇒jτj = σj ) & τ SatL A).
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Truth of a Statement It is easily shown that a statement (closed sentence) of L is
satisfied by any sequence or by none, whence the definition sought for the truth
predicate, “TrL”, for L in an admissible extension of L:

TrLA ⇔df A is a statement of L & ∀σ(σ SatL A).

5.4.2 Proof of Theorem B

The intended universe of SSTTω is composed of individuals and classes correspond-
ing to a simply infinite hierarchy of types (or orders), viz., the type (or order) 1 for
individuals, 2 for classes of individuals, 3 for classes of classes of individuals, etc.
In one possible version, the signs of the language of SSTTω are, but for differences
to be presently explained, the same as those of the language of ZFC. Variables are
typed: for any explicitly given i≥ 1, the variables of order i, ranging over the domain
of the entities of order i, are the terms of a certain sequence, or, more precisely, K-
sequence, noted vK

(i) = (vK
(i)

k)k≥ 1, where a K-sequence is a class of K-ordered pairs
of a certain sort (see below), and a K-ordered pair (of entities of the same order)
is an ordered pair as coded, or defined, by Kuratowski. “Set” and “∈” have been
eliminated, and “=” maintained as corresponding to identity between individuals.12

Natural numbers are assumed to be defined à la Russell and, except for any duly
marked exception, to be of the lowest possible order, viz., 3, their definition is of
order 4, and so is Russell arithmetic. Now, let Lω be the admissible extension of the
language of SSTTω obtained by adding, for example, the constants “a” of the cate-
gory of singular terms, denoting the individual a, and “P” of the category of dyadic
predicates whose first argument values are entities of order 3 and second argument
values entities of order 5. Further notions and notations are progressively introduced
when needed.

It is impossible to construct a recursive definition of truth for Lω in any admissible
extension of Lω, for such a definition would be convertible in this extension into
an explicit definition of truth for Lω, which since Tarski we know is impossible.
However it is easy to find a method for recursively defining truth for any explicitly
given, finite-order, initial segment of Lω, in some admissible extension of Lω.

Let us present this method by means of an example, by constructing a recursive
definition of truth for the initial fragment, L6, of Lω obtained by eliminating all the

12 It is well known that “= ” is definable in the language of SSTTω in terms of other primitives, but
the same is not so for the language of any explicitly given, finite, initial segment, SSTTn, of SSTTω.
Whence my maintaining of “= ” in the language of SSTTω, for the sake of the overall simplicity
of the present Sect. 5.4. I maintain “= ” as primitive only for individuals, because identity for two
entities of any explicitly given order > 1 is definable in terms of that primitive.
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variables of order >6. (This exercise will also prove useful in the next Sect. 5.4.3.)
But for a few differences, this definition resembles that of Sect. 5.4.1.

Denotation of a Term Relative to six K-sequences of Entities of Order 1, . . . , 6
Respectively The terms of L6 are, for each explicitly given i, vK

(i)
k for i≥ 1, and

“a”. The relation in question, can only hold between a term of L6 of explicitly given
order i such that 1≤ i≤ 6, an entity of order i, and six K-sequences, σK

(1), . . ., σK
(6),

of entities of order 1,. . ., 6 respectively. Indeed, there are six relations at stake here,
which, by abuse of language, I shall uniformly note DenL6 . Noting 〈a, b〉K the K-
ordered pair whose terms are a and b (in this order),13 for the relation DenL6 to hold
between its eight arguments, they must more precisely be as follows:

1. a term, ti , of explicitly given order i such that 1≤ i≤ 6, and so of order 2 as an
entity, if we hold with Tarski that an expression is a certain class of inscriptions
and that inscriptions are individuals;14

2. an entity, yi , of order i if the aforesaid term is of the form vK
(i)

k , and of order 1
if it is “a”;

3. six sequences, σ(1) = (σ(1)
k)k≥ 1, . . . , σ(6) = (σ(6)

k)k≥ 1, of entities of order
1, . . . , 6 respectively, which are classes of K-ordered pairs of certain form, from
which the orders of the K-sequences are computable. See the chart below.

Sequence σ
(1)
K σ

(2)
K σ

(3)
K σ

(4)
K σ

(5)
K σ

(6)
K

Terms
of the sequence

σ
(1)
K k for
k≥ 1

σ
(2)
K k for
k≥ 1

σ
(3)
K k for
k≥ 1

σ
(4)
K k for
k≥ 1

σ
(5)
K k for
k≥ 1

σ
(6)
K k for
k≥ 1

Order
of these terms

1 2 3 4 5 6

Members
of the sequence

〈k,
{{σ

(1)
K k}}〉K

for k≥ 1

〈k,
{σ

(2)
K k}〉K

for k≥ 1

〈k,
σ

(3)
K k〉K

for k≥ 1

〈{k},
σ

(4)
K k〉K for

k≥ 1

〈{{k}},
σ

(5)
K k〉K for

k≥ 1

〈{{{k}}},
σ

(6)
K k〉K for

k≥ 1

Order
of these members

5 5 5 6 7 8

Order
of the sequence

6 6 6 7 8 9

13 In Sect. 5.4.3 other ways of coding, or defining, ordered pairs will be put to work.
14 Tarski’s view in Wb was roughly as follows: inscriptions are concrete individuals with a form and
a size; expressions of a language are equivalence classes of certain inscriptions with respect to the
relation of having the same form and size; some of these expressions are simple, others are complex;
complex ones result from simple ones through a finite process of concatenation, internal to order 2.
For there to be, as needed, infinitely many expressions in the language under consideration, there
should be infinitely many inscriptions. Tarski was perfectly lucid about the formidable problems
surrounding such a requirement (see Tarski 1956 or 1983, p. 174).
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If i = 1, then the relation DenL6 holds between such arguments if, and only if, t1 is
of the form v(1)

K k and σ
(1)
K k = y1, or (t1 = a ∧ a= y1); and if 2≤ i≤ 6, then it holds if,

and only if, ti is of the form vK
(i)

k and σK
(i)

k = yi .
It would be easy, but space-consuming, to give to these considerations, for every

explicitly given i such that 1≤ i≤ 6, the rigorous form of an explicit definition of
“x2 DenL6 yi , z6

1, z6
2, z6

3, z7
4, z8

5, z9
6”, and then to deduce that

vK
(i)

k DenL6 yi , σK
(1), . . ., σK

(6) ⇔k σK
(i)

k = yi ;

“a” DenL6 y1, σK
(1), . . ., σK

(6) ⇔ a = y1.

Satisfaction of a Sentence by six K-sequences of Entities of Order 1, . . . , 6
Respectively A first clause insures that the heptadic relation SatL6 can only hold
between σK

(1), . . ., σK
(6) and a sentence. Twelve (five plus six plus one) clauses then

fix the conditions of satisfaction of an atomic sentence of L6 by σK
(1), . . ., σK

(6):

• for any explicitly given i such that 1 ≤ i ≤ 5:

σK
(1), . . ., σK

(6) SatL6 �ti+1
ti� ⇔ ∃xi∃xi+1

(ti DenL6 xi ,σK
(1), . . ., σK

(6) &

ti+1 DenL6 xi+1, σK
(1), . . ., σK

(6) & xi+1xi);

• for any explicitly given i such that 1 ≤ i ≤ 6:

σK
(1), . . ., σK

(6) SatL6 �ti
1 = ti

2� ⇔ ∃xi∃yi(ti
1 DenL6 xi , σK

(1), . . ., σK
(6) &

ti
2 DenL6 yi , σK

(1), . . ., σK
(6) & xi = yi);

• σK
(1), . . ., σK

(6) SatL6 �Pt3t5� ⇔ ∃x3∃x5(t3 DenL6 x3, σK
(1), . . ., σK

(6) &
t5 DenL6 x5, σK

(1), . . ., σK
(6) & Px3x5).

Eight (one plus one plus six) clauses then fix the conditions of satisfaction of a non-
atomic sentence by σK

(1), . . ., σK
(6) according to the satisfaction of shorter sentences

by these same sequences or by others connected with them; τ
(1)
K = (τ(1)

K k)k≥ 1, . . .,
τ

(6)
K = (τ(6)

K k)k≥ 1 are supposed to answer to the same constraints as σ
(1)
K , . . . , σ

(6)
K

respectively.

• σK
(1), . . ., σK

(6) SatL6 �(¬A)� ⇔ ¬(σK
(1), . . ., σK

(6) SatL6 A);
• σK

(1), . . ., σK
(6) SatL6 �(A ∨ B)� ⇔

(σK
(1), . . ., σK

(6) SatL6 A ∨ σK
(1), . . ., σK

(6) SatL6 B);
• σK

(1), . . ., σK
(6) SatL6 �∃vK

(1)
k(A)�⇔k ∃τK

(1)((j �= k ⇒j τK
(1)

j = σK
(1)

j )
& τK

(1), σK
(2), σK

(3), σK
(4), σK

(5), σK
(6) SatL6 A);

• σK
(1), . . ., σK

(6) SatL6 �∃vK
(2)

k(A)�⇔k ∃τK
(2)((j �= k ⇒j τK

(2)
j = σK

(2)
j )

& σK
(1), τK

(2), σK
(3), σK

(4), σK
(5), σK

(6) SatL6 A);
........................................................................................

• σK
(1), . . ., σK

(6) SatL6 �∃vK
(6)

k(A)� ⇔k ∃τK
(6)((j �= k ⇒j τK

(6)
j = σK

(6)
j )

& σK
(1), σK

(2), σK
(3), σK

(4), σK
(5), τK

(6) SatL6 A).
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Truth of a Sentence Here is the definition of truth predicate in terms of satisfaction
for L6 sought after in the admissible extension of L6 obtained by adding constants
of the elementary syntax of L6 and the predicate “SatL6 ”:

TrL6A⇔df(A is a statement of L6 & ∀σK
(1) . . .∀σK

(6)(σK
(1), . . ., σK

(6)SatL6 A)).

The method illustrated is obviously applicable for any explicitly given, finite-
order, initial fragment of Lω in order recursively to define a truth predicate for it in
some admissible extension of Lω. All these fragments form a naturally increasing
sequence, whose limit, in a sense, is their union, and extensions of truth predicates
for these fragments do so as well. The union of these fragments is Lω, and the union
of these extensions is, from some (if any) transcendent point of view, the class of
true statements of Lω, but this class cannot be the extension of any predicate of any
admissible extension of Lω. What is possible for the terms of a sequence need not
be so for the limit. I repeat: A recursive definition of truth for Lω itself is impossible
in any admissible extension of Lω.

5.4.3 Proof of Theorem C

SSTTn is the initial segment of SSTTω of order n for any explicitly given n≥ 4,
and Ln is the corresponding initial segment of Lω as in Sect. 5.4.2. In Sect. 5.4.3.1,
we prove that a recursive definition of truth is possible for n≥ 4 in the admissible
extension obtained from Ln by adding primitive pairing functors, primitive constants
of elementary syntax of Ln, and primitive predicates of satisfaction for Ln. The proof
is based on a stratagem devised by Quine and Boolos (henceforth QB’s trick). In
Sect. 5.4.3.2, we try to prove that one can dispense with adding primitive pairing
functors. It turns out that, with the best definitions of ordered pair available and QB’s
trick again, one obtains the result hoped for only for n≥ 5, not for n= 4. The latter
case would merit further study, something remaining to be undertaken.

5.4.3.1. The K-sequences σ
(1)
K , . . ., σ

(6)
K (and the same holds for τ

(1)
K , . . ., τ

(6)
K )

involved in the recursive definition of truth for L6 given in Sect. 5.4.2 are of order
6, 6, 6, 7, 8, 9 respectively, so that the last three fall outside the intended universe of
L6. Note that Kuratowski’s definition of ordered pair, according to which an ordered
pair is two orders higher than its terms, is to a large extent responsible for such
an overflow. Let us abandon Kuratowski’s definition and in place of it, for every
explicitly given i such that 1≤ i≤ 6, use a primitive pairing functor,15 say (by abuse
of language, as if there were only one functor instead of six) “C”, that can be attached

15 Bourbaki did it, mutatis mutandis, in the first two editions, dated 1954 and 1960, of his fascicule
containing the chapter on set theory, see Bourbaki 1954, chap. 2, § 1, n◦ 1 and § 2, n◦1, but
abandoned it in the third edition, dated 1966, and naturally in the one volume edition of book I,
dated 1970. Curiously, the English translation of book I, dated 1968, goes back to the French, first
edition of this fascicule instead of the second one.
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to two terms, ti
1, ti

2, of order i to form a term of the same order, � Cti
1ti

2�, or rather,
more suggestively, �〈ti

1, ti
2〉C�, and such that

〈
xi , yi

2

〉
C =

〈
ui , vi

〉
C ⇒ (xi = ui & yi = vi).

The K-sequences σ
(1)
K , . . ., σ

(6)
K can now be replaced by C-sequences, say σ

(1)
C , . . .,

σ
(6)

C , of order 4, 4, 4, 5, 6, 7 respectively, and only the last one falls outside the
intended universe of L6.

It is possible to rid ourselves of this last C-sequence σ
(6)

C by the means of QB’s
trick.16 Generally speaking, and using an outdated terminology dating back to Euler,
the gist of QB’s trick consists in coding a single-valued function, f, whose value at
every argument, x, is a class, fx, by the multiple-valued function whose values at x
are the members of fx. More specifically, here, the C-sequence σ

(6)
C can be coded by

the relation, R, holding exactly between any natural number k≥ 1 and each element
of σ

(6)
C k , this relation being itself coded by the class, �6, of ordered pairs of the

form 〈{{k}}, x5〉C such that Rkx5. The sequence σ
(6)

C , of order 7, is thus coded by
the class �6, of order 6, of the 〈{{k}}, x5〉C such that σ

(6)
C k

x5. So, for any j and

any x5, σ
(6)

C k
x5 if, and only if, �6 〈{{k}}, x5〉C; whence the two lemmas that will

be used below (in the second one, T6 is supposed to code τ
(6)

C as �6 does σ
(6)

C ):

Lemma 1. σC
(6)

k = x6 ⇔k

(
x6x5⇔x5�6

〈{{k}} , x5
〉
C

)
;

Lemma 2. τC
(6)

k = σ
(6)

C k ⇔k

(
T6

〈{{k}} , x5
〉
C ⇔x5�6

〈{{k}} , x5
〉
C

)
.

But what about the K-sequence vK
(i) for any explicitly given i such that 1≤ i≤ 6?

“vK
(i)” is not a variable, but a (syntactic) constant, so that it is not the order of vK

(i),
but that of its members, that matters. The terms of vK

(i), viz., variables of order i, are
entities of order 2, thus its members are of order 5 (see the chart of Sect. 5.4.2), and
there is no problem for them to be present in the intended universe of L6, nor would
there be any problem for Ln, for any explicitly given n≥ 5, with the K-sequences
vK

(i), for any explicitly given i such that 1≤ i≤ n. However, there would be a problem
for L4 with the K-sequences vK

(i), for any explicitly given i such that 1≤ i≤ 4. For
the sake of uniformity, I shall replace the K-sequences vK

(i) of variables of L6 by the
C-sequences of the same terms whose members are of order 3.

Now let me, as briefly as possible, present the recursive definition of truth sought
for, which does not commit one to anything outside the intended universe of L6.

Relative Denotation The explicitly definable relation DenL6 can only hold between
a term of L6, an entity of the same order as this term, five C-sequences, σ

(1)
C , . . .,

σ
(5)

C , and a class, �6, of ordered pairs of the form 〈{{k}}, x5〉C; and it is such that,
for any explicitly given i such that 1≤ i≤ 5,

16 Quine (1952) and Boolos (1985) used it to construct a recursive definition of truth for the lan-
guages of ML and ZF2 respectively, in the extension obtained from that language by adding a
predicate of satisfaction.
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vC
(i)

k DenL6 xi , σC
(1), . . ., σC

(5), �6⇔kσC
(i)

k = xi ;

vC
(6)

k DenL6 x6, σC
(1), . . ., σC

(5), �6⇔k

(
x6x5⇔x5�6

〈{{k}}, x5
〉
C

)
;17

“a” DenL6 x1, σC
(1), . . ., σC

(5), �6 ⇔ a = x1.

Satisfaction The first clause stipulates that the relation SatL6 can only take place
between five C-sequences, σ(1), . . ., σ(5), a class, �6, of ordered pairs of the form
〈{{k}}, u〉C , and a sentence of L6. Clauses for atomic sentences:

• for any explicitly given i such that 1≤ i≤ 5:

σC
(1), . . ., σC

(5), �6 SatL6 �ti+1ti� ⇔ ∃xi∃xi+1(ti
1 DenL6 xi , σC

(1), . . ., σC
(5), �6

& ti
2 DenL6 xi+1, σC

(1), . . ., σC
(5), �6 & xi+1xi);

• for any explicitly given i such that 1≤ i≤ 6:

σC
(1), . . ., σC

(5), �6 SatL6 �ti
1ti

2� ⇔ ∃xi∃yi(ti
1 DenL6 xi , σC

(1), . . ., σC
(5), �6

& ti
2DenL6 yi , σC

(1), . . ., σC
(5), �6 & xi = yi);

• σC
(1), . . ., σC

(5), �6 SatL6 �Pt3t5� ⇔ ∃x3∃x5(t3 DenL6 x3, σC
(1), . . ., σC

(5), �6

& t5 DenL6 x5, σC
(1), . . ., σC

(5), �6 & Px3x5).

Clauses for non-atomic sentences:

• σC
(1), . . ., σC

(5), �6 SatL6 �(¬A)� ⇔ ¬(σC
(1), . . ., σC

(5), �6 SatL6 A);
• σC

(1), . . ., σC
(5), �6 SatL6 �(A∨ B)�⇔ (σC

(1),. . ., σC
(5),�6 SatL6 A)
∨ σC

(1),. . .,σC
(5), �6 SatL6 B);

• σC
(1), . . ., σC

(5), �6 SatL6 �∃vC
(1)

k(A)� ⇔k ∃τC
(1)

( (
j �= k ⇒j τC

(1)
j = σC

(1)
j

)

& τC
(1), σC

(2), σC
(3), σC

(4), σC
(5), �6 SatL6 A

)
;

• σC
(1), . . ., σC

(5), �6 SatL6 �∃vC
(2)

k(A)� ⇔k ∃τC
(2)

( (
j �= k ⇒j τC

(2)
j = σC

(2)
j

)

& σC
(1), σC

(2), σC
(3), σC

(4), τC
(5), �6 SatL6 A

)
;

........................................................................................
• σC

(1), . . ., σC
(5), �6 SatL6 �∃vC

(5)
k(A)� ⇔k ∃τC

(5)
((

j �= k ⇒j τC
(5)

j = σC
(5)

j

)

& σC
(1), σC

(2), σC
(3), σC

(4), τC
(5), �6 SatL6 A

)
;

• σC
(1), . . ., σC

(5), �6 SatL6 �∃vC
(6)

k(A)� ⇔k ∃T6
((

j �= k⇒j
(
T6

〈{{j}}, x5
〉
C⇔x5

�6
〈{{j}}, x5

〉
C

))
& σC

(1), . . ., σC
(5), T6 SatL6 A

)
.

Truth TrL
6A⇔df(A is a statement of L6 & ∀σC

(1) . . .∀σC
(5)∀�6

(σC
(1), . . ., �C

(5), �6 SatL6 A)).18

17 See lemma 1.
18 See lemma 2.
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The analysis of the construction of this definition of truth for L6 shows that it is
easily transposable to Ln for any explicitly given n≥ 4.

5.4.3.2. One can do without primitive pairing functors, at least if n≥ 5.
To contain the overflow connected with the use of the notion of K-ordered pair,

for which an ordered pair is two orders higher than its terms, one can, to begin with,
replace this notion by another one that is more economical in terms of order. The first
definition of the ordered pair such that an ordered pair is only one order higher than
its terms is due to Quine and dates back to 1941.19 Let us say that a Q1-ordered pair,
〈a, b〉Q

1
, is, by definition, the class of singletons of member of a and of complements

(with respect to the class of classes of the same order as a and b) of singletons of
member of b. This definition only applies if a and b are classes, entities of order≥ 2.
It is adequate insofar as it implies that two Q1-ordered pairs are identical only if their
homologous terms are.

Subsequently (in his 1945), Quine had an idea for a second definition according to
which an ordered pair is of the same order as its terms.20 Let us say that a Q2-ordered
pair, 〈a, b〉Q2 , with a and b of order m high enough for what follows to have a sense,
is, by definition, #a ∪ �b, where #a results from a by simultaneously replacing in
each of its members every natural number of order m− 2 (if any) by its immediate
successor (so that 0 of order m− 2 does not belong to any of its members), and �y
results from #y by adding 0 of order m− 2 to each of its members. #a and �b, and
therefore also #a ∪ �b, are of order m. The notion of Q2-ordered pair can only apply
to classes, a, b, whose members can contain natural numbers, i.e. to classes of order
≥ 5. This definition is also adequate insofar as it implies that two Q2-ordered pairs
can be equal only if their homologous terms are.21

The following chart gives the easily computable order, whose knowledge is
subsequently useful, of certain entities:

C-sequence σ
(1)

C σ
(2)

C σ
(3)

C σ
(4)

C σ
(5)

C σ
(6)

C

Order of a and b for any member, 〈a, b〉C, of
the C-sequence

3 3 3 4 5 6

Order of the K-sequence of the same entities
as the C-sequence

6 6 6 7 8 9

Order of the Q1-sequence of the same entities
as the C-sequence

5 5 5 6 7 8

Order of the Q2-sequence of the same entities
as the C-sequence

6 7

19 It was first related by Goodman (1941, p. 150, n5) and subsequently by Quine (1945).
20 Quine’s second definition introduces the notion of natural number of any order whatsoever ≥ 3,
but for us this is an exception. Everywhere else in Sect. 5.4 of the present article, natural numbers
are of order 3.
21 The two Quinean definitions are mentioned in Scott and McCarty 2008, but not in Kanamori
2003, in spite of the latter’s being historically much richer than former. Indeed, that is quite in order,
given the respective theoretical aims of those papers.
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It is possible recursively to define truth for L6 by exclusively using defined no-
tions of ordered pair at our disposal. For example, we can use the sequences σ

(1)
Q1

,

σ
(2)

Q1
, σ (3)

Q1
, σ (4)

Q1
, σ (5)

Q2
, σ (6)

Q2
, of orders 5, 5, 5, 6, 6, 7 respectively, and then code

the one sequence of order > 6 by a class of order 6 thanks to QB’s trick.22 (And the
same is so, mutatis mutandis, for Ln for any explicitly given n≥ 6.) In the case of
L5, we can use the sequences σ

(1)
Q1

, σ
(2)

Q1
, σ

(3)
Q1

, σ
(4)

Q1
, σ

(5)
Q2

, of orders 5, 5, 5, 6, 6
respectively, and code the two sequences of order > 5 by classes of order 5 thanks
to QB’s trick.23 On the other hand, the case of L4 is quite different. If we use the
sequence σ

(1)
Q1

, σ
(2)

Q1
, σ

(3)
Q1

, σ
(4)

Q1
, of orders 5, 5, 5, 6 respectively, which is the best

we can do with definitions of ordered pair at our disposal, then we can code these
four sequences of order > 4 by classes of orders 4, 4, 4, 5 respectively, thanks to
QB’s trick, but then how could we get rid of the remaining class of order > 4? I do
not know.

5.5 Tension Existing Between the Proposed Solution of GFP and
the Idea of Language of Science, and How to Solve it

Among the admissible extensions of the language of ZFC and among those of the
language of SSTTn (for n≥ 4) respectable candidates may be found to take on the
role of Language of Science. The idea is not a new one and it is what prompted me
to take an interest in these extensions. I have accepted the basic idea of Davidson’s
semantics, and theorems A and C have provided me with a solution to GFP for all
these extensions and therefore for the candidates in question. However, found among
the admissible extensions of SSTTω are also candidates just as qualified, prima facie,
to play the role of Language of Science, but theorem B has made my solution to GFP
inapplicable to such languages. I have found this to be an indirect reason to deny
those languages the right to play the role of Language of Science. As for direct
reasons that could justify this prohibition, it would fall to a serious analysis of the
very idea of Language of Science to produce them.

22 Noting �6 the sixth-order class coding the seventh-order sequence σ
(6)

Q2
(and likewise with T6

and τQ (6)
2 ), the two lemmas to be proved and applied can be obtained from lemmas 1 and 2 by

replacing “C” by “Q2”.
23 Noting �5

1 and �5
2 the fifth-order classes coding sixth-order sequences σ

(4)
Q1

and σ
(5)

Q2
respec-

tively (and likewise with T5
1 and T5

2, and τ
(4)

Q1
and τ

(5)
Q2

), there are now four lemmas to be proved
and applied:

σQ1
(4)

k = x4 ⇔k (x4x3 ⇔x3 �5
1
〈
k, x3

〉
Q1

);

σQ2
(5)

k = x5 ⇔k (x5x4 ⇔x4 �5
2
〈{k} , x4

〉
Q2

);

τQ1
(4)

k = σQ1
(4)

k ⇔k (T5
1
〈
k, x3

〉
Q1
⇔x3 �5

1
〈
k, x3

〉
Q1);

τQ2
(5)

k = σQ2
(5)

k ⇔k (T5
1
〈{k} , x4

〉
Q2
⇔x4 �6

1
〈{k} , x4

〉
Q2

).
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But another, more profound, difficulty arises once again involving the idea of
Language of Science. If a recursive definition of truth à la Tarski for an admissible
extension of the language of ZFC or of SSTTn (for n≥ 4) taken to be the Language of
Science, is possible in some admissible extension of this language, such a definition is
nevertheless impossible in this language itself. Admittedly, this is but a manifestation
of the Liar paradox and has nothing to do with one or another resurgence of GFP, but
the fact of the matter is that the truth predicate for the so-called Language of Science
under consideration is excluded from this language. Hence, one of two things. Either
the recursive definition of truth à la Tarski—Tarski, the founder of semantics as
science!—for the Language of Science is not a matter of Science, or it is a matter of
Science, but then the language in question is not the Language of Science.

One will no more be able to solve this dilemma than one could solve GFP by
considering the Language of Science, no longer in a static way, as I have done up
to this point, although not without some ulterior motive, but in a dynamic way, as
the moving, unforeseeable multiplicity of historically and geographically situated
languages ever put to work in the enterprise of knowledge. For what is targeted
as Language of Science in the dilemma and was so already in GFP, is obviously a
language corresponding to a unified, stabilized, tame form of knowledge to which
the enterprise of knowledge in general and as such ultimately aspires. It would now
be required that the explication of the content of the expressions of such a language
be possible, not only without making the Mistake relative to that language, but also
without going beyond its limits. Which would not only imply a post-Tarskian solution
to the Liar, but also. . . Also what? A corresponding post-Davidsonian semantics?
There is no doubt that, technically and philosophically, greatest difficulties lay in
store for the enterprise.

Awaiting better times, I am inclined to relax a bit the requirement of unity weighing
upon the idea of Language of Science. In the best of cases, the unity of the so-called
Language of Science would be not that of a single language, but that of an extensible,
finite class of suitable (in a sense to be specified) extensions of a single language. The
latter could be, for example, the language of ZFC or that of SSTTn for some n≥ 4
24, with suitability then specified as admissibility. The dilemma could be solved in
that way, at least in those exemplary cases, and the solution to GFP proposed in the
present article would pass the test unscathed.

24 If this common sub-language and the rules governing the use of its signs were called “logical”,
and and the signs and rules proper to its admissible extensions, “extra-logical”, I could be said to
be proposing to renounce the unity of science dear to the Vienna Circle and even its linguistic unity,
for its logical unity alone. And then one would find back the version of the logical universalism that
I have defended in a recent article (Rouilhan 2012).
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