
Chapter 16
New Constructions of Satisfaction Classes

Ali Enayat and Albert Visser

Abstract We use model-theoretic ideas to present a perspicuous and versatile method
of constructing full satisfaction classes on models of Peano arithmetic. We also
comment on the ramifications of our work on issues related to conservativity and
interpretability.

16.1 Introduction

In our forthcoming paper (Enayat and Visser 2012) we explore satisfaction classes
over a wide variety of ‘base theories’ ranging from weak fragments of arithmetic
to systems of ZF set theory and beyond. This note provides a synopsis of some of
this work in the context of the most popular base theory adopted in investigations of
axiomatic theories of truth, namely PA (Peano Arithmetic).

The notion of a satisfaction class was first introduced and investigated by Kra-
jewski in his 1976 paper (Krajewski 1976). Two noteworthy accomplishments of
(Krajewski 1976) are the following results:

(1) If a countable model of a ‘base theory’ (such as PA) carries at least one full
satisfaction class, then it has a countable elementary extension that carries
continuum-many full satisfaction classes.

(2) Every model of ZF has an elementary extension that carries a full satisfaction
class.

This research was partially supported by a grant from the Descartes Center of Utrecht University,

which supported the first author’s visit to Utrecht to work closely with the second author.

A. Enayat
Department of Philosophy, Linguistics, and Theory of Science,
University of Gothenburg, Box 200, 405 30, Gothenburg, Sweden
e-mail: ali.enayat@gu.se

A. Visser
Department of Philosophy, Bestuursgebouw, Heidelberglaan 6,
584 CS Utrecht, Utrecht, The Netherlands
e-mail: albert.visser@phil.uu.nl

© Springer Science+Business Media Dordrecht 2015 321
T. Achourioti et al. (Eds.), Unifying the Philosophy of Truth, Logic, Epistemology,
and the Unity of Science 36, DOI 10.1007/978-94-017-9673-6_16



322 A. Enayat and A. Visser

The question whether the analogue of (2) holds for PA remained open until the
appearance of the joint work (Kotlarski et al. 1981) of Kotlarski, Krajewski, and
Lachlan in 1981, in which the rather exotic proof-theoretic technology of ‘M-logic’
(an infinitary logical system based on a nonstandard model M), was invented to
construct ‘truth classes’ over countable recursively saturated models of PA.1 This
model-theoretic result can be used to show that the analogue of (2) does indeed
hold for PA, which in turn can be used to show that PAFT is conservative over PA,
where PAFT = PA + “T is a full truth class”. The conservativity of PAFT over PA
has attracted considerable philosophical attention, especially in relation to the grand
debate concerning deflationism.2

In this paper we present a perspicuous method for the construction of full satisfac-
tion classes that is dominantly based on model-theoretic techniques (e.g., expanding
the language, compactness, and elementary chains). As we shall see, our construc-
tion method is quite versatile and can be used to construct many (if not all) of the
results that have hitherto been only possible to establish with the use of M-logic
machinery. Furthermore, the method can also be employed to build new types of full
satisfaction classes (see Sect. 16.6).

We present the necessary preliminaries in Sect. 16.2, and then in Sect. 16.3 we
concentrate on the basic form of our new construction of full satisfaction classes,
where it is used to show that every model of PA has an elementary extension that
carries a full satisfaction class. The versatility of the methodology of Sect. 16.3
is illustrated in Sect. 16.4, in which an appropriate modification of the method is
used to construct truth classes for models of PA. As explained in Sect. 16.5, certain
arithmetizations of our construction can also be employed to establish that (1) PAFT

is interpretable in PA; and (2) the conservativity of PAFT over PA can be verified
in PRA (Primitive Recursive Arithmetic). Finally, in Sect. 16.6 we briefly describe
further applications of the methods introduced in this paper.

Acknowledgments We are grateful to the editors of this volume for their interest in
our work. Thanks also to Volker Halbach, Fredrik Engström, and James Schmerl for
helpful feedback on preliminary drafts of this paper. We are particularly indebted to
Schmerl for catching an inaccuracy in an earlier formulation of Lemma 3.1, and for
his suggestion to distill the results of our paper (Enayat and Visser 2012) in this form
for wider dissemination.

16.2 Preliminaries

Definition 2.1 Throughout this paper PA refers to Peano arithmetic formulated in
a relational language LPA using the logical constants {¬,∨, ∃,=}. Note that in this

1 As explained in Sect. 16.4, a truth class is essentially a well-behaved kind of satisfaction class.
The M-logic methodology was further elaborated to establish refined constructions of full truth
classes by Smith (1984, 1987, 1989), Kaye (1991), and Engström (2002).
2 A recent noteworthy paper in this connection is McGee’s (2003).
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formulation PA has no constant symbols; the arithmetical operations of addition
and multiplication are construed as ternary relations; and conjunction, universal
quantification, and other logical constants are taken as defined notions in the usual
way.

It is well known that PA has more than sufficient expressive machinery to handle
syntactic notions. The following list of LPA-formulae will be useful here.3

• Form(x) is the formula expressing “x is the code of an LPA-formula using
variables {vi : i ∈ N}, and the non-logical symbols available in LPA”.

• Asn(x) is the formula expressing “x is the code of an assignment”, where an
assignment here simply refers to a function whose domain consists of a (finite)
set of variables. We use α and its variants (α′, α0, etc.) to range over assignments.

• y ∈ FV(x) is the formula expressing “Form(x) and y is a free variable of x”.
• y ∈ Dom(α) is the formula expressing “the domain of α includes y”.
• Asn(α, x) is the following formula expressing “α is an assignment for x”:

(Form(x) ∧ Asn(α) ∧ ∀y(y ∈ Dom(α) ↔ y ∈ FV(x)).

• x 	 y is the formula expressing “x is the code of an immediate subformula of
the LPA-formula coded by y”, i.e., x 	 y abbreviates the conjunction of Form(y)
and the following disjunction:

(y = ¬x) ∨ ∃z ((y = x ∨ z) ∨ (y = z ∨ x)) ∨ ∃i (y = ∃vi x).4

The theory PAFS (read as “PA with full satisfaction”) is formulated in an expansion
of the language LPA by adding a new binary predicate S(x, y). The binary/unary
distinction is of course not an essential one since PA has access to a definable pairing
function. However, the binary/unary distinction at the conceptual level marks the
key difference between satisfaction classes and truth classes (the latter are discussed
in Sect. 16.4). PAFS is defined below with the help of a collection of sentences
Tarski(S,F).

When reading the definition below it is helpful to bear in mind that Tarski(S,F)
expresses:

3 All of the formulae in the list can be arranged to be �0-formulae in the sense of Definition 2.4.
4 Technically speaking, this formula should be written so as to distinguish the logical operations of
the meta-langauge with those of the object-language. For example, using Feferman’ s commonly
used ‘dot-convention’, one would write:

(
y = ¬• x

) ∨ ∃z
((

y = x ∨• z
) ∨ (

y = z ∨• x
)) ∨ ∃i(y = ∃•vi x

)
.

However, since the difference between the two kinds of operation will be always clear from the
context, we have opted for the lighter notation.
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F is a subset of Form that is closed under immediate subformulae; each member of S is an
ordered pair of the form (x, α), where x ∈ F and α is an assignment for x; and S satisfies
Tarski’s compositional clauses.

Definition 2.2 PAFS:= PA∪Tarski (S, Form), whereTarski(S,F) is the conjunction
of the universal generalizations of the formulae tarski0(S, F) through tarski4(S, F)
described below, all of which are formulated in LPA ∪ {F(·), S(·, ·)}, where S and F
do not appear in LPA.

In the following formulae R ranges over the relations in LPA; t , t0, t1, · · · are metavariables,
e.g, we write R (t0, · · ·, tn−1) instead of R

(
vi0 , · · ·, vin−1

)
; and α′ ⊇ α abbreviates

(
Dom(α′) ⊇ Dom(α)

) ∧ ∀t ∈ Dom(α) α(t) = α′(t).

• tarski0(S, F) := (F(x) → Form(x)) ∧ (S(x, α) → (F(x) ∧ Asn(α, x)))∧
(y 	 x ∧ F(x) → F(y)).

• tarski1,R(S,F) :=(

F(x) ∧ (x = �R (t0, · · ·, tn−1)�) ∧ Asn(α, x) ∧ ∧

i<n

α(ti) = ai

)

→

(S(x, α) ↔ R (a0, · · ·, an−1)).

• tarski2(S, F) := (F(x) ∧ (x = ¬y) ∧ Asn(α, x)) →
(S(x, α) ↔ ¬S(y, α)).

• tarski3(S, F) := (F(x) ∧ (x = y1 ∨ y2) ∧ Asn(α, x)) →
(S(x, α) ↔ (S (y1, α � FV(y1)) ∨ S (y2, α � FV(y2)))).

• tarski4(S, F) := (F(x) ∧ (x = ∃t y) ∧ Asn(α, x)) →
(
S(x, α) ↔ ∃α′ ⊇ α S(y, α′)

)
.

Definition 2.3 Suppose M |= LPA, F ⊆ M , and S is a binary relation on M .5

(a) S is an F -satisfaction class if (M, S, F ) |= Tarski(S,F).6

(b) Let ωM be the well-founded initial segment of M that is isomorphic to the
ordinal ω. We say that F is the set of standard LPA-formulae of M if

F = FormM ∩ ωM.

5 Throughout the paper we use the convention of using M , M0, N , etc. to denote the universes of
discourse of structures M, M0, N , etc.
6 Note that the closure of F under direct subformulae does not guarantee that F should also contain
‘infinitely deep’ subformulae of a nonstandard formula in F.
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In this case there is a unique F -satisfaction class on M, known as the Tarskian
satisfaction class on M.

(c) S is a full satisfaction class on M if S is an F -satisfaction class for F := FormM
.

This is equivalent to (M, S) |= PAFS
.

Definition 2.4 �0 = �0 = the collection of LPA-formulae all of whose quantifiers
are of the form ∃x < y ϕ or ∀x < y ϕ; �n+1 consists of formulae of the form ∃x0 · · ·
∃xk−1 ϕ, where ϕ ∈ �n; and �n+1 consists of formulae of the form ∀x0 · · · ∀xk−1 ϕ,
where ϕ ∈ �n. Here k ranges over ω, with the understanding that k = 0 corresponds
to an empty block of quantifiers; this convention leads to the pleasant consequence
that �n ⊆ �n+1 and �n ⊆ �n+1 for all n.

Theorem 2.5 (Mostowski (Kaye 1991), (Hájek and Pudlák 1993)) For each nonzero
n < ω there is a binary �n-formula Satn(x, y) such that

PA 
 Tarski(Satn, �n),

where �n is (the arithmetization of) the set of codes of formulae in �n.

16.3 The Basic Construction

In this section we explain the basic methodology of building satisfaction classes
using tools from model theory. The following lemma lies at the heart of the main
result of this section.

Lemma 3.1 Let N0 |= PA, F1 := FormN0 , F0 ⊆ F1, and suppose S0 is an F0-
satisfaction class. Then there is an elementary extension N1 of N0 that carries an
F1-satisfaction class S1 ⊇ S0 and (c, α) ∈ S0 whenever c ∈ F0, α ∈ N0, and
(c, α) ∈ S1.

Proof Let L+
PA(N0) be the language obtained by enriching LPA with constant symbols

for each member of N0, and new unary predicates Uc for each c ∈ FormN0 . It helps
to have in mind that the intended interpretation of Uc is {α ∈ Ac : S1(c, α)}, where
Ac := {α : N1 |= Asn(α, c)}.

We first wish to describe a new set of axioms

Θ := {θc : c ∈ F1}
formulated in L+

PA(N0), where θc stipulates ‘local Tarskian behavior’ for Uc.
If R ∈ LPA and N0 |= c = �R(t0, · · ·, tn−1)�, then

θc := ∀α (Uc(α) ↔ Asn(α, c) ∧ R (α(t0), · · ·, α(tn−1))).

If N0 |= c = ¬d, then

θc := ∀α (Uc(α) ↔ Asn(α, c) ∧ ¬Ud (α)).
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If N0 |= c = d1 ∨ d2, then

θc := ∀α
(
Uc(α) ↔ Asn(α, c) ∧ (

Ud1 (α � FV(d1)) ∨ Ud2 (α � FV(d2))
))

.

If N0 |= c = ∃va b, then

θc := ∀α
(
Uc(α) ↔ Asn(α, c) ∧ ∃α′ ⊇ α Ub(α′) ∧ Asn(α′, b)

)
.

Let

� := {Uc(α) : c ∈ F0 and (c, α) ∈ S0} ∪ {¬Uc(α) : c ∈ F0 and (c, α) �∈ S0},

and let

Th+(N0) := Th(N0, a)a∈N0 ∪Θ ∪ �.

We now proceed to show that Th+(N0) is consistent by demonstrating that each
finite subset of Th+(N0) is interpretable in (N0, S0). To this end, suppose T0 is a
finite subset of Th+(N0) and let C consist of the collection of c ∈ F0 such that Uc

appears in T0. If C = ∅, T0 is readily seen to be consistent, so we shall assume that
C �= ∅ for the rest of the argument.

Our goal is to construct subsets {Uc : c ∈ C} of N0 such that the following two
conditions hold when Uc is interpreted by Uc:

(1) (N0, Uc)c∈C |= {θc : c ∈ C}, and
(2) For c ∈ C ∩ F0, Uc = {α ∈ N0 : (c, α) ∈ S0}.
We shall construct {U

c
: c ∈ C} in stages, beginning with the simplest formulae in

C, and working our way up using Tarski rules for more complex ones. Recall that
c 	 d expresses “c is a direct subformula of d”. Define 	∗ on C by:

c 	∗ d iff (c 	 d)N0 and θd ∈ T0 ∩Θ.

Note that whenever c 	∗ d , then for all c′ 	 d we have c′ ∈ C and c′ 	∗ d. The
finiteness of C implies that (C, 	∗ ) is well-founded, which in turn helps us define a
useful measure of complexity for c ∈ C using the following recursive definition:

rankC(c) := sup{rankC(d)+ 1 : d ∈ C and d 	∗ c}.
Note that for c ∈ C, rankC(c) = 0 precisely when θc �∈ T0 ∩Θ . Next, let

Ci := {c ∈ C : rankC(c) ≤ i}.
Observe that C0 �= ∅ (since C is finite and nonempty), and that if c ∈ Ci+1, then
the codes of all immediate subformulae of the formula coded by c are in Ci. This
observation ensures that the following recursive clauses yield a well-defined Uc for
each c ∈ C.
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• If c ∈ C0 then Uc :=
⎧
⎨

⎩

{α : (c, α) ∈ S0}, if c ∈ F0;

Uc := ∅, if c �∈ F0.

• If c ∈ Ci+1\Ci and = ¬d , then
Uc := {α ∈ Ac : α �∈ Ud}.

• If c ∈ Ci+1\Ci and c = a ∨ b, then
Uc := {α ∈ Ac : α � FV(a) ∈ Ua or α � FV(b) ∈ Ub}.

• If c ∈ Ci+1\Ci and c = ∃va b, then
Uc := {

α ∈ Ac : ∃α′ ∈ N (α ⊆ α′ and α′ ∈ Ub)
}
.

Note that in the first item above, the choice of Uc := ∅ when c ∈ C0 and c �∈ F0 is
completely arbitrary.7 Also, in the third item above where c = a ∨ b, both a and b

will be in Ci , thanks to the properties of 	∗ .

It is routine to verify, using induction on rankC(c), that (1) and (2) hold for
(N0, Uc)c∈C . More specifically, if rankC(c) = 0, then θc �∈ T0∩Θ , so (1) is vacuously
satisfied, and (2) is satisfied by design. On the other hand, when rankC(c) > 0
then (1) is satisfied since Uc is defined so as to comply with Tarski conditions;
and (2) is satisfied since S0 is an F0-satisfaction class. This concludes the proof of
the consistency of arbitrary finite subsets T0 of Th+(N0), which in turn shows that
Th+(N0) has a model, i.e., some elementary extension N1 of N0 has an expansion
N+

1 of the form

N+
1 := (N1, Uc)c∈F1

with the property that N+
1 |= Th+(N0). Let S1 be the binary relation on N1 defined

via

S1(c, α) ⇔ α ∈ Uc.

It is evident that S1 is an F1-satisfaction class, S1 ⊇ S0 and (c, α) ∈ S0 whenever
c ∈ F0, α ∈ N0, and (c, α) ∈ S1. �

Theorem 3.2 LetM0 be a model of PA of any cardinality.

(a) If S0 is an F0-satisfaction class on M0, then there is an elementary extension
M of M0 that carries a full satisfaction class that extends S0.

(b) There is an elementary extension M of M0 that carries a full satisfaction class.

Proof Note that (b) is an immediate consequence of (a) since we may choose F0 to
be the set of atomic M0-formulae and S0 to be the obvious satisfaction predicate
for F0. To establish (a), we note that by Lemma 3.1 there is an elementary extension
M1 of M0 that carries an F1-satisfaction class, where F1 := FormM0 . Lemma 3.1
allows this argument to be carried out ω-times to yield two sequences 〈Mi : i ∈ ω〉
and 〈Si : i ∈ ω〉 that satisfy the following properties for each i ∈ ω:

7 As shown in (Enayat and Visser 2012) this feature can be exploited to construct ‘pathological’
satisfaction classes, such as the one mentioned at the end of Sect. 6 of this paper.
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(1) Mi ≺ Mi+1;
(2) Si+1 is an Fi+1-satisfaction class on Mi+1 with Fi+1 := FormMi ; and
(3) Si = Si+1 ∩ {(c, α) : c ∈ Fi , Mi |= Asn(α, c)}.
Let M := ⋃

i∈ω

Mi , and S := ⋃

i∈ω

Si . Tarski’s elementary chain theorem and (1)

together imply that M elementarily extends M0. It is easy to see, using (2) and (3),
that S is a full satisfaction class on M. �

Theorem 3.2, when coupled with the completeness theorem of first order logic,
immediately yields the following conservativity result.

Corollary 3.3 PAFS is a conservative extension of PA.

Proof Suppose not. Then for some arithmetical sentence ϕ we have:

(1) PAFS 
 ϕ, and
(2) PA �
 ϕ.

Since (2) implies that PA ∪ {¬ϕ} is consistent, by the completeness theorem for
first order logic, there is a model M0 |= PA ∪ {¬ϕ}. On the other hand, by part
(b) of Theorem 3.2 there is an elementary extension M1 of M0 that carries a full
satisfaction class, and therefore by (1) M1 |= ϕ. This contradicts the fact that M1

elementarily extends M0. �

Corollary 3.4 Every resplendent model of PA carries a full satisfaction class.
In particular, every countable recursively saturated model of PA carries a full
satisfaction class.

Proof The first claim directly follows from the definition of a resplendent model.
The second claim follows from the first claim, when coupled with the key result that
countable recursively saturated models are resplendent (see (Kaye 1991, Sect. 15.2)
for more detail). �

16.4 Truth Classes

With the exception of Krajewski’s original paper (Krajewski 1976), what we refer
to as a ‘truth class’ here has been dubbed ‘satisfaction class’ in the model-theoretic
literature. More specifically, Krajewski (1976) employed the framework of satisfac-
tion classes over base theories formulated in relational languages as in this paper,
however, the later series of papers (Kotlarski et al. 1981; Smith 1987, 1989) all
used the framework of truth classes over Peano arithmetic formulated in a relational
language, augmented with ‘domain constants’. Later, Kaye (1991) developed the
theory of satisfaction classes over models of PA in languages incorporating function
symbols; his work was extended by Engström (2002) to truth classes over models of
PA in functional languages.
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As explained in this section, there is a simple canonical correspondence between
truth classes over models of PA (in a relational language) and certain types of satis-
faction classes, here referred to as ‘extensional’. The main aim of this section is to
demonstrate that the method of building satisfaction classes in the previous section
can be conveniently modified so as to yield full extensional satisfaction classes (and
thereby: full truth classes) over appropriate models of PA.

Within PA one can easily define an injective function c that yields the code for a
constant symbol x for each member x of the domain. This enables PA to internally
represent the language L+

PA = LPA+ ‘domain constants’. We can then add a unary
predicate T(x) denoting a truth class (instead of a binary predicate S(x, y) for a
satisfaction class) to LPA, whose intended interpretation is “x is the code of a true
sentence σ”, where σ is an arithmetical sentence formulated in a language L+

PA. We
will make this more precise in the following definition.

Definition 4.1 PAFT := PA ∪ Tarski(T), where Tarski(T) is the conjunction of
the universal generalizations of tarski0(T) through tarski4(T), all formulated in the
language LPA ∪ {T(·)}, as described below.8 In what follows Sent(x) is the LPA-
formula that expresses “x is a formula of L+

PA with no free variables”, and R ranges
over relations symbols in LPA.

• tarski0(T) := (T(x) → Sent(x)).
• tarski1,R(T) := (

�R(t0, · · ·, tn−1)� = x
) → (R(t0, · · ·, tn−1) ↔ T(x)).

• tarski2(T) := (x = ¬y) → (T(x) ↔ ¬T(y1)).
• tarski3(T) := (x = y1 ∨ y2) → (T(x) ↔ (T(y1) ∨T(y2))).
• tarski4(T) := (x = ∃viϕ) → (T(x) ↔ ∃z T (ϕ (z)))).

T is a full truth class on M if (M, T ) |= PAFT
.

Definition 4.2 A substitution for a formula ψ of LPA is a function

σ : FV(ψ) → Var

such that σ respects substitutability in the ‘usual way’, i.e., if x is a free variable of
ψ , then x is not in the scope of any quantifier that binds σ (x). Given ψ and σ as
above, let ψ ∗ σ be the formula obtained from ψ by applying the substitution σ , and
A be the set of pairs (ϕ, α) such that α is an assignment for the formula ϕ. This allows
us to define a key equivalence relation ∼ on A by decreeing that (ϕ0, α0) ∼ (ϕ1, α1)
iff there is some (ψ , β) ∈ A, and there are substitutions σ0 and σ1 for ψ , with

ϕi = ψ ∗ σi and β = αi ◦ σi , for i = 0, 1.

In the above, αi ◦ σi is the composition of αi and σi. It is important to bear in mind
that, intuitively speaking, (ϕ0, α0) ∼ (ϕ1, α1) means that ϕ0 and ϕ1 are the same

8 PAFT is the relational analogue of the theory of CT� in Halbach’s monograph (Halbach 2011).
The base theory of CT � is PA formulated in a functional language. The conservativity of CT� over
the functional language version of PA can also be established using the techniques of this paper
(see Sect. 16.6).
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except for their free variables, and for all variables x and y, if x occurs freely in the
same position in ϕ0 as y does in ϕ1, then α0(x) = α1(y).

• An F -satisfaction class S is extensional if for all ϕ0 and ϕ1 in F , M |= (ϕ0, α0) ∼

(ϕ1, α1) implies (ϕ0, α0) ∈ S iff (ϕ1, α1) ∈ S.9

The following proposition describes a canonical correspondence between extensional
satisfaction classes and truth classes. The routine but laborious proof is left to the
reader.

• In what follows c is the M-definable injection m #→c m that designates a constant
symbol m for each m ∈ M , and ϕ(c ◦ α) is the sentence in the language L+

PA
obtained by replacing each occurrence of a free variable x of ϕ with the constant
symbol m, where α(x) = m.

Proposition 4.3 Suppose M |= PA, T is a full truth class on M, and S is an
extensional full satisfaction class on M.

(a) S(T ) is an extensional satisfaction class on M, whereS(T ) is defined as the
collection of ordered pairs (ϕ, α) such that ϕ(c ◦ α) ∈ T .

(b) T (S) is a truth class on M, where T (S) is defined as the collection of ϕ ∈ L+
PA

such that for some ψ ∈ L+
PA and some assignment α for ψ , ϕ = ψ(c ◦ α) and

(ψ , α) ∈ S.
(c) S(T (S)) = S, and T (S(T )) = T .

Before describing the construction of extensional satisfaction classes we need the
preliminaries presented in Definition 4.4 and Lemma 4.5.

Definition 4.4

(a) Given formulae ϕ0 and ϕ1 of LPA, we write ϕ0 ≈ ϕ1 if there is a formula ψ , and
substitutions σ0 and σ1 for ψ such that ϕi = ψ ∗ σi for i = 0, 1.

(b) Given c ∈ FormM, let TCM(c) be the externally defined transitive closure of c

with respect to the direct subformula relation, i.e.,

TCM(c) :=
⋃

n<ω

TCM(c, n),

where TCM(c, 0) := {c} and

TCM(c, n+ 1) := {x ∈ M : x 	M d for some d ∈ TCM(c, n)}.
The following lemma presents salient features of the two equivalence relations ∼

and ≈.

Lemma 4.5 Let ∼ be as in Definition 4.2; and TCM(c) and ≈ be as in Definition
4.4.

9 Note that an extensional satisfaction predicate need not be closed under re-naming of bound
variables.
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(i) If d ∈ TCM(c) and d �= c, then ¬ (c ≈ d).
(ii) ≈ preserves the principal connectives, i.e., it relates negations to negations,

disjunctions to disjunctions, and existential formulae to existential formulae
with the same bound variable. Moreover, if ¬c ≈ ¬d, then c ≈ d; if c ∨ d ≈
c′ ∨ d ′, then c ≈ c′ and d ≈ d ′; and if ∃t c ≈ ∃t ′ c′, then t = t ′ and c ≈ c′.

(iii) If (ϕ0, α0) ∼ (ϕ1, α1), then ϕ0 ≈ ϕ1.

(iv) If (¬ϕ0, α0) ∼ (¬ϕ1, α0), then (ϕ0, α0) ∼ (ϕ1, α1).
(v) If (ϕ0 ∨ ϕ1, α) ∼ (ϕ′0 ∨ ϕ′1, α′), then (ϕ0, α � FV(ϕ0)) ∼

(
ϕ′0, α′ � FV(ϕ′0)

)
and

(ϕ1, α � FV(ϕ1)) ∼
(
ϕ′1, α′ � FV(ϕ′1)

)
.

(vi) If ϕ = ∃t ψ , and ϕ′ = ∃t ′ ψ ′, and (ϕ, α) ∼ (ϕ′, α′), then t = t ′ and for some e

(ϕ, α[t : e]) ∼ (ϕ′, α′[t ′ : e]).10

The next Lemma presents a variant of Lemma 3.1 that is our main tool for constructing
extensional satisfaction classes.

Lemma 4.6 Let N0 |= PA, F1 := FormN0 , F0 ⊆ F1, and suppose S0 is an
extensional F0-satisfaction class. Then there is an elementary extension N1 of N0

that carries an extensional F1-satisfaction class S1 ⊇ S0 and (c, α) ∈ S0 whenever
c ∈ F0, α ∈ N0, and (c, α) ∈ S1.

Proof Let � and � be as in the proof of Lemma 3.1, and let

Th+(N0) := Th(N0, a)a∈N0 ∪Θ ∪ � ∪�,

where � := {
δcc′ : c, c′ ∈ F1

}
, and

δcc′ := ∀α ∀α′
(
(c, α) ∼ (c′, α′) → (

Uc(α) ↔ Uc′ (α
′)
))

.

The proof of the lemma would be complete once we verify that Th+(N0) has a
model. To this end, we shall demonstrate that every finite subset T0 of Th+(N0) is
interpretable in N . Let C be the collection of c ∈ F1 such that c appears in T0. Also,
let 	∗ and rankC(c) be precisely as in the proof of Lemma 3.1.

We can extend C to another finite set C so that it satisfies a certain closure property,
namely: whenever we have c ≈ c

′
and d 	∗ c, where c, c′ and d are all in C, then

there is some d ′ ∈ C such that d ′ 	∗ c′ with d ≈ d
′
. This can be done simply by

adding any missing direct subformulae d ′ by an appropriate recursion.11 By replacing
C by C we may therefore additionally assume:

10 Here α[t : e] is the assignment obtained by redefining the value of α at the variable t to be e if
t ∈ Dom(α); note that α[t : e] = α if t �∈ Dom(α).
11 More specifically, first define �◦ on C by d ′ �◦ c iff d ′ �∗ c′ ≈ c, for some c′ ∈ C. Since
�◦ is cycle-free, C is well-founded, and therefore lends itself to a ranking function rank◦C (c). Let
n = max

{
rank◦C (c) : c ∈ C

}
, and for 0 ≤ i ≤ n define Di := {c ∈ C : rank◦C (c) = i}. Next use a

‘backward’ recursion to define En, En−1, · · ·, E0 via:
• En := Dn;
• En−(i+1) := Dn−(i+1) ∪ {d : d �N0 c for some c ∈ En−i}.
Finally, let C := En ∪ · · · ∪ E0. It is easy to see that C is finite, extends C, and has the desired
closure property.
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(#) If c and c′ are both in C with c ≈ c′, then rankC(c) = rankC(c′).
As in the proof of Lemma 3.1, we then recursively construct {Uc : c ∈ C} such that:

(1) (N0, Uc)c∈C |= {θc : c ∈ C} and
(2) For c ∈ C ∩ F0, Uc = {α ∈ N0 : (c, α) ∈ S0}.
It remains to show:

(3) (N0, Uc)c∈C |=
{
�cc′ : c, c′ ∈ C

}
.

We establish (3) by using induction on rankC(c) to show that ∀c ∈ C P (c), where
P (c) abbreviates:

∀c′ ∈ C (N0, Uc)c∈C |= ∀α ∀α′
(
(c, α) ∼ (c′, α′) → (

Uc(α) ↔ Uc′ (α
′)
))

.

If rankC(c) = 0 and (c, α) ∼ (c′, α′), then by part (iii) of Lemma 4.5 we have c ≈ c′,
which in turn by (#) assures us that rankC(c′) = 0. This makes it clear that P (c)
holds when rankC(c) = 0 since S0 is assumed to be an extensional F0-satisfaction
class.

To verify the inductive step, suppose:

(4) P (x) holds for all x ∈ C with rankC(x) = i.

Let c ∈ C with rankC(c) = i + 1, and suppose (c, α) ∼ (c′, α′), where c = ∃t d.

Then c′ = ∃t ′ d ′, and d ≈ d ′ by part (ii) of Lemma 4.5. Observe that thanks to (#)
we have:

(5) rankC(c′) = i + 1 and rankC(d) = rankC(d ′) = i.

Now if α ∈ Uc, then α[t : e] ∈ Ud for some e by (1), and therefore by part (vi) of
Lemma 4.5, we obtain:

(6) (d, α[t : e]) ∼ (d ′, α′[t ′ : e]).

Using (4), (5), and (6) we may now conclude that α′[t : e] ∈ Ud ′ , which by (1) yields
α′ ∈ Ud , thus completing the verification of the quantificational case (by symmetry).
A similar reasoning can be carried out for propositional cases. This concludes the
proof of consistency of T0.

The rest is precisely as before: the consistency of Th+(N0) implies that there is an
elementary extension N1 of N0 that has an expansion N+

1 := (N1, S) |= Th+(N0),
and the binary relation S1 on N1 defined via

S1(c, α) ⇔ α ∈ Uc

has the property that S1 is an extensional F1 -satisfaction, S1 ⊇ S0, and (c, α) ∈ S0

whenever c ∈ F0, α ∈ N0, and (c, α) ∈ S1. �

Theorem 4.7 Let M0 |= PA. There is an elementary extension M of M0 that
carries a full extensional satisfaction class.

Proof Since the satisfaction class S0 on the collection F0 of atomic formulae of M0

is extensional, we may use Lemma 4.6 instead of Lemma 3.1 in order to carry out
the elementary chain argument of Theorem 3.2. �

By coupling Theorem 4.7 with part (b) of Proposition 4.3 we obtain:
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Corollary 4.8 Every model of PA has an elementary extension that carries a full
truth class.

Finally, the line of reasoning employed in the proof of Corollary 3.3 shows, using
Corollary 4.8, that:

Corollary 4.9 PAFT is a conservative extension of PA.

16.5 Arithmetization, Interpretability, and Conservativity

Here we briefly discuss the arithmetization of the constructions of the previous two
sections, with an eye towards issues connected with interpretability and conserva-
tivity. As explained in (Enayat and Visser, Sect. 4) the compactness and elementary
chain argument employed in the proofs of Theorems 3.2 and 4.7 can be implemented
in the fragment I�2 of PA with the help of the ‘Low Basis Theorem’ of Recursion
Theory. Coupled with Orey’s Compactness Theorem, this can used to establish the
following:

Theorem 5.1 (Enayat and Visser) PAFT is interpretable in PA.12

On the other hand, the technology of LL1-sets13 of (Hájek and Pudlák 1993, The-
orem 4.2.7.1, p. 104) can be used to show that the proofs of both theorems 3.2 and
4.7 can even be implemented in the fragment I�1 of PA. In light of the fact that the
statement “PAFT is conservative over PA” is a �2-statement, and I�1 is well known14

to be �2-conservative over PRA, we obtain the following:

Theorem 5.2 (Enayat andVisser)The conservativity of PAFT over PA can be verified
in PRA.15

Remark 5.3 The verification of the conservativity of PAFT over PA within PRA was
first claimed by Halbach in (Halbach 1999), using cut-elimination.16 Later, Fischer
(2009) gave a proof, based on the cut-elimination argument in (Halbach 1999), to
show that PAFT is interpretable in PA. Unfortunately, a gap was discovered recently

12 Indeed BFS turns out to be interpretable in B for all base theories B that have access to the full
scheme of induction over their ambient ‘numbers’. In particular, ACAFS is interpretable in ACA.
On the other hand, as shown in (Enayat and Visser, Sect. 8), ACAFS

0 is not interpretable in ACA0

(more generally, BFS is shown to be not interpretable in B, if B is finitely axiomatizable).
13 LL1-sets are a special type of ‘low’ sets.
14 This classical result was independently established by Mints, Parsons, and Takeuti, using proof-
theoretic methods. The work of Paris and Kirby (described in (Simpson 1999, IX.3)), and more
recently Avigad (2002) has also provided model-theoretic demonstrations of this conservativity
result.
15 Indeed, by using the technique of Friedman (1999), this conservativity result is already verifiable
in the fragment SEFA (Superexponential Arithmetic) of PRA.
16 Halbach’s base theory in his work is the usual version of PA that is formulated in a functional
language.
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(by Fujimoto) in the cut-elimination argument in (Halbach 1999), which in turn
impaired Fischer’s interpretability claim. Happily, Leigh (2012) has succeeded in
developing a proof-theoretic demonstration of the conservativity of PAFT over PA that
is implementable in PRA. Moreover, (Leigh 2012, Theorem 1) can be used to verify
the interpretability of PAFT over PA, by using Fischer’s strategy in (Fischer 2009).17

Therefore, Theorems 5.1 and 5.2 can be arrived at via two completely different routes.

16.6 Further Results

In Sect. 16.4 we saw that the core methodology of Sect 3 can be fine-tuned to build
full extensional satisfaction classes. Indeed, as shown in (Enayat and Visser 2012)
one can strengthen Theorem 4.7 by imposing further desirable conditions on the
satisfaction class S. For example, every model M0 of PA has an elementary extension
M that carries a full extensional satisfaction class S that satisfies all of the following
additional properties:

(1) SatMn ⊆ S for all n ∈ ω (see Theorem 2.5 for Satn).
(2) If c ∈ FormM and M |= “c is an axiom of PA”, then S deems c to be ‘true’.18

(3) If c and c′ are M-formulae such that M |= “c′ is an alphabetic variant19 of c ”,
then (c, α) ∈ S iff (c′, α) ∈ S.

Furthermore, the third condition above can be strengthened by accomodating a com-
bination of extensional equivalence and alphabetic equivalence, thereby yielding
truth classes that are closed under alphabetic equivalence. We have also shown that
a small dose of condition (1) can be used to build full truth classes over models of
arithmetical theories formulated in functional languages (this result will appear in
the projected sequel to (Enayat and Visser 2012)).

One can also use the method of Sect. 16.3 to build bizarre satisfaction classes. For
example, as shown in (Enayat and Visser), every model M0 of PA has an elementary
extension M that has a full satisfaction class S that exhibits the following pathology:

{a ∈ M : (σa , αNull) ∈ S} = ωM,

where ωM is the well-founded initial segment of M that is isomorphic to ω, and σa

is defined for all a ∈ M by a recursion within M via the following clauses:

• σ0 := ∃v0 (v0 = v0) (or σ0 = any other logically valid sentence);
• σn+1 := (σn ∨ σn).

17 We are grateful to Graham Leigh for his kind permission to quote his unpublished work here.
18 As remarked in the last sentence of (Kotlarski et al. 1981), this condition can also be arranged
using the machinery of M-logic. Note that ‘axioms of PA’ in the sense used here do not include
the logical axioms.
19 c′ is an alphabetic variant of c if c′ is obtainable from c by the usual rules of re-naming the bound
variables of c.
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