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1  Introduction

Galileo’s discussion of the infinite in Discourses and Mathematical Demonstra-
tions Concerning Two New Sciences (1638) hardly wants for recognition. But its 
importance for Leibniz’s philosophy has not always been appreciated. Nor, I think, 
has Galileo’s own view of the infinite in Two New Sciences yet been properly under-
stood. A close study of Galileo’s paradox of the natural numbers and his answer to 
it can throw new light on Galileo’s own position and, with its elements in view, the 
influence of Galileo on Leibniz comes into high relief. A number of new points of 
interpretation of Galileo will be on offer in what follows, some likely to be contro-
versial. Contrary to the customary account, for instance, I hold that Galileo allows 
for judgments of equality among infinite classes; indeed they are readily found in 
his mathematical and philosophical work. As I see it, his celebrated denial that the 
terms ‘greater’, ‘less’ and ‘equal’, apply in the infinite is in fact limited to unbound-
ed magnitudes, but consistent with judgments of cardinal equality among infinite 
multitudes that are bounded in magnitude and thus, as magnitudes, finite. Galileo’s 
denial of comparability nonetheless poses a threat to two important mathematical 
principles, Euclid’s Axiom and the Bijection Principle  of Cardinal Equality, and I 
consider two sorts of strategies for reconciling those principles with Galileo’s posi-
tion. One strategy, suggested by Eberhard Knobloch,1 appeals to Galileo’s use of the 
distinction between quanti and non quanti. The other is due to Leibniz and involves 
a distinction between totalities and pluralities. I argue that the first strategy cannot 
save Galileo’s account from having to relinquish at least one of the two mathemati-
cal principles. Leibniz’s strategy offers a more promising way to escape from the 
paradox while leaving both principles intact, although it imposes a peculiar meta-
physical cost of its own. Spelling out the details of Leibniz’s solution further reveals 

1 Knobloch (1999; 2011).
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how intimately related his account of the term ‘infinite’ is to Galileo’s discussion 
and draws out key contrasts between their respective views of comparability and 
their definitions of ‘infinite’.

1.1  Galileo’s Paradox of the Natural Numbers

Early in the discussion of the dialogue’s First Day, Galileo offers a striking proof 
for the claim that “one infinity cannot be said to be greater or less than or equal to 
another” (EN 8:78/D40).2 The context is one in which Galileo, via his spokesman 
Salviati, is looking to defend the coherence of the idea that a finite quantity such as a 
line or a solid might contain an infinity of indivisible points. Simplicio has detailed 
an objection: it seems a longer line would then contain an infinity of points greater 
than the infinity contained in a shorter line, implying an infinity greater than the 
infinite, “a concept not to be understood in any sense” (EN 8:77/D 39). Galileo’s 
proof would cut off the objection by disallowing any comparison of size among 
‘infinites.’ It is the proof itself, though, not the picture of matter being defended, 
that is our present concern.

Galileo takes the natural numbers as his example of an infinite and argues as fol-
lows. Since the natural numbers include both the square numbers and non-square 
numbers, there are more [esser più che] naturals than squares. Yet there are just 
as many squares as there are roots, since every root has its own square and every 
square its own root; and there are just as many naturals as roots, since every natural 
is a root and every root is a natural. So it follows that there are just as many [siano 
quanti] squares as naturals. We thus appear to have contradictory results: the natural 
numbers are both greater than and equal to the square numbers, which is absurd. 
(Cf. EN 8:78–79.)

Galileo’s paradox of the natural numbers, then, appears to derive a contradiction 
from the idea that one infinite can be said to be greater or less than or equal to anoth-
er. As is readily noted, the proof trades on two different standards for comparison. 
By the standard of ‘proper inclusion’, there are more naturals than squares since the 
natural numbers properly include the squares, i.e. the naturals include non-square 

2 Primary texts are abbreviated as follows. For Galileo: EN = Opere, Edizione Nazionale, ed. 
Antonio Favaro (Florence 1898). For Leibniz: A = Berlin Academy Edition, Sämtliche Schriften 
un Briefe. Philosophische Schriften. Series VI. Vols. 1–4. (Berlin: Akademie-Verlag, 1923−99); 
GP = Gerhardt, Die Philosophischen Schriften, Vols. 1–7. Ed. C.I. Gerhardt (Berlin: Weidma-
nnsche, Buchhandlung 1875–1890); GM = Mathematische Schriften von Gottfried Wilhelm Leib-
niz, Vols. 1–7. Ed. C.I. Gerhardt (Berlin: A. Asher; Halle: H.W. Schmidt 1849–1863). References 
to EN, GP and GM are to volume and page numbers; those to A are to series, volume and page. 
Translations of Galileo generally follow those of Stillman Drake (abbreviated ‘D’), Galileo Gali-
lei: Two New Sciences, Including Centers of Gravity and force of Percussion, 2nd Ed, (Toronto: 
Wall and Emerson, Inc. 1974), and those of Leibniz generally follow Richard Arthur (abbrevi-
ated ‘Ar’), G.W. Leibniz: The Labyrinth of the Continuum: Writings on the Continuum Problem, 
1672–1686 (New Haven: Yale University Press 2001). I have sometimes modified translations 
without comment.
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numbers as well as all the square numbers. Or as we might say, the squares form a 
proper subclass of the natural numbers.3 By the standard of ‘one-one maps’, how-
ever, there are just as many squares as naturals, since the two classes can be mapped 
one-one into each other, implying a ‘one-one correspondence’ (or bijection) be-
tween them. In the case of finite classes the standards are always in agreement: no 
finite class can be mapped one-one into one of its own proper subclasses, and finite 
classes are always greater than their proper subclasses. Only in the infinite can the 
standards conflict .

Galileo in effect treats the two standards of comparison as equally sound and 
suggests that we are mistaken to extend either one from the finite case to the infinite 
case. He recommends abandoning comparisons altogether in the infinite. History 
has instead taken sides in order to resolve the paradox, and it has favored the stan-
dard of one-one maps over that of proper inclusion. Classes X and Y are equal in 
size just in case there is a one-one correspondence between them, the proper inclu-
sion of one in the other notwithstanding. Developments in transfinite set theory due 
to Cantor would establish this as a consistent approach to the paradox,4 and sub-
sequent orthodoxy was to hold, in Russell’s words, “it is actually the case that the 
number of square (finite) numbers is the same as the number of (finite) numbers.”5

That is all familiar enough. Writers on the topic tend to be orthodox Russellians 
on this point today. Galileo’s own analysis of the paradox is hardly refuted by the 
preference of history,6 however, and what he has to say is quite interesting. Here in 
the words of Salviati:

I don’t see how any other decision can be reached than to say that all the numbers [tutti i 
numeri] are infinitely many [infiniti]; all the squares infinitely many; all their roots infi-
nitely many; that the multitude [moltitudine] of squares is not less than that of all numbers, 
nor is the latter greater than the former. And in the final conclusion, the attributes of equal, 
greater and less have no place in infinite, but only in bounded quantity [quantità terminate]. 
(EN 8:79/D 41)

The denial that such comparisons are possible in the infinite is Galileo’s signature 
conclusion here. But his words convey a few more ideas worth drawing out. The 

3 A quick note on terminology. In what follows I sometimes use the terms ‘class’, ‘subclass’, etc., 
for convenience, but without meaning to imply that the many elements of a class thereby form a 
set or totality or other ‘single object.’ (Mostly here it will cause no harm to read ‘class’ and ‘set’ 
as equivalent, but sometimes it will lead astray, so beware.) Occurrences of ‘class’, etc., can, with 
appropriate shifts in syntax, always be replaced by suitable plural expressions—e.g., ‘the natural 
numbers’ instead of ‘the class of natural numbers’—or by terms such as ‘multitude’ or ‘plurality’ 
that cancel the implication of one thing formed from many. In contexts in which greater precision 
is required to convey the intended meaning, and avoid unwanted implications, I shall use unam-
biguous terms.
4 Cantor writes, “There is no contradiction when, as often happens with infinite aggregates, two 
aggregates of which one is a part of the other have the same cardinal number” (Cantor 1915, p. 75; 
noted in Parker (2009)).
5 Russell (1913, p. 198).
6 For a very illuminating discussion of the history of the idea of measuring the size of the natural 
number collections, as it has evolved up to Cantor, plus some contemporary alternatives to Cantor, 
see Mancosu (2009).
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multitude of (natural) numbers is infinite, as are those of the squares and their roots. 
This is justified, presumably, by the one-one correspondences between the squares 
and the roots and the roots and the naturals. Thus it seems that even if a one-one 
correspondence isn’t sufficient for claiming that two classes are equal, it is suffi-
cient for claiming that a class is infinite if there is a one-one map from some infinite 
class into it—or, at least, a class is infinite if there is a one-one map from the natural 
numbers into it.

Galileo does not define ‘infinite’ explicitly in Two New Sciences. Still, his sug-
gestion that a class is infinite if the natural numbers can be mapped into it can itself 
serve well as an intuitive definition. And his discovery that the class of natural 
numbers can be mapped one-one into a proper subclass of itself suggests a structural 
property of classes that would later be elevated by Dedekind into a definition of 
‘infinite’: infinite classes are exactly those that can be mapped into one of their own 
proper subclasses. In Dedekind’s words, ‘A system S is said to be infinite when it is 
similar to a proper part of itself.’7 In the terms of modern-day mathematics, Galileo 
discovered that the natural numbers are ‘Dedekind infinite’ .

1.2  Parts, Wholes and Euclid’s Axiom

Unlike Dedekind, Galileo does not use the word ‘part’ or ‘proper part’ in an explic-
itly formal statement of his mathematical principles. The language of parts is not 
absent from his discussion, however, for he does say, in passing, that the squares 
form a part of the natural numbers—a ‘tenth part’ of the first hundred numbers, a 
‘hundredth part’ of the first ten thousand, etc.—and that the non-squares form a 
‘greater part’ [maggior parte] than the squares (EN 8: 79). But it is at best equivo-
cal evidence that he means to use the language of parts and wholes for his technical 
mathematical vocabulary. And Galileo does not say that the natural numbers form a 
‘whole’ or ‘totality’ or even a ‘system’. His phrase tutti i numeri might suggest this, 
since tutti can have the force of ‘whole’ in some uses,8 but taken straightforwardly 
what Galileo says is simply ‘all the numbers’ and likewise ‘all the squares’ and ‘all 
the roots’. Moreover, his use of the term moltitudine, or ‘multitude’, in claiming that 
the multitude of squares, that of natural numbers and that of roots are all infinite, 
seems gauged to avoid the supposition that there is a single totality, a single math-
ematical object, made up of all the squares or all the naturals or all the roots.

The language of parts and wholes is nonetheless a natural one in which to frame 
the discussion, and it also offers an idea that likely lies behind Galileo’s appeal to 
the standard of proper inclusion in his initial claim that the natural numbers as a 

7 In the usual formula: S is infinite if and only if there is a one-one map Φ from S into S with some 
element of S not in the range of Φ. Was sind und was sollen die Zahlen?, Sect. 64; cf. Sect 66.
8 Crew and de Salvio’s 1914 translation renders tutti i numeri as “the totality of all numbers” (cf. 
p. 31). In the same lines it also inserts ‘number’ in “the number of squares is infinite” and “the 
number of roots is infinite”, where the corresponding term does not occur in the original. Drake’s 
translation steers clear of those interpolations.



161Comparability of Infinities and Infinite Multitude in Galileo and Leibniz

class are greater than the squares. That idea is the following principle: The whole is 
greater than the part. It is sometimes called ‘Euclid’s Axiom’ for its occurrence as 
Common Notion V at the start of Book One of the Elements. If the square numbers 
form a part of the natural numbers, then by Euclid’s Axiom the whole of the natural 
numbers must be greater than the part formed by the square numbers alone. When 
Dedekind says that in an infinite system the proper part is equal (‘similar’) to the 
whole, his position implies the falsity of Euclid’s Axiom.

It is not hard to think Galileo’s position has the same consequence, if somewhat 
more subtly. When he recommends that we drop the terms ‘greater’, ‘equal’ and 
‘less’ from use in application to infinites, he is in effect abandoning Euclid’s Axiom, 
at least in the case of the infinite. For the result would be to deny that the whole is 
greater than the part in this case, even if the equality of part and whole is not as-
serted. As we shall see, Leibniz interprets Galileo in just this way. At the moment it 
is enough to observe the potential implication for Euclid’s Axiom, and to note that 
Galileo himself may not quite be committed to it, since it is not evident to what ex-
tent he embraces the language of parts and wholes for classes of numbers.

The minimal reading of Galileo’s own position is just that the extension of Eu-
clid’s Axiom from the finite to the infinite is incorrect. He is explicit in warning 
against taking such extensions for granted. “These are some of those difficulties that 
arise”, he writes, “that derive from reasoning about infinites with our finite minds 
and giving to them those attributes that we give to the finite and the bounded” (EN 
8: 77–78/D39-40). It will then remain to say why it is incorrect to apply terms of 
comparison, or principles like Euclid’s Axiom, in the infinite case. The paradox 
only points up an inconsistency, perhaps showing that the extension is invalid; it 
does not explain the underlying problem.

It is open to Galileo to deny the applicability of Euclid’s Axiom in the infinite 
case without thereby rejecting the axiom itself, if a condition of its terms can be 
seen not to hold in the infinite. The involvement of the concepts of part and whole 
in the axiom indicates one possible avenue for doing this: if we should say that infi-
nite multitudes cannot form wholes, then Euclid’s Axiom will be seen not to apply 
in the infinite case without thereby being overturned by a counterexample. If there 
are no infinite wholes, then there is no whole that fails to be greater than its parts. 
Another possible avenue might be to identify some less explicitly stated condition 
of Euclid’s Axiom, say, some requirement that the terms it compares be in some 
way ‘measurable’ or ‘quantifiable’, and then see if it can be denied that ‘infinites’ 
meet this condition. If it can be held that infinites are not measurable or quantifiable 
in the relevant way, then denying that Euclid’s Axiom applies to them might fall 
short of rejecting the axiom itself. Again, its inapplicability would not be due to the 
existence of counterexamples.

I belabor those points because each of those two avenues has been suggested as 
a possible route of escape from the prospect of having to deny Euclid’s Axiom. The 
first—denying that infinite multitudes form a whole—is proposed by Leibniz, who, 
commenting on Galileo’s paradox of the natural numbers in his notes on Two New 
Sciences, writes:
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Hence it follows either that in the infinite the whole is not greater than the part, which is the 
opinion of Galileo and Gregory of St. Vincent, and which I cannot accept; or that infinity 
itself is nothing, i.e. that it is not one [Unum] and not a whole [totum]. (A VI, 3, 158/Ar 9)

As before, it is not quite true that Galileo says the whole is not greater than the part 
in the infinite, since his mention of parts is not clearly committal and he does not 
write of the number classes directly in terms of wholes. (Perhaps Leibniz, like some 
of Galileo’s later readers, sees the language of wholes [totum] in Galileo’s phrase 
tutti i numeri. This would not be surprising, since part-whole terminology was a 
common feature of mathematical language in the seventeenth century.) We shall 
consider Leibniz’s own position in due course.

The second avenue of escape—that of denying that infinites are suitably measur-
able or quantifiable—is suggested as Galileo’s own view by Eberhard Knobloch, 
who calls attention to Galileo’s careful distinction between those things which are 
true quantities or ‘quantified’ ( quanti) and those which are ‘non-quantified’ ( non-
quanti) in the treatment of infinites and indivisibles in Two New Sciences. Knobloch 
writes,

An ‘infinite quantity’ (‘quantità infinita’) would according to Galileo’s conception actually 
be a ‘contradiction in terms’, because an infinite lacks precisely those properties which 
characterize a quantity. […]
Correspondingly, the Euclidean axiom ‘The whole is greater than the part’ is not invalidated 
in the sense that the logical opposite is valid in the domain of infinite sets, that is, that an 
infinite set is smaller than or equal to one of its parts. Rather it is invalidated in the sense 
that it cannot be applied there, simply because there are not quantities which could be 
compared.9

Knobloch’s analysis of Galileo’s position is an important one, and we shall turn 
shortly to consider the content of the distinction between quanti and non-quanti. For 
now it is enough to note that it stands as an alternative to Leibniz’s proposed route 
of escape. Each one in its own way allows us to see how Galileo’s suggestion that 
infinites cannot be compared need not automatically imply the rejection of Euclid’s 
Axiom. And each would give us a way to explain why the axiom is not rendered 
invalid: either there are no infinite wholes or there are no infinite quantities, and 
hence there are no counterexamples.

1.3  The Same Question Revisited: The Bijection Principle

Just as Galileo’s denial of comparison among infinites poses at least a prima facie 
threat to Euclid’s Axiom, so too it poses a threat to the idea that one-one correspon-
dence between classes is a valid standard of equality—and, more generally, a threat 
to the validity of using one-one maps to determine comparisons of size among sets 
or classes. To the modern eye this may seem the more troubling element of Galileo’s 
position, since in the wake of Cantor, Euclid’s Axiom has been set aside while the 
standard of one-one maps has come into its own as a vital piece of mathematical 
theory and practice.

9 Knobloch (1999), p. 94.



163Comparability of Infinities and Infinite Multitude in Galileo and Leibniz

A few words of clarification are in order about the intended principle of equality 
based on one-one maps and what we shall call it.10 In contrast to some writers,11 
Galileo is addressing the idea of comparison between multitudes without any obvi-
ous presupposition of number.12 His expressions for equality in the relevant pas-
sages are simply tanti quanti and altrettanti with the sense of ‘precisely as many as’. 
Thus for now in representing his view we can step back from the idea of assigning 
a number to a multitude, and ask more minimally whether one-one correspondence, 
or bijection, implies equality of relative size, though of course the relevant no-
tion of size is the cardinal one of ‘many-ness’ rather than, say, the metrical one of 
‘much-ness’ or measure. Likewise for the related definitions of ‘greater’ and ‘less’: 
X is greater than Y if and only if Y can be mapped one-one into X but X cannot be 
mapped one-one into Y, and vice versa for ‘less’, but neither need be taken to imply 
a claim about number or absolute size. We shall adopt the precise if anachronistic 
label ‘the Bijection Principle of Cardinal Equality’—or just ‘the Bijection Prin-
ciple’—for the principle that says X and Y are equal if and only if there is a one-one 
correspondence (bijection) between their elements. (Better still is the plural form: 
there are just as many Xs as Ys if and only if there is a one-correspondence between 
the Xs and the Ys.)

The issue before us is what to make of Galileo’s abandonment of the Bijection 
Principle in the infinite. There are both conceptual and historical questions to con-
sider. Take first the purely analytical question of whether this means that the Bijec-
tion Principle is simply invalid on Galileo’s terms. Such a result did not follow in 
the case of Euclid’s Axiom; there are ways of leaving the axiom intact while with-
holding it from the infinite. Yet unlike Euclid’s Axiom, the Bijection Principle is not 
phrased in terms of parts and wholes. So if we follow Galileo in denying the com-
parability of infinites, there is no taking Leibniz’s escape from the conclusion that 
infinites are counterexamples to the Bijection Principle by denying that infinites are 
wholes. If we take the Bijection Principle to apply only to sets, a clear version of 
Leibniz’s tactic remains available. If an infinite multitude does not form a set—if, in 

10 My discussion is indebted to Parker (2009), who, defensibly, calls our two principles ‘Euclid’s 
Principle’ and ‘Hume’s Principle’. If Galileo had not rejected the one-one maps standard in the 
infinite case, we should call it ‘Galileo’s Principle’. For reasons to think Archimedes made use of 
this principle in application to infinite classes, see Netz  et al. (2001–2002).
11 Notably those involved in discussion of a similar principle of equality sometimes called ‘Hume’s 
Principle’: the number of Fs equals the number of Gs iff there is a one-one correspondence be-
tween the Fs and the Gs. The principle is so-called for Frege’s reference, in Sect. 73 of the Founda-
tions of Mathematics, to Hume’s remark, in Treatise I.iii.1, “When two numbers are so combin’d 
as that one has always an unite answering to every unite of the other, we pronounce them equal.” 
Yet both of those authors have their sights on slightly more restricted conditions than the ones 
Galileo considers. Frege takes one-one correspondence between classes to imply the existence 
of a number that measures them; Hume \t "See Principle" is expressly considering a standard of 
equality for numbers, where the numbers themselves are conceived as made up of units. It is in 
this vein that one-one correspondence is sometimes said to be a criterion of ‘equinumerosity’: 
equality of number.
12 Or he appears to be doing so. Below I shall suggest his account of comparisons of infinite num-
ber classes turns out to involve an infinite number after all; that is, if, per impossibile, there were 
such a comparison, it would have to involve an infinite number.
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Russell’s phrase, it is a proper class—then perhaps it does not fall within the scope 
of the Bijection Principle, and so denying that it is comparable to other infinites via 
one-one maps does not thereby make it a counterexample to the principle. (Here our 
use of the neutral term ‘class’ rather than ‘set’ in referring to multitudes of things 
matters.13) Likewise, a version of Knobloch’s strategy is available if we can read the 
Bijection Principle as tacitly requiring its terms of comparison to be quanti and then 
hold that infinite multitudes are non-quanti. The two strategies might be regarded as 
nearly equivalent, since a natural thought is that something is mathematically quan-
tifiable or fit for mathematical measurement only if it can be understood as a ‘single 
object,’ such as a set. If infinites are not unities, but only uncollected multitudes like 
proper classes, they might on that ground be regarded as non-quanti and hence not 
candidates to be counterexamples to the Bijection Principle.

The question of whether Euclid’s Axiom or the Bijection Principle face counter-
examples matters because each has, in its time, been thought to capture or reflect 
something deep about the idea of a mathematical quantity. Euclid’s Axiom was re-
garded as nearly constitutive of the very idea of quantity.14 The Bijection Principle 
has something of the same position with respect to the idea of cardinality today. If 
either one were shown to be incorrect in clear cases, there would be reason to doubt 
whether the related understanding of quantity or cardinality were truly secure. Even 
damming up counterexamples on the far side of the distinction between the finite 
and the infinite is not automatically a satisfactory solution if we would otherwise 
take ourselves to see clearly that infinite classes meet the conditions of quantity or 
cardinality. If the properties we appeal to in the finite in order to justify our math-
ematical reasoning are patently also exemplified in the infinite but then lead into 
contradiction, we should doubt whether our original appeal was sound. That is, 
we should doubt whether it was sound unless we can explain why the extension of 
those properties to the infinite case is invalid.

Denying that infinites are wholes or that they are truly quantities can be a step 
in the direction of an explanation. “Our mathematical justifications in the finite 
case”, we could say, “presupposed that the objects of study are wholes or quantities. 
The infinite case provided an initial appearance of this, but it was only an illusion. 
There simply are no ‘infinite wholes’ or ‘infinite quantities’ to which they may be 
applied. So there are no counterexamples to our principles.” Of course, this only 
works if we have some ground for saying that infinites are not wholes or quantities 
independently of the paradox; otherwise, we are just left “wielding the big stick”—
i.e., pointing to the contradiction—rather than offering an explanation.15 I suspect 
the proposed escape routes, whether Leibniz’s or the one Knobloch sees in Galileo, 

13 See footnote 3 above.
14 Bolzano, for example, explicitly defended the primacy of Euclid’s Axiom against the Bijection 
Principle, writing that even two sets that stand in a one-one correspondence “can still stand in a 
relation of inequality in the sense that the one is found to be a whole, and the other a part of that 
whole” (Bolzano 1950, p. 98). For discussion of Bolzano, see Parker (2009) and Mancosu (2009). 
Even Russell acknowledged that “the possibility that the whole and part may have the same num-
ber of terms is, it must be confessed, shocking to common sense” (1903, p. 358).
15 On “wielding the big stick”, see Michael Dummett (1994).
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may turn out to be cases of the big stick and not truly explanations. But in any case it 
should be clear that there is something at stake here (if different stakes for audiences 
from different eras) in asking whether Euclid’s Axiom or the Bijection Principle is 
in jeopardy of admitting counterexamples even in the infinite case.

1.4  Infinite Multitude and Non Quanti in Galileo

Back to Galileo and a few historical questions. Is Galileo’s concept of non quanti 
meant to cover the case of the infinite multitude? I think the answer is no, or at 
least I believe that infinite multitudes do not automatically qualify as non quanti for 
Galileo, though in special cases they may do so. To cast enough light on Galileo’s 
view here, a fairly close look at the texts will be required, though technical matters 
can be kept to a minimum.

The distinction between quanti and non-quanti in Two New Sciences occurs in 
connection with indivisibles, in particular with the idea that quantities such as lines 
or circles or solid bodies might contain or be resolved into infinitely many indivis-
ible parts. Two sections of the dialogue are most explicit in discussing the idea of 
non quanti. In both, Galileo, in the voice of Salviati, appeals to the hypothesis of 
the composition of matter from indivisibles and the presence within it of indivisible 
vacua or void spaces to make sense of the possibility of the expansion or contrac-
tion in size of a finite quantity. These expansions and contractions (‘rarefaction’ 
and ‘condensation’) are themselves introduced to resolve the ancient paradox of the 
wheel, concerning the motion of concentric circles rolling along a line. The puzzle 
is that it appears that the smaller interior circle and the larger outer one will traverse 
equal distances in the course of a single revolution despite the difference in their 
circumferences. (See Fig. 1.)

Galileo approaches the problem by developing an analysis of the motion of con-
centric polygons and then extending it to that of the circles, taking the circles as 

Fig. 1  Galileo’s analysis of ‘Aristotle’s Wheel.’ (EN 8: 68)
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infinilateral polygons. The details of the analysis are, as Galileo’s Sagredo notes, 
‘intricate,’ and need not detain us.16 The key point is that Galileo finds that the mo-
tion of the larger polygon passes over a line approximately equal in length to that 
traversed by the smaller polygon, but with the interposition of ‘skipped over’ void 
spaces into the line traversed by the smaller. (The presence of the void spaces com-
pensates for the difference in the lengths directly marked out on the line through 
contact by the sides the two polygons, whose perimeters are, of course, unequal.) As 
the number of sides is increased, the sides and void spaces become smaller and the 
lengths of the lines measured out by the motions come closer to equality. Advancing 
now to the limit case of the motion of two concentric circles, the distinction between 
quanti and non quanti appears when Salviati says:

And just so, I shall say, in the circles (which are polygons of infinitely many sides), the 
line passed over by the infinitely many sides of the larger circle, arranged continuously < in 
a straight line>, is equal in length to the line passed over by the infinitely many sides of 
the smaller, but in the latter case with the interposition of just as many voids [d’altrettanti 
vacui] between them. And just as the sides are not quantified [lati non son quanti], but are 
infinitely many [ma bene infiniti], so too the interposed voids are not quantified [vacui non 
son quanti], but are infinitely many; that is, for the former < line touched by the larger circle 
there are > infinitely many points all filled, and for the latter < line touched by the smaller 
circle>, infinitely many points, part of them filled points and part of them voids. (N 8:71/D 
33)

As Knobloch observes,17 Galileo shifts from having a little earlier spoken of the 
lines as ‘measured’ ( misurata) by the finitely many sides of the finite polygons to 
saying only that they are ‘passed over’ ( passata) by the infinitely many sides of the 
circles. The sides are no longer strictly fit to measure the lines they touch: they are 
lati non quanti.

There is a delicate question here in interpreting Galileo’s remarks about the lati and 
vacui non quanti. What is quite clear is that the sides and voids themselves are non 
quanti in the sense that each individual sidelet or void space has no measure; each is an 
indivisible point that cannot mark a unit of measure of a line or a body. So being non 
quanti is an intrinsic characterization of an indivisible point, whether filled or unfilled. 
Less clear is whether the characterization of the sides and voids as non quanti is also 
supposed to apply to their being infinitely many. Is an infinite multitude, simply by 
virtue of its infinitude, ‘not quantified’? When Galileo says the sides and voids non son 
quanti, ma bene infiniti (“are not quantified, but infinitely many”), this could be taken 
to contrast being quanti with being infinitely many, so that being infinite in multitude 
is itself a further case of being non-quantified. Or it may instead be taken to clarify the 
fact that although the sides and voids are non quanti—each of them not itself a mea-
surable unit—there are nonetheless infinitely many of them, without thereby implying 
that non quanti applies also the idea of infinite multitude. Which is it?

16 It should be noted that Galileo’s analysis is mistaken—at most one of the two circles rolls along 
the tangent, the other merely revolves continuously along it with the illusion of rolling—but our 
interest concerns the elements of his analysis, not the quality of his solution. For detailed discus-
sion see Drabkin (1950), Costabel (1964), and Knobloch (1999, 2011). See also Mancosu (1996, 
pp. 121–122).
17 Knobloch (1999, p. 92).
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Unsurprisingly, there are two concepts of quantity to be considered in asking 
after the meaning of non quanti for Galileo, the metrical and the cardinal. Calling 
indivisibles non quanti is an intrinsic description of points, denying them metrical 
properties. If non quanti is also supposed to characterize infinite multitudes as such, 
it is then a description denying infinite multitudes cardinal properties. Certainly it is 
a description denying such multitudes a definite cardinality or number, which would 
already have been a commonplace view of the time. But perhaps the phrase non 
quanti is further laying the groundwork for denying infinite multitudes very general 
cardinal properties of comparability: qualifying as ‘greater’, ‘less’ or ‘equal’ in the 
sense of being more, fewer or equally many. It is this cardinal sense of being non 
quanti that is crucial to asking whether Galileo’s reply to the paradox of the natural 
numbers requires him to deny Euclid’s Axiom and the Bijection Principle.

I suspect that Galileo is fairly consistently thinking of non quanti through a met-
rical lens rather than a cardinal one in the passage just reviewed above. After all, 
he quite explicitly says the line passed over by the smaller circle contains ‘just 
as many’ voids ( altrettanti vacui) as the infinitely many sides ( infiniti lati) of the 
smaller circle, even while going on to say that the voids and sides are non quanti. A 
cardinal conception of non quanti that disallows comparison of infinite multitudes 
should have ruled that out. Moreover, the basis for the judgment of equality in that 
very example is paradigmatically cardinal. In the case of finite polygons, the equal 
number of sides and voids is established by the one-one correspondence of the sides 
of the revolving polygons to the parts of the line successively touched or skipped 
over. In the infinite case of the circles, there will likewise be a succession of touches 
and skips to establish a one-one correspondence. It is this one-one correspondence 
which underwrites Galileo’s claim that there are just as many voids in the line as 
sides on the circle, understood as an infinite polygon. So the fact that the sides and 
voids are non quanti does not yet preclude the claim of cardinal comparability. Per-
haps when Galileo later denies the possibility of comparison among infinite multi-
tudes, in examining the paradox of the natural numbers, it is not because he thinks 
infinite multitudes automatically qualify as non quanti.

Cardinal notions are at work in his thought as he discusses non quanti, and this 
is evident in the lines that follow immediately on those of the prior passage. Galileo 
elaborates the idea of composing a finite quantity from an infinity of non quanti in 
order to show how the doctrine of indivisible voids can be deployed to make sense 
of the possibility of the expansion (and presumably contraction) of lines or solids 
into spaces of different sizes. Salviati continues with his explanation:

Here I want you to note how, if a line is resolved and divided into parts that are quantified [in 
parti quante], and consequently numbered [numerate], we cannot then arrange these into 
a greater extension than that which they occupied when they were continuous and joined, 
without the interposition of just as many [altrettanti] void < finite > spaces. But imagining 
the line resolved into unquantifiable parts [parti non quante]—that is, into infinitely many 
indivisibles—we can conceive it immensely [immenso] expanded without the interposition 
of any quantified void spaces, though not without infinitely many indivisible voids.
What is thus said of simple lines is to be understood also of surfaces and solid bodies, 
considering those as composed of infinitely many unquantifiable atoms [infiniti atomi non 
quanti]; for when we wish to divide them into quantifiable parts [parti quante], doubtless 
we cannot arrange those in a larger space than that originally occupied by the solid unless 
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quantified voids [quanti vacui] are interposed—void, I mean, at least of the material of the 
solid. But if we take the highest and ultimate resolution < of surfaces and solid bodies > into 
the prime components unquantifiable and infinitely many [componenti non quanti ed infin-
iti], then we can conceive such components as being expanded into immense space [in 
spazio immenso] without the interposition of any quantified void spaces, but only of infi-
nitely many unquantifiable voids [vacui infiniti non quanti]. In this way there would be no 
contradiction in expanding, for instance, a little globe of gold into a very great space with-
out introducing quantifiable void spaces [spazii vacui quanti]—provided, however, that 
gold is assumed to be composed of infinitely many indivisibles. (EN 8: 71–72/D 33–34)

There is much to say about this passage, but we shall focus on just a few points. 
With the conception of lines and solids as composed of infinitely many non quanti 
indivisibles in mind—a familiar precursor to contemporary point-set analysis of 
the continuum—Galileo is observing, correctly, how the metrical properties of col-
lections are not directly determined by those of their elements if the elements are 
allowed to be both infinitely many and to have, individually, no positive measure. 
The same infinite collection of non quanti points might constitute a line of any finite 
length, or a globe of any size, depending on how the points are arranged. Or more 
carefully: any assignment of measure might be consistent with a collection of infi-
nitely many non quanti points; there is no contradiction in assigning different sizes 
to such collections.18 Galileo’s appeal to the presence of non quanti voids in the 
lines or solids to explain the differences in measure for the different arrangements 
seems questionable. It’s not clear why non quanti voids should expand things any 
more than non quanti atoms would on their own; the appeal to voids seems to serve 
as a placeholder for whatever it is that makes the difference in the ‘arrangement’ of 
the non quanti atoms to yield different measures.19

The emphasis in most of the passage is on a metrical concept of non quanti: the 
individual points have no measure, and this allows a consistent assignment of any 
measure at all to lines or bodies composed of them. Cardinality is something of a 
background condition: there must be infinitely many such non quanti points if they 
are to constitute lines or solids of finite measure in the first place. A finite number 
of such points cannot suffice. Galileo expressly argues for this claim in response to 
a different objection to the idea of composing lines from indivisibles. If a line could 
consist of only finitely many points, it could consist of an odd number of them; but 
in that case what we might call ‘the bisection principle’, that a continuous line can 
always be divided into two equal parts, would require that the middle indivisible be 
cut, contrary to hypothesis.20 Galileo replies:

18 This runs parallel to the classical contemporary point-set analysis, which allows unions of infi-
nitely many zero-dimensional points (or singletons) to have any positive measure, though with the 
proviso, on the contemporary account, that the cardinality of the union be uncountable; countably 
infinite unions of points would still have measure zero. See Skyrms (1983).
19 Perhaps an expansion by mere rearrangement of non quanti atoms would seem to violate con-
servation principles, whereas the interposition of non quanti voids would not, if void is not a 
conserved quantity, so to speak.
20 For provocative discussion of the bisection principle and its possible denial, see Benardete 
(1964, pp. 240 ff).
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In this, and other objections of this kind, satisfaction is given to its partisans by telling them 
that not only two indivisibles, but ten, or a hundred, or a thousand do not compose a divis-
ible and quantifiable magnitude [grandezza divisible e quanti]; yet infinitely many of them 
may do so. (EN 8:77/D 39)

Nearly all the uses of the idea of the distinction between quanti and non quanti in 
those passages is devoted to the metrical concept. Cardinal properties are involved 
only in a rather indirect way, when the non quanti components are allowed to be in-
finitely many in order to free up the metrical properties of the finite quantities com-
posed of them. There is no indication of Galileo holding that infinite multitudes may 
not be judged equal in cardinal terms because they are non quanti. The indivisible 
parts, components, atoms and voids are non quanti; the status of infinite multitudes 
as such remains out of the spotlight.

There is a single phrase at the start of the long passage above, from EN 8:71, that 
would seem to imply that infinite multitudes cannot be quanti, when Galileo de-
scribes a line as “divided into parts that are quantified and consequently numbered 
[consequenza numerate].” Taken at face value, this says that being quanti entails 
being numbered, which could well mean having a finite cardinality, rather than, say, 
just being ‘reckoned’ into measurable units. If being quanti directly implies a finite 
cardinality in this way, then infinite multitudes will trivially be non quanti, and 
counting an infinite multitude as a ‘quantity’ would be a ‘contradiction in terms’, 
as Knobloch puts it. It is unclear how much weight to assign to this line and to 
this potential reading of it, but interpreters following Knobloch’s lead will want to 
fasten onto it as evidence that infinite multitudes, just in virtue of cardinality, are 
automatically non quanti for Galileo.

The distinction between quanti and non quanti comes back to the fore most 
clearly a little later when Galileo returns to the puzzle of the concentric circles and 
his solution to it based on the analysis of rotating polygons. Again we can sidestep 
the details of the analysis and focus on what Galileo says about the limit case of 
circles:

If we were to apply similar reasoning to the case of circles, we should have to say that 
where the sides of any polygon are contained within some number, the sides of any circle 
are infinitely many: the former are quantified [quanti] and divisible, the latter unquantifi-
able [non quanti] and indivisible. (EN 8: 95/D 56)

Although it is clear that the sides of the polygon are finite, quanti and divisible, 
whereas those of the circle are infinite, non quanti and indivisible, it is not obvi-
ous that quanti and non quanti refer to more than just the metrical properties of the 
sides, as one of three distinct categories of properties, roughly: cardinality, measure, 
and divisibility. And that is, in fact, how I am inclined to read the passage.

For the final reason that leads me to interpret non quanti in Galileo as only an 
intrinsic metrical characterization of indivisibles, and not applying to infinite mul-
titudes just in virtue of their being cardinally infinite, consider a key element of the 
demonstration of Theorem 1, Proposition 1, in Two New Sciences. This proposition 
is the mean-value theorem for free fall, i.e., the law of falling bodies which says that 
the time required for an object traveling with uniformly accelerated motion across 
a given distance is the same as that which would be required for an object traveling 
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with uniform motion of half the maximum and final degree of speed of the first. 
Galileo’s proof employs a version of the method of indivisibles, taking aggregates 
of ‘all parallels’—thus infinite aggregates of parallels—cutting across the triangles 
and quadrilaterals that contain them. (See Fig. 2.)

Points on the line AB are taken to represent instants of time, and the parallels 
drawn from those points across to AIE or GF in the figures in Galileo’s diagram rep-
resent degrees of speed, either increasing or ‘equable.’ The parallels do the work of 
establishing a one-one correspondence between the instants of time and the degrees 
of increasing speed, as well as a one-one correspondence between the instants and 
the degrees of equable speed. On the strength of those correspondences, Galileo 
is able to conclude that there are “just as many degrees of speed not increased but 
equable”, and “there are just as many momenta of speed consumed in the acceler-
ated motion as in the equable motion” (EN 8:208–209/D 165–166). ‘Just as many’ 
here is the Latin totidem. It is, again, a paradigmatically cardinal treatment of com-
parison of the aggregates of parallels, despite their being infinitely many. Knobloch 
is quite right to observe that Galileo does not treat the parallels as having a sum; 
Galileo’s ‘aggregate’ does not indicate that the indivisible points or parallels can be 
added together.21 Despite this, the aggregates of points and parallels have cardinal 
properties: one-one correspondence implies ‘just as many,’ despite the fact that the 
points and parallels are infinite in multitude.

In my view, Galileo’s use of one-one correspondences between infinite multi-
tudes to justify cardinal claims of equality—the non-numerical but precise claim 
that there are just as many Xs as Ys—is the strongest evidence that Galileo does 
not regard infinite multitudes per se as falling under the rubric of non quanti, which 

21 Knobloch (1999, p. 93; 2011).

Fig. 2  Diagram for proof of 
the mean velocity theorem for 
falling bodies. (EN 8:208)
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seems to be primarily a metrical concept rather than a cardinal one. There is a risk in 
this argument, of course, since Galileo’s claims of cardinal equality between infinite 
multitudes also appear to run directly contrary to the very philosophical pronounce-
ment that is driving our present inquiry, namely, that “one infinity cannot be said to 
be greater or less than or equal to another” (NE 8: 78/D40).22 It may thus ‘prove too 
much’ to appeal to Galileo’s mathematical practice, when evaluating his considered 
philosophical position. The practice in some places appears to be patently at odds 
with the philosophy, even apart from the question of non quanti; perhaps it is incau-
tious to draw a philosophical conclusion from it.

In fact, however, the cases are not truly parallel. The clash between the proof of 
Thm. 1, Prop. 1, described on the Third Day and Salviati’s denial of comparability 
among infinites during the First Day’s discussion of paradoxes at least takes place 
across relatively distant points within Two New Sciences. And of course the ‘math-
ematical demonstrations’ are attributed to ‘the Author’ of the Latin treatise On Lo-
cal Motion, i.e. Galileo, and not necessarily endorsed in every respect by the more 
philosophically drawn Salviati. As we saw above, however, Galileo’s (Salviati’s) 
assertions of cardinal equality among infinite multitudes of indivisibles—between 
the sides and the voids—occur even in the same breath as his careful efforts to 
distinguish quanti from non quanti. If infinite multitudes are supposed to be cardi-
nally incomparable on grounds of being non quanti, Galileo’s analyses of the rolling 
circles and polygons in those texts are then grossly mistaken on their own terms. 
This strikes me as a needlessly damaging interpretation. A more natural and less 
destructive reading is to take non quanti as a metrical concept that is not meant to 
cover just any case of infinite multitude, and further to take the denial by Salviati, 
later in the First Day, of comparability among infinites to be based on a somewhat 
different mix of considerations, which we shall consider shortly below.

To sum up, Galileo’s distinction between quanti and non quanti appears to be 
metrical rather than cardinal in character. While it marks out a crucial difference 
between the intrinsic properties of divisible parts and those of indivisible ones—
only the former are quanti and suitable for ‘measure’—it does not by itself rule out 
judgments of cardinal equality among infinite multitudes.

Before pressing ahead with this result, it is worth noting that we should not be 
too quick to pull apart the metrical and cardinal concepts of quantity in Galileo, 
as if they were wholly severable in his thought.23 The idea of cardinality as some-
thing determined by one-one maps—by functions on sets—would not be properly 

22 Another possibility is that Galileo’s denial that ‘greater’, ‘less’ and ‘equal’ apply in the infinite is 
carefully consistent with his judgments that there as just as many Xs as Ys in some cases of infinite 
multitudes: perhaps the Xs and the Ys can be just as many without falling under the term ‘equal’. 
If so, however, it would seem to be only a matter of a word, as no richer notion of cardinal equal-
ity seems available for which ‘just as many’ is not sufficient. A more substantial possibility here 
would be that for Galileo, ‘greater’, ‘less’ and ‘equal’ are essentially metrical notions, and their 
cardinal counterparts ‘more’, ‘fewer’ and ‘equally many’ cannot be applied on the basis of one-one 
maps without corresponding geometrical judgments in place as well. I am more sympathetic to this 
idea but cannot pursue it here; a few related points are discussed below.
23 I am indebted here to Katherine Dunlop.
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distilled until well into the eighteenth century or even later. Galileo’s handling of 
one-one relations between elements of multitudes, especially infinite multitudes, is 
typically mediated by geometrical relations between the mathematical objects that 
contain those elements. In the case of Aristotle’s wheel, for instance, the one-one 
correspondences between sides of the rotating polygons (including the circles) and 
parts and voids in the lines are established under the aegis of geometrical relations 
between sides of the polygons and the parts of the lines they touch. For instance, 
the judgment that the line passed over by the smaller circle contains as many voids 
as there are sides on the circle is based on the following consideration. For every 
length of the line BF passed over by a side of the larger circle, an equal segment of 
the equal line CE must be passed over by a side of the smaller circle. (See, again, 
Fig. 1.) Since each side of the smaller circle is shorter than the segment of the line 
CE that it passes over, the side touches only some part of that segment; thus there 
must a be void interval remaining in that segment which the circle ‘skips over’ in its 
passage. (Why must each side of the smaller circle be shorter than those of the larger 
circle? Because their ratio is supposed to be preserved when we shift from the case 
of finite polygons to the case of infinilateral circles.) The one-one correspondences 
among the elements of the figures—sides, parts, voids—are thus fixed within a pat-
tern of systematic geometrical relations between the figures themselves.

Nowadays measurements of cardinality require that the two objects compared 
are sets, and this remains a natural counterpart (and perhaps remnant) of the earlier 
thought that the two measured objects are wholes. The measurements themselves 
are effected by functions, which need not require any rule or procedure by which to 
relate the elements of the two sets. In the early modern context, however, the idea 
of a completely arbitrary relation between the elements—a purely ‘combinatorial’ 
concept of function—would have been rather alien. Thus measurement of cardinal-
ity still needed to be supplemented by other considerations, ones in which metrical 
concepts often had important roles to play. When we find, as we shall below, Galileo 
limiting judgments of cardinal equality among infinite multitudes to cases with spe-
cific metrical constraints—namely, that the objects be bounded quantities—there 
should be no surprise. This arises organically from the way in which geometrical 
concepts remain coeval with more purely arithmetical ones in his thought.

1.5  Euclid’s Axiom Revisited: Infinity, Magnitude  
and Infinite Number in Galileo

If our conclusions in the last section are right, then when Galileo denies comparabil-
ity among infinite classes of numbers, no simple appeal to the distinction between 
quanti and non quanti will offer a route of escape from overturning the Bijection 
Principle. Infinite multitudes are not automatically non quanti, at least with respect 
to cardinal comparisons, and therefore they are not out of play as potential coun-
terexamples to the Bijection Principle. Likewise, Knobloch’s original proposal that 
Euclid’s Axiom is not invalidated on Galileo’s account because infinites are non 
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quanti seems not to be fully sustained either. If the various infinite number classes 
are non quanti and thereby outside the scope of Euclid’s Axiom, that remains to be 
shown; it does not follow merely from their being infinite in multitude.

Yet Knobloch’s defense of Galileo in the case of Euclid’s Axiom strikes very 
close to the truth. The most natural concept of size for the idea that the whole is 
greater than the part is a metrical one rather than a cardinal one. So an extension 
of Galileo’s distinction between quanti and non quanti parts of lines or solids to 
multitudes of those parts could comfortably rule that only multitudes with a finite 
total measure can count as quanti and thus qualify for comparison. For whereas the 
concept of infinite multitude might admit of precise mathematical handling in terms 
of maps, classes, etc., the concept of infinite measure—infinite magnitude, as we 
might say—is less amenable to mathematical analysis and would arouse more skep-
ticism. And Galileo himself seems to confine mathematical analysis to objects that 
are in some way limited in magnitude. As Knobloch notes, Galileo’s term for this 
is terminata or ‘bounded.’24 When considering a line or a circle or a solid as com-
posed of infinitely many indivisibles, it qualifies as a quantity fit for mathematical 
treatment only if it is itself a bounded magnitude. Galileo remarks on the “infinite 
difference and even repugnance and contrariety of nature in a bounded quantity in 
passing over to the infinite” (EN 8:83/D 46):

Consider, then, what a difference there is < in moving from > a finite to an infinite circle. 
The latter changes its being so completely as to lose its existence and its possibility of 
being < a circle>. For we understand well that there cannot be an infinite circle, from which 
it follows as a consequence that still less can a sphere be infinite; nor can any other solid 
or surface having shape be infinite. What shall we say about this metamorphosis in passing 
from finite to infinite? (EN 8:85/D 47)

In fact Galileo does not say exactly what his answer to this question is, beyond the 
idea that the nature of the objects in question changes or is lost entirely in passing to 
the infinite, and, in his earlier words of admonition, “These are among the marvels 
that surpass the bounds of our imagination and that must warn us how gravely one 
errs in trying to reason about infinites by using the same attributes that we apply 
to finites; for the natures of these have no necessary relation between them” (EN 
8:83/D 46). But the warning is clearly about passing from the intelligible to the un-
intelligible, and as Knobloch keenly observes, Galileo’s language and argumenta-
tion clearly evoke that of Nicholas of Cusa, who originated the distinction between 
(in the Latin) quanta and non quanta and imbued the whole topic with almost mys-
tical significance.25 If Galileo does not quite say that the infinite circle and sphere 
are non quanti, the allusions to Nicholas may in effect do this for him.

With that in mind, a second look at the lesson Galileo draws from the paradox of 
the natural numbers readily finds the same concern to limit comparisons to bounded 
quantities: “And in the final conclusion, the attributes of equal, greater and less have 
no place in infinite, but only in bounded quantity [quantità terminate]” (EN 8:79/D 

24 Knobloch (1999, p. 92). See also Knobloch (2011).
25 See Nicholas ([1440] 1985), De Docta Ignorantia, Book 1, Chaps. 11–23; see especially 
Chap. 14 for use of the distinction between quanta and non quanta.
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41). This is revealing, for it shows that Galileo sees the crux of the problem to be the 
unboundedness of the multitude of natural numbers. His contrast between ‘infinite’ 
and ‘bounded’ strongly suggests that he is thinking of magnitude rather than multi-
tude. ‘Bounded’ of course has cardinal as well as metrical senses, but it would be re-
dundant here to point out that the infinite multitude of natural numbers is cardinally 
unbounded. By contrast, pointing out that the natural numbers taken together are 
infinite and unbounded in magnitude distinguishes them in a special way, for an in-
finite multitude is not always unbounded in magnitude. Even on Galileo’s view, infi-
nitely many points may compose a bounded quantity such as a finite globe. Because 
the individual points themselves are non quanti, taking infinitely many of them in 
aggregate need not total up to an unbounded quantity; they can consistently be taken 
to compose a bounded quantity of finite magnitude such as a little globe of gold. 
The same could not be true of quanti parts, unless they happen to form a convergent 
infinite series (e.g., 1/2 + 1/4 + 1/8 + 1/16, &c., whose sum is equal to 1). Apart from 
this exceptional case (which was much disputed at the time and is not mentioned by 
Galileo in connection with the topic of quanti and non quanti), any infinite collection 
of finite quantities will surpass any finite size and thus be unbounded.

When Galileo holds the multitude of natural numbers to be infinite and unbound-
ed, it seems he is regarding each natural number as if it were a ‘quantifiable’ part of 
all the naturals. This is not so strange an idea, and it shows that the concept of num-
ber at work includes metrical as well as cardinal elements. Taking the natural num-
bers to be multiples of the number one as the basic unit of ‘arithmetical measure’, 
each natural itself is a finite quantity. If all the naturals are taken together there is no 
way for the total to be bounded, i.e. less than or equal to some finite magnitude, i.e. 
the magnitude of some finite number. Their aggregate would instead appear to be an 
infinite magnitude, as if a colossal infinite number made up of all the finite numbers 
or infinitely many copies of the unit number one.

If this is how the infinity of natural numbers is understood by Galileo, then there 
is a case to be made that it too qualifies as ‘non-quantifiable’, like the infinite globe 
or infinite circle, not in virtue of its smallness but in virtue of its greatness. But it 
is metrical greatness—greatness of magnitude—rather than cardinal greatness that 
yields the verdict of non quanti. For there is no cardinal difference between the 
infinity of natural numbers and the infinity of indivisibles in a little globe of gold, 
or the infinity of sides of a circle. There is textual evidence that Galileo thinks of 
the idea that the natural numbers are susceptible to comparative measurement as 
representing the natural numbers as components in a single colossal number with 
infinitely many finite parts. And it comes directly in his discussion of the paradox 
of the natural numbers. Having established the one-one correspondences among 
squares, roots and naturals, Galileo notes:

That being the case, it must be said that square numbers are as numerous as all numbers, 
because they are as many as their roots, and all numbers are roots. Yet at the outset we said 
that all the numbers were many more than the squares, the greater part [maggior parte] 
being non-squares. Indeed, the multitude of squares diminishes in ever-greater ratio as one 
moves on to greater numbers, for up to one hundred there are ten squares, which is to say 
one-tenth part [parte] are squares; in ten thousand, only one-hundredth part [parte] are 
squares; in one million, only one-thousandth. (EN 8:78–79/D 40–41)
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The farther the series of numbers is finitely extended, the smaller the share of 
squares becomes, so it seems especially peculiar how in the infinite case a transi-
tion occurs to make the squares and naturals equal. Now notice exactly how Galileo 
phrases his point in the line that follows:

Yet in the infinite number [numero infinito], if one can conceive that, it must be said that 
there are as many squares as all numbers together. (Ibid.)

The comparison between the squares and the naturals that shows them to be equal 
takes place ‘in the infinite number’, of which, it seems, the squares form a share or 
part. So it appears that comparison of infinite multitudes of numbers, at least, pre-
supposes a single number after all—not in order to stand as the absolute cardinality 
of the multitudes being compared, but to be a common object of which each multi-
tude is some proportional part and can be compared in ratio to the other. The com-
mon object in this case is a number because it is composed of numbers, the infinite 
aggregate of all numbers. Perhaps if comparisons were being made among infinite 
multitudes of other types, the need for a common object would not automatically 
entail the existence of an infinite number but of something else, say, the aggregate of 
all stars in the heavens, or, to use a case straight from Galileo’s texts, the aggregate 
of all parallels in a given figure or points in a line or sides on a circle. Galileo is not 
explicit about the details. But it is clear enough in the case of the natural numbers 
that comparisons among its infinite subclasses are conceived by Galileo to involve 
an infinite number as the common object containing the compared classes as parts.

The same strand of thought is carried through when Galileo returns to the para-
dox later in the dialogue. It appears this time when Salviati introduces the revision-
ary suggestion that infinity be regarded, if anything, not as a number standing at the 
far end of the natural numbers but instead as the number one:

In our discussion a little while ago, we concluded that in the infinite number [numero 
infinito], there must be as many squares or cubes as all the numbers because both < squares 
and cubes > are as many as [tante…quanti] their roots, and all numbers are roots. Next we 
saw that the larger the numbers taken, the scarcer became the squares to be found among 
them, and still rarer, the cubes. Hence it is manifest that to the extent that we go to greater 
numbers, by that much and more do we depart from the infinite number. From this it fol-
lows that turning back (since our direction took us always farther from our desired goal), 
if any number may be called infinite, it is unity. And truly, in unity are those conditions 
and necessary requisites of the infinite number. I refer to those < conditions > of containing 
in itself as many squares as cubes, and as many as all the numbers < contained>. (EN 8: 
82–83/D 45)

Leave aside the new suggestion that the infinite number is unity or one. What mat-
ters for us is Galileo’s consistent appeal to the idea of an infinite number in his 
handling of comparisons between the squares, cubes, roots and naturals. For these 
classes of numbers to be compared to one another, it seems as if they must be able 
to stand in ratio to one another and to form parts or shares of some single common 
whole, the infinite number formed out of all the natural numbers taken together  
(at least prior to Salviati’s revisionary identification of the infinite number with 
unity). Such a number would indeed be infinite in magnitude, unbounded, and com-
fortably regarded as ‘non-quantifiable’ on account of its greatness.
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It is instructive to note that in the instances in which Galileo relies on compari-
sons of equality among infinite multitudes in his avowed mathematical arguments, 
those multitudes are confined to bounded spaces of finite magnitude. His proof of 
Thm. 1, Prop. 1 in On Local Motion, for example, trades on the cardinal equality 
of degrees of speed and instants in time; but these ‘infinites’ are represented as 
aggregates of points or parallels within bounded geometrical figures. Unbounded 
magnitude is in effect ruled out from the start, and with that safe harbor established 
it seems Galileo is prepared to make use of cardinal comparison, or at least cardinal 
equality, among infinites. ‘Safe harbor’ perhaps suggests too much, for we have 
not seen whether it is a sufficient condition for infinite collections to be cardinally 
comparable that they be bounded in magnitude. The present suggestion is only that 
Galileo seems to treat it as a necessary condition, one which the aggregate of paral-
lels in a bounded figure satisfies but the collection of all natural numbers does not. 
What else, precisely, is required for a sufficient condition for cardinal comparabil-
ity is not immediately clear; though as suggested before, perhaps some geometrical 
relation or finitary rule or procedure would be expected in order to establish the 
one-one mapping among the elements.

The result of all this would appear to be that, given Galileo’s reliance on the idea 
of an infinite number as a common whole in framing comparisons involving all 
the natural numbers taken together, his distinction between quanti and non quanti 
can be extended to count the infinity of natural numbers as ‘non-quantified’—not 
because they are infinite in multitude but because the infinite number they com-
pose would be unbounded in magnitude and thus unfit for comparison. This then 
also preempts the natural numbers, and any similar infinite class of numbers, from 
constituting a potential counterexample to Euclid’s Axiom. Such infinites, by virtue 
of their magnitude, are non quanti and unfit for comparison, and thus do not fall 
within the scope of Euclid’s Axiom in the first place. So with respect to the specific 
paradox of the natural numbers, Knobloch’s diagnosis appears to be correct.

Yet not all infinite multitudes will likewise amount to infinite magnitudes when 
taken all together, and those which do not, such as infinite multitudes of indivisibles 
in bounded lines or solids, may still be open for comparison in cardinal terms by 
means of one-one maps. There are as many sides in the circle as indivisible parts 
in the line it traverses. The difficulty now reappears just as it emerged in Simpli-
cio’s original objection. If finite and bounded quantities consist of infinitely many 
indivisible points—their non quanti parts—examples can easily be found in which 
the whole is equal to the part, by use of one-one correspondences and the Bijection 
Principle. Parallels can be dropped from all the points on the diagonal of a square 
to all those on one of its sides, and yet by rotating that side back up to the diagonal, 
the points on the side can be put into one-one correspondence with those of only 
a part of the diagonal. Thus all the points on the diagonal can be put into one-one 
correspondence with the subclass of those points composing the part of it congruent 
with the rotated side.26 Again Euclid’s Axiom and the Bijection Principle conflict: 
the diagonal is both greater than and equal to its part.

26 This so-called Diagonal Paradox was well-known by the seventeenth century; see Leibniz’s use 
of it at A VI, 3, 199. As noted by Lison (2006/2007, p. 199fn3), the example goes back at least to 
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If Galileo’s denial of comparability is limited to cases in which infinite multi-
tudes constitute aggregates of infinite magnitude, there is no escape from contradic-
tion in the finite bounded case. But if his denial is taken to apply across the board 
even to those infinite multitudes that compose only bounded magnitudes, then it 
seems either Euclid’s Axiom or the Bijection Principle (or both) must be a casualty 
of his analysis after all.

Similarly, a limited denial of comparability of infinites would allow Galileo’s 
use of the Bijection Principle in his mathematical practice to remain in harmony 
with his philosophical pronouncements, since he appears to confine that use to in-
finite multitudes housed within bounded quantities. But an across-the-board denial 
of comparability among infinites will yield a clash with his mathematical practice 
of applying the Bijection Principle in reasoning about infinite classes of indivisibles 
in the bounded cases.

The lesson of our inquiry is that the distinction between quanti and non quanti 
will not allow Galileo a fully reconciled position that avoids contravening at least 
some major mathematical principle of comparison. If all infinite multitudes are non 
quanti, then Galileo’s ready use of cardinal comparison among infinite multitudes 
in bounded cases is, as we have seen, grossly at odds with his philosophy on this 
point, even in the very texts in which he articulates his notion of non quanti. On the 
other hand, if infinite multitudes are non quanti only when they constitute unbound-
ed magnitudes—as I have been suggesting—then paradox reemerges in cases in 
which infinite multitudes compose only finite and bounded magnitudes, and Galileo 
has no choice but to abandon either Euclid’s Axiom or the Bijection Principle.

Unless, that is, there is altogether another way for him to solve paradox.

1.6  Leibniz’s Alternative

In notes written in 1672 on Two New Sciences, Leibniz reviews Galileo’s paradox 
of the natural numbers:

He [Galileo] thinks that one infinity is… not greater than another infinity… And the dem-
onstration is worth noting: Among the numbers there are infinite roots, infinite squares, 
infinite cubes. Moreover, there are as many roots as numbers. And there are as many 
squares as roots. Therefore there are as many squares as numbers, that is to say, there are as 
many square numbers as there are numbers in general [in universum]. Which is impossible. 
(A VI, 3, 158)

Leibniz sees that the equality of the squares with the natural numbers will violate 
Euclid’s Axiom and that one option is simply to reject the axiom in the case of the 

Ockham. Note also that similar examples can be constructed even with multitudes containing only 
quanti parts, provided their total measure remains finitely bounded. Considering a line segment 
as composed of a sequence of geometrically decreasing non-overlapping subsegments, one can 
easily construct a one-one correspondence between the subsegments of the side of a square and 
the subsegments of the diagonal, even though the side can be shown by rotation to be equal to a 
part of the diagonal.
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infinite, which he takes to be Galileo’s solution. Yet, as we observed once before, 
he regards this as unacceptable, an admission that the axiom itself has counterex-
amples, and he appears to see another way out of the paradox:

Hence it follows either that in the infinite the whole is not greater than the part, which is the 
opinion of Galileo and Gregory of St. Vincent, and which I cannot accept; or that infinity 
itself is nothing, i.e. that it is not one [Unum] and not a whole [totum]. (Ibid.)

What is Leibniz’s alternative to (what he takes to be) Galileo’s answer? First let us 
understand the elements of his reply.27 When Leibniz denies that infinity is one or a 
whole he is not saying that there is no such thing as infinity, but rather he is deny-
ing that an infinity of things forms a unity or single whole. It is not the number one 
(contrary to Salviati’s revisionary suggestion), nor is it to be understood as a single 
set with infinitely many elements. Leibniz’s position here is subtle. There are actu-
ally infinitely many natural numbers, on his view, but they do not form a totality. 
There is only a plurality or multitude of them, but no one thing, no single object, to 
which they all belong as constituents. There is no set of all natural numbers, so to 
speak, but only a proper class. When Leibniz says “infinity itself is nothing” he is 
not denying that there are infinitely many numbers; he means there is nothing over 
and above the natural numbers themselves. To call them ‘infinite’ is not to posit a 
special entity—a super-number or super-whole embracing all the naturals and larger 
than every finite number. It is, rather, to describe the multitude of natural numbers 
in a particular way. Exactly what he means by ‘infinite’ we shall discuss shortly 
below.

It is fairly straightforward to see how this can solve the paradox. By denying that 
an infinite multitude can form a whole, Euclid’s Axiom is taken out of play, and 
along with it the consequence that there must be more naturals than squares. The in-
finite multitude of natural numbers is not a whole of which the square numbers form 
a part, so the infinity of natural numbers does not have to be said to be greater than 
the infinity of the squares. This removes the contradiction that the naturals are both 
greater than and equal to the squares. Note that it also does so without contravening 
Euclid’s Axiom. If there are no infinite wholes, then there is no whole that can fail 
to be greater than the part, and so no counterexample to the axiom.

It is less clear whether infinite multitudes can or cannot be compared to one 
another at all on Leibniz’s view. Unlike the earlier strategy of looking to classify 
infinites as non quanti and thereby preclude them from comparison altogether, de-
nying that infinites form wholes only takes them out of the specific jurisdiction of 
Euclid’s Axiom. It remains open, at least, to compare them using one-one maps and 
the Bijection Principle. What comparisons, if any, does Leibniz allow under this 
principle? We will not resolve the issue completely in the present essay, but a few 
points may be instructive nonetheless.

I think the matter turns on what is involved in the idea of there being ‘as many’ 
elements in one class as in another. As before, one thought is that in order for there 
to be as many Fs as Gs, the must be a number that records how many Fs there are, 

27 For related discussion, see Levey (1998) and Arthur’s introduction to Leibniz (2001). 
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and likewise a number to record the cardinality of the Gs. If those two numbers are 
equal, then there are as many Fs as Gs, and not otherwise. For reasons we shall not 
pursue, however, Leibniz holds that there is no such thing as an infinite number, no 
number that could say of an infinite class just how many elements there are in it.28 
To call a class infinite is not to assign it a number, on his view. If infinite classes 
are without number, and if there are as many Fs as Gs only if they are the same in 
number, then it cannot be said that there are as many Fs as Gs when they are infinite. 
There may well be one-one correspondences between the Fs and the Gs, but this 
will not automatically yield the conclusion that they are equal in any sense beyond 
the idea that both classes are infinite.

Leibniz does not, to my knowledge, explicitly say that equality of class size—in 
the sense of ‘as many Fs as Gs’—requires equality of number. But it is clear that 
he thinks the question of equality of number is relevant to the analysis of Galileo’s 
paradox. For in a subsequent discussion of the paradox, in the dialogue Pacidius to 
Philalethes (1676), he systematically frames the issue not in terms of there being as 
many squares as numbers, as he had in the earlier notes on Two New Sciences, but in 
terms of ‘the number of all squares’ and ‘the number of all numbers’ (A VI, 3, 550). 
The interlocutors consider Galileo’s response to the paradox and reject it:

CHARINUS: Please allow me to hear first from Gallutius what Galileo said.
GALLUTIUS: He said: the appellations ‘greater’, ‘equal’ and ‘less’ have no place in the 
infinite.
CHARINUS: It is difficult to agree with this. For who would deny that the number of 
square numbers is contained in the number of all numbers, when squares are found among 
all numbers? But to be contained in something is certainly to be a part of it, and I believe it 
to be no less true in the infinite than in the finite that the part is less than the whole.
(A VI, 3, 551/Ar 178–179)

The commitment to Euclid’s Axiom is clear, as is the deployment of the language of 
parts and wholes in describing the relation between the squares and the natural num-
bers. In fact the view here seems to integrate ‘number’, ‘whole’, ‘part’ and ‘contain-
ment’ quite fully. Not only are the square numbers among all the numbers, but also 
the number of squares is a part of the number of all numbers; the latter number is 
the whole that contains the part. Leibniz’s strategy for solving the paradox by deny-
ing that the natural numbers forms a whole is thus expressed in subsequent lines by 
Charinus through the claim, “there is no number of all numbers at all, and that such 
a notion implies a contradiction” (ibid.). The denial that there is such a number is 
the denial that the natural numbers form a whole. Leibniz’s principal spokesman, 
Pacidius, then praises Charinus’s answer as “very clear, and if I am any judge, true”, 

28 Leibniz has a few different lines of argument to offer against infinite number, including, notably 
for us, a deployment of Galileo’s paradox that expressly says infinite numbers are “impossible” 
because “it is impossible that this axiom”—Euclid’s Axiom—“fails” (A III, 1, 11). (This passage 
comes from some remarks by Leibniz on Galileo’s paradox, written in 1673.) Here an infinite 
number is presumably understood as a whole constituted of infinitely many units or the combi-
nation of all natural numbers, themselves taken as wholes composed of units. For some related 
discussion, see Levey (1998).
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and adds, “for it is necessary that what has contradictory consequences is by all 
means impossible” (ibid.)

Again, Galileo does not quite say directly that the natural numbers form a whole; 
Leibniz is reading this into Galileo’s position. But as we saw, Galileo’s account of 
what it would be for the natural numbers to be comparable to the squares or cubes, 
etc., seems to involve the existence of an infinite number, made up of all the num-
bers, as the common object of which the squares form a part. So while Galileo does 
not say that the (cardinal) equality of two infinite multitudes must be equality in 
number, in the sense that there is some single number that says precisely how many 
elements there are in each multitude, nonetheless for the case of comparison of 
infinite number classes his analysis does seem to require the existence of an infinite 
number in which those classes are contained. It is not evident that Leibniz has dis-
cerned all this in Galileo—he does not describe Galileo’s account in enough detail 
to tell—but when he attributes to Galileo the idea that the natural numbers form a 
whole, it seems he has hit upon the truth.

Leibniz’s solution to the paradox does not require him to reject Euclid’s Law. 
And it seems also to leave the Bijection Principle intact, if only because the prin-
ciple is silent about the distinction between whole and multitudes, and silent also 
about the concept of number, and so is not called into question by Leibniz’s denial 
of infinite wholes and infinite numbers. It remains to ask whether Leibniz himself 
will endorse the Bijection Principle or any related form of comparability of infi-
nite classes using one-one maps; we turn to that in the next section. Before doing 
so, however, it should be noted that Leibniz’s solution does not completely disarm 
Galileo’s paradox .

Just as the appeal to the distinction between quanti and non quanti left a version 
of the paradox untouched when reconfigured from an unbounded infinite case to a 
bounded case—for instance, the Diagonal Paradox—so too there remains a prob-
lem for Leibniz’s strategy. For in order to prevent Euclid’s Axiom and the Bijection 
Principle from coming into conflict by appeal to the distinction between wholes and 
pluralities, he will have to deny that any infinite multitude forms a whole. This goes 
for bounded and unbounded infinite multitudes alike. In mathematical examples of 
the unbounded case, this means that the classes of natural numbers, of squares, etc., 
are not wholes. In a natural-world example, this means that the infinite universe 
itself does not form a whole—a conclusion Leibniz expressly draws on the basis 
of his analysis of Galileo’s paradox.29 But both mathematics and the natural world 
also provide bounded cases of infinite multitudes: the Diagonal Paradox for finite, 
bounded geometrical figures; and any given finite body in nature, since according 
to Leibniz every body is actually infinitely divided into parts.

29 Leibniz writes: “God is not the soul of the world can be demonstrated; for the world is either 
finite or infinite. If the world is finite, certainly God, who is infinite, cannot be said to be the soul 
of the World. If the world is supposed to be infinite, it is not one Being or one body per se (just as 
it has elsewhere been demonstrated that infinite in number and in magnitude is neither one nor a 
whole, but infinite in perfection is one and a whole). Thus no soul of this sort can be understood. 
An infinite world, of course, is no more one [Being] and a whole than an infinite number, which 
Galileo has demonstrated to be neither one nor a whole” (Leibniz 1948, p. 558).
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In the case of geometrical figures, it is easy enough for Leibniz to accept the 
verdict that they are not truly wholes. After all, they are, on his view, only entia 
rationis and not real beings. The same conclusion is harder to accept in the case 
of bodies, for it will quickly preclude any body from truly being a single whole, 
calling into question its reality and indeed the reality of the entire corporeal world. 
Certain interpretations of Leibniz might welcome this result, while others would 
find it an unhappy fit with his views at least for important parts of his career.30 
Leaving aside the implication for ‘idealist’ and ‘realist’ interpretations of Leibniz, 
however, it should be noted that Leibniz shows no sign of intending his analysis of 
Galileo’s paradox to issue in a denial of the reality of finite corporeal beings. Since 
Galileo, like Leibniz, regards bodies as infinitely divided into parts, if he were to 
take Leibniz’s path of escape from overturning Euclid’s Axiom and the Bijection 
Principle, he too would face this discomforting consequence for the natural world. 
Thus although Leibniz’s distinction between wholes and multitudes might provide 
a way to resolve the contradiction in mathematics alone, the paradox continues to 
hold some hostages in metaphysics.

1.7  Comparability and the Definition of Infinite in  
Leibniz and Galileo

There are a few last pieces of Leibniz’s view that still need to be articulated, con-
cerning comparability, number and infinity. Leibniz rejects both infinite totalities 
and infinite numbers. Does he also reject the idea that infinite classes can be com-
parable? The squares and the naturals cannot literally be equal in number, and they 
cannot be equal parts of a single common object, the infinite number. But might 
they nonetheless be equal in the general sense of being ‘just as many’, in virtue of 
there being a one-one correspondence between them? That is, does Leibniz endorse 
the Bijection Principle even for infinite classes?

In at least one clear statement, first noted by Russell, Leibniz denies the claim 
of equality for infinite classes despite the existence of a one-one correspondence 
between them:

There is an actual infinite in the mode of a distributive whole, not of a collective whole. 
Thus something can be enunciated concerning all numbers, but not collectively. So it can 
be said that to every even < number > corresponds its odd < number>, and vice versa; but 
it cannot be accurately said that the multitudes of odds and evens are equal. (GP II, 315)

The link between speaking of ‘all numbers’ and taking them as a ‘collective whole’ 
is explicit, and it seems that equality of the odds and the evens has to be denied 
precisely because such infinite classes do not form collective wholes (presumably 
‘distributive whole’ just means multitude or plurality here). Leibniz’s solution to 
Galileo’s paradox protects Euclid’s Axiom but in turn leads him to reject the Bijec-
tion Principle for the infinite case—if, that is, this passage reflects his considered 

30 For an overview of this dispute in the interpretation of Leibniz, see Levey (2011).
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position. It should be noted that the passage occurs on a separate slip of paper 
enclosed in Leibniz’s copy of his letter of 1 September 1706 to Bartholomew Des 
Bosses, and Leibniz has crossed it out.31 It is hard, therefore, to know how much 
weight to give it.

Even if it were Leibniz’s view that the odds and evens are not equal, it cannot 
be the entirety of Leibniz’s position to deny comparisons involving infinite classes. 
For he has to preserve at least one crucial claim of comparability for infinite classes, 
namely, that there are more elements in an infinite class than in any finite one. This 
is essential to Leibniz’s definition of infinite:

When it is said that there are infinitely many terms, it is not being said that there is some 
specific number of them, but that there are more than any specific number. (GM III, 566)

This is no fleeting aspect of Leibniz’s philosophy of mathematics but his deeply 
held definition of ‘infinite’ with ramifications across his thought, and thus he is 
quite committed to the coherence of this comparison between infinite and finite 
classes. Interestingly, Galileo, in the character of Sagredo, denies that infinite quan-
tities can be compared even with finite ones, apparently in an echo of Aristotle’s 
prohibition, in De Caelo 274a10 and 274b12, against ratios between finite and infi-
nite; cf. EN 8: 79–80/D 42.32 (Again, though, this may be limited to comparisons of 
magnitudes and not to multitudes.)

Taken just at face value, and if we include the crossed-out remark on the slip in 
the letter to Des Bosses, Leibniz may seem to have landed in almost the inverse of 
Galileo’s position: infinite multitudes cannot be said to be equal, but the infinite can 
be compared to the finite and judged to be (cardinally) greater. The particular ex-
ample Leibniz offers in denying equality among infinites is one about which Galileo 
would agree. For the evens and the odds would each constitute an unbounded infi-
nite magnitude if taken all together and thus fail to be quanti for Galileo, thereby 
preempting a judgment of equality.

Unlike Galileo, whose denial of comparability among infinites turns out to be 
linked to the concept of magnitude—infinite magnitudes are unbounded and thus 
non quanti and incomparable—Leibniz’s denial of comparability (or at least equal-
ity) among infinites relies only on the distinction between ‘collected’ wholes or to-
talities and multitudes, without any obvious reference to the concept of magnitude. 
So whereas Galileo can allow infinite multitudes of finite and bounded magnitude 
to be among the quanti and hence comparable, it is not clear that Leibniz can make 
the parallel allowance that those infinite multitudes of finite and bounded magni-
tude can count as wholes. Given similar opportunities to treat bounded mathemati-
cal magnitudes with infinitely many elements as wholes, he appears to take steps 
not to do so.33

31 See Leibniz (2007), p. 409.
32 Drake suggests that Galileo neither fully accepted nor fully rejected Aristotle’s principle (1974, 
42fn26).
33 See Levey (1998, 1999, 2003). For defense of the view that Leibniz’s strictures against infinite 
wholes only preclude wholes of infinite magnitude, and thus can allow wholes of finite magnitude 
that include infinitely elements, see Brown (2005).
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Either Leibniz has an unstated subtlety at work here in his restrictions on compa-
rability—one that allows the claim of ‘more than’ between infinite and finite classes 
but rules out the claim of equality among the evens and odds—or he is inconsistent 
in his statements across texts. I am inclined to think the denial of cardinal equality 
in the crossed-out passage is an outlier and not Leibniz’s considered view. As noted 
earlier, however, this matter will not be entirely resolved here. In any case, for now 
it is enough to note that insofar as Leibniz requires comparability of an infinite class 
with a finite one for his definition of ‘infinite’, infinite multitude is not eo ipso a 
barrier to it.

On the definition of ‘infinite’ there is a further illuminating, and perhaps ironic, 
connection between Galileo and Leibniz. In Two New Sciences, Galileo has the 
interlocutors consider the question of how many quanti parts a bounded continuum 
such as a finite line segment can be divided into. Finitely many or infinitely many? 
Salviati’s answer is that there are neither finitely many nor infinitely many, but 
something intermediate between the two:

Salviati: To the question which asks whether the quantified parts in the bounded continuum 
are finite or infinitely many [infinite], I shall reply exactly the opposite of what Simplicio 
has replied; that is, ‘neither finite nor infinite.’
Simplicio: I could never have said that, not believing that any middle ground is to be found 
between the finite and the infinite, as if the dichotomy or distinction that makes a thing 
finite or else infinite were somehow wanting and defective.
Salv.: It seems to me to be so. Speaking of discrete quantity it appears to me that there is a 
third, or middle, term; it is that of answering to every [ogni] designated number. Thus in the 
present case, if asked whether the quantified parts in the continuum are finite or infinitely 
many [infinite], the most suitable reply is ‘neither finite nor infinitely many, but so many 
as [ma tante che] to correspond to every specified number.’ To do that, it is necessary that 
these be not included within a limited number, because then they would not answer to a 
greater < number>; yet it is not necessary that they be infinitely many, since no specified 
number is infinite [infinito]. And thus at the choice of the questioner we may cut a given 
line into a hundred quantified parts, into a thousand, and into a hundred thousand, accord-
ing to whatever number he likes, but not into infinitely many < quantified parts>.
(EN 8: 81/D 43–44)

Galileo’s ‘middle term’ between finite and infinite is almost exactly Leibniz’s of-
ficial definition of infinite, differing only in whether the parts in the multitude are 
so many as to correspond to any specified number or to be more than any specified 
number. This quickly comes to the same thing, since, as Galileo points out, corre-
sponding to any specified number requires not being included in any limited num-
ber; so for any given number n, the parts in the multitude must exceed n anyway. In 
his 1672 notes on this passage, Leibniz just describes this as saying that the parts in 
the continuum are ‘indefinite.’ No doubt this captures some of Galileo’s intention 
in placing emphasis on the ‘choice of the questioner.’ But the relation between the 
variables here—between the number chosen and the comparison of the multitude 
with that number—is no mere matter of indefiniteness, and it later becomes the key 
to Leibniz’s considered definition.
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As is now recognized among commentators, Leibniz advances a syncategore-
matic analysis of the term ‘infinite’ rather than a categorematic one.34 To say that a 
class is infinite is not to assign it a single infinite number but to describe it in terms 
of logical relations among variables referring to finite numbers: the Fs are infinite 
iff for any n, there are more than n Fs. By contrast, a categorematic analysis of 
‘infinite’ would make reference to an infinite number: the Fs are infinite iff there 
is a number k of Fs such that k is greater than any finite number n. (The order of 
quantifiers is crucial of course.) This is not wholly an innovation by Leibniz. The 
distinction between categorematic and syncategorematic terms goes back at least to 
Priscian, and the use of this distinction in the analysis of the term ‘infinite’ predates 
Galileo and Leibniz by a few centuries.35 What is notable here for us is that Galileo 
clearly reveals his own interpretation of ‘infinite’ to be a categorematic one. When 
he writes of the multitude of quanti parts in a bounded continuum that they are so 
many as to correspond to any specified number ‘yet it is not necessary that they be 
infinite, since no specified number is infinite,’ he is expressly holding that for the 
multitude to be infinite it must correspond to an infinite number—the unmistakable 
signature of the categorematic account. What Galileo takes to define an intermedi-
ate status between infinite and finite is exactly what Leibniz later appropriates for 
his own syncategorematic analysis of ‘infinite’.

A last point is important to bring out in Leibniz’s account. Taking care with his 
statement of what is meant by saying there are infinitely many terms, very precise 
definitions of ‘finite’ and ‘infinite’ can be formulated. A class X is infinite if and 
only if for any number n, there are more than n elements of X. And by negation, 
then, a class X is finite if and only if for some number n, there are not more than 
n elements of X. What does ‘more than n elements of X’ mean? Here we draw 
upon Leibniz’s subscription to the idea that a number is an aggregate of unities, for 
instance, that 6 = 1 + 1 + 1 + 1 + 1+1 (cf. A VI, 3, 518). Leibniz is explicit about this 
when he defines ‘integer number’:

An integer number is a whole [totum] collected from unities. (LH XXXV, 1, 9, f. 7r-v)36

Each ‘integer number’ or natural number is then itself a class, indeed a whole, and 
it is open to compare other classes to it. It is also clear that Leibniz consciously 
intends for his definition of an infinite multitude to be understood in terms of com-
parisons with numbers taken as wholes composed of unities; for example, he asserts 

34 See Ishiguro (1990), Knobloch (1994, 2002), Bassler (1998), Arthur (2008), (2009) and (2013), 
and Levey (2008). In the present paper it’s worth noting that the same crossed-out passage that 
contains the denial of cardinal equality between the evens and odds, Leibniz begins: “There is a 
syncategorematic infinite or passive power having parts, namely, the possibility of further progress 
by dividing, multiplying, subtracting, or adding. And there is a hypercategorematic infinite, or po-
testative infinite, an active power having, as it were, parts eminently but not formally or actually. 
This infinite is God himself. But there is not a categorematic infinite or one actually having infinite 
parts formally” (GP II, 314–315). Translated by Look and Rutherford in Leibniz (2007, p. 53).
35 William Heytesbury may have been the first to defend a syncategorematic analysis of ‘infinite’; 
see sophisma xviii of his Sophismata, in Pironet (1994).
36 Quoted in Grosholz and Yakira (1998, p. 99 ).
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the existence of infinitely many bodies in this way: ‘Bodies are actually infinite, 
that is, there exist more bodies than there are unities in any given number’ (A VI, 
4, 1393/Ar 235).

It then remains only to define ‘more than n elements of X’. No appeal to Euclid’s 
Axiom that the whole is greater than the part is available here to license the claim 
that an infinite multitude contains more elements than unities in a natural number, 
since Leibniz rules out infinite wholes. The most natural route at this point is not via 
Euclid’s Axiom at all but by appeal to the standard of one-one maps in combination 
with the idea of a natural number as a totality of elements: there are more than n 
elements of X just in case there is no one-one map from X into the natural number 
n. This now allows us to state Leibniz’s definitions of ‘infinite’ in canonical terms: 
X is infinite iff there is no one-one map from X into any natural number.

Assiduous readers will note that Leibniz’s definition of ‘infinite’ is not the same 
as the definition suggested in our earlier discussion of Galileo. Whereas Galileo’s 
definition considers maps of all the natural numbers into classes—a class is infinite 
just in case there is such a map, and finite otherwise—Leibniz’s definition consid-
ers maps from classes into individual natural numbers. Dedekind’s definition takes 
yet another angle, considering maps from classes into themselves: a class is infinite 
just in case it can be mapped into a proper part of itself. All these definitions are at 
least conceptually distinct. Intriguingly, Galileo’s and Dedekind’s definitions turn 
out to be equivalent, while Leibniz’s definition turns out to be different, and weaker, 
if only barely so. And it is Leibniz’s definition that is now the standard definition of 
infinite in mathematics, while Galileo’s and Dedekind’s has come to be regarded as 
a special case called ‘Dedekind infinite’. But that is a story for another day.37
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