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Abstract  Mathematics and technology interact with each other for their respec-
tive benefit. This article will try to illustrate this unavoidable fact by studying 
the machines built to play games—especially combinatorial games (no chance 
moves)—and their impact on the development of mathematical ideas. We will see 
how all began with the simple Nim game and the first machines built to play it 
(and to win!). Then we will focus on the game of Chess to demonstrate that some 
mathematical ideas can originate from technologies and that these technologies can 
enable their concrete achievement.
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1 � Introduction

The emergence of artificial intelligence cannot be precisely dated. Indeed, this 
theme of reflexion is quite old and can be found regularly through history with 
myths about artificial creatures, construction of automatons, or first attempts to 
formalize human thoughts. The term “Artificial Intelligence” (AI), coined in 1956 
by John McCarthy (1927–2011), can be defined as the construction of computer 
programs that try to solve tasks that are, at the moment, better fulfilled by humans 
as they require high-level mental processes. These programs can be created for rea-
soning, for the understanding of natural languages, for perception, or for example, 
for games and mathematical practice. We will now focus on these last two points, 
especially through combinatorial games and through the game of Chess which was 
the starting point of many reflections about human thinking processes.
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2 � First of All: What is a Combinatorial Game?

In this article we are dealing with special games called combinatorial games. They 
are defined by properties which are the following (Berlekamp et al. 2001, p 14):

1. There are just two players, often called Left and Right.
2. There are several, usually finitely many, positions, and often a particular starting 

position.
3. There are clearly-defined rules that specify the moves that either player can make 

from a given position to its options.
4. Left and Right move alternately, in the game as a whole.
5. Both players know what is going on, i.e. there is complete information.
6. There are no chance moves such as rolling dice or shuffling cards.
7. In the normal play convention a player unable to move loses.
8. �The rules are such that play will always come to an end because some player will 

be unable to move. This is called the ending position. So there are no games that 
are drawn by repetition of moves.

These properties give a strict definition of a combinatorial game. However a more 
tolerant conception of combinatorial game theory does not always respect the sev-
enth and the eighth points (note for example, that Chess does not fulfil the seventh 
condition as a match can end up in a draw). The global aim of the combinatorial 
game theory is to study the nature of the several positions of the game (winning, los-
ing or draw) in order to build a strategy that will lead to a win. Let us now focus on 
the Nim game, a combinatorial game that enabled great improvements in the math-
ematical theory of games and for which a machine was specially built to play it.

3 � The Starting Point: The Nim Game

The Nim game is one of the most famous combinatorial games. It was introduced 
for the first time under this name1 by a mathematician from Harvard, Charles Leon-
ard Bouton (1901) (1869–1922) in an article of the famous journal Annals of Math-
ematics, published in 1901 (Bouton 1901). This article is considered as the starting 
point of the relatively recent (twentieth century) mathematical theory of combina-
torial games. Indeed its mathematical content is at the base of the resolution of the 
more general class of impartial games2.

1  Nim comes from the imperative form of the German verb nehmen, which means to take.
2  An impartial game is a combinatorial game in which the available moves are similar for both 
players (which is not the case in Chess for example). The main theorem about the resolution of 
impartial games was independently found by Roland Parcival Sprague (1894–1967) in 1935 and 
Patrick Mickael Grundy (1917–1959) in 1939, and states that “every impartial game is just a 
bogus Nim-heap” (Berlekamp et al. 2001, p 56). This means that, thanks to some modifications 
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Because its resolution is based on the binary system, it was not very difficult to 
elaborate a program able to play it. This is what we will see just after presenting the 
rules of the Nim game.

3.1 � Presentation of the Nim Game (Bouton 1901)

Bouton justifies his interest to the Nim game on account of its seeming complexity 
despite its extremely simple and complete mathematical theory. Then he describes 
the game as followed: upon a table opposing two players, A and B, three piles of 
objects of any kind are placed, let us say matches. The number of matches in each 
pile is arbitrary, except that it is well to agree that no two piles shall be equal at the 
beginning (see Fig. 1 for a possible starting position). Bouton requires this latter 
condition but actually it is not necessary to respect, for it does not change anything 
in the resolution of the game.

Alternatively, players select one of the piles, and take from it as many matches 
as they want: one, two,…, or the whole pile. The first one who takes the last match 
or matches from the table wins the game.

The entire theory of the Nim game is based on the notion of “safe combinations” 
(Bouton 1901, p 35). It refers to special positions that allow3 the player who reaches 
one of them to win the game at the end (under the condition of playing “without 
mistake” (Bouton 1901, p 35)). Safe combinations present the following properties 
(Bouton 1901, p 36):

and transformations, we can always identify an impartial game to a determined Nim game (or a 
succession of Nim games).
3  It is not necessary for the player who reaches a safe combination during the play to win the entire 
game. To do that, he must reach a safe combination at every move he makes.

Fig. 1   A possible starting 
position at Nim. (Eiss 1988, 
p 188)
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THEOREM I. If A leaves a safe combination on the table, B cannot leave a safe combina-
tion on the table at his next move. […]
THEOREM II. If A leaves a safe combination on the table, and B diminishes one of the 
piles, A can always leave a safe combination.

These theorems and their proof provide the explanation of a possible win when a 
player reaches a safe combination.

Now, how can we check if a position is a safe combination or not? First, Bouton 
(1901, pp 35–36) explains that the numbers of matches of the piles have to be writ-
ten in the binary scale. Then these binary numbers are placed in three horizontal 
lines so that the units are in the same vertical column. Then if the sum of each 
column is congruent to 0 mod. 2, the set of numbers on the table forms a safe com-
bination. It is called the Nim-sum. In our example, 7, 5, 3 is not a safe combination 
and to change this, we would have to remove a single match from one of the three 
piles4. It is up to you now!

3.2 � The Nimatron

In the Spring of 1940, an electromechanical Nim player machine (see Fig. 2) called 
The Nimatron, invented by two members of the staff of the Westinghouse Electric 
Company during their lunch break (Condon 1942, p 331), was built and exhibited at 
the Westinghouse Building of the New York World’s fair, where it played more than 
100,000 games (and won 90,000 of them). The Nimatron could play a game made 
up of four piles containing at most seven counters.

Condon underlines that the Nimatron is not like the other mathematical machines 
and that it serves no other useful purpose than entertainment, “unless it be to illus-
trate how a set of electrical relays can be made to make “a decision” in accordance 
with a fairly simple mathematical procedure”. (Condon 1942, p 330) (Fig. 3).

3.3 � Redheffer’s Machine

Despite the fact that the Nimatron had no other aim than to entertain the visitors, the 
construction of a much more improved Nim-playing machine started in 1941. It was 
designed by Raymond Moos Redheffer (1948, p 343) (1921–2005), an assistant pro-
fessor of mathematics at the University of California at Los Angeles (Gardner 1959, 
p 156) who stated “this theory is of such a nature that the computations required can 
be carried out by simple electrical circuits” (Redheffer 1948, p 343). Redheffer’s 
machine proposed the same arrangement as the Nimatron, the equivalent of four 
piles containing seven counters at most, but weighed only 2.3 kg (5 pounds) against 
a ton for the Nimatron!

4  The exercise is let to the reader!



479Combinatorial Games and Machines

Redheffer extended his results in a B.S. Thesis in Mathematics to a more general 
game where players can remove objects from k piles and not only from one5.

The first task of Redheffer’s machine is to convert the number of objects of each 
pile in the binary system. Each of these numbers is represented by a switch supplied 
with as many layers of contacts (“pies”) as there are digits in the binary number 
required for representing the maximum number of objects in the pile (see Fig. 4).

Then, the next step is to find the sum of the converted numbers. Redheffer sim-
plifies the problem to an arrangement of connected switches (see Fig. 5): “It follows 
that E and G will be connected, and F and H will be connected, whenever an even 
number of switches are in the down position” (Redheffer 1948, p 347).

As the machine was planned for a maximum of seven objects in four piles, there 
are four switches, each having eight positions. Since any numbers between 0 and 7 
can be written with three digits in the binary system, there are three indicator lights 
for each pile. “They are grouped behind a translucent screen covering a large round 
hole above each switch. 

5  This version of the Nim game is actually due to an American mathematician, Eliakim Hastings 
Moore (1862–1932), who extended in 1910 the work of Bouton and gave a generalisation of the 
Nim game when the player can remove matches from k piles. (Moore 1910).

Fig. 2   The Nimatron is a machine which is very skilful at playing the game of Nim (Condon 
1942, p 330)
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Fig. 3   Description of the patent of the Nimatron (US Patent 1940, p 2)
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Fig. 4   This figure shows 
the connections for the pies 
representing the unit’s, two’s, 
and four’s digits. (Redheffer 
1948, p 345)

 

Fig. 5   “[…] but the connections will be interchanged whenever an odd number of switches are in 
the down position.” (Redheffer 1948, p 347)
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Neon bulbs are used partly because of their low current requirement and partly 
because they will not light if two are in series. The input is 110 V.” (Redheffer 1948, 
pp. 348–349). As far as we know, Redheffer’s machine was not exhibited in public, 
so no results about the games it played are available.

Redheffer’s machine is a good example that shows the technological evolution 
(less or new material, lighter components) of a mechanical device initially designed 
around a mathematical idea.

3.4 � The Nimrod

A few years later, Ferranti, the electrical engineering and defence electronics equip-
ment firm, designed the first digital computer exclusively dedicated to play Nim, 
The Nimrod. It was exhibited at the Festival of Britain (Exhibition of Science) in 
May 1951 and afterwards at the Berlin Trade Fair (Industrial Show) in October. Its 
exhibitions were a great success and few witnesses relate that the most impressive 
thing about the Nimrod was not to play against the machine but to look at all the 
flashing lights which were supposed to reflect its thinking activity! (See Fig.  6) 
Some even say that none of the persons who came to play against Nimrod noticed 
the British bar next door, which offered free beverages… (Gardner 1959, p. 156). 
This particular display was built on purpose to illustrate the algorithm and the pro-
gramming principles involved.

After the Nimrod, it seems that no other machines were built to play Nim. The 
simplicity of the game and of its solution may have led the scientists to turn to more 
complicated games both in their rules and in their programing, and whose achieve-
ment would require a more developed technology. 

Fig. 6   The Nimrod at the Berlin Industrial Show on 6 October 1951. It is a 9 by 12 by 5  feet 
machine that contains 480 vacuum tubes and executes its program almost independently. (http://
www.heise.de/newsticker/meldung/Vor-50-Jahren-fing-alles-an-das-erste-Elektronenhirn-
in-Deutschland-51722.html)
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As we will see in the next section through several examples, there exists a link 
between games and their underlying mathematical concepts, and their possible cre-
ation through a machine or a computer.

4 � The Game of Chess

The game of Chess is considered as the King of all games: International players 
and Grand Masters are seen as the most intelligent people in the world. Thus, it is 
not surprising if the first researches led in artificial intelligence started to study the 
game of Chess (but not only, of course) in order to build a program that could play at 
a relatively good level (and maybe defeat one day the World Champion). But a few 
decades before these first programs, an electro-mechanical machine able to play a 
particular endgame in Chess was designed: El Ajedrecista.

4.1 � El Ajedresista of Torres y Quevedo

El Ajedrecista (the Chess Player in English, see Fig. 7) was the first serious6 au-
tomaton built in 1911 by the Spanish engineer Leonardo Torres y Quevedo (1915) 
(1852–1936)7. Torres worked on the construction of several devices, which can be 
divided into two groups: automatons and algebraic machines (Vigneron 1914). An 
automaton refers to a machine that imitates the appearance and the movements of a 
man or an animal. Torres explains (Vigneron 1914) that the mechanism has to bear 
its own source of energy which makes it work (a spring for example) and makes 
it accomplish some gestures, always the same, without any external influence. Au-
tomatons must be capable of discernment and adapt themselves to their environ-
ment and to the impressions they receive. Through his Chess Player, “merveille 
d’ingéniosité” (Vigneron 1914, p 59), Torres proved well that it was possible to 
create a mechanical machine (in fact, electro-mechanical in this case), which could 
play Chess. 

El Ajedrecista was first exhibited to the public in Paris; it was able to play the 
special endgame configuration of the white king and rook from any position (held 
by the machine) against the human black king from any position. El Ajedrecista 

6  In 1769, the Hungarian Johann Wolfgang von Kempelen (1734–1804) constructed an automaton 
Chess player, the Mechanical Turk, able to play at a high level against human opponents. In fact, 
the Turk was a complete stunt as a human chess master could hide inside the machine and operate 
the moves [...]. Ajeeb, created by Charles Hooper, succeeded the Turk in 1868, but used the same 
trick with a hidden player.
7  “Born in Santa Cruz in the province of Santander in Spain in 1852 and educated as a civil en-
gineer, Torres became director of a major laboratory, president of the Academy of Sciences of 
Madrid, a member of the French Academy of Sciences, and famous as a prolific and successful 
inventor. Some of his earliest inventions took the form of mechanical analog calculating devices 
of impressive originality.” (Randell 1982, p 331).
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runs on a rather simple electro-mechanical system: to every position of the system 
( i.e. of the game) corresponds an electro-magnet. This electro-magnet is activated 
with electrical connexions when switches are arranged in a given position. Since 
the switches can be placed in different positions, every move on the chessboard can 
be obtained by a specific combination of the switches. For example, on Fig. 8, the 
switch M can take two different positions (A or B) that can activate switches N or 
N’. If N is activated, it has once again three different positions available (E, F and 
G), which will activate new switches, and so on until all switches have their own 
position and form a particular combination.

Fig. 7   Front view of the Chess Player (Vigneron 1914, p 57)
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Fig. 8   Drawing to show how 24 different operations can be determined in Torres’ machine 
(Vigneron 1914, p 58)
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Combinations are determined by a set of rules that the automaton has to follow 
before connecting the switches (Fig. 9).

Torres explains that the number of switches and their associated positions can 
be increased “as much as we want” (Vigneron 1914, p 59). This means that the 
number of particular cases can be endlessly increased, which makes the actions of 
the automaton more complex. Torres considered that there are no essential differ-
ences between the simplest machine and a more complicated automaton, since we 
can provide it the rules it has to follow to execute its moves. The very first version 
of the automaton used electrical sensing of pieces on the board and a mechanical 
arm moved the pieces of the machine (Randell 1982, p 332). Some years later, Tor-
res made a second version with magnets underneath the board to move the pieces.

Two paradoxical thoughts arise concerning machines such as The Nimrod, The 
Nimatron and El Ajedrecista. First, their development and their exhibition did lead 
to major public events; they remain indeed the first machines ever built to repro-
duce a situation of a particular game. Even if their popularity was mostly due to the 
curiosity of the public, their fabrication still symbolises the first achievement of a 
combinatorial reasoning. And secondly, it is worth noticing that the initial idea was 
to provide a game and not something more serious. Retrospectively, the reasoning 
behind these machines is not complicated at all, and it is mainly the advertising 
made at that moment that contributed to their fame.

4.2 � The Beginnings of Artificial Intelligence

Nevertheless these machines did not prevent the development of more serious pro-
grams in the 1950s. Some mathematical ideas originate from technologies and these 
technologies enable their concrete achievement. Creating a program or a machine 
able to act as the human brain is the main problem of artificial intelligence and 
the first researches (among others) started with the most noble game of all games: 
Chess. In 1950, Claude Elwood Shannon (1950) (1916–2001), an electronic engi-
neer and cryptographer, was concerned with the problem of constructing a program 
for a computer that would enable a computer to play Chess (Shannon 1950). This 

Fig. 9   Set of rules that the 
automaton has to follow 
before connecting the switch. 
(Vigneron 1914, p 60)
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led him to lay the foundations of computer Chess programming thanks to the Mini-
max algorithm, a principle found in every game analysis (not just combinatorial 
games). This idea was also developed by Alan Mathison Turing (1912–1954) in 
1953 as part of his research on artificial intelligence. Here is an explanation of the 
Minimax’s principle.

The Minimax algorithm consists in minimizing the maximum loss in a given 
position. This principle provides the advantage to evaluate the different positions of 
the game and to choose the most beneficial one, considering the opponent’s moves. 
The Minimax is a heuristic principle that takes into account the hypothesis that our 
opponent’s aim is to maximise his benefit. In the particular case of combinatorial 
games, the goal of the two players is clearly opposite: when A wants to maximise 
his profit, B wants to minimise it (to maximise his own profit).

To apply this algorithm, we first need to represent the game in the form of a 
tree. Every node of the tree corresponds to a possible position of the game and its 
branches lead to the positions that can be reached from that node. To evaluate the 
initial position (called the root of the tree, level 0), we need to generate the set of 
positions reachable from that initial position, we obtain the level 1. We do so as 
many times as necessary to generate levels 2, 3, …, n. Then we assign a value to 
each final position, which gives the quality of the position for one of the two play-
ers. For example, in Fig. 10 player A (represented by the root of the tree) is about to 
play and wants to evaluate his position to minimise his loss. 

The first step of the Minimax algorithm is to minimise the set of the final posi-
tions for every branch. This gives a value to the three parent nodes of the terminal 
nodes. We find the following minima (Fig. 11).

As player A wants to maximise his profit, the next step is to find the maximum 
between the three nodes of the level 1 that will correspond to the value of the posi-
tion and then give the right move to play (Fig. 12).

The Minimax algorithm is based on simple recursive calculations that alterna-
tively minimise or maximise nodes at a given level, actually a simple mathematical 
process, which is used in every program. If we apply the Minimax algorithm until 
the terminal positions, i.e. if we apply it for the entire game tree, therefore it is 
equivalent to apply a backward induction reasoning. 

Fig. 10   An evaluation function has evaluated the quality of the final positions from player A’s 
point of view (Alliot and Schiex 1994, p 274)
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Backward induction is used in the resolution of every combinatorial game when-
ever it is possible. For example, as Chess presents 10120 different games, it is im-
possible to apply backward induction on its game tree, which is also impossible to 
represent!

Both Shannon and Turing wrote their program based on the Minimax—even if 
the name did not exist yet—and for machines that did not even exist at that time! 
It seems (Newell et al. 1958) that there were two other hand simulations between 
1951 and 1956 by Frederick Mosteller (1916–2006) and a Russian program but not 
enough information is available on any of them. Consequently they will not be taken 
into account in this study. But, as we will see further, the technological advances in 
computer industry soon gave the opportunity to implement these programs.

In 1956, Los Alamos Chess was the first program to run on a computer, MA-
NIAC I, built in 1952 and based on John von Neumann (1903–1957) architecture. 
Los Alamos program is a good example of the system Shannon (1950) described; 
all alternatives were considered, all continuations were explored to a depth of two 
moves for each player, the values were determined by a Minimax procedure, and the 
best alternative was chosen for the move. 

Fig. 12   The value of the initial position is 3 so to maximise his profit, player A will have to choose 
the second branch (Alliot and Schiex 1994, p. 274)

 

Fig. 11   The minimising step gives the value of the parent nodes of the terminal nodes. They repre-
sent player B’s strategy that consists of maximising his profit and therefore minimising A’s profit. 
(Alliot and Schiex 1994, p. 274)
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But the game Los Alamos played was a simplified version of Chess on a 6 × 6 
board without Bishops and eliminated special moves such as castling, two-square 
Pawn moves in the opening and en passant captures. These reduced board and rules 
were chosen in order to carry out the computation within reasonable time limits. In a 
normal 8 × 8 game, looking two moves ahead brings about 304 that is to say 800,000 
continuations to be considered. In the reduced 6 × 6 game, “only” 160,000 continu-
ations were taken into account. The Los Alamos Chess program was developed by 
Paul Stein and Mark Wells in Los Alamos laboratory. It was able to make a move 
in about twelve minutes on average and played three games: one against itself, a 
second against a strong player (it lost), and a third against a beginner (it won).

Two years later a mathematician in the Programming Research Department of 
IBM, Alex Bernstein, wrote the first program that could play a full game of Chess 
for the IBM 704, introduced in 1954. The IBM 704 was a very rapid large-scale 
electronic digital computer, which had performed as many as one billion calcu-
lations in a single day in computing the orbit of an artificial satellite (Bernstein 
and Roberts 1958). Physically, it consisted of several units all under the constant 
electronic control of the central unit. The principal advanced feature of the 704 
was its high-speed magnetic core storage or memory. It replaced the electrostatic 
or cathode ray tube storage used in the earlier machine systems. A magnetic core 
was about the size of a pinhead and shaped like a doughnut. Thousands of core 
were strung on a complex of wires in such a way that several wires passed through 
the centre of each core. Combinations of electrical pulses on these wires altered 
the magnetic state of the cores, and a line of cores, some altered, some unaltered, 
stood for a certain word or number. A word or number stored in the magnetic core 
memory was available for calculation in 12 millionths of a second. The Type 704 
multiplied or divided in 240  μs, or approximately 40,000 operations per second 
(IBM Archives 1955). Bernstein’s program was also in the Shannon tradition (New-
ell et al. 1958); it could play either Black or White, was capable of playing a com-
plete game of Chess, including moves such as castling, promoting and capture en 
passant and was divided into five parts (1) Input-output, (2) Table generation, (3) 
Evaluation, (4) Division, and (5) Tree (Bernstein et  al. 1958). But an important 
step was made in the direction of greater sophistication: only a fraction of the legal 
alternatives and continuations were considered. A set of decision routines was writ-
ten, which selected a small number (not greater than seven) of strategically good 
moves. In this way, the program examined 2800 different positions and arrived at 
the move which, in its estimation, would leave the opponent with the worst possible 
position. It minimaxed and chose the alternative with the greatest effective value.  
The time required to the program to make a move was on the average of eight min-
utes and the machine printed out its move on a sheet of paper. After a mating move 
or a resignation, the machine printed the score of the game and a paper intended 
to its opponent with this sentence: “THANK YOU FOR THIS INTERESTING 
GAME”! (Bernstein and Roberts 1958).

Bernstein’s program was the first to give information about radical selectivity, in 
move generation and analysis. 
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But every increase in sophistication of performance involves an increase in the 
complexity of the program (Newell et al. 1958). This implies both more program 
and more computing time per position than with the Los Alamos program. Figure 13 
compares Chess programs available in 1958 according to their vital statistics, their 
programming language or their results (Newell et al. 1958, p. 45).

We can observe that Bernstein’s program takes 7000 words, the Los Alamos pro-
gram only 600: a factor of about 10. But for time per position, both programs take 
about the same time to produce the move, 8 and 12 min, respectively. The increase 
in problem size of the 8 × 8 board over the 6 × 6 board is about five to one; it is ap-
proximately cancelled by the increase in speed of the IBM 704 over the MANIAC 
(also about five to one, counting the increased power of the 704 order code (Newell 
et al. 1958)). So it can be said that both programs would produce moves in the same 
8 × 8 game in the same time. Hence the increase in amount of processing per move 
in Bernstein’s program approximately cancels the gain of 300 to 1 (2800 positions 
investigated against 800,000 for Los Alamos) in selectivity. Newell et  al. (1958) 
deplores this kind of equality between the two programs because selectivity is a 
very powerful device and speed a very weak one for improving the performance 
of complex programs. He gives for example the case of both programs that could 
explore three moves deep instead of two. Then the Los Alamos program would take 
about 1000 times as long as it does to make a move, whereas Bernstein’s program 
would take about 50 times as long.

This aspect emphasises the fact that the time needed for a machine to determine 
the right move does not only depend on the number of the positions evaluated. 
The increase of the complexity in the programs also plays an important part in 

Fig. 13   Table of comparison of the different Chess programs in 1958. (Newell et al. 1958, p. 45)
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the time needed. But we can allow programs to become more complex because 
machines that support them become also more powerful and faster for calcula-
tion. And as the performance of the machines increases, researchers become more 
challenging on the programs… This is how improvements are obtained in Chess 
programming.

With Bernstein’s work we understand that selection in programs is an essential 
device to increase their level of play. It allows to reduce calculations and to over-
come the low speed and power of the machines. A major progress in that direc-
tion was made with the development of the Alpha–Beta pruning, a very effective 
selective cut-off of the Minimax algorithm without loss of information, which is 
still used in nowadays programs. Here is the principle: on Fig. 11’s example, we 
consider that Minimax algorithm has already analysed the first two branches of 
the tree and is going to deal the third one. Since the root of the tree is a maximis-
ing one (to get its value we maximise values among its children nodes), and one 
of its children nodes has the value three, we already know that the root will have 
a value at least equal to three. When analysing the third branch, the first leaf gives 
the value one. But the parent of this leaf is a minimising one so its value will be less 
or equal to one whatever the values of the other unexplored leaves are. The latter 
are therefore uninteresting and will not be analysed by Alpha–Beta. The name of 
‘Alpha–Beta’ and the description we gave are found for the first time in an article 
of 1963 (Edwards and Hart 1963). The writers underline the importance of order-
ing the branches of the tree to optimise the Alpha–Beta efficiency: if the level is a 
maximising one, moves likely to generate high-valued positions must be analysed 
first and reciprocally if the level is a minimising one. “It turns out at best, that is, in 
the case of perfect ordering the α-β heuristic can cut a tree’s exponential growth rate 
in half, thus allowing almost twice the search depth for the same effort” (Edwards 
and Hart 1963, p. 3).

4.3 � The Achievement of Technology: Deep Blue’s Victory

We saw that most of the problems that arose were connected to the speed of cal-
culation of machines. Therefore researches to reduce the analysis of the game 
tree progressed, and the Alpha–Beta pruning soon became the idea that prevailed 
in Chess programming. Since the late 1970s, it had been established that Chess 
computers became stronger as their hardware speed increased. By 1985 engineers 
thought that a thousand fold increase in hardware speed might be sufficient to 
produce a World Champion-class Chess machine (Hsu 2002). But they were soon 
confronted with problems of material such as the size and the number of the com-
ponents used in Chess machines. Here is an example through transistors and chips 
described by Feng-hsiung Hsu  (b.  1959) (Hsu 2002). Hsu was specialised on 
the hardware part of the Deep Blue project and before he joined IBM in 1989, 
he worked on the conception of smaller and faster chips that would permit more 
calculation.
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One of the Chess program’s main components is the move generator. The move 
generator generates the Chess moves that the program examines. But to work prop-
erly, the move generator needs also to generate unexamined, or not yet searched, 
moves by the program (Hsu 2002). In the Belle8 design, this second task, performed 
by the disable-stack, required a 64-bit wide memory, one bit for each square of the 
chessboard. Generally, the program is allowed to look up to 128 plies9 ahead (so 
256 words deep to handle). If we assume that six transistors are needed for every 
bit of memory, then the number of transistors necessary for the disable-stack alone 
would be at least 1500 for each square of the chessboard, or about 100,000 transis-
tors for the whole board. And the problem was that in 1985, it was nearly impos-
sible to fit the Belle move generator into a single chip; consequently the circuit size 
was too big. One question engineers had to deal with was the possibility to create 
a new single chip (instead of the actual 64) to complete Belle Chess generator. It 
led to a re-thinking of the necessity of the disable-stack and after a redefining of 
its function, only ten transistors on average were used for each square. A 150 to 1 
reduction! The same problem was faced with the evaluation function10: “Could the 
evaluation function be fitted onto a single chip as well? […] If it is barely possible 
to fit the move generator onto a single chip, what was the chance of doing the same 
for a good evaluation function? It doesn’t look good, does it?” (Hsu 2002, p. 30). 
The basic idea to solve this problem was “trade space for time. Chess evaluation 
functions have spatially repetitive components, and it is possible to use a smaller 
circuit multiple times to do the same computation” (Hsu 2002, p. 30). Finally, it 
had been possible to build a single chip Chess move generator and a single chip 
evaluation function.

This illustrates the important fact that mathematics is a good opportunity for 
technology to expand and that both cannot be completely detached from each other. 
In 1996, the year the program Deep Blue won one of the six matches against the 
World Chess Champion Garry Kasparov (born in 1963) in the first ever traditional 
Chess tournament between man and computer, IBM set a new world record in mag-
netic data storage density—five billion bits of data per square inch—the equivalent 
of 312,500 double-spaced typewritten pages in one square inch of disk surface. 
Deep Blue is a combination of special purpose hardware and software with an IBM 
RISC System/6000, a system capable of examining 200 million moves per second, 
or 50 billions positions, in the three minutes allocated for a single move in Chess 
(IBM Archives 2004). Nevertheless, it is a misconception to think that if the com-
puter Chess wins against a human player it is only because it computes faster. The 
win of the IBM Chess-machine Deep Blue against Garry Kasparov in May 1997 

8  Belle is a special purpose Chess machine that was built in the early 1980s by Ken Thompson 
(b. 1943) and Joe Condon (1935–2012) from the Bell Laboratories. Belle became the first Chess 
program to play at the US National Master level in 1982 (Hsu 2002).
9  In computer Chess jargon, a ply designates a move made by one of the two player. In Chess 
literature a move refers to a move played by White and the answer of Black (or vice-versa), so two 
plies make a move.
10  The evaluation function assesses the quality of the positions reached when the Chess machine 
looks ahead (Hsu 2002).
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was the result of many years of researches for the “human” team who had worked 
on the project. And it is a parallel development between complexity of the programs 
and efficiency of the machines that permitted this success. Of course, behind all 
the Deep Blue story is hidden the everlasting human desire to create a being at his 
image. “Writing the technical report and doing the presentation (about the built of 
a single ship), however, made me realize that I had the basic blueprint to build the 
Mother of all Chess Machines, a machine that could defeat the World Champion. 
In other words, I had a chance to pursue one of the oldest holy grails in computer 
science, and possibly make history” (Hsu 2002, p. 32).

5 � Conclusion

The game of Chess is regarded as “one of the most sophisticated of human activi-
ties” (Bernstein and Roberts 1958, p. 96). Therefore, it is not surprising if the first 
attempts to approach human thinking through a machine (problems in simulation of 
human thinking) were turned toward Chess. It is worth noticing that researches were 
usually led by mathematicians (Torres, Redheffer, Shannon, Turing, Bernstein, and 
later the Russian International Grandmaster and computer scientist Mikhail Botvin-
nik (1911–1995)) and that the first programs were based on basic mathematical 
concepts (such as the Minimax principle using minimising and maximising func-
tions, the Alpha–Beta pruning using properties of these functions). The evolution of 
technologies quickly allowed implementation of these programs on machines able 
to compute faster than humans. And soon, these Chess computer scientists realised 
that “the level of its chess playing could be considerably improved were this pro-
gram to be adapted to a bigger and faster machine” (Bernstein 1958, p. 208). So the 
race for fewer and simpler components to improve the level of the machines started: 
more powerful hardware would allow more complex search strategy (Marsland and 
Björnsson 1997, p. 6).

As more and more powerful computers became available, the full pruning ca-
pabilities of Alpha–Beta became better known, and so programs permitted more 
and more calculations. Therefore, improvements of the algorithms are as important 
as brute-force in the success of Chess programing. Various techniques to improve 
the move ordering and to make the search more efficient were developed, such as 
iterative-deepening, use of transposition-tables, and forward pruning (Marsland and 
Björnsson 1997, p. 8). These various techniques, as well as the establishment of a 
mathematical model to represent the game through a tree with branches and leaves, 
are directly connected to the algorithmic aspect of Chess programing. They are 
quite elementary compare to the deep mathematical theory that arose from Sprague-
Grundy theorem, which is actually the mathematical theory of the Nim game and 
impartial games. Other combinatorial games such as Go or Sprouts use also com-
plex mathematical theory, especially for the endgames. But such a theory for Chess 
has not emerged; Chess computer scientists successfully performed to represent 
Chess in an abstract way but, despite the improvement of technologies and comput-



494 L. Rougetet

ers, no real mathematical theory of Chess permitting, not only a better implementa-
tion of the programs, but also to help a player by giving him another perspective of 
the game, has been found… yet!
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