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Abstract  Most of the literature on mathematical modelling has been devoted to 
the natural sciences and economics; comparatively little has been written on the 
specific characteristics of modelling for engineering and technology. This chapter 
will briefly examine some such specifics in the context of information engineering, 
by which is meant here the engineering disciplines of electronics, telecommu-
nications, signal processing and control. It is claimed that there are some very 
significant differences between modelling for engineering—at least for information 
engineering—and modelling in the natural sciences.
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1 � Introduction

A number of the major scientific figures of the nineteenth century considered 
deeply the question of modelling: what, precisely, a model is, and how it relates to 
reality. These figures (Maxwell, Boltzman, Hertz, Lord Kelvin, for example) have 
been discussed in depth elsewhere, and nothing more will be said on this. (For an 
interesting overview, however, see Monk 2012). Towards the end of the nineteenth 
century, electrical and telegraph engineers turned their attention both to modelling 
the phenomena they observed in the new technologies and to designing systems that 
would behave in the desired way. Although the mathematical techniques they used 
were mostly well established, such engineers developed novel ways of developing 
and employing them. Oliver Heaviside, for example, as well as simplifying and 
re-casting Maxwell’s equations in the vector form that subsequently became uni-
versal, developed his operational calculus (effectively equivalent to Laplace trans-
forms) in order to model the behaviour of electrical circuits. By the early decades of 
the twentieth century the whole array of Fourier techniques was being developed, 
including convolution in the time domain as an equivalent to multiplication in the 
frequency domain.
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Feedback circuits presented a particular challenge, as they were known to 
become easily unstable. Researchers at Bell Labs studied this problem in detail, 
resulting in the Nyquist stability criterion of 1932 and Bode’s monumental work on 
circuit design some years later. Karl Küpfmüller in Germany carried out similar, but 
rather less well-known work.

Some of the most impressive, and still under-estimated, techniques involved 
graphical tools for design. The Nichols Chart removed the need for difficult com-
putation of closed-loop behaviour based on open-loop modelling or experimental 
recording, while the Smith Chart, although it will not be discussed here, provided 
a similar resource for engineers concerned with transmission lines (Bissell 2012). 
Such charts now form an integral part of computer tools—not, now, to replace 
calculation, but because they are still unsurpassed as ways of presenting informa-
tion to the skilled engineer.

2 � Oliver Heaviside: Changing the Paradigm

Until comparatively recently, Heaviside was largely neglected in the history of tech-
nology, but in the last 25 years or so several significant books and a number of 
articles have appeared (Nahin 1988, 2002; Mahon 2009). Heaviside was a strange 
character, largely self-taught, and he engaged in sometimes vituperative exchanges 
with those with whom he disagreed—particularly with Sir William Preece, chief 
engineer of the British Post Office.

Born in 1850, Heaviside’s major contribution to the development of modelling 
in information engineering was his operational calculus, mostly published in the 
1880s and essentially an application of the Laplace transform. Heaviside used the 
operator pn to represent the nth derivative in a differential equation, thus transform-
ing an nth order differential equation into an nth order algebraic one—exactly as the 
D-operator is sometimes taught today. Using this technique, as well as some other 
quite advanced mathematical methods, he revisited a result derived by William 
Thomson (Lord Kelvin) on modelling the transmission of telegraph signals. Kelvin 
had neglected the self-inductance of the transmission line (which was valid, as sig-
nalling speeds at that time were sufficiently low for inductance to be negligible), but 
as speeds increased, the inductance of the cable played a major role, significantly 
distorting the signals, much to the puzzlement of practising engineers. Exploiting 
his mathematical expertise, which most electrical engineers at that time were unable 
to follow, Heaviside came to the counter-intuitive conclusion that loading the line 
periodically with additional inductance would greatly reduce the problem. Devices 
to do this were subsequently introduced in practice by M I Pupin and G A Campbell, 
and became vital to long-distance telecommunication cables.

Heaviside’s operational methods received a lot of criticism at the time, and 
were slow to be accepted. This is hardly surprising, since although the methods 
were based implicitly on Fourier and Laplace transforms—and some even earli-
er results—Heaviside was quite happy, for example, to expand his p-operator as 
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an infinite series, multiply several infinite series together and even—in a famous 
paper correcting Kelvin’s analysis of the cooling of the earth—use the square root 
of p! Most mathematicians at the time were baffled that apparently correct results 
could be obtained in this way and Heaviside himself remarked that the notion of the 
square root of p is “unintelligible by ordinary notions of differentiation” (although 
in fact it can be justified with recourse to the gamma function). Among Heaviside’s 
other achievements were to popularize vector calculus and hence to cast Maxwell’s 
equations in their now familiar form. But because of his often cavalier approach to 
mathematical rigour, he ultimately became alienated from the scientific establish-
ment; and even though he had been elected a Fellow of the Royal Society, one of 
his papers was famously rejected by them in 1894 as being insufficiently rigorous. 
He died in poverty and obscurity in 1925.

The claim that Heaviside ‘changed the paradigm’ is based on two partially 
conflicting observations. First, although having left school at 16 with only an ele-
mentary knowledge of mathematics, he was happy to develop advanced techniques 
for solving practical problems, many of which were quite beyond the competences 
of most electrical or telegraph engineers. Note, however, that although he did not 
pursue formal education beyond the age of 16, he was in the top 1 % of the candi-
dates for the College of Preceptors school-leaving examinations (Mahon 2009). So, 
in a sense he was crucial to the mathematicisation of communications engineering. 
Second, he believed that rigorous proofs could be left to others: if his techniques 
worked, then engineers could use them. This approach to mathematics has coloured 
information engineering ever since, and the tension between the two observations 
is still to be found in the teaching of engineering mathematics today, when students 
and professional engineers often query the usefulness of the formal mathematics 
taught at university. Finally, although Heaviside did use his operational methods 
for certain analytical problems (for example, the cooling of the earth problem men-
tioned above), his methods were also clearly oriented towards synthesis and design, 
as in the inductive loading of cables. This latter trend marked much subsequent 
development of modelling for information engineering, and will now be explored 
in more detail in the following sections.

3 � The Development of Linear Systems Theory

Heaviside’s operational calculus was given a rigorous foundation by 1920, 
particularly through the work of T J I’A Bromwich and J R Carson (Bennett 1979). 
Bromwich related Heaviside’s work explicitly to Fourier analysis and contour inte-
gration, thus justifying his techniques to the satisfaction of mathematicians. Carson 
also linked the frequency domain and time domain approaches. Figure 1 illustrates 
this in a modern form.

A time-invariant linear system (that is, one that obeys the principle of superposi-
tion) can be modelled in the frequency domain by its frequency response or transfer 
function. 
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Multiplying the input spectrum by the system frequency response gives  
the output spectrum. Alternatively, as Carson showed, the system can be modelled 
by the convolution integral. Convolving the input signal as a function of time with 
the impulse response (the ideal response of the system to a delta function) gives 
the output signal. In fact, Carson wrote the convolution integral in terms of the 
step response of the system, which he called the indicial admittance, but this is 
essentially identical.

By the 1920s these approaches were being used for various electrical and tele-
communications problems, and electrical and telecommunications engineers were 
becoming highly adept in moving between the time- and frequency domains as 
necessary both to understand system behaviour and to design devices such as filters. 
One important advance was made by the German Karl Küpfmüller, although again 
it met with some resistance at the time (Bissell 1986, 2006). Küpfmüller realised 
that important conclusions could be drawn about system behaviour without any 
knowledge about its component parts. In particular, a model of a perfect so-called 
‘brick wall’ filter (a perfectly rectangular frequency response, with constant gain 
or attenuation in the pass band, and complete rejection of all other, out-of-band, 
frequencies) allowed important general conclusions about the limiting behaviour 
of filters in general, whatever their implementation. Although his name is little 
known outside Germany, in his native country he is considered to be one of the 
great founding fathers of information engineering.

4 � Filters

By the 1920s there was a need to be able to synthesise filters to a particular 
specification in order to separate out the various channels in frequency divi-
sion multiplexing systems. Some of the most important advances were made by 

Fig. 1   Linear system input-output relations in a modern form

 



electronics and information engineering 5

Campbell, Foster and Zobel (USA) and Cauer and Wagner (Germany). One of the  
most accessible introductions to their ideas is still that of Guillemin (1935), where 
full bibliographic references can be found. Guillemin had studied with Arnold 
Sommerfeld in Germany, and was a major conduit of German work on filter design 
to the English-speaking world.

The emphasis of modelling by now was increasingly on design, rather than 
analysis. Such wave filters were modelled, like transmission lines, as sequences 
of lumped passive elements (particularly capacitors and inductors, but sometimes 
resistors and transformers), but the key was to develop various so-called canonical 
forms, which could be used to synthesise a particular required filter characteristic. 
The first significant attempt to do this was by the American R M Foster, who used 
partial fraction expansions as the basis of the mathematical model, but far more 
wide-reaching was the work a few years later by the German Wilhelm Cauer, who 
used continued fractions, and was the first to put circuit synthesis on a sound math-
ematical basis (Cauer et al. 2000). Figure 2 shows some basic topologies of filter 
sections which could be linked directly to the corresponding mathematical model. A 
series of transformations enabled lowpass topologies to be converted to bandpass or 
highpass topologies simply by manipulating the diagrammatic structure, which was 
directly isomorphic with the mathematical model. For further information on the 
history of circuit design, and the mathematical techniques involved, see Belevitch 
(1962) and Darlington (1999).

A few words should be said here about realisability. The ideal ‘brick wall’ 
filter is non-realizable: it is simply impossible in the real world to have an infi-
nitely steep cut-off after a perfectly flat passband. By the 1930s various realisable 
approximations had been discovered, again exploiting complex mathematical ideas 
for synthesis and design, and then simplifying the design approach so as to avoid 
the need for the electronics engineers to carry out—or even fully understand—the 
underlying mathematics.

Fig. 2   Some capacitor/inductor topologies for filter design. (Source: Wikipedia, Electronic Filter 
Topology. Available under the Creative Commons Attribution-ShareAlike License. Accessed 10 
May 2013)
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Figure  3 shows some normalised frequency response plots for various filter 
synthesis techniques. (The Butterworth filter is named after its inventor in 1930, 
while the other two are named after particular mathematical functions exploited 
in the design.) Note the various trade-offs: it is possible to have a very flat pass-
band (Butterworth) if you can accept a more gentle cut-off; or a sharper cut-off at 
the expense of ripple either within the passband or outside it (Chebyshev); or an 
extremely sharp cut-off (elliptic) but there will be ripple over the whole frequency 
range.

These standard designs can easily be transformed into practical circuits using 
widely available diagrams, tables, and other accessible practical aids. At the risk of 
labouring the point, all this is very different from modelling in the natural sciences 
or economics. All the modelling effort here is directed towards design, but also in 
order to result in a set of relatively easy and barely ‘mathematical’ techniques (com-
pared with the mathematical effort in deriving and proving results such as those in 
Fig. 3) that can be applied in practice by the circuit designer.

Fig. 3   Some realisable filter approximations. (Source: Wikipedia, Butterworth Filter. Available 
under the Creative Commons Attribution-ShareAlike License. Accessed 11 May 2013)
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5 � Electronic Feedback Circuits

Feedback circuits had been used in electronics since the early part of the twentieth 
century, and it was well known that they could become unstable. Sometimes this 
was a desirable quality—for the design of an oscillator circuit for radio transmis-
sion, for example, but in other cases it was very troublesome. In 1927 Harold Black 
(1898–1983) realised that by means of negative feedback, an amplifier with very 
low distortion could be realised, something required for transcontinental telephony. 
He famously sketched his idea on that day’s New York Times (Fig. 4).

Black discovered that although such a design could become unstable, its 
behaviour was not in accordance with the naïve model of the time, a version of 
the Barkhausen criterion developed for modelling oscillators. The assumption was 
that instability would occur when the overall loop gain was  > 1 and the input and 
feedback signals were in-phase, thus reinforcing the signal indefinitely each time 
around the loop. The problem was resolved in 1932 by Black’s colleague at Bell 
Labs, Harry Nyquist (1889–1976). Nyquist realised that you had to take account 
of the frequency response of the system. If you plotted this on polar coordinates of 
amplitude and phase, stability was determined when the frequency response curve 
encircled a certain critical point—in Nyquist’s original model (1, 0) but later revised 
to (− 1, 0) because of a slight generalisation of the model, so that the curves were 
plotted in a different way. This is illustrated in Fig. 5.

Fig. 4   Black’s feedback amplifier. Schematic diagram (a) and Black’s original sketch (b) 
(Reprinted with permission of Alcatel-Lucent USA Inc)
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The distance of the curve from the critical point is a semi-quantitative measure 
of the closeness to (in)stability, as will be discussed further in the following section: 
note, for example, that if it is possible to decrease the gain in (a) sufficiently, the 
curve will shrink, ultimately into the stable region.

6 � Feedback Control Systems

At the same time as electronics and communications engineers were developing 
an understanding of linear systems, feedback loops and stability, engineers deal-
ing with control systems were running up against similar problems. Although 
invented in the latter half of the nineteenth century, servomechanisms underwent 
a huge development during the early part of the twentieth century for such widely 
differing applications as ship steering and differential analysers, and the same issues 
of stability arose. Towards the end of the 1930s, and even more during WW2, there 
was a coming together of telecommunications and control engineers, as well as 
mathematicians, particularly in such US wartime centres of R&D such as Bell Labs 
and MIT. Other important work was carried out in the UK, Germany and the USSR, 
but it was the American results which determined to a large extent the later develop-
ment of what became known as classical control theory, so this brief account will be 
restricted to the main players in the USA.

The history of automatic control has been well documented: see Bissell (2009) 
for a short account and references to other sources. Basically, a number of research-
ers realised that the feedback model of Fig. 6, essentially that used by Nyquist in 
his analysis, could be applied to any other linear feedback system, even to control 
systems in which the variables might be flow rate, temperature, position, velocity 
and so on, rather than electrical waveforms.

The problem was, given a knowledge of the open loop transfer function H, how 
could one determine the closed loop transfer function in order to apply the Nyquist 
criterion and, if necessary, make changes to the system to ensure desired performance. 

Fig. 5   Unstable (a) and stable (b) Nyquist plots. (Source: Bissell and Dillon (2012), p 56)
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Yet again, an ingenious mathematical analysis was turned into a straightforward de-
sign tool. Nathaniel Nichols (1914–1997) realised during his WW2 work on gun con-
trol servos that it was possible to derive closed-loop amplitude and phase loci for any 
open-loop function. Plotting these loci in amplitude (decibels) and phase (degrees) 
form resulted in the famous chart shown in Fig. 7. For each open loop point defined 
on the rectangular grid, a corresponding close-loop frequency response point could be 
read from the curved lines as amplitude and phase. And that was not all. The closeness 
of approach of the open-loop locus to the critical point (halfway up the vertical axis 
in the figure) gave a direct measure of the transient behaviour of the system and the 
degree of (in)stability. A compensating network or controller could then be designed 
to be inserted into the feedback loop and shift the locus to a region with a desirable 
closed-loop dynamic response. The uncompensated closed loop frequency response, 
very close to the critical point, and the compensated one much further to the right of 
the critical point, are included in Fig. 7.

The approach to control system design just outlined was developed just before 
and during WW2, mainly in the US, but also in the UK and to a lesser extent else-
where. It reached the public domain immediately after the war, but many control 
engineers from mechanical or process engineering backgrounds found it difficult 
to understand or accept. The idea that you could talk about the frequency response 
of mechanical systems or even chemical process plant—where the frequencies 
involved might be fractions of a hertz—took considerable time to assimilate. 
The immediate post-war control engineering literature is littered with reports of 
meeting discussions where participants were still bewildered, or with arguments 
about the precise best way to plot graphs or specify gain and frequency.

Fig. 6   A feedback system showing the closed-loop transfer function
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7 � System Identification

Our final example of the special nature of modelling in information engineering is 
what is known as system identification. Assuming, as throughout this chapter, that 
a system can be modelled sufficiently closely as a linear system, how might we 
obtain a suitable model in order to design a controller? The obvious approach, as 
is common in the natural sciences, is to make models of each element—such as an 
electric motor, a valve, a pump, a hydraulic cylinder, and so on—and then combine 
them into an overall model. While this is sometimes done, more often the system to 
be controlled may not consist of easily modelled components. Furthermore, strict 
analysis using Newton’s or Kirchhoff’s laws can result in an overly complicated 
or high-order model. When this is the case, direct input-output testing can often 
identify an appropriate model.

For example, it may be possible to subject the system to an input step change 
in variable, and from the response directly deduce a model of an appropriate order. 
A second possibility is to subject the system to a frequency response test—that 
is, apply an input sinusoid, wait until any transient has died away, and record the 
output sinusoid. Repeating this over the appropriate range of frequencies gives 

Fig. 7   Redrawing of the 
original published form 
(1947) of the Nichols Chart. 
(Source: Bissell (2009). A 
history of automatic control. 
In: Nof, Shimon Y. ed. 
Springer handbook of auto-
mation. Springer handbook 
series (LXXVI). Heidelberg, 
Germany: Springer Verlag, 
pp. 53–69)
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a direct measure of the frequency response. A third possibility is to apply white 
noise to the input and then correlate the output with the input: this also results in a 
knowledge of the system transfer function. All these techniques are valid because 
the input contains, in principle, all frequencies, and so can identify the complete 
system frequency response. In the early days of system identification such testing 
required significant manual input, but it is now highly automated, with much more 
complicated techniques using computer algorithms to match a model of desired 
order to the test results. Discussion here has been limited to simple linear cases, but 
ultimately techniques for non-linear systems were also developed.

Note that all of these methods use a ‘black box’ approach: no knowledge of the 
internal constituent parts of the system is necessary to obtain a model. And very 
often it is possible to obtain an adequate lower-order model of a system which, if 
analysed in terms of the physical behaviour of its individual components, would 
result in an unwieldy higher-order model. Furthermore, neither the Nyquist nor the 
Nichols plots discussed above require an analytical model of the overall system; a 
model derived by system identification suffices for the ultimate design.

8 � The Mathematical Education of Information Engineers

Over the period under discussion the mathematical training of information engi-
neers changed radically, reflecting the increasing use of the approaches outlined in 
the previous sections. Clearly, any detailed historical account of the development 
of the teaching of engineering mathematics would be impossible here. However, it 
is worth briefly mentioning one of the pioneers of the new curricula from the 1930s 
onwards: Ernst Guillemin (1898–1970) at MIT, who published six seminal works 
in three decades (Bissell 2008). His first, two-volume work, Communication Net-
works was considered by many at the time to be too ‘advanced’ for a supposedly in-
troductory text, introducing transient and steady-state response; network theory; the 
Heaviside approach; and Fourier analysis—in other words the very material needed 
to understand the developments of the previous few decades outlined in this chapter. 
In his preface to the first volume he is unapologetic, and comments: “Methods are 
frequently designated as advanced merely because they are not in current use. To 
the student the entire field is new; the advanced methods are no exception. If they 
afford better understanding of the situation involved, then it is good pedagogy to 
introduce them into an elementary discussion. It is well for the teacher to bear in 
mind that the methods which are very familiar to him are not necessarily the easiest 
for the student to grasp.” In Volume 2 (1935) he was also one of the first to stress 
synthesis, “which has been an important motivating influence in the enlargement of 
our view and process with regard to network theory, not only had its inception in the 
field of communications but owes its development almost wholly to workers in that 
field. Nevertheless, these ideas and principles are too general in nature to remain 
confined to one field of application [...]” (Fig. 8).
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Over a period of several decades Guillemin’s pedagogical approach was highly 
influential in the USA and elsewhere, breaking much new ground on what to teach 
and how to teach it, although not uncontroversial. His teaching philosophy is clearly 
presented in Guillemin (1962). While not shirking from presenting students with 
advanced mathematics, he was also a great proponent of heuristic arguments in 
order to firmly ground the theory in engineering practice. But, as noted in Sect. 2 
of this chapter, tensions of this nature still remain in the teaching of mathematics to 
information engineers.

9 � Conclusion

This short chapter has aimed to present some of the major special characteristics 
of the way models are used in information engineering, in contrast to much of the 
literature on modelling in the natural sciences or economics. These characteristics 
include:

1.	T he primary aim of the modelling is for system synthesis or design, rather than 
analysis or explanation.

2.	 Many of the models are based on quite complicated mathematics, such as 
complex analysis and Fourier and Laplace transforms, and thus were not imme-
diately accepted by practising engineers when they were introduced.

3.	 Practising engineers had to cope with considerable changes over the period out-
lined in this chapter, accepting increasingly more sophisticated models of electri-
cal, electronic or control systems than they had been used to, and learning new 
languages with which to discuss their design processes.

Fig. 8   The most important 
volumes of Guillemin’s  
pedagogical output
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4.	T he new models were converted into much simpler form for the use of engineers, 
particularly graphs and charts which, often isomorphic with the mathematical 
foundations of the techniques, were able to hide the complexities of the underly-
ing models from practitioners.

The history of modelling in information engineering is thus a complicated story 
of both mathematicisation and demathematicisation. With the advent of the digital 
computer, it became possible to carry out very complex engineering calculations 
automatically. Yet the graphical techniques presented above—as well as many 
others not mentioned here—remain an essential part of the user interface owing to 
the succinct and accessible way in which they present ideas.

Acknowledgment  Parts of this chapter draw on material presented in much greater detail in  
Chapters 3 and 4 of Bissell and Dillon (2012).
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