
189

Chapter 8
Macroevolution and Paleobiogeography 
of Jurassic-Cretaceous Ammonoids

Margaret M. Yacobucci

© Springer Science+Business Media Dordrecht 2015
C. Klug et al. (eds.), Ammonoid Paleobiology: From macroevolution to paleogeography,
Topics in Geobiology 44, DOI 10.1007/978-94-017-9633-0_8

M. M. Yacobucci ()
Department of Geology, Bowling Green State University, 
Bowling Green, OH 43403 USA
e-mail: mmyacob@bgsu.edu

8.1 � Introduction

Ammonoids of the Jurassic and Cretaceous Periods show remarkable patterns of 
evolution. While some clades, e.g., Phylloceratina, persist as stable evolutionary 
lineages throughout this time interval, others experienced incredibly rapid rates 
of speciation and extinction. The processes responsible for creating this evolu-
tionary volatility have not been clear. While ammonoid extinction rates may re-
flect heightened sensitivity to environmental conditions, an explanation for their 
propensity to produce new species and higher taxa has remained elusive. The 
rich and well-sampled fossil record of ammonoids has enabled paleontologists 
to document the temporal and spatial context of ammonoid clades in great detail. 
Synthesizing phylogenetic, temporal, and geographic data may enable us to better 
understand the patterns and processes of evolution in this extraordinary group of 
cephalopods.

In this chapter, I briefly review the major clades of Jurassic and Cretaceous 
(hereafter, J-K) ammonoids, discussing their phylogenetic context and diversity 
dynamics. Next, I discuss key macroevolutionary processes relevant to understand-
ing the evolutionary volatility of J-K ammonoids. These evolutionary processes 
are then linked to biogeographic patterns to produce an integrated model for how 
rapid diversification may occur within ammonoid clades. Throughout the chapter, 
I highlight topics of current interest that are in need of further study.
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8.2 � Phylogeny of Jurassic and Cretaceous Ammonoids

8.2.1 � Major Ammonoid Clades

Six ammonoid suborders occurred in the Jurassic-Cretaceous interval: Phyllocera-
tina, Lytoceratina, Ammonitina, Haploceratina, Perisphinctina, and Ancyloceratina. 
Note that here the traditional suborder “Ammonitina” is split into three suborders 
(Ammonitina, Haploceratina, Perisphinctina), following Bessenova and Mikhailo-
va (1983, 1991); the term ‘Ammonitina sensu lato’ will be used for all three sub-
orders together. Figure 8.1 shows the stratigraphic and phylogenetic context for the 
18 superfamilies within these groups, as currently understood. The evolutionary 
relationships depicted in Fig. 8.1 are derived from a variety of literature sources, 
as listed in the figure caption. A comprehensive phylogenetic analysis including all 
these groups is sorely needed. Several large-scale evolutionary connections remain 
unclear, including:

a.	 the origin of Lytoceratina from either Phylloceratina (Arkell et al. 1957; Wied-
mann 1969; House 1988) or Psiloceratoidea (Houša 1965; Page 1996, 2008; 
Guex 1995; Blau et al. 2008; Hoffmann 2010; Guex et al. 2012);

b.	 derivation of Eoderoceratoidea from either Psiloceratoidea (Schindewolf 1962; 
Page 1996) or Lytoceratoidea (Donovan et al. 1981; Howarth 2013); note that 
the latter interpretation makes Ammonitina polyphyletic unless Psiloceratoidea 
is excluded from it and elevated to suborder status, as suggested by Page (1996, 
2008);

c.	 the origin of Ancycloceratina from Lytoceratina (Arkell et al. 1957; Wiedmann 
1966), Spiroceratoidea (Wright et al. 1996), or Perisphinctina (Donovan et al. 
1981; Bessenova and Mikhailova 1991; Page 1996; Mikhailova and Barabosh-
kin 2009);

d.	 the origin of Turrilitoidea from Lytoceratina (Doguzhaeva and Mikhailova 1981, 
Bessenova and Mikhailova 1991; Mikhailova and Baraboshkin 2009) or Ancy-
loceratoidea (House 1988; Wright et al. 1996);

e.	 derivation of Scaphitoidea from Ancyloceratoidea (Page 1996), Turrilitoidea 
(Wright 1981), or Perisphinctoidea (Engeser and Keupp 2002).

8.2.2 � Biodiversity Through Time

Intensive collection of J-K ammonoids combined with their relatively high preser-
vation potential (Foote and Sepkoski 1999) have allowed paleontologists to docu-
ment their biodiversity trends through time. Ammonoids show higher evolutionary 
rates than other mollusks. For instance, Gilinsky (1994, 1998) found that family-
level evolutionary volatility (i.e., average net change in diversity per million years) 
was twice as high for Phylloceratina and four times as high for Ammonitina sensu 
lato as for bivalve mollusks. Yacobucci (2005) calculated per capita origination 
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and extinction rates for J-K ammonoids averaging about 0.2 originations and ex-
tinctions per lineage-million years, though rates could be as high as 0.96 and 1.54 
events per lineage-million years, respectively, for individual Early Jurassic substag-
es (Fig. 8.2). By comparison, origination and extinction rates for marine metazoans 
as a group are typically less than 0.1 events per lineage-million years (Foote 2000).

Many have noted the relative evolutionary and morphological stability of the 
suborders Phylloceratina and Lytoceratina, relative to other ammonite suborders 

Fig. 8.1   Phylogenetic and stratigraphic context for Jurassic and Cretaceous ammonoid super-
families. Suborders are indicated by shading, with corresponding suborder names arranged at top 
of figure. Stratigraphic ranges and phylogenetic relationships are synthesized from: Arkell et al. 
1957; Schindewolf 1962; Houša 1965; Wiedmann 1969; Doguzhaeva and Mikhailova 1981; Don-
ovan et al. 1981; Wright 1981; House 1988; Guex 1995; Page 1996; Wright et al. 1996; Engeser 
and Keupp 2002; Blau et al. 2008; Page 2008; Galácz 2012; Landman et al. 2012; Howarth 2013. 
Absolute time scale (right, in Ma) and stratigraphic stages (left) are derived from the 2013 Chro-
nostratigraphic Chart of the International Commission on Stratigraphy (Cohen et al. 2013)
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Fig. 8.2   Diversity dynam-
ics of Jurassic-Cretaceous 
ammonoids. a Mean standing 
generic diversity. b Per-capita 
origination rate in lineage-
million years. c Per-capita 
extinction rate in lineage-mil-
lion years. Generic diversity 
has been compiled at the sub-
stage level. Redrawn from 
Yacobucci (2005)
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(Page 1996; but see Tanabe et al. 2003). The superfamily Desmoceratoidea (Peri-
sphinctina) also shows a slower rate of evolution than other groups. Kennedy and 
Cobban (1976), for example, describe species longevities of 0.2–0.9 million years 
for Late Cretaceous ancyloceratines, while phylloceratine, lytoceratine, and des-
moceratoid species show stratigraphic ranges from 8 to 25 million years. Possible 
explanations for this difference in evolutionary volatility among J-K ammonoid 
clades are discussed in Sect. 8.3.4.

The biodiversity history of J-K ammonoids is characterized by a distinctive 
“boom-and-bust” pattern of evolution and extinction, quite different from other 
mollusk classes (Vinarski et al. 2011). During the “boom” phase, a great variety of 
ammonoid taxa and morphotypes were produced in a very short interval. Higher 
taxa (families, superfamilies, and suborders) were established during these events. 
For instance, the initial Hettangian radiation of Early Jurassic ammonoids estab-
lished Psiloceratoidea, Eoderoceratoidea, and Lytoceratoidea (Guex 1987), while 
Haploceratoidea, Stephanoceratoidea, and Perisphinctoidea appeared in the Middle 
Jurassic (Aalenian-Bajocian) diversification event (Donovan et al. 1981). Rapid ra-
diations also occurred within superfamilies, notably in the Early Cretaceous for 
Desmoceratoidea (Hauterivian-Barremian) and Ancyloceratoidea (Aptian) and in 
the Late Cretaceous for Acanthoceratoidea and Hoplitoidea (Albian-Cenomanian) 
(Wright 1981). Biodiversity crashes were similarly frequent; these “bust” phases 
eliminated substantial proportions of the standing diversity of ammonoids. While 
virtually every stage and substage boundary of the Jurassic-Cretaceous interval 
is marked by at least regional ammonoid extinction events, more substantial ex-
tinctions also occurred, especially in association with ocean anoxic events (House 
1985; Page 1996; Macchioni and Cecca 2002; Cecca and Macchioni 2004; Moyne 
et  al. 2004; O’Dogherty et  al. 2006; Moyne and Neige 2007; Dera et  al. 2010, 
2011; Hardy et al. 2012; but see Monnet et al. 2003, Monnet and Bucher 2007, and 
Monnet 2009 for a challenge to anoxia as the cause of the Cenomanian-Turonian 
turnover event). Hence, more or less distinctive ammonoid faunas characterize the 
Early Jurassic, Middle-Late Jurassic, Early-Mid Cretaceous, and Late Cretaceous. 
A few ammonoid species may have survived, if briefly, the end-Cretaceous extinc-
tion event (Machalski and Heinberg 2005; Landman et al. 2012).

8.2.3 � Phylogenetic Analyses

The rapid evolution and extinction of ammonoids have made them valuable bio-
stratigraphic index fossils. Their biostratigraphic utility, however, has hindered 
a more contemporary approach to their systematics. New ammonoid species are 
frequently described based on a stratophenetic view, in which species are initial-
ly distinguished by their stratigraphic occurrence, with anatomical features then 
identified as diagnostic for those groupings (Donovan 1994). Whether or not these 
groups are ‘real’ species in the biological sense may not be a concern for many bio-
stratigraphers. However, to understand the macroevolution of ammonoids, a more 
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rigorous, contemporary phylogenetic approach to document relationships among 
species must be employed (Rouget et al. 2004; Neige et al. 2007; Pardo et al. 2008; 
Yacobucci 2012; Bert and Bersac 2013).

Many cephalopod paleontologists have been reluctant to pursue a parsimony-
based phylogenetic approach, in part because of the pervasive homeomorphy that 
characterizes many ammonoid groups (see Sect. 3.1 below). While homeomorphy 
is a concern in other mollusk classes as well (e.g., Schneider (2001) on bivalves; 
Schander and Sundberg (2001) and Wagner (2001) on gastropods), it is perceived 
as especially common in J-K ammonoids, which can make it difficult to separate 
convergent evolution from shared ancestry. Strategies do exist, however, to address 
homeomorphy, and rather than assuming it a priori, homeomorphy should be dem-
onstrated by phylogenetic analysis. It may be that ammonoids are no more prone 
to homeomorphy than other groups, such as arthropods, bryozoans, and mammals, 
which are routinely subjected to phylogenetic analysis (Yacobucci 2012). It has also 
been shown that even homeomorphic characters still contain some phylogenetic 
signal (Poe and Wiens 2000).

The high levels of intraspecific variability shown by many J-K ammonoids rep-
resent another obstacle to phylogenetic analysis (see De Baets et al. 2015). A single 
ammonoid species may display morphological differences between specimens that 
might otherwise be used to diagnose separate genera (see Sect. 3.3 below). Such 
variability has been difficult to capture using standard phylogenetic techniques, al-
though variable characters can now be coded as polymorphisms in most phyloge-
netic software programs. Perhaps a bigger challenge is determining which variable 
characters are phylogenetically meaningful and which represent non-phylogenetic 
processes such as ecophenotypic variation or taphonomic overprinting.

The majority of phylogenetic analyses of ammonoid clades have been conducted 
on Jurassic or Cretaceous groups, typically exploring relationships within a genus or 
family (Yacobucci 2012). A more comprehensive analysis to establish relationships 
among higher taxa has not been accomplished to date. Such an analysis, focusing 
not just on shell morphology but also on the timing of morphological development 
and life history traits, will be essential in order to rigorously test hypotheses about 
the tempo and mode of J-K ammonoid evolution.

8.3 � Macroevolutionary Processes

8.3.1 � Homeomorphy and Iterative Evolution

Homeomorphy here refers to the occurrence of similar shell forms in more or less 
distantly related groups. In ammonoids, the similarity is typically in shell shape and 
ornamentation, although suture patterns can also be similar in groups that are only 
distantly related (Schindewolf 1940; Haas 1942; Arkell et al. 1957; Kennedy and 
Cobban 1976; Saunders and Swan 1984; Dommergues et al. 1989; Dommergues 
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1994; Donovan 1994; Guex 2001; Monnet et al. 2011). Examples of homeomorphy 
have been particularly well-documented in ammonoids from the Jurassic (e.g., Dom-
mergues et al. 1984; Dommergues and Mouterde 1987; Cariou et al. 1990; Meister 
1993; El Hariri et al. 1996; Dommergues 2002; Cecca and Rouget 2006; Schlögl 
et al. 2006; Schweigert et al. 2012) and the Cretaceous (e.g., Reyment 1955; Obata 
1975; Jeletzky and Stelck 1981; Delanoy and Poupon 1992; Maeda 1993; Kennedy 
and Wright 1994; Delanoy and Busnardo 2007; Bujtor 2010) Periods. Indeed, it is 
understood among J-K ammonoid workers that homeomorphy is to be expected 
when describing new species, and many taxonomic descriptions of ammonoid taxa 
therefore include sections on how to distinguish the new group from homeomorphs. 
Typically, the homeomorphic traits are restricted to adult forms, so homeomorphs 
can be distinguished by considering their entire ontogeny (Donovan et al. 1981). It 
should also be noted that modern coleoid cephalopods show extensive convergent 
evolution as well (Lindgren et al. 2012).

Iterative evolution involves similar-looking species repeatedly evolving through 
time. An early view among ammonoid workers was that many new J-K ammonoid 
groups were independently derived from Phylloceratina or Lytoceratina via itera-
tive evolution, as deep water “root stocks” repeatedly gave rise to descendant forms 
inhabiting shallow shelves and epeiric seas. While this notion is no longer held by 
ammonoid paleontologists, at least for the origins of suborders and superfamilies 
(Wiedmann 1966; Donovan et al. 1981; Wright 1981), specific examples of homeo-
morphic evolution are frequently tied to sea level cycles. In particular, selection 
favoring certain morphs in certain habitats may be the most likely process driving 
the recurrent evolution of ammonoid homeomorphs. Seilacher and Gunji (1993) 
argued that certain shell shapes would be adapted to particular water depths, and 
therefore that parallel evolution of similar shell forms could be expected within 
shallow epeiric seas. Similar arguments relating homeomorphic shell forms to wa-
ter depth and sea level cycles have been made by Bayer and McGhee (1984), Jacobs 
et al. (1994), Cecca and Pochettino (2000), Courville (2007), and Bujtor (2010). 
Courville (2007), for instance, proposed that Cenomanian-Turonian ammonites can 
be divided into (1) a cosmopolitan fauna adapted to life in open platform and shelf 
habitats and (2) groups of endemic ammonites that diversified within epeiric sea-
ways (such as the Trans-Saharan Seaway of West Africa) during sea level highs. 
Each time sea level rose, a new group of seaway endemics evolved from open shelf 
ancestors. These endemics display homeomorphic adaptations to seaway habitats, 
with the same shell forms and ornaments recurring in each sea level cycle.

As an alternative to adaptation to particular water depths, Monnet et al. (2012) 
noted that repeated trends to larger shell size and increased shell coiling in Middle 
Triassic ammonoids might best be explained as a manifestation of Cope’s Rule, 
the often-cited trend of increasing adult body size within a clade. De Baets et al. 
(2012) suggested that the opposite trend, towards smaller embryonic/hatchling size 
in at least three separate lineages of Devonian ammonoids, might represent adap-
tations for increased fecundity and higher mobility of hatchlings within the water 
column. These changes would have been favored during the Devonian ‘Nektonic 
Revolution,’ when free-swimming predators diversified. Such selection for larger 
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or smaller adult sizes may also be applicable to J-K ammonoids, and is therefore in 
need of further exploration.

Finally, Guex (2000, 2001) has argued that environmental stress may be the root 
cause of homeomorphy in ammonoids. “[M]ajor evolutionary jumps in ammonoids 
occur during severe extinction events, and are characterized by the sudden appear-
ance of simple, primitive-looking forms which are atavistic with respect to their 
more complex immediate ancestors” (Guex 2000, p. 115). For Guex, environmental 
stress preferentially causes more complex ammonoid forms to die out, while sim-
pler forms that resemble distant ancestors evolve to take their place. In this view, 
homeomorphs are more likely to occur during or immediately after times of envi-
ronmental perturbation and heightened turnover, and show atavistic or ancestral 
traits.

8.3.2 � Heterochrony

The study of heterochrony in ammonoids extends back decades and is still an active 
area of inquiry (Dommergues et al. 1986; Landman 1988b; Marchand and Dom-
mergues 1988; Korn 1992; Landman and Geyssant 1993; Gerber et al. 2007; Gerber 
2011; Korn 2012). Both paedomorphosis (the retention of ancestral juvenile traits in 
the adult descendant) and peramorphosis (‘overmaturation’ of descendants past the 
ancestral adult form) have been described in ammonoids. Within the paedomorphic 
realm, progenesis (early sexual maturation) is most common, though examples of 
neoteny (slowed growth) have also been cited. Progenetic dwarfs have been de-
scribed from the Jurassic (Cariou and Sequeiros 1987; Marchand and Dommergues 
1988; Landman et al. 1991; Meister 1993; Mignot et al. 1993; Dommergues 1994; 
Linares and Sandoval 1996; Neige et al. 1997; Parent 1997, 1998), and Cretaceous 
(Kennedy 1977; Wright and Kennedy 1980; Kennedy 1988; Landman 1989; Ken-
nedy and Cobban 1990a, b; Landman et al. 1991; Wright et al. 1996; Kennedy et al. 
2001; Courville and Cronier 2003; Harada and Tanabe 2005) Periods. Peramorpho-
sis is less common than paedomorphosis (Landman and Geyssant, 1993), and is 
often seen within taxa that also show paedomorphic changes, producing a mosaic 
form of heterochrony (Dommergues 1987; Linares and Sandoval 1996; Neige et al. 
1997; Parent 1998; Courville and Cronier 2003).

Paleontologists have connected heterochronic patterns with other aspects of 
ammonoid paleobiology. For example, differences between sexual dimorphs (i.e., 
macroconchs and microconchs) have been related to heterochronic shifts. Tintant 
(1963), Guex (1981), and Parent (1997) all suggested microconchs were produced 
by progenesis or neoteny. Neige (1992) also identified progenesis as the source of 
some microconchs among Jurassic ammonites, but additionally recognized hypo-
morphosis as a contributing process in some taxa.

Paleobiologists have argued that certain heterochronic changes would be adap-
tively favored in particular environments. For instance, progenesis could be advan-
tageous in unstable environments, as rapid maturation would allow individuals to 
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exploit abundant juvenile resources. Neoteny (slowed growth), in contrast, would 
be favored in more stable environments (Gould 1977; Wiedmann 1988; McKinney 
and McNamara 1991). Many examples exist that document this relationship be-
tween heterochronic evolution and environmental stability. Mancini (1978) argued 
that the progenetic dwarfs of the Cretaceous Grayson Formation of Texas were 
better adapted than their larger ancestors to live on the unusually soft substrates 
present at that time. Alternatively, Enay and Gygi (2001) suggested that the Juras-
sic progenetic dwarfs they investigated would have been more tolerant of dysoxic 
bottom waters. In a similar vein, Mignot et al. (1993) argued that paedomorpho-
sis within the Early Jurassic ammonoid Hildoceras was an adaptive response to 
sub-optimal environmental conditions, and Zatoń (2008) suggested that the range 
of mature body sizes seen in Jurassic tulitids was due to varying environmental 
conditions. Monnet et  al. (2003) argued that paedomorphic changes resulting in 
smaller adult body sizes during the Late Cenomanian were driven by environmental 
perturbations such as sea level rise, temperature increase, and productivity changes. 
Stevens (1988) suggested that large adult body sizes (as are produced in certain het-
erochronic shifts such as neotenic or hypermorphic gigantism) might be expected 
in cold, deep-water environments. Landman and Geyssant (1993) reviewed 167 
reported cases of heterochrony in ammonoids, relating the different heteromorphic 
processes to different modes of life (e.g., nektobenthic, oceanic, megaplanktonic). 
While paedomorphosis still predominated, neritic nektobenthic forms were more 
likely to show peramorphosis than other ecologies. Vertical migrators showed the 
highest rate of progenesis.

The prevalence of heterochrony among ammonoid clades has also been re-
lated to diversification rates and the production of species and higher taxa. As a 
Paleozoic example, Korn (1995) argued that the diversification of several Late 
Devonian goniatite and clymeniid clades was driven by sea level fluctuations that 
favored accelerated maturation and reproductive rates during times of relative 
sea level fall. Marchand and Dommergues (1988) suggested that the evolution 
of new ammonoid lineages in the Jurassic was associated with progenesis, while 
subsequent evolution within lineages was due to neoteny or acceleration. Geys-
sant (1988) also argued that progenesis produced new species, citing changes in 
homeotic genes controlling growth as the source for morphological novelty. Ya-
cobucci (1999) linked the rapid endemic radiation of acanthoceratid ammonoids 
in the Late Cretaceous Western Interior Seaway of North America to their devel-
opmental flexibility, highlighting the prevalence of progenetic offshoots within 
this group. Landman (1989) noted that repeated instances of progenesis produced 
different ammonoid species that had nearly identical juvenile forms, but diverged 
at maturity. Landman et al. (1991) emphasized that the various Jurassic and Cre-
taceous progenetic species were not merely sexually mature juveniles, but also 
had unique mature traits that make them diagnosable taxa. They argued that this 
“novel combination of juvenile, adult, and unique features may endow progenetic 
species with the evolutionary potential to play a role in the origin of higher taxa.” 
(Landman et al. 1991, p. 409).



M. M. Yacobucci198

Homeomorphic evolution has also been linked to heterochrony by several work-
ers. Dommergues et al. (1989) argued that homeomorphy of shell forms in various 
Jurassic ammonoids was due to heterochronic processes that recurrently produced 
similar shell morphologies (e.g., disk-shaped oxycones, globular sphaerocones). 
Both Landman (1989) and Dommergues (1994) specifically cited iterative progen-
esis as the mechanism producing smaller-bodied species that resembled the juve-
niles of older or co-occurring ammonoid species. These progenetic trends repeated 
several times, producing similar-looking species –homeomorphs– in each iteration. 
Similarly, Meister (1993) suggested that paedomorphosis by neoteny was respon-
sible for producing homeomorphic suboxyconic shell forms in multiple groups of 
Early Jurassic phylloceratine ammonoids.

8.3.3 � Developmental Flexibility

In addition to heterochronic processes, various other forms of developmental flex-
ibility have been documented in ammonoids and used for systematic purposes. This 
developmental flexibility may help explain the extreme intraspecific morphological 
variability that is seen in many J-K ammonoid groups (e.g., Reeside and Cobban 
1960; Westermann 1966; Kennedy and Cobban 1976; Howarth 1978; Meléndez 
and Fontana 1993; Yacobucci 1999, 2003; 2004a, b; Morard and Guex 2003; Kak-
abadze 2004; Gangopadhyay and Bardhan 2007; Gerber et al. 2008; Reyment 2011; 
Knauss and Yacobucci 2014; De Baets et  al. 2015). Certainly the sexual dimor-
phism that characterizes many J-K ammonoid species (Kennedy and Cobban 1976; 
Callomon 1981; Donovan et al. 1981; Davis et al. 1996) must relate to variations in 
the developmental growth program.

Perhaps not surprisingly, then, ammonoid paleontologists have been pioneers 
in the use of developmentally defined characters in systematics. The systematic 
description and differentiation of ammonoid species often includes reference to 
developmentally-based characters. One species of a genus might reach maturity at 
a smaller size than another. Features of ornamentation like ribs and tubercles may 
occur only on one portion of the shell, indicating a developmental shift in the shell’s 
growth program. Traits like the density of ribs or the shape or pattern of spacing of 
tubercles may change during growth. The adult suture may remain relatively simple 
in one species while developing more complexity through ontogeny in a close rela-
tive. Characters like these are routinely used to diagnose and differentiate closely 
related ammonoid species. By contrast, systematists who study extant animals 
more rarely use juvenile traits and aspects of developmental timing in their work. 
Recently, modern biologists have argued that variations in developmental timing 
may be a driver of speciation, as they provide a source for new innovations, popu-
lational polyphenism, and pre-mating isolation mechanisms (Naisbit et  al. 2003; 
West-Eberhard 2003, 2005; Minelli and Fusco 2012). Ammonoid paleontologists 
are well-situated to lead integrative research efforts on the role of developmental 
flexibility in speciation and the production of higher taxa.
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8.3.4 � Environment and Evolution

Ammonoid paleontologists have long argued that environmental factors, like sea 
level changes, water temperature, and oxygen content, had a primary impact on 
evolutionary dynamics, including incidents of homeomorphy and heterochrony, as 
noted above (Ziegler 1967; Kennedy and Cobban 1976; Futukami and Obata 1988; 
Marcinowski and Wiedmann 1988; Meléndez et al. 1988; Wiedmann 1988; Hallam 
1989; House 1989, 1993; Hantzpergue 1991, 1995; Ross et al. 1992; Rawson 1993; 
Wiedmann and Kullmann 1996; Bengtson and Kakabadze 1999; Yacobucci 1999; 
Hirano et al. 2000; Sandoval et al. 2001, Navarro et al. 2005; Olóriz and Villaseñor 
2006; Bardhan et al. 2007; Bourillot et al. 2008; Lehmann and Herbig 2009; Ifrim 
and Stinnesbeck 2010; Nagm and Wilmsen 2012; Ruban 2013). Biotic factors such 
as changes in plankton food sources were likely also important (Kruta et al. 2011; 
Ohkouchi et al. 2013). Ammonoids were subject to a variety of selective pressures, 
which likely varied both spatially and temporally. Key environmental variables may 
have occurred as spatial gradients (e.g., water depth, temperature, salinity, dissolved 
oxygen) or as more discrete patches (e.g., nutrients, substrate types), especially 
within epeiric seas. Ammonoid populations and species would necessarily respond 
to changes in these environmental parameters, whether by extinction, migration, or 
adaptive evolution.

The ammonoid suborders Phylloceratina and Lytoceratina and the superfamily 
Desmoceratoidea are characterized by relative evolutionary stability and morpho-
logical conservatism (Arkell et  al. 1957; Page 1996; Neige et  al. 2013; but see 
Bourillot et al. 2008). It has been argued that this stability stems from their more 
environmentally stable, open ocean habitats (House 1989; Tanabe et al. 2013). Am-
monoids living in shallow shelves and epeiric seas, on the other hand, show higher 
taxonomic and morphological diversity and higher evolutionary turnover, presum-
ably as a response to more unstable environmental conditions (Ziegler 1981).

This documented difference in evolutionary rates between deep open ocean and 
shallow restricted shelf/sea habitats has led paleontologists to tie ammonoid evolu-
tion to sea level cycles (Wiedmann 1973; Kennedy and Cobban 1976; Hirano 1988; 
Yacobucci 1999). Slowly evolving groups living offshore would provide the initial 
species that invaded newly created or accessible onshore habitats during transgres-
sions. An adaptive radiation would ensue, producing many new ammonoid species 
during a short time interval. When sea level later fell, these shallow water species 
would rapidly become extinct. Then, when sea level rose again, a new suite of am-
monoid species, derived from the stable offshore species, would radiate into shal-
low habitats once more.

Case studies of specific examples of this evolutionary pattern have revealed 
more complexity in the evolutionary processes involved. Hirano (1988), for in-
stance, explored the evolution of the Cenomanian desmoceratids Desmoceras 
and Tragodesmoceroides and the tetragonitid Gaudryceras from Japan. He found 
species-level stasis over several million years in the open ocean Desmoceras ( P.) 
japonicum, which then gave rise to Tragodesmoceroides subcostatus via relatively 
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rapid allopatric speciation. Gaudryceras, on the other hand, showed episodes of in-
creased polymorphism within a species, rather than the divergence of a new species. 
Macchioni and Cecca (2002) argued that both transgressions and regressions could 
change regional biodiversity and the degree of endemism in Early Jurassic ammo-
noid faunas. Lukeneder (2012) found that both abundance and diversity peaked dur-
ing highstands in Early Cretaceous (Hauterivian-Barremian) ammonoids from the 
Italian Alps; the possibility that higher abundances influenced biodiversity counts 
is an open question.

Further complicating the link between sea level cycles and ammonoid diversity 
dynamics is the association of sea level highstands with episodes of ocean anoxia. 
Rising sea levels may be associated with global warming and a reduction in ther-
mohaline ocean circulation. The rising seas may also bring the oxygen minimum 
zone up in the water column such that it impinges on the shallow seafloor. Such 
times of anoxia or dysoxia are known to be associated with ammonoid extinctions 
and turnover. Hirano et al. (2000), for example, documented the stratigraphic ranges 
of 902 Cretaceous ammonoid species from Japan. They found a diversity peak in 
the Late Albian, with lower diversities during mid-Cretaceous ocean anoxic events. 
Turnover among ammonoids during the Pliensbachian-Toarcian (Early Jurassic) 
has long been associated with ocean anoxia (Macchioni and Cecca 2002; Rulleau 
et al. 2003; Dommergues et al. 2009; Dera et al. 2011). Hence, ammonoid extinc-
tion may be elevated both at times of sea level rise and sea level fall, depending on 
the circumstances (Becker 1993; Korn 1995; Yacobucci 1999).

It may also be that sea level cycles and their associated environmental changes 
drive origination as well as extinction. Transgressions produce new habitat space, 
which may trigger adaptive radiations within a few invading higher taxa. Regres-
sions may isolate previously connected regions and promote allopatric speciation 
(Yacobucci 1999, 2015).

8.3.5 � Speciation Models

Few invertebrate paleontologists have explicitly connected the species they study 
with any particular species concept (such as the biological or phylogenetic species 
concepts; Allmon and Smith 2011). Dozens of different definitions of species exist 
in the scientific literature. The Biological Species Concept (BSC) is certainly the 
most widely cited (e.g., it is the species definition found in most introductory text-
books). The BSC states that species are groups of interbreeding natural populations 
that are reproductively isolated from other groups (Mayr 1942, 1963; 1995. While 
it is impossible to apply this definition directly to fossil species, it does express the 
core theoretical concept that species are distinct, isolated gene pools, each therefore 
with its own unique evolutionary history.

The ‘reality’ of species as distinct evolutionary units can be difficult to demon-
strate, for living and extinct organisms alike. The paleontological morphospecies 
concept infers that morphological similarity should reflect evolutionary proximity 
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(Raup and Stanley 1978, p. 130). Given the prevalence of homeomorphy in J-K 
ammonoids, this inference may not always hold. The stratophenetic approach many 
workers have taken to J-K ammonoid classification means that nominal ammonoid 
species may or may not reflect “real” biological species. A tendency to oversplit 
highly variable ammonoid species further complicates our understanding of ammo-
noid diversity. In addition, Nardin et al. (2005) found that Jurassic ammonoid work-
ers more readily named extreme forms than intermediate ones. Several workers 
(Kennedy and Wright 1985; Hallam 1990) have, indeed, suggested that ammonoid 
genera may be closer to “real” species than the nominal species are. Ideally, future 
workers will at least more explicitly describe the species concept they are using.

The speciation process has been intensively studied by modern biologists for 
decades. Proposed speciation mechanisms differ primarily in their geographic con-
text and the degree of gene flow permitted between diverging populations. Allopat-
ric speciation is widely accepted as the most common mode of speciation (Mayr 
1942, 1963, 1995; Lieberman 2000; Coyne and Orr 2004; Marie Curie SPECIA-
TION Network 2012; Nosil 2012). In the allopatric speciation model, lack of gene 
flow between populations is due to geographic separation. How much geographic 
separation is necessary to prevent gene flow is a function of the organisms’ mobil-
ity and dispersal ability; allopatric speciation is known to occur across small geo-
graphic scales in shallow marine settings (Meyer et al. 2005; Krug 2011). Parapatric 
speciation involves populations occupying an ecological gradient that experience 
ecological divergence as each population adapts to its local environments; some 
gene flow can still occur between adjacent populations (Coyne and Orr 2004; Nosil 
2008; Pinho and Hey 2010; Keller and Seehausen 2012). Sympatric speciation, in 
which populations show extensive geographic overlap and gene flow, has remained 
controversial, in part because the definition has shifted over time from a purely 
geographic one to one that focuses on the degree of gene flow between popula-
tions (Gavrilets 2003; Coyne and Orr 2004; Mallet 2008; Fitzpatrick et al. 2008, 
2009; Mallet et al. 2009; Bird et al. 2012). One argument against sympatric specia-
tion is that incipient species would occupy the same ecological niche and therefore 
one population would just out-compete the other, driving it to extinction before it 
can successfully diverge into a new species. Successful sympatric speciation, then, 
requires simultaneous reproductive isolation and ecological differentiation (Johan-
nesson 2001; Coyne and Orr 2004), which could be produced by modifying cer-
tain traits that affect both the organisms’ ecology and reproduction [coined “magic 
traits” by Gavrilets (2004)].

It has been suggested that these different speciation models may not be mutually 
exclusive; rather, speciation may involve an early allopatric stage when divergence 
begins and a later sympatric stage as the diverging population moves back into 
its parent population’s range (Rundle and Schluter 2004; Rundle and Nosil 2005; 
Butlin et al. 2008; Aguilée et al. 2011; Marie Curie SPECIATION Network 2012). 
Parapatric speciation and mosaic sympatry (involving randomly distributed habitat 
patches within the overlapping ranges of diverging populations) may also be com-
mon (Mallet 2008; Mallet et al. 2009). Certainly, the speciation process typically 
takes place over tens of thousands of years, so populations are likely to experience 
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a variety of geographic and environmental changes before becoming completely 
separate species (Norris and Hull 2012).

Rapid evolutionary radiations that involve frequent speciation, often within new-
ly exploited habitats, provide a particularly interesting perspective on how specia-
tion happens (Gavrilets and Losos 2009). The adaptive radiation of Anolis lizards 
in the Caribbean resulted in frequent parallel evolution of homeomorphic forms on 
different islands, suggesting that similar anatomical traits can evolve repeatedly 
within a clade that encounters similar environments (Mahler et al. 2013). Studies of 
Galápagos finches (Grant et al. 2006; Grant and Grant 2008) and cichlid fish (Al-
bertson and Kocher 2006) have shown the importance of developmentally plastic 
traits as the source for anatomical variation involved in ecological divergence of 
rapidly speciating populations. The African cichlid fish radiations demonstrate the 
importance of both environmental factors and sexual selection on lineage-specific 
traits for fueling speciation (Wagner et al. 2012).

Ammonoid workers have primarily addressed the speciation process indirect-
ly, by assessing the dispersal ability of ammonoids as juveniles. Mesozoic am-
monoids had small eggs (0.5–2.6 mm) and hatchling sizes, and probably spent 
some time in the plankton during the early juvenile phase of their life cycle, be-
fore settling into a nektic or nektobenthic habit (Landman 1988a, Landman et al. 
1996; Shigeta 1993; Tajika and Wani 2011). It should be noted, however, that 
ammonoid taxa associated with deep and cold water habitats (e.g., Phyllocera-
tina, Lytoceratina) had larger eggs than taxa in shallow and warm water habitats 
(e.g., Ammonitina, Ancyloceratina; Laptikhovsky et  al. 2013), so a planktonic 
juvenile phase may not have been universal among J-K ammonoids. Many ex-
amples exist of juvenile and adult ammonoids living in separate habitats (Ken-
nedy and Cobban 1976; Morton 1988; Tsujita and Westermann 1998). Tajika and 
Wani (2011) studied hatchling size in species of Gaudryceras (Lytoceratina) and 
Hypophylloceras (Phylloceratina) from the Late Cretaceous of northern Japan, 
and estimated they were planktonic for at least five days. Ikeda and Wani (2012) 
and Yahada and Wani (2013) found that adult shell thickness ratios (width/diam-
eter) change with depth within a wide range of ammonoid species while juvenile 
proportions do not; they interpreted this finding as evidence for planktic hatch-
lings and nektobenthic adults. Wani (2011) documented hatchling sizes in am-
monoids and nautiloids throughout the Phanerozoic and compared them to those 
of modern cephalopods. He found that ammonoids showed consistently small 
hatchling sizes (< 3 mm) through time, while nautiloid hatchling sizes increased 
in the Jurassic to their presently-observed size of 22–33 mm. Modern cephalo-
pod hatchling size is related to planktonic (< 3 mm) vs. nonplanktonic (> 10 mm) 
habits. Hence, while J-K nautiloid hatchlings were likely nonplanktonic with lim-
ited dispersal and more restricted geographic ranges, J-K ammonoid hatchlings 
were likely planktonic with greater dispersal ability and larger geographic ranges. 
Wani (2011) concluded that sympatric speciation was more likely than allopatric 
speciation in ammonoids. However, while these studies support the possibility of 
sympatric speciation, we need more complete and detailed data on the geographic 
ranges of J-K ammonoid species, as well as careful mapping of possible micro-
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habitats or mosaic habitats in shallow shelf and epeiric sea settings, to determine 
whether sympatric or allopatric speciation actually took place within a given am-
monoid clade.

8.4 � Role of Paleobiogeography in Macroevolution

8.4.1 � The Mesozoic Earth System

The Mesozoic Earth System was marked by significant tectonic, oceanographic, 
and climatic changes. The supercontinent Pangea began rifting apart by the Early 
Jurassic, first with the opening of the North and Central Atlantic (Labails et  al. 
2010; Ruiz-Martínez et al. 2012) and later by the opening of the Hispanic Corri-
dor, which produced an ocean passage connecting Western Tethys with the Eastern 
Pacific (Fig. 8.3a). No direct geological evidence exists for the Hispanic Corridor 
prior to the late Middle Jurassic, although a flooded rift zone that permitted ammo-
noid dispersal between Tethys and the Eastern Pacific could have been present ear-
lier (Longridge et al. 2008). The Gondwanan continents separated later, in the Early 
to Mid-Cretaceous, with the South Atlantic opening from south to north beginning 
in the Hauterivian (Fig. 8.3b) (Owen and Mutterlose 2006; Rawson 2007; Torsvik 
et al. 2009; Geraldes et al. 2013).

High sea levels through the J-K interval (Haq et al. 1987, 1988) flooded large 
areas of the continents and offered marine connections between these opening 
ocean basins. The dispersal of Jurassic ammonoids through the Hispanic Corri-
dor (Fig. 8.3a; Smith and Tipper 1986; Moyne et al. 2004; Arias 2008; Longridge 
et al. 2008; Fernández-López and Chong Díaz 2011; Galácz 2012; Stevens 2012; 
Sandoval et al. 2013) and Cretaceous ammonoids through the Trans-Saharan Sea-
way (Fig. 8.3b; Reyment 1980; Meister et al. 1992, 1994; Courville et al. 1998; 
Courville 2007; Lehmann and Herbig 2009; Nagm et al. 2010; Nagm and Wilm-
sen 2012) have been particularly well-documented. Rising sea level was driven 
both by increases in mid-ocean ridge volume and by global warming. Generally 
warm “greenhouse” conditions prevailed for most of the Jurassic and Cretaceous, 
although climate did vary through this interval. The Early and latest Cretaceous 
have been characterized as a “cool greenhouse” (with mountain glaciers and small 
volumes of at least seasonal polar ice) while ocean anoxic events (OAEs) during the 
Triassic-Jurassic transition, Toarcian, Aptian, and Cenomanian-Turonian intervals 
can be linked to extreme hothouse conditions, driven in part by the eruption of large 
igneous provinces (Kidder and Worsley 2010, 2012; Takashima et al. 2011; Hay and 
Floegel 2012). Hence, tectonics, climate, and sea level are strongly linked within 
the Earth System throughout the Jurassic and Cretaceous Periods.

The breakup of Pangea has long been thought to drive global biodiversity in-
creases by increasing provinciality, with geographic isolation leading to higher 
origination rates for species and higher taxa (Valentine et  al. 1978). However, 
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Miller et  al. (2009) found, using a standardized dataset of brachiopod, bivalve, 
and gastropod occurrences derived from the Paleobiology Database, no increase in 
“geo-disparity” (i.e., faunal compositional differences as a function of geographic 
distance) through the Phanerozoic. On the other hand, they also found that the Me-
sozoic showed a unique pattern. Rather than the expected decreasing faunal similar-
ity with geographic distance that was seen for the Paleozoic and Cenozoic Eras, the 
Mesozoic data showed an irregular relationship between these variables, implying 
greater cosmopolitanism among Mesozoic groups. Miller et al. (2009) suggested 
that Mesozoic settings were especially “patchy,” with epeiric seas, ocean-facing 
shallow shelves, and small land masses intermingled, most notably within Tethys. 
Given the longstanding belief that ammonoid diversity is linked to sea level and 
tectonics, a similar analysis focusing on the Mesozoic ammonoid occurrence record 
would make a useful comparison to that of Miller et al. (2009).

Western Interior
Seaway

Trans-Saharan
Seaway

b

TETHYS

BOREAL

Hispanic Corridor

a

Fig. 8.3   Mesozoic paleogeography. a Late Jurassic (150 Ma). b Late Cretaceous (90 Ma). Moll-
weide projection. Maps redrawn from Blakey (2011a)

 



8  Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids 205

8.4.2 � Ammonoid Paleobiogeography

Before discussing the paleobiogeography of ammonoids and its role in the mac-
roevolution of this group, we must consider whether significant postmortem drift 
affected the geographic distribution of fossil remains, and therefore whether geo-
graphic patterns documented in the fossil record can be used to infer biological 
processes. Shells of modern Nautilus are known to drift substantial distances be-
yond their living range within the Indo-Pacific region (Reyment 1958, 1973; To-
riyama et al. 1965; House 1987), a process supported by findings in experimental 
and observational taphonomy (Wani 2004, 2007; Mapes et al. 2010a, b). This pro-
pensity for postmortem dispersal has been inferred to apply to ammonoids as well 
(Reyment 1958, 2008; House 1987). Reyment (2008) reviewed the “classical lit-
erature” on the question of postmortem drift and concluded that “nekroplanktonic 
dispersal is the rule rather than the exception”. However, Kennedy and Cobban 
(1976) and Cecca (1999), while acknowledging that post-mortem drift of dead 
ammonoid shells can happen, suggest it is possible to eliminate substantial drift 
in many specific cases. In particular, Kennedy and Cobban (1976) argued against 
postmortem drift by noting the large numbers of intact ammonoid specimens that 
are typically recovered from a fossil locality; they suggest postmortem drift is 
inadequate to explain these numbers. Maeda and Seilacher (1996) presented hy-
drostatic models that suggested a depth limit (which they left unspecified), below 
which dead ammonoid shells were likely to sink quickly and above which they 
were likely to float and drift in surface currents. This interpretation is supported 
by the occasional association of jaws with J-K ammonoid shells recovered from 
offshore settings (Tanabe et al. 2015). Hence, ammonoids living in shallow and/
or surface waters might be more likely to experience post-mortem drift than deep 
water groups. Given the range of arguments on either side, the recommended best 
practice is to gather taphonomic evidence to support or refute postmortem drift 
for each particular case.

Ammonoid workers through the nineteenth and much of the twentieth centuries 
believed that J-K ammonoids were able to freely disperse across wide geographic 
distances, due to their nektonic mode of life. However, evidence has accumulated 
to support the view that many ammonoid species and genera were limited to rela-
tively narrow geographic ranges, and show a significant degree of provincialism 
(Gordon 1976; Ziegler 1981; Thierry 1988; Marcinowski and Wiedmann 1988; 
Wiedmann 1988; Cecca 1999; Reboulet 2001; Macchioni and Cecca 2002; Cecca 
et al. 2005b; Dommergues et al. 2009; Dera et al. 2011; Yahada and Wani 2013). 
Kennedy and Cobban (1976) argued that many eurytopic ammonoid taxa had 
global distributions, due either to the dispersal by surface currents of planktonic 
hatchlings (see Sect. 3.5) or to active swimming of nektonic adults, while other 
ammonoids had limited temperature tolerances, restricting them to certain lati-
tudes. They suggested that endemic ammonoid taxa are typically low-diversity, 
highly variable species that were prevented by geographic or environmental bar-
riers from dispersing.
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The geographic distributions of J-K ammonoids fluctuated through time. Sea 
level changes are widely thought to drive shifting geographic distributions, al-
though local and regional barriers to dispersal are also important (Hancock and 
Kennedy 1981; Atrops and Meléndez 1988; Futakami and Obata 1988; Kotetichvili 
1988; Meléndez et  al. 1988; Hantzpergue 1991, 1995; Bengtson and Kakabadze 
1999; Navarro et  al. 2005; Olóriz and Villaseñor 2006; Moyne and Neige 2007; 
Sarih et al. 2007; Bourillot et al. 2008; Mitta 2008; Dommergues et al. 2009; If-
rim and Stinnesbeck 2010; Jagt-Yazykova 2011; Jagt-Yazykova and Zonova 2012). 
Early Jurassic ammonoids show a relatively cosmopolitan distribution, with the 
degree of provincialism increasing from the Middle Jurassic through the Middle 
Cretaceous (Gordon 1976; Westermann 2000). By the Middle Jurassic, two ma-
jor biorealms—the Boreal and Tethyan Realms—are clearly established (Fig. 8.3a) 
(Kennedy and Cobban 1976; Rawson 1981; Westermann 2000). The Boreal Realm 
encompassed mid to high northern paleolatitudes while the Tethyan Realm spanned 
equatorial regions and the north and south margins of the Tethys Ocean. The Bo-
real Realm can be subdivided into Arctic and Boreal-Atlantic/Northwest Europe 
provinces while the much larger Tethyan Realm is varyingly divided into numer-
ous provinces, including the Tethyan proper, West Tethyan, Mediterranean, Indo-
Pacific, Indo-Madagascan, Andean, and Austral (southern high latitudes) provinces 
(Westermann 1981, 2000; Enay and Cariou 1997, 1999; Aguirre-Urreta et al. 2007; 
Bardhan et al. 2007; Obata and Matsukawa 2007). The East Pacific (i.e., localities 
in Western North and South America) is separated out as a third realm by some 
workers (Thierry 1976; Westermann 1981). Moyne et al. (2004) identified 16 am-
monoid biogeographic provinces for the Middle Jurassic (Late Aalenian-Middle 
Bathonian; Fig. 8.4 top). They compiled global species diversity data for 23 am-
monoid subfamilies, which produced a cluster diagram showing faunal similarities 
among regions (Fig. 8.4 bottom). Western Tethys and Circum-Pacific (including the 
Americas, Antarctic Peninsula, northeastern Pacific, Australia and New Zealand) 
groups were clearly defined. The Boreal Province was very distinct from all other 
regions, due to the dominance of the cardioceratid subfamily Arctocephalitinae, 
which was restricted to high latitudes.

Of particular interest to ammonoid paleontologists has been the European inter-
face between the Boreal and Tethyan Realms. This interface shifted north and south 
throughout the Jurassic and Cretaceous, and varied from a relatively hard biogeo-
graphic boundary (with little mixing of faunas) to a much more porous boundary 
that permitted considerable mixing of Boreal and Tethyan ammonoid faunas, creat-
ing a distinctive European fauna (Callomon 1985, 2003; Thierry 1988, 2003; Cecca 
et  al. 2005a; Alsen 2006; Wierzbowski and Rogov 2011). Provincialism within 
these larger realms also varied through time and could be strong (Cecca 1999).

A cooling interval in the Late Early Cretaceous (Late Aptian to Albian) redis-
tributed ammonoids in the Pacific province (Iba and Sano 2007; Iba 2009; Mat-
sukawa et al. 2012). As sea level peaked in the Mid-Cretaceous (Haq et al 1987, 
1988), provincialism declined overall, although newly formed epeiric seaways such 
as the Western Interior Seaway of North America and the Trans-Saharan Seaway 
of Africa hosted radiations of endemic ammonoid clades (Kennedy and Cobban 
1976; Marcinowski and Wiedmann 1988; Wiedmann 1988; Meister et  al. 1992, 
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1994; Courville et al. 1998; Yacobucci 1999, 2003; Monnet 2009; Nagm and Wilm-
sen 2012). By the latest Cretaceous, ammonoid faunas were becoming more geo-
graphically differentiated again, at least in shallow water settings (Gordon 1976; 
Rawson 1981; Kennedy et  al. 1998; Olivero and Medina 2000). Zakharov et  al. 
(2012), investigating Maastrichtian ammonoids and belemnites recovered from the 

Fig. 8.4   Middle Jurassic ammonoid paleobiogeography. Sixteen biogeographic provinces were 
identified for the Middle Jurassic (late Aalenian-Middle Bathonian) by Moyne et al. (2004) ( top), 
who produced a hierarchical ascendant classification from data on subfamily diversity in each 
province ( bottom). They identified a Western Tethys group (in red) and a Circum-Pacific group (in 
blue). Note the pronounced difference between the Boreal province ( O) and all other provinces, 
reflecting the dominance of the high-latitude cardioceratid subfamily Arctocephalitinae. Provinces: 
A North Mediterranean, B Middle Mediterranean, C Southwest Tethyan Margin, D South Tethyan 
Margin, E South America and Antarctic Peninsula, F Central America, G Western North America, 
H Japan and Eastern Russia, I Tibet and Southeast Asia, J Northeast Tethyan Margin, K North 
Tethyan Margin, L Southern Northwest European Platform, M Atlantic Basins, N Northern North-
west European Platform, O Boreal, P Austral. Province localities and cluster diagram redrawn from 
Moyne et al. (2004). Base map for Middle Jurassic (170 Ma) redrawn from Blakey (2011a)
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mid-Pacific Magellan Seamounts, found evidence of mixing of ammonoids from 
middle and high northern latitudes into these deeper tropical waters. It may there-
fore be that open oceanic and/or deeper water ammonoids retained a cosmopolitan 
distribution through the Late Cretaceous.

Many studies of ammonoid paleobiogeography are essentially descriptive (what 
Dommergues and Marchand (1988) call an “approche phénétique”), documenting 
taxonomic occurrences in various regions and at various times. Such studies are 
critical for building comprehensive datasets of ammonoid occurrences through time, 
and have been used as input data for paleoceanographic models (e.g., Arias 2008). 
Interest is growing, however, in linking the spatial distributions of ammonoids to the 
underlying processes that control these distributions (Dommergues and Marchand’s 
(1988) “approche causale”), and connecting geographic patterns to morphological 
evolution, diversification, and extinction. Dommergues et al. (2001) explored rela-
tionships among Early Jurassic ammonoid morphologies and their geographic dis-
tribution and found a complicated pattern, with no clear relationship between mor-
photype and dispersal ability or environment. Navarro et  al. (2005), on the other 
hand, were able to link the biogeography of Middle Jurassic cardioceratid ammo-
noids with morphological evolution. They found that immigration of ammonoids 

Fig. 8.5   Ammonoid paleobiogeography of the Late Cretaceous Western Interior Seaway of North 
America. a Diversity gradients per substage, based on counts of ammonoid genera present in 2° 
latitude bins. Box-and-whisker plots show minimum and maximum latitudes occupied (ends of 
black lines) and quartiles for generic diversity; median is marked by the boundary between the 
blue and red boxes. Note the northward shifts in diversity during the Cenomanian and Campanian 
global sea level rises. Stage abbreviations: Ceno-Cenomanian, Turo-Turonian, Coni-Coniacian, 
Sa-Santonian, Camp-Campanian, Maas-Maastrichtian. Absolute ages from Cobban et  al. 2006. 
b Map of the North American Western Interior Seaway during the Late Cretaceous showing bio-
geographic provinces of Kauffman (1984). Solid lines are province boundaries; dashed lines show 
extent of endemic center. The endemic center, where the southern, central, and northern provinces 
overlapped, was home to a variety of endemic ammonoids. Map modified from 85  Ma North 
American reconstruction of Blakey (2011b)
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into new areas (tied to sea level rise) led to increased morphological disparity within 
the group while the subsequent invasion of a different clade led to a reduction in the 
first group’s disparity. Yacobucci (2004b) found a similar result for Middle Creta-
ceous ammonoids from northern North America: invasion by a second ammonoid 
group into an endemic genus’ geographic range resulted in a shift in the endemic am-
monoid’s morphology, presumably to avoid direct competition with the newcomer.

Jurassic-Cretaceous ammonoids displayed the expected latitudinal diversity gra-
dient, with highest taxonomic diversity at low latitudes, decreasing towards higher 
latitudes (Cecca et  al. 2005b; Yacobucci and MacKenzie 2007b; Vinarski et  al. 
2011; Rogov 2012). Cecca et  al. (2005b) found that at a single latitude, ammo-
noid diversity was lowest on epicontinental platforms and higher in both intracra-
tonic basins and deeper oceanic settings. Rogov (2012) argued that the latitudinal 
diversity gradient was a function of both temperature and the coming and going of 
ocean connections between basins as sea level fluctuated. Yacobucci and MacK-
enzie (2007b) similarly found that sea level rises in the Cenomanian and Campan-
ian shifted peak diversities northward within the North American Western Interior 
Seaway, with the latitudinal gradient shifting back south in the intervening inter-
vals (Fig. 8.5a). Also notable is the presence of an endemic center at mid-latitude 
within the Western Interior Seaway, where northern and southern faunas overlapped 
(Fig. 8.5b; Kauffman 1984). A variety of endemic ammonoid species and genera 
arose within this small region of the seaway.

The relationship between geographic range and rates of evolution and extinction 
has been explored for many marine animal groups (Jablonski 1986, 2005, 2008; 
Jablonski and Roy 2003; Payne and Finnegan 2007; Lockwood 2008; Janevski and 
Baumiller 2009; Myers et al. 2013; Nürnberg and Aberhan 2013). Large geograph-
ic ranges may decrease speciation rates (as Jablonski and Roy (2003) found for 
Cretaceous gastropods) while also providing protection from extinction (Jablonski 
2008). Interestingly, Jablonski (2008) found that larger geographic ranges reduced 
extinction probability for bivalves, gastropods, and nautiloid cephalopods during 
the Cretaceous-Paleogene extinction but were of no help to ammonoid cephalo-
pods; he argued that this difference resulted from some trait specific to ammonoids 
that increased the group’s extinction probability.

8.5 � A Synthetic View of Macroevolution 
and Paleobiogeography

8.5.1 � A Synthetic Model for Ammonoid Speciation

Summarizing the key points made in this chapter, Jurassic-Cretaceous ammonoids 
show remarkable rates of diversification. Ammonoid diversity appears to be con-
trolled by both “internal” biological processes, such as developmental flexibility, 
and “external” environmental factors that control habitat space and geographic dis-
tributions, including sea level cycles, tectonic shifts, oceanographic conditions, and 
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climate change. Contemporary biological studies have shown that microallopatric, 
parapatric, and sympatric speciation are all viable alternatives to the traditional al-
lopatric model, and that speciation may be driven by divergent natural selection to 
occupy different ecological niches. These processes may occur repeatedly in similar 
habitats, producing a pattern of parallel evolution like that frequently seen in J-K 
ammonoids.

Integrating these concepts and observations produces the following speciation 
model for ammonoids:

1.	 The ancestral ammonoid species moves into a new habitat, such as a newly 
formed epeiric seaway created by a sea level rise.

2.	 Small random changes in the flexible developmental program of individuals 
produce variable adult sizes and shell forms.

3.	 These variable morphs sort into different ecological niches and/or occupy distinct 
microhabitats within the epeiric seaway.

4.	 Assortative mating and disruptive selection result in reproductive isolation and 
divergence. If these subpopulations persist, one or more new, endemic species 
may be produced.

5.	 Finally, if a related ammonoid species later moves into a similar new epeiric 
habitat, it will undergo the same sort of process. Developmental constraints on 
shell form will result in the production of anatomical variants similar to earlier 
endemic radiations (i.e., homeomorphs), which will then sort themselves into 
similar microhabitats.

Note that under this model, speciation is implied to be sympatric or microallopatric. 
Different anatomical variants are produced in situ, and then separate out into mi-
crohabitats. These microhabitats may be patchily distributed within the same gen-
eral region (e.g., different benthic substrates), or may result in a fossil record that 
combines multiple microhabitats in a single location (e.g., ammonoids occupying 
different portions of the water column). The model predicts that ammonoid mor-
phology should match specific ecological niches consistently, that is, a particular 
mode of life is reflected in shell anatomy and size. The model also requires that 
the ecological niches to which ammonoid morphs adapt are consistently available 
through space and time.

This model of speciation emphasizes the importance of both biological processes 
(developmental flexibility) and environmental factors (sea level change and a mo-
saic of microhabitats) in explaining high diversification rates among ammonoids. 
Neither by itself is sufficient to explain ammonoid evolution. The inherent devel-
opmental flexibility of ammonoids can produce a great diversity of forms, but these 
will persist and diverge only when environmental conditions allow it. Sea level rises 
that produce new shallow marine habitat area may represent a particularly important 
environmental change driving ammonoid diversification. However, Holland (2012) 
documented that not all sea level rises are equal. While sea level rises necessarily 
increase the total area of flooded continent, they need not increase shallow marine 
habitat area, depending on what depth range of habitat one considers (e.g., 0–25 m, 
75–100 m). Hence, a clade’s response to sea level change will be contingent on 
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the specifics of the case: what the starting sea level was, the particular bathymetric 
profile of that region, and the larger paleogeographic context. These subtleties may 
help to explain conflicting specific ammonoid case studies that show diversification 
peaks during transgressions vs. regressions, and a variety of complex relationships 
between macroevolution and paleobiogeography.

Testing this model for ammonoid speciation will require detailed interdisciplin-
ary data for each radiating clade. A robust phylogenetic hypothesis of evolution-
ary relationships within the clade is an essential first step, as putative ancestor and 
descendent species must be identified. The extent of developmental flexibility in 
the ancestral lineage must be documented through investigation of morphological 
and ontogenetic variation within the group. Paleoecological, sedimentological, and 
geochemical data can demonstrate the existence of different microhabitats within a 
seaway, and the recurrence of similar microhabitats in different seaways. It is also 
critical to establish linkages between ammonoid shell form and size and specific 
modes of life or microhabitats within the clade. High resolution stratigraphic and 
geographic occurrence data will show whether the ancestral lineage existed outside 
the seaway before it formed and then moved into the seaway. Such data are also 
essential to demonstrate sympatry between ancestor and descendent lineages within 
the seaway and endemism of newly arising species.

A comparative approach may be the most effective way of testing this speciation 
model. An ideal test case would involve two co-occurring ammonoid clades, one 
of which shows rapid speciation and one of which does not. The speciation model 
presented here would predict that the diversifying clade will show a higher degree 
of developmental flexibility, more heterochrony, a greater number of endemic spe-
cies, and more sympatry among species within the clade. A correlation between the 
opening of new shallow marine habitat space and pulses of diversification is also 
expected. These predictions could be tested if suitable clades can be identified for 
comparison.

8.5.2 � New Directions in Studying Ammonoid Macroevolution

Given their rich fossil record and long history of study, Jurassic and Cretaceous 
ammonoids can serve as a model system for many areas of macroevolutionary 
investigation. Of utmost importance will be developing and testing phylogenetic 
hypotheses of relationship for J-K ammonoid clades. With this sound phylogenetic 
context, integrative work can proceed to investigate the relationships among diver-
sification, morphospace occupation, geographic distribution, extinction, and envi-
ronmental change. Such studies will be valuable at a variety of taxonomic, spatial, 
and temporal scales; detailed studies of individual clades will be complemented by 
global studies of ammonoid macroevolution across the entire Jurassic and Creta-
ceous Periods.

Sorely needed are comprehensive databases of J-K ammonoid occurrences. 
While the Paleobiology Database (PBDB; http://paleobiodb.org) has been used to 

http://paleobiodb.org
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investigate Cretaceous ammonoid paleobiogeography (Hendy 2009), it currently 
contains a limited number of ammonoid occurrences and its taxonomic coverage 
is incomplete. Various workers have developed their own ammonoid occurrence 
databases for particular regions and time intervals (e.g., Late Cretaceous Western 
Interior Seaway of North America database; Yacobucci and MacKenzie 2007a, b, 
2008; MacKenzie and Yacobucci 2008). A priority for the field should be to inte-
grate existing data sources into a single, open-access database of J-K ammonoid 
occurrences that is suitable for a range of quantitative and qualitative analyses.

Fossil occurrence data must be analyzed in the context of potential sampling 
biases. The PBDB team and others have developed a range of sampling standardiza-
tion techniques that take into account variations in sampling intensity through time 
(Alroy et al. 2001, 2008; Alroy 2008, 2010; Kiessling 2008). Such techniques have 
not yet been tested on J-K ammonoids. Another potential bias is the availability of 
rock for sampling through time. Temporal and spatial variations in the amount of 
accessible outcrop are known to affect biodiversity patterns (Raup 1976; Peters and 
Foote 2001; Smith 2007; McGowan and Smith 2008), although whether outcrop 
map area or rock exposure area is a better metric is debated (Dunhill 2012). Of 
particular interest to ammonoid workers is the apparent correlation of marine in-
vertebrate diversity to sea level cyclicity and the expansion and contraction of sedi-
mentary basins (Smith et al. 2001; Peters 2005; Smith and McGowan 2005; Peters 
and Heim 2010, 2011; Hannisdal and Peters 2011). Such a pattern may demonstrate 
a significant sampling bias (Smith et al. 2001; Smith 2007; Wall et al. 2009) or may 
result from real biological processes that are associated with sea level change (the 
“common-cause” hypothesis; Peters 2005; Peters and Heim 2010, 2011; Hannisdal 
and Peters 2011). These competing options can be evaluated by detailed studies of 
J-K ammonoid occurrences. More generally, the completeness of the ammonoid 
fossil record could be assessed by estimating preservation rates (Foote 2003) or 
evaluating stratigraphic gaps implied by phylogenetic hypotheses (Wagner 2000). 
And, of course, taxonomic revisions of major J-K ammonoid groups are sorely 
needed in order to produce taxonomically standardized datasets.

Quantitative approaches to the integrative study of ammonoid evolution and bio-
geography have become more common over the last decade (Brayard et al. 2007; 
Hendy 2009; Dera et al. 2011; Brayard and Escarguel 2013; Brosse et al. 2013). 
Brayard et  al. (2007) used a combination of approaches, including hierarchical 
cluster analysis, nonmetric multidimensional scaling, and their own nonhierarchi-
cal Bootstrapped Spanning Network technique to document paleobiogeographic 
patterns in the radiation of Early Triassic ammonoids after the Permo-Triassic ex-
tinction. Dera et al. (2011) used a similar quantitative toolkit to study ammonoid 
evolution through the Pliensbachian-Toarcian (Early Jurassic) interval. Such ap-
proaches should be expanded to later time intervals with more complex paleogeo-
graphic contexts.

Modern biogeographers are turning to the use of geographic information systems 
(GIS) and spatial statistics to document, quantify, and model biogeographic patterns 
and processes. Fewer paleontologists have made use of these tools, although they 
are a powerful method for investigating an array of questions, including recon-
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struction of geographic ranges, assessment of habitat tracking, and documenting the 
environmental drivers of evolution and extinction (Lieberman 2000; Stigall 2011; 
Yacobucci and MacKenzie 2007a, b, 2008; MacKenzie and Yacobucci 2008; Myers 
et al. 2013). As a comprehensive database for J-K ammonoids is constructed, we 
must be mindful of building spatial data into it so that it is fully compatible with 
GIS-based analyses.

A synthetic and quantitative approach to ammonoid macroevolution and paleo-
biogeography is necessary for us to understand the evolutionary dynamics of this 
most remarkable group of animals. As our database expands and new computational 
techniques are brought to bear on wide-ranging questions, J-K ammonoids will be-
come a model for how marine animals evolve in a Greenhouse World.
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