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19.1 � Introduction

Ammonite shells are common fossils in marine Mesozoic deposits. Their disappear-
ance in Cenozoic strata has intrigued naturalists from the early nineteenth century 
onward, and the cause of their extinction has been the subject of lively debate. Fol-
lowing the seminal publication of Alvarez et al. (1980), paleontologists have con-
sidered that the most plausible explanation for their disappearance was the impact 
of an asteroid, and its ensuing consequences (Gould 1995; Ward 1996). Today, the 
evidence for the Chicxulub impact in the Yucatán Peninsula, Mexico, is overwhelm-
ing (Schulte et al. 2010). Indeed, the stratigraphic layer of debris associated with the 
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impact serves as the official base of the Danian Stage (= base of Cenozoic Erathem) 
(Molina et al. 2006). Yet, the diversity and geographic distribution of ammonites 
just prior to and at the moment of impact are still not well documented. Kiessling 
and Claeys (2002) provided an overview of localities where ammonites occur near 
or at the K/Pg boundary (KTBase project). However, only a handful of sections 
were described, leaving many blind spots. Thanks to renewed collecting efforts 
during the past decade to recover ammonites from close to the boundary, it is now 
possible to assemble a much more detailed picture of the health of this group at the 
brink of extinction.

19.2 � Methods

We examined the stratigraphic distribution of ammonites at a total of 29 sites en-
compassing 14 regions around the world to tabulate the generic and specific di-
versity of these animals just prior to and at the K/Pg boundary. These sites include 
the Atlantic Coastal Plain of North America (New Jersey and Maryland); the Gulf 
Coastal Plain of North America (Missouri, Mississippi, and Texas); the La Popa 
Basin, northeastern Mexico; Denmark (Stevns Klint, Kjølby Gård, and the “Dania” 
Quarry); the Maastrichtian type area (the Netherlands and northeast Belgium); Po-
land (Nasiłów, Mełgiew, and Lechówka); Kyzylsay, Kazakhstan; the Sumbar River, 
Turkmenistan; the Bay of Biscay (Zumaya, Hendaye, and Bidart); Bjala (= Byala), 
Bulgaria; Tunisia (Kalaat Senan, El Kef, and Garn Halfaya) and Egypt (Dababi-
ya Quarry Corehole); the Naiba River Valley, Sakhalin, Far East Russia; the Poty 
Quarry, Brazil; Lomas Colorados, Bajada de Jagüel, the Neuquén Basin, Argentina; 
and Seymour Island, Antarctica (Fig. 19.1, Appendix). We have arbitrarily focused 
on the last 0.5 million years of the Maastrichtian at each site (our target interval) be-
cause this is the shortest interval of time that still yields enough ammonite data from 
different environmental settings and geographic areas. However, it is worth noting 
that taphonomic bias and collection failure play a much larger role in the recovery 
of ammonite data than they do in the assembly of, for example, microfossil data.

We demarcated our target interval using biostratigraphy, magnetostratigraphy, 
and cyclostratigraphy, as well as data on fossil occurrences in relation to the K/Pg 
boundary in sections without any physical sign of a sedimentary break between the 
highest ammonites and the K/Pg boundary. In terms of biostratigraphy, many of 
our sites belong to, or can be correlated with, Calcareous Nannofossil Zone CC26b 
of Perch-Nielsen (1985), which is approximately equivalent to Zone UC20dTP of 
Burnett (1998), and extends from the FO of Micula prinsii to the LO of unreworked, 
non-survivor Cretaceous taxa, which starts 750 kyr (Hennebert 2012) to 530 kyr 
(Dinarès-Turell et al. 2013) before the end of the Cretaceous (see also Gardin et al. 
2012). This interval is approximately equivalent to geomagnetic polarity Chron 29r, 
which starts 0.3 myr prior to the K/Pg boundary according to recent calculations 
(e.g., Husson et  al. 2011). For planktic foraminifera, our 0.5 myr interval corre-
sponds to the combined Plummerita hantkeninoides CF1 Zone, Pseudoguembelina 
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palpebra CF2 Zone, and possibly also the upper part of the Pseudoguembelina fruc-
ticosa CF3 Zone. The base of CF1 is approximately 0.23 myr prior to the K/Pg 
boundary, according to Hennebert and Dupuis (2003).

In evaluating the record of ammonites at the K/Pg boundary, it is important to 
distinguish between complete and incomplete sections. For example, in complete 
sections, e.g., in Tunisia, all of the impact markers are present, including a layer 
of fine clay (the so-called K/Pg boundary clay) with elevated concentrations of 
iridium. In such sections, the timescale of deposition is constrained by two points: 
the impact layer, which represents the same moment everywhere (isochronous), 
and the base of the highest biostratigraphic zone, which is possibly diachronous. 
This timescale can be further refined using cyclostratigraphic data, as in the Bay of 
Biscay, the Tunisian Trough Basin, and the Maastrichtian type area. In incomplete 
sections, e.g., at Nasiłów, central Poland, in contrast, the fallout layer (bound-
ary clay) is not preserved, although it was undoubtedly deposited, and instead the 
boundary is marked by an erosional unconformity. The amount of time this uncon-
formity represents is difficult to estimate using biostratigraphic indices and can 
include parts of the latest Maastrichtian and earliest Danian.

The authors of the ammonite species mentioned in the text are listed in 
Table 19.1. Some of the ammonites documented are in open nomenclature because 
the specimens are worn or consist of only fragments. For example, specimens of 

Fig. 19.1   Distribution of localities described in the text plotted on a paleogeographic map of 
the Earth at the K/Pg boundary (after Blakey 2011). 1 Central Monmouth County, New Jersey, 2 
Northeastern Monmouth County, New Jersey, 3 Anne Arundel County, Maryland, 4 Stoddard and 
Scott Counties, Missouri, 5 Tippah County, Mississippi, 6 Chickasaw County, Mississippi, 7 Falls 
County, Texas, 8 Northeastern Mexico, 9 Stevns Klint, Denmark, 10 Kjølby Gård, Denmark, 11 
Dania Quarry, Denmark, 12 Maastricht, the Netherlands, 13 Nasiłów, Poland, 14 Mełgiew, Poland, 
15 Lechówka, Poland, 16 Kyzylsay, Kazakhstan, 17 Sumbar River, Turkmenistan, 18 Zumaya, 
Spain, 19 Hendaye, France, 20 Bidart, France, 21 Bjala, Bulgaria, 22 Kalaat Senan, Tunisia, 23 El 
Kef, Tunisia, 24 Garn Halfaya, Tunisia, 25 Dababiya Quarry core, Egypt, 26 Sakhalin Island, Rus-
sia, 27 Poty Quarry, Brazil, 28 Bajada de Jagüel, Argentina, 29 Seymour Island, Antarctica. (See 
Appendix for a description of the localities)
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Phylloptychoceras from Tunisia are small pyritic fragments of shafts and can, 
therefore, only be referred to as Phylloptychoceras cf. P. sipho. Similarly, speci-
mens of Baculites from this region are too incomplete and lack details of ornamen-
tation and suture to permit species identification. On the Atlantic and Gulf Coastal 
plains, the poor state of preservation of some specimens of Glyptoxoceras and Dis-
coscaphites also precludes their identification to species level. Even in sections 
that have been studied for decades, such as those in Denmark, some material is too 
crushed or incomplete to be assigned to a particular species with any certainty (e.g., 
Saghalinites n. sp. of Birkelund 1993).

19.3 � Results

19.3.1 � Atlantic Coastal Plain of North America

(Sites 1–3: New Jersey and Maryland). The Discoscaphites iris Zone, the high-
est ammonite zone in North America, is present in this area and has yielded nine 
species, four (sub)genera, and four families distributed among the Ammoni-
tina ( Pachydiscus ( Neodesmoceras) and Sphenodiscus) and Ancyloceratina ( Eu-
baculites and Discoscaphites) (Landman et  al. 2004a, b, 2007; Figs.  19.2, 19.3; 
Tables 19.1, 19.2). This zone corresponds to Calcareous Nannofossil Zone CC26b, 
representing approximately the last 0.5 myr of the Maastrichtian. At offshore sites 
(~ 100 m deep) containing ammonites, the section is demonstrably incomplete with 
an unconformity at the K/Pg boundary. At more nearshore sites (~ 40 m deep) con-
taining ammonites, the sequence is apparently more complete. The upper part of 
the section consists of a very fossiliferous unit (called the Pinna Layer) that yields 
numerous specimens of Discoscaphites and Eubaculites. The Pinna Layer is over-
lain by the Burrowed Unit, which bears many fewer ammonites, almost all of which 
are Eubaculites. However, the Pinna Layer occurs above a horizon with a weak 
iridium anomaly (520 pg/g). The crucial question is whether this iridium anomaly 
represents the record of the bolide impact and, if so, whether it is in place or has 
migrated downward (Landman et al. 2007, 2012b; Miller et al. 2010; for additional 
discussion about the remobilization of iridium, see Racki et al. 2011). For example, 
if the iridium anomaly is in place, then the ammonites in the Pinna Layer and the 
Burrowed Unit may have been short-term survivors of the bolide impact, possibly 
persisting into the earliest Danian. However, even if the iridium anomaly has mi-
grated downward from the top of the Pinna Layer, a more conservative interpreta-
tion favored here and elsewhere (Landman et al. 2014), the species of Eubaculites 
in the Burrowed Unit are still Danian survivors (see 19.4.1).
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19.3.2 � Gulf Coastal Plain of North America

(Sites 4–7: Missouri, Mississippi, and Texas). The Discoscaphites iris Zone is pres-
ent on the Gulf Coastal Plain in Missouri (Stephenson 1955), Mississippi (Cobban 
and Kennedy 1995; Kennedy and Cobban 2000), and Texas (Kennedy et al. 2001) 
and contains as many as 15 species, although not all of them are present at every 
site (Fig.  19.4; Tables  19.1, 19.2). In Stoddard and Scott Counties, southeastern 
Missouri, the Owl Creek Formation consists of clayey sands, which were probably 
deposited at depths of less than 100 m, and is unconformably overlain by the Clay-
ton Formation (Campbell et al. 2008). In Tippah County, northeastern Mississippi, 
the Owl Creek Formation consists of micaceous clays, which were probably depos-
ited at similar depths. The Owl Creek Formation at this site is also unconformably 

Fig. 19.2   Stratigraphic section of the upper Maastrichtian and lower Danian in Monmouth County, 
New Jersey, Atlantic Coastal Plain, USA. a The top of the Tinton Formation consists of the Pinna 
Layer overlain by the Burrowed Unit, which is overlain, in turn, by the Hornerstown Formation. 
An enriched concentration of iridium occurs at the base of the Pinna Layer (indicated by the stars). 
The position of the K/Pg boundary is based upon the assumption that the enriched concentration 
of iridium has been remobilized. b Iridium profile from two sites (represented by the solid and 
dashed lines) (Landman et al. 2007). c Map of part of New Jersey with the locality marked by an X
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Fig. 19.3   Hypothetical reconstruction of the sea bottom on the Atlantic Coast at the end of the 
Maastrichtian just before the meteor impact, as inferred from sections in Monmouth County, New 
Jersey. The ammonites include Sphenodiscus lobatus, Discoscaphites iris, and Eubaculites late-
carinatus (from Landman et al 2007)
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Fig. 19.4   Stratigraphic range 
chart of the ammonites in 
the Owl Creek Formation 
in Tippah County, north-
eastern Mississippi, Gulf 
Coastal Plain, USA (Larina 
et al. 2012). The Owl Creek 
Formation is unconform-
ably overlain by the Clayton 
Formation, with no evidence 
of impact debris. Ammonites 
extend to approximately 1 m 
below the unconformity, 
which presumably contains 
the K/Pg boundary

 

overlain by the Clayton Formation, without any evidence of impact debris. Am-
monites extend to approximately 1 m below the unconformity, which presumably 
contains the K/Pg boundary, and the absence of ammonites above this level may be 
due to dissolution (Larina et al. 2012). Towards the southeast in Chickasaw County, 
Mississippi, the Owl Creek Formation passes into the Prairie Bluff Chalk, which 
contains the same assemblage of ammonites. However, the base of the Clayton For-
mation in this area consists of a 30-cm-thick unit filled with impact spherules and 
reworked Maastrichtian fossils (Boas et al. 2013a, b).
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On the other side of the Mississippi Embayment, ammonites are present in the 
upper Corsicana Formation along the Brazos River, Falls County, Texas. The ero-
sional surface at the top of this formation has been interpreted as the K/Pg bound-
ary (Hansen et al. 1987; for further discussion of this interpretation see Hart et al. 
2012). The ammonites are the same as those in Mississippi with the addition of 
Pachydiscus ( P.) j. jacquoti and Glyptoxoceras cf. G. rugatum. Two ammonite spe-
cies ( Eubaculites carinatus and Discoscaphites cf. D. gulosus) extend into the up-
permost 1 m of the formation (Kennedy et al. 2001). In addition, Keller et al. (2009, 
p. 54) reported a single specimen of D. iris at the base of the Pseudoguembelina 
palpebra CF2 Zone in the Brazos River Mullinax-1 Core.

19.3.3 � La Popa Basin, Northeastern Mexico

(Site 8). In northeastern Mexico, Stinnesbeck et al. (2012: table 1) reported Sphe-
nodiscus pleurisepta and Baculites ovatus from Planktic Foraminifera Zone CF3. 
The highest occurrence of S. pleurisepta is 3 m below an erosional unconformity 
marking the K/Pg boundary.

19.3.4 � Denmark

(Sites 9–11: Stevns Klint, Kjølby Gård, and the “Dania” Quarry). The ammonite re-
cord in Denmark has been extensively studied because these sections exhibit nearly 
continuous deposition across the K/Pg boundary (Birkelund 1979, 1993; Schiøler 
et al. 1997; Machalski 2005a, b; Machalski and Heinberg 2005; Rasmussen et al. 
2005; Surlyk et  al. 2006; Hart et  al. 2011; Damholt and Surlyk 2012; Gravesen 
and Jakobsen 2013). The environment is interpreted as a shelf sea ranging from 
the euphotic zone to several hundred meters deep (Surlyk 1997; Surlyk et al. 2006; 
Schulte et al. 2010). The stratigraphy along the 14.5 km long classic section at Ste-
vns Klint is complex, with the upper, but not uppermost, Maastrichtian Sigerslev 
Member separated by one or two closely spaced hardgrounds from the uppermost 
Maastrichtian Højerup Member (Fig. 19.5). These hardgrounds were probably pro-
duced by early diagenetic cementation during shallowing events (Hansen 1990; 
Surlyk 1997; Surlyk et al. 2006). Correlation of these events with those in the upper 
part of the Nekum and Meerssen members in the Maastricht area (Hart et al. 2011) 
suggests that the hardgrounds developed in the last 240 kyr of the Maastrichtian 
(Schiøler et al. 1997). The Højerup Member corresponds to the uppermost Maas-
trichtian Stensioeina esnehensis Foraminifera Zone.

The Højerup Member is internally organized into a series of low asymmetrical 
bryozoan bioherms alternating with basins, producing a relief of as much as 4 m. 
The K/Pg transition is continuous in the basins with the Højerup Member con-
formably overlain by the basalmost Danian Fiskeler Member (Fish Clay), which is 
overlain, in turn, by the Cerithium Limestone Member (Rødvig Formation; Surlyk 
et al. 2006). The uppermost Højerup Member is rich in ammonites, especially on 
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the crests of the bioherms, which are incorporated into a Danian hardground that 
truncates both the Højerup Member and Cerithium Limestone (Birkelund 1993; 
Machalski 2005a). In total, the fauna consists of eight species, seven genera, and 
six families distributed among the Phylloceratina ( Hypophylloceras ( Neophyllo-
ceras)), Lytoceratina ( Saghalinites), Ammonitina ( Menuites), and Ancyloceratina 
( Phylloptychoceras, Diplomoceras, Baculites, Hoploscaphites) (Tables 19.1, 19.2). 
Specimens of B. vertebralis and H. constrictus johnjagti also occasionally occur in 
the basal Danian Cerithium Limestone Member (Birkelund 1979, 1993; Surlyk and 
Nielsen 1999; Machalski 2002). These specimens have generally been interpreted 

Fig. 19.5   Top. Stratigraphic chart of the K/Pg section at Stevns Klint, Denmark (modified from 
Surlyk et al. 2006). Bottom. Diagram of the boundary interval. Hg = Hardground (modified from 
Machalski and Heinberg 2005)
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as reworked material, but Machalski and Heinberg (2005) argued that they may 
represent early Danian survivors (Fig. 19.6).

At Kjølby Gård, ammonites occur up to 20 cm below the K/Pg boundary (Birke-
lund 1993). The “Dania” Quarry, northern Denmark, has also been thoroughly stud-
ied and represents the stevensis-chitoniformis brachiopod Zone, which correlates 
with the Palynodinium grallator dinoflagellate Zone (Hansen 1977; Håkanssan and 
Hansen 1979; Birkelund 1993; Machalski 2005a, b; Gravesen and Jakobsen 2013). 
The sequence at “Dania” is unique among Danish boundary sequences in contain-
ing the uppermost Maastrichtian zonal species Micula prinsii. This nannofossil is 
present in one of the marl layers low in the sequence (Håkansson and Hansen 1979), 
which implies that the “Dania” succession occurs within Calcareous Nannofossil 
Zone CC26b of Perch-Nielsen (1985).

19.3.5 � Maastrichtian Type Area

(Site 12: the Netherlands and northeast Belgium). Several outcrops and quarries 
near Maastricht on both sides of the border between the Netherlands and Belgium 
that expose the uppermost Maastrichtian are treated together. This area has been ex-
tensively studied because of its importance for biostratigraphy (Zijlstra 1994; Smit 
and Brinkhuis 1996; Schiøler et al. 1997; Jagt 1996, 2002; Jagt et al. 2003, 2006; 
Jagt and Jagt-Yazykova 2012; Mai 1998). The clay beds just above the Berg en 
Terblijt Horizon at the base of the IVf-7 interval (Meerssen Member) are assigned 
to Planktic Foraminifera Zone P0. Our targeted interval of 0.5 myr was bracketed 
by reference to this horizon and by using the cyclostratigraphic interpretation of 
Zijlstra (1994) and Schiøler et al. (1997) to define the lower part of our interval. 
According to them, the Nekum and Meerssen members (upper part of the Maas-
tricht Formation) represent the last 300 kyr of the Maastrichtian. This part of the 
formation is interpreted as having been deposited on a shallow carbonate platform 
(Kennedy and Jagt 1998; Jagt 1996, 2002, 2005, 2012; Jagt et al. 2006).

We examined the record of ammonites from the Meerssen and Nekum mem-
bers. In terms of dinoflagellate zonation, this interval (upper Nekum and Meerssen 
members) corresponds to the Palynodinium grallator dinoflagellate Zone, and the 
Meerssen Member to the Thalassiphora pelagica dinoflagellate Subzone (e.g., Mai 
1998). A total of 19 species, 12 genera, and seven families of ammonites are present 

Fig. 19.6   Hoploscaphites 
constrictus johnjagti from the 
Cerithium Limestone Mem-
ber at Stevns Klint, Denmark 
(modified from Machalski 
and Heinberg 2005)
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near or at the K/Pg boundary distributed among the Ammonitina ( Brahmaites, 
Pachydiscus, Menuites, and Sphenodiscus) and Ancyloceratina ( Nostoceras, Glyp-
toxoceras, Diplomoceras, Phylloptychoceras, Baculites, Eubaculites, Hoploscaph-
ites, and Acanthoscaphites?) (Fig. 19.7; Tables 19.1, 19.2). The most common am-
monites are Baculites and Hoploscaphites.

Several scaphitids and baculitids have also been recorded from Unit IVf-7 of 
the Meerssen Member above the Berg en Terblijt Horizon in the section exposed at 
the former Curfs quarry near Geulhem, southern Limburg, southeast Netherlands 
(Jagt et al. 2003; Machalski et al. 2009; Jagt 2012; Fig. 19.8). As stated above, this 
horizon is generally interpreted as marking the K/Pg boundary (although there is no 
evidence of impact debris) and these specimens are assigned to Planktic Foramin-
ifera Zone P0. Because the species of Baculites are different from those below this 

Fig. 19.7   Stratigraphic range chart of the ammonites at the K/Pg section in the Maastrichtian 
region, the Netherlands and northeast Belgium (modified from Jagt et al. 2006). The Berg en Ter-
blijt Horizon, which forms the base of section IVf-7, is interpreted as the K/Pg boundary. The dots 
indicate isolated occurrences and the lines indicate “more or less” complete ranges
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horizon and because many of them are preserved with their apertures intact, they 
may represent early Danian survivors (Smit and Brinkhuis 1996; Jagt et al. 2003).

19.3.6 � Poland

(Sites 13–15: Nasiłów, Mełgiew, and Lechówka). The K/Pg boundary is exposed 
in Nasiłów in the Kaziemerz Dolny area, Poland (Hansen et al. 1989; Machalski 
2005a). According to Abdel-Gawad (1986), the upper part of the section repre-
sents deposition in an inner shelf environment. However, the section is incomplete 
with a hiatus that spans the topmost Maastrichtian and the lowermost Paleocene 
encompassing as much as 500 kyr, but possibly much less. This inference is based 
in part on the absence of H. constrictus johnjagti, the terminal Maastrichtian chro-
no-subspecies of the H. constrictus lineage, which characterizes the uppermost 
Maastrichtian of Denmark (Højerup Member) and the Netherlands and northeast 

Fig. 19.8   Ammonites from the top of Unit IVf-7 of the Meerssen Member above the Berg en 
Terblijt Horizon in the section exposed at the former Curfs quarry near Geulhem, southern Lim-
burg, southeast Netherlands (Jagt et al. 2003; Jagt 2012; Machalski et al. 2009). a, b, d Baculites 
aff. anceps (Jagt Collection, NHMM). The mature apertures are preserved in a and b. The empty 
spaces in d are voids left by dissolution of the original aragonite. c Hoploscaphites constrictus, 
with incomplete filling of the phragmocone (Jagt Collection, NHMM). All of these features indi-
cate that the ammonites in this unit were buried with their shells intact without significant rework-
ing or transport, which would have otherwise destroyed the delicate apertural features. In addition, 
the shells must have been buried rapidly enough to prevent complete infilling of the phragmocones
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Belgium (top Nekum-Meerssen members) (Machalski and Walaszczyk 1987, 
1988; Machalski 2005a).

Ammonites occur in the Belemnella kazimiroviensis belemnite Zone, Magnetic 
Chron 29r, and lower part of the Palynodinium grallator dinoflagellate Zone. They 
are preserved in a hard limestone layer at the top of the Kazimierz Opoka (silicious 
chalk) (Figs.  19.9, 19.10). This unit passes into a thin layer of soft opoka, with 
both layers penetrated by crustacean burrows filled with sediment derived from 
the overlying Danian glauconitic sandstone. A total of six species, five genera, and 
four families are present (Tables 19.1, 19.2). The fauna is dominated by Baculites 
spp., including Baculites anceps, followed by Hoploscaphites constrictus crassus. 
The rest of the ammonite fauna consists of Menuites terminus, Pachydiscus ( P.) j. 
jacquoti, and Sphenodiscus binckhorsti.

A K/Pg boundary interval similar to that of Nasiłów is exposed nearby, on 
the opposite side of the Wisła River at Bochotnica. The section at Mełgiew, Po-
land, is more complete than that at Nasiłów with a hiatus of only a few thousand 
years at the K/Pg boundary (Machalski 2005a), as indicated by the presence of the 
chrono-subspecies Hoploscaphites constrictus johnjagti. The only additional am-
monites include Baculites spp., but this section has not been as thoroughly studied 

Fig. 19.9   Stratigraphic range chart 
of the ammonites at the K/Pg section 
in Nasiłów, Poland (Machalski and 
Walaszczyk 1987, 1988; Machalski 
2005a). Reworked specimens are 
present in the greensand
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as the Nasiłów section. At Lechówka, Poland, ammonites occur just below the irid-
ium spike in the top of the Guembelitria cretacea planktic foraminifera Zone sensu 
Peryt (1980) (Racki et al. 2011).

19.3.7 � Kyzylsay, Kazakhstan

(Site 16). The uppermost Maastrichtian of the Mangyshlak Peninsula contains rare 
and poorly preserved specimens of Baculites sp. and Hoploscaphites constrictus 
(see Naidin 1987; Herman et al. 1988; Jeffrey 1997; Tables 19.1, 19.2). They occur 
in white chalks that were deposited at depths of less than 100 m. The specimens of 
H. constrictus occur in the Belemnella kazimiroviensis belemnite Zone immedi-
ately below the boundary clay, which is marked by an anomalous concentration of 
iridium, with no signs of any sedimentary breaks.

19.3.8 � Sumbar River, Turkmenistan

(Site 17). An apparently complete boundary section occurs in the Sumbar River 
area, western Kopet Dagh, southwest Turkmenistan (Machalski et al. 2012). The 

Fig. 19.10   Depositional and erosional history at the K/Pg boundary in the Kazimierz Dolny 
region, Poland (from Machalski 1998). Stage a: Sedimentation of the siliceous chalk (Kazimierz 
Opoka) of late Maastrichtian age ( 1). Stage b: Sedimentation of a slightly glauconitic carbonate 
mud unit ( 2) of late Maastrichtian age, followed by a clay layer ( 3) and a carbonate unit ( 4), both 
of Danian age. Stage c: Erosion or dissolution (?) episode in early Danian leading to the destruc-
tion of the top of unit 1 and total destruction of units 2–4, and to the formation of a residual lag 
( 5) composed of reworked nodules, early diagenetic molds, and other fossils of Maastrichtian and 
Danian age. Stage d: Omission conditions on the sea floor and the development of burrowing lead-
ing to the formation of the first generation of visible burrows during the Danian. Stage e: Start of 
sandy-glauconitic sedimentation ( 6) of Danian age, filling of earlier burrows and formation of the 
next generation, origin of pseudobreccia at the top of the Kazimierz Opoka, and additional rework-
ing of the residual lag. Stage f: Continuation of Danian sedimentation
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boundary is marked by a clay layer with an anomalous iridium concentration. The 
area is interpreted as a relatively deep-water environment on the outer shelf, based 
on the high percentage of planktic species in the foraminiferal assemblages. Two 
ammonite species, Hoploscaphites constrictus johnjagti and Baculites cf. B. verte-
bralis, have been recovered from the Pseudotextularia elegans Planktic Foraminif-
eral Zone as high up as 5 cm below the boundary clay (Moskvin 1959; Alekseev 
et al. 1988; Machalski et al. 2012; Tables 19.1, 19.2). These records represent the 
southeasternmost extent of these two (sub)species, which are otherwise known from 
northwest and central Europe. In addition, a single specimen of what appears to be 
H. constrictus is present in the Danian part of the section in an interval 22–24 cm 
above the base of the boundary clay. However, it is currently unclear if this speci-
men is reworked from the Maastrichtian or dates from the Danian.

19.3.9 � Bay of Biscay

(Sites 18–20: Zumaya, Hendaye, and Bidart). This region of southwestern France 
and northeastern Spain encompasses many K/Pg sections that are apparently con-
tinuous and complete (Wiedmann 1987, 1988a, b; Kennedy 1993; Ward and Ken-
nedy 1993; Ten Kate and Sprenger 1993; Rocchia et al. 2002). The strata consist 
of massive marls with rare turbidites deposited in an outer-shelf setting with water 
depths of 100–500 m (Mathey 1982; Schulte et al. 2010). In Zumaya, using the cy-
clostratigraphic studies of Batenburg et al. (2012) and Dinarès-Turell et al. (2013), 
our targeted interval (last 0.5 myr of the Maastrichtian) appears to correspond to 
the top few meters of Member IV and the entire Member V of Ward and Kennedy 
(1993). This is a conservative estimate as due to small differences in measured 
thicknesses between Ward and Kennedy (1993), Dinarès-Turell et al. (2013), and 
Batenburg et al. (2012), the exact position of the base of our 0.5 myr interval can-
not be situated more precisely than 1 m. The base of Member V is approximately 
15 m below the K/Pg boundary in Ward and Kennedy (1993), 12 m below the K/
Pg boundary in Batenburg et al. (2012), and 10.2 m below the K/Pg boundary in 
Dinarès-Turell et al. (2013). The base of our 0.5 myr interval thus equates to ap-
proximately 20 and 18 m below the K/Pg boundary on the Batenburg et al. (2012) 
and the Dinarès-Turell et  al. (2013) logs, respectively. Thus, being conservative, 
only ammonite records from Member V and the top few meters of Member IV were 
included in our tally. Unit V of Ward and Kennedy (1993) falls within the Micula 
prinsii Zone (= Calcareous Nannofossil Zone CC26b of Perch-Nielsen 1985).

Ammonites are rare throughout most of the section in the Bay of Biscay (Fig. 19.11). 
They are present in the uppermost few meters of Member IV and the entire Member 
V of Ward and Kennedy (1993). In total, they consist of 13 species, representing 11 
genera belonging to the Phylloceratina ( Phylloceras, Phyllopachyceras), Lytocera-
tina ( Anagaudryceras, Zelandites, Pseudophyllites), Ammonitina ( Desmophyllites, 
Brahmaites, Pachydiscus, Pseudokossmaticeras, Menuites), and Ancyloceratina 
( Diplomoceras). The top 1.5 m in the combined sections at Zumaya, Hendaye, and 
Bidart contain approximately 40 specimens representing ten species, although only 
one of these specimens is present in the highest 10–15  cm of the section (Ward 
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and Kennedy 1993). In addition, Rocchia et al. (2002) reported the occurrence of 
a poorly preserved specimen from 5 cm below the boundary clay at Bidart, which 
contains Ni-rich spinel crystals and an anomalously high concentration of iridium.

Marshall and Ward (1996) also used statistical methods (confidence intervals) to 
examine the ranges of ammonite species in the top 1.5 m of the composite section in 
the Bay of Biscay to determine the likelihood that the actual ranges extended above 
the observed ranges. Using a 50 % confidence range interval, they concluded that at 
least two of these species could have persisted to the K/Pg boundary, even though 
they are not actually preserved at this level.

19.3.10 � Bjala (= Byala), Bulgaria

(Site 21). In the area of Bjala (= Byala), eastern Bulgaria, along the shores of 
the Black Sea, several sections of the Bjala Formation contain a complete K/Pg 

Fig. 19.11   Composite stratigraphic range chart of the ammonites at the K/Pg section in the Bay of 
Biscay plotted on the measured section at Zumaya, Spain (modified from Marshall and Ward 1996)
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boundary succession (Preisinger et  al. 1993; Ivanov and Stoykova 1994; Ivanov 
1995; Stoykova and Ivanov 2004, 2005). The formation consists of marls in the 
lower part of the section and marls alternating with marly limestones in the up-
per part, which were deposited on the outer shelf and inner slope. The section is 
capped by a 1–3-cm thick clay bed marked by an anomalous concentration of irid-
ium. Five species occur in Calcareous Nannofossil Zone CC26b (Preisinger et al. 
1993; Ivanov and Stoykova 1994; Ivanov 1995; Stoykova and Ivanov 2004, 2005): 
Pseudophyllites indra, Anagaudryceras politissimum, Vertebrites kayei, Menuites 
terminus, and Pachydiscus sp. indet. (Tables 19.1, 19.2). Two of these species ( P. 
indra and A. politissimum) occur 40 cm below the iridium enriched layer of clay.

19.3.11 � Tunisia and Egypt

Tunisia (Sites 22–24: El Kef, Kalaat Senan, and Garn Halfaya); Egypt (Site 25: 
Dababiya Quarry Corehole). Several of the most complete K/Pg boundary sections 
are located in the Tunisian Trough Basin (Goolaerts et al. 2004; Goolaerts 2010a). 
Indeed, the reddish layer at the base of the Boundary Clay near El Kef (the KS 
locality) is the Global Stratotype Section and Point (GSSP) for the K/Pg boundary 
(Molina et al. 2006). Ammonites occur as high as 1–2 m below the boundary at El 
Kef (GSSP section), Kalaat Senan (Aïn Settara, Tabet Zaara, and Oued Raïne sec-
tions), and Garn Halfaya (Garn section), although almost all of the specimens occur 
as surface float and may have moved slightly downslope. The highest ammonite 
occurs 1 m below the boundary at Garn Halfaya, which is approximately equiva-
lent to 50 kyr prior to the end of the Cretaceous based on the cyclostratigraphic data 
of Hennebert and Dupuis (2003). All of the reported ammonites occur in the high-
est ammonite zone, the Indoscaphites pavana Assemblage Zone, which represents 
approximately the last 420 kyr of the Maastrichtian based on the cyclostratigraphy 
of Hennebert and Dupuis (2003) and Hennebert (2012). In the Dababiya Quarry 
Corehole, specimens occur within Calcareous Nannofossil Zone CC26b (Goolaerts 
and Dupuis 2012; Berggren and Ouda 2013; Berggren et al. 2012).

The ammonite assemblage in the ultimate 0.5 myr of the Maastrichtian in the Tu-
nisian Trough Basin consists of 22 species, 17 genera, and 10 families (Fig. 19.12; 
Tables  19.1, 19.2). This assemblage is the taxonomically most diverse terminal 
Maastrichtian fauna discovered to date. However, because the specimens consist 
of small septate inner whorls less than 20  mm in diameter, they are sometimes 
difficult to identify to species or even genus level. They are distributed among the 
Phylloceratina ( Neophylloceras and Phyllopachyceras), Lytoceratina ( Anagaud-
ryceras, Zelandites, Tetragonites, Pseudophyllites, and Saghalinites), Ammo-
nitina ( Hauericeras, Brahmaites, Menuites, Pachydiscus, Neodesmoceras, and 
Desmoceratoidea gen. indet.), and Ancyloceratina ( Diplomoceras, Phylloptychoc-
eras, Fresvillia, Baculites, and Indoscaphites) (Tables 19.1, 19.2).

The ammonite fauna is dominated by scaphitids ( Indoscaphites), baculitids 
( Baculites), and pachydiscids. The environment is interpreted as outer neritic to 
bathyal (Schulte et al. 2010), but the variation in the abundance of Indoscaphites 
suggests a depth gradient. The abundance increases from a minimum of 48 % at El 



52919  Ammonites on the Brink of Extinction: Diversity, Abundance …

Fig. 19.12   Stratigraphic distribution of ammonite species by number of specimens in the upper 
part of the El Haria Formation at the El Kef GSSP section for the base of the Paleogene Period 
(modified from Goolaerts 2010a)

 

Kef to 60 % at Garn Halfaya to a maximum of 76 % at Kalaat Senan. Correlatively, 
the abundance of Lytoceratina decreases along this same transect. Phylloceratina 
are extremely rare, and have only been found at Kalaat Senan, which is probably 
due to the greater number of specimens collected at this site (643) compared to 
that at El Kef (145) and Garn Halfaya (108). The dominant elements of the fauna, 
the scaphitids and baculitids, are also reported from the uppermost Maastrichtian 
of Egypt (Dababiya Core; Berggren et al. 2012; Goolaerts and Dupuis 2012). The 
absence of other species in this region is probably due to the paucity of specimens 
collected from this site (10).
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19.3.12 � Naiba River Valley, Sakhalin, Far East Russia

(Site 26). The latest Maastrichtian ammonites at this site are not very well con-
strained in terms of biostratigraphy. Numerous well-preserved specimens of Ze-
landites, and a few specimens of Gaudryceras and Hypophylloceras ( Neophylloc-
eras) have been recovered from a concretionary horizon approximately 2 m below 
a 20-cm-thick green clay marking the K/Pg boundary (Yazykova in Zonova et al. 
1993; Yazikova 1994; Yazykova 1991, 2004; Jagt-Yazykova 2011, 2012; contra 
Kodama et al. 2000; Kodama 2003; Hasegawa et al. 2003). The next lower con-
cretionary horizon is 4–5 m below the K/Pg boundary and contains seven ammo-
nite (sub)genera: Hypophylloceras ( Neophylloceras), Zelandites, Gaudryceras, 
Anagaudryceras, P. ( Pachydiscus), P. ( Neodesmoceras), and Diplomoceras.

19.3.13 � South America

(Site 27: Poty Quarry, Brazil; Site 28: Lomas Colorados, Bajada de Jagüel, Neu-
quén Basin, Argentina). In the Poty quarry in northeastern Brazil, ammonites are 
rare but Pachydiscus ( P.) neubergicus and Diplomoceras sp. have been collected 
in the Plummerita hantkeninoides CF1 Zone at 100 and 80 cm, respectively, below 
the erosional unconformity containing the K/Pg boundary (Stinnesbeck and Keller 
1996; Stinnesbeck et al. 2012; Tables 19.1, 19.2). In the Neuquén Basin, near Ba-
jada de Jagüel (Argentina), a single specimen of Eubaculites sp. (ex gr. E. simplex) 
is present in the Pseudoguembelina palpebra CF2 Zone (Stinnesbeck et al. 2012).

19.3.14 � Seymour Island, Antarctica

(Site 29). The section at Seymour Island has been extensively studied (Macellari 
1986, 1988; Elliot et al. 1994; Zinsmeister and Feldmann 1996; Zinsmeister 1998; 
Zinsmeister et  al. 1989; Tobin et  al. 2012). The sequence consists of mid-shelf 
clastic to inner-shelf concretionary siltstones and silty sandstones of the López de 
Bertodano Formation. The K/Pg boundary is defined as the first occurrence of Pa-
leogene dinocyst fossils, which coincide with the presence of an enhanced concen-
tration of iridium. The Pachydiscus ( P.) ultimus Zone is the highest ammonite zone 
and contains the lower part of Magnetic Chron 29r. It contains nine species, eight 
genera, and six families distributed among the Lytoceratina ( Zelandites, Anagaud-
ryceras, Pseudophyllites), Ammonitina ( Maorites, Grossouvrites, Kitchinites, and 
Pachydiscus), and Ancyloceratina ( Diplomoceras) (Fig. 19.13; Tables 19.1, 19.2). 
According to Zinsmeister (1998), five ammonite species are present at 50 cm below 
the K/Pg boundary: Zelandites varuna, Pseudophyllites loryi, Maorites densicosta-
tus, Kitchinites ( K.) laurae, and Diplomoceras maximum (for a discussion of the 
taxonomy of Diplomoceras lambi, D. maximum, and D. cylindraceum, see Mach-
alski 2012).
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Wang and Marshall (2004) used statistical methods to examine the stratigraphic 
ranges of the highest ammonite species on Seymour Island. Using 50 % range ex-
tensions, they estimated that the fossil record is consistent with the possibility that 
all of the species actually extended to the K/Pg boundary. More recently, Tobin et al. 
(2012) analyzed additional occurrence data using the same techniques as those of 
Wang and Marshall (2004) and reached a similar conclusion.

19.4 � Discussion

19.4.1 � Ammonite Diversity at the K/Pg Boundary

Based on the above compilation, ammonites are abundant and diverse in the last 
0.5 million years of the Maastrichtian. They are distributed across all four Creta-
ceous suborders, the Phylloceratina, Lytoceratina, Ammonitina, and Ancyloceratina, 
comprising six superfamilies (Phylloceratoidea, Tetragonitoidea, Desmoceratoidea, 
Acanthoceratoidea, Turrilitoidea, and Scaphitoidea) and 31 (sub)genera ( Hypo-
phylloceras ( Neophylloceras), Phyllopachyceras, Gaudryceras, Anagaudryceras, 
Zelandites, Vertebrites, Tetragonites, Saghalinites, Pseudophyllites, Desmophyl-
lites, Hauericeras, Kitchinites, Pseudokossmaticeras, Brahmaites ( Brahmaites), 
Grossouvreites, Maorites, P. ( Pachydiscus), P.( Neodesmoceras), Menuites, Sphe-
nodiscus, Nostoceras, Glyptoxoceras, Diplomoceras, Phylloptychoceras, Baculites, 
Eubaculites, Fresvillia, Indoscaphites, Hoploscaphites, Acanthoscaphites, and Dis-
coscaphites) (Table  19.2). They comprise 57 species (Figs.  19.14, 19.15, 19.16, 
19.17; Table 19.1). If the specimens in open nomenclature are also included in the 
count, the tally increases to 93 species.

Fig. 19.13   Stratigraphic range chart of the ammonites at the K/Pg section in Antarctica 
(modified from Tobin et al. 2012). The solid bars indicate actual ranges (Zinsmeister et al. 1989). 
The dots indicate 20 % range extensions based on a statistical analysis of confidence intervals. 
(Wang and Marshall 2004)
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Fig. 19.14   Illustration of some of the youngest ammonites belonging to the Phylloceratina and 
Lytoceratina at the close of the Maastrichtian. a Phyllopachyceras forbesianum, Bay of Biscay 
(Ward and Kennedy 1993, Fig. 18.6). b Saghalinites cala, Tunisia (Goolaerts 2010b, pl. 1, Fig. 
24). c Anagaudryceras politissimum, Bay of Biscay (Ward and Kennedy 1993, Fig. 17.12). d 
Zelandites varuna, Antarctica (Macellari 1986, Fig. 11.11). e Pseudophyllites loryi, Antarctica 
(Macellari 1986, Fig. 11.1). f Anagaudryceras seymouriense, Antarctica (Macellari 1986, Fig. 
9.3). g Tetragonites sp., Tunisia (Goolaerts 2010b, pl. 2, Fig. 4). h Pseudophyllites indra, Tunisia 
(Goolaerts 2010b, pl. 2, Fig. 18). i Anagaudryceras cf. A. politissimum, Tunisia (Goolaerts 2010b, 
pl. 1, Fig. 20). j Phyllopachyceras forbesianum, Tunisia. (Goolaerts 2010b, pl. 1, Fig. 9)
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Fig. 19.15   Illustration of some of the youngest ammonites belonging to the Ammonitina at the 
close of the Maastrichtian. a Kitchinites laurae, Antarctica (Macellari 1986, Fig. 20.3). b Hau-
ericeras rembda, Tunisia (Goolaerts 2010b, pl. 3, Fig. 19). c Pachydiscus (P.) riccardi, Antarc-
tica (Macellari 1986, Fig. 37.4). d Pachydiscus (Neodesmoceras) snamensis, Tunisia (Goolaerts 
2010b, pl. 7, Fig. 16). e Brahmaites brahma, Tunisia. (Goolaerts 2010b, pl. 4, Fig. 14)
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Fig. 19.16   Illustration of some of the youngest ammonites belonging to the Ammonitina and 
Ancyloceratina at the close of the Maastrichtian. a Diplomoceras lambi, Antarctica (Macellari 
1986, Fig. 14.1). b, c Eubaculites carinatus, lateral and dorsal views, New Jersey (Landman et al. 
2007, Figs. 32O, Q). d, e Baculites sp. A, lateral and dorsal views, Tunisia (Goolaerts 2010b, pl. 9, 
Figs. 2, 3). f Fresvillia paradoxa, Tunisia (Goolaerts 2010b, pl. 8, Fig. 22). g Sphenodiscus binck-
horsti, the Netherlands (Kennedy 1986, Fig. 9C). h Glyptoxoceras cf. G. rugatum, Texas (Ken-
nedy et al. 2001, Fig. 4d). i Diplomoceras cylindraceum, Tunisia (Goolaerts 2010b, pl. 8, Fig. 11)
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Fig. 19.17   Illustration of some of the youngest ammonites belonging to the Ancyloceratina at 
the close of the Maastrichtian. a, b Baculites anceps, lateral and dorsal views, the Netherlands 
(Kennedy 1986, Figs. 10N, O). c, d Baculites cf. B. undatus, lateral and dorsal views, Mississippi 
(Kennedy and Cobban 2000, pl. 2, Figs. 29, 30). e Discoscaphites iris, microconch, Mississippi 
(Kennedy and Cobban 2000, pl. 3, Fig. 14). f Indoscaphites pavana, Tunisia (Goolaerts 2010b, 
pl. 15, Fig. 10). g Indoscaphites cunliffei, Tunisia (Goolaerts 2010b, pl. 14, Fig. 19). h Phyllopty-
choceras cf. P. sipho, Tunisia (Goolaerts 2010b, pl. 8, Fig. 15). i Baculites vertebralis, early onto-
genetic stage, Denmark (Birkelund 1993, Fig. 6A). j Hoploscaphites constrictus crassus, Poland 
(Machalski 2005a, Fig. 8D)
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The stratigraphic distribution of these species demonstrates that ammonites are 
present in the uppermost part of the Maastrichtian just below or at the K/Pg bound-
ary. For example, in northeastern Mississippi, eight species extend to approximately 
1 m below an unconformity, which presumably encompasses the K/Pg boundary. 
The absence of ammonites above this level may be due to dissolution (Larina et al. 
2012). In Denmark, eight species occur in the upper part of the Maastrichtian Høj-
erup Member (Birkelund 1979, 1993; Surlyk and Nielsen 1999), and two of them 
extend into the overlying Danian Cerithium Limestone Member (Machalski and 
Heinberg 2005). In Turkmenistan, two species have been recovered from as high 
up as 5 cm below the boundary clay and a single specimen is present in the Dani-
an part of the section (Machalski et al. 2012). In Bulgaria, Ivanov and Stoykova 
(1994) and Ivanov (1995) recorded five specimens comprising at least two species 
at 40 cm below the boundary clay, which is marked by an anomalous concentra-
tion of iridium. In northeastern Brazil, two species have been collected in the up-
permost 1 m of the section below an erosional unconformity encompassing the K/
Pg boundary (Stinnesbeck et al. 2012). In Antarctica, five species are present in the 
López de Bertodano Formation at 50 cm below the K/Pg boundary, as indicated by 
an enriched concentration of iridium (Zinsmeister 1998). In addition, based on a 
statistical analysis of the range data of these five species, they may even have per-
sisted into the early Danian (Wang and Marshall 2004). In Sakhalin, Jagt-Yazykova 
(Yazikova 1994; Jagt-Yazykova 2011, 2012) reported three species from a concre-
tionary horizon approximately 1.5 m below a 20-cm-thick green clay marking the 
K/Pg boundary.

How does stratigraphic distance below the K/Pg boundary translate into years 
before the asteroid impact? In stratigraphically complete K/Pg sections, the time 
can be estimated by taking into account the thickness between the impact layer 
(time zero) and the base of the highest biostratigraphic zone (estimated, for ex-
ample, at 300 kyr before impact), assuming a constant rate of sedimentation. A bet-
ter approach is to use cyclostratigraphy, which permits the construction of a high-
resolution time scale that takes into account variation in the rate of sedimentation 
and the degree of completeness of the section. For example, in the Tunisian Trough 
Basin, the highest ammonites occur 1 m below the boundary (Goolaerts 2010a). 
Based on a cyclostratigraphic study of the alternation of limestones and marls at 
this site (Hennebert and Dupuis 2003), these ammonites were probably deposited 
at approximately 50 kyr prior to the K/Pg boundary. In the Bay of Biscay, ten spe-
cies are present in the top 1.5 m of the section, and one species is present in the top 
10–15 cm of the section (Ward and Kennedy 1993). Rocchia et al. (2002) also noted 
the occurrence of a poorly preserved specimen filled with iridium debris at 5 cm 
below the boundary clay. Based on the temporal interpretation of the alternation of 
limestone and marl beds in this area, the two highest specimens were buried at less 
than 500–800 years prior to the boundary (Rocchia et al. 2002). Near Maastricht, in 
the Netherlands and northeast Belgium, 19 species are present near or at the K/Pg 
boundary in the upper part of the Nekum Member and overlying Meerssen Member. 
According to interpretations of the short-term cyclicity (centimeter-meter scale) of 
the beds in this area, the highest Maastrichtian ammonites were deposited at less 
than 20 kyr before the K/Pg boundary (Zijlstra 1994; Schiøler et al. 1997).
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The stratigraphic distribution of ammonites at or near the K/Pg boundary has 
been examined using statistical methods (confidence intervals) to estimate the de-
gree to which their observed ranges underestimate their actual ranges. In Antarctica, 
the highest ammonite zone contains nine species, five of which extend to 50 cm 
below the K/Pg boundary. Using 50 % range extensions, Wang and Marshall (2004) 
estimated that five of these species actually persisted to the K/Pg boundary. Using 
a more conservative approach (20 % range extensions), they estimated that only 
one of these species persisted to the boundary. In the Bay of Biscay, ten species are 
present in the top 1.5 m of the section. Using a statistical method employing 50 % 
confidence intervals, Marshall and Ward (1996) argued that at least two of these 
species persisted to the boundary. Indeed, in both areas, recent, intense collecting 
has yielded additional specimens in the uppermost Maastrichtian, consistent with 
the previously noted statistical predictions (Rocchia et al. 2002; Olivero 2012; To-
bin et al. 2012).

The paucity of specimens in the uppermost Maastrichtian in some sections, and 
their absence altogether in the uppermost Maastrichtian of other sections, is prob-
ably due to taphonomic bias, collection failure, or local environmental changes 
rather than to their actual disappearance. For example, in the Tunisian Trough Ba-
sin, the species that occur in the highest levels are the most common species, sug-
gesting that the likelihood of fossilization correlates with species abundance. The 
best explanation for the observed decrease in species richness in the uppermost 
Maastrichtian in this area is either collection failure or local environmental change 
rather than extinction (Goolaerts 2010a). In addition, as noted for the Bay of Biscay, 
Antarctica, and the classic area of Maastricht, ongoing research has yielded addi-
tional specimens in the uppermost part of the section, emphasizing the importance 
of renewed collecting efforts even in well-studied areas (Machalski et al. 2009; Jagt 
2012). Thus, it is likely that the commonly cited decline in ammonite diversity at 
the end of the Maastrichtian (Stinnesbeck et al. 2012) is related more to local envi-
ronmental changes or collection failure rather than to global extinction.

It is possible that ammonites not only persisted to the K/Pg boundary, but sur-
vived for days to tens of thousands of years later, according to various estimates. 
Most of this evidence comes from shallow-water settings. In New Jersey, nine am-
monite species are present in a 20-cm-thick unit (the Pinna Layer) above a horizon 
with a weak iridium anomaly (Landman et al. 2012b; Figs. 19.2, 19.3). The mode of 
occurrence of the fossils in this layer indicates an autochthonous accumulation with 
little or no time-averaging. Fewer ammonites are present above this layer in the 
so-called Burrowed Unit and consist of broken specimens of Eubaculites carinatus 
associated with isolated jaws (aptychi) of this species. Because such jaws are ab-
sent in the underlying Pinna Layer, it suggests that these fossils were not reworked 
from below but were fossilized during the deposition of the Burrowed Unit. If the 
horizon with iridium marks the K/Pg boundary, it implies that ammonites persisted 
and perhaps even initially thrived in the early Danian (as shown by the ammonites 
in the Pinna Layer), followed by a brief appearance of a more impoverished fauna 
(as shown by the ammonites in the Burrowed Unit). Even if the iridium anomaly 
was displaced downward from the top of the Pinna Layer, as previously noted, it 
still implies that the ammonites in the Burrowed Unit would have survived. In the 
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Maastrichtian type region, Jagt et al. (2003) reported several dozen specimens of 
Baculites and Hoploscaphites in Unit IVf-7 of the Meerssen Member above the 
Berg en Terblijt Horizon, which is generally interpreted as marking the K/Pg bound-
ary, rather than the overlying Vroenhoven Horizon. The fact that many of the bacu-
litids are preserved with their apertures intact suggests that they may have survived 
into the early Danian (Planktic Foraminiferal Zone P0) (Fig. 19.8). In Denmark, 
Machalski and Heinberg (2005) reported B. vertebralis and H. constrictus johnjagti 
in the lower Danian Cerithium Limestone Member (Fig. 19.6). These specimens 
have generally been interpreted as reworked material. However, the mode of oc-
currence of these specimens suggests that they were fossilized at the same time as 
the deposition of the Cerithium Limestone Member. In addition, the most common 
fossils in the underlying Maastrichtian chalk are virtually absent in the Cerithium 
Limestone, which is inconsistent with a hypothesis of reworking. Thus, both these 
lines of evidence suggest that the ammonites in the Cerithium Limestone Member 
represent early Danian survivors (Machalski and Heinberg 2005).

19.4.2 � Depth Distribution of Ammonites at the K/Pg Boundary

At the end of the Maastrichtian, shallower water settings (< 100 m) are represented 
by deposits in northern and central Europe and North America. In northern and cen-
tral Europe, the most abundant ammonites are Baculites followed by Hoploscaph-
ites (Figs. 19.16, 19.17) In addition, the fauna contains a few species of desmocera-
toids, including Menuites terminus, and a few species of diplomoceratids including 
Glyptoxoceras rugatum and Diplomoceras cylindraceum. In North America, the 
most abundant ammonites are also baculitids, represented by Eubaculites and Bac-
ulites, followed by scaphitids, represented by Discoscaphites. Sphenodiscids are 
relatively common but desmoceratoids and diplomoceratids (e.g., Glyptoxoceras) 
are rare, and phylloceratids and lytoceratids are absent.

Deeper-water settings (> 100 m) at the end of the Maastrichtian are represented 
by deposits in the Bay of Biscay, the Tunisian Trough, Antarctica, and Sakhalin. In 
the Bay of Biscay, the fauna is characterized by several species of phylloceratids 
and lytoceratids, many of which are endemic to the area (Fig. 19.14). In addition, 
the fauna contains a high diversity of desmoceratoids. In contrast, only one spe-
cies of Diplomoceras is present and Eubaculites and Hoploscaphites are absent 
in the upper part of the section. Several of the same species of phylloceratids and 
lytoceratids ( Hypophylloceras ( Neophylloceras) ramosum and Anagaudryceras 
politissimum) are present in Bulgaria. The fauna in the Bay of Biscay also has 
several species in common with the fauna in Tunisia, including phylloceratids and 
lytoceratids (e.g., Phyllopachyceras forbesianum and Pseudophyllites indra) and 
desmoceratoids (e.g., B. ( Brahmaites) brahma). The most distinctive elements of 
the Tunisian fauna, however, are species of Indoscaphites, suggesting a strong 
connection with southern India. In Antarctica, phylloceratids are absent but lyto-
ceratids are present, including A. seymouriense and Pseudophyllites loryi, both of 
which are endemic to the area. The fauna is also characterized by five endemic 
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species of desmoceratoids including Maorites densecostatus, Kitchinites laurae, 
and Pachydiscus ( P.) riccardii. Surprisingly, few species are shared with South 
America, especially with the slightly older Quiriquina Formation in central Chile 
(Salazar et al. 2010), which contains two species of phylloceratids but no lytocera-
tids. In Sakhalin, the fauna is dominated by phylloceratids and lytoceratids, with a 
few genera and species in common with Tunisia, Bulgaria, and the Bay of Biscay. 
It is also characterized by two species of pachydiscids that are endemic to the area.

19.4.3 � Ecology of Ammonites at the K/Pg Boundary

The phylloceratids and lytoceratids, although never abundant in terms of individu-
als, are well represented in deeper-water settings (> 100 m deep) at the end of the 
Maastrichtian (Fig. 19.14). A total of seven genera are each present in Tunisia and 
the Bay of Biscay, and three each in Bulgaria and Antarctica. They are characterized 
by relatively compressed shells without much ornament, and comprise the tradition-
al Leiostraca, and are restricted to the distal shelf and upper continental slope based 
on paleoenvironmental data. This habitat is consistent with depth estimates based 
on studies of the strength of the siphuncular tube and septa (Hewitt 1996). The buc-
cal apparatus of these forms is different from other ammonites at the end of the Cre-
taceous in featuring a calcareous deposit at the apical end of the lower jaw, possibly 
permitting them to feed on hard material, like crustacean carapaces (Tanabe and 
Landman 2002; Tanabe et al. 2013). Depending on the genus, Westermann (1996) 
interpreted the mode of life of these forms as demersal swimmers, planktic vertical 
migrants, or nektic swimmers. However, an analysis of the isotopic composition 
of the outer shell of several species of Late Cretaceous Hypophylloceras, Phyllo-
pachyceras, and Gaudryceras from Japan suggests that these forms lived close to 
the sea floor (Moriya et al. 2003).

The desmoceratoids at the end of the Maastrichtian also favored deeper-water set-
tings, with five genera each in Tunisia and the Bay of Biscay, and four in Antarctica 
(Fig. 19.15). With their relatively thick septa, narrow but thick-walled siphuncular 
tubes, and long septal necks, desmoceratoids are well adapted to deeper-water set-
tings. They possess moderately compressed, involute shells with a rounded venter 
and relatively smooth surface. The hydrodynamic properties of desmoceratoids are, 
thus, similar to those of other Mesozoic ammonites with low shell-thickness ratios 
(Seki et al. 2000). These forms are considered to have been demersal swimmers, 
which lived on the distal shelf and upper continental slope (Westermann 1996). This 
interpretation is consistent with isotopic analyses of the outer shell, which suggest a 
mode of life near the bottom (Moriya et al. 2003). It is notable that desmoceratoids 
appear to have modified their aptychus-type jaw, reducing the aptychus to only a 
thin covering (Tanabe and Landman 2002; Tanabe et al. 2013). This may have per-
mitted them to broaden their diet to include carrion from the sea floor.

Scaphitids at the close of the Cretaceous occur in shallow-water settings such 
as the Gulf and Atlantic Coastal Plains of North America and northern and cen-
tral Europe, although they occasionally occur in deeper-water settings such as 
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Turkmenistan (Fig. 19.17). In terms of numbers of individuals, they are probably 
the most abundant ammonites after baculitids. The mode of life and habitat of Late 
Cretaceous scaphitids has been investigated by Landman et al. (2012a) based on 
analyses of the functional morphology of the shell and buccal apparatus, light stable 
isotopes, facies distributions, faunal associations, and the mechanical strength of 
the septa, shell, and siphuncle. Based on this evidence, scaphitids were probably 
sluggish swimmers that preferred well-oxygenated water just above the bottom. 
They may have exploited a low-energy lifestyle, remaining at a single site for an ex-
tended period of time. As members of the Aptychophora Engeser and Keupp 2002, 
scaphitids possessed an aptychus-type lower jaw and may have preyed upon small 
organisms in the water column, such as decapod crustaceans, copepods, and newly 
hatched ammonites.

Sphenodiscids were also relatively common in the same facies as scaphitids 
in North America and northern and central Europe at the end of the Maastrich-
tian (Fig. 19.16). Based on their streamlined, oxyconic shells and distribution in 
nearshore facies, sphenodiscids have been interpreted as inhabitants of shallow-
water environments ranging from around wave base to slightly below (Ifrim and 
Stinnesbeck 2010). They may have been capable of brief spurts of relatively rapid 
swimming permitting ambush predation (Westermann 1996). However, they are 
equipped with aptychus-type lower jaws without sharp cutting edges, precluding 
the likelihood of a diet of hard-shelled prey.

The diplomoceratids ( Glyptoxoceras, Diplomoceras, and Phylloptychoceras) 
and baculitids are nearly cosmopolitan at the end of the Cretaceous, suggesting that 
they were facies-independent. The diplomoceratids occur at eight regions ranging 
from deeper-water (Bay of Biscay) to shallower-water settings (the Netherlands and 
northeast Belgium) (Fig. 19.16). The baculitids ( Baculites, Eubaculites, and Fres-
villia) are even more widespread than the diplomoceratids and occur in ten regions 
(Figs. 19.16, 19.17). Indeed, baculitids are probably the most abundant ammonites 
at the end of the Cretaceous in terms of number of individuals. The wide distribu-
tion of these forms with respect to environmental settings suggests that they may 
have lived high in the water column, well above the bottom. This is consistent with 
the fact that they are occasionally preserved even in areas with dysoxic bottom wa-
ter that excluded benthic fauna. Baculitids have generally been interpreted as slug-
gish swimmers (Klinger 1981) hovering in the water column at an inclined angle to 
the vertical (Fig. 19.3), but this requires a counterbalance at the adapical end. Based 
on studies of the morphology of the radula and the presence of prey remains in the 
buccal apparatus, it is possible that baculitids preyed on small micro-organisms in 
the water column, such as tiny crustaceans (Kruta et al. 2011). This interpretation 
may also have applied to the diplomoceratids with their upturned aperture at matu-
rity, which is also consistent with a microphagous mode of life.

19.4.4 � Causes of Ammonite Extinction

Following the Alvarez hypothesis, it is now generally accepted that the disap-
pearance of ammonites in the latest Maastrichtian/earliest Danian was due to the 
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asteroid impact. However, the exact killing mechanism is still unknown. The most 
plausible explanation is perhaps a transient episode of surface water acidification on 
the heels of the asteroid impact (Alegret et al. 2012; Arkhipkin and Laptikhovsky 
2012; Hönisch et al. 2012). According to these arguments, the gypsum-rich deposits 
at the impact site would have vaporized, producing sulfuric acid. In addition, the 
heating of the atmosphere would have generated nitric acid due to the oxidation of 
N2, resulting in acid rain. The alternative hypothesis of a global collapse in primary 
productivity (called the Strangelove Ocean) or export productivity (called the Liv-
ing Ocean) lacks support because the benthic foraminifera in the deep sea did not 
suffer a severe extinction at the time, unlike the planktic foraminifera (Alegret et al. 
2012). Darkness due to the fine dust in the atmosphere following the collision may 
also have been a contributing factor, blocking solar radiation and leading to a short-
lived cold spell (Vellekoop et al. 2014).

Surface ocean acidification would have had disastrous consequences for planktic 
calcifiers, including calcareous nannofossils, planktic foraminifera, and ammonites. 
All the ammonites at the end of the Cretaceous, irrespective of their mode of life 
at maturity, probably followed a planktic mode of life immediately after hatching 
(Landman et al. 1996; Westermann 1996; Arkhipkin and Laptikhovsky 2012). This 
hypothesis is based on two functional arguments: the small size of the embryonic 
shell (ammonitella), which ranges from 0.5 to 1.5 mm in diameter, and its near-
spherical shape, both of which are presumably adaptations to life in the plankton 
(Fig. 19.18). The newly hatched ammonites may have been passive vertical migra-
tors, drifting with surface currents. This interpretation is consistent with a number 
of observations on the mode of occurrence of ammonites preserved at this stage 
of development. For example, the Late Cretaceous Sharon Springs Member of the 
Pierre Shale in Wyoming contains small specimens of newly hatched ammonites. 
These sediments are interpreted to have been deposited on an anaerobic bottom 
with oxygenated water above, implying that the newly hatched ammonites were 
planktic or at least nektic (Landman 1988). This mode of life may have been very 
‘effective’ during background times, but it may have proved to be an Achilles Heel 
for ammonites during stressful times (Arkhipkin and Laptikhovsky 2012).

Variation in the degree of surface ocean acidification can help explain the fact 
that all of the evidence for the short-term survival of ammonites in the early Danian 
is from relatively shallow-water settings (the Atlantic Coastal Plain, the Netherlands 
and northeast Belgium, and Denmark). The ammonites in these areas may have sur-
vived for days to tens of thousands of years after the impact. It is possible that these 
coastal areas may have been buffered from transient surface water acidification due 
to the burning of plants on the land, and the resultant increase in riverine run-off. As 
a consequence, some planktic organisms that secreted calcium carbonate, including 
ammonites, may have persisted for a brief interval of time in these regions. Ironi-
cally, this kill mechanism apparently favored scaphitids and baculitids, which are 
characterized by short-term species longevities, rather than phylloceratids and lyto-
ceratids, which are characterized by long-term species longevities (for a discussion 
of the evolutionary mode and tempo of Cretaceous ammonites, see Ward and Signor 
1983). Thus, this kill mechanism was independent of the evolutionary success of 
particular ammonites, as least as measured by their species longevity.
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Fig. 19.18   Illustration of the embryonic shells of six species of Late Cretaceous ammonites (a–e, 
with kind permission of K. Tanabe, University of Tokyo). The embryonic shell consists of the 
protoconch and approximately one whorl ending in the primary constriction, and is ornamented 
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with a microtuberculate ornamentation. a Hypophylloceras subramosum (Phylloceratina), middle 
Campanian, Hokkaido, Japan (refigured from Tanabe 1989, Fig. 2D). b Phyllopachyceras ezoense 
(Phylloceratina), middle Campanian, Hokkaido, Japan (refigured from Tanabe 1989, Fig. 2C). c 
Gaudryceras denseplicatum (Lytoceratina), Coniacian, Hokkaido, Japan (refigured from Tanabe 
1989, Fig. 2A, B). d Menuites sp. (Ammonitina), middle Campanian, Hokkaido, Japan (refigured 
as Anapachydiscus sp. in Tanabe 1989, Fig.  1A, B). e Baculites compressus (Ancyloceratina), 
late Campanian, South Dakota, USA. f Hoploscaphites sp. (Ancyloceratina), upper Maastrichtian, 
South Dakota (Refigured from Landman and Waage 1993, Fig. 13D). Scale bar = 200 um

The geographic distribution of ammonite genera may also have played a role 
in their pattern of extinction. Landman et  al. (2014) compiled a database of all 
ammonite genera in the last 0.5 myr of the Maastrichtian. They also incorporated 
data on ammonite genera that appear to have briefly survived into the Paleocene 
(Jagt et al. 2003; Jagt 2012; Machalski and Heinberg 2005; Machalski et al. 2009; 
Landman et al. 2012b). Using two metrics to evaluate the geographic range of each 
genus (first, a convex hull encompassing all of the occurrences of each genus and, 
second, the maximum distance between occurrences for each genus), they docu-
mented that most ammonite genera at the end of the Maastrichtian were restricted 
in their geographic distribution, possibly making them vulnerable to extinction. 
However, the geographic distribution of those genera that may have briefly sur-
vived into the Paleocene is significantly greater than that of ‘non-surviving’ genera, 
implying that more broadly distributed genera were more resistant to extinction. 
Similar geographic patterns of survivorship have been observed in other molluscs 
at the K/Pg boundary. For example, Jablonski (2008) noted that it terms of marine 
bivalve genera, survivors were significantly more broadly distributed than victims. 
However, even the most widely distributed ammonites eventually succumbed to 
extinction. Evidently, a broad geographic distribution may have initially protected 
some ammonites against extinction, but it did not guarantee their survival.

19.5 � Conclusions

Ammonites are abundant and diverse in the last 0.5 million years of the Maastrich-
tian. They are distributed across all four Cretaceous suborders, the Phylloceratina, 
Lytoceratina, Ammonitina, and Ancyloceratina, comprising six superfamilies, 31 
(sub)genera, and 57 species. The distribution of ammonites is dependent on the 
environmental setting. In shallow-water environments (< 100 m deep), almost all of 
the ammonites are ancyloceratines, including scaphitids, baculitids, and diplomoc-
eratids. In fact, baculitids and diplomoceratids are the most widespread ammonites 
at the end of the Cretaceous. In deeper-water settings (> 100 m deep), almost all taxa 
comprise phylloceratids, lytoceratids, and ammonitids (especially desmoceratoids). 
The commonly cited decline in ammonite diversity at the end of the Maastrichtian 
is related more to local environmental changes or collection failure rather than to 
global extinction. Indeed, ongoing research has yielded additional specimens even 
in well-studied areas. In addition, recent data from shallow water settings (Atlan-
tic Coastal Plain, the Netherlands and northeast Belgium, and Denmark) suggest 
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that not only did ammonites persist to the boundary, but some species may even 
have survived for as much as tens of thousands of years afterward. The most likely 
explanation for ammonite extinction is a brief episode of surface water acidifica-
tion immediately following the Chixculub impact, which caused the decimation 
of the calcareous plankton including, possibly, the planktic post-hatching stages 
of ammonites. However, the geographic distribution of ammonites may also have 
played a role in the events at the end of the Cretaceous, with more broadly distrib-
uted genera more resistant to extinction.
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Appendix of Localities

1: Manasquan River Basin, Monmouth County, New Jersey, U.S.A., 40°12ʹ30ʺN, 
74°17ʹ30ʺW

2: Northeastern Monmouth County, New Jersey, U.S.A., 40°17ʹ30ʺN, 74°7ʹ14ʺW
3: Round Bay, Anne Arundel County, Maryland, U.S.A., 39°2ʹ13ʺN, 76°33ʹ28ʺW
4: Stoddard and Scott counties, Missouri, U.S.A., 37°00ʹ17ʺN, 89°51ʹ02ʺW
5: Tippah County, Mississippi, U.S.A., 34°44ʹ55ʺN, 88°54ʹ47ʺW
6: Chickasaw County, Mississippi, U.S.A., 33°58ʹ04ʺN, 89°00ʹ05ʺW
7: Brazos River, Falls County, Texas, U.S.A.,31°8ʹ11ʺN, 96°49ʹ40ʺW
8: La Popa Basin, Northeastern Mexico, 26°12ʹ44ʺN, 101°4ʹ25ʺW
9: Stevns Klint, Denmark, 55°16ʹ45ʺN, 12°26ʹ47ʺE
10: Kjølby Gård, Denmark, 57°3ʹ15ʺN, 8°44ʹ55ʺE
11: “Dania” Quarry, northern Denmark, 56°39ʹ42ʺN, 10°1ʹ56ʺE
12: �Maastrichtian Type Area, The Netherlands and Belgium, 50°49ʹ18.41ʺN, 

5°41ʹ39.54ʺE
13: Nasiłów, Poland, 51°20ʹ39ʺN, 21°57ʹ35ʺE
14: Mełgiew, Poland, 51°13ʹ30ʺN, 22°47ʹ8ʺE
15: Lechówka, Poland, 51°10ʹ17ʺN, 23°14ʹ43ʺE
16: Kyzylsay, Kazakhstan, 44°20ʹ1ʺN, 52°26ʹ10ʺE
17: Sumbar River, Turkmenistan, 38°27ʹ18ʺN, 56°12ʹ41ʺE
18: Zumaya, Bay of Biscay Area, 43°17ʹ54ʺN, 2°16ʹ16ʺW
19: Hendaye, Bay of Biscay Area, 43°23ʹ1ʺN, 1°49ʹ26ʺW
20: Bidart, Bay of Biscay Area, 43°26ʹ25ʺN, 1°35ʹ41ʺW
21: Bjala (= Byala), Bulgaria, 42°52ʹ44ʺN, 27°53ʹ57ʺE
22: Kalaat Senan, Tunisia, 35°47ʹ15ʺN, 8°27ʹ21ʺE
23: El Kef, Tunisia, 36°9ʹ15ʺN, 8°38ʹ55ʺE
24: Garn Halfaya, Tunisia, 36°0ʹ40ʺN, 8°33ʹ23ʺE
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25: Dababiya Quarry Corehole, Egypt, 25°30ʹ10ʺN, 32°31ʹ27ʺE
26: Naiba River Valley, Sakhalin, Far East Russia, 47°28ʹ34ʺN, 142°24ʹ10ʺE
27: Poty Quarry, Brazil, 7°53ʹ95ʺS, 34°51ʹ14ʺW
28: Lomas Colorados, Bajada de Jagüel, Neuquen Basin, Argentina, 37°59ʹ24ʺS, 

68°47ʹ38ʺW
29: Seymour Island, Antarctica, 64°16ʹ50ʺS, 56°43ʹ23ʺW
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