Topics in Geobiology 40

M. Gabriela Mangano
Luis A. Buatois Editors

The Trace-Fossil
Record of Major
Evolutionary Events

Volume 2: Mesozoic and Cenozoic

@ Springer



Topics in Geobiology

Volume 40

The Topics in Geobiology series covers the broad discipline of geobiology that is
devoted to documenting life history of the Earth. A critical theme inherent in
addressing this issue and one that is at the heart of the series is the interplay between
the history of life and the changing environment. The series aims for high quality,
scholarly volumes of original research as well as broad reviews.

Geobiology remains a vibrant as well as a rapidly advancing and dynamic field.
Given this field’s multidiscipline nature, it treats a broad spectrum of geologic,
biologic, and geochemical themes all focused on documenting and understanding
the fossil record and what it reveals about the evolutionary history of life. The
Topics in Geobiology series was initiated to delve into how these numerous facets
have influenced and controlled life on Earth.

Recent volumes have showcased specific taxonomic groups, major themes in the
discipline, as well as approaches to improving our understanding of how life has
evolved.

Taxonomic volumes focus on the biology and paleobiology of organisms — their
ecology and mode of life — and, in addition, the fossil record — their phylogeny and
evolutionary patterns — as well as their distribution in time and space.

Theme-based volumes, such as predator-prey relationships, biomineralization,
paleobiogeography, and approaches to high-resolution stratigraphy, cover specific
topics and how important elements are manifested in a wide range of organisms and
how those dynamics have changed through the evolutionary history of life.
Comments or suggestions for future volumes are welcomed.

Series Editors
Neil H. Landman
American Museum of Natural History, New York, USA

Peter J. Harries
Tampa, Florida, USA

More information about this series at http://www.springer.com/series/6623


http://www.springer.com/series/7651

M. Gabriela Mdngano ¢ Luis A. Buatois
Editors

The Trace-Fossil Record of
Major Evolutionary Events

Volume 2: Mesozoic and Cenozoic

@ Springer



Editors

M. Gabriela Mdngano Luis A. Buatois

Department of Geological Sciences Department of Geological Sciences
University of Saskatchewan University of Saskatchewan
Saskatoon, Saskatchewan, Canada Saskatoon, Saskatchewan, Canada

ISSN 0275-0120

Topics in Geobiology

ISBN 978-94-017-9596-8 ISBN 978-94-017-9597-5  (eBook)
DOI 10.1007/978-94-017-9597-5

Library of Congress Control Number: 2016951934

© Springer Science+Business Media Dordrecht 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Science+Business Media B.V. Dordrecht



To Dolf Seilacher, who, as usual, thought
about these issues long before us.



Foreword

Imagine a world much like our own: an oxygen-rich atmosphere, dynamic tectonic
activity, and a rich and diverse biota of plants, animals, and teeming associations of
microbes. Indeed a world just like ours, with a similarly deep history of life, but
with one slight difference: no body fossils. No shark teeth eroding from cliffs, no
trilobites, no dinosaur bones cluttering up museums and the dreams of impression-
able 5-year-olds (and Hollywood moguls). Worst of all, of course, we would be
missing the remarkable schnozzle of Opabinia. Much of the rich morphological
detail provided by body fossils would be irretrievably lost, but how much of the his-
tory and diversity of life could we recover? Would we be able to identify the explo-
sive evolutionary dynamism of the Cambrian diversification? Would the
paleontologists of this imaginary world be able to chart changing patterns of animal
diversity and morphological disparity? Identify the invasion of land or the great
mass extinctions? Chronicle advances in behavioral patterns? Would changing cli-
mate patterns be evident, or the rise of great plodding vertebrates?

If we stipulate that tracks, trails, and burrows were preserved in all the detail
documented in the chapters of this volume and the richly informative photographs
and diagrams, then a remarkable detailed view of animal diversity, morphological
disparity, and behavior emerges. For those not intimately acquainted with the exten-
sive strides made over the past couple of decades of research in ichnology, this
volume illustrates the range of information which can be recovered from the pri-
mary record of organismal behavior to analysis of changing patterns of diversity and
disparity.

As a graduate student during the early 1980s the focus of ichnology seemed to be
on describing new structures and providing them (mystifyingly to those of us who
did not study trace fossils) Latin binomials. Yet ichnology was already undergoing
a conceptual shift in concert with changes within the broader field of paleobiology.
As facies concepts spread through sedimentology, the concept of ichnofacies was
adopted. The increased emphasis on taphonomy, preservation, and the quality of the
fossil record beginning in the 1980s found a similar expression in ichnology in the
recognition that the same animal could produce very different structures depending
on the environment and the nature of the sediment, and that tracks can look very
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viii Foreword

different depending on what level one examines within their stratigraphy. One result
of such studies has been considerable revision in the diversity of ichnotaxa. As
described in Chap. 2 of this volume, many fossils that we happily accepted as bur-
rows in the mid-1990s have now been recognized as components of a diverse assem-
blage of latest Ediacaran tubes, and not trace fossils at all. Restudy of Ediacaran
traces has drastically reduced the number of accepted ichnogenera.

To a non-ichnologist, what is particularly striking about this book is how faith-
fully the general outlines of evolutionary dynamics are visible with trace fossils
alone. As illustrated by Chaps. 2 and 3, the integration of trace fossils has long been
standard for studies of the Ediacaran and Cambrian diversification. It is not just that
the base of the Cambrian is currently defined by the first occurrence of the ichno-
taxon Treptichnus pedum, rather it is hard to imagine any survey of the Ediacaran—
Cambrian diversification not including a discussion of the trace-fossil record. Data
from ichnological studies has been essential to revealing patterns of morphological
novelty and innovation, which is why several generations of workers, from Dolf
Seilacher and Peter Crimes to Mary Droser, Soren Jensen and the editors of this
volume, have played critical roles in expanding our integrated understanding of this
interval. Indeed, Chap. 3 notes that in important ways the trace-fossil record may
provide a more reliable picture of the diversity dynamics during the Fortunian, the
first stage of the Cambrian, than do other fossils.

The pattern continues with later chapters. The Ordovician biodiversification
event reveals breakthroughs in paleoecology including movement into infaunal
habitats with increased tiering, increased bioturbation, and colonization of new
environments (Chap. 4). Unlike the Cambrian, the Ordovician increase in the diver-
sity of ichnotaxa was not accompanied by an increase in ichnodisparity. Indeed a
thread throughout the chapters is the frequency of “early burst” patterns of diversi-
fication. The exploration and exploitation of new habitats is a consistent theme
throughout this volume. The invasion of land, discussed in Chap. 5, reveals a pattern
of colonization, a rapid exploration of new behaviors and architectural designs, fol-
lowed by variation on the established themes. Other episodes that are addressed are
the expansion of terrestrial ecosystems, the Mesozoic marine revolution, and lacus-
trine revolutions. Chapter 14, on the Cenozoic mammalian radiation, suggests that
the tracks of this episode, like the traces of the Cambrian, may provide a richer
record of evolutionary change than does skeletal elements, and in addition provides
unique information on locomotion, body size, and ecology. I must confess that I had
never considered the nature of trace fossils associated with soils, but Chap. 15 illu-
minates the unexpected complexity in the evolutionary exploitation of paleosols.
Chapter 16 provides an insightful analysis of patterns of ecospace occupation
through the Phanerozoic, advances in ecosystem engineering, and patterns of ichno-
diversity and ichnodisparity. I was particularly struck by the proposal that a space of
all possible “ichno-structures” that was explored relatively early by marine inverte-
brate clades, with similar architectures subsequently discovered independently by
different clades. Not surprisingly, this pattern matches studies of ecospace by
Bambach and colleagues, and of morphological disparity by many writers.
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But of course the diversity and disparity of these structures varied with events in
the history of life, as demonstrated by ichnological studies associated with the end-
Permian, end-Triassic, and end-Cretaceous mass extinctions, as discussed in Chaps.
7,8, and 12. The early Triassic aftermath of the end-Permian mass extinction reveals
as complicated a pattern of ichnofaunal re-emergence as has been found looking
just at body fossils. Returning to the counterfactual musings with which I began this
foreword, the evidence presented in Chap. 7 makes it clear that we would be able to
recover much of the complexity of the biotic recovery from the trace-fossil record
alone. (I must confess to a certain pleasure in Chap. 7 as a proposal I made in 1993
which had been discarded by later workers is resurrected therein.)

Sadly of course, the trace-fossil record on my mythical, alternate Earth would be
no more complete than the record we possess today. Trace fossils might hint at mor-
phologies not found among extant animals, but phylogenetic analysis, to take one
example, would be greatly hampered by a loss of character information from the
early history of many clades: the origins of turtles might forever remain a mystery.
There would be many questions accessible with our extant fossil record that would
be unanswerable. But of course this is just the strength of the fossil record that we
possess. The trace and body fossil records each have their strength, and their weak-
nesses. This volume wonderfully elucidates the power of the ichnofossil record,
properly interpreted, to reveal much of the ecological and evolutionary dynamics of
life on this Earth. As students read this volume (and I hope many do), the chapters
here should provide a plethora of questions to pursue. While I am sure that this book
will attract many students to ichnology, in some ways the most significant impact of
the book would be to convince paleontologists to more fully integrate ichnological
data and analyses into projects on evolutionary diversifications and radiations, mass
extinctions, and paleoecological dynamics.

Douglas H. Erwin

Department of Paleobiology
National Museum of Natural History
Washington, DC, USA
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Prologue

“A beginning has been made and the discipline has been
advanced to the point where some of the highlights in the
history of life may be examined from a paleoecological
perspective”

(Valentine 1973, Evolutionary Paleoecology
of the Marine Biosphere)

In a remarkable book on the meaning of geologic time, Stephen Jay Gould explored
the dichotomy between time’s arrow and time’s cycle (Gould 1987). According to
this view, time’s arrow encompasses history as an irreversible sequence of unrepeat-
able events, whereas time’s cycle refers to a nondirectional time characterized by
repetition according to a recurrent pattern. As we have emphasized elsewhere (e.g.,
Maingano and Buatois 2012, 2015), ichnology can be viewed as an expression of the
tension between these two faces of geologic time.

The remarkable success of ichnology to solve problems in facies analysis,
paleoenvironmental reconstruction, and sequence stratigraphy is clearly an expres-
sion of the emphasis on recurrence. In fact, the very same definition of archetypal
ichnofacies, as trace-fossil suites that record responses of benthic organisms to a
given set of environmental conditions and that recur through geologic time, epito-
mizes time’s cycle. In this view, regardless of the age of the unit animals should
respond to ecological parameters in a similar way, reflecting their adaptation to the
environment they inhabit. This nomothetic program for ichnology, with its power as
a predictive conceptual tool, is the reason that sedimentary geologists now typically
include trace fossils in their toolkit to scrutinize the stratigraphic record.

However, this success when dealing with practical issues, often of economic
importance, should not prevent us from the realization that ichnology has much to
contribute to our understanding of the changing ecology of the past by recovering
a time’s arrow perspective. While working on a previous book (Buatois and
Maingano 2011), it became increasingly obvious to us that this other face of ichnol-
ogy has received far less attention. However, even a cursory review of the recent
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paleobiologic literature shows that there is an increased awareness of the impor-
tance of bioturbation and bioerosion as driving forces in the history of life, playing
major roles as a connecting players between biotic and abiotic factors involved in
complex feedback loops that result in evolutionary change (e.g., Erwin and Tweedt
2012).

There are two strategies to bring back the time’s arrow perspective of ichnology.
One would be to assess the trace-fossil record of the colonization of specific depo-
sitional settings, being the main focus on the reconstruction of major trends in
global ichnodiversity. In fact, this approach has a relatively long history, starting
with the colonization of the deep sea through geologic time due to pioneer papers
by Seilacher (1974, 1977) and Crimes (1974), continuing with more recent studies
on the same topic (Orr 2001; Uchman 2003, 2004), as well as on the colonization of
continental environments (Buatois and Mdngano 1993; Buatois et al. 1998), estuar-
ies (Buatois et al. 2005), and tidal flats (Mdngano and Buatois 2015). Another
approach would be to evaluate how the interactions between animals and substrates
were shaped by major macroevolutionary events, such as the Cambrian explosion
and the Permian mass extinction. These changes are analyzed from an ecological
perspective. For this book we have decided to follow this later approach.

In its essence, this book reflects the growing interest within the ichnologic com-
munity in expanding the potential of ichnology to contribute to evolutionary paleo-
ecology. The authors of the different chapters are eclectic in their perspectives and
methodologies. However, there are some common themes and conceptual tools,
such as ichnodiversity and ichnodisparity, ecospace utilization, environmental
expansion, innovation associated to major radiation events, and the re-organizations
of ecological units, in particular communities and ecosystems, after mass extinc-
tions. What emerges is a wealth of information and the idea that the history of life
can be accurately reconstructed looking through the ichnologic glass.

The first volume opens with Chap. 1, where Minter et al. briefly revise the con-
ceptual and methodological tools of ichnology, with the aim of providing the reader
with the basic information necessary to explore the rest of the book. The approach
is eclectic with brief summaries of the basic principles and concepts in the field, as
well as revisions of the ichnofacies model and the ichnofabric approach. The chap-
ter also introduces a number of concepts and methods that are used in subsequent
chapters, including the notion of ichnodiversity and ichnodisparity as a novel
approach to unlock the potential of ichnofaunas to provide insights into mode of
life, ecospace colonization, and ecosystem engineering.

Chapter 2, by Buatois and Mdngano, starts our journey through time by evaluat-
ing the highly controversial trace-fossil record of the Ediacaran. The chapter can be
understood as an attempt to revisit from an ichnologic perspective the so-called
Darwin’s dilemma on the supposed absence of evidence of life in the Precambrian
by critically searching for the roots of animal life in the Ediacaran. In addition, ich-
nologic data is used to reveal the nature of Ediacaran ecosystems and the complexi-
ties involved in the transition to the Phanerozoic world.

In Chap. 3, Mdngano and Buatois look at the other side of the great divide, by
exploring the trace-fossil record of the Cambrian explosion. The chapter empha-
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sizes the importance of trace-fossil data to calibrate the Cambrian diversification
event. Also, the profound changes that took place at ecosystem scale are analyzed
in detail, emphasizing the role of bioturbation as an agent of evolutionary change.
The chapter closes with an evaluation of the paleoenvironmental breadth of the
Cambrian explosion, the significance of the ichnofaunas associated with Burgess
shale-type deposits, and the dual nature of the Fortunian from an evolutionary
standpoint.

Chapter 4, by Mdngano et al., examines the following evolutionary radiation, the
Great Ordovician Biodiversification Event. This chapter analyzes ichnodiversity
and ichnodisparity trajectories through the Ordovician, comparing patterns in dif-
ferent depositional environments and paleocontinents. The contrasting nature of
diversification in soft-bottom and hardground communities is emphasized by show-
ing that innovation in macrobioerosion was significantly delayed when compared
with bioturbation.

Minter et al. explore the initial steps of life on land in Chap. 5 focusing on the
Ediacaran—Ordovician timespan. The chapter traces the early stages of animal
expansion from fully marine settings into marginal-marine coastal environments
and ultimately truly continental settings by the Late Ordovician. This prelude to
terrestrialization involves the gradual colonization of new environments followed
by rapid filling of ecospace, the establishment of new architectural designs, and
diversification within the framework of these new behavioral programs. Links
between these evolutionary innovations, and the incipient establishment of a land
flora and changes in fluvial styles are discussed.

In Chap. 6, Minter et al. continue with the analysis of terrestrialization by exam-
ining the trace-fossil record of marginal-marine and continental environments dur-
ing the remainder of the Paleozoic. Following the protracted prelude reviewed in the
previous chapter, the Silurian to the Permian was characterized by an explosion of
diversity and expansion into newly colonized environments, such as river channels,
overbanks, deserts, and lakes, coupled with increasing exploitation of the infaunal
ecospace. The chapter underscores how colonization of continental settings by ben-
thic organisms parallels changes in vegetation and fluvial styles.

Hofmann closes the first volume with Chap. 7, addressing the trace-fossil record
of the end-Permian mass extinction. By carefully evaluating ichnologic data, he
provides insights into the extinction event and the subsequent recovery. The impact
of burrowing organisms on geochemical conditions of the marine sediment is
emphasized, providing a critical evaluation of previous ideas regarding the role of
oxygen-depleted conditions as a cause of delayed recovery. It is argued that biotur-
bation was strongly reduced as a result of the end-Permian mass extinction, leading
to the collapse of the mixed layer. The large-scale consequences of such collapse are
evaluated in detail.

Volume 2 marks the passage to the post-Paleozoic world, opening with Chap. 8,
where Barras and Twitchett analyze the end-Triassic mass extinction. The authors
revised the ichnologic record of both terrestrial and marine environments through
the Triassic-Jurassic transition, outlining how the benthic faunas responded to the
mass extinction. Their review suggests that climatic and environmental change were
main factors controlling benthic communities on land and in the sea.
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In Chap. 9, Buatois et al. take the reader to the new world arisen from the
Mesozoic Marine Revolution. The main group of bioturbators and bioeroders are
reviewed, and the trace-fossil record of Mesozoic and Cenozoic marine environ-
ments is revised to track evolutionary innovations, discussing the timing of Mesozoic
Marine Revolution. The environmental breadth of this major event is evaluated by
summarizing evolutionary innovations not only in shallow-marine environments but
also in marginal-marine and deep-marine settings. It is argued that infaunalization
predated an increase of predation pressures by approximately 50 Myr, pointing
towards a complex set of feedback mechanisms between the two.

In Chap. 10, Bernardi et al. explore the vertebrate radiation during the Mesozoic.
By revising in detail available ichnologic data, they show how the trackway record
yields insights into several issues, such as locomotor mechanics and behavior, there-
fore providing information that typically is not revealed by the body-fossil record.
In turn, biases inherent to the trace-fossil record are discussed, arguing that the
integration between the trackway and the skeletal record is essential to provide a
more holistic picture of the evolutionary changes underwent by terrestrial verte-
brates during the Mesozoic.

Chapter 11, by Buatois et al., discusses another series of evolutionary break-
throughs that took place in continental settings: those resulting from the Mesozoic
lacustrine revolution. Lakes are evaluated from an ichnologic perspective, contrast-
ing lacustrine ecosystems prior to this evolutionary event with those that arose after
the Mesozoic lacustrine revolution. Aspects discussed in this chapter include ichno-
diversity changes through time, the establishment of modern lacustrine food webs,
and the role of behavioral convergence on both sides of the salinity divide.

In Chap. 12, Labandeira et al. shift our attention to another extinction event: the
end-Cretaceous mass extinction. These authors evaluate both the record of plant—
arthropod interactions on land and that of invertebrate trace fossils in the sea, there-
fore providing a comprehensive picture of the extinction event and its aftermath.
A number of methodological, empirical, and theoretical advances resulting from the
use of ichnologic data are outlined, including application of innovative methods to
quantify ichnologic information, access to novel ecologic data, and evaluation of
catastrophic vs. gradualistic scenarios based on the analysis of bioturbated sedi-
ment, among many others.

Chapter 13, by Genise et al., represents a general departure to the overall structure
of the book in that it does not address a specific evolutionary event, but instead traces
a series of dramatic changes in paleosols covering most of, if not all, the Phanerozoic.
In doing so, they provide an in-depth characterization of four revolutions in paleosol
ichnofaunas. In addition, this chapter provides an interesting twist to the concept of
ichnofacies by showing that their establishment in terrestrial settings is fully linked
to a series of evolutionary innovations by soil-burrowing organisms.

In Chap. 14, Krapovickas and Vizcaino explore the evolution of mammals based on
their footprint record. Although this chapter summarizes the Mesozoic and Cenozoic
record of tracks attributed to mammals worldwide, emphasis is on changes in South
American mammals during the Cenozoic. The authors show that Eocene-Oligocene
trackway assemblages mostly consist of forms of uncertain affinity, whereas later
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assemblages consist of trackways of both native South American and North American
mammals that arrived during the Great American Biotic Interchange. This chapter
emphasizes the strong provincialism of mammal faunas, representing a starting point
towards a more global examination of their ichnologic record.

Chapter 15, by Lockley et al., deals with the trackway record of hominin evolu-
tion. Starting with the famous 3.6 Ma tracks from Laetoli, the reader is taken through
a journey that explores the expansion of our ancestors from Africa to Eurasia, the
New World, and Australasia. References to footprints on the Moon and tracks of
robotic vehicles on Mars add another dimension to the trip. Along the way, the
authors discuss various controversies, including the alternative interpretations of the
Laetoli trackways and the differences between early hominin footprints and those
from modern humans.

The book closes with Chap. 16, where Buatois and Mdngano take the challenge
of trying to summarize possible recurrent trends revealed by the trace-fossil record
that may provide insights into the underlying dynamics of animal-substrate
interactions through geologic time. In particular, the chapter discusses organism—
substrate interactions during evolutionary radiations, benthic fauna response to
mass extinctions, patterns of ecospace colonization, and environmental shifts
through time. In contrast to the other chapters, which by reviewing individual evo-
lutionary events are anchored in an idiographic approach, this last chapter takes on
a more nomothetic perspective by trying to find recurrent patterns and processes in
evolutionary paleoecology.

In the process of planning this book, it became clear that, although there is an
explicit attempt to bring a picture of the state of the art in the contributions of ich-
nology to the understanding of evolution at the macroevolutionary scale, our book
does not offer a comprehensive treatment or a closure on the topic. In fact, during
this process, we have identified numerous areas of interest where there is limited
ichnologic information to the point that it was not possible to include chapters on
these issues. For example, the end-Ordovician and Late Devonian mass extinctions
have received significantly less treatment than any of the other so-called Big Five.
Also, some of the chapters provide fresh approaches to our exploration of the colo-
nization of infaunal ecospace and the impact of ecosystem engineers by using ich-
nologic data in an innovative fashion. This may serve as inspiration for applying
new numerical and conceptual tools to a wider spectrum of paleobiologic issues.
This book is a tangible testimony that ichnology counts with a solid theoretical
framework and sufficient methodological tools to tackle evolutionary questions and
offer crucial pieces in the reconstruction of the puzzle of the history of life. Our
ambition with this book echoes the Gouldian aim, paraphrased in Chap. 10, of sit-
ting Ichnology at the High Table of Macroevolution and Paleobiology.

We would like to thank the reviewers of the many chapters, who did a great job
of providing valuable feedback. These are: Andrea Baucon, Zain Belatstegui,
Angela Buscalioni, Karen Chin, Matthew Clapham, Darin Croft, Phillip Currie, Bill
DiMichele, Tony Ekdale, Russell Garwood, Soren Jensen, Dirk Knaust, Conrad
Labandeira, Spencer Lucas, Ken McNamara, Christian Meyer, Nic Minter, Guy
Narbonne, Eduardo Olivero, Paul Olsen, Roy Plotnick, Gustavo Politis, Charles
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Savrda, Thomas Servais, Alfred Uchman, Jean Vannier, Sally Walker, Mark Wilson,
and Anna Zyliiska. Also we thank Doug Erwin for writing the Foreword.

Finally, as with almost all things ichnologic, Dolf Seilacher has been there
before. He should be recognized as the scientist who started to think along this line
of evidence, putting forward the idea that trace fossils represent the “other” fossil
record, underexplored and immensely valuable. Not necessarily an alternative
archive for the history of life, but more of an essential companion that should be
integrated to the other lines of evidence to decipher the complex evolutionary path-
ways in the history of life. Needless to say, Dolf’s influence has been huge in the
field of ichnology and the same can be said of his influence in our personal careers.
It all started long time ago when we were Geology students and he planted some
“seed ideas” during a Trace Fossil course that he taught at the Argentinean
Paleontological Association (APA). Sadly, he passed away during the completion of
this book. We would like to dedicate this book to his memory.

M. Gabriela Mdngano
Luis A. Buatois
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Chapter 8
The Late Triassic Mass Extinction Event

Colin Barras and Richard J. Twitchett

8.1 Introduction

The end of the Triassic (~200 Ma) was identified by Newell (1963) as marking one
of the five largest extinction episodes of the Phanerozoic. From the perspective of
ecologic impact on the biosphere, it ranks third (McGhee et al. 2004). In the marine
realm some 23 % of families and 50 % of genera were lost (Sepkoski 1981, 1993)
with ammonites, bivalves, radiolarians, and coral reefs suffering most (McElwain
et al. 2007; Keissling and Simpson 2011). On land, plant biodiversity declined at
genus and species levels in the latest Triassic, as shown by local palynologic studies
and analyses of macrofossils (e.g., in East Greenland; McElwain et al. 2007,
McElwain et al. 2009; Mander et al. 2010). Widespread floral change would have
affected other terrestrial groups such as vertebrates, which suffered a 45 % decline
at the family level in eastern North America during the final stages of the Triassic
(Olsen et al. 1987). Some common archosaurs disappeared at this time, although the
theropod dinosaurs appear to have increased in abundance and size across the
Triassic—Jurassic (T—J) boundary (Olsen et al. 2002).

For decades this event was relatively poorly studied, but a concerted effort in recent
years, especially following formal designation of the Global Stratotype Section and
Point (GSSP) for the base of the Jurassic (Hillebrandt et al. 2007), has led to a clearer
picture of the sequence of events and likely contributing factors. Competing scenarios
included sea level change (Hallam and Wignall 1997), a bolide impact (Olsen et al.
2002), and the dissociation of gas hydrates (Beerling and Berner 2002). However, it
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now appears likely that the principal kill mechanism was concomitant changes in
climate, atmosphere, and oceans associated with the formation of the Central Atlantic
Magmatic Province (CAMP), a large igneous province stretching roughly 5000 km in
a north—south direction and 2000 km in an east-west direction, and covering areas of
northwest Europe, West Africa, eastern North America, and Brazil (McHone 2000;
Fig. 8.8.1). CAMP is among the largest of all continental large igneous provinces
(Marzoli et al. 1999), and the extinctions in marine and terrestrial realms coincide with
the onset and early phases of volcanic activity in the latest Triassic (Marzoli et al. 2004;
Knight et al. 2004; Deenen et al. 2010; Mander et al. 2013).

At around the time of emplacement of the earliest CAMP lavas there is good
evidence that the level of atmospheric carbon dioxide rose rapidly. Studies of fossil
leaf stomatal density (McElwain et al. 1999; Retallack 2001; Beerling 2002;
Steinthorsdottir et al. 2011) and soil carbonates (Schaller et al. 2011) suggest a rise
in atmospheric CO, across the extinction interval from 600-1000 ppm to 2000—
2500 ppm or from 1000 ppm to 2000-3000 ppm, depending on the respective proxy.
Disruption to the global carbon system is recorded by negative carbon isotope
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Fig. 8.1 Approximate extent of the Central Atlantic Magmatic Province, after Wignall (2001a),
showing the two locations studied specifically for the effects of the end-Triassic extinction on the
trace-fossil record
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excursions from a number of localities worldwide, including among others example
in Austria (Ruhl et al. 2009), Nevada, USA (Guex et al. 2004), the Newark Basin of
eastern USA (Whiteside et al. 2010), East Greenland (McElwain et al. 1999), British
Columbia, Canada (Ward et al. 2004; Williford et al. 2006), Italy (Galli et al. 2005),
and England (Hesselbo et al. 2002; Whiteside et al. 2010).

Such a rapid increase in pCO, would have led to global warming, with dramatic
effects on terrestrial climate zones, the global hydrologic cycle, and the circulation
and dissolved oxygen content of the world’s oceans (e.g., Kidder and Worsley
2010). Some authors have suggested that elevated CO, would have lowered the pH
of surface waters, leading to ocean acidification that would have had detrimental
effects for calcareous organisms (Hautmann 2004; Schootbrugge et al. 2007;
Kiessling and Simpson 2011). Modern experiments suggest, however, that the
responses to lowered pH vary dramatically between different marine taxa (Findlay
et al. 2011), and there is evidence from the fossil record that calcification of some
bivalves actually increased at this time (Mander et al. 2008).

Some have questioned whether extinction near the end of the Triassic was
abrupt, or more gradual in nature (Hallam 2002; Cuny 1995; Tanner et al. 2004).
Reported faunal changes often coincide with facies changes that might give a
false impression of sudden extinction (Hallam 2002). For bivalves, at least, it
appears that changes in facies, preservation, and other rock record biases have not
significantly affected the extinction interval but may have led to the under-repre-
sentation of some groups, such as aragonitic, deeper infaunal taxa, in the immedi-
ate aftermath (Mander and Twitchett 2008). Recent assessment of the fossil-plant
record from East Greenland (McElwain et al. 2009) demonstrates that biodiver-
sity decline was relatively abrupt and began around the time of initial CAMP
volcanism. Furthermore, analysis of the palynologic records of East Greenland
and St Audrie’s Bay, UK, demonstrate that terrestrial ecosystems were affected at
the same time as those in the sea, and the extinctions occurred during the steep
rise in atmospheric CO, (Mander et al. 2013).

8.2 Trace-Fossil Record Across the T-J Boundary

While the body-fossil record across the T-J boundary has been relatively well studied,
the trace-fossil record remains less well known. However, while trace fossils cannot
usually be tied readily to the trace maker their study can still contribute to a better
understanding of the nature of faunal turnover during extinction events such as the
Late Triassic extinction, making the few studies that have been conducted important.

In terrestrial settings, such as the Newark Basin of eastern North America, which
contains one of the best temporally constrained nonmarine vertebrate records
through the extinction interval, skeletal remains are much less common than foot-
prints making study of the footprints particularly useful for elucidating the nature of
the vertebrate faunal response (Olsen et al. 2002) (Fig. 8.8.2). In the marine realm,
trace fossils are important because most marine ecosystems are dominated by
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Fig. 8.2 Terrestrial ichnotaxonomic trends through the Triassic—Jurassic interval of the Eastern
USA and shallow marine ichnotaxonomic trends of Southern England. Gray horizontal line shows
approximate location of the initial carbon isotope excursion that marks the extinction interval.
Graphs show trend in maximum length of theropod tracks in the Eastern USA, and trend in average
diameter of Diplocraterion in southern England (X’s mark the maximum diameter of
Diplocraterion). H.=Hettangian. Sin. = Sinemurian. T-J =Triassic—Jurassic boundary. After Olsen
et al. (2002) and Barras and Twitchett (2007)

nonmineralized taxa, which rarely fossilize (Allison and Briggs 1991). The traces
that they leave may be more readily preserved, which makes the marine trace-fossil
record the best, and sometimes only, window into the responses of these dominant,
soft-bodied organisms to catastrophic extinction (Twitchett and Barras 2004).
Finally, in both marine and terrestrial regimes, the trace-fossil record is spared from
such taphonomic effects as transport or reworking (Barras and Twitchett 2007),
making its study potentially less ambiguous than some body fossil studies.
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8.2.1 Terrestrial Record

Terrestrial trace-fossil studies around the T-J boundary often focus on specific short
sequences within either the Triassic or Jurassic, rather than longer successions that
span the boundary and the extinction event itself. Low-diversity invertebrate trace-
fossil assemblages associated with lake margins have been reported for both the
Late Triassic (Lucas and Lerner 2006) and Early Jurassic (Lucas et al. 2006b) of the
western United States, the Triassic of Greenland (Bromley and Asgaard 1979) and
the Late Triassic of Germany (Schlirf et al. 2001).

Elsewhere in northern Europe the terrestrial record of invertebrate trace fossils is
more extensive. In southern Sweden, for example, Late Triassic and Early Jurassic
fluvio-deltaic deposits with some evidence of brackish marine influence preserve a
moderately diverse ichnofauna, including horizontal (Cochlichnus, Palaeophycus,
Planolites,  Rhizocorallium, Teichichnus) and vertical (Diplocraterion,
Monocraterion, Skolithos) burrows and grazing traces, as well as arthropod track-
ways (Diplichnites), and the bivalve resting trace Lockeia (Pienkowski 1991a,b;
Gierliriski and Ahlberg 1994; Ahlberg 1994; Ahlberg and Arndorff 1994).

Further south, in Poland, exposures of Early Jurassic rocks formed in lacustrine
and fluvial environments with some subaerial exposure contain a diverse ichnofauna.
Finds here include Lockeia, arthropod resting traces (Rusophycus), arthropod track-
ways, burrows and borings (Cruziana, Diplichnites, Linckichnus, Spongeliomorpha,
Xylonichnus) equilibrichnia formed by freshwater bivalves (Calceoformites,
Scalichnus), and horizontal or vertical burrows (Cochlichnus, Helminthoidichnites,
Scoyenia, Planolites, Palaeophycus). There are also possible arthropod nest struc-
tures. In brackish marine influenced deposits, the limulid trackway Kouphichnium
also occurs (Pienkowski 2004; Pierikowski and NiedZwiedzki 2008).

Lacustrine assemblages associated with Triassic deltas in Argentina have been
studied for their trace fossils (Melchor 2004). Ichnofaunas typically include horizon-
tal or vertical burrows and grazing traces (e.g., Palaeophycus, Skolithos, Planolites,
Helminthoidichnites, Helminthopsis, Treptichnus) and backfilled burrows (e.g.,
Scoyenia, Taenidium) with rare arthropod walking traces, such as Diplichnites (e.g.,
Lucas et al. 2006b). However, the invertebrate trace-fossil record is too sparse to
reveal ichnotaxonomic trends, should they exist, through the extinction interval itself.

Likewise, most studies of the terrestrial vertebrate footprint fossil record often
have as their focus particular formations within the Late Triassic or Early Jurassic.
Nevertheless, there is evidence from the trace-fossil record that dinosaurs increased
in abundance, diversity, and size through the Late Triassic and into the Early
Jurassic. Hunt and Lucas (2007) summarized the record of Late Triassic tetrapod
trackways of the western United States. The Revueltian (early to mid Norian)
reveals a moderately diverse ichnofauna. Rhynchosauroides, considered by Hunt
and Lucas (2007) to represent the tracks of a sphenodontian, is found in Arizona,
New Mexico, and Utah. Apatopus, long considered the track of a phytosoaur (e.g.,
Foster et al. 2000), is found in Utah. Other ichnotaxa present in the region suggest
the presence of dinosaurs: Barrancapus, possibly representative of a prosauropod
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trackway (Hunt et al. 2001), is found in New Mexico and Arizona; another
prosauropod ichnotaxon (Evazoum) is found in Utah; and Grallator, interpreted as
the tracks left by a small theropod, is also found in Utah.

The overlying Apachean (late Norian to Rhaetian) contains a diverse ichnofauna
across several states, including a more diverse dinosaurian ichnofauna (Hunt and
Lucas 2007). The possible sphenodontian track Rhynchosauroides is found in
Colorado and New Mexico; carnivorous archosaur trackways (Apatopus) are found
inNew Mexico, while possibly herbivorous archosaur trackways (Brachychirotherium)
are known from Utah, Colorado, New Mexico, and Oklahoma (Lucas and Tanner
2007). Gwyneddichnium, unambiguously linked to the Late Triassic reptile
Tanytrachelos, is found in Utah and Colorado. There is also evidence of synapsid
trackways (e.g., Brasilichnium) in Colorado. The dinosaurs, represented by three
ichnotaxa in the preceding Revueltian, are more diverse and widespread in the
Apachean. The small theropod trackway Grallator is abundant in Utah, and is also
found in Wyoming, Colorado, Arizona, New Mexico, and Oklahoma. A larger thero-
pod probably left Anchisauripus tracks in Utah and New Mexico, and Eubrontes is
known from rocks that may date to the uppermost Triassic (Fig. 8.8.3e). Herbivorous
saurischian dinosaurs are represented by the prosauropod trackway Evazoum in
Utah, Colorado, and New Mexico, Eosauropus in Utah, Colorado, Arizona, and New
Mexico, and sauropodomorph trackways Pseudotetrasauropus and Tetrasauropus in
Arizona, Utah and Colorado (Lucas and Tanner 2007). Atreipus, found in Utah, may
have been produced by an ornithischian (Olsen and Baird 1986).

In the lowermost Jurassic of Utah, Arizona and Colorado, large theropod tracks
(Eubrontes) dominate, although smaller theropod tracks (Grallator) and sauropodo-
morph tracks (Otozoum; Fig. 8.8.3c) are also present. All three are also found in dino-
saur-dominated trace-fossil assemblages dating to the Sinemurian (Fig. 8.8.3d), together
with the tracks of ornithischian (Anomoepus) and prosauropod (Otozoum) dinosaurs,
synapsids (Brasilichnium) and crocodilians (Batrachopus; Lucas and Tanner 2007).

More evidence for the rise of the dinosaurs through the T-J interval comes from
Olsen et al. (2002), one of the few studies that consider the terrestrial trace-fossil
record specifically from the perspective of the Late Triassic extinction (Fig. 8.8.2).
The focus of the study is the Newark Supergroup, preserved in New York, New
Jersey, and Pennsylvania in the eastern United States. The increase in dinosaur
(ichno)taxonomic diversity that is apparent in the western United States is found
here as well; Olsen et al. (2002) also reported a concomitant increase in the size of
individual tracks, suggesting an increase in dinosaur body size in the latest Triassic.

Nondinosaurian ichnodiversity increases through the Norian and Rhaetian in the
Newark Supergroup too, with Rhynchosauroides and Gwyneddichnium common.
The probable silesaurian ichnogenus Atreipus is the most common member of the
dinosauriform clade of dinosauromorphs (as opposed to dinosaur: Irmis et al. 2007)
until the middle Rhaetian. Trackways attributed to theropods include Grallator,
which occurs throughout the Carnian, Norian, and Rhaetian, and Anchisauripus,
which first appears in the Norian.

In the Newark Basin, the Late Triassic extinction is marked by a facies change indi-
cating wetter conditions, a coal bed, an apparent iridium anomaly, and a fern spore spike
(Olsen et al. 2002). This horizon is correlated with the earliest phase of CAMP activity,
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Fig. 8.3 Marine and terrestrial trace fossils of the Triassic—Jurassic interval. (a) Small
Diplocraterion burrows in the angulata Zone (Hettangian) of Pinhay Bay, Dorset, UK; (b) Large
Diplocraterion in the semicostatum Zone (Sinemurian) of Helwell Bay, Somerset, UK; (¢) Track
of a prosauropod dinosaur (Otozoum) in Wingate Sandstone (?Hettangian) of Gateway, Colorado;
(d) Footprint of a theropod dinosaur (Grallator) in Kayenta Formation (Sinemurian to
Pliensbachian) of St. George, Utah; (e) Footprint of a large theropod dinosaur (Eubrontes) in upper
part of Dinosaur Canyon Member of Moenave Formation (?Late Triassic) of St. George, Utah.
Images (c), (d), and (e) reproduced with permission of Spencer G. Lucas, New Mexico Museum
of Natural History and Science, Albuquerque

recorded in Morocco, and the marine extinction event (Deenen et al. 2010; Mander et al.
2013). It marks a decline in the diversity of nondinosaurian tracks and an increase in
both diversity and size of dinosaurian tracks (Olsen et al. 2002). The nondinosaurian
ichnotaxa Gwyneddichnium, Apatopus, and Brachychirotherium parvum disappear,
whereas Rhynchosauroides and Batrachopus span the extinction, the latter left by a
crocodylomorph. Theropod dinosaurs survived the extinction, as evidenced by the
records of Grallator and Anchisauripus, with new ichnotaxa such as Eubrontes appear-
ing afterwards. Slightly higher in the section—an estimated >100 ky after the extinc-
tion—tracks belonging to prosauropods (Otozoum) and ornithischians (Anomoepus)
appear. The prosauropod tracks increase in frequency, and the ornithischian tracks
increase in size, through the remaining succession.
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The Late Triassic extinction level also marks the first appearance of much
larger theropod tracks (>25 cm in length) belonging to the ichnospecies
Eubrontes giganteus, considered by some to be simply larger representatives of
Grallator (e.g., Lucas et al. 2006a), despite differences in relative elongation of
members of the two ichnogenera (e.g., Olsen 1980). Eubrontes may have been
left by a ceratosaur such as Dilophosaurus (Lucas et al. 2006a), although some
(Weems 2003) have argued the trackmaker was a Plateosaurus-like
prosauropod.

Olsen et al. (2002) suggested that the increase in size of theropod tracks may
represent either dispersal from an unknown location or indicate an evolutionary
response to reduced competitive pressure and ecologic release in the aftermath
of extinction. Lucas et al. (2006a) rejected this ecologic release hypothesis on
the basis that the ichnogenus Eubrontes has been recorded from as far back as the
Carnian. However, they failed to demonstrate that large-sized examples of the
specific ichnospecies Eubrontes giganteus are known from preextinction strata,
or that there is no size change through the extinction event, which would be a
better test of the Olsen et al. (2002) hypothesis.

The vertebrate footprint record from Europe is broadly consistent with the North
American picture. The theropod ichnotaxon Grallator has been reported from the
Rhaetian of southern Sweden (Gierlifiski and Ahlberg 1994). Otherwise, Late
Triassic vertebrate footprints are rare in Europe, although nondinosaurian tracks
(possibly Rhynchosauroides) are seen in a Late Triassic lagoon in southwest
England that evidently experienced occasional periods of emergence (Allington-
Jones et al. 2010).

As in North America, Grallator is also found in Lower Jurassic European
deposits—in Poland and southern Sweden—indicating that theropod dinosaurs
in the region survived the extinction interval (Ahlberg 1994; Gierlifiski and
Ahlberg 1994; Gierlifiski and Pierikowski 1999). Indeed, the Early Jurassic
(Hettangian) of Poland preserves a diverse dinosaur ichnofauna (Gierliriski and
Piefikowski 1999; Pierikkowski 2004). Here, sauropod tracks (Parabrontopodus)
and medium to large theropod footprints (Anchisauripus and Kayentapus) are
found in rocks formed in an inland environment. A shoreline environment pre-
serves ornithischians (Anomoepus, Atreipus and Moyenisauropus) and thero-
pods (Megalosauripus, Grallator, and Anchisauripus), while Plesiornis, a
possible protoavian track, is found in rocks formed under fluvial influence
(Gierlinski and Pienkowski 1999; Pierkowski 2004; Gierlinski et al. 2010).
Early mammalian prints also occur within Poland's nonmarine Lower Jurassic
deposits (Piedkowski 2004; Gierlifiski et al. 2010).

The Polish record, like that of North America, contains its first large theropod
dinosaur footprints after the Late Triassic extinction. Eubrontes footprints (>34 cm
in length) occur in the Hettangian, together with a single, unusually large (55 cm in
length) footprint that may be Megalosauripus (Gierliniski et al. 2010). Large sauro-
pods are present too; some of the Parabrontopodus tracks found in the Early Jurassic
of Poland are to 42 cm in length (Gierliriski et al. 2010).
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8.2.2 Marine Record
8.2.2.1 Deep-sea Ichnofauna Across the T-J Boundary

Nearly 30 ichnogenera inhabited the deep-sea in the Carboniferous, before a halv-
ing of ichnotaxonomic diversity in the Permian (Uchman 2004). Numbers
remained low through the Triassic and Jurassic, rising again to Carboniferous
levels only in the Cretaceous. However, a recent analysis of Upper Triassic deep-
sea fan deposits in the Al Ayn Formation of Oman suggested ichnofaunal diversity
was abundant at this time. Wetzel et al. (2007) recorded 32 ichnogenera, making
this the most diverse deep-sea ichnofauna known until the Early Cretaceous. The
ichnofauna includes predepositional forms that are cast by turbidites (Belorhaphe,
Circulichnis, Desmograpton, Glockerichnus, Gordia, Helminthopsis, Lorenzinia,
Megagrapton, Paleodictyon, Strobiloraphe, and Treptichnus) and postdeposi-
tional forms that penetrate the turbidites (Arenicolites, Protovirgularia, Zoophycos,
Thalassinoides, and Ophiomorpha).

The deep-sea ichnofauna may have reduced in diversity in response to Permo-
Carboniferous glaciation (Uchman 2004) —deep-sea ichnotaxonomic diversity also
fell during episodes of glaciation in the Quaternary (Cronin and Raymo 1997).
Warmer deep-sea conditions in the Late Triassic may then have contributed to an
increase in ichnotaxonomic diversity. However, there is too little data as yet to
search for any effects of the end-Triassic extinction on the deep-sea ichnofauna.

8.2.2.2 Shallow-Marine Ichnofauna Across the T-J Boundary

As with the terrestrial record, a number of studies have described shallow marine
trace fossils from Upper Triassic or Lower Jurassic strata (e.g., Swift and Duffin
1999; Moghadam and Paul 2000), but few have studied ichnologic change through
the extinction event.

A Late Triassic (Rhaetian) to Early Jurassic (Sinemurian) near-shore marine suc-
cession in southern Poland contains a moderately diverse ichnofauna including
arthropod traces (Cruziana, Thalassinoides), asterozoan traces (Asteriacites), hori-
zontal burrows (Planolites, Palaeophycus), and vertically branching Chondrites
burrows (Uchman 1991).

Lower Jurassic lagoonal deposits in southern Sweden contain the bivalve traces
Lockeia and Protovirgularia (Ahlberg 1994). Elsewhere in the region, the Early
Jurassic is characterized by muds deposited in a tidally influenced environment.
Horizontal and vertical burrows (Cylindrichnus, Diplocraterion, Monocraterion,
Phycodes, Planolites, Rhizocorallium, Skolithos, Teichichnus, Thalassinoides),
bivalve traces (Lockeia), and arthropod traces (Kouphichnium, Merostomichnites)
are found here (Piefikowski 1991a; Ahlberg 1994). In deposits dating to the
Sinemurian, the ichnofauna comprises Diplocraterion, Planolites, Rhizocorallium,
and Teichichnus (Pienkowski 1991a). Shales deposited in relatively deep and often
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dysaerobic conditions contain common Chondrites, with rare Rhizocorallium
indicating occasional oxygenation (Piedkowski 1991a). Hettangian to Sinemurian
marine storm deposits in southern Sweden contain a burrow-dominated ichnofauna
of Teichichnus, Thalassinoides, Rhizocorallium, and rare Diplocraterion
(Pierikkowski 1991a). Storm-influenced shallow marine successions from the Early
Jurassic (Sinemurian) of Poland are rich in Diplocraterion (Piefikkowski 1991b).

The T-J shallow-marine trace-fossil records of the UK, Austria, and Nevada,
USA, have been examined by Twitchett and Barras (2004), with a more detailed
analysis of the trace-fossil record in England by Barras and Twitchett (2007
Fig. 8.8.2). A key section is at St Audrie's Bay, Somerset, UK, which had been con-
sidered as a candidate for the Global Stratotype Section and Point for the base of the
Jurassic (e.g., Warrington et al. 1994). Although the first appearance of the ammonite
Psiloceras spelae in the Kuhjoch section of Austria was ultimately chosen as the
GSSP (Hillebrandt et al. 2007), the St Audrie’s Bay section remains critical for cor-
relating the marine and terrestrial records (Deenen et al. 2010; Mander et al. 2013).

The Late Triassic extinction event correlates with an isotopic excursion in the mid-
dle of the Lilstock Formation in St Audrie’s Bay, just prior to the boundary between
the Cotham and Langport members (Hesselbo et al. 2004; Mander et al. 2013). Trace
fossils formed prior to and possibly during the extinction event, in the Rhaetian
Westbury and Lilstock formations, have been documented by a number of researchers
(Wang 1993; Swift and Duffin 1999; Barras and Twitchett 2007; Allington-Jones et al.
2010). To the east of St Audrie's Bay, at Westbury-on-Severn, the Westbury Formation
begins with siltstones formed in relatively oxygenated shallow marine conditions.
These contain vertical burrows (Diplocraterion and Skolithos; Wang 1993). Above
these marine siltstones, conditions become more restricted and indicative of a shallow
lagoonal setting with lower oxygen. Bioturbation in discrete horizons here probably
records storm events that brought in animals, sediment, and oxygen to the restricted
environment (Wang 1993; Allington-Jones et al. 2010). Some trace fossils here
(Cruziana, Rusophycus, and Selenichnites) probably show the activity of xiphosurids
(Wang 1993). Allington-Jones et al (2010) report a diverse ichnofauna within these
storm layers, including burrows (Chondrites, Planolites, Rhizocorallium, Taenidium,
Thalassinoides), bivalve (Lockeia, Protovirgularia), and arthropod (Merostomichnites,
Monomorphichnus, Oniscoidichnus) traces, and a previously undescribed grazing
trail, Radichnus. At St Audrie’s Bay, the Rhaetian Westbury Formation is mostly thor-
oughly bioturbated, although few discrete trace fossils are preserved in the mudstone
facies (Swift and Duffin 1999). Elsewhere in the region, shallower, sandier facies
preserve a suite of trace fossils such, as Arenicolites, Diplocraterion, Kouphichnium,
Lockeia Palaeophycus, and Planolites (Swift and Duffin 1999).

Following the extinction event, the Langport Member of the Lilstock Formation
is well laminated and devoid of trace fossils at St Audrie's Bay, but elsewhere a low
diversity, small-sized assemblage may be recorded. At Long Itchington,
Warwickshire, for example, the Langport Member is moderately bioturbated with
the beds measuring 2-3 on Droser and Bottjer's (1986) ichnofabric index for verti-
cal sections (vii), while bedding planes assessed using Miller and Smail's (1997)
ichnofabric index for horizontal exposures (hii) measure 2—4 (Barras and Twitchett
2007). Rare examples of Arenicolites, Diplocraterion, Palaeophycus, and
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Rhizocorallium are found, although these are small in size; Arenicolites burrow
diameter is generally 1-2 mm. Larger diameter Diplocraterion are locally abundant
at the boundary between the Langport Member and the overlying Blue Lias
Formation at Pinhay Bay in Dorset (Barras and Twitchett 2007).

The boundary between the Lilstock Formation and overlying Blue Lias Formation
represents a significant deepening of the marine environment, probably linked to
sea level rise during global warming, which needs to be borne in mind when com-
paring the ichnofaunas of the two formations. The lowermost beds of the Blue Lias
Formation are termed the “Pre-Planorbis Beds,” and were deposited during peak
global warming around the T-J boundary. They are unbioturbated (viil) in their
lower part, but by the upper “Pre-Planorbis Beds” extensive bioturbation (vii4-5) is
recorded. Milankovitch-scale lithologic cyclicity is evident in the Blue Lias
Formation, and throughout the formation there is a small-scale alternation of lami-
nated and bioturbated beds (Moghadam and Paul 2000). From the base of the pla-
norbis Zone upwards, however, the latter are all well bioturbated (vii4-6) through to
at least the Sinemurian bucklandi Zone (Barras and Twitchett 2007).

The lowest recorded ichnotaxa in the Blue Lias Formation are Arenicolites and
Thalassinoides from the upper Pre-Planorbis Beds of Pinhay Bay. During the over-
lying Hettangian there is a stepwise increase in ichnotaxonomic diversity, which
shows a similar trend at Pinhay Bay and St Audrie's Bay (Twitchett and Barras
2004; Barras and Twitchett 2007). At other locations, the rock record may be less
complete but the trends are similar. At Long Itchington, for example, the ichnofauna
of the Rugby Limestone Member is similar to that recorded in limestones of the
same age (i.e. upper angulata and bucklandi zones) at Pinhay Bay and St Audrie's
Bay. At its most diverse, in the upper angulata Zone and above, the Blue Lias
Formation ichnofauna includes Arenicolites, Chondrites, Diplocraterion,
Palaeophycus, Planolites, Rhizocorallium, and Thalassinoides. It is only within and
above the angulata Zone that the four ichnotaxa recorded in the Triassic Lilstock
Formation co-occur again (Barras and Twitchett 2007).

When they first (re)appear in the angulata Zone, Diplocraterion burrows are signifi-
cantly (p>0.95) smaller than are similar burrows in the Langport Member at Pinhay Bay.
Both Diplocraterion and Arenicolites significantly (p>0.95) increase in size from the
angulata Zone through to the bucklandi Zone (Barras and Twitchett 2007; Fig. 8.8.3a, b).

As burrow size is correlated to body size (Savrda and Bottjer 1986), Barras and
Twitchett (2007) inferred that the soft-bodied trace-making infauna was small in the
“Pre-Planorbis Beds,” the planorbis and liasicus zones, and increased in size from the
later Blue Lias Formation. Given the link between small body size and low oxygen
concentration (e.g., Rhoads and Morse 1971), and evidence of anoxic and euxinic con-
ditions in the shales of the lower “Pre-Planorbis Beds” (e.g., Wignall 2001b), Barras and
Twitchett (2007) further suggested that the ichnofauna records a gradual return to oxy-
gen rich conditions following a period of anoxia in the “Pre-Planorbis Beds.”

The ichnofaunal record in Austria and Nevada is less extensive than that in England,
and has been little studied (Hallam and Wignall 2000, Twitchett and Barras 2004).
Limestones belonging to the Rhaetian-aged K&ssen Formation, exposed at Gaissau and
Kendelbach Formation in Central Austria, are well bioturbated (vii3—4) and contain
Diplocraterion, Planolites, Rhizocorallium, Skolithos, and Zoophycos. These ichnotaxa
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are absent from the uppermost beds of the Kossen Formation, and from the overlying
Kendelbach Formation—a roughly 10-m-thick succession of limestones thought to
encompass the Hettangian (Twitchett and Barras 2004). However, the shelly fossil
record suggests any extinction here was followed by swift recovery before the first
appearance of Psiloceras in the Kendelbach Formation (Hallam 1990).

In the New York Canyon area of the Gabbs Valley Ranges, Nevada, there is a
modestly diverse ichnofauna in the Rhaetian-aged Mount Hyatt Member of the
Gabbs Formation. Arenicolites, Planolites, Rhizocorallium, Skolithos, and
Thalassinoides are found in the limestone-dominated succession, although the rocks
are relatively poorly bioturbated (vii2; Twitchett and Barras 2004). Within the lower
reaches of the overlying Muller Canyon Member of the Gabbs Formation, Guex
et al. (2004) found evidence of a negative carbon excursion that they related to
emplacement of CAMP. Locally intense bioturbation and thoroughly mottled hori-
zons with the horizontal trace Helminthoida (now Nereites irregularis) have been
reported (Hallam and Wignall 2000), but these were not located during a later study
and in general trace fossils are rare within this member (Twitchett and Barras 2004).

The Ferguson Hill Member of the Sunrise Formation lies above and is dated as
late Hettangian to early Sinemurian (Taylor et al. 1983). Arenicolites, Planolites,
Rhizocorallium, Skolithos, and Thalassinoides all reappear in the Ferguson Hill
Member of the Sunrise Formation, and Chondrites and Diplocraterion are also
reported (Twitchett and Barras 2004). The reappearance of an abundant ichnofauna
is associated with, and possibly the result of, facies and palaeoenvironmental
changes; the Ferguson Hill Member is limestone dominated, and similar in appear-
ance to the Mount Hyatt Member.

In summary, there are clear local changes in marine ichnofaunas through the T-J
boundary interval in England, Austria, and Nevada that may relate to CAMP-induced
warming-related environmental changes. While there is no evidence for extinction of
trace makers in the Late Triassic, unlike the terrestrial record, there are clear ecologic
changes in terms of burrow size, depth, and diversity during this interval. Locally, it
appears that diverse Late Triassic ichnofaunas, representing a healthy benthic eco-
system, disappear around the extinction level and only reappear from the latest
Hettangian onwards (Twitchett and Barras 2004). In between, although there are
local differences, it appears that shallow marine ichnofaunas are typically of rela-
tively low diversity, with small-sized and shallow penetrating burrows.

8.3 Discussion

It now seems likely that the Late Triassic extinction was largely a result of global
warming and related environmental effects, associated with the widespread volcanism
that led to the formation of CAMP. Furthermore, recent correlations (e.g., Mander et al.
2013) imply that atmospheric CO, remained high through the T-J boundary before
declining to preextinction levels sometime in the later Hettangian, following cessation
of CAMP activity. Although the data are currently sparse, and there is a clear need for
more high resolution analyses from other localities worldwide, current evidence
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suggest that CAMP-related environmental changes and the associated Late Triassic
extinction event are both reflected in the T-J trace-fossil record.

On land, the onset of CAMP-related volcanism is associated with the extinction
of several groups of terrestrial vertebrate, as recorded in the disappearance of their
footprints (Olsen et al. 2002). This warming-related event led to a dramatic increase
in the dominance of dinosaur taxa and an associated increase in footprint, and there-
fore body, size during the Hettangian. While it is possible that the increase in maxi-
mum body size is simply a consequence of increased diversity and variance (Gould
1988), Olsen et al. (2002) suggested that it may be due to ecologic release following
extinction of competing taxa. It is therefore intriguing that during the Hettangian a
similar size trend is recorded in marine infaunal invertebrates, as evidenced by an
increase in burrow diameter (Twitchett and Barras 2004; Barras and Twitchett 2007).
The diameter of marine trace fossils reached a minimum during the peak warming
interval spanning the T-J boundary, probably because of the combined stresses of
elevated temperatures and an expansion in hypoxic or euxinic conditions at that time
(Kidder and Worsley 2010). Although more data are required, it is possible that size
increase in animals, on land and in the sea, is a response to the decline in atmospheric
CO, back to preextinction levels coupled with a rise in atmospheric oxygen levels.

In the marine realm, the trace-fossil show as presently known does not show
evidence of extinction of any tracemakers, but does indicate that there were signifi-
cant ecologic changes to the marine benthic ecosystem. Apart from a reduction in
burrow diameter, a reduction in diversity and maximum burrow depth is also
recorded during peak global warming following the extinction event. Although this
is an expected consequence of the associated environmental changes, such as
reduced ocean circulation and expanding anoxia, these changes also have implica-
tions for ecosystem functioning. The depth and size of infaunal organisms affects
the amount of bioturbation and a number of key nutrient cycles (Solan et al. 2004).
The lower levels of bioturbation during peak global warming would have reduced
efficient nutrient cycling, with consequences for the entire marine ecosystem.

The T-J interval was a time of major crisis, related to emplacement of a large
igneous province and associated global warming. As a greater number of sedimen-
tary successions across the T-J boundary are studied for their trace fossils, the
impact of these major environmental changes on the marine and terrestrial realms
should become clearer, providing a more complete picture of the degree to which
Late Triassic global warming affected Earth’s biosphere.

8.4 Conclusion

The trace-fossil record across the T-J boundary appears to preserve evidence of
ecological and taxonomic change associated with the Late Triassic extinction event.
There are well-documented changes in trace-fossil size and diversity through the
interval —both in terrestrial and in shallow marine environments. Such findings are
consistent with the current understanding that the Late Triassic extinction event was
triggered by global warming and related effects of the emplacement of CAMP.
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However, while there is evidence of (ichno)taxonomic extinction in the terres-
trial realm, studies to date have yet to find evidence of extinction in the marine
trace-fossil record. This might be more a reflection of a lack of study rather than a
lack of evidence, because few trace-fossil studies have been conducted specifically
from the perspective of documenting and understanding the extinction event.

Acknowledgments The constructive comments of Alfred Uchman and Paul Olsen helped to
improve an earlier draft of this text.

References

Ahlberg A (1994) Facies analysis of alluvial and deltaic environments in the Hettangian of NW
Skéne, southern Sweden. In: Ahlberg A (ed) Deposition and diagenesis of the Rhaetian—
Hettangian succession (Triassic—Jurassic) in southern Sweden, pp 53. Unpublished Ph.D. the-
sis, Lund University, Sweden

Ahlberg A and Arndorff L (1994) Pedogenesis and sedimentology of alluvial Upper Triassic (mid-
dle Rhaetian) strata of Bjuv Member (Hoganids Formation), NW Skéne, southern Sweden. In:
Ahlberg A (ed) Deposition and diagenesis of the Rhaetian—Hettangian succession (Triassic—
Jurassic) in southern Sweden, 53 pp. Unpublished Ph.D. thesis, Lund University, Sweden

Allington-Jones L, Braddy SJ, Trueman CN (2010) Palaeoenvironmental implications of the ich-
nology and geochemistry of the Westbury Formation (Rhaetian), Westbury-on-Severn, south-
west England. Palacontology 53:491-506

Allison PA, Briggs DEG (1991) Taphonomy of nonmineralised tissues. In: Alison PA, Briggs DEG
(eds) Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York

Barras CG, Twitchett RJ (2007) Response of the marine infauna to Triassic-Jurassic environmental
change: ichnological data from southern England. Palacogeogr Palaeoclimatol Palaeoecol
244:223-241

Beerling DJ (2002) CO2 and the end-Triassic mass extinction. Nature 415:386-387

Beerling DJ, Berner RA (2002) Biogeochemical constraints on the Triassic-Jurassic boundary
carbon cycle event. Glob Biogeochem Cycles 16:10-1-10-13

Bromley R, Asgaard U (1979) Triassic freshwater ichnocoenoses from Carlsberg Fjord, East
Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 28:39-80

Cronin TM, Raymo ME (1997) Orbital forcing of deep-sea benthic species diversity. Nature
385:624-627

Cuny G (1995) French vertebrate faunas and the Triassic-Jurassic boundary. Palacogeogr
Palaeoclimatol Palaeoecol 119:343-358

Deenen MHL, Ruhl M, Bonis NR, Krijgsman W, Kuerschner WM, Reitsma M, van Bergen MJ (2010)
A new chronology for the end-Triassic mass extinction. Earth Planet Sci Lett 291:113-125

Droser M, Bottjer DJ (1986) A semi-quantitative field classification of ichnofabrics. J Sediment
Petrol 56:558-559

Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2011) Comparing the
impact of high CO, on calcium carbonate structures in different marine organisms. Mar Biol
Res 7:565-575

Foster JR, Hamblin AH, Lockley GM (2000) The oldest evidence of a sauropod dinosaur in the
western United States and other important vertebrate trackways from Grand Staircase Escalante
national monument, Utah. Ichnos 7:169—-181

Galli MT, Jadoul F, Bernasconi SM, Weissert H (2005) Anomalies in global carbon cycling and
extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record.
Palaeogeogr Palaeoclimatol Palacoecol 216:203-214

Gierliniski G, Ahlberg A (1994) Late Triassic and early Jurassic dinosaur footprints in the Hoganés
Formation of southern Sweden. Ichnos 3:99-105



8 The Late Triassic Mass Extinction Event 15

Gierlinski G, Piefikowski G (1999) Dinosaur track assemblages from the Hettangian of Poland.
Geol Quart 43:329-346

Gierlinski G, Piefikowski G, NiedZwiedzki G (2010) Tetrapod track assemblage in the Hettangian
of Sottykéw, Poland, and its paleoenvironmental background. Ichnos 11:195-213

Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolu-
tion. J Paleont 63:319-329

Guex J, Bartolini A, Atudorei V, Taylor D (2004) High-resolution ammonite and carbon isotope
stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth Planet
Sci Lett 225:29-41

Hallam A (1990) Correlation of the Triassic-Jurassic boundary in England and Austria. J Geol Soc
Lond 147:421-424

Hallam A (2002) How catastrophic was the end-Triassic mass extinction? Lethaia 35:147-157

Hallam A, Wignall PB (1997) Mass extinction and sea level change. Earth-Sci Rev 48:217-258

Hallam A, Wignall PB (2000) Facies changes across the Triassic-Jurassic boundary in Nevada,
USA. J Geol Soc Lond 157:49-54

Hautmann M (2004) Effect of end-Triassic CO, maximum on carbonate sedimentation and marine
mass extinction. Facies 50:257-261

Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the
Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initia-
tion of massive volcanism? Geology 30:251-254

Hesselbo SP, Robinson SA, Surlyk F (2004) Sea-level change and facies development across
potential Triassic-Jurassic boundary horizons, SW Britain. J Geol Soc Lond 161:365-379

Hillebrandt K, Krystyn L, Kiirschner WM (2007) A candidate GSSP for the base of the Jurassic in
the Northern Calcareous Alps (Kuhjoch section, Karwendel Mountains, Tyrol, Austria). Int
Subcomm Jurassic Strat 34:2-20

Hunt AP, Lucas SG, Hecket AB (2001) Does the enigmatic tetrapod ichnotaxon Barrancapus
cresapi from the upper Triassic Bull Canyon Formation of east-central New Mexico represent
the oldest prosauropod trackway? N M Geol 23:63

Hunt AP, Lucas SG (2007) Late Triassic tetrapod tracks of western North America. In: Lucas SG,
Spielmann JA (eds) Triassic of the American West, vol 40, New Mexico Mus Nat Hist Sci
Bull., pp 215-230

Irmis RB, Nesbitt SJ, Padian K, Smith ND, Turner AH, Woody D, Downs A (2007) A Late Triassic
dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317:358-361

Kiessling W, Simpson C (2011) On the potential for ocean acidification to be a general cause of
ancient reef crises. Glob Change Biol 17:56-67

Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline
Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palacogeogr
Palaeoclimatol Palaeoecol 295:162-191

Knight KB, Nomade S, Renne PR, Marzoli A, Bertrand H, Youbi N (2004) The central Atlantic
magmatic province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence
from Morocco for brief, episodic volcanism. Earth Planet Sci Lett 228:143-160

Lucas SG, Lerner AJ (2006) Invertebrate ichnofossil assemblages of the upper Triassic Redonda
Formation at Mesa Redonda, east-central New Mexico. In: Harris JD, Lucas SG, Spielmann
JA, Lockley MG, Milner ARC, Kirkland JI (eds) The Triassic-Jurassic terrestrial transition.
New Mexico Mus Nat Hist Sci Bull 37:122-127

Lucas SG, Tanner LH (2007) Tetrapod biostratigraphy and biochronology of the Triassic—Jurassic transi-
tion on the southern Colorado Plateau, USA. Palacogeogr Palaeoclimatol Palacoecol 244:242-256

Lucas SG, Klein H, Lockley MG et al (2006a) Triassic-Jurassic stratigraphic distribution of the
theropod footprint ichnogenus Eubrontes. In: Harris JD, Lucas SG, Spielmann JA, Lockley
MG, Milner ARC, Kirkland JI (eds) The Triassic-Jurassic terrestrial transition. New Mexico
Mus Nat Hist Sci Bull 37:86-93

Lucas SG, Lerner AJ, Milner AR, Lockley MG (2006b) Lower Jurassic ichnofossils from a clastic
lake margin, Johnson Farm, southwestern Utah. In: Harris JD, Lucas SG, Spielmann JA,
Lockley MG, Milner ARC, Kirkland JI (eds) The Triassic-Jurassic terrestrial transition. New
Mexico Mus Nat Hist Sci Bull 37:128-136



16 C. Barras and R.J. Twitchett

Mander L, Twitchett RJ (2008) Quality of the Triassic-Jurassic bivalve fossil record in northwest
Europe. Palacontology 51:1213-1223

Mander L, Twitchett RJ, Benton MJ (2008) Palacoecology of the Late Triassic extinction event in
the SW UK. J Geol Soc Lond 165:319-332

Mander L, Kiirschner WM, McElwain JC (2010) An explanation for conflicting records of
Triassic—Jurassic plant diversity. PNAS 107:15351-15356

Mander L, Kiirschner WM, McElwain JC (2013) Palynostratigraphy and vegetation history of the
Triassic—Jurassic transition in East Greenland. J Geol Soc Lond 170:37-46

Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200 Ma
continental flood basalts of the central Atlantic magmatic province. Science 284:616-618

Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Vérati C, Nomade S, Renne PR, Youbi N,
Martini R, Allenbach K, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of
the Central Atlantic magmatic province and the Triassic- Jurassic boundary climatic and biotic
crisis. Geology 32:973-976

McElwain JC, Beerling DJ, Woodward FL (1999) Fossil plants and global warming at the Triassic-
Jurassic boundary. Science 285:1386-1390

McElwain JC, Popa ME, Hesselbo SP, Haworth M, Surlyk F (2007) Macroecological responses of
terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary
in east Greenland. Paleobiology 33:547-573

McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden
loss of late Triassic biodiversity in east Greenland. Science 324:1554-1556

McGhee GR, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic
biodiversity crises: ecological and taxonomic severities decoupled. Palacogeogr Palacoclimatol
Palaeoecol 211:289-297

McHone JG (2000) Non-plume magmatism and rifting during the opening of the central Atlantic
Ocean. Tectonophysics 316:287-296

Melchor RN (2004) Trace fossil distribution in lacustrine deltas: examples from the Triassic rift lakes
of the Ischigualasto-Villa Unién Basin, Argentina. In: Mcllroy D (ed) The application of ichnol-
ogy to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Pub 228:335-354

Miller MF, Smail SE (1997) A semiquantitative field method for evaluating bioturbation on bed-
ding planes. Palaios 12:391-396

Moghadam HV, Paul CRC (2000) Trace fossils of the Jurassic, Blue Lias, Lyme Regis, southern
England. Ichnos 7:283-306

Newell ND (1963) Crises in the history of life. Sci Am 208:76-92

Olsen PE (1980) Fossil great lakes of the Newark Supergroup in New Jersey. In: Manspeizer, W (ed)
Field Studies in New Jersey Geology and Guide to Field Trips, 52nd Ann. Mtg. New York State
Geol. Assoc., Newark College of Arts and Sciences, Newark, Rutgers University, pp 352-398

Olsen PE, Baird D (1986) The ichnogenus Atreipus and its significance for Triassic biostratigra-
phy. In: Padian K (ed) The beginning of the age of the dinosaurs. Cambridge University Press,
Cambridge, pp 261-287

Olsen PE, Shubin NH, Anders MH (1987) New early Jurassic tetrapod assemblages constrain
Triassic-Jurassic tetrapod extinction event. Science 237:1025-1029

Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna
MJ, Hartline BW (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-
Jurassic boundary. Science 296:1305-1307

Pierikowski G (1991a) Liassic sedimentation in Scania, southern Sweden: Hettangian—Sinemurian
of the Helsingborg area. Facies 24:39-86

Pierikowski G (1991b) Eustatically-controlled sedimentation in the Hettangian—Sinemurian (Early
Jurassic) of Poland and Sweden. Sedimentology 38:503-518

Pierikowski G (2004) Sottykéw, Poland —an unique palaeoecological record of the Early Jurassic
continental deposits. Vol Jurassica 2:1-16

Pieikowski G, NiedZzwiedzki G (2008) Invertebrate trace fossil assemblages from the Lower
Hettangian of Sottykéw, Holy Cross Mountains, Poland. Vol Jurassica 6:109-131

Retallack GJ (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant
cuticles. Nature 411:287-290



8 The Late Triassic Mass Extinction Event 17

Rhoads DC, Morse JW (1971) Evolutionary and ecologic significance of oxygen-deficient marine
basins. Lethaia 4:413-428

Ruhl M, Kiirschner WM, Krystyn L (2009) Triassic—-Jurassic organic carbon isotope stratigraphy
of key sections in the western Tethys realm (Austria). Earth Plan Sci Lett 281:169-187

Savrda CE, Bottjer DJ (1986) Trace-fossil model for reconstruction of paleo-oxygenation in bot-
tom waters. Geology 14:3-6

Schaller MF, Wright JD, Kent DV (2011) Atmospheric pCO, perturbations associated with the
Central Atlantic Magmatic Province. Science 331:1404—1409

Schlirf M, Uchman A, Kiimmel M (2001) Upper Triassic (Keuper) nonmarine trace fossils from
the Haf3berge region (Franconia, southern Germany). Paldontol Zeitsch 75:71-96

Schootbrugge B, Tremolada F, Rosenthal Y et al (2007) End-Triassic calcification crisis and blooms
of organic-walled 'disaster species'. Palacogeogr Palaeoclimatol Palacoecol 244:126—-141

Sepkoski JJ Jr (1981) A factor analytic description of the Phanerozoic marine fossil record.
Paleobiology 7:36-53

Sepkoski JJ Jr (1993) 10 years in the library: new data confirm paleontological patterns.
Paleobiology 19:43-51

Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004)
Extinction and ecosystem function in the marine benthos. Science 306:1177-1180

Steinthorsdottir M, Jeram AJ, McElwain JC (2011) Extremely elevated CO2 concentrations at the
Triassic/Jurassic boundary. Palacogeogr Palacoclimatol Palaeoecol 308:418-432

Swift A and Duffin CJ (1999) Trace fossils. In: Swift A, Martill DM (eds) Fossils of the Rhaetian
Penarth Group. Palaeontolog. Assoc. Field Guide to Fossils 9, London, pp 239-250

Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic
extinctions. Earth Sci Rev 65:103-139

Taylor DG, Smith PL, Laws RA, Guex J (1983) The stratigraphy and biofacies trends of the lower
Mesozoic Gabbs and Sunrise formations, west-central Nevada. Can J Earth Sci 20:1598-1608

Twitchett RJ, Barras CG (2004) Trace fossils in the aftermath of mass extinction events. In:
Mcllroy D (ed) The application of ichnology to palacoenvironmental and stratigraphic analy-
sis. Geol Soc Lond Spec Pub 228:397—418

Uchman A (1991) Isopodichnus and other trace fossils from marine Kopieniec Formation
(Rhaetian—Sinemurian) in the Tatra Mts., Poland. Geol Carpathica 42:117-121

Uchman A (2004) Phanerozoic history of deep-sea trace fossils. In: Mcllroy D (ed) The applica-
tion of ichnology to palacoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Pub
228:125-140

Wang G (1993) Xiphosurid trace fossils from the Westbury Formation (Rhaetian) of southwest
Britain. Palaeontology 36:111-122

Ward PD, Haggart JW, Carter ES, Wilbur D, Tipper HW, Evans T (2004) Sudden productivity col-
lapse associated with the Triassic-Jurassic boundary mass extinction. Science 292:1148-1151

Warrington G, Cope JCW, Ivimey-Cook HC (1994) St Audrie's Bay, Somerset, England: a candidate
Global Stratotype Section and Point for the base of the Jurassic system. Geol Mag 131:191-200

Weems RE (2003) Plateosaurus foot structure suggests a single trackmaker for Eubrontes and
Gigandipus footprints. In: LeTourneau PM, Olsen PE (eds) The great rift valleys of Pangea in
eastern North America, vol 2. Columbia University Press, New York, pp 293-313

Wetzel A, Blechschmidt I, Uchman A, Matter A (2007) A highly diverse ichnofauna in late Triassic
deep-sea fan deposits of Oman. Palaios 22:567-576

Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific
carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic
mass extinction. PNAS 107:6721-6725

Wignall PB (2001a) Large igneous provinces and mass extinctions. Earth-Sci Rev 53:1-33

Wignall PB (2001b) Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay (Devon,
SW England). Proc Geol Assoc 112:349-360

Williford KH, Ward PD, Garrison GH, Buick R (2006) An extended organic carbon-isotope record
across the Triassic—Jurassic boundary in the Queen Charlotte Islands, British Columbia,
Canada. Palacogeogr Palacoclimatol Palaeoecol 244:290-296



Chapter 9
The Mesozoic Marine Revolution

Luis A. Buatois, Noelia B. Carmona, H. Allen Curran, Renata G. Netto,
M. Gabriela Mangano, and Andreas Wetzel

9.1 Introduction

Modern-marine ecosystems are the result of numerous evolutionary innovations
that took place during the Mesozoic, commonly referred to as the Mesozoic Marine
Revolution (MMR; Vermeij 1977, 1987). This major evolutionary episode was
responsible for the large-scale restructuring of shallow-marine benthic communi-
ties, including increases in the energy budgets of marine ecosystems (Finnegan
et al. 2011) and predation levels, the latter resulting in a number of coevolutionary
developments (Vermeij 1987). In particular, the intensification of grazing and the
diversification of durophagous predators were conducive to increases in prey sturdi-
ness and frequency of shell repair (Vermeij 1987; Kelley and Hansen 2001).

The MMR also signaled the rise to dominance of the Modern Evolutionary Fauna
(MEF). The MEF actually had its origins in the early Paleozoic, but true displacement
of Paleozoic faunas was not complete until after the end-Permian mass extinction
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(Sepkoski and Sheehan 1983; Sepkoski and Miller 1985; see Chap. 7). This shift
from the Paleozoic Evolutionary Fauna (PEF) to the MEF involved the transition
from sedentary epifaunal suspension feeders to mobile, energetic (high-metabolism)
infaunal suspension feeders, deposit feeders, and predators (Wagner et al. 2006;
Leighton et al. 2013). These changes included the appearance of ecologic guilds not
represented within the Cambrian Evolutionary Fauna (CEF) and PEF (Thayer 1983;
Bambach 1983). The number of utilized modes of life increased to present levels by
the late Cenozoic, with all 20 Bambachian megaguilds being filled (Sheehan 2001;
Bambach et al. 2007). At this point, marine paleocommunities had a much greater
representation of infaunal organisms and a higher proportion of motile animals than
mid-Paleozoic communities (Bush et al. 2007).

Not surprisingly, the majority of studies published on the MMR have been based
on the body-fossil record. However, the trace-fossil record provides valuable addi-
tional evidence of the profound nature of this episode, particularly with respect to
the degree of infaunalization, complexity of infaunal tiering structures, and preda-
tion intensity (e.g., Bertling 1999; Harper 2003; Bromley 2004; Glaub and Vogel
2004; Wilson 2007; Knaust 2007; Carmona et al. 2008; Buatois and Mangano
2011). In this chapter, the ichnologic record of the MMR is reviewed. The chapter
is divided into three parts: first, the main groups of tracemakers involved in the rise
of the MEF are analyzed; second, the trace-fossil record of post-Paleozoic shallow-
marine environments is reviewed in order to provide insights into the timing of this
evolutionary event; and, third, the ichnologic record is discussed with respect to
how it can illuminate our knowledge of the MMR by assessing aspects, such as its
environmental breadth, evolution of behavior, evolution of the mixed layer, poten-
tial paleogeographic patterns, and secular changes in infaunalization.

9.2 The Cast of Characters

9.2.1 The Main Groups of Burrowers

The MEF is dominated by bivalves, gastropods, echinoids, crustaceans, and marine
vertebrates; other invertebrate groups, including gymnolaemate bryozoans, demo-
sponges, corals and ammonites, were also members of this fauna (Sepkoski 1981).
Of these groups, bivalves, echinoids, and crustaceans were important tracemakers
during the MMR, and identification of their trace fossil “fingerprints” is relatively
straightforward to detect in bioturbation structures, based on neoichnological obser-
vations and functional morphology analysis. Various types of worm-like organisms
should be added to this list, as many are active bioturbators, although establishing a
direct link between a given trace fossil and its producer(s) commonly is tenuous at
best. If necessary, alternative interpretations are offered. In this section, some of the
most important trace fossils produced by these groups of organisms are described
(Table 9.1). Although not all of these ichnotaxa occurred for the first time during the
MMR, most of them are particularly abundant in post-Paleozoic marine deposits.
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9.2.1.1 Crustaceans

Crustaceans of the Order Decapoda (Superclass Crustacea, Class Malacostraca) are
among the most important burrowers in the modern marine realm, constructing dis-
tinctive structures (Fig. 9.1a—g) that commonly extend to considerable depth within
the substratum and occurring in abundance in the fossil record (e.g., Fiirsich 1973;
Schlirf 2000; Carmona et al. 2004). Seilacher (2007) described such branching
decapod burrows with the general name “ophiomorphids” to comprise those struc-
tures that, although heterogeneous in taxonomy, share features such as having shaft
and tunnel systems that tend to branch, forming a boxwork at depth, with enlarge-
ments at turning points and having preferential preservation due to their emplace-
ment in deeper tiers than other burrows. Such burrows occur from supratidal to
deep-marine settings. Most “thalassinidean” species (now gebiideans and axiide-
ans, following De Grave et al. 2009) dwell in shallow-marine sediments, and espe-
cially for callianassids and upogebiids, the great majority live in water depths of less
than 20 m at tropical to subtropical latitudes (Dworschak 2000, 2005; Dworschak
et al. 2012). Less abundant in the fossil record are trackways attributed to crusta-
ceans, such as Coenobichnus (Walker et al. 2003) and Foersterichnus (Pirrie et al.
2004). Other relatively common ichnotaxa, most notably Rhizocorallium, may have
been produced by crustaceans (e.g., Rodriguez-Tovar et al. 2012), although worms
cannot be disregarded in many cases (Knaust 2013). The same disagreement per-
sists regarding Phoebichnus, traditionally regarded as produced by worms (Bromley
and Asgaard 1972), but recently attributed to crustaceans (Evans and Mcllroy 2016).

Integration of paleoecological data provided by trace fossils with information
inferred from the body-fossil record (e.g., origin, radiation, and extinction patterns)
is important for macroevolutionary analysis of these organisms, which have rela-
tively poor preservation potential (especially for decapods that have weakly calci-
fied exoskeletons). However, due to the presence of hard appendages, some decapods
can excavate burrows in compacted mud, producing open tunnels as permanent
domiciles. In looser sediments, some decapods also reinforce their burrow walls
with characteristic linings. There are a number of distinctive trace fossils produced
by decapods (Figs. 9.2a-k, 9.3a—f, 9.4a—f, 9.5a—e). Forms common in the ichno-
logic record are discussed below, approximately in order of most common
occurrence.

Thalassinoides consists of large burrow systems comprising horizontal and
vertical components, lacking a lining, and with characteristic “Y” or “T” branch-
ing patterns (Frey and Howard 1985; Figs. 9.2b and 9.3a—f). Such burrows usually
are interpreted as dwelling or feeding structures of selective detritus-feeding crus-
taceans (Ekdale 1992), occurring commonly in fine-grained sediments of mar-
ginal- and shallow-marine environments, and also in deeper-marine settings. In a
few instances, Thalassinoides has been reported from continental environments
(e.g., Kim et al. 2002, 2005), but in this case a completely different set of produc-
ers was involved. Thalassinoides is known since the Cambrian (Myrow 1995),
although a decapod origin is most likely only for post-Paleozoic occurrences
(Carmona et al. 2004).
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Fig. 9.1 Examples of typical decapod crustaceans and the structures they produce in modern
shallow-marine environments. (a) Intertidal carbonate-sand flat completely re-engineered by cal-
lianassid burrowing, Pigeon Creek lagoon, San Salvador Island, Bahamas; (b) Callichirus major
from the clastic northern Atlantic coast of Florida, USA, shrimp is 15 cm in length; (¢) Ghost crab
burrow in a Bahamian beach, opening is 4 cm in diameter; (d) The ghost crab Ocypode quadrata,
on a Bahamian beach, Lee Stocking Island, front of carapace about 5 cm in length; (e) Male and
female fiddler crabs, Uca speciosa, Pigeon Creek margin; (f) Fiddler crab burrows with radiate
pattern of feeding pellets, sandy inlet area, Cockburn Town fossil reef quarry, San Salvador, pen is
15 cm in length; (g) Subtidal callianassid mound, Pigeon Creek lagoon, about 1 m in diameter
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Fig.9.2 Schematic reconstructions of burrow architecture of decapod ichnogenera. (a) Ophiomorpha;
(b) Thalassinoides; (¢) Psilonichnus; (d) Macanopsis; (e) Gyrolithes; (f) Spongeliomorpha; (g)
Pholeus; (h) Maiakarichnus; (i) Parmaichnus; (j) Sinusichnus; (K) Glyphichnus. Scale bars in (a, b,
d, f and j) are 5 cm; scale(s) in (¢) is 10 cm; in (e) and (h) are 3 cm; in (g) is 2 cm; in (i) is 4 cm and
in (K) is 20 cm

Ophiomorpha refers to simple to complex, branching burrows with distinctive,
thick walls formed of agglutinated-sediment pellets, with the walls mamillated on
the exterior and smooth on the interior (Figs. 9.2a and 9.4a—f). These structures
represent the dwelling burrows of primarily selective detritus-feeding decapods,
such as modern callianassids (Dworschak 2000; Dworschak et al. 2012, and refer-
ences therein). The reinforcement of burrows in order to prevent substratum col-
lapse is an adaptation to living in energetic commonly sandy sedimentary
environments. Ophiomorpha occurs in both siliciclastic and carbonate deposits,
typically attributed to shallow-marine, high-energy environments (Frey et al.
1978; Curran 2007) and also in deep-marine settings (Uchman 2009 and references
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Fig. 9.3 Examples of Thalassinoides in Mesozoic—Cenozoic shallow-marine deposits. (a) Vaca
Muerta Formation, Jurassic, Neuquén Basin, Argentina; (b) Quintuco Formation, Jurassic—
Cretaceous, Neuquén Basin, Argentina; (¢) Mulichinco Formation, Cretaceous, Neuquén Basin,
Argentina; (d) Rio Turbio Formation, Eocene, Austral Basin, Argentina; (e¢) Urumaco Formation,
Miocene, Venezuela, scale is 20 cm; (f) Monte Le6n Formation, Miocene, Austral Basin, Argentina,
scale bar is 25 cm; (g) Thalassinoides isp. with tidal fill, Rio Negro Formation, Miocene-Pliocene,
Argentina
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Fig. 9.4 Examples of Ophiomorpha in Mesozoic—Cenozoic shallow-marine deposits. (a)
Lajas Formation, Jurassic, Neuquén Basin, Argentina; (b) La Vela Formation, Upper Miocene-
Lower Miocene, Venezuela, scale bar is 1 cm; (¢) Monte Le6n Formation, Miocene, Argentina;
(d) Chenque Formation, Lower Miocene, San Jorge Basin, Argentina, scale bar is 4 cm; (e)
Chui Formation, Pleistocene, Brazil, scale bar is 7 cm; (f) Upper Pleistocene, Pehuen-Co,
Argentina
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Fig. 9.5 Various decapod ichnotaxa in Mesozoic—Cenozoic shallow-marine deposits. All photos
are fromsiliciclastic deposits with the exception of b, which is from carbonates. (a) Spongeliomorpha
isp., Middle Miocene, Valles-Penedes Basin, Spain, scale bar is 10 cm; (b) Psilonichnus upsilon,
Holocene, San Salvador, Bahamas; (¢) Gyrolithes isp., Pliocene, Araya Peninsula, Venezuela,
scale bar is 3 cm; (d) Macanopsis plataniformis, lower Cretaceous, La Tejerfa de Josa, Spain, scale
bar is 3 cm; (e) Sinusichnus sinuosus, Middle Miocene, Socorro Formation, Venezuela, scale bar
is 11 cm; (f) Maiakarichnus isp., Miocene-Pliocene, Rio Negro Formation, Argentina

therein). Although Paleozoic examples have been recorded since the Carboniferous
(Driese and Dott 1984; Buatois et al. 2002), uncontroversial occurrences are in post-
Paleozoic strata.

Spongeliomorpha consists of unlined, branching burrow systems with distinctive
scratch marks (bioglyphs) on the walls (Figs. 9.2f and 9.5a). These burrows have been
interpreted as domiciles produced by suspension-feeding decapods (Asgaard et al.
1997) and also as structures for gardening or breeding (D’Alessandro and Bromley
1995). Spongeliomorpha occurs in shallow- and deep-marine environments (Uchman
1998; Muiiiz and Mayoral 2001a). There also are some records from non-marine
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deposits (Melchor et al. 2009). The presence of bioglyphs on the walls indicates that
the tracemakers used a hard appendage (e.g., a chela) to excavate these burrows and
that the sediment was firm at the time of construction. This ichnogenus is known since
the Triassic (MacNaughton and Zonneveld 2010); specimens reported from the
Permian (Carey 1979) do not display the diagnostic features (e.g., striated walls) of this
ichnogenus.

Psilonichnus comprises predominantly vertical, cylindrical, unlined, J-, Y-, or
U-shaped burrows, with passive fill, commonly interpreted as dwelling structures of
upogebiid shrimp or ocypodid crabs (see Nesbitt and Campbell 2002, 2006; and
Figs. 9.1c—d, 9.2¢, and 9.5b herein). These burrows occur most typically in upper-
most foreshore and backshore environments (Frey et al. 1984; Curran and White
1991; Netto and Grangeiro 2009; Seike and Curran 2014), and also in outer-estuarine
and bay-mouth settings (Campbell and Nesbitt 2000; Nesbitt and Campbell 2002).
This ichnogenus is present from the Late Jurassic onward (Fiirsich 1981).

Gyrolithes consists of vertical, coiled burrows, forming a regular spiral, unlined
to indistinctly lined, with bioglyphs and/or pellets (Figs. 9.2e and 9.5¢) and, in some
Mesozoic and younger examples, connecting to Ophiomorpha or Thalassinoides
burrow forms. Gyrolithes is known from the Cambrian (e.g., Fritz 1980; Fedonkin
1981, 1983; Linan 1984; Crimes and Anderson 1985; Hein et al. 1991; Jensen 1997,
Jensen and Grant 1998; Stanley and Feldmann 1998) to the Recent (Dworschak and
de Rodrigues 1997). However, worm producers have been indicated for the
Paleozoic occurrences, particularly for the typical Cambrian ichnospecies (see
Carmona et al. 2004; Netto et al. 2007). The robust forms of Gyrolithes from
Mesozoic and younger deposits have been interpreted as resulting from a specific
feeding strategy of decapods having a combined function of deposit feeding and
possibly gardening (Mayoral and Muifiiz 1993; Netto et al. 2007). Today, incipi-
ent Gyrolithes-like burrows made by axiidean shrimps are known to occur in
modern mangrove and estuarine areas (Dworschak and de Rodrigues 1997,
Wetzel et al. 2010).

Macanopsis refers to subhorizontal to horizontal, elongated, slightly curved bur-
row chambers, unbranched, and with a subvertical shaft (Fig. 9.2g); bioglyphs may
be present. This ichnogenus has been interpreted as a dwelling structure constructed
by decapods (probably brachyurans) and is known to occur in both shallow-marine
and fluvial settings (Mufiiz and Mayoral 2001b) since the Late Jurassic (Neto de
Carvalho et al. 2010).

Pholeus consists of single or complex U-shaped, lined burrows with a longitudinal
axis parallel to bedding, generally leading into an oblique shaft toward the surface
and in the opposite direction with a smaller, rising vertical to oblique shaft (modi-
fied from Knaust 2002; Figs. 9.2d and 9.5d). These structures are interpreted as
dwelling burrows of suspension- and detritus-feeding decapods (“thalassinidean”
shrimps and lobsters), with the function of the small shaft related to ventilation of
the burrow (Knaust 2002). This ichnogenus is typically associated with shallow-
marine to lagoonal (intertidal to shallow subtidal) paleoenvironments and is known
since the Middle Triassic (Knaust 2002).
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Tubotomaculum consists of spindle-shaped burrows, displaying a spreite and
containing ellipsoidal pellets (Garcia-Ramos et al. 1984, 2014). This ichnogenus is
interpreted as a feeding structure produced to store pellets that are subsequently
used as a bacteria-enriched resource during times of limited food supply (Garcia-Ramos
et al. 2014). The presence of bifid bioglyphs on the basal and lateral surfaces of
the structure suggests production by crustaceans (Garcia-Ramos et al. 2014).
Tubotomaculum is known from deep-marine environments, ranging in age from the
Cretaceous to Miocene (Garcia-Ramos et al. 1984, 2014).

Sinusichnus comprises distinctive burrow systems consisting of horizontal and
regularly sinuous branches (Gibert 1996; Figs. 9.2j and 9.5e). Shafts and oblique
burrow segments are rare, short, and tend to occur on top of the branching points.
Walls are smooth and unlined, and vertical retrusive spreite are locally present.
There are several interpretations for the function of these structures (e.g., burrows
produced by selective deposit-feeding decapods; open burrows built to act as traps
for meiofauna, and/or to induce microbial growth, i.e., combined feeding strategies
(fodinichnion/agrichnion). These burrows occur in shallow-marine (mainly stressed
settings) and deep-marine environments (as doomed-pioneers), and are known from
the Late Cretaceous (Buatois et al. 2009) to early Pliocene (Belatstegui et al. 2013).

Maiakarichnus consists of subspherical chambers, with or without a clay-rich
lining, preserved in full relief, with numerous shafts radiating in an upward direc-
tion (mainly from the chamber upper hemisphere; Figs. 9.2h and 9.5f). Usually,
this form intergrades or connects to Ophiomorpha or Thalassinoides tunnels.
Maiakarichnus has been interpreted as callianassid brood structures (Curran 1976;
Verde and Martinez 2004) or fossil pantries (Nesbitt 2006). This form occurs in
marginal-marine to shallow-marine deposits and is known since the Miocene
(Verde and Martinez 2004).

Parmaichnus refers to vertical to oblique tubular burrows, composed of a
U-shaped upper part and a basal shaft (Fig. 9.2i). Distinctive swellings or turn-
around chambers are present in the upper part of the burrow and are considered a
diagnostic character for this ichnogenus. Parmaichnus is interpreted as the burrow
of suspension- and filter-feeding decapods, with the presence of turning chambers
being typical for modern upogebiid burrows (Pervesler and Uchman 2009). This
trace fossil occurs in nearshore deposits from early Pleistocene to Recent
(Pervesler and Uchman 2009).

Glyphichnus consists of arcuate, vertical, and probably U-shaped burrows
with deeply incised bioglyphs in fan-like groups, subparallel to burrow length
(Bromley and Goldring 1992; Fig. 9.2k); rarely, apertural necks have been observed
(Goldring et al. 2002). These structures are interpreted as produced by suspension-
feeding decapods. The presence of apertural necks is common in structures used for
suspension feeding and serves to inhibit intruders. This ichnogenus occurs in firm
substrates in both shallow- and deep-marine settings from the late Mesozoic to
Recent (Goldring et al. 2002; Wetzel et al. 2008).

Coenobichnus comprises asymmetrical trackways having left tracks larger than
the right tracks, both being crescent-shaped, with the interior of the crescent
pointing toward the interior of the trackway. This ichnogenus has been attributed to
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land hermit crabs (Walker et al. 2003). Coenobichnus occurs in coastal dune settings,
from the Oligocene to Recent (Walker et al. 2003; Zonneveld et al. 2012).

Foersterichnus is a trackway comprising straight, or slightly curving, paired
rows of elongate to tear-shaped impressions, parallel or subparallel to its long axis.
This ichnogenus has been attributed to brachyurans and is only known from
Cretaceous shallow-marine deposits (Pirrie et al. 2004).

As stated previously, burrow systems produced by decapods are among the most
important components of post-Paleozoic shallow-marine ichnofaunas, reflecting the
dominance of the Modern Evolutionary Fauna. In a study documenting the trace-
fossil record of decapod-like gallery systems, Carmona et al. (2004) constructed a
database of all occurrences through the Phanerozoic to analyze changes in abun-
dance and ichnodiversity. During the Paleozoic, there are, in general, a low number
of “decapod-like” burrow systems, and the identity of their tracemakers is uncer-
tain, most likely reflecting behavioral convergence by groups other than decapod
crustaceans. The scenario changed significantly with increase in the number of bur-
rows attributed to decapods during the Mesozoic. This probably reflects an increas-
ing pace of decapod radiation, as it is also indicated by the Mesozoic body-fossil
record (Forster 1985; Schweitzer and Feldmann 2015; Klompmaker et al. 2015).

However, Triassic trace-fossil first occurrences are only slightly higher than
those recorded in the late Paleozoic (Carmona et al. 2004). This is also confirmed
by the body-fossil record, which indicates that decapod diversity was low in the
Triassic (Klompmaker et al. 2013; Schweitzer and Feldmann 2015). In any case,
there were changes in decapod ichnodiversity with Thalassinoides and Ophiomorpha
being the most common ichnotaxa, along with Gyrolithes (resembling modern
records) and Pholeus added to the list. Spongeliomorpha was also well established
in shallow-marine environments. This suggests the overall expansion of behavioral
modes through the Triassic.

During the Jurassic, decapod trace-fossil occurrences show a slight increase with
respect to previous periods (Carmona et al. 2004). This is clearly related to the
appearance of the body fossils of callianassids in the Late Jurassic (Glaessner 1969;
Forster 1985; Schweitzer and Feldmann 2015). Interestingly, the basic ethological
program recorded by these dwelling systems seems not to have changed signifi-
cantly since the Jurassic.

The abundance of decapod trace-fossil forms underwent a major increase toward
the end of the Mesozoic (Carmona et al. 2004). Crustacean dominance in the marine
realm during the Cretaceous is indicated by the great diversity of body fossils, as well
as by the abundance of decapod burrowing activity recorded in shallow-marine deposits.
A decapod origin is supported by the preservation of claws within some of these bur-
rows (e.g., Mangano and Buatois 1991; Swen et al. 2001) and by the presence of
diagnostic features, such as pelleted walls, bioglyphs reflecting the use of hard append-
age parts, and enlargements at burrow turnaround points. Decapod excavations are
particularly abundant in middle- and lower-shoreface clastic environments, as well as
in shallow-marine carbonate settings. The increase in the number of decapod trace-
fossil occurrences accelerated by the end-Cretaceous, including addition of the oldest
examples of Sinusichnus in Cretaceous deposits (Buatois et al. 2009).
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Interestingly, Klompmaker et al. (2013) found that during the Mesozoic there
was a long-term shift in diversity of the different crustacean groups based on the
body-fossil record, with dominance of lobsters and shrimps during the Paleozoic
and Triassic, whereas during the Jurassic onward, anomurans and brachyurans
underwent rapid diversification. In particular, their study showed that the Late
Jurassic decapod radiation was associated with the expansion of reef ecosystems,
with a high percentage of generic origination of reef-dwelling brachyurans and ano-
murans (Klompmaker et al. 2013). This is in agreement with the trace-fossil record,
confirming that the Mesozoic was a highly important time in the evolution of deca-
pods (Schweitzer and Feldmann 2015).

During the Paleogene, the numbers of individual decapod trace fossils appear to
be considerably reduced compared with that found in similar environmental
settings in the Cretaceous (Carmona et al. 2004). This could be related to the end-
Cretaceous mass extinction. However, the effect of this extinction on decapods
(mostly of the Southern Hemisphere) was probably not so severe (Feldmann and
Schweitzer 2006). In the same vein, Swen et al. (2001) analyzed the demise of the
subfamily Protocallianassinae and the rise of other subfamilies (among them
Callianassinae) in nearshore deposits, which occurred below the K—Pg boundary.
They postulated that the demise of Protocallianassinae and the rise of Callianassinae
were related to the worldwide emergence of seagrasses at the end of the Cretaceous
and to the strong competition that took place globally in shallow-marine settings.
These authors also thought that seagrasses may have favored the rise of families
dominated by detritus-feeding shrimp (such as Corallianassa) over those of sus-
pension feeders (e.g., Protocallianassa). The abundance of individual decapod
trace fossils during the Eocene is apparently higher than for the other epochs of the
Paleogene. The Eocene was a time of evolutionary radiation for decapods, and this
appears to be reflected in the trace-fossil record.

Finally, during the Neogene, the abundance of decapod trace fossils underwent
another major increase, probably reaching the highest level of the entire Phanerozoic
(Carmona et al. 2004). Body-fossil data conform to the Neogene trace-fossil record,
which shows primacy of decapod burrows in shallow-marine environments, with
Maiakarichnus occurring for the first time in the Miocene. Interestingly, the sum-
mary study of Schweitzer (2001) indicated that the Miocene was a time of high
origination rates within the decapod fauna, with first appearance of the modern
genera that dominate the present seas.

Decapod burrows are widespread in modern coastal settings, being preferentially
distributed in tropical and temperate shallow-marine and marginal-marine settings.
The similarity between the modern callianassid burrows formed by Sergio mirim in
the lower foreshore of Cassino Beach (Rio Grande do Sul State, southernmost
Brazil) and Ophiomorpha nodosa specimens preserved in Pleistocene deposits of
the Chui Formation (Gibert et al. 2006), which represent an ancient beach line on
the Rio Grande do Sul Coastal Plain, suggests that these faunas were not impacted
by Quaternary glaciation, at least in the Southern Hemisphere. The presence of
large Ophiomorpha specimens in Pleistocene shallow-marine deposits from
Pehuen-Co6, Argentina, further supports this interpretation (Mouzo et al. 1989).
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9.2.1.2 Mollusks

Mollusks have a long evolutionary history and include several groups, with gastro-
pods and bivalves being the most numerous, diverse, and common bioturbators
from the early Paleozoic onward. The development of key external features, such as
the shell, foot, and radula, helped mollusks acquire diverse ecological preferences.
This section focuses on trace fossils attributed to gastropods and bivalves.

Gastropods and Polyplacophorans

Locomotion and feeding structures produced by gastropods and chitons can be
observed in modern settings. Almost all gastropods and chitons use their foot during
locomotion. Typically, the sole of the foot is flat and broad, ciliated and with abun-
dant secretory glands, allowing gastropods to move over a variety of substrates
(Ruppert et al. 2004). These glands produce mucus that forms a mucus trail. Most
gastropods living on stable substrates move by pedal waves with the aid of the
mucus trail (glide crawling, Schifer 1962, 1972; see also Buatois and Médngano
2011). Gastropods are mostly microphagous browsers that feed on microscopic
algae and scrape the substrate with their radula (a flexible longitudinal ribbon hav-
ing rows of small and transverse chitinous teeth; Ruppert et al. 2004). The com-
bined actions of the foot and radula generate distinctive patterns on the substrate,
which have also been recognized in the fossil record, although some uncertainty
persists regarding the attribution of these structures to gastropods. For example, the
Cambrian ichnogenus Climactichnites is interpreted as having been produced by an
elongate, dorso-ventrally flattened organism with a soft foot, which may have been
a primitive gastropod, although other possibilities exist (Abel 1935; Getty and
Hagadorn 2008, 2009; see Chap. 3). In modern intertidal environments, structures
slightly similar to this trace fossil can be found, although their preservation poten-
tial is very low (except in settings with microbial mats; Carmona et al. 2010).

Other trace fossils (e.g., Psammichnites) have been interpreted as locomotion
structures of gastropods, but other producers cannot be discarded (see discussions in
Maingano et al. 2002a). In any case, neither Climactichnites nor Psammichnites are
recorded in post-Paleozoic rocks, probably due to increased levels of bioturbation and
obliteration of shallow-tier traces or extinction of their producers. The much simpler
trail Archaeonassa, ranging from the Cambrian to the Recent, has been attributed to
gastropods as well (Fenton and Fenton 1937), but there is no agreement in this regard
(Buckman 1994; Yochelson and Fedonkin 1997). Therefore, the fossil record of bio-
turbation structures produced by gastropods remains uncertain.

Bivalves

Along with gastropods, bivalves constitute an important and extremely diverse mol-
luscan class, with species living in both marine and freshwater environments. Within
this group, a pronounced post-Paleozoic increase in infaunal representatives, also
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exhibited by several other major groups (e.g., echinoids), is widely recognized
(Stanley 1970). The evolutionary diversification of most bivalve shells is related to
different styles of burrowing in soft sediment and of boring in hard substrates, which
provide escape from predators (Stanley 1970; Seilacher 1998). This tendency is not
only reflected by the hard part anatomy, but also by the soft parts of bivalves, which
show corresponding trends in the development of a lateral flat burrowing foot, fused
mantle edges, and pallial siphons (Stanley 1970; Seilacher 1998; Kelley and Hansen
2003; Ruppert et al. 2004 and references therein). The replacement of epifaunal and
semi-infaunal taxa by infaunal forms from the Cretaceous onward is well recog-
nized (Vermeij 1977, 1987).

In contrast to crustacean ichnotaxa, which for the most part are represented by
dwelling structures, the ichnogenera most commonly assigned to bivalve tracemak-
ers comprise various ethologies (Fig. 9.6a—i), such as locomotion (Protovirgularia,
Ptychoplasma, Oravaichnium), resting/dwelling (Lockeia), dwelling (Solemyatuba),
feeding (Lophoctenium, Saronichnus), equilibrium (Siphonichnus, Scalichnus), and
a complex combination of behaviors (Hillichnus), all in soft sediments (Figs. 9.7a—d
and 9.8a-h). The dwelling ichnogenus Gastrochaenolites may occur in both hard
and firm substrates (Fig. 9.8h) and will be addressed under bioerosion.

Protovirgularia comprises horizontal to inclined structures characterized by the
presence of V-shaped or U-shaped sediment pads transverse to a longitudinal axis
(Figs. 9.6a and 9.7a—d). This ichnogenus has been interpreted as formed by locomo-
tion of protobranch bivalves, moving through the sediment by means of a split foot
that employs a push-and-pull mechanism (Trueman 1966, 1975; Stanley 1970;
Seilacher and Seilacher 1994; Mdangano et al. 1998). In addition, Seilacher and
Seilacher (1994) suggested that Protovirgularia can also be produced by scaph-
opods (another molluscan group with a cleft-foot), especially if the structures are
not related to the resting trace Lockeia (Mangano et al. 1998). This trace fossil,
recorded in marginal-, shallow-, and deep-marine environments, ranges from
Ordovician to Recent (Seilacher and Seilacher 1994; Uchman 1998).

Ptychoplasma consists of irregularly meandering, looping, winding or straight,
discontinuous or continuous, hypichnial crests having an amygdaloid, carinate, or
blocky cross-section, with poorly developed or absent chevronate structure. This
ichnogenus has been interpreted as a locomotion trace of wedge-foot bivalves
(Pienkowski and Uchman 2009; Uchman et al. 2011). Recorded from non-marine,
marginal-, shallow-, and deep-marine environments, this ichnogenus ranges from
Ordovician to Recent (Rodriguez-Tovar et al. 2014).

Oravaichnium consists of irregularly meandering, looping or winding, continu-
ous, hypichnial crests having a box-like (non-carinate) cross-section. As with
Ptychoplasma, this ichnogenus is regarded as a locomotion trace of wedge-foot
bivalves (Uchman et al. 2011). In contrast to Ptychoplasma, however, Oravaichnium
is less understood, having been recorded only from Eocene deep-marine deposits
(Plicka and Uhrova 1990; Uchman et al. 2011).

Lockeia commonly comprises oval- to almond-shaped structures, typically tapering
at one end and being more rounded on the opposite end (Mdngano et al. 1998;
Figs. 9.6aand 9.8a). Lockeia is interpreted as a resting structure of bivalves, although
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Fig. 9.6 Schematic reconstructions of bivalve-produced ichnogenera. (a) Reconstruction of the
locomotion activity of a cleft-foot bivalve, producing Protovirgularia and Lockeia (modified from
Ekdale and Bromley 2001a), scale bar is 5 cm; (b) Reconstruction of Ptychoplasma (redrawn from
Uchman et al. 2011), scale bar is 1 cm; (c) Interpretation of Siphonichnus (modified from
Stanistreet et al. 1980), scale bar is 5 cm; (d) Schematic representation of the pholadids during
excavation and production of Gastrochaenolites (see Carmona et al. 2007), scale bar is 2 cm; (e)
Interpretation of the complex behavior of a deposit-feeding bivalve illustrated by Hillichnus
(modified from Bromley et al. 2003), scale bar is 5 cm; (f) Reconstruction of Scalichnus (modi-
fied from Hanken et al. 2001), scale bar is 5 cm; (g) Reconstruction of Solemyatuba (based on
Seilacher 1990a), scale bar is 5 cm; (h) Reconstruction of Saronichnus (modified from Pervesler
and Zuschin 2004), scale bar is 5 cm; (i) Reconstruction of Teredolites (based on Bromley et al.
1984), scale bar is 5 cm
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Fig. 9.7 Preservational variants of Protovirgularia in Mesozoic—Cenozoic shallow-marine depos-
its. (a) Forest Marble Formation, Jurassic, England, coin is 1.65 cm; (b—d) Chenque Formation,
Lower Miocene, Argentina. Coins in (b) and (¢) are 2.2 cm

some specimens can represent semipermanent domiciles (Seilacher 1953; Rindsberg
1994; Méngano et al. 1998). This ichnogenus has been reported from marginal-,
shallow-, and deep-marine settings since the late Cambrian/Early Ordovician
(Méngano et al. 2002b and references therein). In contrast to most bivalve ichno-
taxa, Lockeia is also known from freshwater settings.

Solemyatuba consists of endichnial, vertically oriented, U-shaped burrows, ellip-
tical in cross-section and with a lower extension tube in one of its ichnospecies
(Seilacher 1990a; Mangano and Buatois 2003; Figs. 9.6g and 9.8d). Solemyatuba
has been interpreted as the dwelling trace of a farming bivalve (Seilacher 1990a).
This form can be found in shallow-marine deposits since the Ordovician (Seilacher
1990a; Méngano and Buatois 2003).

Lophoctenium is not generally assigned to the activity of bivalves. However,
Ekdale and Bromley (2001a) interpreted Carboniferous specimens of this trace fos-
sil as a feeding structure produced by the repetitive lateral probing of the labial
palps of a protobranch along an organic-rich sediment deposit. This structure con-
sists of coarse horizontal spreite formed by a series of closely spaced, curved ridges
(Ekdale and Bromley 2001a). In particular, the specimen studied by these authors
represents a compound trace fossil with three different ichnotaxa in combination
(Protovirgularia, Lockeia, and “Lophoctenium’; see Ekdale and Bromley 2001a).

Saronichnus consists of a system of vertical or inclined tubular to blade-shaped
probes diverging from a central area of broom- or star-like form (Pervesler and Zuschin
2004; Figs. 9.6h and 9.8f). This ichnotaxon has been found in direct connection
with Thyasira shells, indicating formation by lucinoid bivalves. It is most likely a
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Fig. 9.8 Various bivalve ichnotaxa in Mesozoic—Cenozoic shallow-marine deposits. (a) Several
specimens of Lockeia siliquaria, Mulichinco Formation, Cretaceous, Argentina; (b) Scalichnus
phiale, Monte Leén Formation, Lower Miocene, Argentina, scale bar is 5 cm; (¢) Siphonichnus
eccacensis, Chenque Formation, Lower Miocene, Argentina, coin is 1.8 cm; (d) Solemyatuba ypsi-
lon, Rhaetian Sandstone, Olgahain, Upper Triassic, southern Germany, scale bar is 1 cm; (e)
Equilibrium traces of byssate bivalves, scale bar is 4 cm; (f) Saronichnus abeli, Grund Formation,
Miocene, Austria, photograph courtesy of Peter Pervesler; (g) Hillichnus lobosensis, Carmelo
Formation, Paleocene, Point Lobos, California, United States, photograph courtesy of Nic Minter;
(h) Gastrochaenolites isp., Rio Turbio Formation, Eocene, Argentina
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feeding structure produced as a result of a chemosymbiotic life strategy. At present,
it has only been recorded from Pleistocene shallow-marine strata (Pervesler and
Zuschin 2004).

Siphonichnus comprises vertical structures containing a backfill of concave-
downward menisci (Stanistreet et al. 1980; Figs. 9.6¢ and 9.8c). The laminae form-
ing the backfill are cut through centrally by a vertical tube, filled with pale, massive
sediment. The authors of this ichnogenus postulated that siphon length of a given
bivalve tracemaker should be equal to the length of backfill laminae. Siphonichnus
occurs since the Carboniferous in marginal- to shallow-marine settings (Stanistreet
etal. 1980; Carmona et al. 2008; see also discussion in Zonneveld and Gingras 2013
and Knaust 2015).

Scalichnus includes large, vertically oriented, bottle-shaped structures, formed
during retrusive and protrusive movements of the bivalve Panopea (Hanken et al.
2001; Figs. 9.6f and 9.8b). Scalichnus is regarded as an equilibrichnial trace fossil
having a general sack-like morphology and a thick lining. This structure is common
in Cenozoic marginal- to shallow-marine settings (Hanken et al. 2001; Nara and
Kondo 2012; see also discussion in Zonneveld and Gingras 2013).

Hillichnus was defined to include morphologically complex structures inter-
preted as the work of subsurface deposit-feeding tellinacean bivalves (Bromley
et al. 2003; Figs. 9.6e and 9.8g). This structure comprises several parts or levels: a
segmented component with a basal tube within, from which lateral feather-like
structures arise, alternating on either side, and vertical sand- and mud-lined tubes
that also rise from the basal structure. According to the ichnogenus authors, the
movement of the bivalve’s inhalant siphon produced the feather-like structures on
either side of the basal tube, and the siphonal excursions to the sediment surface
produced the vertical tubes. The length of these tubes suggests that feeding activity
of these bivalves occurred well below the oxygenated sediment layer, probably
20 cm or more beneath the surface, suggesting that in addition to deposit feeding,
chemosymbiosis may have taken place. Hillichnus is known from the Cretaceous
and Paleogene, in both shallow- and deep-marine environments (Bromley et al.
2003; Pazos and Fernandez 2010).

Finally, it is possible that other ichnotaxa may have been produced by bivalves,
but tracemaker origins cannot always be confirmed. An example would be
Paradictyodora, which comprises vertical spreite structures that consist of subverti-
cal folded laminae produced by the migration of a subvertical J-shaped tube (Olivero
et al. 2004). This structure has been interpreted as the feeding trace of worms or
tellinid bivalves (D’ Alessandro and Fiirsich 2005; Serpagli et al. 2008). This ichno-
genus occurs from Late Cretaceous to Pleistocene (Olivero et al. 2004; D’ Alessandro
and Fiirsich 2005).

Although bivalves were key players during the MMR, the trace-fossil record
shows that some of the most representative ichnotaxa, such as Protovirgularia and
Lockeia, have been present since the early Paleozoic, albeit becoming particularly
abundant since the late Paleozoic. However, other bivalve ichnotaxa (e.g.,
Hillichnus) seem to be directly associated with the MMR, whereas the stratigraphic
ranges of other ichnotaxa (e.g., Scalichnus, Saronichnus) are still poorly known
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due to sparse occurrence. Hillichnus reflects a level of behavioral complexity
unknown in older bivalve-produced ichnotaxa (Bromley et al. 2003). Particularly,
the proposed producers of this ichnogenus, the tellinid bivalves, originated in inner
shelf environments during the Middle Triassic and then commenced significant
radiation (Jablonski and Bottjer 1990). Interestingly, it seems that the earliest tel-
linaceans were suspension feeders, whereas deposit-feeding tellinids appeared
during the Early Cretaceous (Bottjer and Jablonski 1988). Although lucinids origi-
nated in the Silurian, they experienced an evolutionary radiation near the end of the
Cretaceous, coincident with the appearance of seagrasses and mangroves (Stanley
2014). It has been hypothesized that lucinids may have exploited the dysaerobic
sediments below roots and rhizomes, acquiring sulfides for their endosymbiotic
bacteria (Stanley 2014). Saronichnus, the only ichnogenus attributed confidently to
lucinids, is only known from its type locality, so using ichnologic data to track
evolutionary trends is still not possible.

9.2.1.3 Echinoderms

The Phylum Echinodermata is one of the most important and characteristic com-
ponents of modern-marine benthic communities (Smith 1984). Echinoderms com-
prise very diverse marine groups, such as sea stars, brittle stars, sea urchins, sand
dollars, sea cucumbers, and sea lilies, with the majority being bottom dwellers
(Ruppert et al. 2004).

The Class Echinoidea consists of diverse and successful groups comprising
approximately 950 living species (Smith 1984; Ruppert et al. 2004). Echinoids
adapted to live in a variety of marine environments and present different life habits
(Smith 1984). This part of the chapter focuses mostly on irregular echinoids, whose
stratigraphic range covers the Early Jurassic to Holocene, with approximately 410
genera (Parma 2008).

Irregular echinoids are detritus- or deposit-feeding organisms that ingest material
selected by their podia. This particulate material is covered by mucus and then moved
to the mouth. Some irregular echinoid species burrow deeply into the substrate and
build a vertical channel to provide oxygenated water from the sediment surface. They
also construct sanitary channels or drains to remove fecal material mixed with sea-
water. Within irregular echinoids, the spatangoid heart urchins constitute the most
diverse group in modern oceans, being found in all latitudes and at all depths, and
contributing significantly to collective bioturbation of the surrounding sediments
(Villier and Navarro 2004). In addition, the infaunal activities of these organisms
stimulate bacterial production within the substrate via transport of organic matter to
deeper sediment layers (Osinga et al. 1997). In turn, deep-burrowing irregular
echinoids can induce a back-flow of organic matter in the form of dissolved nutrients
returned to the sea (Lohrer et al. 2004).

The abundance of spatangoids increased rapidly during the Cretaceous and has
remained stable since then, although other groups of irregular echinoids show a
concurrent decline in diversity. This has been interpreted as due to the acquisition of
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Fig. 9.9 Schematic reconstructions of trace fossils produced by irregular echinoids. (a)
Reconstruction of the locomotion activity of Echinocardium cordatum producing Scolicia, scale
is 1 cm; (b) Cross-sectional view of Scolicia; (¢) Cross section view of Bichordites; (d) Basal
view of Cardioichnus (based on Smith and Crimes 1983), scale is 1 cm. (a—c¢) modified from
Bromley (1996)

a burrowing life mode, which allowed spatangoids to access new food resources and
avoid predation (Smith 1984; Villier and Navarro 2004). Three ichnogenera
(e.g., Bichordites, Scolicia, and Cardioichnus) are attributed to the activity of irreg-
ular echinoids (Figs. 9.9a—d and 9.10a—e; see Belaustegui et al. 2015a for a review).

Scolicia comprises horizontal to inclined trace fossils characterized by the
presence of menisci (Figs. 9.9a-b and 9.10a-b). In cross-section and in hypichnial
preservation, two parallel canals, functioning as drains for used respiratory water,
are observed at the base of these structures. This ichnogenus ranges from the
Jurassic onward (Uchman 1995).

Bichordites also consists of meniscate, horizontal structures, but with only one
middle channel crossing the menisci (Figs. 9.9c and 9.10c—d). Bichordites ranges
from the Eocene onward (Bernardi et al. 2010; Demircan and Uchman 2012;
Villegas-Martin et al. 2014).

Cardioichnus consists of heart-shaped structures having an axial depression
(Figs. 9.9d and 9.10e). It is interpreted as the resting trace of irregular echinoids
(Smith and Crimes 1983) and usually is found in association with locomotion traces.
This ichnotaxon ranges from the Late Cretaceous onward (Smith and Crimes 1983).

In modern environments, two principal groups of irregular echinoids are known
to excavate sediment: the Spatangus group, which produces meniscate structures
with two basal drain canals (modern analogues for Scolicia), and the Echinocardium
group, which produces structures with only one canal, resembling the ichnogenus
Bichordites (Bromley and Asgaard 1975; Kanazawa 1995). Although Smith and
Crimes (1983) postulated that irregular echinoids fully developed their capacity to
excavate during the Early Cretaceous, when the Sparangus group first appeared,
ichnologic evidence (i.e., the presence of Scolicia in Jurassic strata) suggests an
earlier origin.

During the Paleozoic, epifaunal echinoderm taxa (mostly suspension- and detritus-
feeders) were abundant (Dornbos 2008; Schneider 2008). Several reasons have been
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Fig. 9.10 Trace fossils produced by irregular echinoids. (a) Scolicia isp., Lépez de Bertodano
Formation, Upper Cretaceous, Antarctica; (b) Scolicia isp. with their producers, Chenque
Formation, Lower Miocene, Argentina; (c—d) Bichordites kuzunensis, Mezardere Formation, Early
Oligocene, Turkey, scale bar is 1 cm; (e) Cardioichnus isp., Upper Marine Molasse, Lower
Miocene, Switzerland; (f) Asteriacites lumbricalis, Neill Klinter Formation, Lower Jurassic,
Greenland

proposed for this abundance: high productivity of the seas during the early Paleozoic,
low abundance of deep-infaunal organisms, and the absence of efficient predators
(Sprinkle and Kier 1987; Parma 2008). This situation changed dramatically after the
Paleozoic, when echinoderms developed infaunal detritus-feeding and predation strat-
egies (Sprinkle and Kier 1987). Obviously, this change is also reflected in the trace-
fossil record. Interestingly, Smith (2005) analyzed the growth and form of Paleozoic
and post-Paleozoic echinoids and recognized that there was a distinct variation in the
nature of disparity between these two groups, with an important diversification of
shapes in those from post-Paleozoic times (see also Hopkins and Smith 2015). In
particular, he found that there was a significant evolutionary innovation for echinoids
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with regard to specification of the final positions of plates during early stages of
ontogeny. This early fixation of plate position favored the appearance of other
evolutionary innovations, especially in the Atelostomata (e.g., spatangoids) and
Clypeasteroida clades (Hopkins and Smith 2015). For example, the early fixation of
plates allowed diverse regions of the test to differentiate both in structure and function.
This involved also the morphological and functional differentiation of spines, espe-
cially for the spatangoids during the Cretaceous and Cenozoic, which poses important
implications for acquisition of the ability to burrow. The early fixation of plate posi-
tion also allowed for development of bands of spines called fascioles, which serve to
create water currents and mucus streams. Fascioles are particularly important for bur-
rowing in spatangoids, and their appearance permitted this group to diversify ecologi-
cally (Smith 2005). In addition to these innovations, the presence of an intestinal
caecum enclosing sulfide-oxidizing bacteria in some spatangoid species allows
them to burrow deeply within the substrate, well below the redox boundary, to ingest
sulfide-rich and anoxic sediment (Bromley et al. 1995). Therefore, echinoids are able
to avoid predation and reduce competition both for food and space, occupying a deep
tier within the substrate (Bromley et al. 1995).

There are other trace fossils interpreted as produced by echinoderms. Among
them, the most common is the resting trace Asteriacites (Fig. 9.10f-h), interpreted
as produced by asterozoans (both asteroids and ophiuroids, but more commonly
the latter; Seilacher 1953; Mangano et al. 1999). Although it has been suggested
that Asteriacites is a nomen dubium (Schlirf 2012), the rediscovery of the type
material justifies keeping the original name (Knaust & Neumann 2016; see also
Gurav et al. 2014). Asteriacites is present in marginal- to shallow-marine settings
since the Cambrian (Mikul4d§ 1992a), being particularly abundant in the Triassic
and Jurassic (e.g., Dam 1990a; Wilson and Rigby 2000). There are also records
from deep-marine facies (Crimes and Crossley 1991).

Some other ichnotaxa are also attributed to asterozoans, namely, Pentichnus,
Arcichnus, and Ophioichnus. Pentichnus is a plug-shaped structure with pentameral
symmetry interpreted as a dwelling burrow of ophiuroids. This ichnotaxon has been
described from the Carboniferous (Maerz et al. 1976; Seilacher 1983, 1990b;
Rindsberg 1994; Mangano et al. 2002b). Arcichnus is interpreted as the trackway of
ophiuroids, and consists of a series of horseshoe-shaped impressions produced by
the anterior arms. This trace fossil was described from the Devonian (Sutcliffe
1997). Ophioichnus consists of imprints interpreted as produced by the arms of
ophiuroids and has been recorded in the Early Cretaceous (Bell 2004). Recently,
incipient Ophioichnus were recognized on the modern sea floor (Schatz et al. 2013).
Synonymization of Ophioichnus with Biformites has been recently suggested
(Knaust and Neumann 2016).

The ichnologic record of holothurids is restricted to the ichnogenus Artichnus,
which consists of a wide, J-shaped structure with a narrow, upward tapering shaft and
the distal end tapering to a blind termination (Zhang et al. 2008). An irregular spreite
structure surrounds the burrow lumen. This ichnogenus is known since the Eocene
(Zhang et al. 2008; Ayranci and Dashtgard 2013; Ayranci et al. 2014; Belatistegui and
Domenech 2014). A comparison with modern structures suggests that potential holo-
thurid trace fossils may occur in Carboniferous rocks (Smilek and Hembree 2012). In
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fact, burrows attributed to holothurians have been recorded in the early Permian (Netto
1994; 2000). Further work is needed to assess the relationship between Artichnus and
the previously defined ichnogenus Naviculichnium (Ksiazkiewicz 1977) in order to
evaluate more completely the record of trace fossils generated by holothurians.

In sum, the trace-fossil record matches closely body-fossil information, as indi-
cated by the stratigraphic ranges of ichnotaxa attributed to irregular echinoids, such as
Scolicia, Bichordites, and Cardioichnus, which are typical structures of the Modern
Evolutionary Fauna. In contrast, structures commonly attributed to ophiuroids have a
much longer stratigraphic range (Asteriacites, Arcichnus) or are still poorly known
(Ophioichnus). Further occurrences of structures produced by holothurids in the fossil
record are needed in order to establish potential trends.

9.2.1.4 Worms

Many ichnogenera have been attributed to the activity of “worms,” without clear
distinction regarding which group of worms might have been responsible. In fact,
worm-like animals constitute a particularly important group of bioturbators in
marine environments, including principally vermiform nemerteans, polychaetes,
and hemichordates, all groups that are diverse and abundant. According to Seilacher
(2007), when worms are mentioned, the term serves to designate “all long, soft and
usually cylindrical animals belonging to many different phyla,” which have evolved
a peristaltic mode of locomotion for life in soft substrates, but other locomotion
strategies may be employed, such as undulation and bolting (Schéfer 1972; Buatois
and Mdangano 2011). The objective of this section is to discuss the most common
trace fossils attributed to worm-like organisms, while relating them to the evolution-
ary history of some of their likely producers wherever possible.

Polychaetes are annelids having a pair of parapodia and associated chaetae in
each body segment. Most polychaetes (e.g., terebellids, maldanids, glycerids, oph-
elids) are burrowers, although some bore into shells and rocks, secrete tubes, move
over surfaces, and even swim (Ruppert et al. 2004). Nutrition habits of polychaetes
are closely related to their mode of life; deposit feeders are mostly burrowers and
sedentary worms living in burrows/tubes; suspension feeders are sedentary organ-
isms living in tubes in the sediment or are attached to organic or inorganic hard
substrates; and scavengers, carnivores, and herbivores are typically errant worms
(although some live in tubes or are active burrowers) (Ruppert et al. 2004). Groups
with ichnologic importance include members of the clades Scolecida and Palpata
(Gingras et al. 2008). Scolecids are deposit-feeding burrowers, similar to the pre-
sumed ancestor of annelids, without head appendages, and palpates have head
appendages and more diversified life habits (Ruppert et al. 2004). In particular,
ophelids (scolecids) include burrowers with an eversible bulbous pharynx with which
they ingest sediment in high-energy areas such as the foreshore, producing
Macaronichnus-like structures (Clifton and Thompson 1978; Ruppert et al. 2004).

Nemerteans include several species of long, slender worms resembling annelids,
although lacking their segmentation. They have a characteristic proboscis apparatus
with which they capture prey and burrow (Ruppert et al. 2004). Species that burrow
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(e.g., Carinoma) commonly have a muscular body wall that they use to produce
peristaltic movement (Ruppert et al. 2004).

Echiurans (or spoon worms) comprise coelomate marine organisms that lack
segmentation. Echiurans have two main body regions: an anterior cylindrical part,
called the prostomium or proboscis, and a trunk, which commonly has three-layered
musculature used to produce peristaltic movements to ventilate their burrows. Most
echiurans are deposit-feeders, although some are suspension-feeders. Many species
live in U-shaped burrows built in sand and mud in shallow-marine settings, although
some occupy deep-marine sediments (Ruppert et al. 2004).

Sipunculids are a group of worms sharing some characters with echiurans
(e.g., both lack segmentation). These organisms are suspension- or deposit-feeders,
collecting their food with ciliated tentacles present in the oral disc. Sipunculids are
bottom-dwelling organisms, with most living in shallow-marine settings, where
they burrow into the sediment or bore into coralline rocks or wood (Ruppert et al.
2004). Although the fossil record of this group is sparse, Huang et al. (2004)
reported three species from the early Cambrian.

Priapulids are benthic marine worms characterized by an extendable, eversible
proboscis (i.e., introvert). These organisms excavate using a push-and-pull mecha-
nism, with the trunk acting as a penetration anchor and the introvert as a terminal
anchor. They live in sandy and muddy sediments in shallow- and deep-marine set-
tings (Ruppert et al. 2004). Based on their fossil record, priapulids were important
components of Cambrian marine communities (Huang et al. 2007), and it has been
convincingly argued that priapulids may have been the producers of Treptichnus
pedum (Vannier et al. 2010).

Enteropneusts are benthic worms that have a body divided into three regions:
proboscis (protosome), collar (mesosome), and trunk (metasome), and thus are tri-
coelomate animals. Generally, they use their anterior region to burrow by retrograde
peristaltic contractions, with most being deposit-feeders (Ruppert et al. 2004). They
mostly live in shallow-marine environments, and their fossil record extends back to
the Cambrian (Caron et al. 2013).

Trace fossils attributed to worms are diverse and comprise structures that are mor-
phologically simple, such as vertical or U-shaped burrows, to those that are more com-
plex, displaying sophisticated spreiten (Fig. 9.11a-i). In this section, a brief description
of most of the ichnogenera attributed to “worms” is alphabetically presented.

Ancorichnus comprises a cylindrical meniscate burrow fill surrounded by a
structureless tubular mantle (Heinberg 1974; Dam 1990a). This ichnogenus has
been interpreted as a locomotion trace (repichnion) of a soft-bodied organism
(Heinberg 1974), most likely a worm. Dam (1990a) noted transitions with
Jamesonichnites, suggesting that Ancorichnus represents the axial burrow from
which Jamesonichnites probes were made. Ancorichnus occurs in shallow-marine
environments and ranges from the Jurassic to the Cretaceous (Heinberg 1974); older
and younger records require critical re-evaluation (e.g., Singh et al. 2010).

Arachnostega consists of irregular, elongate, and net-like burrows in sediment
fills of shells and visible on the surfaces of internal molds. This ichnotaxon is attrib-
uted to errant polychaetes, but crustaceans cannot be ruled out as producers. Bertling
(1992) considered the diameter and course of the burrows to reflect an opportunistic
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polychaete larval infestation in recently sediment-filled bivalve borings.
Arachnostega is known since the Cambrian (Rodrigues et al. 2005), although its
presence is more common from the Jurassic onward in shallow-marine settings.

Arenicolites is a vertical U-tube without spreite. It is interpreted as a dwelling
structure. Although it has been attributed to worm-like organisms such as poly-
chaetes (Goldring 1962; Fiirsich 1974); crustaceans (Goldring 1962) and holothuri-
ans (Seilacher 1990a; Bromley 1996) have been suggested as well. Arenicolites is
present in a broad variety of shallow- to deep-marine and even continental environ-
ments, being most common in nearshore high-energy settings since the Cambrian
(Méngano and Buatois 2014).

Asterosoma consists of elongate, bulbous segments having a terminal or eccen-
trical, laminated fill; segments are oriented (sub)horizontally and are arranged
around a central vertical, somewhat twisted axis (Schlirf 2000; Fig. 9.11a). This
ichnotaxon is a feeding trace produced by deposit or detritus feeders. Its intergrada-
tion with Rosselia suggests terebellid polychaetes as possible producers, but some
authors (e.g., Neto de Carvalho and Rodrigues 2007) have proposed crustaceans as
well. Asterosoma occurs most commonly in shallow-marine settings since the
Cambrian (Médngano and Buatois 2014).

Balanoglossites consists of connected, U-shaped burrows that occur in shallow-
marine environments, especially intertidal settings and carbonate ramps (Knaust 1998
and references therein; Fig. 9.11b). This trace fossil is interpreted as the domicile of
enteropneusts or polychaetes (Mégdefrau 1932; Kazmierczak and Pszczotkowski
1969). Although this ichnogenus occurs since the Ordovician (Knaust and Dronov
2013), it mostly has been recorded since the Triassic (Knaust 2004, 2010; Carmona
et al. 2008; Desai and Saklani 2012; Knaust and Costamagna 2012).

Bornichnus comprises clusters of small, lined, contorted, branched tubes
(Bromley and Uchman 2003). These authors interpreted Bornichnus as an open bur-
row probably produced by farming organisms and noted that similar systems are
produced by capitellid polychaetes in modern deposits. Bornichnus has only been
reported from its type locality in the Lower to Middle Jurassic of Denmark (Bromley
and Uchman 2003).

Chondrites comprise a tree-like system of tunnels that branch downward, with
the angle of branching commonly less than 45° (Fig. 9.11c). The color of the sedi-
ment fills is invariably different from the host-rock color. This ichnotaxon has been
interpreted as the burrow of infaunal detritus feeders or chemosymbiotic organisms
(Fu 1991). Although worms, such as sipunculids and polychaetes, produce similar
structures today, bivalves cannot be completely ruled out (Kotake 1991 and refer-
ences therein). This ichnogenus is known since the Ordovician, and it is a facies-
crossing form, from offshore to abyssal environments (Médngano et al. 2002b and
references therein).

Cylindrichnus consists of broad U- or bow-shaped, concentrically laminated bur-
rows (Fig. 9.11d). According to Beladstegui and de Gibert (2013), the morphologic
characteristics of this ichnogenus display important similarities with burrows of
some terebellid polychaetes. The ichnogenus Cylindrichnus occurs since the
Cambrian (Mdngano and Buatois 2014), and Belatistegui and de Gibert (2013)
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reported that Cylindrichnus concentricus ichnofabrics occur commonly in Mesozoic
and Cenozoic offshore to shoreface settings.

Curvolithus comprises ribbon-like, flattened, endostratal trace fossils
(Fig. 9.11e). Three rounded lobes are present on the upper surface (Buatois et al. 1998).

Fig. 9.11 Ichnogenera produced by worms. (a) Asterosoma, scale bar is 5 cm; (b) Balanoglossites,
scale bar is 5 cm; (¢) Chondrites, scale bar is 1 cm; (d) Cylindrichnus (modified from Belaustegui
and de Gibert 2009), scale bar is 1 cm; (e) Curvolithus, scale bar is 1 cm; (f) Gyrochorte, scale bar
is 1 cm; (g) Helicodromites, scale bar is 10 cm; (h) Nereites (modified from Seilacher 2007), scale
baris 1 cm; (i) Phycosiphon (modified from Bromley 1996), scale bar is 0.2 cm; (j) Rosselia (modi-
fied from Nara 1995), scale bar is 8 cm; (k) Schaubcylindrichnus, scale bar is 1 cm; (1) Teichichnus
(transverse vertical section, modified from Nara 1995), scale bar is 1 cm
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This ichnogenus is interpreted as the locomotion trace of infaunal predators, such as
flatworms or nemerteans, but gastropods cannot be completely ruled out as producers
(Buatois et al. 1998, see also Knaust 2010). It is known since the Cambrian
(Méngano and Buatois 2014).

Diplocraterion is a U-shaped, vertical burrow with protrusive (common) or retru-
sive (seldom) spreite. Openings to the seafloor are commonly funnel-shaped.
Diplocraterion is interpreted as a dwelling structure and an equilibrium structure
(Goldring 1962; Cornish 1986; Ekdale and Lewis 1991; Bromley 1996). Polychaetes
have been suggested as tracemakers (Arkell 1939), although crustaceans have been
indicated as well (Bromley 1996). Diplocraterion occurs in a wide variety of shal-
low- to deep-marine and even continental environments. However, it is more common
in nearshore high-energy settings and is known since the Cambrian (Mangano and
Buatois 2014).

Euflabella is a morphologically complex ichnogenus that comprises burrows
with single or multiple spreite bodies arranged in linear or radial patterns (Olivero
and Lépez-Cabrera 2013). This trace fossil is interpreted as most likely produced by
an elongated worm-like organism and has been recognized only in Upper Cretaceous
and Paleogene shallow-marine settings (Olivero and Lépez-Cabrera 2013).

Gyrochorte consists of curved to meandering, vertically penetrating burrows,
with a bilobate epichnial ridge and an underlying hypichnial groove, both with
transverse striae (de Gibert and Ekdale 2002; Fig. 9.11f). This ichnogenus is inter-
preted as produced by detritus-feeding worms, most likely annelids (de Gibert and
Benner 2002). It is known since the Early Ordovician, although most recorded
occurrences are from the Jurassic (de Gibert and Benner 2002 and references
therein).

Haentzschelinia is a vertical, radial spreite trace, having a central shaft (Fiirsich
and Bromley 1985). This structure is interpreted as produced by worm-like organ-
isms with a proboscis used for reworking the sediment from a central shaft (Fiirsich
and Bromley 1985; de Gibert et al. 1995; Uchman and Pervesler 2007). Such struc-
tures have been commonly referred to as Dactyloidites, but this name should be
reserved for more simple radial forms particularly common in early Paleozoic depos-
its (see Belaustegui et al. 2015b). Although it has been mentioned from the Triassic
(Beatty et al. 2008), the oldest illustrated occurrences have been documented in the
Jurassic (Agirrezabala and de Gibert 2004).

Helicodromites comprises horizontal spiral burrows, with pale fill contrasting
with the host rock (Fig. 9.11g). These trace fossils are interpreted as feeding
burrows constructed by vermiform organisms (probably capitellid polychaetes or
enteropneusts; Poschmann 2015). Helicodromites is common in both deep- and
shallow-marine deposits, especially in low-energy settings (Baldwin and McCave
1999). It occurs from the Devonian onward (Baldwin and McCave 1999;
Poschmann 2015).

Jamesonichnites consists of cylindrical tunnels with meniscate infill and well-
defined surrounding mantle (Dam 1990a). According to this author, Jamesonichnites
is transitional with Ancorichnus and it represents a feeding trace (fodinichnion) of a
soft-bodied organism. However, its possible occurrence in transition with Hillichnus
(Pazos and Ferndndez 2010) would be consistent with a bivalve producer. It is present
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in shallow-marine settings, ranging from the Jurassic (Dam 1990a; Desai and
Saklani 2014) perhaps to the Cretaceous (Pazos and Fernandez 2010).

Korymbichnus is similar to Arachnostega, although it is distinguished by filiform,
dichotomous branches that fan out distally (Damborenea and Mancefiido 1996).
This structure is interpreted as produced by small deposit-feeding polychaetes that
fed at the interface between a shell and its internal mold. Korymbichnus is known
only from within mollusks molds from the Middle Jurassic of the Neuquén Basin,
Argentina (Damborenea and Mancefiido 1996).

Lapispira consists of double helicoidal, concentrically arranged burrows with
coiling axes perpendicular to the bedding plane (Lanés et al. 2007; Pagani et al.
2012). This ichnogenus is interpreted as a feeding burrow, but its producer is uncer-
tain, with worms, such as polychaetes and enteropneusts, but also thalassinidean
crustaceans, as the most likely candidates (Lanés et al. 2007). It is only known from
Early Jurassic shallow-marine settings. Another possible recording of Lapispira has
been documented from the Miocene. It was attributed to crustaceans and most likely
represents a new ichnotaxon (de Gibert et al. 2012).

Macaronichnus is a mostly horizontal to sub-horizontal trace fossil with a fill char-
acteristically lighter than the host rock. It tends to occur in high densities. Modern
polychaetes (opheliids) produce structures similar to this ichnogenus by ingesting
sand to consume bacteria and organic material attached to the grains and excreting the
clean sand that fills the core of the burrow (Pemberton et al. 2001). This form is com-
monly present in upper-shoreface and foreshore deposits (Pemberton et al. 2001;
Seike 2009) and occurs since the Permian (Quiroz et al. 2010).

Nereites is a predominantly horizontal, winding to meandering trace fossil with
a central tunnel filled with relatively dark sediment and lateral lobes of reworked,
paler sediment (Fig. 9.11h). Interpreted as the structure of vermiform deposit-
feeders, probably enteropneusts (Uchman 1995 and references therein), Nereites is
commonly reported in both shallow- and deep-marine environments since the
Cambrian (Médngano and Buatois 2014).

Palaeophycus is a straight to slightly curved, inclined to horizontal burrow, with
smooth, ornamented, or annulated walls and with infill identical to the host rock.
This ichnogenus has been interpreted as the dwelling burrow of a predaceous or
suspension-feeding organism. Glycerid and nereid polychaetes form similar struc-
tures in modern environments (Pemberton and Frey 1982), but Palaeophycus is a
very simple structure that in fact can be produced by many different groups of phy-
logenetically unrelated organisms. It is a eurybathic trace fossil recorded from
shallow-marine, deep-marine, brackish, and continental paleoenvironments since
the Ediacaran (Mangano et al. 2002b and references therein).

Patagonichnus comprises a morphologically variable and complex burrow system
consisting of vertically and horizontally branched, lined tubes, with cylindrically
laminated structures surrounding the main tubes (Olivero and L6pez-Cabrera 2005).
These authors suggested that Patagonichnus was most likely produced by poly-
chaetes, such as maldanids and capitellids. This ichnogenus is known since the
Miocene (Olivero and Lopez-Cabrera 2005).

Phoebichnus comprises a central shaft consisting of stacked disc-shaped layers
from which several radial burrows emerged; these radial burrows display a lamination
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inclined toward the shaft and an annulated mantle with annuli concave toward the shaft
(Bromley and Asgaard 1972; Dam 1990a; Evans and Mcllroy 2016). Phoebichnus is a
feeding trace (fodinichnion) of a worm-like organism (Bromley and Asgaard 1972).
However, a crustacean producer has been suggested recently (Evans and Mcllroy
2016). This ichnogenus is particularly common in shallow-marine settings, ranging
from the Jurassic to the Pleistocene (Bromley and Asgaard 1972; Kotake 2003).

Phycosiphon is a spreite trace fossil formed by recurving U-lobes in bedding
planes and having a dark core and a pale halo. This ichnogenus has been interpreted
as a feeding structure of vermiform organisms, probably polychaetes (Wetzel and
Bromley 1994), and it occurs in shallow- and deep-marine settings since the
Ordovician (Médngano et al. 2002b and references therein).

Planolites is an unlined, straight to slightly curved, smooth trace fossil, with striae
or annulations, being predominantly horizontal and with an infill contrasting in texture
with the host rock. It is interpreted as a feeding trace of deposit-feeder organisms, prob-
ably polychaetes (Pemberton and Frey 1982). Documented as a eurybathic trace fossil
recorded in shallow-marine, deep-marine, brackish-water, and continental paleoenvi-
ronments, Planolites is known since the Cambrian (Madngano and Buatois 2014).

Polykladichnus comprises vertical to steeply oblique tubes, lined or unlined, with
single or multiple U or Y shapes. The tubes are usually connected to the surface, and
slight enlargements can be seen at junctions. Probable producers for marine
Polykladichnus are polychaetes (Schlirf and Uchman 2005) and nemerteans (Knaust
2010), although cerianthid anemones (Schlirf and Uchman 2005) have been suggested
as well. This ichnogenus is known since the Devonian (Schlirf and Uchman 2005).

Rosselia is a vertical to inclined funnel-shaped burrow with a central tube filled
with sandy sediment and surrounded by concentric muddy laminae (Fig. 9.11j).
Specimens commonly exhibit erosional truncations. Rosselia is interpreted as the
dwelling structure of deposit-feeders, such as terebellid or trichobranchid poly-
chaetes (Nara 1995). This ichnotaxon is common in shallow-marine environments,
with normal-marine or brackish-water conditions, although it has also been reported
from deep-marine environments in a few cases (Mdangano et al. 2002b and refer-
ences therein). Rosselia is known since the Cambrian (Jensen 1997).

Schaubcylindrichnus consists of oblique to horizontal bundles of congruent,
lined, circular, and pale-colored tubes (Fig. 9.11k). Some specimens show cross-
cutting relationships between successive tubes. This ichnogenus is usually inter-
preted as a dwelling structure produced by tubicolous deposit-feeders, similar to
modern maldanid polychaetes (Pemberton et al. 2001). Lowemark and Hong (2006)
considered the Schaubcylindrichnus tracemaker to be a suspension-feeding organ-
ism with the ability to construct closely spaced tubes sequentially within the sedi-
ment. This ichnogenus occurs in shoreface and upper-offshore sediments deposited
under normal salinity conditions (Pemberton et al. 2001). Although known from the
Carboniferous, it is much more common in post-Paleozoic rocks (Buckman 1997;
Lowemark and Hong 2006; Léwemark and Nara 2013).

Skolithos is a simple, vertical burrow that can be lined or unlined. In marine
environments, it is interpreted as the domicile of vermiform organisms (e.g., phoro-
nids and/or polychaetes; Schlirf and Uchman 2005). Skolithos occurs across a broad
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range of shallow- to deep-marine and even continental environments, being most
common in nearshore high-energy settings since the Cambrian (Howard and Frey
1975; Méngano and Buatois 2014).

Taenidium is a cylindrical and unlined, sinuous trace fossil, with fill that consists
of meniscate segments alternately composed of fine- and coarse-grained sediment.
This ichnogenus is interpreted as a grazing or feeding structure produced by vermi-
form, deposit-feeding invertebrates that fed while moving through the sediment
(Keighley and Pickerill 1994). It occurs since the Cambrian in various marine envi-
ronments (e.g., marginal-marine, shallow- and deep-marine) and also in continental
settings (Buatois et al. 2007; Netto 2007).

Teichichnus is a horizontal to slightly inclined, unlined, simple structure, with
retrusive spreite (Fig. 9.111). It is interpreted as the feeding structure of deposit-
feeding organisms, with each spreite formed during sediment mining, or an equilib-
rium structure with the spreite being in response to sea floor aggradation (Seilacher
1955; Corner and Fjalstad 1993). Probable tracemakers are polychaetes and sipun-
culan worms, but some arthropods may produce similar structures (Mangano et al.
2002b and references therein). This is a eurybathic form, being common in mar-
ginal-, shallow-, and deep-marine environments since the Cambrian (Mangano and
Buatois 2014).

Zoophycos is a complex trace fossil with a wide range of morphological vari-
ability (Olivero and Gaillard 2007; Fig. 9.111). This ichnogenus ranges from simple
and isolated lobes with spreite to commonly large and very complex structures with
spiral morphology (Bromley and Hanken 2003). It is known since the Cambrian
(Olivero 2003). Various ethologic models have been invoked to explain the origin of
this structure, including strip mining, detritus feeding, refuse-dump, food cache,
and gardening (Bromley 1991; Lowemark 2015). Morphologic analysis suggests it
is the work of sipunculid or echiuran worms (Wetzel and Werner 1981; Kotake
1992; Olivero and Gaillard 2007). Olivero and Gaillard (2007) noted that the oldest
Zoophycos are usually unlobed, in contrast to more recent forms that show well
developed lobes (see also Seilacher 1986; Bottjer et al. 1988) (see Sect. 9.6).

Considering the evolutionary history of the above-mentioned groups of worms,
most of the major clades appeared during the early Paleozoic, although their body-
fossil record is patchy due to their low preservation potential. For example, unques-
tionable polychaetes had certainly appeared by the middle Cambrian (Glasby et al.
2000). Fauchald (1984) suggested that by the end of the Paleozoic, most of the
polychaete orders were already present, with groups such as opheliids (Scolecida)
recorded since the Devonian (Thompson 1979). Interestingly, some groups of poly-
chaetes became extinct by the end of the Paleozoic, and many groups recognized
today appeared during the Triassic (Glasby et al. 2000). In this regard, Vermeij
(1987) observed that lugworms (Arenicolidae), which intensely bioturbate sedi-
ments by excavating very deep burrows in modern settings, are known from the
Triassic onward. Similarly, Ippolitov (2010) studied the diversification patterns of
serpulids (calcareous tube-dwelling polychaetes) during the Mesozoic, recording an
important increase in the total biodiversity of this group during the Middle to Late
Jurassic. Knaust (2010) documented exceptionally preserved soft-bodied organisms
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together with their trace fossils in a Middle Triassic mud flat. He recorded structures
produced by flatworms, nemerteans, nematodes, annelids, arthropods, and mollusks,
and concluded that these different taxa were already established in the early
Mesozoic (Knaust 2010).

Although the vast majority of the ichnotaxa attributed to worm-like organisms is
known since the early Paleozoic (e.g., Planolites, Palaeophycus, Cylindrichnus),
other more complex forms seem to have resulted from behavioral innovations asso-
ciated with the MMR (e.g., Bornichnus, Euflabella, Haentzschelinia, Lapispira,
Patagonichnus, Phoebichnus). Also, some ichnotaxa, albeit known from the
Paleozoic, are much more common in post-Paleozoic rocks (e.g., Macaronichnus,
Schaubcylindrichnus). In addition, some ichnogenera are represented by a few ich-
nospecies in the Paleozoic and then experienced marked increase in morphologic
variability, resulting in diversifications at ichnospecific rank. In addition, post-
Paleozoic ichnospecies tend to display deeper-tier positions and are morphologi-
cally more complex than Paleozoic ones. Good examples include Asterosoma and
Teichichnus. The ichnospecies A. radiciformis, A. ludwigae, and A. coxii are known
since the Devonian-Carboniferous, but the Jurassic shows the addition of A. surlyki,
A. striata, and an unnamed ichnospecies referred to by Seilacher (2007) as
Tatzelwurm (for discussion on these forms see Chamberlain 1971; Schlirf 2000;
Bromley and Uchman 2003, and Seilacher 2007). The ichnospecies Teichichnus
rectus, T. nodosus, T. flexuosus, and (probably) T. zigzag originated in the
Paleozoic, whereas T. sigmoidalis, T. spiralis, and T. patens have their earliest rep-
resentatives in the Mesozoic (for further discussion of these ichnospecies, see
Schlirf 2000 and Seilacher 2007).

9.2.2 The Main Groups of Bioeroders

Bioerosion was central to the MMR (Vermeij 1977; Bertling 1999; Perry and
Bertling 2000; Taylor and Wilson 2003; Bromley 2004; Wilson 2007). Of particular
significance is the role of sponges, gastropods, bivalves, chitons, echinoids, and
worms as bioeroders (Wilson 2007). Bryozoans and crustaceans were also impor-
tant bioerosion players in the MMR. Brachiopods, which typically produce etching
structures, were already established bioeroders in the Paleozoic and, therefore, are
not treated here. Algae, fungi, and foraminiferans, and cyanobacteria significantly
contribute to microbioerosion (Glaub and Vogel 2004; Bromley 2004; Taylor et al.
2015), but the majority of their ichnogenera have a Paleozoic origin (Glaub and
Vogel 2004; Bromley 2004). Vertebrates, such as fish and sharks, also were impor-
tant bioeroders during the MMR, as recorded by bite marks. However, in most
cases, these traces have not received ichnotaxonomic treatment. As with burrows,
the degree of precision in attribution of individual ichnotaxa to specific bioeroders
is variable, with endolithic algae, cyanobacteria, and bryozoans typically leaving
distinctive fingerprints and worm-generated structures having a higher level of
uncertainty (Bromley 2004). In this section, the most important bioerosion structures
produced by these groups of organisms are described (Table 9.2).



Table 9.2 Common bioerosion ichnogenera in shallow-marine post-Paleozoic deposits (see main

text for references)

Potential

Ichnogenera Stratigraphic range | producers Ethology Trophic type

Belichnus Oligocene—Recent Stomatopods Praedichnia | Predation

Caulostrepsis Devonian—-Recent Spionid Domichnia | Suspension
(polydorid) feeding/predation
polychaetes

Cavernula Ordovician—Recent | Algae Domichnia | Photoautotrophy

Centrichnus Cretaceous—Recent | Anomiid bivalves, | Fixichnia Suspension
balanid cirripeds feeding

Circolites Jurassic—Recent Regular echinoids | Domichnia | Grazing

Entobia Devonian—Recent Sponges (mostly | Domichnia | Suspension
clionaids) feeding

Finichnus Cretaceous—Recent | Cheilostome Fixichnia Suspension
bryozoans feeding

Gastrochaenolites | Ordovician—Recent | Bivalves Domichnia | Suspension

feeding

Gnathichnus Triassic—Recent Regular echinoids | Pascichnia | Grazing

Helicotaphrichnus | Eocene—Recent Spionid Domichnia | Commensalism
polychaetes

Meandropolydora | Jurassic—Cretaceous | Spionid Domichnia | Suspension
polychaetes feeding

Oichnus Ediacaran—Recent Gastropods (also | Praedichnia | Predation
octopods)

Palaeosabella Ordovician—Recent | Sipunculids and Domichnia | Commensalism
polychaetes

Pennatichnus Miocene—Recent Ctenostome Domichnia | Suspension
bryozoans feeding

Petroxestes Ordovician-Miocene | Mytilid bivalves | Domichnia | Suspension

feeding

Radulichnus Jurassic—Recent Gastropods and Pascichnia | Herbivory
polyplacophorans

Renichnus Cretaceous—Recent | Vermetid Fixichnia Suspension
gastropods feeding

Rhopalia Carboniferous— Algae Domichnia | Photoautotrophy

Recent

Rogerella Devonian—Recent Acrothoracican Domichnia | Suspension
cirripeds feeding

Ropalonaria Ordovician—Recent | Ctenostome Domichnia | Suspension
bryozoans feeding

Saccomorpha Carboniferous— Fungi or algae Domichnia

Recent

Spirichnus Jurassic Worms Domichnia

Stellichnus Pliocene Ctenostome Domichnia | Suspension
bryozoans feeding

Talpina Devonian—-Recent Phoronid Domichnia
pseudocolonies

Teredolites Jurassic—Recent Wood-boring Fodinichnia | Herbivory (wood
bivalves consumption)

Trypanites Cambrian—Recent Polychaetes and Domichnia | Suspension

sipunculids

feeding/predation
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9.2.2.1 Sponges

Sponge borings typically consist of anastomosing channel networks generally form-
ing rounded chambers and commonly displaying diagnostic bioglyphs on the walls
(Bromley 1992, 2004). The most common boring produced by sponges is Entobia,
although other ichnotaxa (e.g., Clionolithes, Clionoides, Cicatricula) have been
attributed to the activity of sponges, albeit with variable degrees of certainty (Taylor
and Wilson 2003; Bromley 2004; Wilson 2007).

Entobia consists of multi-apertured and multi-chambered borings (Fig. 9.12b, d).
It is mostly produced by clionaid sponges, although other groups of modern endo-
lithic sponges, such as those in the Family Adociidae, produce similar structures
(Bromley 2004). Traditionally, Entobia was thought to range from the Jurassic to
Recent (Taylor and Wilson 2003; Bromley 2004), occurring in both shallow- and
deep-marine settings, although displaying higher ichnospecies richness in the for-
mer (Bromley and D’ Alessandro 1990). However, subsequent taxonomic revisions
by Tapanila (2006) regarded the Devonian boring Topsentopsis as a junior synonym

Fig. 9.12 Bioerosion structures associated with the MMR. (a) Cliff conglomerate clast containing
deep Gastrochaenolites isp., Middle Miocene, Skotniki Quarry, Holy Cross Mountains, Poland;
(b) Entobia cracoviensis, a large chambered sponge boring formed in a Late Cretaceous abrasion
platform cut into Upper Jurassic limestone. Upper Cretaceous, Bonarka Quarry, Cracow, Poland;
(¢) Teredolites clavatus, Horseshoe Canyon Formation, Upper Cretaceous, near Drumheller,
Canada, scale bar is 2 cm; (d) Gastrochaenolites isp. and Entobia isp. preserved as casts on a shell,
Rio Negro Formation, Miocene-Pliocene, Argentina
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of Entobia. Therefore, the ichnospecies Entobia devonica is an early representative
of this ichnogenus, which reached a peak in ichnospecific diversity as a result of
the MMR.

9.2.2.2 Mollusks

Mollusks are well suited for the exploitation of hard substrates, producing both
dwelling and grazing structures. The focus here is on bioerosion structures attributed
to gastropods and bivalves, although chitons are also known to produce grazing
raspings and can collectively be a major source of bioerosion (Bromley et al. 1990;
Radley 2010).

Gastropods

Gastropods typically produced predatory borings, such as Oichnus (Wisshak et al.
2015) and radulation marks, primarily assigned to Radulichnus (Taylor and Wilson
2003; Bromley 2004; Wilson 2007). In addition, they may produce structures that
are intermediate between borings and surface scars, representing fixation/anchoring
traces or Fixichnia (de Gibert et al. 2004), as illustrated by the ichnogenus Renichnus.
Gastropods also produce a wide variety of etched and rasped pits and scars on
shells, but such marks have not yet received ichnotaxonomic treatment (Bromley
2004; Walker 2007). An extensive analysis of predatory gastropods and their associ-
ated structures, most of them still unnamed, is provided by Walker (2007).

Oichnus comprises circular or subcircular borings generated during predation by
gastropods (but also octopods; Bromley 1981, 1993; Nielsen and Nielsen 2001;
Taylor and Wilson 2003; Wilson 2007; Wisshak et al. 2015). This ichnotaxon is
known from the Ediacaran to Recent (Hua et al. 2003; Taylor and Wilson 2003),
occurring in both shallow- and deep-marine settings (Bromley 2005).

Radulichnus consists of a series of parallel sets of straight to curving scrape
marks produced by the radula of gastropods and chitons (Taylor and Wilson 2003).
This ichnogenus is known in shallow-marine settings since the Jurassic (Voigt 1977,
Kase et al. 1998).

Renichnus consists of etchings comprising a series of kidney-shaped depressions
produced by vermetid gastropods spiraling at an angle to the substrate surface
(Mayoral 1987a). It is known in shallow-marine settings from the Pliocene to the
Recent (Mayoral 1987a).

Bivalves

As well as being major bioturbators during the MMR, bivalves were also important
bioeroders. They produced dwelling structures not only in hardgrounds but also in
woodgrounds, as recorded by the ichnogenera Gastrochaenolites and Teredolites,
respectively.
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Gastrochaenolites comprises clavate or drop-like trace fossils that are circular to
heart-shaped in cross-section, with a narrowed, neck-like upper part in most ichno-
species (Kelly and Bromley 1984; Figs. 9.6d, 9.12a, d). It is interpreted as a dwell-
ing structure produced by suspension-feeding bivalves that commonly bore into
rockgrounds, hardgrounds, and corals of shallow-marine environments (especially
intertidal to shallow subtidal environments), although they also can occur in firm
substrates (Kelly and Bromley 1984; Carmona et al. 2006, 2008). This ichnogenus
has been recorded in deposits ranging from the Ordovician to Recent (Pemberton
and Frey 1985; Ekdale and Bromley 2001b), but the earliest example confidently
attributed to bivalves is from the late Carboniferous (Wilson and Palmer 1998;
Taylor and Wilson 2003).

Teredolites consists of straight to clavate-shaped, gregarious, closely spaced bor-
ings in wood (Kelly and Bromley 1984; Figs. 9.61 and 9.12c¢). It is a dwelling struc-
ture produced by wood-boring bivalves (Kelly 1988). This ichnogenus ranges from
the Jurassic to Recent (Villegas-Martin et al. 2012) and has been described from
marginal-marine coal seams and woodgrounds, as well as from transported logs in
shallow- and deep-marine environments (Bromley et al. 1984; Buatois and Mdngano
1992; Savrda and King 1993).

In addition, the ichnogenus Petroxestes, a boring with elongate outline and
rounded base, known from the Ordovician (Wilson and Palmer 1988) and the
Silurian (Tapanila and Cooper 2002), has been attributed to mytilids. This ichnoge-
nus represents an early example of bivalve bioerosion, significantly predating the
MMR and having been recorded also in the Cretaceous (Jagt et al. 2009) and
Miocene (Pickerill et al. 2001). The ichnospecies Centrichnus eccentricus, an
Upper Cretaceous to Recent ichnotaxon, consists of etching scars produced by
anomiid bivalves (Bromley 1999).

9.2.2.3 Echinoids

Echinoids also produce bioerosion structures, known from Mesozoic and Cenozoic
shells and hardgrounds. Most of these structures consist of a pattern of five radiating
grooves that are interpreted as tooth scratches produced by regular echinoids
(Bromley 1975).

Gnathichnus is a penta-radiate scrape mark produced by regular echinoids
(Bromley 1975, 2004; Taylor and Wilson 2003; Wilson 2007). Gnathichnus likely
reflects development of the jaw apparatus of regular echinoids (Bromley 1975). It is
known from the Triassic to Recent (Bromley 1975; Michalik 1977), occurring in
both shallow- and deep-marine settings (Bromley 2005).

Circolites comprises hemispherical pits that have been attributed to regular echi-
noids (Mikulas 1992b; Bromley 2004). This ichnogenus ranges from the Jurassic to
Recent, occurring in shallow-marine settings (de Gibert et al. 1998a; Bromley 2004).

Ericichnus consists of series of deep and sinuous grooves and has been attributed
to regular echinoids (Santos et al. 2015). It is known from a rocky shoreline of the
Miocene (Santos et al. 2015).
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9.2.2.4 Worms

Several bioerosion structures have been assigned to the activity of “worms,” especially
borings attributed to polychaetes and sipunculids (Tapanila and Hutchings 2012).
They include a wide variety of morphologies from simple borings to branching and
spiraled structures. Some of these structures are known since the Paleozoic (e.g.,
Caulostrepsis, Palaeosabella, Trypanites), whereas others appear to be a product of
the MMR (e.g., Maeandropolydora) and others appear even later (e.g.,
Helicotaphrichnus). A number of ichnotaxa (e.g., Lapispecus, Ramosulcichnus) may
be associated with the MMR, but they are only known from their type localities,
precluding further inferences; these structures are not discussed here. In addition, the
status of some worm ichnotaxa is a matter of debate (Taylor and Wilson 2003;
Bromley 2004; Wilson 2007). Finally, some of the ichnotaxa (e.g., Caulosptrepsis,
Talpina) that have their first occurrence in the Paleozoic but only achieve common
occurrence from the Mesozoic onward (Bromley 2004; Wilson 2007).

Trypanites consists of unbranched, cylindrical borings (Magdefrau 1932). Examples
from the Ordovician contain scolecodonts within, suggesting that the producers were
polychaetes (Kobluk and Nemcsok 1982). Also, short and fat Trypanites are known to
be made today by sipunculids (Bromley 1978). Trypanites occurs since the Cambrian,
typically in shallow-marine environments (Taylor and Wilson 2003).

Maeandropolydora consists of sinuous to contorted galleries, having two or
more apertures (Voigt 1965; Bromley and D’ Alessandro 1983; Taylor and Wilson
2003) and was probably produced by spionid polychaetes (Santos et al. 2003a). It is
known since the Cretaceous (Taylor and Wilson 2003), occurring in both shallow- and
deep-marine settings (Bromley 2005).

Caulostrepsis consists of a vertical gallery slightly bent to a U-shaped tube,
constituting an overall pouch- or ear-shaped structure, which can be even more
complex by the development of lobes (Bromley and D’Alessandro 1983). It has
been attributed to the activity of spionid (polydorid) polychaetes and is known since
the Devonian (Taylor and Wilson 2003), occurring in both shallow- and deep-marine
settings (Bromley 2005).

Palaeosabella comprises long, tubular borings that expand distally (Bromley
2004). This structure is attributed to sipunculids, which make similar bioerosion
structures today (Rice 1969). Palaeosabella has been regarded as a junior synonym
of Clionoides (Furlong and McRoberts 2014). However, Palacosabella is mostly
an unbranched boring, whereas Clionoides is branched, forming complex three-
dimensional networks (Wilson 2007). This ichnotaxon is known since the
Ordovician (Bromley 2004), occurring in both shallow- and deep-marine settings
(Bromley 2005).

Talpina consists of curved and branching tunnels produced by phoronid pseu-
docolonies (Voigt 1972, 1978). It ranges from the Devonian to Recent (Rodrigues
and Gutschick 1970), occurring in both shallow- and deep-marine settings
(Bromley 2005).
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Helicotaphrichnus is a helicoidal boring made in the columella of gastropod
shells occupied by hermit crabs (Kern et al. 1974). This ichnogenus is attributed to
spionid worms living in a commensal relationship with hermit crabs (Walker 1992).
It occurs in shallow-marine settings and ranges from the Eocene to the Recent
(Walker 1992).

Spirichnus is a cylindrical spiral boring that branches at regular intervals (Fiirsich
etal. 1994). Although attributed to worms (Bromley 2004), no further details regard-
ing its affinities are known. It has only been recorded in Jurassic shallow-marine
settings (Fiirsich et al. 1994; Bertling and Insalaco 1998).

Cunctichnus is a cylindrical boring with tapering side branches that occurs on
shells (Firsich et al. 1994; Donovan et al. 2015). It has been attributed to sipuncu-
lids (Fiirsich et al. 1994). Cunctichnus is present in shallow-marine settings and
ranges from the Jurassic to the Cretaceous (Donovan et al. 2015). However, doubts
persist regarding its taxonomic validity, and some authors have argued in favor
of synonymization with Vermiforichnus, which is known since the Devonian
(Taylor and Wilson 2003).

9.2.2.5 Bryozoans

Bryozoans are important bioeroders, although taxonomic issues (e.g., the fact that
some bryozoan biotaxa are erected based on their borings) complicate further evalu-
ation of their significance as players during the MMR (Bromley 2004; Wilson
2007). Finichnus (a senior synonym of Leptichnus; Taylor et al. 2013), arguably the
most widespread bryozoan ichnotaxon linked to the MMR, comprises surficial etch-
ings produced by cheilostome bryozoans (Taylor et al. 1999; Rosso 2008). It ranges
from the Cretaceous to Recent. Stellichnus and Pennatichnus have been attributed to
ctenostome bryozoans, but these forms have only been reported from the Pliocene
(Mayoral 1987b, 1988; Mayoral and Reguant 1995). Ropalonaria, ramifying tun-
nels that may have been produced by ctenostome bryozoans, is known since the
Ordovician, although some of its ichnospecies may have originated during the late
Mesozoic (Taylor and Wilson 2003; Bromley 2004).

9.2.2.6 Crustaceans

Crustaceans, major bioturbators of the MMR, are also important bioeroders.
Bioerosion structures are produced by acrothoracican and ascothoracican cirripeds,
brachyuran crabs, stomatopods, and thalassinideans (Seilacher 1969; Radwanski
1977; Walker 1992; Taylor and Wilson 2003; Bromley 2004). Verrucid cirripeds
produce etching scars (Bromley and Martinell 1991). These are represented by the
ichnospecies Centrichnus concentricus, which is known from the Miocene to Recent
(Radwaniski 1977; Bromley and Martinell 1991). Rogerella, a pouch-shaped boring
produced by acrothoracican barnacles, is known from the Devonian, but is definitely
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more abundant since the Mesozoic (Taylor and Wilson 2003; Bromley 2004).
Ascothoracican borings are known since the Cretaceous, but have not received
proper ichnotaxonomic treatment (Bromley 2004). Shell chipping and peeling are
commonly performed by decapod crustaceans, particularly brachyuran crabs
(Alexander and Dietl 2003). Although chipping and peeling have been known to
occur prior to the MMR, these activities are particularly common since the late
Mesozoic and are an innovation of the MMR (Huntley and Kowalewski 2007). Some
of the resulting structures have been recently included in the new ichnogenus
Caedichnus (Stafford et al. 2015). Brachyuran crabs experienced a rapid diversifica-
tion during the Late Jurassic (Klompmaker et al. 2013). Branching borings in corals
produced by thalassinideans are common, but have not received ichnotaxonomic
treatment yet (Bromley 2004). Belichnus, representing predatory holes produced by
blows struck by stomatopods, is known since the Oligocene (David 1997). However,
the finding that similar structures may be produced by sea gulls provides a caution-
ary note (Cadée and de Wolf 2013)

9.2.2.7 Algae

Endolithic, photoautotrophic organisms, such as algae, are responsible for a wide
variety of microbioerosion ichnotaxa, but most of them are known since the
Paleozoic (Bromley 2004; Glaub and Vogel 2004; Wisshak 2012). One exception is
Eurygonum, interpreted as produced by chlorophytes, which is known since the
Triassic (Wisshak et al 2005).

9.2.2.8 Fungi

A few microbioerosion ichnotaxa have been attributed to fungi. In particular, the
ichnogenera Saccomorpha and Orthogonum seem to be relatively abundant
(Schmidt 1992; Wisshak 2012). Although the possibility of an algal producer can-
not be disregarded for Saccomorpha (Glaub and Vogel 2004), recent detailed analy-
sis reinforces the idea of a fungal origin (Golubic et al. 2014). In any case, the
earliest representatives of these ichnogenera are Ordovician, whereas some ichno-
species (e.g., S. sphaerula) seem to have originated in the Cenozoic (Wisshak 2012).

9.2.2.9 Foraminifera

Foraminifera are known to produce borings of various morphologies, such as
horseshoe-shapes or rosettes (Bromley 2004; Bromley et al. 2007). Rosetted and
fan-shaped microbioerosion structures have been included in the Ichnofamily
Dendrinidae by Bromley et al. (2007). Of these, the ichnogenus Semidendrina has
been attributed to foraminifera and ranges in age from the Carboniferous to the
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Recent (Bromley et al. 2007). However, this ichnogenus is most likely a junior syn-
onym of Nododendrina (M. Wisshak, written communication 2015). At present,
any connection between bioeroding foraminiferans and the MMR is unclear.

9.3 Ichnofaunal Composition, Infaunalization, and Tiering
Structure: Patterns Developed During the Mesozoic
Marine Revolution

The MMR strongly shaped the nature of animal—substrate interactions in the post-
Paleozoic world. Because trace fossils provide direct evidence of colonization of
infaunal ecospace, they represent useful tools to evaluate the degree of infaunaliza-
tion and complexity of tiering structure manifested during the MMR. In this regard,
comparing tiering structure and ichnoguilds through the Mesozoic and Cenozoic
may help to answer the question of whether or not the exploitation of deep infaunal
ecospace that characterizes the MMR was an abrupt or a protracted event (Thayer
1983; Bambach 1983). Within the bioturbated zone of soft sediments, two different
intervals are distinguished. The mixed layer occurs just beneath the sediment sur-
face and has a homogeneous appearance, whereas distinct burrows (trace fossils)
are formed within the transitional layer that lies below (Berger et al. 1979). Benthic
faunas from marginal-marine, brackish-water environments are affected by a num-
ber of stress factors (e.g., dilution of normal-marine salinities) and, therefore, their
ichnologic record may reflect departures from that of the archetypal, fully marine
ichnofaunas (Pemberton and Wightman 1992; MacEachern and Pemberton 1994;
MacEachern et al. 2007; Buatois and Mangano 2011) and will be addressed elsewhere
(see Sect. 9.5). In this section, the focus is on innovations involving trace-making
organisms and trace fossils that took place in open, shallow- and normal-marine
environments.

The timing of the MMR is a controversial issue. Central to this evolutionary
breakthrough is the replacement of brachiopod-dominated faunas to those domi-
nated by mollusks, which involved a change from primarily sedentary, epifaunal
suspension feeding to mobile suspension feeding and deposit feeding, with increased
predation (Wagner et al. 2006; Leighton et al. 2013). Certainly, this faunal turnover
started by the late Paleozoic when many groups of bivalves and gastropods, which
were previously dominant in nearshore settings, moved seaward to become part of
mixed brachiopod-mollusk communities in offshore environments (Sepkoski and
Miller 1985; Jablonski and Bottjer 1990; Olszewski and Patzkowsky 2001).
However, other major players in the MMR, such as decapod crustaceans and irregu-
lar echinoids, became dominant or appeared for the first time during the Jurassic.
From the perspective of bioerosion structures, an increase in diversity for macrobor-
ings occurred by the Devonian (Wilson 2007). Some bioerosion ichnotaxa that
appeared for the first time by the middle Paleozoic, such as Rogerella, Caulostrepsis,
and Talpina, became dominant later in the Phanerozoic (Bromley 2004; Wilson



9 The Mesozoic Marine Revolution 61

2007). Signor and Brett (1984) noted that a rapid radiation of durophagous predators
also took place during the Devonian, and they considered this diversification event
as a precursor of the MMR. However, the middle Paleozoic diversification of bio-
eroders seems to be a distinct episode, whose link with the subsequent MMR is
tenuous at best.

9.3.1 The Triassic: Setting the Stage for the Mesozoic Marine
Revolution

The Triassic seems to represent a pivotal point in the ecology of shallow-marine
environments, being bracketed by two major mass extinctions. Unsurprisingly,
ichnologic information from the Triassic is biased toward the aftermath of the end-
Permian mass extinction and subsequent marine fauna recovery (see Chap. 7). To a
lesser extent, other ichnologic studies have focused on the end-Triassic mass extinc-
tion (see Chap. 8). Ichnofaunas from the lowermost Triassic, reflecting benthic con-
ditions during the immediate post-extinction aftermath, are typically monospecific
and consist of trace-fossil specimens that are smaller than normal and attributed to
opportunistic tracemaker organisms. During the rest of the Early Triassic, there is
evidence of recovery, as suggested by an increase in ichnodiversity, burrow size, and
depth of bioturbation (Twitchett and Barras 2004; see Chap. 7).

From an ichnologic perspective, some of the most thoroughly studied Middle to
Upper Triassic units are the Muschelkalk and Keuper of Europe (e.g., Pérez-Lopez
1997; Knaust 1998, 2002, 2007, 2008; Knaust and Costamagna 2012; Chrzastek
2013). These studies offer a glimpse of animal—substrate interactions between the
two mass extinction events and, therefore, need to be treated in detail. In particular,
a comprehensive study by Knaust (2007) provided detailed documentation of the
ichnology of Muschelkalk carbonates in Germany. Forty ichnospecies (and 24 ich-
nogenera) were identified and described, pointing to a high-diversity community.
This is particularly remarkable given the restricted environmental conditions that
controlled deposition of the Muschelkalk carbonates. Both bioturbation and bioero-
sion structures are present. The former are dominated by trace fossils produced by
decapod crustaceans (e.g., Pholeus, Rhizocorallium, Thalassinoides), worm-like
organisms (possibly Balanoglossites, Arachnostega, and Zoophycos), actinarians
(Bergaueria), and bivalves (Lockeia, Protovirgularia), among other groups. The
presence of trace fossils interpreted as being produced by meiobenthos also was
indicated (Cochlichnus, Helminthopsis, Helminthoidichnites). Among the bioero-
sion structures (Caulostrepsis, Maeandropolydora, Palaeosabella, Trypanites),
polychaetes or sipunculans are the most likely tracemakers, although bivalve borings
(Gastrochaenolites) also have been recognized.

Tiering structure remained quite simple, but it is unclear if this was due to evolu-
tionary or environmental constraints. A remarkably similar ichnofauna to that of the
Muschelkalk in Germany has been recently documented for coeval strata in Poland,
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which is thought to have been deposited in a shallow, storm-affected carbonate ramp
setting that is located within the same basin, but closer to the gateway to the Tethys
Ocean (Chrzastek 2013). The Polish ichnofauna consists of Archaeonassa,
Balanoglossites, Gastrochaenolites,  Lockeia,  Palaeophycus, Planolites,
Protovirgularia, Rhizocorallium, Skolithos, Thalassinoides, and Trypanites (Chrzastek
2013). A similar ichnofauna to those of Germany and Poland, albeit with lower diver-
sities, also has been recorded from Middle to Upper Triassic carbonates of Sardinia
(Knaust and Costamagna 2012).

With respect to Triassic shallow-marine clastics, a detailed study on the ichnology
of a transgressive-regressive deltaic succession of the Bravaisberget Formation in
Svalbard (Mgrk and Bromley 2008) provided valuable information to compare with
the emerging picture based on carbonate ichnology. The tiering structure consists
essentially of three levels: a shallow tier dominated by Taenidium and Rhizocorallium,
a middle tier consisting of Thalassinoides, and a deeper tier represented by
Chondrites, which may occur as reburrowing of Thalassinoides fills; Polykladichnus
seems to have been associated with a late colonization event. Overall ichnodiversity
levels are moderate, and the tiering structure is quite simple. As in the case of the
Muschelkalk, discriminating between environmental constraints (e.g., salinity dilu-
tion, oxygen fluctuations) and evolutionary factors is not straightforward. The fact
that the tiers are interpreted as representing a succession of community replacements
caused by an unstable environmental regime, rather than a single stable community
(Mgrk and Bromley 2008), supports the former possibility.

Despite some caveats, the emerging picture for the end-Triassic mass extinction
is also one of decreasing ichnodiversity, degree of bioturbation, and burrow size
(see Chap. 8). For example, the lower “Pre-Planorbis Beds” (uppermost Triassic) of
the Blue Lias Formation record low ichnotaxonomic diversity, low bioturbation
intensity, small burrow diameters, and an absence of deep-tier bioturbation, reflect-
ing the impact of the end-Triassic mass extinction (Barras and Twitchett 2007).

With regard to bioerosion, the bioeroders typical of modern reefs, such as endo-
lithic bivalves or clionaid sponges, were uncommon to absent prior to the Late
Triassic (Bertling 1999). By the Late Triassic, boring bivalves exhibited increased
size and abundance, accompanied by an increased importance of sponges (Perry
and Bertling 2000; Tapanila and Hutchings 2012). Although the Triassic witnessed
the appearance of some ichnotaxa (e.g., Gnathichnus) that were destined to become
dominant later, these ichnotaxa were relatively uncommon prior to the onset of the
MMR (Taylor and Wilson 2003; Bromley 2004).

Regarding microborings, although earlier studies suggested an early Mesozoic
radiation (Glaub and Vogel 2004), the subsequent finding of a superbly preserved
Carboniferous ichnocoenosis indicates that Carboniferous microendolith communi-
ties were “modern” in aspect (Wisshak et al. 2006). In fact, Mesozoic ichnodiversity
levels are similar to those of the Carboniferous (Wisshak et al. 2006).

Many Paleozoic predators became extinct by the end of the Permian, with few
groups surviving; however, some predators rebounded rapidly after the end-
Permian mass extinction (Walker and Brett 2002). According to these authors, dur-
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ing the Middle Triassic, a number of new predator guilds appeared; these include
lobsters having appendages indicative of durophagy. However, an increase in
diversity of predator decapods took place later in the Late Cretaceous (Schweitzer
and Feldmann 2010). Also, some durophagous marine reptiles, boney fish, and
sharks may have been active predators since the Triassic (Cuny and Benton 1999;
Neenan et al. 2013; Brachaniec et al. 2015). In contrast, the sparse record of shell
boreholes may indicate that drilling predation was limited during the Triassic
(Kowalewski et al. 1998; Walker and Brett 2002). Also, the overall frequency of
shell repair is quite low during the Triassic (Vermeij et al. 1981; Walker and Brett
2002; Alexander and Dietl 2003).

Overall, sparse ichnologic information from the Triassic precludes generaliza-
tions. However, data from the Muschelkalk seem to suggest that by the Middle
Triassic, full recovery from the end-Permian mass extinction had taken place in
equatorial carbonate settings, particularly with respect to diversity levels (Knaust
2007), although refugia may have been present (Wetzel et al. 2007). Nonetheless,
Triassic ichnofaunas show limited infaunalization and relatively simple tiering
structure, particularly in clastic environments (e.g., Mgrk and Bromley 2008).
Accordingly, the evidence from bioturbation and macrobioerosion structures
reviewed here seem to suggest that the Triassic is better regarded as a prelude to the
MMR, rather than part of this evolutionary breakthrough. However, ichnologic
information indicates that a few of the key players of this major evolutionary event,
particularly decapod crustaceans, were already dominant in carbonate settings by
the Middle to Late Triassic.

9.3.2 The Jurassic: Onset of the Mesozoic Marine Revolution

Recovery from the end-Triassic mass extinction is characterized by a gradual
increase in burrow size and the reappearance of deep-tier trace fossils, suggesting
the return to “normal” environmental conditions by the end of the Hettangian (see
Chap. 8; Barras and Twitchett 2007). In fact, an 8 % increase in global ichnodiver-
sity has been recorded in marine environments for the Early Jurassic (see Chap. 16).
The Lower to Middle Jurassic Plover Formation of the northwest Australia shelf is
a critical stratigraphic unit for assessing the degree of infaunalization and tiering
complexity at the onset of the MMR because it contains intensely bioturbated
marine deposits (Buatois et al. 2013; Burns et al. 2013). In particular, shelf, off-
shore, and shoreface deposits of Sinemurian to Aalenian age reveal quite complex
tiering patterns along the depositional profile (Fig. 9.13). For example, upper-
offshore mudstones of this unit are typically intensely bioturbated (BI 5-6), with
some intervals locally showing moderate levels of reworking (BI 3—-4). The upper-
offshore ichnofauna consists of very shallow-tier Planolites montanus, shallow-
tier Asterosoma isp., mid-tier Thalassinoides isp., Palaeophycus tubularis, P.
heberti, Cylindrichnus concentricus, Rosselia socialis, Schaubcylindrichnus
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Fig. 9.13 Tiering structure along the depositional profile of a Lower to Middle Jurassic wave-
dominated shallow-marine platform, Plover Formation of the northwest Australia shelf

coronus, Teichichnus rectus, and Siphonichnus eccacensis, and deep-tier Chondrites
isp. and Phycosiphon incertum (Fig. 9.14a—f). From an ichnoguild perspective,
seven are recognized: the Planolites ichnoguild (vagile, deposit-feeding, very shal-
low tier), the Asterosoma ichnoguild (semi-vagile, deposit-feeding, shallow tier),
the Cylindrichnus-Rosselia ichnoguild (semi-vagile, deposit- to detritus-feeding,
mid-tier), the Palaeophycus-Schaubcylindrichnus ichnoguild (vagile, suspension-
to deposit-feeding, mid-tier), the Teichichnus ichnoguild (vagile, deposit-feeding,
mid-tier), the Siphonichnus ichnoguild (permanent, suspension-feeding, mid-tier),
and the Phycosiphon-Chondrites ichnoguild (vagile, deposit-feeding to chemosym-
biont, deep-tier).

The Sinemurian-Toarcian Neill Klinter Formation of Greenland is another
important unit to evaluate the onset of the MMR. Although no tiering analysis is
available from this unit, ichnologic studies by Dam (1990a, b) showed relatively
high-diversity assemblages in upper-offshore deposits, including dwelling
(Arenicolites isp., Diplocraterion parallelum, Ophiomorpha nodosa, Palaeophycus
isp., Thalassinoides isp.), locomotion (Cruziana isp., Curvolithus simplex,
Gyrochorte comosa), and feeding (Planolites beverleyensis, Rhizocorallium irregu-
lare, Taenidium serpentinum) structures. Similar ichnofaunas are known in shallow-
marine storm-affected deposits of the Lower to Middle Jurassic Bardas Blancas
Formation of Argentina (Bressan and Palma 2009).

Middle Jurassic shallow-marine ichnofaunas are particularly abundant in India,
where a number of studies have been made (e.g., Chiplonkar and Badve 1970;
Chiplonkar and Ghare 1975; Badve and Ghare 1978; Badve 1987; Fiirsich 1998;
Sudan et al. 2000; Patel et al. 2008, 2014; Desai et al. 2008; Srivastava et al. 2010;
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Fig. 9.14 Ichnofaunas from upper-offshore deposits of the Lower to Middle Jurassic Plover
Formation of the northwest Australia shelf. (a) Shallow-tier Asterosoma isp. (As), mid-tier
Thalassinoides isp. (Th), and deep-tier Chondrites isp. (Ch) and Phycosiphon incertum (Ph); (b)
very shallow-tier Planolites montanus (Pl), mid-tier Palaeophycus heberti (Pah), and deep-tier
Chondrites isp. (Ch) and Phycosiphon incertum (Ph); (¢) mid-tier Palaeophycus heberti (Pah) and
Cylindrichnus concentricus (Cy), and deep-tier Chondrites isp. (Ch) and Phycosiphon incertum
(Ph); (d) mid-tier Thalassinoides isp. (Th) reworked by deep-tier Phycosiphon incertum (Ph); (e)
Shallow-tier Asterosoma isp. (As), mid-tier Palaeophycus heberti (Pah) and Teichichnus rectus,
and deep-tier Chonderites isp.; (f) mid-tier Siphonichnus eccacensis (Si), and deep-tier Chondrites
isp. (Ch) and Phycosiphon incertum (Ph). All scale bars are 1 cm
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Joseph et al 2012; Gurav et al. 2014). With the exception of Desai et al. (2008),
these studies have focused on the broader characteristics of these ichnofaunas,
rather than tiering analysis. In any case, the available ichnologic information
indicates high diversity levels in fully marine environments, suggesting a continua-
tion of the trends displayed in the Early Jurassic. High-diversity levels also have
been noted for the Middle Jurassic Vardeklgft Formation of Greenland (Heinberg
and Birkelund 1984; Fig. 9.15a—d). Relatively diverse ichnofaunas are also known
from the deltaic deposits of the Middle Jurassic Lajas Formation of Argentina
(Mcllroy 2007 and Fig. 9.16a—d herein). In particular, offshore deposits were
intensely bioturbated, but lack of lithologic contrast prevented recognition of dis-
crete trace fossils (Mcllroy 2007). These deposits pass upward into delta-front
deposits containing various ichnotaxa. The ichnogenus Haentzschelinia (Fig. 9.16¢)
is present in some of these deposits together with crustacean burrows (Ophiomorpha,
Thalassinoides), among other forms, such as Asteriacites (Fig. 9.16a), Phycosiphon
(Fig. 9.16b), and Rhizocorallium (Fig. 9.16d) (Mcllroy 2007; Canale et al. 2015).
Although the unit has been interpreted as having been deposited in a tide-dominated
delta (Mcllroy 2007), recent observations indicate a greater fluvial dominance than
previously recognized (Canale et al. 2015).

Another Middle Jurassic unit interpreted as having formed in a tide-dominated
delta is the Ile Formation of offshore Norway (Mcllroy 2004). Moderate ichnodiver-

Fig. 9.15 Characteristic trace fossils from Lower to Middle Jurassic shallow-marine deposits of
Greenland. (a) Haentzschelinia ottoi in bedding-plane view, unknown unit; (b) Haentzschelinia
ottoi in cross-section view, unknown unit; (¢) Gyrochorte comosa and Lockeia amygdaloides,
Middle Jurassic, Vardeklgft Formation, Jameson Land; (d) Phoebichnus trochoides, Lower
Jurassic, Neill Klinter Formation, Jameson Land. All scale bars are 1 cm
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Fig. 9.16 Characteristic trace fossils from the Middle Jurassic Lajas Formation of Argentina. (a)
Asteriacites lumbricalis in cross section view, scale bar is 1 cm; (b) Phycosiphon incertum in cross-
section view, scale bar is 1 cm; (¢) Haentzschelinia ottoi in bedding-plane view; (d) Rhizocorallium
isp. in bedding-plane view

sity was recorded in the associated offshore facies, where Phycosiphon, Phoebichnus,
Schaubcylindrichnus, Palaeophycus, and Thalassinoides are present. Gyrochorte,
otherwise a common ichnogenus in the Jurassic, is only abundant in the mouth-bar
facies, whereas archetypal crustacean burrows, such as Thalassinoides and
Ophiomorpha, occur in a wider spectrum of subenvironments (Mcllroy 2004).

Available information indicates that by the Early to Middle Jurassic, shallow-
marine settings were host to diverse infaunal communities displaying complex tier-
ing patterns. Tiering and ichnoguild analysis reveals colonization of shallow-, mid-,
and deep-tiers by detritus, deposit and suspension feeders, as well as predators and
chemosymbionts. However, ichnodiversity per tier may be regarded as moderate.
Intensity of bioturbation commonly was conducive to total reworking of fine-grained
sediments, indicating the presence of efficient bioturbators.

The trends established during the Early to Middle Jurassic continued into the
Late Jurassic. Burrowing innovations are reflected by the appearance of crab bur-
rows, as recorded by the earliest occurrences of Psilonichnus (Fiirsich 1981) and
Macanopsis (Neto de Carvalho et al. 2010) in coastal deposits of Portugal. From an
ichnofacies perspective, this represents the appearance of the Psilonichnus
Ichnofacies, which characterizes transitional settings, typically backshore areas,
washover fans, coastal dunes, and supratidal flats (Frey and Pemberton 1987; Curran
and White 1991; Buatois and Mangano 2011).
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Upper Jurassic fully marine ichnofaunas have been documented in detail from
the North Sea (Fig. 9.17a—g). Typical elements of these Upper Jurassic deposits
are Ophiomorpha, Skolithos, Diplocraterion (Fig. 9.17g), Cylindrichnus,
Schaubcylindrichnus, Siphonichnus, Palaeophycus, Planolites, Asterosoma
(Fig. 9.17a-b), Phoebichnus (Fig. 9.17c—e), Teichichnus (Fig. 9.17f), Phycosiphon,
and Chondrites (Martin and Pollard 1996; Goldring et al. 1991, 2005; Baniak et al.
2014). In particular, the Fulmar Formation of England contains intensely biotur-
bated ichnofabrics that have been the focus of a number of studies (Taylor and
Gawthorpe 1993; Martin and Pollard 1996; Goldring et al. 1991, 2005). Pervasively
bioturbated Upper Jurassic shallow-marine deposits also have been recently
described from the Ula Formation of Norway (Baniak et al. 2014). In particular, the
offshore deposits of the Fulmar and Ula formations are remarkably similar to those
described from Lower Jurassic counterparts. For example, the ichnotaxonomic
composition of the upper-offshore deposits of the Ula Formation is almost identical
to that of the upper-offshore deposits of the Lower to Middle Jurassic Plover
Formation previously described. Although no information on tiering structure has
been provided for the Ula Formation, the available illustrations seem to indicate a
four-tier structure resembling that of the Plover Formation. A similar picture
emerges from deposits in the Fulmar Formation (e.g., Martin and Pollard 1996).
Ichnologic comparison of similar offshore deposits through the Jurassic indicates
that the main evolutionary innovations in these fully marine siliciclastic settings
took place in the Early Jurassic and persisted for the remainder of the period and, as
will be described, continued into the Cretaceous.

Jurassic nearshore sands were host to mid- to deep-tier infaunal communities
(e.g., Heinberg and Birkelund 1984; Dam 1990b; Buatois et al. 2013; Burns et al.
2013; Baniak et al. 2014). Crustacean burrows, such as Ophiomorpha, become
dominant particularly in middle- to upper-shoreface settings. In fact, Ophiomorpha
replaced Skolithos as the dominant component of the Skolithos ichnofacies in post-
Paleozoic strata (Droser and Bottjer 1993). The Sinemurian-Toarcian Neill Klinter
Formation of East Greenland contains extensive Ophiomorpha systems in strongly
storm-affected lower-shoreface deposits (Dam 1990b). This occurrence reveals that
an Ophiomorpha ichnoguild was already present in high-energy nearshore settings
by the Early Jurassic, revealing the establishment of a deep-tier malacostracan
guild. In addition to Ophiomorpha, relatively high-energy nearshore deposits are
characterized by deep-tier Diplocraterion habichi, which may reach up to 1 m
below the sediment-water interface. Because these structures can occur with high
densities, Diplocraterion habichi ichnofabrics may be regarded as a post-Paleozoic
equivalent of Skolithos pipe rock. Under slightly lower-energy conditions, most
typically in the lower shoreface, other ichnotaxa, such as Rosselia, Teichichnus,
Asterosoma, and Rhizocorallium, may become common as well (Ager and Walace
1970; Schlirf 2000, 2003).

Also, by the Jurassic, oxygen-depleted ichnofaunas of modern aspect appear to
have become well established (Savrda and Bottjer 1989; Wignall 1991; Etter 1995;
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Fig. 9.17 Characteristic trace fossils from Lower to Middle Jurassic shallow-marine deposits of
the Yorkshire coast, northeast England. (a) Asterosoma isp. in bedding-plane view, Middle
Jurassic, Hundale Sandstone Member, Scarborough Formation, Hundale Point; (b) Asterosoma
isp. in cross-section view, Middle Jurassic, Hundale Sandstone Member, Scarborough Formation,
Hundale Point; (¢) Phoebichnus trochoides, Middle Jurassic, Helwath Beck Member, Scarborough
Formation, Cloughton Bay; (d) Phoebichnus trochoides, Lower Jurassic, Blea Wyke Sandstone,
Blea Wyke Point; (e) Close-up of one of the radial branches shown in (d) to illustrate complex
backfilling; (f) Teichichnus rectus, Middle Jurassic, Gristhorpe Member, Scarborough Formation,
Yon’s Nab; (g) Diplocraterion parallelum, Lower Jurassic, Staithes Sandstone Formation, Staithes
Harbour. Scale bars are 1 cm, lens cap diameter is 5.5 cm, and coin is 1.8 cm
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Monaco 1994, 1995; Komatsu et al. 2001; Olériz and Rodriguez-Tovar 2002;
Uchman et al. 2003; Leonowicz 2012; Simo and Toma3ovych 2013). Study of these
ichnofaunas has been favored by past occurrences of various anoxic events, which
have been particularly widespread in the European portion of the Tethys. Essentially,
all the basic aspects of the model of oxygen-related ichnocoenoses (ORI) put for-
ward by Savrda and Bottjer (1986, 1987, 1991) in their seminal papers were in
place by the Jurassic. These include a decrease in ichnodiversity, burrow diameter,
and burrowing depth in concert with decreasing oxygen content. According to this
model, structures emplaced in deep tiers in oxygenated sediments tend to move
upward as a response to the upward migration of the redox discontinuity under
dysoxic conditions. Chondrites generally has been regarded as the trace-fossil
form most tolerant to lowered oxygen content of bottom waters, showing dimin-
ished size and shallow-tier positions under extreme oxygen depletion (Bromley
and Ekdale 1984a).

Shallow-marine carbonate ichnofabrics tend to be dominated by crustacean bur-
rows, such as Thalassinoides (Fig. 9.18a-b) and Ophiomorpha (Monaco and
Garassino 2001; Monaco and Giannetti 2002; Giannetti and Monaco 2004; Goldring
et al. 2005; Neto de Carvalho et al. 2010). The latter commonly form nodular lime-
stones, a fabric in which crustacean burrows serve as nuclei for CaCO; precipitation
(Fiirsich 1972; Fig. 9.18a). Other ichnogenera common in Jurassic shallow-marine
carbonates include Rhizocorallium (Fig. 9.18c—d), Diplocraterion (Fig. 9.18e),
Phymatoderma (Fig. 9.18f), Chondrites (Fig. 9.18g), and Cylindrichnus (Fiirsich
1974, 1975; Monaco et al. 1996; Monaco 2002; Goldring et al. 2005; Garcia-Ramos
et al. 2011; Rodriguez-Tovar et al. 2012). As in the case of clastic settings, trace-
fossil assemblages in shallow-marine carbonates tend to reflect an energy gradient
along the depositional profile, with dwelling structures commonly, but not exclu-
sively, produced by suspension feeders (e.g., Diplocraterion, Arenicolites,
Ophiomorpha) occupying high-energy proximal areas, monospecific suites of
Teichichnus in protected lagoonal deposits, and a wider variety of ethologies and
trophic types (e.g., Rhizocorallium, Chondrites, Planolites, Thalassinoides,
Cylindrichnus) present in distal, low-energy shelf deposits, as documented in Upper
Jurassic carbonates of England and France (Fiirsich 1974, 1975).

Similar studies in the Upper Jurassic of Saudi Arabia also show comparable
proximal-distal trends in an unrestricted carbonate shelf, displaying high ichnodi-
versities in distalmost mudstone facies (Goldring et al. 2005). These authors noted
the dominance of deep-tier Cylindrichnus typically cross-cutting shallow- to mid-tier
ichnotaxa, such as Planolites, Rhizocorallium, and Chondrites. In fact, Goldring
et al. (2005) noted a close correspondence between ichnofaunas from siliciclastics
of the Upper Jurassic Fulmar Formation of the North Sea and carbonates from the
roughly coeval Jubaila Formation of Saudi Arabia. The tiering structure of infaunal
communities in storm-affected carbonate platforms has been documented in the
Jurassic of Italy by Monaco et al. (1996) and Monaco (2002), who identified four
tiers: a shallow-tier Thalassinoides, a shallow-tier Planolites-Palaeophycus, a
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Fig. 9.18 Characteristic trace fossils from Jurassic carbonates. (a) Thalassinoides nodular lime-
stone, Upper Jurassic, Coralline Oolite Formation, Carr Naze, England, lens cap diameter is
5.5 cm; (b) Extensive networks of Thalassinoides suevicus, Upper Jurassic, Coralline Oolite
Formation, Carr Naze; (¢) Rhizocorallium jenense jenense, Lower Jurassic, Buerres Member,
Rodiles Formation, Punta Rodiles, Asturias, northern Spain, scale bar is 1 cm; (d) Rhizocorallium
Jjenense spinosus, Lower Jurassic, Buerres Member, Rodiles Formation, Punta Rodiles, Asturias,
northern Spain, scale bar is 1 cm; (e) Diplocraterion parallelum in bedding-plane view, Lower
Jurassic, Buerres Member, Rodiles Formation, Punta Rodiles, Asturias, northern Spain; (f)
Phymatoderma isp., Lower Jurassic, Rodiles Formation, Vega Beach, Asturias, northern Spain,
scale bar is 1 cm; (g) Chondrites isp., Lower Jurassic, Rodiles Formation, Vega Beach, Asturias,
northern Spain, scale bar is 1 cm
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Fig. 9.19 Rhizocorallium isp. from a Jurassic carbonate firmground, Upper Jurassic, Rodiles
Formation, El Puntal Cliffs, San Martin del Mar, Villaviciosa, Asturias, northern Spain. (a) General
view of the surface with several superbly preserved specimens of Rhizocorallium isp., lens cap
diameter is 5.5 cm; (b) Close-up of a specimen of Rhizocorallium isp. showing well-preserved
bioglyphs, scale bar is 1 cm; (¢) Close-up of specimens of Rhizocorallium isp. with sharp burrow
boundaries

mid-tier Helminthopsis, and a deep-tier Chondrites. The ichnogenus Rhizocorallium
is quite common in carbonate firmgrounds as illustrated by spectacular examples
in the Jurassic of Asturias (Garcia-Ramos et al. 2011; Rodriguez-Tovar et al. 2012;
Fig. 9.19a—c).

In addition to infaunalization in soft substrates, ichnologic evidence suggests
that the character and levels of bioerosion in hard substrates also showed significant
changes by the Jurassic (Fiirsich et al. 1994; Kowalewski et al. 1998; de Gibert et al.
1998a; Bertling 1999; Bromley 2004; Tapanila and Hutchings 2012). In particular,
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Fig. 9.20 Gastrochaenolites isp. and Trypanites isp. demarcating the carbonate hardground at the
contact between the Middle Jurassic Upper Inferior Oolite and the underlying Carboniferous lime-
stone, England. Scale bar is 1 cm

de Gibert et al. (1998a)) noted the sharp contrast between Paleozoic and post-
Paleozoic (mostly from the Jurassic onward) bioerosion ichnofaunas, with the
former being dominated by worm borings and the latter by bivalve and sponge
borings. Middle Jurassic patch reefs from Israel have been extensively bioeroded by
bivalves, worms, barnacles, and phoronids (Wilson et al. 2010). The documented
ichnogenera include Clionolithes (produced by sponges or algae), Gastrochaenolites
(bivalves; Fig. 9.20), Oichnus (likely a soft-bodied sclerobiont), Rogerella (acrotho-
racican barnacle), Talpina (phoronids), and Trypanites (worms; Fig. 9.20).

Fiirsich et al. (1994) documented a high diversity of macroborings in an Upper
Jurassic reef, noting that this is the oldest example where borers destroyed such a
large part of the reef, removing up to 40 % of reef volume. Bertling (1999) indicated
that the appearance of a modern macrobioeroding reef fauna took place by the Late
Jurassic. However, a subsequent study by Perry and Bertling (2000) downplayed the
importance of the Late Jurassic radiation of macroborers in favor of a more protracted
process throughout the Jurassic. According to these authors, cirripeds, bivalves, and
worms dominated in the Early Jurassic, with clionaid sponges becoming main players
by the Middle Jurassic. The appearance of Radulichnus in the Jurassic is particu-
larly important because gastropods and chitons may have contributed significantly
to grazing disturbance in shallow-marine settings, leading to the post-Triassic
decline of articulate brachiopods and their retreat to deep-water and/or cryptic refugia
(Radley 2010).

A Jurassic diversification of macroborers was certainly not restricted to reefs, but
can be extended to hard substrates in other settings, such as mollusk shells and
limestone rockgrounds, which supported a bioeroding fauna of modern aspect,
including polychaetes, sponges, and bivalves (Taylor and Wilson 2003; Goldring
et al. 2005). Despite these changes, Tapanila (2008) noted that, with the exception
of echinoids, no new classes of organisms adopted an endolithic strategy during the
MMR. From an ichnofacies perspective, the Jurassic marks the appearance of the
Gnathichnus ichnofacies (de Gibert et al. 2007).

Woodgrounds were colonized for the first time by the Early Jurassic, as indi-
cated by the first appearance of the ichnogenus Teredolites, which is produced by
pholadacean bivalves (Villegas-Martin et al. 2012). This occurrence predates the
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first recorded appearance of pholadacean body fossils, documented from the
Middle Jurassic (Haga and Kase 2011; Villegas-Martin et al. 2012). Innovations in
microbioerosion were not apparent by the Jurassic (Glaub and Vogel 2004; Wisshak
et al. 2006).

Increase in predation pressure is one of the most important features of the
MMR. Although increased predation is reflected in the body-fossil record, the ich-
nologic record of predation provides key information for understanding the role of
predators during this evolutionary breakthrough (Huntley and Kowalewski 2007).
In particular, the roles of drilling predation, as reflected by bioerosion structures,
typically including drill holes of the ichnogenus Oichnus (Miiller 1977) in shells
(e.g., Kowalewski et al. 1998, 1999; Harper et al. 1998, 1999; Walker and Brett
2002; Harper 2003) and of durophagous predation, as evidenced by shell-crushing
structures (e.g., Harper 2003; Oji et al. 2003; Zaton and Salamon 2008), have
received considerable attention. In addition, fish bite marks in echinoid spines have
been recently documented (Wilson et al. 2014). Evaluation of the role of drilling in
the Jurassic has been controversial, essentially due to a patchy fossil record
(Kowalewski et al. 1998, 1999; Harper et al. 1998, 1999). Although the 120 Myr
gap in the presence of drill hole structures, ranging from the end of the Late Triassic
to the beginning of the late Early Cretaceous, is starting to be filled with a few
reports (see discussions in Kowalewski et al. 1998, 1999; Harper et al. 1998, 1999),
available evidence seems to suggest that drilling was not a major selection pressure
during the Jurassic (Harper 2003; Huntley and Kowalewski 2007).

In contrast, a number of animals capable of durophagous predation, including
malacostracan crustaceans with crushing chelae and several vertebrates (e.g., marine
crocodilians, ichthyosaurs, and plesiosaurs), appeared for the first time by the
Jurassic (Walker and Brett 2002). The extent of durophagous predation by the
Jurassic is still uncertain, but the presence of abundant shells displaying crushing
structures most likely produced by predatory fish, probably selachians or teleosteans,
in the Middle Jurassic of Poland points toward intense predation pressure, at least
locally (Zaton and Salamon 2008). Interestingly, grazing by gastropods, chitons,
and regular echinoids may have been responsible for widespread dislodgement,
removal, and consumption of sessile and cemented epifauna from hardgrounds.
According to this view, grazing bioerosion was an important factor of escalation
during the Jurassic (Radley 2010). This is consistent with the ideas of Vermeij
(2008), who noted that the Early Jurassic was characterized by a remarkable increase
in escalation-related innovations, with rapid diversification of clades displaying
adaptative responses to predators.

Ichnologic data suggest that the rise to dominance of the Modern Evolutionary
Fauna is clearly evidenced since the beginning of the Jurassic. Burrow systems
attributed on actualistic grounds to malacostracan crustaceans are pervasive in
shallow-marine  carbonates and siliciclastics, including Ophiomorpha,
Thalassinoides, and Spongeliomorpha (e.g., Dam 1990a, b; Monaco and Garassino
2001; Monaco and Giannetti 2002; Giannetti and Monaco 2004; Neto de Carvalho
et al. 2010). Rhizocorallium is another ichnotaxon produced by crustaceans, at least
in some cases, which has been extremely common since the Jurassic (see review in
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Knaust 2013). Although present since the Cambrian, post-Paleozoic forms of
Rhizocorallium record more sophisticated feeding strategies, including the presence
of spine-shaped protuberances that may have served as caches or for farming
(Rodriguez-Tovar et al. 2012; Fig. 9.18d).

The occurrence of Scolicia in shallow-marine deposits (e.g., Dam 1990a, b),
albeit rare in comparison with younger deposits, reveals the impact of irregular
echinoids. Bivalve trace fossils, such as Protovirgularia, although known since the
early Paleozoic, are quite abundant since the Jurassic (e.g., Hallam 1970; Leonowicz
2008). Trace fossils attributed to worm-like organisms or unknown animals reflect
the appearance of new behavioral programs. This is clearly evidenced by the
ichnogenera Haentzschelinia (referred to as Dactyloidites in some studies, but see
Belaustegui et al. 2015b) and Phoebichnus (Bromley and Asgaard 1972; Heinberg
and Birkelund 1984; Mcllroy 2004, 2007; Srivastava et al. 2010; Patel et al. 2014;
Canale et al. 2015; Evans and Mcllroy 2016). Other worm structures, such as
Gyrochorte, although present in Paleozoic rocks, became particularly abundant in
the Jurassic (e.g., Hallam 1970; Heinberg 1973; Heinberg and Birkelund 1984;
Powell 1992; Sudan et al. 2000; de Gibert and Benner 2002; Leonowicz 2008;
Bressan and Palma 2009; Patel et al. 2014). The ichnogenus Curvolithus, probably
produced by flat worms, also seems to be particularly abundant in Jurassic shallow-
marine deposits (Héntzschel and Reineck 1968; Heinberg 1973; Heinberg and
Birkelund 1984; Buatois et al. 1998). Both Gyrochorte and Curvolithus may be
regarded as part of a relatively widespread ichnoguild in the Jurassic, comprising
vagile, shallow-tier detritus-feeder and predation structures. The spiral burrow
Lapispira, a structure that may be attributed to either worms or crustaceans, is at
present only known from Lower Jurassic shallow-marine deposits (Lanés et al.
2007; Pagani et al. 2012, but see de Gibert et al. 2012 for a possible Miocene
occurrence).

Overall, Jurassic ichnofaunas reveal a compositional turnover with respect to
older, particularly Paleozoic, ichnofaunas and give strong evidence for the rise to
dominance of the Modern Evolutionary Fauna. Comparison of shallow-marine ich-
nofaunas through the Triassic-Jurassic suggests that this faunal turnover took place
essentially by the Early Jurassic as indicated by bioturbation structures, with evi-
dence of a more protracted process for macrobioeroders.

9.3.3 The Cretaceous: Continuation of Previous Trends

Cretaceous siliciclastic shallow-marine ichnofaunas are extremely well known and
have been analyzed in detail in several studies. One area that has been explored in
great detail is the Western Interior Seaway of North America (Howard and Frey
1984; Vossler and Pemberton 1988, 1989; Frey and Howard 1982, 1985, 1990; Frey
1990; MacEachern and Pemberton 1992; Pemberton et al. 1992; Saunders et al.
1994; Pemberton and MacEachern 1997; MacEachern et al. 1999). Although these
studies emphasized ichnofacies applications in facies analysis and sequence
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stratigraphy, the data presented can be easily explored from an evolutionary per-
spective. As a whole, information from the Cretaceous of the Western Interior
reveals the establishment of diverse climax communities in fully marine offshore
settings. Ichnofaunas from these settings include a wide variety of ethologic types
and feeding strategies, represented by a large number of ichnogenera, such as
Thalassinoides (Fig. 9.21f), Diplocraterion (Fig. 9.21c), Cylindrichnus,
Protovirgularia (Fig. 9.211), Schaubcylindrichnus (Fig. 9.21g), Gyrochorte
(Fig. 9.21h), Curvolithus (Fig. 9.21i), Halopoa (Fig. 9.21k), Palaeophycus,
Planolites, Teichichnus, Taenidium, Zoophycos, Helminthopsis, Phycosiphon,
Nereites (referred to as Cosmorhaphe in some of the original studies), Phoebichnus,
Scolicia, Bichordites (Fig. 9.21j), Chondrites, Rhizocorallium, Bergaueria,
Asterosoma, and Rosselia (Fig. 9.21d). Overall, no major departures are apparent
from the trends established in the Jurassic for these settings.

Relatively high-energy nearshore deposits from Cretaceous sections elsewhere
display ichnofaunas that are essentially identical to those of the Jurassic (e.g.,
Curran 1985; Martino and Curran 1990; Pollard et al. 1993; Nielsen et al. 1996;
Weissbrod and Barthel 1998). Cretaceous nearshore sandstones are dominated by
mid- to deep-tier dwelling burrows, typically of crustacean (e.g., Ophiomorpha;
Fig. 9.21a) and worm (e.g., Skolithos) origin. Crustaceans encompass a wide variety
of feeding strategies. Among other producers, although suspension-feeding strate-
gies are dominant, other trophic types include detritus feeding (e.g., Cylindrichnus,
Rosselia) and passive predation (Conichnus, Bergaueria, Fig. 9.21e). The ichnoge-
nus Macaronichnus became particularly common in high-energy nearshore sands of
Cretaceous deposits (see review by Quiroz et al. 2010; Fig. 9.21a).

From the perspective of infaunalization, Upper Cretaceous lower-offshore
deposits of the Magallanes Formation of Patagonia, Argentina provide a glimpse
into the complexity of tiering structures by the end of the Mesozoic. These deposits
have been totally obliterated by bioturbation, mostly due to the activity of a deposit-
feeding infauna (Buatois et al. 2011; Fig. 9.22a—d). The shallowest tier consists of
an indistinct mottling (Planolites) representing background bioturbation in the
water-saturated, soupy substrate of the mixed zone. Below are shallow-tier
Thalassinoides, Phycosiphon, and Zoophycos. The mid-tier is represented by
Asterosoma, Planolites, and “Terebellina” (= Palaeophycus heberti), whereas the
deep tier is occupied by Chondrites, Teichichnus, and a second type of Thalassinoides.
The well-defined morphology and sharp burrow margins of Teichichnus, in addition
to the absence of other trace fossils cross-cutting this ichnotaxon, indicate emplace-
ment deep in compacted sediment. Six ichnoguilds are recognized: the Planolites
ichnoguild (vagile, deposit-feeding, very shallow tier), the Thalassinoides ichnoguild
I (semi-vagile and vagile, shallow-tier deposit-feeder structures), the Phycosiphon-
Zoophycos ichnoguild (vagile, deposit-feeding to chemosymbiont, shallow-tier), the
Asterosoma-Planolites-“Terebellina” ichnoguild (semi-vagile, deposit-feeding, mid-
tier), the Teichichnus-Chondrites ichnoguild (vagile, deposit-feeding to chemosym-
biont, deep-tier), and the Thalassinoides ichnoguild II (semi-vagile and vagile,
deep-tier deposit-feeder structures).
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Fig. 9.21 Characteristic trace fossils from the Cretaceous Western Interior Seaway of North
America. (a) Macaronichnus segregatis, Upper Cretaceous, Horseshoe Canyon Formation, near
Drumheller, Alberta, Canada; (b) Ophiomorpha irregulaire, Upper Cretaceous, Horseshoe Canyon
Formation, near Drumbheller, Alberta, Canada; (¢) Diplocraterion parallelum, Lower Cretaceous,
Dakota Group, Alameda Avenue, Denver, Colorado, United States; (d) Rosselia socialis, Upper
Cretaceous, Horseshoe Canyon Formation, near Drumheller, Alberta, Canada; (e) Bergaueria isp.,
Upper Cretaceous, Wapiabi Formation, Mount Yamnuska Quarry, Alberta, Canada; (f)
Thalassinoides suevicus, Upper Cretaceous, Ferron Sandstone, Ivie Creek area, Utah, United
States; (g) Schaubcylindrichnus coronus, Upper Cretaceous, Panther Tongue Member, Star Point
Formation, Kenilworth Wash, Book Cliffs, Utah, United States; (h) Gyrochorte comosa, Upper
Cretaceous, Kenilworth Member, Blackhawk Formation, near the southern entrance to Tusher
Canyon, Book Cliffs, Utah, United States; (i) Curvolithus simplex, Upper Cretaceous, Kenilworth
Member, Blackhawk Formation, near the southern entrance to Tusher Canyon, Book Cliffs, Utah,
United States; (j) Bichordites isp., Upper Cretaceous, Panther Tongue Member, Star Point Formation,
Kenilworth Wash, Book Cliffs, Utah, United States; (k) Halopoa isp., Upper Cretaceous, Ram
Member, Cardium Formation, Seebe Dam, Alberta, Canada; (1) Protovirgularia dichotoma, Upper
Cretaceous, Kenilworth Member, Blackhawk Formation, Hutch Mesa area, Book Cliffs, Utah, United
States. Scale bars in (g, h, i, j, and 1) are 1 cm, whereas those in (a, b, ¢, d, e, f), and (k) are 3 cm
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Fig. 9.22 Intensely bioturbated Upper Cretaceous lower-offshore deposits of the Magallanes
Formation, Austral Basin, Patagonia, Argentina. (a) Shallow-tier Phycosiphon (Ph) and Zoophycos
(Zo), mid-tier Asterosoma (As), and deep tier Chondrites (Ch) and Thalassinoides (Th); (b)
Shallow-tier Phycosiphon (Ph), mid-tier “Terebellina” (T), and deep tier Chondrites (Ch) and
Teichichnus (Te); (c) Shallow-tier Phycosiphon (Ph), mid-tier Asterosoma (As) and “Terebellina”
(T), and deep tier Chondrites (Ch) and Teichichnus (Te); (d) Shallow-tier Phycosiphon (Ph) and
mid-tier Asterosoma (As). Scale bars are 1 cm
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Fig. 9.23 A hardground surface demarcating the Intra-Valanginian Discontinuity (Lower
Cretaceous) from the Neuquén Basin of Argentina. (a) Close-up showing Thalassinoides isp. (Th)
penetrating well below the surface and Gastrochaenolites isp. (Ga) right below the discontinuity
surface; (b) Close-up showing Gastrochaenolites turbinatus (Gt) and Gastrochaenolites? isp. (G).
Note abundant intraclasts mantling the surface and unidentified borings. Scale bars are 1 cm

Information on Cretaceous oxygen-depleted ichnofaunas comes from the analysis
of the Oceanic Anoxic Event 2 (OAE-2) during the Cenomanian—Turonian transi-
tion in Europe (Uchman et al. 2008; Rodriguez-Tovar et al. 2009a, b; Monaco et al.
2012; Uchman et al. 2013). These trace-fossil assemblages are virtually identical to
those of the Jurassic. In fact, ichnofaunas of oxygen-depleted environments from
the Cretaceous onward seem overall to be quite conservative, and no major changes
have been recorded subsequent to the Jurassic.

As in the case of the Jurassic, Cretaceous shallow-marine carbonates tend to be
dominated by crustacean burrows, particularly in high-energy nearshore grain-
stones (e.g., Spalletti et al. 2001a, b), but also in slightly distal and lower-energy
packstones and wakestones (e.g., Mdngano and Buatois 1994) and omission sur-
faces (e.g., Mdngano and Buatois 1991; Schwarz and Buatois 2012; Fig. 9.23a-b).
Other less common elements, most likely produced by worms, including
Schaubcylindrichnus and Phycodes, tend to be present in more distal settings
(e.g., Mangano and Buatois 1994).

It has been noted that in modern environments, a rapid response of the deep-marine
benthic community is triggered by seasonal productivity, resulting in a pattern referred
to as the “benthic—pelagic coupling” (Graf 1989). Calcareous nannofossils, diatoms,
and dinoflagellates became the largest components of the phytoplankton during the
Cretaceous (Katz et al. 2007). As a result, primary production increased dramatically
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(Kotake 2014). There is significant ichnologic evidence supporting the establishment
of a modern-style benthic—pelagic coupling during the Cretaceous (Kotake 2014;
Izumi 2015). These include the permanent occupation of the same burrow by the
Zoophycos producer as a response to high benthic-food conditions (Kotake 2014) and
the synchronization of deposit-feeding strategies with coccolithophore bloom by the
Phymatoderma animal (Izumi 2015). Therefore, ichnologic information underscores
the fact that significant changes took place in marine ecosystems by the late Mesozoic.

Another dataset comes from chalk that has been extensively studied from an
ichnologic perspective in Europe (e.g., Bromley 1967; Kennedy 1967, 1970, 1975;
Fiirsich et al. 1981; Bromley and Ekdale 1984b, 1986; Ekdale and Bromley 1984,
1991) and the United States (Frey 1970, 1972; Frey and Bromley 1985; Savrda
2014). During the Cretaceous, thick chalk deposits resulted from the accumulation
of coccoliths on the seafloor, derived post-mortem from the flourishing populations
of coccolithophores that dwelled in the marine photic zone above (Stanley et al.
2005). Such deposits provide an ideal medium for ichnofabric analysis due to their
complete bioturbation as a result of very slow rates of sedimentation and full-marine
conditions (Ekdale and Bromley 1991; Savrda 2012). Coccolithophorids first
appeared in the Late Triassic and diversified rapidly during the Early Jurassic (Bown
2005), but it is not until the Cretaceous that this group became a major contributor
to ocean sedimentation (Hay 2004). The average size of individual coccoliths
increased with time, from Early Jurassic to Middle Cretaceous, and this size history
parallels the diversity history of Mesozoic coccolithophorids (Aubry et al. 2005).

In particular, shelf chalk beds, which formed between water depths of 50 and
300 m (Scholle et al. 1983), provide a window to unique infaunal tiered communities
in shallow-water settings (Figs. 9.24a—d and 9.25a—e). Crustacean burrow systems,
such as those of Thalassinoides, are dominant in these deposits, with Ophiomorpha
and Gyrolithes being less common (Ekdale and Bromley 1984). Feeding structures,
such as Chondrites, Phycosiphon, Zoophycos, Planolites, and Teichichnus, are com-
mon as well (Ekdale and Bromley 1984). Concretionary flint in chalk typically rep-
resents silicified burrow systems, such as Thalassinoides, commonly allowing for
three-dimensional preservation (Fig. 9.26a-b); Bromley and Ekdale 1984b).
Another common structure in European chalks is the large burrow structure
Bathichnus paramoudrae, which is typically encircled by ring-like paramoudra flint
(Bromley and Ekdale 1984b).

From an ichnofabric perspective, chalk hosts extremely complex, tiered ichno-
communities as demonstrated by the detailed analysis of pelagic deposits from
Denmark (Ekdale and Bromley 1991). As noted by these authors, degree of biotur-
bation in these deposits is so high that virtually every grain of sediment was pro-
cessed by several animals, resulting in composite ichnofabrics recording the activity
of multi-tiered infaunal communities. The shallowest tier corresponds to indistinct
burrow mottling onto which as many as four ichnoguilds are typically overprinted.
A complete overprinting sequence would include the Planolites ichnoguild (vagile,
shallow-tier deposit-feeder structures), the Thalassinoides ichnoguild (semi-vagile
and vagile, mid-tier deposit-feeder structures), the Taenidium-Phycosiphon ich-
noguild (vagile, middle-to-deep-tier deposit-feeder structures), and the Zoophycos-
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Fig. 9.24 Chalk trace fossils, Upper Cretaceous, West Melbury Chalk Formation, Beachy Head,
southeast England. (a) General view of intensely bioturbated deposits overprinted by mid-tier
Thalassinoides paradoxicus; (b) Close-up of Thalassinoides paradoxicus; (¢) Close-up of
Thalassinoides paradoxicus cross-cut by deep-tier Chondrites isp.; (d) General view of intensely
bioturbated deposits overprinted by mid-tier Thalassinoides paradoxicus. Scale bars are 1 cm

Chondrites ichnoguild (non-vagile, deep-tier deposit-feeder or chemosymbiont
structures). A similar tiering pattern has been recorded in chalk from Alabama
(Frey and Bromley 1985). The tiering structure of the Alabama deposits consists of
very shallow-tier, indistinct burrow mottling and three ichnoguilds, the
Thalassinoides ichnoguild (semi-vagile and vagile, mid-tier deposit-feeder struc-
tures), the Zoophycos-Taenidium ichnoguild (vagile, middle-to-deep-tier deposit-
feeder or farming structures), and the Chondrites ichnoguild (non-vagile, deep-tier
deposit-feeder or chemosymbiont structures).

Common macroborers in the Cretaceous include acrothoracican barnacles,
bivalves, clionaid sponges, polychaetes, and bryozoans (Taylor and Wilson 2003).
In the specific case of macroborers in reef environments, information is patchy for
the Early Cretaceous, but available data suggest a dominance of bivalves and worms
over cirripedians (Perry and Bertling 2000; Tapanila and Hutchings 2012). Bivalve
borings (Gastrochaenolites) were also common in Early Cretaceous hardgrounds
(Schwarz and Buatois 2012; Fig. 9.23a-b). During the Late Cretaceous, borer
sponges may have played a major role, particularly in rudist reefs, and to some
extent also in coral reefs, together with worms and bivalves (Perry and Bertling
2000; Tapanila and Hutchings 2012). Rocky shorelines also were affected by sig-
nificant bioerosion, with hardgrounds and carbonate rockgrounds displaying similar
borer communities (Taylor and Wilson 2003). A wide diversity of bioerosion structures



Fig. 9.25 Ichnofabrics and trace fossils in Eocene to Maestrichtian chalk cored at DSDP Site 605 (for
details about the lithology see van Hinte et al. 1987; for details about the ichnology see Wetzel 1987).
(a) Ichnofabric characterized by the vertical or steeply oriented spreite of Zoophycos isp. (Z) [note
deviating spreite (ds) and even upward shifting ones (us)], Thalassinoides isp. (Th) some no longer
identifiable burrows have been reworked by producers of Chondrites isp. (C); background sediment
has been homogenized (core 19, section 4, 20-29 cm); (b) Complex ichnofabric composed of
Planolites isp. (P), Teichichnus isp. (T), Thalassinoides isp. (Th), and Zoophycos isp. (Z); some bur-
rows have been reworked by producers of Chondrites isp. (C) (core 21, section 1, 75-81 cm); (¢)
Complex ichnofabric composed of Zoophycos isp. (Z), Teichichnus isp. (T), and Planolites isp. (P) that
both have been reworked by producers of Chondrites isp. (C), and Thalassinoides isp. (Th) (core 17,
section 1, 21-29 cm); (d) Ichnofabric with dominant Chondrites isp. (core 41, section 6, 15-19 cm);
(e) Spirophyton-like burrow (S) and some Chondrites isp. tubes (C) (core 50, section 3, 64—71 cm)
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Fig. 9.26 Concretionary flint in chalk representing silicified Thalassinoides isp. (a, b) Upper
Cretaceous specimens, Beachy Head, southeast England. All scale bars are 1 cm

was described from a Lower Cretaceous karst surface in the Czech Republic
(Mikulas 1992b). The assemblage included borings by sponges (various ichnospecies
of Entobia), worms (Trypanites), acrothoracican barnacles (Rogerella), bivalves
(Gastrochaenolites), and echinoids (Circolites). Non-carbonate rocky shorelines
were characteristically of low diversity, as indicated by a monospecific suite of
bivalve borings (Gastrochaenolites) penetrating slates (Buatois and Encinas 2011).
Bioerosion in woodgrounds became much more common in the Cretaceous, as shown
by widespread occurrences of the ichnogenus Teredolites (Taylor and Wilson 2003;
Villegas-Martin et al. 2012). From a microbioerosion perspective, the Cretaceous
seems to show only a very slight increase in the number of ichnospecies recorded
(Wisshak et al. 2006).

Predation structures, drilling and, to a lesser extent, durophagous predation may
have increased in intensity during the Cretaceous (Walker and Brett 2002; Harper
2003, 2006; Huntley and Kowalewski 2007). There is overwhelming paleontologic
and ichnologic evidence that drilling predation underwent major evolutionary inno-
vation in the Cretaceous (Kelley and Hansen 2003; Huntley and Kowalewski 2007).
The earliest undisputed body-fossil record of muricid and naticid gastropods is from
the Late Cretaceous (Merle and Pacaud 2002), although drill holes identical to those
produced by these gastropods occur in the Early Cretaceous (Taylor et al. 1983) and
even the Triassic (Fiirsich and Jablonski 1984). The appearance of these gastro-
pods undoubtedly increased predation pressures (Harper 2003, 2006). Octopod
cephalopods may have been important predators, but no undisputed ichnologic evi-
dence of Cretaceous drilling predation by these organisms has been documented
(Walker and Brett 2002). With respect to durophagous predation, the appearance
by the Cretaceous of many crustacean decapod families that are known to be active
predators (e.g., Palinuridae) represented a major breakthrough (Harper 2003). In
addition, many vertebrate predators were very active during the Cretaceous, with
crocodilians, ichthyosaurs, and plesiosaurs being common in the Early Cretaceous
and pliosaurids and mosasaurs as well during the Late Cretaceous (Walker and Brett
2002). Oji et al. (2003) noted that, although a number of durophagous decapod
crustaceans (as well as teleost fish) were present by the Late Cretaceous, the scarcity
of crushed shells suggests that durophagous predators did not play a major role in
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Cretaceous ecosystems. However, their study is of very local scale, based on a
number of units in Japan, which may explain the discrepancies with broader compi-
lations, such as those by Vermeij et al. (1981) that noted a global peak in gastropod
shell repair frequency in the Cretaceous.

Regarding burrowers, crustaceans, bivalves, and echinoderms were among the
most important, signaling consolidation of the MMR in shallow-marine environ-
ments. Worm-like organisms also were undoubtedly key bioturbators in these settings.
Opheliid polychaetes became common in high-energy foreshore to upper-shoreface
sands, as evidenced by the abundance of Macaronichnus, particularly in mid- to high-
latitude settings (Quiroz et al. 2010). Also, in high-latitude settings, complex spreiten
burrows, namely, Paradictyodora and Euflabella, occurred for the first time (Olivero
et al. 2004; Olivero and Lépez-Cabrera 2013; Olivero and Lopez-Cabrera 2014).

To summarize, from the perspective of animal—substrate interactions in shallow-
marine siliciclastic settings, the Cretaceous represents a continuation of the trends
established in the Jurassic. However, by the end of the Cretaceous, a modern-style
benthic—pelagic coupling pattern was established and an important increase in
global ichnodiversity (35 %) took place in marine environments (see Chap. 16).
In carbonate settings, crustacean burrows are among the dominant forms. In the
specific case of chalk, the explosion in coccolithophores provided a new substrate
that allowed for the establishment of extremely complex tiering structures, unknown
in older deposits. Diversification of microborers was limited, but macrobioerosion
exhibited the increased activity of borers typical of modern communities (e.g.,
sponges, bivalves, gastropods).

9.3.4 The Paleogene: Rise of the Modern Evolutionary Fauna
After End-Cretaceous Mass Extinction

The end-Cretaceous mass extinction (see Chap. 12) differentially impacted the
various tracemakers involved in the MMR. Unfortunately, the present scarcity of
papers documenting Paleogene shallow-marine ichnofaunas inhibits detailed
recognition and reconstruction of patterns and trends.

The few available trace-fossil studies of shallow-marine clastic settings seem to
display similarities with late Mesozoic ichnofaunas, although the sparse record pre-
vents real evaluation of tiering structure. Crustacean burrows, such as Thalassinoides,
continued to be elite trace fossils (sensu Bromley 1990) in the Paleogene, having
been recorded in shallow-marine deposits as early as the early Paleocene (Danian;
Rodriguez and Panza 2003). Overall, typical Mesozoic elements, such as
Thalassinoides, Ophiomorpha, Psilonichnus, and Rhizocorallium, are dominant in
shallow-marine areas during the entirety of the Paleogene (Belt et al. 1997; 2005;
Myint 2001; Shelley and Lawton 2005; Uchman and Gazdzicki 2006; Singh et al.
2008; Villegas-Martin et al. 2014). Other typical Mesozoic burrowers, such as irregular
echinoderms and prosobranch bivalves, also are represented by their trace fossils
in the Paleogene (Uchman and Gazdzicki 2006; Demircan and Uchman 2012;
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Fig. 9.27 Characteristic trace fossils from the Middle to Upper Eocene Leticia Formation,
Patagonia, Argentina (a) Schaubcylindrichnus isp., cross-section view, coin is 1.8 cm; (b)
Gyrochorte isp., bedding-plane view; (¢) Diplocraterion isp., bedding-plane view; (d) Scolicia
isp., bedding-plane view

Villegas-Martin et al. 2014). One of the most detailed analysis of Paleogene
ichnofaunas is that of Lopez-Cabrera et al. (2008), who documented a high-diver-
sity ichnofauna from the upper Eocene of Tierra del Fuego, Argentina, comprising
the ichnogenera Diplocraterion, Schaubcylindrichnus, Palaeophycus, Planolites,
Rosselia, Asterosoma, Rhizocorallium, Taenidium, Teichichnus, Tasselia,
Curvolithus, Gyrochorte, Patagonichnus, and Paradictyodora (Fig. 9.27a—d). This
study showed that, at least by the middle Eocene, ichnodiversity levels were similar
to those attained in the late Mesozoic. Of particular importance is the appearance of
the ichnogenus Patagonichnus, a complex trace fossil attributed to gregarious poly-
chaetes (see also Olivero and Lopez-Cabrera 2005).

As in the case of Jurassic-Cretaceous examples, Paleogene nearshore sands are
typically dominated by Ophiomorpha (Deville 1996), as well as by other vertical
burrows, such as Skolithos, Diplocraterion, and Arenicolites (Zhou 1997; Shelley
and Lawton 2005). Quiroz et al. (2010) noted that Macaronichnus, an ichnogenus
common in nearshore sands of high- to mid-latitudes, is absent in Paleocene to
lower Eocene deposits, a pattern that may reflect overall climatic conditions.

Evaluation of the macrobioerosion record is biased as a result of uneven strati-
graphic distribution of host substrates, but reports include borings in reefs, rocky
shorelines, clasts, and shells. In general, Perry and Bertling (2000) did not note any
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major change in style of macrobioerosion across the Cretaceous—Paleogene boundary.
At present there are few examples of Paleocene and Eocene reef bioerosion, but the
sea-level highstand and global oligotrophic conditions during the Oligocene con-
tributed to extensive reef development (Perry and Bertling 2000). Bivalves were
apparently the most important macrobioeroders in reefs during the Paleocene, with
a subordinate presence of sponges, worms, and bryozoans (Babi¢ and Zupani¢
1981; Bernecker and Weidlich 1996; Schuster 1996). Sparse information from the
Eocene also underscores the important role of bioeroding bivalves in reefs (Gaemers
1978). Advanced teleost fish, most significantly parrotfish, were important contrib-
utors to macrobioerosion in tropical settings since the Eocene because they have a
sophisticated jaw mechanism for herbivory (Berg 1940; Steneck 1983). Perry and
Bertling (2000) noted that the interpretation of Oligocene patterns is not straightfor-
ward, with European reefs having a meager macrobioerosion record, whereas those
from the Caribbean display a high ichnodiversity.

In particular, patch and barrier reefs from Puerto Rico contain a wide variety of
ichnotaxa, including Trypanites and Uniglobites, as well as several ichnospecies of
Entobia and Gastrochaenolites (Edinger and Risk 1994). Overall, sponges domi-
nated over bivalves and worms in these reefs. In addition to reefs, rocky shorelines
were subject to significant bioerosion by clionaid sponges, bivalves, polychaete
worms, and barnacles (Roniewicz 1970; Hanna and Al-Radwany 1993). Composite
ichnofabrics typically developed in association with omission surfaces, including
both burrows in softgrounds and firmgrounds and borings in hardgrounds, leading
to complex patterns of cross-cutting relationships (Lewis and Ekdale 1992).
Bioerosion by bivalves and polychaetes has been recorded in clasts as well (Babi¢
and Zupani¢ 2000). Furthermore, bioerosion in shells was also common during the
Cretaceous—Paleogene, particularly in the Eocene-Oligocene (Taylor and Wilson
2003). Examples include borings by acrothoracican barnacles (Abletz 1993), pho-
ronids (Abletz 1994), and lithophagid bivalves (Krumm and Jones 1993; Krumm
1999). Nummulite tests breached by Oichnus have been documented from the
Eocene (Sengupta and Nielsen 2009). In addition, nummulitids were used as mate-
rials to reinforce burrow walls, as illustrated by the ichnogenus Nummipera (Holder
1989; Jach et al. 2011; our Fig. 9.28a—b). During the Oligocene, whale skeletons for
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Fig. 9.28 The ichnogenus Nummipera, characterized by the presence of nummulite shells rein-
forcing burrow walls. Middle Eocene, Sogucak Limestone Formation, Ugurlu Beach, Gok¢eada
Island, western Turkey. (a) General view; (b) Close-up. Scale bars are 1 cm
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the first time show evidence of bioerosion, most likely produced by the osteophagous
worm Osedax (Boessenecker and Fordyce 2014).

Although there was a slight increase in the diversity of microborings in the
Paleogene, a faunal turnover is apparent (Glaub and Vogel 2004). Change in the
dominant macrobioeroding ichnotaxa took place by this time, with the appearance
of new ichnospecies whose oldest record is Paleogene (Glaub and Vogel 2004;
Wisshak 2012).

The great end-Cretaceous mass extinction differentially impacted some groups
of predators. Many marine reptiles and the ammonites and belemnoids became
extinct, but the majority of invertebrate and fish predatory groups survived (Walker
and Brett 2002). Several predatory invertebrates (e.g., neogastropods, decapods)
and vertebrates (e.g., teleost fish, neoselachian sharks, sea birds, marine mammals)
diversified during the Paleogene. Although precise documentation of ichnologic
trends through time is difficult to evaluate, there is general agreement that drilling
predation increased during the Paleogene (Kelley and Hansen 2003; Huntley and
Kowalewski 2007). Vermeij (1987) indicated that an episode of drilling escalation
occurred between the Cretaceous and the Eocene, but the details of timing are
uncertain due to uneven stratigraphic distribution of data, including a lack of infor-
mation from the Paleocene.

A similar Cretaceous—Paleogene phase has been identified (Kowalewski et al.
1998). A decline of drilling frequencies across the Cretaceous—Paleogene boundary
followed by a subsequent increase may have resulted from the end-Cretaceous mass
extinction and subsequent recovery (Kelley and Hansen 1996, 2003). The record of
octopod shell drilling is essentially restricted to the Cenozoic (Walker and Brett
2002). An Eocene radiation of crushing predator crustaceans, including the
Portunidae, Cancridae, Calappiidea, Grapsidae, Partheopidae, and Majodae, may
have contributed to an increase in predation pressures (Walker and Brett 2002;
Harper 2003), although claw-like appendages, such as those in these groups, may
have evolved first as defensive traits (Vermeij 1982). Stomatopod crustaceans, com-
prising both gonodactyloids and squilloids, became important predators in the
Cenozoic, although only the former are durophagous predators, commonly preying
on mollusks (Walker and Brett 2002). The earliest representatives of gonodactyloid
stomatopods in the fossil record are Miocene (Hof and Briggs 1997; Hof 1998).
However, the ballistic ichnogenus Belichnus, which consists of small puncture
marks on mollusk shells (Geary et al. 1991; Pether 1995), has been recognized since
the Oligocene (David 1997). Vertebrate predators also contributed to durophagy,
including sea turtles as well as a number of marine mammals, the latter since the
Eocene (Walker and Brett 2002). Interpretation of shell repair frequency is not
straightforward, but Allmon et al. (1990) noted a drop in repair frequency for tur-
ritellid shells during the Paleocene and a rebound in the Eocene.

In short, Paleogene ichnofaunas from shallow-marine clastic settings are similar
to those of the late Mesozoic. Macrobioerosion styles seem to have persisted across
the Cretaceous—Paleogene boundary as well, although an increased role of sponge
and fish bioerosion is noted later in the Paleogene. In addition, predation pressures,
as reflected by both drilling and durophagy, likely increased during this interval
(Kowalewski et al. 1998; Kelley and Hansen 2003; Huntley and Kowalewski 2007).
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9.3.5 The Neogene: Establishment of Modern Marine
Ecosystems

The Neogene records the establishment of modern-marine ecosystems. In comparison
with the Paleogene, the ichnology of Neogene shallow-marine clastic deposits has
been documented through a larger number of studies (e.g., Curran and Frey,
1977; Mayoral 1986; Ting et al. 1991; Martini et al 1995; Uchman and Krenmayr
1995, 2004; Pickerill et al. 1996, 1998; Hong 1997; de Gibert et al. 1998b, de Gibert
et al. 2013; de Gibert and Martinell 1998; Mayoral et al. 1998, 2013; Muiliz and
Mayoral 2001a; Buatois et al. 2003; Malpas et al. 2005; Campbell et al. 2006;
Cantalamessa et al. 2007; Carmona et al. 2008, 2012; Pervesler et al. 2011; Lokho
and Singh 2013).

Compositionally, Neogene shallow-marine ichnofaunas in clastic settings tend to
display similar elements to their Paleogene counterparts. Crustacean burrows, such
as Thalassinoides, Ophiomorpha, Spongeliomorpha, Psilonichnus, Macanopsis,
Gyrolithes, and Rhizocorallium, continued to be common elements (e.g., Mayoral
1986; Ting et al. 1991; Martini et al. 1995; Uchman and Krenmayr 1995, 2004;
Hong 1997; de Gibert et al. 1998b, 2013; Mayoral et al. 1998; Muiiiz and Mayoral
2001a, b; Buatois et al. 2003; Carmona and Buatois 2003; Cantalamessa et al. 2007;
Carmona et al. 2004, 2008, 2012; Malpas et al. 2005; Campbell et al. 2006; Pervesler
et al. 2011; de Gibert et al. 2013). Both locomotion and resting trace fossils gener-
ated by irregular echinoids are common (e.g., Plaziat and Mahmoudi 1988; Colella
and D’ Alessandro 1988; Uchman and Krenmayr 1995, 2004; Mayoral and Mufiiz
2001; Buatois et al. 2003; Carmona et al. 2008, 2012).

Bivalves are also key burrowers in Neogene shallow-marine sediments, as
revealed by the abundance of the ichnogenera Lockeia, Protovirgularia, and
Siphonichnus (e.g., Buatois et al. 2003; de Gibert and Domeénech 2008; Carmona
et al. 2008, 2010, 2012). Also added to this list should be two bivalve ichnogenera
that seem to have occurred for the first time by the Neogene: the equilibrium struc-
ture Scalichnus (Hanken et al 2001; Carmona et al. 2008) and the feeding trace
Saronichnus (Pervesler and Zuschin 2004). Equilibrium structures of terebellid
polychaetes, included in the ichnogenus Rosselia, are also common, sometimes dis-
playing a response to sedimentation pulses by formation of dense assemblages
(Nara 1995, 1997, 2002; Campbell et al. 2006; Frieling 2007). The highly complex
burrow system Patagonichnus, produced by gregarious polychaetes, displays
sophisticated feeding patterns expressed by its various ichnospecies (Olivero and
Lopez-Cabrera 2005).

Neogene nearshore sands display similar ichnofaunas to those of other Early
Jurassic—Paleogene deposits. Typical ichnogenera are Ophiomorpha, Conichnus,
Bergaueria, Skolithos, Arenicolites, and Diplocraterion (e.g., Curran and Frey 1977;
Mayoral 1986; Ting et al. 1991; Martini et al. 1995; Uchman and Krenmayr 1995;
2004; Hong 1997; de Gibert et al. 1998b; Mayoral et al. 1998; Muiiiz and Mayoral
2001a,b; Buatois et al. 2003; Carmona and Buatois 2003; Cantalamessa et al. 2007;
Carmona et al. 2004, 2008, 2012; Malpas et al. 2005; Pervesler et al. 2011).
Macaronichnus became common again, with records from a number of high-
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energy settings (e.g., Uchman and Krenmayr 2004; Carmona et al. 2008; Quiroz
et al. 2010).

Despite the overall similarities with Paleogene ichnofaunas, Neogene ichnofau-
nas display an increase in ichnodiversity (both alpha and global sensu Buatois and
Mingano 2013; see Chap. 16) and a more complex pattern of infaunal tiering.
Detailed analysis in lower Miocene lower-shoreface to offshore-transition deposits
of Patagonia, Argentina (Fig. 9.29a—f) revealed the presence of six ichnoguilds and
nine tiers (Buatois et al. 2003; Carmona et al. 2012). This extremely complex infau-
nal tiering structure includes a mottled texture (vagile, deposit feeders, very
shallow-tier), the Thalassinoides-Asterosoma-Rosselia ichnoguild (semi-vagile,

Fig. 9.29 Characteristic trace fossils from Lower Miocene shallow-marine deposits of Patagonia,
Argentina. (a) Scolicia isp. and its producer, bedding-plane view, Chenque Formation, coin is
2.5 cm; (b) Ophiomorpha isp., bedding-plane view, Chenque Formation, lens cap diameter is
5.5 cm; (¢) Helicodromites isp., bedding-plane view, Chenque Formation; (d) Scolicia isp., cross-
section view, note the two drain channels at the base of the specimens (white arrows); (e)
Ophiomorpha nodosa, cross-section view, Monte Leén Formation; (f) Asterosoma isp., cross-
section view
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deposit feeders, shallow-tier), the Schaubcylindrichnus-Palaeophycus ichnoguild
(vagile, suspension and deposit feeders, middle-tier, the Scolicia-Phycosiphon-
Helicodromites-Teichichnus-Taenidium ichnoguild (vagile, deposit feeders,
middle-tier), the Thalassinoides ichnoguild (stationary, deposit feeders, deep-tier),
and the Chondrites ichnoguild (stationary, deposit feeders or chemosymbionts, very
deep-tier). This tiering structure reflects higher partitioning of the infaunal habitat
and an increase in degree of complexity than that found in older ichnofaunas from
siliciclastic settings. This is revealed not only by the number of ichnoguilds present,
but particularly by the increased diversity within individual ichnoguilds.

Regarding carbonate settings, an extensive review of the character and impor-
tance of ichnology to the study of shallow-marine carbonates was made by Knaust
et al. (2012). In a comprehensive study of the Bateig Limestone, Miocene of
southeastern Spain, de Gibert and Goldring (2007) identified several ichnofabrics
in a pelagic limestone, typically displaying intense bioturbation. The dominant
ichnogenera are Ophiomorpha, Bichordites, and Palaeophycus, with subordinate
presence of Planolites, Skolithos, and Teichichnus. Invariably, deeply emplaced
biogenic structures cross-cut indistinct mottling. Crustacean burrows commonly
form quite complex compound structures (de Gibert et al. 2012). More recently,
Beladstegui and de Gibert (2013) noted the abundance of Cylindrichnus, which
contributes to intensely bioturbated carbonate fabrics, and, in this case, represents
an elite trace fossil (see also Goldring et al. 2002).

Detailed information on carbonate ichnofaunas also has been derived from
Pleistocene—Holocene Bahamian-type carbonates (Curran 2007, and earlier papers
cited therein). The ichnologic study of grainstones on San Salvador and other
islands of the Bahamas Archipelago and the Miami Limestone of south Florida
defined five ichnocoenoses within the Skolithos and Psilonichnus ichnofacies
(Fig. 9.30a—g). Ophiomorpha is the dominant trace fossil in shallow subtidal grain-
stones whereas Psilonichnus upsilon, representing the burrows of the ghost crab,
Ocypode quadrata, is common in beach backshore beds. Carbonate dune deposits
(eolianites) also can exhibit a distinctive ichnocoenosis dominated by sometimes
complex insect burrows (Curran and White 2001). Similar subtidal ichnofaunas
have been recorded in the Pleistocene grainstones of the Cayman Islands (Pemberton
and Jones 1988; Jones and Pemberton 1989; Metz 2011).

As is the case with bioturbation structures, macrobioerosion during the Neogene
is essentially indistinguishable from that of the modern oceans. Modern reef bio-
erosion is dominated by grazing and, although the timing of this evolutionary
innovation is not totally clear, the onset of widespread grazing may have occurred
by the end of the Oligocene (Perry and Bertling 2000). Extensive information on
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Fig. 9.30 (continued) shallow-subtidal grainstone, Upper Pleistocene, Cockburn Town Member,
Grotto Beach Formation, Clifton Pier, New Providence, pen is 15 cm in length; (f) Specimen of a
large, well-lithified Ophiomorpha nodosa shaft-terminus structure, Upper Pleistocene, Harry Cay,
Little Exuma; (g) Psilonichnus upsilon in beach-backshore grainstone, Holocene, Hanna Bay
Member, Rice Bay Formation, Moriah Harbour Cay, Little Exuma
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Fig. 9.30 Characteristic trace fossils from Pleistocene—Holocene Bahamian-type carbonates.
(a) Closely-packed Ophiomorpha nodosa in shallow-subtidal, coral-rich grainstone, Upper
Pleistocene, Cockburn Town Member, Grotto Beach Formation, Cockburn Town Fossil Coral
Reef, San Salvador; (b) Ophiomorpha nodosa tunnels and shafts, bedding-plane view, same age
and location as (a), pen is 15 cm in length: (¢) Shallow-subtidal grainstone with abundant
Ophiomorpha nodosa (Op), Planolites isp. (P1), and Skolithos linearis (Sk), Upper Pleistocene,
Cockburn Town Member, Grotto Beach Formation, Harry Cay, Little Exuma, scale bar is 2.5 cm;
(d) Well-lithified Planolites, same age and location as (c); coin is 1.8 cm; (e) Conichnus conicus,
a structure commonly attributed to the resting and upward-movement activity of sea anemones, in
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macrobioerosion comes from the study of rocky shorelines, which are abundantly
preserved in Miocene-Pliocene deposits. Clionaid sponges, echinoids, bivalves,
gastropods, polychaete worms, and barnacles are the dominant members of the bio-
erosion community in hardgrounds and carbonate rocky shorelines, as documented
in a large number of studies (e.g., Radwanski 1970, 1977; Bromley and Asgaard
1993a, b; Mikulas and Pek 1995; Martinell and Domeénech 1995; D’ Alessandro and
Massari 1997; de Gibert and Martinell 1998; Domenech et al. 2001; Bromley et al.
2009; Caracuel et al. 2011; Demircan 2012; Pineda-Salgado et al. 2015). Typical
ichnogenera include Entobia, Gastrochaenolites, Maeandropolydora, Centrichnus,
Caulostrepsis, Trypanites, Gnathichnus, Conchotrema, Qichnus, Phrixichnus,
Radulichnus, Renichnus, and Rogerella.

Shells and clasts are also host to a wide variety of bioerosion structures (e.g.,
Martinell and Domeénech 1995; Kim and Heo 1997; de Gibert and Martinell 1998;
Doyle et al. 1998; Pickerill and Donovan 1998; Farinati and Zavala 2002; Santos
et al. 2003a, b, 2005, 2011). Detailed studies by Bromley and Asgaard (1993a) on
a coastal karst surface on the island of Rhodes in Greece demonstrated a complex
tiering structure with multiple ichnoguilds, namely the Oichnus ichnoguild (vagile,
predator, very shallow-tier), the Radulichnus-Gnathichnus ichnoguild (vagile,
algal grazer, surficial), the Centrichnus-Renichnus ichnoguild (permanent, preda-
tor, very shallow-tier), the Entobia ichnoguild (permanent, suspension-feeding,
mid- to deep-tier), the Trypanites-Caulostrepsis-Maeandropolydora ichnoguild
(vagile, predator, deposit feeder, and suspension feeder, deep-tier), and the
Gastrochaenolites-Phrixichnus ichnoguild (permanent, suspension-feeding, deep-
tier). This level of complexity in tiering structure remains undocumented for older
macrobioeroding communities, although it is unclear if this is real or due to a paucity
of observations.

Whale falls provided a suitable substrate for bioerosion during the Neogene
(Muiiiz et al. 2010; Belaustegui et al. 2012; Higgs et al. 2012). Bioerosion structures
ascribed to the annelid Osedax (Trypanites) and bivalves (Gastrochaenolites) have
been recorded in whale skeletons (Muiiiz et al. 2010; Beladstegui et al. 2012; Higgs
et al. 2012). From a microbioerosion standpoint, no major evolutionary innovations
seem to have arisen during the Neogene (Glaub and Vogel 2004). In fact, the more
recent compilation by Wisshak et al. (2006) indicated a decrease in ichnodiversity
at ichnospecies level.

Walker and Brett (2002) indicated a new phase of predator intensification during
the Neogene. Buccinid gastropods also diversified by the Neogene, further increas-
ing frequency and intensity of durophagy (Walker and Brett 2002). Sea otters, which
appeared by the Miocene, may have contributed to shell damage as well (Walker
and Brett 2002). Overall, both drilling predation on gastropods and bivalves and
shell repair frequencies seem to have increased during the Neogene, although not all
estimates in this regard are consistent (Allmon et al. 1990; Kelley and Hansen 1993;
Alexander and Dietl 2003).

To summarize, from an ichnologic perspective, the information available suggests
that the shallow-marine Neogene is indistinguishable from the modern regarding
both bioturbation and bioerosion structures. Shallow-marine ichnofaunas display a
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continued ichnodiversity increase, as well as more complex tiering structures, albeit
without any significant change in overall taxonomic composition. A further increase in
predation pressure also is evident (Huntley and Kowalewski 2007), most likely as a
result of activity of predators such as stomatopod crustaceans and marine mammals.

9.4 The Paleoenvironmental Breadth of the Mesozoic
Marine Revolution

Although the MMR essentially took place in shallow-water, fully marine settings
(but see Walker and Voight 1994), its expression in other ecosystems, such as the
deep sea and marginal-marine, brackish-water settings, also can be evaluated by the
analysis of the trace-fossil record. Colonization of the deep sea has been analyzed
in detail by Uchman (2003, 2004). He noted that the end-Permian mass extinction
did not appear to have played a major role in decreasing trace-fossil diversity in
the deep sea. His studies indicated that ichnodiversity in deep-marine environments
displayed nonlinear changes, with peaks in the Late Jurassic—Early Cretaceous and
Eocene, reaching a maximum in the latter and decreasing afterward. Irregular echi-
noids and decapod crustaceans, key players of the MMR in shallow seas at least
since the Early Jurassic, apparently arrived to the deep sea by the Late Jurassic, as
indicated by the presence of Ophiomorpha (Fig. 9.31a—d) and Scolicia (Fig. 9.31f-g)
in turbidite deposits (Tchoumatchenco and Uchman 2001). The ichnogenus
Thalassinoides is also relatively common in deep-marine deposits (Fig. 9.31e). The
pellet-filled burrow Tubotomaculum seems to be restricted to deep-marine settings,
which is consistent with the cache strategy used by its crustacean tracemaker
(Garcia-Ramos et al. 2014). Holothurids, as represented by the ichnogenus Artichnus
(and its potential senior synonym Naviculichnium; Fig. 9.31h), can be added to this
list. These bioturbators may have intensely ploughed the sea floor, increasing irriga-
tion of oxygenated waters, and thereby deepening the redox discontinuity surface,
which in turn allowed for colonization of deep tiers (Uchman 2004). Scolicia and
Ophiomorpha show an increase in frequency of occurrence from the Late Cretaceous
to the Eocene (Uchman 2004). Ichnologic information seems to suggest that the
effects of the MMR were slightly delayed in the deep sea. Body-fossil information
from deep-sea deposits is patchy, but Walker and Voight (1994) showed the exis-
tence of complex ecological interactions in Cenozoic deep-water gastropods,
including high rates of shell repair in large specimens, pointing toward intense pre-
dation pressures in the deep sea.

The temporal changes in brackish-water ichnofaunas have been addressed by
Buatois et al. (2005), who noted that, as in the case of the deep sea, the end-Permian
mass extinction apparently did not play a major role. These authors suggested that
the colonization of marginal-marine habitats did not occur at a constant rate, but
rather in a number of discrete phases. Two phases relevant to understanding the
expression of the MMR in brackish-water ecosystems were identified: Jurassic—
Paleogene and Neogene—Recent. The Jurassic—Paleogene phase was marked by an



Fig. 9.31 Ichnologic representatives of the MMR in deep-marine environments. (a) Ophiomorpha
annulata, Upper Eocene-Lower Oligocene, Ceylan Formation, Gelibolu Peninsula, western
Turkey; (b) Close-up of Ophiomorpha annulata showing the diagnostic pelletoidal walls, Upper
Eocene-Lower Oligocene, Ceylan Formation, Gelibolu Peninsula, western Turkey; (¢) General
view of surface with Ophiomorpha rudis, Middle to Upper Eocene, Cerro Colorado Formation,
Cerro Colorado, Tierra del Fuego, Argentina; (d) Close-up of Ophiomorpha rudis, Middle to
Upper Eocene, Cerro Colorado Formation, Cerro Colorado, Tierra del Fuego, Argentina; (e)
Thalassinoides suevicus, Lower Cretaceous, Whisky Bay Formation, James Ross Island,
Antarctica; (f) Scolicia strozzi at base of a thick-bedded sandstone turbidite, Eocene, Piwniczna
Sandstone Member, Magura Formation, Tylmanowa-Baszta, Polish Carpathians; (g) Scolicia isp.
at base of a thin-bedded sandstone turbidite, Upper Cretaceous—Paleocene, Ropianka Formation,
Stopnice, Polish Carpathians; (h) High density of Artichnus pholeoides, a possible junior synonym
of Naviculichnium marginatum, a burrow produced by holothurians, Eocene, Magura Formation,
Tymbark-Miasto, Polish Carpathians. Lens cap diameter is 5.5 cm and scale bars are 1 cm
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increase in ichnodiversity and degree of bioturbation in estuarine facies. In addition,
colonization was not restricted to softgrounds and firmgrounds, but took place in
hardground and xylic substrates as well. As in the case of fully marine ichnofaunas,
the Neogene—Recent phase recorded the rise of the modern brackish-water benthos,
accompanied by a further increase in ichnodiversity and intensity of bioturbation.
Furthermore, cemented surfaces, shells, and clasts began to be colonized by sponges,
polychaetes, gastropods, and bivalves, reflecting radiation of several groups of bor-
ers into brackish water. Most of the main players of the MMR in fully marine set-
tings, such as decapod crustaceans, bivalves, and worms, were also dominant in
brackish-water settings (Fig. 9.32a—f). Irregular echinoids, because of their lack of
tolerance to dilution of normal marine salinity, were the exception, and continued
for the most part to be restricted to fully marine settings.

ke

Fig. 9.32 Ichnologic representatives of the MMR in marginal-marine environments. (a) Nereites
isp., bedding plane view; (b) Asterosoma isp., bedding plane view; (¢) Protovirgularia isp.,
bedding-plane view; (a—c) prodelta deposits, Monte Leén Formation, Lower Miocene, Argentina;
(d) Rosselia socialis and Macaronichnus isp. in cross-section view; (€) Macaronichnus, bedding-
plane view; (f) Nereites isp., bedding-plane view; (d—f) delta-front deposits, Chenque Formation,
Lower Miocene, Argentina



96 L.A. Buatois et al.

9.5 Behavioral Evolution and Environmental Shifts

In addition to the arrival to the deep sea of crustaceans and echinoids capable of
creating extensive burrow systems during the MMR, other ichnotaxa experienced
environmental shifts coupled with behavioral changes. This is particularly well
illustrated by the trace fossil Zoophycos, which records a change in morphology
and in penetration depth and inferred behavior of the producer during the MMR
(e.g., Seilacher 1986; Chamberlain 2000; Kotake 2014; our Fig. 9.33a—e). The mor-
phology of Paleozoic and early Mesozoic Zoophycos is relatively simple, consisting
of irregularly lobate, “rooster tail”-like spreiten (Fig. 9.34a) with the tendency to
turn into a spiral (Seilacher 1986; our Fig. 9.34b—c). In addition, forms were
described with lobate spreiten deviating at several levels from a central shaft (e.g.,
Knaust 2004; Chamberlain 2000; Fig. 9.34d). Normally these Zoophycos were
emplaced in a shallow-tier position, and the producers followed a sediment-feeding
behavior (e.g., Knaust 2004). The host sediment is commonly muddy sand to sandy
mud that accumulated in shallow-marine waters from above wave base to outer
shelf settings (e.g., Bottjer et al. 1988). Some specimens, however, have been
reported from deeper-water deposits, but these occurrences are rare (e.g., Wetzel
et al. 2007). Morphologically similar Zoophycos specimens occur in fairly high
abundance until the Middle Jurassic (Seilacher 1986).

However, since the Late Triassic, Zoophycos producers tended to move to deeper-
water settings, and Zoophycos became sparse in deposits that accumulated above
storm-wave base. Late Jurassic shelf settings immediately below storm-wave base
were mostly abandoned by Zoophycos producers, and since the Oligocene outer-
shelf settings also were almost no longer utilized by these tracemakers (Bottjer et al.
1988), with just a few exceptions (e.g., Carmona et al. 2008, 2012). Instead, the
Zoophycos producers migrated to deeper-water environments (e.g., Seilacher 1986),
and today they inhabit continental slope and abyssal plain sediments virtually exclu-
sively (e.g., Wetzel 1991).

This shift in the habitat was accompanied by an evolution of behavior recorded
by the formation of multi-lobate and coiled, increasingly complex spreite of
Zoophycos (Seilacher 1986; Chamberlain 2000; Kotake 2014; our Fig. 9.34e—f),
along with an increase in size (area occupied by an individual specimen) and pene-
tration depth. The latter is documented by cross-cutting relationships with other
burrows. Cretaceous Zoophycos was commonly cut by Chondrites (e.g., Frey and
Bromley 1985), and Chondrites and Zoophycos may occupy the same tier in Upper
Cretaceous chalks (Bromley and Ekdale 1984b), whereas today Zoophycos repre-
sents the deepest tier and cross-cuts all other burrows including Chondrites (e.g.,
Wetzel and Werner 1981). Furthermore, a change in nutritional behavior can be
inferred, with a strip-mining, sediment-feeding strategy suggested for the Triassic
(Knaust 2004) and even Middle Jurassic (Olivero and Gaillard 1996). For modern
Zoophycos, a temporary-cache producer behavior can be deduced from material
within the spreite that is significantly younger than the host sediment (e.g.,
Lowemark and Grootes 2004). Some Zoophycos producers may have employed a
cache strategy as early as the Cretaceous, as some spreite exhibit obvious color
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T

Fig. 9.33 Evolution of Zoophycos (based on Seilacher 1977 and Chamberlain 2000). (a) Basic,
protrusive “rooster tail”’-shaped spreite, which occurred in the Palacozoic and is still produced
today; (b) Continuous coiled spreite form, which occurred for the first time in the late Paleozoic to
early Mesozoic; (¢) Discontinuously formed spreite consisting of several “rooster-tail”-like spreite
one attached to the side/tip of another, a morphology recorded for the first time in the late Paleozoic
to early Mesozoic; (d) Multiply coiled, helicoidal spreite typical of the Mesozoic onward; (e)
Helicoidal spreite system consisting of laterally assembled “rooster tail”-like spreite, also typical
of the Mesozoic onward (redrawn from Seilacher 2007)

changes between lamellae of the spreite and with the host sediment as well. This can
hardly be explained solely by in situ sediment sorting (for instance, see Fig. 3F in
Locklair and Savrda 1998). However, this observation has not yet been investigated
in detail. Furthermore, with time, it appears that the Zoophycos producers increas-
ingly preferred muddy substrates.
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Fig. 9.34 Evolution of Zoophycos. (a) Simple, “rooster-tail”-like Zoophycos from Lower
Carboniferous limestone deposited near storm wave-base, near Ogmore-by-Sea, Great Britain (for
further details see Wu 1982); (b) Simply coiled Zoophycos from Bajocian siliciclastic fine-grained
deposits near Hauenstein (northern Switzerland); (¢) Excavated coiled Zoophycos specimen from
Upper Cretaceous pelagic limestone (“Scaglia”) north of Sciacca (Sicily, Italy); (d) Lobate
Zoophycos from Upper Cretaceous Flysch showing major and minor lamellae (near Gropello,
northern Italy); (e) Zoophycos from the Paleogene Flysch in the Apennine near Florence, on dis-
play in the Institut und Museum fiir Geologie und Paldontologie, University of Tiibingen in 1995.
The specimen was discovered by A. Seilacher, prepared by H. Luginsland and photographed by
W. Wetzel (all Tiibingen at that time); courtesy of A. Seilacher (for details see Seilacher 2007,
plate 38 h); (f) Zoophycos with major and minor lamellae from Seravallian-Tortonian pelagic
Marne ad Orbulina near Monte Aquilone (Latium, Italy); courtesy of P. Belotti (Roma, Italy),
original figure (fig. 8) and further details in Bellotti and Valeri (1978)
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The stratigraphic distribution of the U-shaped ichnogenus Rhizocorallium also
seems to show some connection with the MMR. Knaust (2013) reviewed the taxon-
omy of Rhizocorallium, concluding that only two ichnospecies are valid, R. commune
and R. jenense, althoughichnosubspecies and varieties are recognized. Rhizocorallium
commune is known since the Cambrian and has not displayed significant morpho-
logic change, although size has shown some variation through the Phanerozoic,
essentially an increase through the Paleozoic, with a decrease after the end-Permian
mass extinction, followed by a time of new size increase (Knaust 2013). This ichno-
species has been attributed to worms (Knaust 2013). On the contrary, Rhizocorallium
Jjenense originated in the Triassic, reflecting an adaptation to firm substrates that was
unknown prior to the MMR, and having been produced most likely by crustaceans.
Also, as is the case for Zoophycos, Rhizocorallium seems to show environmental
shifts through time. In particular, Rhizocorallium commune is common in shallow-
marine environments during the Paleozoic and Mesozoic, becoming relatively abundant
in the deep sea during the Cenozoic (Knaust 2013).

9.6 Evolution of the Mixed Layer

The evolution of the uppermost interval of the seafloor, the mixed layer, cannot be
described step-by-step over long time spans. This layer is homogeneous in appear-
ance and lacks other diagnostic characteristics (Fig. 9.35a—d). Thus, its crucial
parameter is only its thickness, the so-called mixed layer depth (e.g., Boudreau
1998). However, the mixed layer depth cannot be measured in continuously accu-
mulating deposits, because deeper penetrating inhabitants of the transitional layer
normally overprint the homogeneous ichnofabric (Wetzel 1981; Werner and Wetzel
1982). Therefore, the preservation potential of the mixed layer is low. Only in the
case of frozen tiering resulting from abrupt de-oxygenation or non-erosive deposi-
tion of event beds will the mixed layer be preserved in the rock record (e.g., Savrda
and Bottjer 1986; Savrda and Ozalas 1992). Evidence of the mixed layer can be
detected, albeit indirectly, by the presence of burrow mottlings that are cross-cut by
discrete trace fossils emplaced in the transition layer.

Today the mixed layer of the seafloor is normally up to 10 cm thick as defined by
excess concentration of radiotracers (e.g., Boudreau 1998). In the rock record, how-
ever, the mixed layer thickness can be determined less exactly because its boundary
to the transitional layer is gradational (Fig. 9.35b). The homogeneous appearance of
the mixed layer is due to the production of biodeformational structures by meiofauna
and crypto-bioturbators, shallowly burrowing macrofauna, or even bulldozing mega-
fauna. These organisms utilize the organic matter close to or on the sediment surface
and process the deposits in a way such that no discrete traces are left. Furthermore, a
homogeneous appearance is favored by the very soft to soupy sediment consistency.
Mixed layer depth also depends on environmental conditions, in particular (1)
penetration depth of burrows; and (2) burrow diameter, with both decreasing with
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Fig. 9.35 Mixed layer traces. (a) Mixed layer (h) in modern muddy sediment; upper boundary of
the transitional layer is marked by the occurrence of lined tubes (black arrows) or fairly sharp
bounded sand-filled Planolites-like burrows (white arrows). Core Sonne 220 34—1 (19° 14.06’
N/108° 9.23" E), South China Sea, 50 m water depth; for details see Wiesner et al. 2012); (b)
Frozen-tiering structure underneath a low- to non-erosive turbidite having hydraulically light
foraminifera shells at the base. The transition between mixed layer and transitional layer is gra-
dational and occupies about %4 of the maximum thickness of the transitional layer (~4 cm). Upper
Cretaceous flysch from the area of Gropello, northern Italy; (¢) Scolicia isp. (Sc) producers bur-
rowing into the mixed layer from below and extinguishing it to a high degree; lower boundary of
arecently deposited event layer is marked by an arrow. Core Sonne 132 35-1 (13° 37.12" N/119°
58.43" E), South China Sea, 3202 m water depth; for details see Wiesner et al. 1998), 0-13 cm
core depth; (d) Basal part of a Thalassinoides filled with foraminifera shells (arrow) that have
been collected by the burrow producer from the seafloor, probably as additional food source. In
this way benthic food content of the mixed layer was lowered by a transitional-layer inhabitant.
Core 12345-5 (15° 28.8" N/17° 21.6 W), off NW Africa, 966 m water depth; for details see
Wetzel 1981), 107-120 cm core depth
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decreasing oxygenation and benthic food content (e.g., Wetzel and Uchman 2012).
In turn, the burial of organic matter is affected by the sedimentation rate (e.g., Miiller
and Suess 1979).

Over geologic time, mixed-layer producers became capable of burrowing to
increasingly greater depths. A behavioral evolution is also evident for burrows pro-
duced by inhabitants of the transitional layer. Besides a trend to explore increas-
ingly deeper intervals within the seafloor, the burrow producers expanded their
behavioral programs to supplement limited food resources. With respect to the
mixed layer, three strategies of transitional-layer inhabitants are of importance, (1)
temporary feeding directly on the sediment surface; (2) burrowing upward into the
mixed layer from below; and (3) taking benthic food from the sediment surface to
store in a cache. Again, with time, the number and abundance of ichnogenera exhib-
iting such behavioral programs increased. For example, the producers of some
Nereites or Scolicia feed temporarily on or close to the sediment surface, respec-
tively (Fig. 9.35¢c; Wetzel 2008), and the producers of Zoophycos and Thalassinoides
can construct and utilize caches (Fig. 9.35d; e.g., Dworschak 1987; Léwemark and
Werner 2001).

Mixed layer thickness is affected by two long-term strategies of burrowing
organisms. The inhabitants of the mixed layer tend to expand their habitat vertically,
whereas deep-burrowing organisms living in the transitional layer utilize food
resources from the mixed layer. The mixed-layer inhabitants, however, often
respond more rapidly to environmental changes. Therefore, thickness of the mixed
layer, as evidenced by its homogeneous appearance, may fluctuate even during the
course of a year, depending on oxygenation and benthic food supply and overprint-
ing (competition) by transitional-layer inhabitants. Consequently, for an analysis of
the development of the mixed layer, it is necessary to compare mixed layers that
formed within similar environmental settings over geologic time. Given the low fos-
silization potential of the mixed layer, the data available at present are too sparse for
drawing detailed conclusions. In any case, available ichnologic information sug-
gests that the origin of the modern mixed layer can be traced back at least to the
Mesozoic.

9.7 Role of Paleogeography and Climate

There is growing evidence that trace fossils may reveal paleogeographic patterns
(e.g., Jensen et al. 2013), and that infaunalization trajectories may have been dispa-
rate in the different oceans surrounding various paleocontinents (e.g., Mdngano and
Buatois 2011) during the Cambrian explosion (see Chap. 3) and the Great Ordovician
Biodiversification Event (see Chap. 4). Here we will explore potential similar ich-
nologic trends in connection with the MMR.

Understanding the role of paleogeography and climate on the MMR and its
potential ichnologic expression is still in its infancy. However, information from
modern environments provides an actualistic base that may help to detect potential
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patterns in the post-Paleozoic world. Thayer (1983) indicated that deposit-feeding
taxa in warm-water settings tend to disturb sediment at a greater rate than is the case
in cold-water regimes. Cadée (2001) noted an increase in degree of bioturbation and
diversity from high-latitude Arctic coasts to low-latitude warm coasts. In addition,
he pointed to latitudinal faunal changes, with a diverse callianassid and crab fauna
in low latitudes, which is absent or has low diversity in Arctic regions. In the same
vein, irregular echinoids tend to display a preference for low- and mid-latitudes
(Goldring et al. 2004, 2007). Goldring and coworkers expanded these ideas, by inte-
grating observations from modern environments with information from the
Mesozoic and Cenozoic trace-fossil record. According to their model, the distribu-
tion of the benthos and associated biogenic structures can be summarized for the
three major climatic zones: (1) tropics and subtropics with Ophiomorpha and echi-
noid trace fossils; (2) temperate zone with echinoid trace fossils and Thalassinoides;
and (3) high latitude zone with only mollusk and worm trace fossils. Gingras et al.
(2006) extended the dominance of mollusk and worm burrows to the temperate
zone. In addition, Quiroz et al. (2010) summarized available information on the
polychaete trace fossil Macaronichnus, demonstrating its preference for high to mid
latitudes (see also Gingras et al. 2006).

Interestingly, Quiroz et al. (2010) noted the general absence of Macaronichnus
in Paleocene to lower Eocene deposits, and interpreted this pattern as a result of
overall high temperatures and expansion of subtropical belts during these times
(Zachos et al. 2001; Hollis et al. 2009). Quiroz et al. (2010) also noted that the few
middle to upper Eocene occurrences are from high latitudes (e.g., Olivero et al.
2008; Pearson et al. 2013), most likely reflecting the transition to overall colder
climates by these times.

These trends are, however, not without exceptions. Both Ophiomorpha and
Scolicia are abundant in Miocene mid-latitude shallow-marine deposits of Patagonia
under temperate to cold climates, representing a departure to the proposed pattern
(Buatois et al. 2003; Carmona et al. 2008). Also, Macaronichnus has been docu-
mented in the Neogene low-latitude nearshore deposits of Venezuela, representing
an apparent anomaly to the overall pattern (Quiroz et al. 2010). However, as noted
by these authors, this occurrence most likely reflects coastal upwelling of nutrient-
rich cold waters, which was extensive in the Caribbean prior to the final closure of
the Panama Isthmus in the Pliocene (O’Dea et al. 2007). Despite potential short-
comings, it seems that the present geographic distribution of infaunal organisms can
be traced back to the onset of the MMR.

Ongoing research by Olivero and Lépez-Cabrera (2014) indicates that complex
spreite burrows, such as Paradictyodora and Euflabella, appear to be restricted to
southern high paleolatitudes during the Late Cretaceous. Strong seasonal variations
in primary production and cooling may have promoted the establishment of special-
ized strategies and behaviors. These authors also noted that this pattern in trace-
fossil distribution parallels the increased provincialism in bivalves and ammonites
during the Late Cretaceous in southern Gondwana, reflecting concurrent paleogeo-
graphical restrictions in the benthos and nekton.

Predation pressures in modern oceans also display a geographic component
(Vermeij 1978, 1987). He noted that predation is apparently more intense in the
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Western Pacific and Indian Oceans than in the Atlantic Ocean, with the Eastern
Pacific occupying an intermediate position. From an ichnologic standpoint, this is
revealed by contrasting frequencies of shell repair in neritid and terebrid gastropods
in the different oceans. However, tracking these trends back in time to assess a
paleogeographic component of escalation is still premature. Also, information from
modern environments indicates that predation levels are higher in the tropics
(Freestone et al. 2011).

9.8 Discussion: Secular Changes in Bioturbation
and Ichnofaunas and the Mesozoic Marine Revolution

The pattern in trace-fossil distribution during the Mesozoic and Cenozoic as previ-
ously outlined provides a basis to discuss further how the MMR is expressed in the
ichnologic record. First, evaluation of the trace-fossil record may help to detect the
timing of this major evolutionary event. In this regard, the Triassic can be viewed as
setting the stage for the revolution, albeit with burrows by decapod crustaceans
already becoming dominant in carbonate settings (e.g., Knaust 2007). Interestingly,
the MMR appears to be at full speed by the Early Jurassic. This is evidenced not
only by the increased role of decapod crustaceans, but also by other key players of
the Modern Evolutionary Fauna, such as irregular echinoids and bivalves. Infaunal
tiering structure also displays a remarkable increase in complexity at this time
(Fig. 9.36). The dominant tracemakers remained essentially the same during the rest
of the Mesozoic and through the Cenozoic. Complexity of infaunal tiering struc-
tures also did not exhibit any further increase until the Neogene (Fig. 9.36). If this
chronology is correct, then infaunalization resulting from the MMR can be viewed
as a relatively rapid process followed by a long period of stasis. This pattern, essen-
tially based on the analysis of the ichnologic record, is partially consistent with that
derived from the analysis of the body-fossil record. In a series of classic studies
(Ausich and Bottjer 1982, 1985; Bottjer and Ausich 1986), the tiering history of
both infaunal and epifaunal communities of suspension feeders was assessed. These
studies demonstrated that epifaunal suspension feeders were strongly affected by
the end-Permian mass extinction, showing a relatively rapid recovery in the Triassic,
reaching a plateau of maximum diversity during the Jurassic, a subsequent decrease
through the Cretaceous, and then reaching another plateau in the Cenozoic. Infaunal
suspension feeders displayed a remarkable increase in penetration depth by the late
Paleozoic, being apparently unaffected by the end-Permian mass extinction and
reaching a plateau all through the Mesozoic and Cenozoic. Ichnogeneric compila-
tions show that the MMR was associated with an increase of global ichnodiversity
of 35 % in marine environments (see Chap. 16).

Secondly, comparing the timing of infaunalization with respect to the timing of
increase in predation pressures may yield some insights into the complexities of
escalation. Although there are still doubts regarding secular changes in predation
pressures, drilling apparently was not significant during the Jurassic (Harper 2003),
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Fig. 9.36 Representative tiering structures and ichnoguilds from selected case studies illustrating
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although durophagous predation may have displayed an increase in importance,
albeit locally, by the Middle Jurassic (Zaton and Salamon 2008). In any case, by the
Cretaceous, predation pressures experienced a significant increase (Vermeij et al.
1981; Kelley and Hansen 2003). Therefore, ichnologic evidence suggests that infau-
nalization predates an overall increase of predation pressures by approximately 50
Myr. The infaunal environment is typically regarded as a haven from predation
(Vermeij 1987) and, therefore, infaunalization could be perceived as an adaptive
response to increased predation (Bottjer and Ausich 1986). However, the chronol-
ogy presented above does not support this cause-effect scenario; rather a more com-
plex set of feedback mechanisms between infaunalization and predation is thought
to be the case. A similar conclusion was reached by McRoberts (2001) based on the
analysis of Triassic bivalves. Interestingly, infaunalization occurring before an
increase in predation has been noted during the Cambrian explosion as well
(MacNaughton and Narbonne 1999). In the same vein, complex geobiologic feedbacks
involving bioturbation have been invoked recently for the Cambrian diversification
event (Mangano and Buatois 2014).

Thirdly, evaluation of the Mesozoic—Cenozoic ichnologic record provides impe-
tus to revisit the bulldozing hypothesis of Thayer (1979, 1983), who proposed that
biological disturbance increased through the Phanerozoic. Sediment disturbance
tends to be greater when large, mobile bioturbators occur in dense populations
(Thayer 1983). In particular, sediment bulldozers rank as the most efficient biotur-
bators, with their ability to displace sediment, manipulate sediment in burrowing
and crawling, and manipulate sediment externally in feeding. Based on the integra-
tion of observations from modern environments with those from the fossil record,
he noted that post-Paleozoic bioturbators rework sediment faster, tend to burrow
deeper, and can generate shorter sediment-turnover times than Paleozoic taxa. The
present review of the post-Paleozoic ichnologic record supports this view. In fact, it can
be argued that a dramatic increase in sediment bulldozing is one of the diagnostic
features of the MMR. Most, if not all, of the bioturbators ranked by Thayer (1983)
as most efficient can be regarded as main players in the MMR. Examples include
decapod crustaceans [e.g., Callichirus major (formerly Callianassa major) and
many other callianassids, and the many species of Ucal], clypeasteroid echinoderms
(e.g., Dendraster excentricus), irregular echinoids (e.g., Echinocardium cordatum,
Meoma ventricosa), tellinacean bivalves (e.g., Macoma balthica), protobranch
bivalves (e.g., Portlandia arctica), and arenicolid polychaetes (e.g., Abarenicola
pacifica). In addition to this list of invertebrates, it should be noted that marine
mammals are important sediment bulldozers throughout Cenozoic (Thayer 1983).
The turnover in ichnofaunal composition that took place in the early Mesozoic
fully supports an impressive increase in sediment disturbance in connection with
the MMR.

Fourth, it has long been argued that the fossil record indicates a pattern of onshore
origination of evolutionary innovations and subsequent expansion of new forms to
deeper water (Jablonski et al. 1983; Sepkoski and Miller 1985; Jablonski and Bottjer
1990; Sepkoski 1991; Jablonski 2005). Onshore-offshore trends are certainly
displayed by individual ichnotaxa, such as Zoophycos (Bottjer et al. 1988) and
Rhizocorallium commune (Knaust 2013). In the case of the innovations associated
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with the MMR, the pattern of trace-fossil distribution supports a delayed arrival to
deep-marine settings. Whereas the changes of this significant evolutionary event
were in place in shallow-water settings by the Early Jurassic, they may only have
reached the deep sea by the Late Jurassic (Tchoumatchenco and Uchman 2001).
Intense bioturbation in deep-marine sediments has been recorded at least since the
Cretaceous (Ekdale 1977). In any case, biogenic mixing is even today much slower
in the deep sea than in shelf areas (Thayer 1983).

9.9 Conclusions

The ichnologic record of the MMR provides information on various aspects of this
major evolutionary event, such as the types of burrowers involved, the timing of this
breakthrough, the complexity of infaunal tiering structures, the paleoenvironmental
breadth of the event, and the interplay between predation and infaunalization,
among other points. Crustaceans, bivalves, echinoids, and worms were arguably the
most important burrowers. The MMR appears to be at full speed by the Early
Jurassic, as indicated not only by the overall dominance of these key burrower
groups, but also by the remarkable increase in complexity of tiering structures in
shallow-marine deposits. The complexity of infaunal tiering structures did not expe-
rience further increase until the Neogene, suggesting that the MMR was a relatively
rapid event followed by a long period of stasis. The MMR took place in shallow-
water settings, both fully marine and brackish, by the Early Jurassic, but this evolu-
tionary event may only have reached the deep sea by the Late Jurassic. Infaunalization
predated an increase of predation pressures by approximately 50 Myr, suggesting a
complex set of feedback mechanisms between predation and infaunalization rather
than a cause-effect between the two. Ichnologic information suggests that post-
Paleozoic bioturbators reworked sediment faster, tended to burrow deeper, and
had shorter turnover times than Paleozoic taxa. Our review strongly supports the
bulldozing hypothesis, indicating a dramatic rise in biogenic sediment distur-
bance during the MMR.
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Chapter 10
The Mesozoic Vertebrate Radiation
in Terrestrial Settings

Massimo Bernardi, Fabio Massimo Petti, Laura Piiiuela, José Carlos Garcia-
Ramos, Marco Avanzini, and Martin G. Lockley

10.1 Introduction

Given their worldwide abundance, it is not surprising that the study of Mesozoic
vertebrate tracks is the most ancient branch of vertebrate ichnology. Dinosaur tracks
were first observed and figured by Native Americans by, if not before, the seven-
teenth century (Lockley et al. 2006a), and the first document dates back to the earli-
est nineteenth century when Pliny Moody reported the discovery of large tracks in
the eastern U.S. With Edward Hitchcock (who would eventually coin the world “ich-
nology”), tracks began to be approached scientifically (e.g., Hitchcock 1858) and
subsequent papers by Wolfgang Soergel (Soergel 1925), Othenio Abel (Abel 1935)
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and Roland Bird (Bird 1939, 1944) brought consciousness and the first scientific
methods into the discipline. Haubold (1971a, b) published two seminal papers which
constituted the base of the first reliable track-trackmakers associations.

In the late twentieth century, the discovery of numerous and vast dinosaur tracksites
contributed to the so-called “renaissance” in vertebrate ichnology (Lockley and Gillette
1987) and brought the first solid attempts to standardize study procedures (Leonardi
1987). With this new impetus the first ideas were put forward for using track data for
palebiologic (mainly behavioral and physiologic) studies (Lockley and Gillette 1987).
This continued in the last two decades with the publication of several seminal volumes,
especially on dinosaur tracks (Leonardi 1987, 1994; Gillette and Lockley 1989; Thulborn
1990; Lockley 1991; Lockley and Hunt 1995a; Lockley and Meyer 2000). In order to
fully contribute to the paleobiology of dinosaurs, however, the long-standing debate of
the relation between tracks and trackmakers needed to be addressed. No paleobiologic
inference can in fact be drawn except by interpreting tracks as the result of the activity of
a trackmaker, identified as belonging to a particular taxon. It is commonly assumed that
tracks can rarely be accurately associated with their producers at the species or genus
level (Farlow and Pianka 2000; Carrano and Wilson 2001). During its two centuries of
history, however, vertebrate ichnology built a broad consensus on the assignment of some
footprint morphogroups to broad taxonomic categories, based on clear analysis of the
morphologies of digits, hands, and feet, and comparisons of tracks with hand and foot
skeletons (e.g., Haubold 1971a, b; Demathieu and Demathieu 2004; Padian et al. 2010;
Heckert et al. 2010) or, rarely, on the direct association of track and fossil material (e.g.,
Voigt et al. 2012). Most authors agree that a trackmaker attribution at a high taxonomic
level is often possible (e.g., Baird 1980; Sarjeant 1990; Olsen et al. 2002; Carrano and
Wilson 2001; Thulborn 2006), and in fact morphofamilies or ichnofamilies have been
referred to in the literature since the early twentieth century (Lull 1904). In the 1980s,
Demathieu and colleagues began to elaborate on the possibility of implementing tracks
in phylogenetic studies (Demathieu 1981; Demathieu and Haubold 1978). Demathieu
also pioneered the use of vertebrate tracks in many other areas of paleobiologic studies
(Demathieu 1986); since then, a synapomorphy-based approach has been employed in a
number of studies (Olsen 1995; Olsen and Baird 1986; Olsen et al. 1998; Wilson and
Carrano 1999; Haubold and Klein 2000, 2002; Padian 2003; Wilson 2005; Wright 2005;
Brusatte et al. 2010b; Kubo and Kubo 2012; Bernardi et al. 2015). This perspective has
considerably constrained potential trackmakers finally allowing full hypothesis testing
and a better integration of vertebrate ichnology in paleobiologic analysis.

10.2 Trends and Events During the Mesozoic

10.2.1 Tetrapods Across the PT Boundary

A track is the result of the activity of a producer, or trackmaker, namely a track is
the imprint of an autopodium (a limb) registered during locomotion. The vertebrate
track record can be thought as an archive of the evolution of foot morphology and
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posture of extinct and extant vertebrates. Here we must also remember that tracks
also record many details of soft tissue morphology, not revealed by body fossils,
which in many cases may lack foot skeletons, even when other key diagnostic ele-
ments are present. When consecutive steps are impressed as an animal moves, in
fact, a trackway is formed and its parameters (i.e., width, distance between single
tracks, angle between tracks, distance of the tracks from midline, etc.) can be used
to accurately define the walking posture of its producer. Assessing posture from a
skeleton involves observing limb articular surfaces and manipulating (physically or
virtually) bones at the hip, knee, and ankle in the hindlimb, and shoulder, elbow, and
wrist in the forelimb. This procedure is time-consuming and necessitates good pres-
ervation of the joints, which is not often the case. On the contrary, basic trackway
parameters, such as those listed here, can be easily measured in all kinds of track-
ways and are less dependent on substrate consistency and taphonomic deformation
with respect to single-track descriptive measurements (i.e., interdigital angles).
Furthermore, the track record is often much more abundant than the skeletal one,
thus giving opportunities to statistically analyze the data.

Limb postures of tetrapods vary from sprawling to erect. An erect limb can be
found within birds and cursorial mammals, where the limbs are held under the body
and move in a parasagittal plane. On the other hand, a sprawling limb posture is seen
in limbed squamates and all limbed amphibians, where the proximal limb segments
are highly abducted and swing largely in a horizontal plane (Blob 2000). Posture can
change during locomotion, a classic example being crocodiles which show a sprawl-
ing posture at low speeds and a semi-erect one when running (Zug 1974; Carpenter
2009). An erect limb posture is energetically advantageous over a sprawling limb
posture, especially for large animals. Stresses over the knee and elbow joints are
reduced and respiration is facilitated when the limbs are held vertical (Carrier 1987).

From skeletal studies, it is known that Late Permian tetrapods such as temnospon-
dyl amphibians, pelycosaurs, and pareiasaurs were largely sprawlers (Carroll 1988;
Benton 2005). Late Triassic faunas were instead dominated by erect forms such as
dinosaurs and crurotarsan archosaurs (Nesbitt 2011). The postural transition from
sprawling to erect between those times can be described by looking at skeletal remains,
but these are scanty in the Early and Middle Triassic. Vertebrate ichnology has allowed
a better understanding of this event, especially regarding the exact pattern, timing, and
possible correlation with other events by studying fossil trackways.

A key study in this respect was developed by Kubo and Benton (2009). The
authors used a classic, simple measure to distinguish sprawlers from erect walkers:
the ratio of stride length to trackway width, indicated by the pace angulation
(Peabody 1959). This is defined as the angle formed by three continuous front or
hind footprints (Peabody 1959) (Fig. 10.1). Pace angulation is dependent on body
size and speed, but limb posture is the key factor in determining pace angulation. As
exemplified by neoichnologic studies, values lower than 107°, in fact, indicate the
producer performed a sprawled locomotion while values greater than 138° indicate
erect locomotion (Kubo and Benton 2009).

By analyzing a large dataset of Late Paleozoic to Early Mesozoic tetrapod track-
ways, the authors found a clear distinction between Permian and Triassic samples



138 M. Bernardi et al.

Pace
Angulation

Fig. 10.1 Pace angulation, the angle formed by three consecutive footprints, can be used as a
proxy for trackmaker’s posture. Using the measuring method shown in (a), Kubo and Benton
(2009) discovered that the shift from a sprowler posture (b) to a more erect one (c¢) occurred across
the Permian-Triassic boundary, and may thus be related with the profound impact of the devastat-
ing mass extinction event. Modified from Kubo and Benton (2009)

when median values rise from 87.5° (Late Permian) to 139.5° (Early Triassic),
whereas within those epochs no significative change in the distributions of pace angu-
lation could be found. All tetrapods, whether synapsids or archosaurs, show the same
postural shift across the Permo-Triassic boundary and once the posture had changed,
there was no significant change in mean pace angulation through the Triassic. This
shift was mostly caused by the increase in the number of chirotheriid trackways from
the Early Triassic. The ichnofamily Chirotheriidae (Abel 1935) is a form family com-
prising the ichnogenera Chirotherium Kaup, 1835; Brachychirotherium Beurlen,
1950;  Isochirotherium Haubold, 1971b; Synaptichnium Nopcsa, 1923;
Parasynaptichnium Mietto, 1987, and Protochirotherium Fichter and Kunz, 2004.
These have been consistently attributed to archosaurs, usually to crurotarsans (pseu-
dosuchians) and basal archosauriforms (Krebs 1965; Haubold 1967, 1971a, 1971b,
1984, 1986, 1999; 2006; Lockley and Meyer 2000; Demathieu and Demathieu 2004;
Gand et al. 2010; Bowden et al. 2010; Heckert et al. 2010; Lucas and Heckert 2011;
Desojo et al. 2013; Bernardi et al. 2015) and show manus (fore foot) and pes (hind
foot) imprints with a compact anterior digit group I-IV and a postero-laterally posi-
tioned, strongly reduced digit V, which are apomorphies of Archosauromorpha
(Nesbitt 2011). Thus it is clear that archosaurs (and to a lesser extent, therapsids) were
responsible for the high pace angulation of Triassic trackways. Footprints made by
amphibians, procolophonids, and small basal diapsids indicate retained sprawling
limb posture (Haubold 1971a, b). The abundance of trackways from the Permian up
to the Triassic provides resolution that the rare skeletal fossil tetrapods of this age do
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not. In addition to providing a description of the pattern of this event, dating indicates
that the shift was accomplished already 6 myr after the profound Permo-Triassic mass
extinction; this is considerably earlier than the 15-20 myr suggested by the study of
locomotory evolution based on skeletal fossils (Charig 1972; Kemp 1982; Bonaparte
1984; Parrish 1987; Kubo and Benton 2009). The ichnologic record also supports a
late Permian-Early Triassic radiation of archosauriforms not well documented by
skeletal material. By analizing several chirotheriid footprints from the upper Permian
of the Southern Alps (Italy), Bernardi et al. (2015) showed that archosauriforms had
already undergone substantial taxonomic diversification by the late Permian, widen-
ing the geographical distribution of this clade before and after the P-T boundary
(Bernardi et al. 2015). Furthermore, analysis of body size, as deduced from track
length, allowed formulating a new hypothesis on the response of archosauriforms to
the end-Permian events, proposing that their body size did not change significantly
from the late Permian to the Early Triassic (Bernardi et al. 2015).

10.2.2 The Origin of Dinosauromorphs

In vertebrate ichnology synapomorphy-based studies are still rare. However, it now
appears possible to integrate this discipline into paleobiologic studies if rigorous
descriptions are coupled by thoughtful character-based evaluation of potential
trackmakers. When synapomorphic characters are found, potential trackmakers can
be constrained considerably, allowing full hypothesis testing. More simply, each
find that reveals new morphotypes of trackways or skeletal remains of limbs/feet
showing apomorphic characters, helps constrain possible track-trackmaker correla-
tions more accurately. Using this approach, tracks and trackways become “biologi-
cally informative” and can thus be of interest for paleobiologic analysis. The
synapomorphy-based technique focuses on the identification of osteologic-derived
character states in the tracks that result from the impression of corresponding (syn-
apomorphic) characters in the autopodia of the trackmaker. These characters allow
the recognition of a particular clade independent from the defined body-fossil dis-
tributions (see Olsen et al. 1998; Carrano and Wilson 2001; Wilson 2005). This
approach has been applied only recently (e.g., Olsen 1995; Olsen and Baird 1986;
Olsen et al. 1998; Wilson and Carrano 1999; Carrano and Wilson 2001; Haubold
and Klein 2000, 2002; Padian 2003; Wilson 2005; Wright 2005; Brusatte et al.
2010b; Kubo and Kubo 2013; Bernardi et al. 2015).

The most recent advances in the understanding of the origin of dinosaur lineages
are a good example of the potential for integrating ichnologic studies with cladistic
approaches. The resulting contribution is that, conceived in this way, vertebrate ich-
nology can give to a deeper understanding of patterns and processes in the evolution
of life. Dinosauromorpha is a clade including all taxa closer to dinosaurs than to the
other main archosaur clades (i.e., pterosaurs and crocodylomorphs).
Dinosauromorphs originated, and radiated in the Triassic, and several taxa are now
known that vary in size, feeding, and locomotory features, and that were spread over
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most of western Pangea (Langer et al. 2013). However, both the timing and pattern
of the early radiation of this lineage are poorly understood (see Marsicano et al.
2015 for a recent update). The oldest known body fossils of dinosauromorphs are
silesaurids, which are Anisian in age (Nesbitt et al. 2010; Peecook et al. 2011;
Barrett et al. 2015). Silesaurids occupy a derived position within Dinosauromorpha
(Ezcurra 2006; Nesbitt et al. 2010; Nesbitt 2011), and therefore imply the presence
of other dinosauromorph groups such as lagerpetids, and non-silesaurid dinosauri-
formes before that time. No such Early Triassic groups are documented in the body
fossil record. However, the Early Triassic archosaur track record is rich (see Klein
and Haubold 2007 and references therein), raising the intriguing possibility that
dinosauromorph tracks can be recognized among the diverse ichnoassociations.
Rotodactylus, a common ichnogenus in the latest Olenekian—Ladinian worldwide
(Peabody 1948; Gand and Demathieu 2005; Gand et al. 2005; Klein and Haubold
2007), has been long attributed to basal dinosauromorphs (Haubold 1999; Haubold
and Klein 2002); however, a strict synapomorphy-based assessment was lacking.
Recently, Brusatte et al. (2010a) presented a formal analysis corroborating this
identification. Rotodactylus, in fact, possesses unequivocal features of dinosauro-
morphs, such as reduction of digits I and V and digitigrade posture. Moreover
Brusatte et al. (2010a, see also; NiedZwiedzki et al. 2013), described a new ichno-
genus named Prorotodactylus, discovered in the Early Triassic of Koszary and
Stryczowice, Poland. Prorotodactylus can be assigned to Dinosauromorpha thanks
to the presence of unequivocal synapomorphies such as the bunched metatarsus,
reduction of digits I and V, the posterior deflection of digit V, and the manifest digi-
tigrady. Brusatte et al. (2010a) suggested Lagerpeton as possible trackmaker, and
although this is (NiedZwiedzki et al. 2013) or might be (Langer et al. 2013) the case,
an attribution of Prorotodactylus to dinosauromorphs appears quite solid
(Niedzwiedzki et al. 2013; but see Klein and NiedZwiedzki 2012). The nearly com-
plete absence of autopodia in the skeletal record (with the notable exception of
Lagerpeton, Sereno and Arcucci 1994) prevents an evaluation of digit ratios across
other dinosauromorph taxa (see Langer et al. 2013 for a discussion) and enhance the
importance of the above cited ichnotaxa in exploring the early history of this group.
The synapomorphy-based identifications of Rotodactylus and Prorotodactylus shed
new light on the debate over the posture of the earliest dinosauromorphs; both show
that these early forms were much more digitigrade than any other closely related
archosaurs and that they walked on all fours (Fig. 10.2b). The ichnogenus
Sphingopus, which is found in numerous Olenekian to Middle Triassic sites all over
the world (Klein and Haubold 2007), shares the apomorphic characters described in
Prorotodactylus; however, the lack of associated manus imprints and high pace
angulation indicates that the trackmaker was walking bipedally. Furthermore,
Sphingopus is much larger than the other dinosauromorph tracks. The tendency
toward a full tridactyl morphology, with digit III being the longest, suggest that
Sphingopus isp. was produced by a dinosauromorph more derived than the Proroto
dactylus/Rotodactylus trackmaker, and therefore suggests that bipedality was
acquired and the trackmaker was closer to the origin of dinosaurs (Fig. 10.2c).
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Fig. 10.2 Footprints attributed to dinosauromorphs and early dinosaurs can be integrated with
skeletal data to build a general timeline of early dinosaur history. Footprints, as those described by
Brusatte et al. (2010b), document the earliest phase of this radiation and predate timing of emer-
gence of the various groups (a). (b) Shows a likely reconstruction of an early dinosauromoph as
reconstructed on the base of Rotodactylus trackways. (a) Modified from Brusatte et al. (2010b), (b)
modified from Haubold (1999) and Niedzwiedzki et al. (2013)
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The stratigraphically successive records of Prorotodactylus and Rotodactylus docu-
mented by Brusatte et al. (2010a) show that changes in foot anatomy were occurring in
dinosauromorphs during the Olenekian; the appearance of Sphingopus documents the
evolutionary shift from quadrupedality to bipedality, and from small to large size, in the
dinosaur lineage. Tracks, identified using synapomorphies, can thus provide new data
on the timing and pattern of character acquisition during early dinosauromorph radia-
tion (Fig. 10.2a). Such data are currently not visible in the body fossil record.
Furthermore, being older than indicated by the skeletal record, tracks might indicate
that the appearance of the dinosauromorph lineage can be linked with the Permian—
Triassic mass extinction event (Brusatte et al. 2010a; Niedzwiedzki et al. 2013).

10.2.3 The Origin and Early History of Dinosaurs

The vertebrate track record can be used to make inferences about the spatial and
temporal distribution of tetrapod taxa and can give reliable clues, although at a
coarse taxonomic level, into tetrapod diversity. If parsimoniously interpreted, it can
complement the skeletal record offering a “total evidence” approach to the study of
evolutionary patterns and timing of events.

The study of early Mesozoic vertebrate terrestrial ecosystems is a lively field in
both vertebrate paleontology and paleoichnology, mostly powered by the debates on
dinosaur origins and their early history. The appearance of dinosaurs during the
Triassic marked the onset of a faunal diversification that has dominated terrestrial
ecosystems for almost 230 Myr (Brusatte et al. 2008a). As discussed, the possible
contribution of track data to this and other taxon-based debates, depends on reliable
identification of dinosaur trackmakers.

Triassic tridactyl prints are traditionally assigned to Dinosauria (see Lucas et al.
2006 and reference therein). Supposed dinosaur tracks are recognized on the base of
few synapomorphies: (1) the prevalence of the digit II-IV group, (2) mesaxonic pat-
tern of foot structure, (3) digit I reduced and shifted backwards (and thus often not
preserved in tracks), and (4) tendency towards digitigrady (see also Thulborn 1990;
Haubold 1999; Brusatte et al. 2010b). However, this morphotype cannot be unam-
biguously assigned to Dinosauria using apomorphy-based identifications; a function-
ally tridactyl pes is found also in some non-dinosaurian dinosauriforms (Gauthier
1986; Brinkman and Sues 1987; King and Benton 1996; Novas 1992; Carrano and
Wilson 2001; Fraser et al. 2002; Dzik 2003; Marsicano et al. 2007; Nesbitt et al.
2007; Brusatte et al. 2010b). Furthermore, no synapomorphies of three-toed foot-
prints can discriminate among theropods, basal saurischian, and basal ornithischian
groups (Olsen et al. 1998). “Theropod-like” tracks can, however, be identified on the
basis of the following characters: (1) asymmetry of the track with angle between
digit III and II lower than III-1V, (2) digit III longer than IV >1I, (3) sharp claw traces
on all digits, and (4) tip of digit II turned inwards (Bernardi et al. 2013). Lockley
(2001, 2007a, 2009) has also argued that narrowness and strong mesaxony distin-
guishes theropod tracks from those of tridactyl ornithischians. Nevertheless, no clear
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synapomorphy can be described in tridactyl tracks to clearly distinguish between
dinosaurian- and non-dinosaurian-dinosauriforms. All Triassic functionally tridactyl
tracks with digitigrade pes produced by bipedal parasagittal posture should be loosely
attributed to an archosaur on the dinosaur line. Some derived characters, such as
those listed by Bernardi et al. (2013), can be used in support of an attribution to
Dinosauria, but a “gray zone” will always exist.

Debates on dinosaur origin thus focus around three main topics: (1) timing of
appearance, (2) pattern and pace of early diversification (body size and biogeogra-
phy), and (3) dynamics of replacement of crurotarsan archosaurs by dinosaurs. If the
first relies on new discoveries of older specimens and reliable dating of the dinosaur-
bearing formations, the second refers to dinosaurs having experienced a rapid diversi-
fication or having a deeper origin (“slow fuse”) not documented (with the possible
notable exception of Nesbitt et al. 2013) by current knowledge of the fossil record.
The last needs data from mixed assemblages to test for habitat preferences and niche
competition, and the in situ nature of footprints can be of great value in this respect.

10.2.3.1 Timing of Appearance

The exact timing of dinosaur origins remains unclear (Benton 1983; Brusatte et al.
2008a). The oldest record of dinosaurs based on skeletal remains is from the Carnian
of Argentina (Benton 1983; Sereno and Arcucci 1994; Sereno 1999; Irmis et al.
2007; Brusatte et al. 2010b; Langer et al. 2010; Ezcurra 2010; Martinez et al. 2011),
although Nesbitt et al. (2013) reported a possible earlier dinosaur from the Anisian of
Tanzania. By the Carnian-Norian transition, all three major dinosaur lineages
(Ornithischia, Sauropodomorpha, Theropoda) are documented (Brusatte et al. 2010b;
Irmis et al. 2007; Langer et al. 2010). This forces researchers to focus mostly on the
still poorly known Middle Triassic record. Furthermore, ghost lineages inferred from
phylogenetic analyses predict that Dinosauria and its immediate stem lineage should
be as old the early Middle Triassic (Sereno and Arcucci 1994; Nesbitt et al. 2010).
Early Triassic tracks previously attributed to dinosaurs have been reconsidered as
partially or badly preserved “chirotheroids” (King and Benton 1996; see also Cavin
et al. 2012). Although track-bearing formations cannot be always confidently dated,
functionally tridactyl footprints are documented in the Middle Triassic of France
(Demathieu 1989; Lockley and Meyer 2000), Germany (Haubold and Klein 2000,
2002), Italy (Avanzini 2002), and Argentina (Marsicano et al. 2007 and references
therein), and have been generally attributed to dinosauromorphs. Dinosaur tracks
have been reported from the Middle Triassic Los Rastros Formation (Argentina) by
Marsicano et al. (2004, 2007; see also Marsicano and Barredo 2004; Melchor and
Valais 2006) but have been considered ambiguously identified by others (Langer
et al. 2010; Irmis 2011). Therefore the ichnologic record, although failing to defini-
tively prove a Middle Triassic origin for dinosaurs, clearly indicates the presence of
adiverse fauna of dinosauromorphs with functionally tridactyl digitigrade pedes, and
possibly true dinosaurs during the Middle Triassic (Fig. 10.3), a condition that the
body-fossil record is only recently beginning to document (Nesbitt et al. 2013).
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Fig. 10.3 A calibrated phylogeny of early dinosaurs and sister taxa based on both skeletal and
ichnological data. The possible presence of dinosaurs in the Middle Triassic as testified by contro-
versial footprints have recently received support from the description of Nyasasaurus which is
considered either within, or sister-taxon of, Dinosauria. Modified from Marsicano et al. (2007) and
Nesbitt et al. (2013)

10.2.3.2 Early Diversification

Although the first unequivocal dinosaur body fossils are known from the Carnian
(Brusatte et al. 2010b; Langer et al. 2010; Nesbitt et al. 2013), Brusatte et al. (2008a,
2010b) demonstrated that dinosaurs increased their diversification and their
morphologic disparity only from the Norian; dinosaurs experienced a burst of
diversification only after the Triassic—Jurassic transition.
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At the end of the Triassic the dinosaurs experienced an increase in maximum
body size, later expressed as an increase in average body size (Sookias et al. 2012;
Turner and Nesbitt 2013). Late Triassic tridactyl footprints are well known from
USA, Europe, South America, Australia, and Africa (e.g., Tucker and Burchette
1977, Biron and Dutuit 1981; Mietto 1988; Olsen and Baird 1986; Thulborn 2000;
Gatesy 2001; Knoll 2004; Milan and Gierliiski 2004; Weishampel et al. 2004;
Lockley and Eisenberg 2006; Silva et al. 2007; Meyer et al. 2013). The Triassic
record of large tridactyl tracks (e.g., Thulborn 2003; Bernardi et al. 2013; Meyer
et al. 2013) has invalidated the hypothesis of Olsen et al. (2002) of a dramatic
increase in size at the Triassic-Jurassic boundary. However, the increasing abun-
dance toward the end of the Triassic of medium- and large-sized theropod tracks
(Eubrontes and Grallator above all) marked a crucial phase in dinosaur history,
when the main radiation or diversification of theropods and the evolution of large
species got underway during the Late Triassic (Lockley and Hunt 1995a).
Furthermore, if the attribution of the largest Late Triassic tracks is correct, the esti-
mated body length, calculated according to Thulborn’s (1990) equations
(h=3.06xFL1.14 and L=4 h), would be more than 5 m. Their estimated body mass
value, following Weems (2006), would have been about 200 kg (Bernardi et al.
2013). This size is not known from dinosaur skeletal remains of Carnian age (Benton
2006; Brusatte et al. 2010b) and is approximated only by the Norian theropod dino-
saur Liliensternus (Cuny and Galton 1993; Lucas et al. 2006).

Tracks are also a valuable tool that gives us insight into the geographic distribution
of the first dinosaurs. The earliest skeletal remains of dinosaurs are from southern
Pangaea and the oldest possible dinosaur tracks are from Argentina. The earliest
dinosaur from northern Pangaea has recently been dated as “middle” Norian of west-
ern North America (Nesbitt et al. 2009). This has led to the view that the major dino-
saurian clades (Ornithischia, Sauropodomorpha, Theropoda) may have originated in
southern Pangaea (Brusatte et al. 2010b; Langer et al. 2010). The paleogeographic
importance of this distribution, however, is compromised by the absence of well-
preserved skeletal remains of Carnian age from northern localities (northern Africa,
Europe, North America) (Langer 2005; Nesbitt et al. 2007; Martinez et al. 2011).
Tracks, however, indicate that dinosaurs were already present by the Late Carnian in
northern Pangea (Bernardi et al. 2013, Fig. 10.4). With the exclusion of the possible
earliest dinosaur Nyasasaurus (Nesbitt et al. 2013), this would imply a nearly contem-
poraneous appearance of dinosaurs on all of Pangea (Bernardi et al. 2013).

10.2.3.3 Dynamics of Replacement

In the past, the Late Triassic was described as the period when the faunas dominated
by crurotarsan archosaurs were competitively replaced by those dominated by dino-
saurs (Bakker 1972; Charig 1984). A growing consensus now suggests that dino-
saurs were initially rare components of Triassic terrestrial ecosystems and that their
ascent was gradual (Brusatte et al. 2008b). It was only after the Triassic—Jurassic
transition that dinosaurs became dominant in terrestrial vertebrate ecosystems
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worldwide (Benton 1983; Sereno 1999 see also Brusatte et al. 2010b). The body
fossil record has shown that in the Late Triassic, during the first 25-30 million years
of dinosaur history, crurotarsans had double the variety of body plans, lifestyles,
and diets in comparison with contemporary dinosaurs (Brusatte et al. 2008a, 2010b,
2011; see also, Benton 1983; Sereno 1999). In addition to crurotarsans, Triassic
dinosaurs lived together with dicynodont synapsids (Dzik et al. 2008) and coexisted
with dinosauromorphs for at least 20 million years (Irmis et al. 2007). The scarcity
of Early to Middle Triassic terrestrial body fossils, however, leaves open questions
on taxonomic abundance, composition, diversity, and regional specificity of such
dinosaur communities (Irmis et al. 2007; Dzik et al. 2008; Nesbitt et al. 2009;
Ezcurra 2010; Irmis 2011). The track record can be integrated into this picture.

As a general depiction, while the upper Triassic ichnologic record is character-
ized by dinosaur, dinosauromorph, crurotarsan archosaurs, and nonmammalian the-
rapsid tracks (Marsicano and Barredo 2004; Bernardi et al. 2013; Lockley and
Meyer 2000; Klein and Haubold 2007; Lucas and Tanner 2007), the Lower Jurassic
record is dominated by saurischian dinosaurs (Lockley and Hunt 1995a; Lockley
and Meyer 2000; Olsen et al. 2002; Avanzini et al. 2006; Avanzini and Petti 2008).
Well-diversified tetrapod ichnoassemblages are known from the Middle to Late
Triassic of both southern and northern Pangaea (see Bernardi et al. 2013). Olsen and
Huber (1998) reported the co-occurence of Apatopus, cf. Brachychirotherium, and
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small bipedal and tridactyl forms, possibly produced by “dinosaurian” trackmakers
in the Carnian of North Carolina, while Cameron and Wood (2003, 2004) described
a rich association composed of Atreipus, Brachychirotherium, Grallator, and
Rhynchosauroides from the Carnian of Canada. Similar assemblages are ubiquitous
in the western USA (Lockley and Hunt 1995a). Marsicano and Barredo (2004)
reported the presence of crurotarsal archosaurs, dinosaurs (sauropodomorphs and
theropods) and nonmammalian therapsids (small cynodonts and large dicynodonts).
Nicosia and Loi (2003) described a rich Carnian ichnoassociation from Italy with
crurotarsan and dinosaurian tracks. D’Orazi Porchetti et al. (2008) and Bernardi
et al. (2013) document the co-occurrence of large- and middle-sized dinosaurs,
dinosauriforms, and crurotarsans in the late Carnian (Tuvalian) of the southern
Alps. Therefore, the record of ichnofaunal assemblages composed of large and
small dinosaurs, dinosauriforms and non-dinosaurian archosaurs and their co-
occurrence with dinosauriforms and crurotarsal archosaurs provides support to the
non-abrupt replacement of the more archaic faunas by dinosaur-dominated ones.
Furthermore, the co-occurrence of dinosaurs, dinosauriforms, and crurotarsal archo-
saurs in the Middle to Late Triassic (Ladinian to Late Carnian) documents a pro-
longed coexistence of different groups of archosaurs, even in the same environment.
This provides support to the view of crurotarsan-dominated faunas being neither
rapidly outcompeted nor quickly opportunistically replaced by dinosaurs, but rather
substituted by a more gradual process of ecologic replacement (Irmis et al. 2007;
Nesbitt et al. 2010; Brusatte et al. 2010b; Martinez et al. 2011).

10.2.4 A Look into Sauropod Paleobiology

One key feature of tracks that neatly distinguishes them from body fossils is that they
cannot be transported post-mortem, in this case, “post-emplacement”. Tracks thus
provide a direct indication of environmental and/or habitat preferences of the pro-
ducer (Thulborn 1982; Lockley 1991; Wilson and Carrano 1999; Carrano and Wilson
2001). To better understand habits, locomotory attitudes or geographic distribution
of particular groups, it is therefore useful to integrate body fossil findings with track
data. A good example in this respect is provided by the sauropod dinosaur record.
Numerous studies of locomotory dynamics in this group attribute different foot-
print morphotypes to distinct trackmakers. Many authors (Farlow et al. 1989; Farlow
1992; Lockley et al. 1995a; Moratalla et al. 1995; Wilson and Carrano 1999;
Lockley et al. 2002, 2005; Day et al. 2002a; Henderson 2002) have observed that
sauropod trackways could be essentially subdivided into two broad categories: “nar-
row gauge” and “wide gauge” (Fig. 10.5). Sauropod trackways can also show (or
lack) claw and phalangeal impressions in the manus (Farlow et al. 1989; Lockley
et al. 1995a; Wilson and Carrano 1999; Day et al. 2004). “Wide-gauge” trackways
are those in which manus and pes prints are well separated from the midline, and
which frequently lack pollex claw impressions (e.g., Brontopodus Farlow et al.
1989); “Narrow gauge” trackways have manus and pes prints that approach or inter-
sect the trackway midline, and have pollex claw impressions (e.g., Parabrontopodus
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essentially subdivided into two broad categories: “narrow gauge” (a) and “wide gauge” (b). These
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vic girdles and hindlimbs in anterior view) and titanosaur sauropods (d, here Opisthocoelicaudia).
This inference allowed full integration of ichnogical and skeletal data, which contributed to a bet-
ter understanding of sauropod paleobiology. Modified from Lockley et al. (1995b), and Wilson and
Carrano (1999)

Lockley et al. 1995a). Lockley (1999, 2001, 2007a) also argued that there is a posi-
tive correlation between narrow gauge and small manus forms, and between
wide-gauge and large manus forms. Furthermore, large and small manus forms have
been independently identified among the various chirotherian ichnotaxa (Lockley
2007a). Such differences in turn speak to changes in the position of the center of
gravity in various archosaur clades.

Ichnologic investigations suggest that the transition from narrow- to wide-gauge
occurred during the Kimmeridgian-Tithonian (Wilson and Carrano 1999). “Wide-
gauge” trackways show a trend towards an increase of manus print dimensions
through time. This feature and the age of “wide-gauge” trackways closely match the
evolutionary trend seen in the sauropod body fossil record. Skeletal remains record a
gradual shift of the center of gravity toward the front, with the consequent growth of
the forelimbs in response to the greater weight they had to support. This evolutionary
change coincides with the appearance of Titanosauriformes Salgado, Coria and
Calvo 1997 (including Brachiosauridae Riggs 1904 and Titanosauria Bonaparte and
Coria 1993) (Wilson 1995; Upchurch et al. 2004), animals that would have produced
tracks with larger manus impressions. The lack of digital impressions in the manus
ichnites of the “wide-gauge” trackways could also be referred to the appearance of
Titanosauriformes; indeed both Brachiosauridae and Titanosauria are characterized
by the progressive reduction and loss of phalanges and claws in the manus (Wilson
and Sereno 1998; Upchurch et al. 2004; Apesteguia 2005). In particular, Titanosauria
probably walked only on the distal parts of their metacarpal bones (Salgado et al.
1997; Wilson and Sereno 1998). It is thus difficult to envisage digital or claw marks
produced by individuals belonging to Titanosauriformes. Wilson and Carrano (1999)
argued that hindlimb modifications, such as outwardly angled femora, offset knee
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condyles, and a more eccentric femoral midshaft cross-section, could be responsible
for wide-gauge tracks. All these features are synapomorphies of titanosaurs, and thus
support the hypothesis that they were the producers of wide-gauge trackways.
Temporal and geographic distribution of titanosaurs is coherent with this hypothesis;
“wide-gauge” trackways predominate during the Cretaceous and are found world-
wide. After Wilson and Carrano’s (1999) proposals, other studies have cast some
doubt on this correlation. D’Emic (2012) suggested that some Late Jurassic non-
titanosaurs might have femoral cross-sections similar to those of titanosaurs.
Henderson (2006) proposed that all large sauropods (over 12.6 tonnes) would have
been constrained to adopt a wide-gauge stance in order to maintain stability during
locomotion; trackway gauge could also be influenced by the degree of lateral motion
of the trackmaker (Carpenter 2009). Recent discovery of sauropod trackways from
Switzerland, Morocco (both of Jurassic age), and Spain (Cretaceous age) show that
single sauropod trackmakers were able to adopt both narrow and wide gauge as testi-
fied by the occurrence of differently spaced tracks along single trackways (Marty
et al. 2010; Castanera et al. 2012a, b). Furthermore, wide-gauge trackways could
have appeared more than once in sauropod evolution. Wide-gauge trackways are not
exclusive to titanosauriform sauropods and caution must be applied ascribing a track-
way to an ichnotaxon on the basis of this character (Castanera et al. 2012a, b).

Sauropod tracks have provided important clues for the understanding of the
environmental preferences of this clade. Based on the analysis of a dataset of
sauropod trackways, Lockley et al. (1995b) found a good correlation between
sauropod tracksites and coastal environments, and noted that they are primarily
associated with tropical and subtropical paleolatitudes (mean average Northern
Hemisphere=25°), and semi-arid or seasonal climatic carbonate depositional
environments (lacustrine or marine carbonate platform). Butler and Barrett
(2008) partially confirmed these results: the percentage of Cretaceous sauropod
tracks in coastal environments is remarkable (32 %) if compared with the con-
temporaneous sauropod body fossil record (7 %). Nevertheless, statistic analysis
of the ichnologic data does not indicate that sauropod trackways are overrepre-
sented if compared to those of other herbivorous dinosaurs. In contrast, the body
fossil record supports previous hypotheses of a preference for inland settings
(e.g., Lehman 1987; Hunt et al. 1995a). However, it should be noted that these
results might be hindered by preservational biases that are not yet fully under-
stood (Mannion and Upchurch 2010). Using a new large data set of sauropod
skeletal remains, Mannion and Upchurch (2010) found a significant positive
association between non-titanosaurs and coastal environments, and between
titanosaurs and inland environments. Their analysis of track records also high-
lighted a positive correlation between narrow-gauge trackways and coastal envi-
ronments, and wide-gauge trackways and inland environments; this reinforced
the hypothesis of Wilson and Carrano (1999) that wide-gauge trackways were
produced by titanosaurs. The hypothesis of Mannion and Upchurch (2010) has
been partially put into question by isolated findings of wide-gauge trackways
preserved in coastal environments (e.g., Castanera et al. 2011).
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10.2.5 Clues About Theropod Paleobiology

Most famously among track features, trackways allow estimation of speed
(Alexander 1976, 1989; Thulborn 1981, 1990). In fact, debates about speeds attained
by dinosaurs led to a revival of tetrapod ichnology (Alexander 1976; Lockley 1998).
Early estimates of rapid progression of large dinosaurs were proposed in support of
the idea that dinosaurs were highly active and possibly warm-blooded (Russell and
Belland 1976; Czerkas and Olson 1987); however, later studies based on larger
samples and updated formulae concluded that most medium- to large-sized thero-
pods walked fairly slowly (Farlow 1981; Thulborn 1990). Estimates of the speeds of
theropod dinosaurs are based on the formula of Alexander (as corrected by Thulborn
1990); speed (v, velocity) is calculated on the basis of stride length (SL) where
v~ 0.25 g% SLY 1117 where hip height (k) of a trackmaker can be estimated from
footprint length (FL): A~ 8.60 FL*® (Thulborn 1984; Thulborn and Wade 1984).
This formula was successively slightly modified by Weems (20006) to estimate basal
theropod dinosaur speeds (v=0.16 SL? h™! %), The same formula can be used for
any bipedal dinosaurs (see Currie 1983, 1995), while no similar, reliable formulae
are available for quadrupedal dinosaur taxa. Using musculoskeletal modeling and
Computer Aided Engineering, Mallison (2011) questioned the validity of the
Alexander formula to assess speed in dinosaurs without knowing the frequency of
the stride. He suggested that speeds calculated from tracks should be better consid-
ered as the slowest speeds at which the animals moved.

Tracks and trackways have also been long used to establish dynamics of foot
movement (Avanzini 1998; Gatesy et al. 1999; Gatesy 2001, 2003; Manning 2004;
Milan et al. 2004, 2006; Avanzini et al. 2012; Ellis and Gatesy 2013), locomotion
(Alexander 1976, 1985, 1989; Thulborn 1981, 1990) and contributed in the debate
about theropod posture (Lockley 1998). The high pace angulation exhibited by the-
ropod trackways, for example, shows that theropods placed their hind feet close to,
or on, the midline (Alexander 1976, 1985). This optimizes the efficiency by reduc-
ing the energy lost through lateral displacement of the center of gravity (Thulborn
1981, 1990), and is characteristic of a highly specialized locomotory control system.
Lockley (2007a) regarded such narrow trackway configurations as a manifestation
of an intrinsic morphodynamic organization in theropods. Furthermore, saurischi-
ans in general had narrow bodies, narrow feet, and other laterally compressed skel-
etal elements, although this contrasts with the wide-gauge trackway configurations
and wide bodies and feet seen in derived saurischians such as the titanosaurs.
Furthermore, Day et al. (2002b) showed that large theropods were able to change
their speed instantaneously, highlighting their high maneuverability and balance
control.

Theropod trackways do not typically include hand imprints, which is again an
expression of a posterior center of gravity (Lockley 2007a). Only when the trunk was
lowered toward a substrate, as in a crouched posture, could the hands potentially pro-
duce impressions. Crouching has been demonstrated by a few extraordinary discover-
ies of impressions of autopodia associated with metatarsals and pelvic girdle imprints.
Milner et al. (2009) reported unambiguous theropod manus impressions associated
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with a crouching trace that indicate the avian orientation of the manus (with a medially
facing palm) evolved early within the history of Theropoda (see Gierliniski et al. 2009
and references therein for further examples). The crouching trace was registered when
the animal rested on the substrate in a posture similar to that of modern birds; the traces
include well-defined impressions made by both hands, the ischial callosity, pedes, and
the tail. This trace constitutes evidence that an Early Jurassic theropod expressed two
bird-like features: anatomic restriction to a palms-medial manual posture, and sym-
metric leg positions while resting (Fig. 10.6). Inferences that theropods displayed
behavior analogous to modern birds are intriguing but often too speculative. Recently
discovered Cretaceous theropod tracks in Colorado provided extensive physical evi-
dence of substrate scraping behavior by large theropods; they were considered as com-
pelling evidence of “display arenas” or leks, and consistent with “nest scrape display”
behavior among many extant ground-nesting birds (Lockley et al. 2016).

Another iconic example of the impact that ichnology has had on postural biome-
chanic reconstructions is the case of the orientations of dinosaur trunks and tails.
Analysis of trackways have clearly shown that most dinosaurs walked with their
tails carried well off the ground, so tail-drag traces are rare (Irby and Albright 2012;
Garcia-Ramos et al. 2004, 2006; Platt and Hasiotis 2008; Kim and Lockley 2013).
The presence of tail traces, therefore, implies either a pathologic condition of the

Fig. 10.6 Footprints provide clues to the individual behavior of trackmakers. These crouching
traces described by Milner et al. (2009), for example, demonstrate that avian orientation of the
manus, with medially facing palms, evolved by the Early Jurassic within Theropoda. Such conclu-
sion would have never been reached on the base of skeletal record alone. Modified from Milner
et al. (2009)
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trackmaker or an atypical mode of locomotion because dinosaurs used their tails for
balance on land (Galton 1970; Farlow et al. 2000; Fujita et al. 2012).

Tracks can also be used to assess the effects of traumas and illness in dinosaur
bones and therefore the evolution of phatologic behavior. Tracks and trackways
indicative of pathologies (e.g., fractures in pedal phalanxes) are relatively frequent,
especially in middle to large-sized theropods (Tanke and Rothschild 1997, 2002;
Rothschild et al. 2001; Rothschild and Tanke 2005). Many of the trackways described
refer to large carnivorous dinosaurs that show missing or curled digits (Lockley
1991; Tanke and Rothschild 1997). Footprint and trackway evidence of limping the-
ropods (Ishigaki 1986; Dantas et al. 1994; Lockley et al. 1994b) suggests injury or
arthritis. Foot pathologies in large bipedal dinosaurs however have also been used to
infer more active life-styles or natural fragility of the narrow, protruding digits (Laws
1997; Tanke and Rothschild 1997). For other good examples of pathologic tracks,
see Abel (1935), Thulborn (1990) and Avanzini et al. (2005).

Tracks have also helped unveil another aspect of dinosaur behavior: their ability
to swim. No skeletal remains can help addressing this question, and tracks attribut-
able to swimming theropods have been reported, among others, by Coombs (1980),
Milner et al. (2006), Ezquerra et al. (2007) and Xing et al. (2013a) (similar reports
are available also for other dinosaur taxa; e.g., Currie 1983; Fujita et al. 2012).
Theropods could float, as demonstrated by clawing traces left in the sediment as
they swam (Ezquerra et al. 2007); the trackway shows that this theropod used a
pelvic paddle motion, i.e. they were powered by alternating movements of the two
hind limbs, like in living aquatic birds, and swam with amplified asymmetric walk-
ing movements to maintain its direction while swimming perpendicular to a water
current (Ezquerra et al. 2007). The track record, therefore, has shown that dinosaurs
(mostly theropods) colonized areas that included aquatic environments and were
therefore probably able to swim.

10.2.6 Evidence for Gregariousness

Gregariousness is a form of social interaction between individuals that probably
evolved to increase the fitness of single individuals within a group (Alexander
1974). Gregariousness allows greater defense of individuals from predators,
increases effective access to food, efficiency of breeding, effective migration, and
enhances the probability of safely raising the young (Currie and Eberth 2010). In
order to maintain group cohesion, individuals within a group must synchronize their
behavior in terms of time spent resting, foraging, and moving (Conradt 1998).
Tracksites, together with nesting sites, provide some of the most reliable proof
about the gregariousness in extinct animals, in particular among dinosaurs (Ostrom
1972; Currie 1983; Lockley et al. 1986; Farlow et al. 1989; Horner and Gorman 1990;
Carpenter 1999). Fossil trackways made by multiple individual animals can provide
important qualitative and quantitative information about their social behavior.
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Evidence for gregariousness in dinosaurs is difficult to gain from the body fossil
record, and only bone bed assemblages may reflect such group behavior. Bone beds
are concentration of bones in a localized area or stratigraphically limited sedimentary
unit, in which the bones belong to more than one individual (see Rogers et al. 2007
for more details). Significant work on bone beds assemblages has provided compel-
ling evidence on the gregarious habits of some ornithischian dinosaurs and the coex-
istence of multispecific individuals in the same habitat (Rogers 1990; Varricchio and
Horner 1993; Mathews et al. 2009; Zhao et al. 2007).

In the study of dinosaur tracks, gregariousness may be deduced by the recognition
of some peculiar features, primarily by the occurrence of multiple parallel trackways,
exhibiting a preferring directionality (Ostrom 1972; Currie 1983; Lockley 1991).
However, there is no arbitrary minimum number of adjacent parallel trackways for
indicating gregarious behavior (Lockley and Matsukawa 1999). The presence of
many parallel trackways does not necessarily constitute proof of a herding behavior,
and data should be critically examined: trackways could have been made by animals
that have walked alone at different times, and selected the same direction for the
presence of a physical constraint, such as narrow river valley, shoreline, or the banks
of ariver (e.g., Ostrom 1972). Depths of the tracks in each trackway must be taken
into consideration; similar-sized dinosaurs, walking contemporaneously on a sub-
strate characterized by similar physical properties, probably produced parallel track-
ways with comparable depths. By contrast, parallel trackways with different track
depths suggest that the animals walked on that substrate at different times, perhaps
months, days, or even years later one from the other. A useful parameter to recognize
gregariousness from track data is the intertrackway spacing (i.e., an index of regular-
ity of spacing between parallel trackways; Lockley 1989; Lockley et al. 1998). In
recent years, several trackways characterized by regular intertrackway spacing have
been reported (Lockley et al. 1986, 2006b; Farlow et al. 1989; Lim et al. 1989; Li
et al. 2008), suggesting animals that walked shoulder to shoulder, and thereby sub-
stantiating the hypothesis of their social behavior. Parallel trackways curving or
swerving in unison could also provide evidence of herd habits among the trackmak-
ers (Lockley and Hunt 1995a, b; Lockley and Matsukawa 1999).

Such ichnologic evidence for gregarious behavior in dinosaurs has been
reported from Jurassic and Cretaceous sites in North America (Currie 1983,
1995; Lockley et al. 1983, 1986, 1992a, 1998; Farlow 1987; Farlow et al. 1989;
Pittman and Gillette 1989; Hawthorne 1990; Carpenter 1992; Barnes and Lockley
1995; Lockley and Hunt 1995a, b; Cotton et al. 1998; Kvale et al. 2001;
Schumacher 2003; Myers and Fiorillo 2009), South America (Leonardi 1989;
Lockley et al. 2002; Fig. 10.7), East Asia (Lim et al. 1989; Matsukawa et al.
1997, 2001, 2005; Lockley et al. 2002, 2006b, 2012a, b; Hwang et al. 2004; Li
et al. 2008; Xing et al. 2013a), Europe (Kaever and Lapparent 1974; Delair 1981;
Agirrezabala et al. 1985; Viera and Torres 1992; Lockley et al. 1995¢; Moratalla
et al. 1997; Day et al. 2002a, 2004; Pifiuela et al. 2002; Pérez-Lorente 2003;
Garcia-Ramos et al. 2004; Clark et al. 2005; Vila et al. 2008; Castanera et al.
2011, 2013, 2014; Garcia-Ortiz and Pérez-Lorente 2014), Africa (Lingham-
Soliar et al. 2003) and Australia (Thulborn and Wade 1979, 1984).
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Fig. 10.7 Footprints
provide clues on the social
behavior of dinosaurs.
Here spectacular parallel
trackways at the Humaca
dinosaur tracksite
(Chuquisaca, Bolivia)
interpreted as evidence of
gregarious behavior by
Lockley et al. (2002).
Direction of progression is
towards the right of
picture. From Lockley

et al. (2002)

Evidence suggests that large herbivorous dinosaurs, especially sauropods and
ornithopods often traveled in herds, and that both groups acquired gregarious ten-
dencies early in their histories (see Lockley and Matsukawa 1999 and Myers and
Fiorillo 2009 and references therein). Sauropod trackways indicate groups of 40 or
more individuals (Day et al. 2002a, 2004) and show either mixed-age or are age-
segregated ichnologic assemblages (Lockley et al. 1986, 1995¢c, 2002; Castanera
et al. 2011). The co-occurrence of adult and juvenile trackways may suggest pro-
tracted parental care far beyond the hatchling stage of development; groups of
small-sized trackways may be interpreted as herds of juveniles or (as in the case of
archipelago paleoenvironments) as the presence of dwarfed populations (Benton
et al. 2010). Few tracksites exhibit parallel trackways of different species or groups
(e.g., Day et al. 2002a, 2004).

Much evidence of possible social behavior in other groups of herbivorous dino-
saurs, such as ankylosaurs (McCrea and Currie 1998; McCrea 2000) and ceratop-
sians (Lockley and Hunt 1995b) has now also accumulated. Evidence of
gregariousness in carnivorous dinosaur trackways, particularly non-avian thero-
pods, is less common than in other groups of dinosaurs, and the interpretations of
such evidence remain more controversial. Some researchers support this hypothesis
(Lockley and Matsukawa 1999; Carvalho and Pedrao 2000; Smith et al. 2002;
Lingham-Soliar et al. 2003; Clark et al. 2005; Barco et al. 2006; Li et al. 2008;
Currie and Eberth 2010; McCrea et al. 2014) while others prefer to consider track-
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way data as coincidental instances of normally solitary individuals converging on a
common point (e.g., food source, Roach and Brinkman 2007).

10.2.7 On the Tracks of Birds

Birds are among the most diversified and thoroughly analyzed vertebrate groups, but
both their origin and evolution remain controversial. The skeletal record of birds is
strongly biased by the nature of bones that, in this group, are mostly small and deli-
cate so that limbs are commonly lost in taphonomic decay processes (Davis and
Briggs 1998; Brand et al. 2003). This makes the bird fossil record highly incomplete,
and only a multidisciplinary approach, including paleornithology, paleoichnology,
and molecular studies, can help in the understanding avian origins and radiation.

The skeletal record indicates an initial avian radiation around the Jurassic-
Cretaceous boundary (about 145 million years ago) and an early Paleogene diversi-
fication for modern birds (Neornithes) (e.g., Clarke et al. 2005; Dyke and Kaiser
2011; Brocklehurst et al. 2012; Ksepka and Boyd 2012). Molecular studies and
recent combined molecular and morphologic analyses, instead, indicate that modern
birds began radiating in the Early Cretaceous (Cooper and Penny 1997; Haddrath
and Baker 2012; Jetz et al. 2012; Lee et al. 2014).

Tracks similar to those of modern birds (i.e., shorebirds, small ducks, small herons,
roadrunners) are only 15-20 million younger than the oldest avian skeletal remains,
which is in agreement with molecular data (Brown et al. 2008). In contrast, the oldest
body-fossil records of anseriforms and possibly charadriiforms date to the latest
Cretaceous (ca. 70 million years ago), and are even younger for ciconiiforms and cucu-
liforms (Lockley and Harris 2010; Fig. 10.8). This could be explained through the fol-
lowing two hypotheses: (1) pre-latest Cretaceous occurrence of neornithians, implying
that the body fossil record is strongly biased toward the preservation of non-neornithian
birds, or (2) neornithians converged in foot morphology with their non-neornithian,
Cretaceous ancestors. The latter appears more parsimonious suggesting that convergent
evolutionary programs, in similar niches and at different periods, produced not only
similar pedal morphologies but also similar size (Lockley and Harris 2010).

Feeding behavior has been also inferred from different fossil bird tracks by com-
paring them with traces characteristic of modern birds. For example several
Ignotornis trackways exhibit reduced pace length, interpreted as a type of “foot
stirring” behavior characteristic of modern herons “stirring” up the substrate for
feeding (Lockley et al. 2008, 2009). The most noticeable example of feeding behav-
ior was reported from the Cretaceous of Korea (Lockley and Harris 2010; Lockley
etal. 2012a; Kim et al. 2012). Traces consist of sets of fine, zigzag, arcuate to semi-
circular grooves that “sweep” back and forth across the trackway, indistinguishable
from those of modern spoonbills (Swennen and Yu 2005). But spoonbills are not
recorded in the Cretaceous fossil record, and no spoonbill morphology is known in
any Cretaceous bird. The ichnologic record thus adds new data to the Cretaceous
avian diversity.
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Fig. 10.8 Paleornithology and avian paleoichnology provide complementary data on the evolu-
tion of birds. This cladogram superimoposed on geologic time scale shows both taxon ranges
based on skeletal data and associated footprint occurrences. See text for discussion. Modified from
Lockley and Harris (2010)

The primary Mesozoic bird tracksites were recently reviewed by Lockley and Harris
(2010) but there are new findings reported every year (Falk et al. 2010, 2014; Falk 2011;
Fiorillo et al. 2011; Xing et al. 2011, 2013b; Contessi and Fanti 2012; Huh et al. 2012;
Kim et al. 2012; Lockley et al. 2012c, d; Azuma et al. 2013; Martin et al. 2014). Most
fossil bird tracks exhibit sizes and morphologies similar to those of extant shorebirds
and water-birds (Greben and Lockley 1992), and are generally associated with lake
basin, fluvial floodplain, coastal plain, and marine shoreline deposits (Lockley and
Harris 2010). This bias is strictly related to the physical properties of these environments
that apparently facilitate the registration and preservation of tracks, and the creation of
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what has been called the shorebird ichnofacies (Lockley et al. 1994a; Lockley 2007b).
Tracks of birds with feet adapted for perching, such as songbirds or raptors, have much
less chance to be produced and preserved; the same happens with birds that live in envi-
ronments where the burial and preservation of tracks is less frequent or improbable
(mountain, forest, open marine, etc.). Even though there are many avian skeletal and
track fossils, the two records do not match each other and few footprints were probably
produced by the feet represented by the skeletal remains (Lockley and Harris 2010).
This mismatch and all the previously mentioned data strongly indicate that morpholo-
gies and behaviors of many modern birds actually evolved convergently with many of
their extinct, Mesozoic relatives. A striking example is provided by the discovery of an
Early Cretaceous (Aptian-Albian 120-110 Ma) trackway: Shandongornipes muxiai (Li
et al. 2005). This discovery shows the evolution of a terrestrial, zygodactylous bird that
is unknown in the body fossil record; it probably occupied a roadrunner-like niche indi-
cating evolutionary convergence of an early Cretaceous bird with the locomotory habits
and possible ecology of modern birds (see Lockley et al. 2007).

The majority of the fossil bird tracksites discovered to date are in East Asia,
primarily in China and South Korea (Azuma et al. 2002, 2013; Li et al. 2002; Kim
et al. 2006, 2012; Lockley et al. 2006b, 2007, 2009, 2012c, d; Xing et al. 2011,
2013b; Contessi and Fanti 2012; Huh et al. 2012; He et al. 2013; Falk et al. 2014).
The high frequency could be related to the abundance of lake deposits in these
regions, but the contemporaneous Chinese and North Korean skeletal records are
also very rich in birds. The complementary evidence thus indicates that the distribu-
tion pattern may reflect a true center of avian radiation (Lockley and Harris 2010).

10.2.8 Pterosaur Locomotion

Pterosaurs are the earliest known vertebrates to have evolved powered flight. These
winged reptiles first appeared in the Late Triassic and went extinct at the end of the
Cretaceous period (Buffetaut and Mazin 2003). Since their first discovery, there has
been considerable debate over their terrestrial locomotor capabilities, in particular
whether they walked bipedally (Cuvier 1809) or quadrupedally with their hindlimbs
splayed (Soemmerring 1812, 1817). Some eminent paleontologists considered that
pterosaurs were unable to walk (Abel 1925) or were bad walkers with their hindlimbs
unsuitable for a quadrupedal gait (Wellnhofer 1978). The hypothesis that pterosaurs
were digitigrade bipeds with an erect stance was supported and argued with phyloge-
netic and osteologic analysis by Padian (1983, 1984, 1985, 1987, 1988, 1991), Padian
and Rayner (1993), Paul (1987) and Bennett (1990). In contrast, several researchers,
on the basis of osteologic arguments, claim that pterosaurs were quadrupedal planti-
grades, with semi-erect or possibly even sprawling stances (Pennycuick 1986; Unwin
1987, 1989; Wellnhofer and Vahldiek 1986; Wellnhofer 1988, 1991a, b).

As was the case for other extinct track-making animals, ichnology provided
unequivocal evidence in resolving this long-standing dispute. Already in 1957 Stokes
described a short trackway composed of tridactyl manus and tetradactyl pes prints
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(Stokes 1957). He instituted the new ichnotaxon Pteraichnus saltwashensis that he
identified as produced by a quadrupedal pterodactyloid pterosaur. This attribution
was endorsed by subsequent findings (Stokes 1978; Wellnhofer 1978; Stokes and
Madsen 1979), but was strongly opposed by Padian and Olsen (1984) who proposed
they were made by a crocodilian trackmaker. Pteraichnus was no longer considered
a pterosaur ichnotaxon (Unwin 1986, 1989; Prince and Lockley 1989; Lockley 1991;
Wellnhofer 1991a; Bennett 1992). New discoveries provided new information
(Logue 1994; Hunt et al. 1995b; Lockley and Hunt 1995a) and Mazin et al. (1995)
and Lockley et al. (1995d) independently demonstrated that Pteraichnus could be
attributed to pterosaurs (Fig. 10.9). To date, this interpretation is accepted by most
pterosaur researchers (Lockley et al. 1996, 1997; Bennett 1997; Mazin et al. 1997,
2001; Unwin 1997a, b, 2006; Wright et al. 1997; Kubo 2008; Witton 2013). Ichnology
therefore provided definitive evidence that pterosaurs walked on all fours.

These studies also demonstrated that at low-velocity walking, the body was held
upright, with the forelimbs held more vertically and the mani brought close to the
axis of the trackway, so they could not be starched much foreword. Conversely, at

Fig. 10.9 Fossil trackways
attributed to pterosaurs
provided exceptional
insight into the functional
morphology and behavior
of these flying reptiles.
Furthermore, they solved
the long-standing debate
over pterosaur terrestrial
locomotion. The tracks
called Pteraichnus show
that pterosaurs employed a
plantigrade, quadrupedal
stance and gait with the
hind limb partially—to
fully—abducted. From
Unwin (1996)
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higher velocities, the body was held less erect (possibly subhorizontally) allowing
the long forelimbs to reach a more distant anterior point (Mazin et al. 2001).
Trackways were also useful to infer the landing behavior of pterosaurs, which like
modern birds used their wings to stall before landing (Mazin et al. 2009).

Pterosaur tracks are abundant in the Upper Jurassic rocks of Arizona, Colorado,
Oklahoma, Utah and Wyoming (Stokes 1957; Lockley et al. 1995d, 1996; Lockley and
Wright 2003; Lockley et al. 2008), France (Mazin et al. 1997, 2003, 2009; Billon-
Bruyat and Mazin 2003), Poland (Pienkowski and Niedzwiedzki 2005), and Spain
(Garcia-Ramos et al. 2000, 2002, 2006; Meijide Calvo and Fuentes Vidarte 2001;
Fuentes Vidarte et al. 20044, b; Sanchez-Hernandez et al. 2009). Tracks of Cretaceous
age are much larger than those of the Late Jurassic, which agrees with body size trends
of skeletal remains (Buffetaut and Mazin 2003). Large body size in this group can have
evolved as early as Late Jurassic as testified by abundant footprints from Spain (Garcia-
Ramos et al. 2000, 2002, 2006) and few skeletal remains from Switzerland (Meyer and
Hunt 1999). Pterosaur tracks have been reported from the Lower Cretaceous of China
(Li et al. 2002; Zhang et al. 2006; Xing et al. 2013b, c), England (Delair 1963, re-
interpreted by Wright et al. 1997), Germany (Hornung and Reich 2013), Japan (Lee
etal. 2010), South Korea (Kim et al. 2006; Lee et al. 2008), Spain (Pascual Arribas and
Sanz Pérez 2000; Meijide Calvo 2001; Fuentes Vidarte 2001; Herndndez Medrano
et al. 2006; Moratalla and Hernan 2009; Sanchez-Hernandez et al. 2009), and USA
(Maryland; Lockley and Rainforth 2002). In the Upper Cretaceous, they are known
from Argentina (Calvo and Lockley 2001), Mexico (Rodriguez de la Rosa 2003),
South Korea (Lockley et al. 1997; Hwang et al. 2002) and USA (Colorado, Lockley
and Rainforth 2002; Utah, Lockley et al. 1995d). Upper Cretaceous Korean tracks,
known as Haenamichnus, are the largest pterodactyloid tracks (up to 33 cm) and were
made by a trackmaker not yet known from the body fossil record.

Pterosaur tracks have been also used as an indicator of body mass. Kubo
(2011) tried to correlate the foot area with weight. He used seven ichnospecies of
pterosaur tracks and estimated body weights of pterosaurs as ranging from 110 to
145 kg. This result indicates that large pterosaurs were ten times heavier than the
heaviest modern birds.

The pterosaur track record provides evidence about the preferred environ-
ments and behaviors of these flying reptiles. Most Upper Jurassic pterosaur
tracks are found in marginal marine, carbonate, and clastic-evaporitic lagoonal
deposits whereas Cretaceous tracksites are associated with fluvial and freshwa-
ter deposits (Lockley and Rainforth 2002). The Late Jurassic record is consis-
tent with the hypothesis, inferred also through the body fossil record, that
pterosaurs inhabited marine shoreline habitats. This view is further corrobo-
rated by the discoveries of “swimming” and “feeding traces” (Garcia-Ramos
et al. 2000, 2002, 2006; Lockley and Wright 2003; Witton 2013; Lockley et al.
2014). They consist of scrape marks that are interpreted as traces produced by
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paddling limbs, a random distribution of tracks without evidence of trackways,
and small circular paired depressions left in the substrate by beak prods of
pterosaurs in search of food. This evidence reveals that pterosaurs could prob-
ably swim, or at least float on the surface of the water, like modern seabirds
(Witton 2013; Hone and Henderson 2014; Li et al. 2015).

10.3 Conclusions

By applying rigorous analytic methods, which allow full hypothesis testing, verte-
brate ichnology can provide reliable information about paleobiology (documenting
evolutionary patterns, tempo of evolution, locomotion, posture, size, speed, social
and individual behavior), paleobiodiversity (indicating the presence of taxa undocu-
mented by the skeletal record), paleoecology (giving hints on environmental/habitat
preferences and faunal composition) and paleobiogeography (providing presence/
absence data on geographic distribution) of trackmakers, vertebrate ichnology is
finally sitting at the “high table” of paleobiology.

In this review of Mesozoic reptile tracks some milestones of paleoichnologic
research have been evaluated with the aim of highlighting the potential of these
studies in contributing to the knowledge of evolutionary history and coevolution on
the changing Earth. We have shown that vertebrate track record can be used to study
the evolution of posture. Studies of the Permian to Triassic tetrapod-track record
documents the appearance of upright stance in reptiles and shows a previously hid-
den correlation between this event and the Permo-Triassic mass extinction. Using
synapomorphic characters in tracks has been essential in developing the present
understanding of the origin of the dinosauromorph clade. Tracks show that the most
basal dinosauromorphs were quadrupedal and that bipedalism was acquired phylo-
genetically closer to the origin of dinosaurs. An earlier origin of dinosauromorphs
might imply a possible link with the Permo-Triassic mass extinction. The ichno-
logic record can be used to make hypotheses about the spatial and temporal distribu-
tion of basal dinosaurs. Tracks indicate the presence of a diverse and widespread
fauna of dinosaurs during the early Late Triassic both in Laurasia and Gondwana, a
distribution not yet documented by the body-fossil record. Track records provide
evidence that habitats were shared by dinosaurian and non-dinosaurian archosaurs
in the Late Triassic, and support the hypothesis that crurotarsan-dominated faunas
were replaced by dinosaurs through a gradual process of ecologic replacement.
Combined analyses of body and track fossils provide insights in the understanding
of both environmental preferences and evolution of locomotory mechanisms in sau-
ropod dinosaurs. Ichnologic data reveals the inland preference of wide-gauge titano-
saurs highlighting the importance of considering track data in ecologic analysis.
Trackways are used to estimate the speeds of trackmakers and provide clues to
individual behaviors of theropod dinosaurs. Empiric formulae derived from extant
animals constitute the basis of these interpretations, and show that theropods pri-
marily used walking gaits, although some were runners, and there are a few records
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of individuals using trotting gaits. Crouching traces demonstrate that the avian ori-
entation of the manus, with a medially facing palm, had evolved by the Early
Jurassic within Theropoda. Footprints provide clues on social behavior in dino-
saurs. Many sites have shown that herbivorous dinosaurs were at times gregarious.
Carnivorous non-avian theropods were sometimes gregarious although interpreta-
tions are more controversial. A strong link between paleornithology and avian
paleoichnology illuminates aspects of avian evolution, particularly with regard to
paleoenvironmental preferences. Ichnology is particularly relevant when studying
shorebirds evolution, given the completeness of the track record for this group.
Footprints are crucial to understand pterosaur terrestrial locomotion and stance, to
estimate body mass, and to learn about their physiology and behavior (swimming,
feeding, landing).
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Chapter 11
The Mesozoic Lacustrine Revolution

Luis A. Buatois, Conrad C. Labandeira, M. Gabriela Mangano,
Andrew Cohen, and Sebastian Voigt

11.1 Introduction

The Mesozoic lacustrine revolution (MLR) represents a major evolutionary event
in the continental realm (Cohen 2003). The decline in taxic diversity at the family
level in lacustrine environments that took place during the late Paleozoic—-Middle
Triassic was reversed later in the Mesozoic, with diversification seeming to have
continued to the Quaternary, although potential biases may have affected this
trend (Cohen 2003). Major novelties and innovations that took place in lacustrine
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settings during the mid-Mesozoic include the diversification and increase in mor-
phological disparity of aquatic macrophytes, aquatic insects, and teleosts. By the
mid Cretaceous (125-90 Ma), the basic ecologic structure of the MLR was well
established, defined by an ecologically significant increase of herbivory within
ecosystems which previously had been overwhelmingly composed of detritivores
and predators. This trophic readjustment was minimally altered by the end-Creta-
ceous global crisis and the subsequent ecologic rearrangement of the Paleogene
world (Dunne et al. 2014).

It is a basic premise of this chapter that a review of this formative interval from
a comparison of the body- and trace-fossil records will illuminate our understanding
of the MLR. Although direct links between individual ichnotaxa and producers
commonly are not possible, a comparison of the trace-fossil and body-fossil records
through time is valuable in detecting the timing of large-scale ecologic changes in
lacustrine ecosystems. Consequently, in this chapter we review the trace- and body-
fossil record of lake and related continental aquatic deposits to establish and assess
the importance of the MLR. As part of our examination, we discuss how ichnologic
evidence may provide insights into major evolutionary innovations within lacus-
trine ecosystems. To do so, we provide an extensive summary of the available ich-
nologic information for Mesozoic—Cenozoic lacustrine successions. In addition, a
review of the paleoecologic structure of Eurasian paleolakes in particular provide
important evidence for understanding the impact this event had on trophic relation-
ships throughout the water column (Zherikhin et al. 1999; Sinitshenkova 2002) as
well as the lacustrine benthos and associated sediments during this formative inter-
val (Buatois et al. 1998a; Mdngano and Buatois 2007; Voigt and Hoppe 2010).
Although this chapter is focused on the evolutionary novelties and innovations that
took place during the Mesozoic, in order to place these changes within a broader
context, we briefly outline the basic features of lacustrine ecosystems prior to the
MLR (see Chap. 6 for a detailed discussion on the ichnology of Silurian-Permian
lakes). A more complete context for understanding the MLR involves a search for
the roots of Mesozoic MLR novelties and innovations in older deposits to establish
relevant ichnological, biotic, and physical contrasts between the late Paleozoic and
the Mesozoic worlds. Similarly, we provide a discussion of the post-Mesozoic
record in order to evaluate the aftermath of the MLR.

11.2 Methods and Terminology

For this study, all ichnotaxonomic determinations have been checked and adjusted
based on a reevaluation of the available literature. Because the literature essentially
provides two contrasting trace fossil-assemblages, a distinction is made between
lake-margin settings and fully subaqueous lacustrine conditions. Lake-margin set-
tings are characterized by periodic fluctuations of the water table, leading to highly
variable conditions in substrate consistency. Typically, a characteristic zonation from
softgrounds near the edge of the water body to drier substrates outward from the lake
develops (Scott et al. 2012a). Lake-margin ichnofaunas commonly display activity of
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a combined terrestrial to shallow subaqueous biota. The degree of consolidation of
the substrate plays a major role for preservation of biogenic structures in lake-margin
deposits (Buatois and Mdngano 2004, 2009). Ichnofaunas from lake-margin settings
typically comprise the Scoyenia Ichnofacies (Buatois and Mdngano 1995, 2004,
2009) and less commonly the Camborygma Ichnofacies (see Chaps. 1 and 13).

Fully lacustrine settings (i.e. the permanent subaqueous zone), particularly in hydro-
logically open systems, may host a relatively diverse benthic fauna. In this zone a where
a lake experiences a high degree of environmental stability and appropriate ecologic
conditions, particularly high levels of oxygenation, low energy, constant food supply, the
presence of freshwater, and cohesive substrates (Buatois and Mdngano 1995, 2004,
2009; Miller and White 2007; Scott et al. 2012a). Oxygenation is a first-order limiting
factor, because in lakes with year-round thermal stratification the hypolimnion becomes
anoxic or dysoxic and bioturbation is precluded in the lake bottom below the mixolim-
nion. Low-energy turbidity and underflow currents may provide oxygen and food to
lake bottoms. Colonization by macrobenthos and preservation of their trace fossils are
both unfavorable in soupy substrates and, accordingly, some degree of substrate cohe-
sion is required to allow the passage of discrete biogenic structures through the fossiliza-
tion barrier. Ichnofaunas from fully lacustrine settings typically form the Mermia
Ichnofacies (Buatois and Mangano 1995, 2004, 2009; see Chap. 1).

At the scale of the basin, we commonly refer to the scheme developed by Bohacs
et al. (2000), who recognized three different types of lake basins, namely overfilled,
balanced-fill, and underfilled. Overfilled-lake basins occur if the rate of sediment/
water input exceeds the rate of formation of potential accommodation. These sys-
tems are typically hydrologically open, and form deposits of fluvio-lacustrine, silici-
clastic sediments that display parasequences resulting from shoreline progradation
and delta-channel avulsion. Balanced-fill lake basins are formed when rates of sedi-
ment/water supply are in balance with the formation of potential accommodation.
These lakes tend to shift periodically from hydrologically open to closed and vice
versa, producing both carbonate and siliciclastic deposits which display parase-
quences that record both progradational parasequences and aggradation of chemical
sediments during periods of desiccation. Underfilled-lake basins are characterized by
rates of accommodation formation that exceed the rate of supply of sediment/water.
These are typically hydrologically closed lakes, dominated by evaporite deposits
which display parasequences that record vertical aggradation. This scheme has been
successfully used to frame both ichnologic (Buatois and Mangano, 2004, 2007,
2009) and paleobiologic (Gierlowski-Kordesch and Park, 2004) information.

In order to frame the major ecosystem changes discussed in this chapter, we have
used the distinction between novelties and innovations outlined by Erwin and
Krakauer (2004) and Erwin (2012). According to these authors, invention is the
creation of something new, whereas innovation is a successful development of an
invention. Evolutionary novelties only result in innovations when they drive eco-
logic transformation (Erwin 2012).

For better clarity in specifying the immatures of non-holometabolous versus
holometabolous insects, we employ the standard entomological terminology used in
North America (China et al. 1958). For those insects possessing egg to naiad/nymph
to adult development, the term “naiad” is used for an aquatic immature instar that


http://dx.doi.org/10.1007/978-94-017-9600-2_1
http://dx.doi.org/10.1007/978-94-017-9600-2_13
http://dx.doi.org/10.1007/978-94-017-9600-2_1

182 L.A. Buatois et al.

lacks holometabolous development (Snodgrass 1954). Immatures consisting of
naiads occur in the Ephemeroptera (mayflies) and Odonata (dragonflies and damsel-
flies), the extinct archaeorthopteroid Chresmodida, Plecoptera (stoneflies), and
some groups of Heteroptera (true bugs) within the Hemiptera. A terrestrial imma-
ture of these non-holometabolous insects is termed a “nymph” (Snodgrass 1954;
Davies 1958), and nymphs commonly occur within the same major groups as spe-
cies with naiad immatures. Examples of taxa with nymphs include the terrestrial
Orthoptera (grasshoppers, crickets), Blattodea (cockroaches), Isoptera (termites),
and Mantodea (mantids). We restrict the term “larva” solely to insects with holome-
tabolous development, consisting of egg to larva to pupa to adult development
(Snodgrass 1954). Holometabolous taxa that have aquatic larvae include certain
groups within the Coleoptera (beetles); the Megaloptera (alderflies and dobson-
flies); a few groups of Neuroptera such as spongillaflies; certain, especially nemato-
cerous, Diptera (true flies); and the Trichoptera (caddisflies). Restriction of the
term, larva, to holometabolous insects offers more precision than application of the
term broadly to multiple developmental modes that would encompass developmen-
tal stages such as aquatic naiads, terrestrial nymphs, and probably forms that lack
developmental change. The distinction used herein generally has been accepted by
a broad spectrum of evolutionary developmental biologists (Gilbert 2014).

The body-fossil record of ancient lacustrine basins is strongly biased as a result
of the distribution of fossil Lagerstdtten. Fortunately, these spectacular deposits are
quite common in lacustrine successions (see Table 14.1 in Cohen 2003). However,
integrating body-fossil evidence from fossil Lagerstitten with ichnologic informa-
tion frequently is problematic because many of the former records accumulated as
event beds under anoxic conditions, preventing bioturbation, and therefore having a
sparse trace-fossil record. Notwithstanding this limitation, there are a number of
Mesozoic examples where exceptional body-fossil accumulations have been recov-
ered in association with trace fossils, most notably the Madygen (Voigt and Hoppe
2010), El Montsec (de Gibert et al. 2000) and Las Hoyas (Buatois et al. 2000a; de
Gibert et al. 2016) biotas.

11.3 Lacustrine Ecosystems in Deep Time

Exploration of lacustrine ecosystems in deep time is a challenging enterprise
because lakes are geologically ephemeral (Cohen 2003). However, the long-term
evolution of organisms in freshwater settings provides continuity, allowing recon-
struction, albeit tentative, of secular changes in lacustrine biotas (Anderson and
Dean 1988; Buatois et al. 1998a; Labandeira 1999; Park and Gierlowski-Kordesch
2007). Because of the patchiness and lack of connection between individual lakes in
space and time, as opposed to the more continuous record of oceans, the fossil
record of lacustrine organisms is sporadic (Cohen 2003).

As with other depositional settings, lakes are affected by a number of tapho-
nomic megabiases (Behrensmeyer and Kidwell 1985; Behrensmeyer et al. 2000).
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Taphonomic megabiases are defined as “largescale patterns in the quality of the
fossil record that affect paleobiologic analysis at provincial to global levels and at
timescales usually exceeding ten million years” (Behrensmeyer et al. 2000). In par-
ticular, the fossil record of lacustrine basins is strongly affected by both intrinsic
changes and extrinsic abiotic and biotic changes. The former results from the evolu-
tion of new body plans and the impact of behavior on fossilization potential
(Behrensmeyer et al. 2000). As in the archetypal case of marine environments,
development of mineralized hard parts is one of the intrinsic factors in lake settings,
as is the establishment of fossorial behavior by vertebrates. The increased depth and
extent of bioturbation through time exhibited by the lacustrine infauna is certainly
one of the most important, extrinsic biotic factors contributing to taphonomic mega-
biases in these settings (see Sect. 11.8.2). Finally, tectonic and climatic controls on
the establishment and evolution of lacustrine basins are prime examples of extrinsic,
abiotic factors in the generation of taphonomic megabiases. These interpretive limi-
tations notwithstanding, our understanding of this record are informed by several
key observations.

(1) Lacustrine habitats have experienced a history of regular and repeated
formation, isolation, and destruction. Because of the combined effects of climate
variability and change as well as sediment infill, most individual lakes only persist
over timescales of ~10>-10* yrs, with only a small percentage of lakes, generally
those originating from tectonic, volcanic, and meteoritic impact processes, persist-
ing over longer intervals of time (Cohen 2003; Cohen et al., 2015). Most of the
processes that create lakes, such as fluvial diversion from damming, glacial block-
age of drainage systems and delta-plain subsidence, are also predilect for the even-
tual destruction of these same habitats. The creation and destruction of lakes often
occur at quasi-predictable tempos scaled by the lake formation process, including
determining potential sediment accommodation space, coupled with the typical
range of sediment accumulation rates associated with lacustrine systems.

(2) The need for dispersal of organism populations among lakes is a primary
driver of both evolutionary innovations and constraints on the lacustrine biota.
The excellent dispersal adaptations of organisms are a hallmark characteristic of
most lacustrine systems. Organisms have evolved adaptations for dispersal as well
as for the constraints emplaced on them by the “typical” lacustrine environment
mentioned above. These features include adaptations for flight, such as active flight
by aquatic insects, and passive carriage by birds, fish, and wind (Boag 1985; Bilton
et al. 2001; Green and Figuerola 2005; Van Bocxlaer et al. 2011); active parasitism
on animal dispersal vectors (Graf and Cummings 2006); and desiccation resistance
(Watanabe et al. 2002; Watanabe 2006). Conversely, the very adaptations for disper-
sal between ephemeral waterbodies also promote gene exchange between popula-
tions and reduce the likelihood of population isolation and speciation (Bilton et al.
2001). These adaptations inherently constrain and scale the rates of lacustrine evo-
lution to the stability and persistence of their waterbodies, with the faunas of shorter-
lived lakes (better migrants or desiccation survivors) associated with slower
evolutionary rates and overall lower diversity. Morphological novelties arising from
new functional and behavioral modifications take advantage of changing lacustrine
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food resources, of which herbivory on aquatic plants or tiered detritivory exploiting
deeper substrates are prime examples. These novelties become innovations when in
the case of dispersal, the spread of disseminules is severely impeded by a periodic
scarcity of quasipersistent lakes, and the energetic requirements of adaptations for
exploiting lacustrine resources run up against the competing need to migrate to new
habitats.

(3) Lacustrine evolution in long-lived lakes is highly iterative and lacustrine
habitats can act as refugia for evolutionary novelties and innovations.
Comparative studies of the living and fossil faunas of long-lived Neogene African
Great Lakes and early Mesozoic Newark Supergroup paleolakes show that specia-
tion and diversification trends often are highly iterative. The iteration of homolo-
gous morphological novelties in lacustrine clades evolve repeatedly in space and
time whenever lakes persist sufficiently long for the results of diversification to be
expressed (McCune 1996; Salzburger et al. 2014). Particular body plans and evolu-
tionary novelties have been observed resulting from the convergence of lineages
within isolated lakes. One such convergence is the iconic example of cichlid fish
pharyngeal jaw mechanics and overall body structure converging among species
populations in Lakes Tanganyika and Malawi (Kocher et al. 1993). Perhaps even
more remarkable, trophic interactions have also been observed to converge among
long-lived lakes, albeit occasionally with slightly different players. One example
involves patterns of escalatory predator—prey coevolution (West and Cohen 1996;
Van Damme and Pickford 2003). Occasionally, the resulting species of these radia-
tions are themselves later dispersed into other lake systems, providing the begin-
nings for more widespread spatial diversification of the original clade (Van Damme
and Pickford 1999; Anderson et al. 2010).

(4) The tempo of evolutionary innovation related to trophic interactions in
lakes is probably modulated by the history of geochronologically long-lived
lakes. If long-lived lakes can serve as incubators for diversification and evolution of
key innovations and interactions in aquatic organisms, then it is likely that during
times of such lake abundance, the most favorable opportunity exists for large scale
trophic “revolutions” within lacustrine biotas. The mid-Mesozoic breakup of
Pangaea probably represented the peak period of long-lived lake formation. These
lakes were coupled with an ever increasing provinciality as they were progressively
rafted on different continental land masses around the planet (Cohen 2003).

11.4 The Lacustrine World Prior to the Mesozoic Revolution

In this section we provide a brief review of the basic features of lacustrine commu-
nities that immediately preceded those of the Mesozoic world. Evidence of
Proterozoic lacustrine biotas is scarce, to say the least, essentially being restricted to
stromatolites most likely formed by cyanobacteria (e.g. Hoffmann et al. 1980) and
leiosphaeridian acritarchs that may have been adapted to freshwater, although this
is a contentious issue (Martin-Closas 2003). There is a paucity of evidence for
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body-fossils in Cambrian through mid-Silurian continental aquatic habitats
(Labandeira 2005a). Tasmanitids (green algae) were abundant during the early
Paleozoic, but most likely inhabited brackish rather than fresh water (Martin-Closas
2003). The Cambrian-Ordovician evidence for the incipient colonization of land
originates from trace fossils of arthropods that were able to foray into intertidal
areas, coastal dunes and ponds (see Chap. 5), and stromatolites that were similar in
structure to, but commonly more diminutive than those of the Precambrian
(Ponomarenko 2009). In addition, the occurrence of a diverse cryptospore assem-
blage in Lower to Middle Ordovician deposits represents the earliest evidence of
land plants, suggesting an early origin of embryophytes (Rubinstein et al. 2010).
Chlorophytes were represented mainly by the Chlorococcales, which became domi-
nant in lacustrine plankton by the Ordovician (Martin-Closas 2003), and the closely
related Charophytes that were present in freshwater bodies at by the Late Silurian,
if not earlier (Feist et al. 2005). The presence of liverwort and embryophyte-grade
spores toward the end of this interval, and continuing into the Early Devonian, sig-
nals the establishment of an incipient subaerial plant cover, probably adjacent to
bodies of brackish and freshwater inland and along coastlines (Strother 2000).
These developments, in conjunction with the presence of lacustrine (and fluvial)
sediments, particularly during the Late Ordovician and Silurian, indicate the emer-
gence of a depauperate lacustrine biota consisting of transient and permanent micro-
organisms, plants, fungi, and invertebrate animals. The fossil history of lacustrine
zooplankton is notably poor. However, molecular clocks may help to provide some
constraints. For example, cladoceran crustaceans are thought to have originated by
the Devonian (Sacherovd and Hebert 2003). The Silurian-Devonian lacustrine
trace-fossil record is restricted to lake-margin settings, and is dominated by arthro-
pod trackways (Buatois and Mdngano 1993a; Buatois et al. 1998a; see Chap. 6).
The restriction of biogenic structures to lake margins and the apparent absence of
fully lacustrine ichnofaunas are consistent with extremely inefficient nutrient deliv-
ery in the absence of an extensive upland plant cover (Cohen 2003). These lakes
may have been ultraoligotrophic and limited in phosphorous (Cohen 2003), pre-
cluding the establishment of a lacustrine benthos.

With few exceptions (Grenier 1974; Clarkson et al. 1993; Rolfe et al. 1993;
Jeram and Selden 1993; Shear 1993), the Lower Carboniferous (Mississippian)
lacks a significant record of well-documented lake deposits and associated biotas.
During the Late Carboniferous (Pennsylvanian), two major types of ecosystems
appeared that were displaced by differing environmental conditions. The Wet Biome
emerged during the earlier Pennsylvanian and included a wide variety of wetlands,
notably coal-swamp communities that consisted of water-tolerant lycopods, sphe-
nopsids, medullosan seedferns, and arborescent marattialean ferns, occupying much
of humid equatorial Euramerica (Gastaldo et al. 1996). By contrast, evidence for a
Dry Biome appears toward the latter half of the Pennsylvanian, and included com-
munities dominated by a desiccation-tolerant biota, such as cordaites, noeggeran-
thialeans, conifers, gigantopterids, peltasperms, and probably cycads that occupied
more continental, extra-tropical environments (Oplustil et al. 2013). Regarding zoo-
plankton, copepods were already present by the Mississippian in glacial lakes of
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Gondwana (Selden et al 2010). During the Permian, the tropical to paratropical Wet
Biome diminished significantly, at least in North America and Europe, although it
survived largely intact in China (D’Rozario et al. 2011). By contrast, the Dry Biome,
which first appeared during the latter half of the Pennsylvanian (Oplustil et al.
2013), temporally overlapped with the Wet Biome, and became prominent in more
inland, drier basins of the Permian as it assumed a distinctive biotal character in
many habitats. Aquatic herbivory was still absent, in contrast to a pulse of signifi-
cant herbivory that had evolved on land by the Late Pennsylvanian (Labandeira
2006). In addition to ichnofaunas in lake-margin deposits, Mississippian and
Pennsylvanian trace fossils also are present in fully subaqueous lacustrine deposits,
indicating a significant environmental expansion of the benthic fauna (Buatois and
Mingano 1993a; Buatois et al. 1998a) (see Chap. 6). These lacustrine deposits were
colonized by a moderately diverse, mobile, detritus-feeding epifauna. This expan-
sion was probably linked to the rapid diversification, and increase in abundance of
land plants, attributable to vegetational changes that introduced abundant organic
detritus into previously nutrient-poor, lacustrine habitats (Maples and Archer 1989).
Also, ichnologic information suggests a major diversification event during the
Mississippian and Pennsylvanian, which parallels the diversification of freshwater
organisms, such as arthropods, annelids, fish, and mollusks (Maples and Archer
1989; Buatois et al. 1998a). The ichnologic evidence of the Dry Biome during the
subsequent Permian consists of a high abundance and moderate diversity of arthro-
pod trackways emplaced in subaerially exposed sediment of playa-lake systems
(see Chap. 6). By the Permian, the presence of meniscate trace fossils (e.g. Scoyenia)
records the establishment of a mobile, shallow- to mid-tier, infauna in firm, desic-
cated substrates. However, these structures still were relatively rare and for the most
part have been recorded in overbank environments rather than in lake-margin set-
tings that are overwhelmingly dominated by arthropod and tetrapod trackways.

11.5 The Mesozoic Lacustrine Revolution

The Mesozoic trace-fossil record of lacustrine successions is uneven in time and
space. The Lower Triassic ichnologic record of lake-margin environments is
remarkably poor, and we are not aware of well-documented, fully lacustrine, Early
Triassic ichnofaunas. In contrast, Middle to Late Triassic lacustrine ichnofaunas
have been documented in great detail. The Jurassic ichnologic record is uneven,
with a number of detailed studies documenting both Early and Late Jurassic ichno-
faunas, but less information is available for the Middle Jurassic. The Early
Cretaceous record is relatively good, but the record of Late Cretaceous fully lacus-
trine ichnofaunas is particularly poor.

Unsurprisingly, body fossils of the MLR are unevenly distributed as well.
Triassic paleontologic information is essentially based on Eurasian localities and, to
a lesser extent, eastern North America and South Africa. The Jurassic body-fossil
record, particularly for aquatic insects, is still significantly centered in Eurasia, but
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includes a few localities in western North America as well. In contrast, the Early
Cretaceous tends to show a more widespread distribution of lacustrine fossiliferous
localities, but still is heavily represented by Eurasian lake deposits, most likely
resulting from extensional tectonics during the breakup of Gondwana. However,
information from the Late Cretaceous is patchy.

11.5.1 Early Triassic Denouement

After the ecologic crisis at the Permian—Triassic boundary, the short-lived, five
million-year-long Early Triassic represents a period that ranges from biotal stasis to
subtle increases in the diversity of aquatic and terrestrial communities (Looy et al.
1999). The ichnology of Lower Triassic lake-margin deposits has been documented
in a few places, namely Germany (Knaust and Hauschke 2004, 2005) and the west-
ern United States (Lovelace and Lovelace 2012). A moderate diversity of inverte-
brate trace fossils has been recorded in marginal facies of an underfilled playa-lake
system in Germany (Knaust and Hauschke 2005). The playa-lake ichnofauna con-
tains arthropod trackways and trails (Diplichnites, Stiallia, Diplopodichnus), arthro-
pod bilobate structures (Cruziana, Rusophycus), vertical burrows (Skolithos),
bivalve burrows (Lockeia), branching burrow systems (Phycodes), and the horizon-
tal J-shaped ichnogenus Fuersichnus. Pseudofossils, such as Aristophycus, are pres-
ent in the same deposits (Knaust and Hauschke 2004). Body fossils have been
recovered from these deposits, including conchostracans, notostracans, and
xiphosurids, as well as indeterminate fish remains (Knaust and Hauschke 2005).
The arthropod trackway Diplichnites and the bivalve dwelling/resting structure
Lockeia also occur in Lower Triassic shallow-lacustrine deposits of the western
United States (Lovelace and Lovelace 2012).

In contrast to younger lake-margin ichnofaunas, meniscate, backfilled trace fos-
sils are absent in these Lower Triassic examples, and arthropod trackways seem to
be relatively common. In this respect, Lower Triassic lake-margin ichnofaunas
apparently are more similar to those from the Permian (see Chap. 6) than to the
archetypal Mesozoic suites, revealing the persistence of Paleozoic types of animal—
substrate interactions. Also, as is commonly the case for Paleozoic lacustrine ichno-
faunas, shallow tiers were dominant and penetrative structures, such as those
responsible for ichnofabric formation, were absent (Knaust and Hauschke 2005).

The Early Triassic continental body-fossil record is sparse as well (Shcherbakov
2008a). Freshwater insects originate mostly from Eurasian localities and generally
consist of mayfly wings (Sinitshenkova 2013), archaeorthopteran and related
orthopteroid taxa (Shcherbakov 2008b), cockroaches (Zyla et al. 2013), a few basal
hemipteran lineages (Shcherbakov 2008a), and isolated elytra of schizophorid and
permosynid beetles and related lineages (Ponomarenko 2004, 2008). Many of these
fossil taxa preferentially are represented by immatures, especially naiads, that when
compared to conspecific adults, occur at frequencies greater than is typical of the
Permian (Shcherbakov 2008b). As with Early Triassic plants (Looy et al. 2001),
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contemporaneous insect faunas are characterized by four major changes when com-
pared to their Late Permian precursors (Shcherbakov 2008b). These shifts are: (1)
the evolution of new, Early Triassic dominant groups at the expense of earlier Late
Permian dominants; (2) movement into the high-latitude Triassic by groups that
formerly occurred at Permian low latitudes; (3) preferential survival of small-sized,
generalist feeding taxa; and (4) emergence of lineages that were aquatic or other-
wise tied to water bodies such as lakes. Although these changes promoted diversity,
it was not until the Anisian stage of the early Middle Triassic, 5—11 m.yr. after the
end-Permian crisis, when insect taxa, including aquatic forms, and their interactions
with plants approached the diversity that had existed during the Late Permian (Gall
1996; Labandeira 2005b).

Another important component of the Triassic benthos was charophytes, which
are particularly well known in lacustrine carbonates and marls (Martin-Closas
2003). Isoetes-related, nonflowering vascular plants were present in the littoral zone
(Cohen 2003; Moisan et al., 2012b). As in the Paleozoic, lacustrine phytoplankton
was still dominated by Chlorococcales, but an increase in diversity is apparent
(Brenner and Foster 1994; Martin-Closas 2003).

11.5.2 Rediversification During the Middle to Late Triassic

Ichnofaunas have been documented in detail in Middle to Upper Triassic lake-
margin deposits (including those of playa lakes) from the eastern (Metz 1995, 1996,
2000; Szajna and Hartline 2003) and western (Gillette et al. 2003; Lucas et al. 2010)
United States, Argentina (Melchor et al. 2003, 2006; Melchor 2004; Genise et al.
2009; Marsicano et al. 2010), Greenland (Bromley and Asgaard 1979), England
(Porter and Gallois 2008), Germany (Schlirf et al. 2001), Morocco (Hminna et al.
2015), and China (Shi et al. 2007; Li et al. 2014). These lake-margin deposits com-
monly contain a relatively wide variety of vertebrate and invertebrate trace fossils.
Vertebrate ichnofaunas in Middle to Upper Triassic lake-margin deposits typi-
cally are dominated by tetrapod trackways (e.g. Brachychirotherium, Brasilichnium,
Dicynodontipus,  Characichnos,  Evazoum,  Grallator, — Gwyneddichnium,
Rhynchosauroides, Tetrasauropus) and, more rarely, lungfish burrows
(Redondarefugium) (Melchor et al. 2006; Lucas et al. 2010). Typical invertebrate
trace fossils in lake-margin deposits are shallow-tier, ornamented, meniscate,
unbranched (Scoyenia), and branched (Spongeliomorpha) structures, as well as
meniscate structures lacking bioglyphs (Taenidium), arthropod bilobate structures
(Cruziana, Rusophycus), and simple horizontal (Palaeophycus, Planolites) and verti-
cal (Skolithos) burrows (Bromley and Asgaard 1979; Metz 1995, 1996; Schlirf et al.
2001; Gillette et al. 2003; Melchor et al. 2003, 2006; Melchor 2004; Shi et al. 2007;
Porter and Gallois 2008; Lucas et al. 2010; Li et al. 2014; Hminna et al. 2015). In
some cases, great densities of the bivalve burrow Lockeia (Lucas et al. 2010) and the
ichnogenus Fuersichnus (Bromley and Asgaard 1979) have been documented, typi-
cally forming monospecific trace-fossil suites. Arthropod trackways, although
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extremely common in Paleozoic lake-margin settings (Buatois and Mdngano 1993a;
Buatois et al. 1998a; see Chap. 6), and are quite rare in Middle to Upper Triassic
deposits that were formed in similar environments, typically represented as isolated
occurrences (Melchor 2004; Melchor et al. 2006). Horizontal, nonspecialized graz-
ing trails, such as Helminthopsis and Cochlichnus, may be present (Melchor 2004;
Shi et al. 2007; Li et al. 2014; Hminna et al. 2015), but they are never dominant and
tend to reflect emplacement in substrates that did not experience periodic desicca-
tion. Three-dimensional branching burrow systems (Zreptichnus) may be present,
but are uncommon (Porter and Gallois 2008). These structures were typically
emplaced close to the sediment surface, the only exception being those produced by
crayfish, referred to the ichnogenus Camborygma, which display variations in archi-
tecture as a response to the depth of the water table. Complex architectures with
many branches and chambers were constructed by primary burrowers in areas of
high water table, whereas deep and simple burrows are dominant in areas of low and/
or highly fluctuating water table (Hobbs 1981; Hasiotis and Mitchell 1993).

Middle to Late Triassic, fully lacustrine ichnofaunas are known from the eastern
United States (Metz 1995, 1996, 2000), Argentina (Melchor et al. 2003, Melchor
2004), Kyrgyzstan (Voigt and Hoppe 2010), England (Porter and Gallois 2008), and
Greenland (Bromley and Asgaard 1979). Ichnofaunas in low-energy deposits are
essentially represented by invertebrate trace fossils, with a dominance of very
shallow-tier, simple, horizontal trails of deposit and detritus feeders (e.g.
Helminthopsis, Helminthoidichnites, Cochlichnus, Mermia) and of shallow-tier,
three-dimensional, branching burrow systems (Treptichnus) (e.g. Metz 1995, 1996,
2000; Melchor et al. 2003; Melchor 2004; Porter and Gallois 2008). Vertebrates are
represented by the fish trail Undichna (Melchor 2004).

One of the first lacustrine ichnofaunas studied in detail is that of the Fleming
Fjord Formation of Greenland (Bromley and Asgaard 1979) (Fig. 11.l1a-f).
Integration of ichnologic and sedimentologic information indicates that three main
trace-fossil assemblages are present in these ephemeral lacustrine deposits (Bromley
and Asgaard 1979, 1991; Dam and Stemmerik 1994; Bromley 1996). Skolithos,
Arenicolites, and Polykladichnus occur in tempestites, whereas Fuersichnus
(Fig. 11.1a-b) and Lockeia (Fig. 11.1c) are present in fair-weather deposits.
Scoyenia (Fig. 11.1d—f) and Skolithos (Fig. 11.1d—f) occur in marginal-lacustrine
deposits.

Upper Triassic ichnofaunas preserved in deposits of the Newark Supergroup,
which record sedimentation in lakes within an extensive rift system in eastern North
America, formed during the initial breakup of Pangaea (Olsen 1989; Schlische 2003).
These ichnofauna have been analyzed in detail (e.g. Olsen and Flynn 1989; Metz
1995, 1996, 2000) (Fig. 11.2a—g). One of these units, the Lockatong Formation,
records sedimentation in a balanced-fill lake characterized by recurrent base-level
fluctuations. As a result, successions show well-defined, vertically stacked, trans-
gressive—regressive cycles (Olsen 1980). The invertebrate ichnofauna consists of a
combination of feeding (Planolites montanus, Scoyenia gracilis, Treptichnus pol-
lardi), dwelling (Spongeliomorpha milfordensis), grazing (Cochlichnus anguineus),
resting (Lockeia siliquaria), and locomotion (an undetermined arthropod trackway)
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Fig. 11.1 Characteristic trace fossils from Upper Triassic ephemeral lacustrine deposits of the
Flemming Fjord Formation of Greenland. (a) General view of a surface displaying a high density
of Fuersichnus communis; (b) Close-up of Fuersichnus communis showing its characteristic
banana shape; (¢) The almond-shape trace fossil Lockeia amygdaloides. The associated horizontal
burrows may be referred to the ichnogenus Ptychoplasma; (d) General view of a surface showing
several specimens of the meniscate ichnotaxon Scoyenia gracilis. Note the presence of circular
cross-section of vertical Skolithos isp.; (e) Scoyenia gracilis with less developed meniscate infill
and bedding-plane expression of Skolithos isp.; (f) Close-up of Scoyenia gracilis and Skolithos isp.
All scale bars are 1 cm long
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Fig. 11.2 Characteristic trace fossils from Upper Triassic lake-margin deposits of the Newark
Supergroup of eastern United States. (a) General view of a surface with Scoyenia gracilis, Passaic
Formation; (b) Close-up showing bioglyphs in Scoyenia gracilis, Passaic Formation; (¢) Close-up
showing meniscate infill in Scoyenia gracilis, Lockatong Formation; (d) General view of a surface
with high density of Lockeia amygdaloides, Passaic Formation; (e) Treptichnus bifurcus, Passaic
Formation; (f) Cochlichnus anguineus, Passaic Formation; (g) Helminthoidichnites tenuis, Passaic
Formation. All scale bars are 1 cm long. Photographs courtesy of Robert Metz

structures (Metz 1995). The reptile trackway Gwyneddichnium is present as well
(Olsen and Flynn 1989). Trace fossils are almost invariably restricted to lake-margin
deposits. Whereas some of these structures most likely were emplaced in wet sub-
strates (e.g. Treptichnus pollardi, Lockeia siliquaria), other ichnotaxa, such as
Scoyenia gracilis and Spongeliomorpha milfordensis, support their formation in firm
substrates resulting from desiccation (Metz 1995). Under extremely dry conditions,
all other ichnotaxa disappear, and only Spongeliomorpha and Scoyenia are present.
Collectively, the Lockatong ichnofauna represents the Scoyenia Ichnofacies (Metz
1995). A slightly more complicated picture is revealed by the Passaic Formation.
Overall, this unit displays similar ichnologic characteristics to the Lockatong
Formation, namely the widespread presence of the Scoyenia Ichnofacies in lake-
margin deposits, and the presence of Spongeliomorpha and Scoyenia as the only
ichnotaxa present in sediments deposited under extremely arid conditions (Metz
1996). However, some elements of the Mermia Ichnofacies are present in this unit as
well, illustrating transitions from subaqueous portions during the initial phase of lake
regression (Metz 1996).
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Another extensively studied continental unit, containing well-exposed lacustrine
intervals and represented by abundant trace fossils, is the Middle to Upper Triassic
Agua de la Pefia Group of the Ischigualasto—Villa Unién Basin of western Argentina
(Melchor et al. 2003; Melchor 2001, 2004, 2007). As in the case of the Newark
Supergroup, this rift basin developed during the breakup of Pangea (Uliana and
Biddle 1988; Milana and Alcober 1994). In particular, the most abundant and
diverse ichnofaunas occur in the Los Rastros Formation, which represents sedimen-
tation in a shallow, overfilled lake characterized by successive prograding delta
deposits (Melchor 2007). Deposits are typically arranged in coarsening-upward
parasequences encompassing prodelta, delta-front, and delta-plain facies. The high-
est ichnodiversity occurs in the distal delta-front deposits, which are dominated by
grazing trails (Helminthoidichnites tenuis, Gordia marina, Archaeonassa fossulata,
Cochlichnus anguineus) and fish trails (Undichna britannica, U. bina, U. cf. inso-
lentia). Also present are feeding (Treptichnus pollardi), dwelling (Palaeophycus
tubularis), locomotion (Bifurculapes isp., Cruziana problematica, Diplopodichnus
biformis, Didymaulichnus lyelli, Diplichnites isp., Protichnites isp.) and resting
(Rusophycus stromnessi, Avolatichnium isp.) structures (Melchor 2001). Middle
delta-front deposits display a similar ichnologic composition to distal delta-front
deposits, being dominated by grazing trails (Helminthoidichnites tenuis,
Helminthopsis abeli, Gordia indianaensis, Archaeonassa fossulata, Cochlichnus
anguineus), with fish trails (Undichna britannica) and dwelling structures
(Palaeophycus tubularis) also present (Melchor et al. 2003). Upper delta-front to
lower delta-plain deposits reflect a decrease in ichnodiversity that parallels a shal-
lowing of the lake, with only Palaeophycus tubularis, Skolithos isp., and Cochlichnus
anguineus recorded. Upper delta-plain deposits contain dwelling trace fossils, some
of which contain striations (e.g. Palaeophycus striatus) and vertebrate trackways
(Rhynchosauroides isp.). Collectively, the Los Rastros ichnofauna reflects the verti-
cal transition from the Mermia to the Scoyenia Ichnofacies as a result of shallowing
caused by deltaic progradation.

The Middle to Upper Triassic Madygen Formation of Kyrgyzstan contains abun-
dant trace fossils formed in an overfilled lake (Voigt and Hoppe 2010; Voigt et al.
2016). Lake-margin deposits are characterized by pervasive root trace fossils (Voigt
etal. 2016) (Fig. 11.3a). The most abundant trace fossils in this unit occur in perma-
nent subaqueous deposits, and consist of horizontal networks of multiple-branched
burrows (Voigt and Hoppe 2010) (Fig. 11.3b—e). These structures have been com-
pared with Thalassinoides by Voigt and Hoppe (2010), but were placed in the ich-
nogenus Virgaichnus by Knaust (2010). Further work is required to unravel the
ichnotaxonomic affinity of these burrows. Regardless of these ichnotaxonomic
complexities, these trace fossils represent feeding structures of worm-like deposit
feeders. These burrows occur at their highest densities in deposits formed around the
sublittoral-profundal boundary, probably coincident with the paleo-thermocline and
chemocline (Voigt et al. 2016). It has been speculated that the producers of these bur-
rows may have been able to tolerate dysoxic conditions, allowing them to colonize
deeper parts of the lake which may have acted as a refugium from predators (Voigt
et al. 2016). Other structures documented in these deposits are the grazing trail
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Helminthoidichnites tenuis (Fig. 11.3f), unidentified sand-filled radiating burrow
systems, and ribbon-like burrows with transverse segmentation, which have been
interpreted as branchiopod locomotion traces (Voigt and Hoppe 2010; Voigt et al.
2016).

Fig. 11.3 Characteristic trace fossils from Middle to Upper Triassic lacustrine deposits of the
Madygen Formation of Kyrgyzstan. (a) Root trace fossils in lake-margin deposits; (b) General
view of a sandstone surface with horizontal networks of multiple-branched burrows in permanent
subaqueous lacustrine deposits; (¢) and (d) Close-up of networks showing branching patterns; (e)
Preservational variation of horizontal networks as cleavage relief in mudstone; (f)
Helminthoidichnites tenuis in lacustrine deltaic deposits. All scale bars are 1 cm long, with the
exception of ¢ and d, which are 0.5 cm long
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Globally, Middle to Late Triassic ichnofaunas from lake-margin deposits are of
modern aspect and record the widespread establishment of the Scoyenia Ichnofacies.
In addition, the presence of trace-fossil suites dominated by the crayfish burrow
Camborygma records the appearance of the homonymous ichnofacies (see Chap. 13).
Middle to Late Triassic, fully lacustrine ichnofaunas resemble trace-fossil assem-
blages described from similar, late Paleozoic settings (Buatois and Mdngano 1993a;
Buatois et al. 1998a; see Chap. 6). However, more penetrative trace fossils occur, as
revealed by the presence of networks of irregularly branched burrows in the
Madygen deposits (Voigt and Hoppe 2010). In addition, higher-energy sandy, storm,
and mouth-bar deposits tend to contain relatively deep vertical burrows, such as
Skolithos, Arenicolites, and Polykladichnus (Bromley and Asgaard 1979; Mdngano
et al. 1994; Bromley 1996) (Fig. 11.4), representing freshwater equivalents of the
Skolithos Ichnofacies (Buatois and Mdngano 2004, 2009).

In short, ichnologic data seem to support Sinitshenkova’s (2002) view that the
Triassic is a time of significant evolutionary innovation in lacustrine communities.
This is particularly evident in lake-margin settings which exhibit trace-fossil assem-
blages that would dominate these environments for the rest of the Phanerozoic. The
picture in fully lacustrine settings is slightly different because central lake deposits
display some ichnofaunas reminiscent of the late Paleozoic, with the addition of
more penetrative burrows typical of the rest of the Mesozoic and Cenozoic.

During the late Middle to Late Triassic there was a major, qualitative increase
in the abundance of lacustrine insect taxa. Fossil assemblages of this age contain a
prevalence of immature over adult aquatic insects, such that in many deposits
immature stages (naiads and larvae) outnumber adult specimens (Sinitshenkova
2002)—a situation that reverses that of the Permian. For this, and other reasons,
Sinitshenkova (2002) mentions that “...the Triassic [is] a starting point of a new,
Mesozoic evolutionary stage of lacustrine biocoenoses.” This novelty may be

Fig. 11.4 Arenicolites isp.
in deltaic mouth bar
deposits of the Upper
Triassic Tanzhuang
Formation of central
China. Scale bar is 1 cm
long
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attributable to greater stability of the hydrological and water-chemistry conditions
in the physical environment of Eurasian, Late Triassic lakes (Kalugina 1980).
Also, part of the diversification event may be attributed to increased provinciality
from the breakup of Pangaea or to sizable increases in number and persistence of
long-lived lakes associated with the breakup (Cohen 2003).

Late Triassic aquatic taxa included new lineages representing a diversity of func-
tional feeding groups. For crustaceans, the major lineages were detritivorous ostra-
cods, conchostracans, notostracans and the bizarre central Asian lineage,
Kazakharthra. Dasyleptid bristletails were holdovers from the Permian, and per-
sisted until the Late Triassic along bodies of water. Mayflies diversified, with ben-
thic naiads assuming nektonic, epifaunal and infaunal filter-feeding strategies; some
benthic forms constructed U-shaped burrows, representing potential producers of
the biogenic structures typically found in lacustrine deposits of this age (e.g.
Bromley and Asgaard 1979; Mdngano et al. 1994) (Fig. 11.4). Odonatans are repre-
sented by fewer fossil occurrences of naiads than adults, and all of the mostly ben-
thic naiads possessed a prominent, raptorial labial mask. The Plecoptera were
represented by obligately aquatic, benthic naiads, as were their Permian counter-
parts, and included the extinct benthic—lentic taxa of the Euxenoperlidae,
Mesoleuctra and Siberioperla (Sinitshenkova 2002). Grylloblattids (rock crawlers),
a surviving lineage from the Permian, may have inhabited lakeshores or even
shallow-aquatic habitats.

Most of the trophically dominant predators were streamlined, agile nectic heter-
opteran bugs and adephagan beetles. A few lineages of dominantly predatory,
aquatic heteropteran bugs appeared during or just before the Late Triassic, consist-
ing of the dominant naucoroid lineages of the extinct Triassocoridae, and the extant
Notonectidae (backswimmers) and Belostomatidae (giant water bugs) (Popov
1980). Aquatic adephagan lineages, such as the extinct Schizophoridae,
Ademosynidae, Colymbothetidae, and the extant Dytiscidae (predaceous diving
beetles) had similar dietary habits. The extant algivorous Haliplidae (crawling water
beetles) and its extinct Triassic relative, the Triaplidae, occurred on bottom sub-
strates and in aquatic plant entanglements (Fraser et al. 1996). Both adults and lar-
vae of the nectic Coptoclavidae were major predators, and had agile, active life
habits based on legs equipped for rapid movement and raptorial mouthparts, likely
feeding on small vertebrates and large insects. Megalopteran larvae are very similar
to present-day alderflies (Marchal-Papier 1998). A few taxa of Mecoptera (scorpi-
onflies) have been encountered, such as liassophilids that resemble modern aquatic
Nannochoristidae. The earliest, definitive, aquatic Trichoptera (caddisflies) are from
the Late Triassic, and include adults of the basal lineages Prorhyacophilidae and
Necrotaulidae, but also immatures that likely were predatory (Sinitshenkova 2002).

These lacustrine biotas still lacked a significant herbivore component, which
emerged later in the Mesozoic. Supporting this observation is the absence of sub-
merged or emergent aquatic macrophytes, which did not occur in significant abun-
dance until the Early Cretaceous. There is limited evidence, however, for a flora
fringing lakes and pools during the earlier Mesozoic, as indicated by the presence of
aquatic quillworts such as Isoetes, and Azolla-related ferns (Retallack 1997; Moisan
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et al. 2012a, 2012b; Sun et al. 2014). In any case, the contribution was overwhelm-
ingly dead plant matter for detritivores rather than live plant tissues. For herbivores
as in the Early Triassic, charophytes continued to be the dominant macrophytes and
Chlorococcales the dominant phytoplankton (Martin-Closas 2003).

Six major community types have been recognized in Triassic Eurasian freshwa-
ter deposits (Sinitshenkova 2002). These community types are characterized by dis-
tinctive groupings of major taxa that occur in particular types of lakes and habitats.
Although Sinitshenkova’s (2002) general trophic analysis of lake ecosystems dem-
onstrated significant partitioning of available lotic and lentic resources, evidently
the herbivore guild was largely absent.

The most diverse Triassic insect assemblage is in an upper-Middle to lower-
Upper Triassic lacustrine deposit near the village of Madygen, in Kyrgyzstan, cen-
tral Asia, whose ichnofauna has been summarized above. In particular, one locality,
Dzhailoucho, and nearby outcrops have provided some of the best insights into later
Triassic aquatic and terrestrial life, including a diverse assemblage of 20 orders and
ca. 106 family-ranked lineages of insects, such as the earliest definitive occurrences
of Diptera (true flies) and Hymenoptera (sawflies, wasps, ants, and bees)
(Shcherbakov 2008¢). The Madygen Biota consists of typical, early Mesozoic plant
groups, including cryptogams, sphenopsids, lycopsids, filicalean ferns, broadleaved
conifers, diverse peltasperms, corystosperms, a variety of ginkgophytes and rare
bennettitaleans (Dobruskina 1995). Aquatic invertebrates include several microcon-
chids, bivalves, gastropods, bryozoans, and a spectrum of crustaceans consisting of
phyllopods, ostracods, conchostracans, kazakharthrans, and malacostracan deca-
pods (Voigt et al. 2006). The vertebrate fauna is rather diverse, and is comprised of
abroad variety of fishes, such as lungfish, coelacanths, hybodontid, and xenacanthid
sharks, and ray-finned fish, including palaeoniscids, evenkiids, perleidids, and a
saurichthyid (Sytchevskaya 1999; Kogan et al. 2009; Fischer et al. 2011). The fauna
also includes six genera of lake-margin tetrapods, notably an early urodelan, basal
reptiliomorph, primitive cynodont, and three small diaspids including tree-climbing,
gliding, and insectivorous reptiles (Voigt et al. 2006; Schoch et al. 2010; Alifanov
and Kurochkin 2011). The lacustrine aquatic food web consisted of a variety of
lakeside plants, numerous insects and other aquatic invertebrates, fish and occa-
sional tetrapods (Shcherbakov 2008c). The aquatic portion of the biota included
eight orders of insects and ca. 25 families of primarily aquatic or amphibiotic
insects, of which a fifth of the lineages are extant. The Ephemeroptera included only
the single, extant family, Siphlonuridae (small minnow mayflies); by contrast, ten
families of Odonata were present, none of which are extant. Extinct Miomoptera
constituted one family, and Plecoptera were represented by two extinct families.
The Hemiptera included one family, the extant Ochteridae (velvet shore bugs). As
for holometabolous insects, aquatic Coleoptera were represented by five, early to
mid-Mesozoic, structurally streamlined families, but only one lineage, the
Hydrophilidae (water scavenger beetles) are extant, likely appearing as large, black,
and shining species. Similarly, the Trichoptera was represented by the basal and
extant Philopotamidae (fingernet caddisflies). Likewise, the Diptera consisted of
two new taxa, notably the diverse, extant Limoniidae (short-palped crane flies).
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Neoichnologic data suggest that dipterans, in particular larval Limoniidae, pro-
duce zigzag burrows that in the fossil record may be referred to the ichnogenus
Treptichnus (Mufiiz-Guinea et al. 2014). This ichnogenus is quite common in
Middle to Upper Triassic lacustrine deposits (Fig. 11.2e), which is consistent with
paleoentomologic information on the earliest definitive occurrences of Diptera.
However, Treptichnus is known in late Paleozoic lacustrine to fluvio-estuarine
deposits as well (Buatois and Mdngano 1993b, c; Buatois et al. 1998b). Interestingly,
amolecular analysis placed the origin of crown group Diptera in the middle Permian
(Bertone et al. 2008).

11.5.3 Continued Jurassic Diversification and Increased
Infaunalization

Lower Jurassic, lake-margin ichnofaunas have been documented in both eastern
(Gierlowski-Kordesch 1991; Metz 1992; Collette et al. 2011) and western (Lucas
et al. 2006; Tanner and Lucas 2008) United States, whereas Upper Jurassic equiva-
lents are widespread only in the latter (Hasiotis 2004; Foster and Lockley 2006;
Hunt and Lucas 2006). Among invertebrate trace fossils, shallow-tier, meniscate,
backfilled structures with striated walls (Scoyenia) or without bioglyphs (Taenidium)
are typical, as are striated, branched burrows (Spongeliomorpha) (Gierlowski-
Kordesch 1991; Hasiotis 2004). Simple horizontal (Planolites, Palaeophycus) and
vertical (Skolithos) structures, together with crayfish burrows (Camborygma) and
banana-shaped structures (Fuersichnus), also are common (Gierlowski-Kordesch
1991; Hasiotis 2004; Tanner and Lucas 2008). Grazing trails (Helminthoidichnites)
and arthropod trackways (Diplichnites, Kouphichnium) are only abundant locally
(Lucas et al. 2006). Borings in stromatolites have been mentioned, but it is uncertain
if these were formed in lacustrine or marine coastal settings (Hasiotis 2004).

Although the earliest body-fossil record of dinosaurs is Late Triassic, dinosaur
tracks are known at least since the Middle Triassic (Marsicano et al. 2007; see Chap.
10). However, it is by the Early Jurassic that dinosaur tracks (e.g. Grallator,
Eubrontes) become the dominant vertebrate-generated structures in lake-margin
deposits (Hunt and Lucas 2006). Dinosaur tracks also occur in Lower Jurassic
deposits where the first megatracksites are recorded (Hamblin et al. 2006). These
megatracksites include trampled surfaces, although these seem to occur in wet inter-
dunes, rather than in lake margins (Seiler and Chan 2008). However, by the Late
Jurassic spectacular megatracksites are known from lake-margin deposits of the
Morrison Formation (Lockley et al. 1986; Jennings and Hasiotis 2006), among
other sites. The Morrison tracksites are associated with intense bioturbation and the
development of trampled surfaces (Lockley et al. 1986; Jennings and Hasiotis
2006). These Jurassic trampled surfaces are significant because, as demonstrated by
studies in Quaternary and modern lake-margin deposits (e.g. Laporte and
Behrensmeyer 1980; Ashley and Liutkus 2002), activities by large vertebrates play
a major role in disturbing primary sedimentary fabric.
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Fully lacustrine ichnofaunas have been documented in the Lower Jurassic of the
eastern United States (Metz 1992) and China (Wu 1985; Buatois et al. 1995, 1996;
Hu et al. 1998; Uchman et al. 2011), the Middle Jurassic of England (Whyte et al.
2007), and the Upper Jurassic of the western United States (Hasiotis 2004). These
ichnofaunas show a combination of shallow-tier, simple trails and burrows
(Helminthopsis, Helminthoidichnites, Palaeophycus, Diplopodichnus, Paracan-
thorhaphe) and deeper-tier, branching burrow systems (Vagorichnus) (Metz 1992;
Buatois et al. 1996; Uchman et al. 2011). Vertical U-shaped burrows (Arenicolites)
(Hasiotis 2004) and bivalve burrows (Lockeia) (e.g. Whyte et al. 2007) are present
as well. As in the case of earlier assemblages, the fish trail Undichna is the typical
vertebrate ichnotaxa in this setting (Whyte et al. 2007).

The Lower Jurassic Anyao Formation of central China is arguably the most stud-
ied deep-lacustrine succession of this age, providing valuable insight into the colo-
nization of a fully lacustrine setting (Wu 1985; Buatois et al. 1995, 1996; Hu et al.
1998; Uchman et al. 2011). This formation represents deposition in a deep over-
filled lake system developed in a pull-apart basin (Buatois et al. 2000b). The Anyao
trace fossils are mostly present in thin-bedded turbidites which were formed in
lobe-fringe areas of lacustrine turbidite systems. This ichnofauna is relatively
diverse, encompassing both pre- (open burrows casted by the incoming turbidite
sand) and post- (burrows penetrating from a colonization surface at the top of the
turbidite sand) turbidite suites (Buatois et al. 1996) (Fig. 11.5a—i). The pre-event
suite consists of Helminthopsis abeli (Fig. 11.5a), Helminthoidichnites tenuis
(Fig. 11.5b), discrete specimens of Tuberculichnus vagans (Fig. 11.5¢—d),
Monomorphichnus lineatus, Paracanthorhaphe togwunia (Fig. 11.5e—f), and thin
irregular trails. The post-event suite consists of Vagorichnus anyao (Fig. 11.5g-h),
Cochlichnus anguineus (Fig. 11.51) and Helminthopsis hieroglyphica. Specimens of
Gordia marina and Tuberculichnus vagans intergrading with V. anyao also are part
of this suite. The ichnofauna is dominated by feeding and grazing trace fossils pro-
duced by deposit feeders. From an evolutionary perspective, the Anyao ichnofauna
is significant because it is dominated by infaunal burrows that reflect the activity of
invertebrates that were able to penetrate into discrete sandy layers for subsequently
expanding along sand—-mud interfaces, a behavior unknown in older deposits in
similar environmental settings. The producer of these burrows is uncertain, although
it has been noted that in modern environments oligochaetes construct structures that
radiate from a surface tube and branch horizontally within the sediment (Chamberlain
1975; Buatois et al. 1995). Amphipods and isopods may potentially construct simi-
lar structures, but the paucity of modern analogues precludes further evaluation
(Buatois et al. 1995). In addition, this behavior shows the appearance of more orga-
nized branching patterns, such as Paracanthorhaphe togwunia, that reveal an
increase in complexity with respect to Paleozoic lacustrine ichnofaunas.

Overall, the taxonomic composition of invertebrate ichnofaunas in lake-margin
Jurassic deposits is quite similar to that of the Middle to Upper Triassic. No major
evolutionary novelties or innovations are apparent in these settings from the perspec-
tive of invertebrate ichnnology. However, the appearance of megatracksites and
trampled surfaces represents a major change with respect to older deposits, implying
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substantial sediment reworking and modification by dinosaurs. This was probably
the first time in the history of the biosphere that lake-margin landscapes were signifi-
cantly transformed at a large scale by biogenic activity.

In addition, trace-fossil information from fully lacustrine environments pro-
vides a different picture to that of older deposits. Ichnodiversity levels are similar

Fig. 11.5 Characteristic trace fossils preserved at the base of Lower Jurassic lacustrine turbidites
of the Anyao Formation of central China. (a) Helminthopsis abeli; (b) Helminthoidichnites tenuis;
(¢) General view of Tuberculichnus vagans displaying a meandering pattern; (d) Close-up of
Tuberculichnus vagans; (e) and (f) Paracanthorhaphe togwunia; (g) Vagorichnus anyao cross-
cutting and inorganic sole mark; (h) Close-up of Vagorichnus anyao; (i) Cochlichnus anguineus.
All scale bars are 1 cm long
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to those of the Middle to Late Triassic, and even to those of the late Paleozoic, but
the principal difference is the degree of infaunalization, as revealed by the wide-
spread occupation of mid tiers in deep lacustrine sediments.

During the Early Jurassic there was further taxonomic, morphologic, and eco-
logic diversification of continental aquatic biotas. Much of the Jurassic zooplankton
was represented by diverse cladoceran crustaceans, indicated by fossil occurrences
(Zherikhin and Kalugina 1985), supported by molecular-clock data from phyloge-
netic analyses (Colbourne and Hebert 1996). One of the more distinctive differences
from Triassic aquatic insect assemblages was the greater presence of immature
stages (naiads, larvae) in Jurassic deposits, a consequence of a different preserva-
tional mode. The opposite situation of adult stages predominating over immature
stages was much less common, and may have been attributable to poor preservation
in habitats frequented by adults or the presence of adults in distant, more upland
environments that have low preservation potential. Another distinction is the
absence of virtually all Permian insect faunal elements and the first occurrences of
many modern family-level lineages (Sinitshenkova 2002).

The dominant insect groups of Jurassic lotic and lentic ecosystems represent a
spectrum of lineages that would occur in the same habitats today, although not nec-
essarily with the same ecologic tolerances or proportional abundances as their
present-day descendants. Ephemeropterans and odonatans were significantly more
speciose than their Triassic equivalent taxa. Ephemeropterans experienced a major
diversification, with the naiads of many groups, such as the Siphlonuridae and
extinct Mesonetidae and Epeorominidae having laterally positioned abdominal gills
and reaching considerably larger sizes than their Triassic confamilial antecedents.
Currently, ephemeropterans occur in high numerical abundance at local scales, are
present at significant diversities, and apparently were the major collector and filter-
feeding functional feeding groups (Merritt and Cummins 1984) in many Jurassic
localities. The Jurassic mayfly fauna is found in almost every aquatic environment,
in streams ranging from cascade-like rhythral settings, to calm water sites on flood-
plains such as oxbow lakes and overbank ponds, to lowland playas, and highland
graben-formed lakes. Like ephemeropterans, odonatans were diverse, best illus-
trated by several, large, dragonfly genera which co-occur in the Solnhofen Formation
of southern Germany, including a relict lineage of late Paleozoic meganeurid forms.
Jurassic odonatan naiads typically resemble modern damselfly naiads with a narrow
body and three, flap-like, heavily sclerotized, and terminal abdominal structures, the
cercus and paracerci. The formidable labial-masks of naiads indicate predation on
other larger aquatic insects and small vertebrates, such as fish and tadpoles. In some
lacustrine environments odonatan naiads likely were top predators in the absence of
fish (Sinitshenkova 2002).

Plecopteran nymphs occur commonly in Lower Jurassic deposits and are repre-
sented by three life-habit groups that are different from their modern representatives
taxa. The Mesoleuctridae possessed unusually long and slender legs, suggesting an
unusual detritivorous feeding habit. By contrast, the Platyperlidae bore an opposite,
flat habitus, with exceptionally squat, wide legs indicating a benthic insectivorous
diet. The Siberioperlidae, judging from robust mouthparts unusual for the Plecoptera,
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were consumers of fibrous or otherwise indurated plant tissues (Sinitshenkova 2002).
An unrelated group is the extinct Chresmodidae of the Archaeorthoptera. The family
Chresmodidae includes large, water-strider-like insects presumably occurring on
water surfaces. Chresmodids have had a checkered history of being taxonomically
poorly resolved and having equally contentious dietary preferences. Some speci-
mens display mouthparts designed for active predation but possess external, saw-
tooth ovipositors that functioned for insertion of eggs into substrates such as aquatic
plant stems (Delclos et al. 2008). Based on ovipositional lesions on preangiosper-
mous Mesozoic plants associated with lake deposits, the most likely hosts for ovi-
positing chresmodids were lycopsids (Moisan et al. 2012b) and horsetails (Krdusel
1958), or less likely a seed plant such as a bennettitalean (Pott et al. 2008).

Jurassic lotic and lentic biotal assemblages commonly are dominated by aquatic
heteropteran bugs or adephagan beetles, or both. Heteropteran aquatic bugs included
the dominant nepomorph taxa of Corixidae (water boatman) and Nepidae (water
scorpions), as well as giant water bugs, backswimmers, and the Mesoveliidae
(mesoveliid water striders), distant relatives of modern Gerridae (water striders) that
likely skimmed the water surface of lakes and streams. These taxa were predaceous,
except for mostly algivorous corixids and shurabellids (Popov 1971). Based on
mouthpart structure that employed a triturating device (Cobben 1978), these microv-
orous corixid and shurabellid microvores filter fed on unicellular or very small mul-
ticellular algae. Some heteropterans inhabited hypersaline playas and coastal
brackish lagoons or estuaries (Santiago-Blay et al. 2001). Like heteropteran bugs,
aquatic adephagan beetles were ecologically diverse and mostly predaceous,
although some were scavengers and microvorous consumers of algae. There is no
indication of macrovorous herbivorous forms.

During the Early Jurassic the dominant beetle clade is the Schizophoridae, but its
diversity and abundance decreases towards the latest Jurassic (Ponomarenko 1995).
During this time extinct aquatic lineages include large, predaceous Coptoclavidae
with active, nektonic larvae, the Liadytidae, possessing benthic larvae, and the
Parahygrobiidae, of unknown feeding habits. The extant, large Gyrinidae (whirligig
beetles) appear in significant numbers in Jurassic lentic deposits, consisting of pre-
daceous larvae and detritivorous adults. The Parahygrobiidae are known only from
larvae of mid-Mesozoic lake deposits and are presumed predaceous. In contrast to
the commonness of beetle taxa, alderfly and dobsonfly larvae of the Megaloptera are
rare and confined to lotic habitats.

Other holometabolan taxa are the larvae of scorpionflies, caddisflies, and true flies
which typically were rare at most sites. The extinct Liassophilidae belongs to a scor-
pionfly lineage that survived into the Early Jurassic, and whose modern close relatives
are the primitive, aquatic Nannochoristidae (Novokshonov 1997). Caddisflies are rep-
resented primarily by the Necrotaulidae and the larger complex of families constitut-
ing the Phryganeina. The Phryganeina appeared during the Late Jurassic (Sukatcheva
1991) and their presence is indicated by some of the earliest caddisfly cases in the
fossil record. Caddisflies were mostly microvores, and likely were algivorous, detri-
tivorous, or omnivorous, commonly occurring in eutrophic environments (Zherikhin
and Kalugina 1985). Unlike other abundant holometabolan groups, true flies represent
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a major radiation throughout the Jurassic, particularly involving several nematocerous
lineages, principally the Limoniidae, Chironomidae (midges), Chaoboridae (phantom
midges), Psychodidae (moth flies), Simuliidae (black flies), Dixidae (nonbiting
midges), and the extinct Eoptychopteridae, a clade related to modern phantom crane
flies (Kalugina 1980). These seven dipteran lineages included disparate mouthpart
modifications for passive and active filter feeding, net sieving, collecting, and mandi-
ble-assisted chewing, indicating that they were dominantly microvores. Microvory in
nematocerous Diptera is typically achieved by the pumping of water currents into a
specialized mouthpart filter or sieve for capture of small particulate matter such as
diatoms, protists, ostracods, and a variety of other microorganisms.

The Jurassic also witnessed the appearance of major lineages of teleost fish,
frogs, crocodilians, and aquatic birds (Cohen 2003). These lineages represent evo-
lutionary novelties that may have been conducive to key innovations, mostly
increased predation in freshwater settings, which in turn may have resulted in the
disappearance of large-bodied branchiopods and other slow moving crustaceans
from many lacustrine settings (Webb 1979; Cohen 2003). Since the Jurassic, these
taxa seem to have been displaced to more marginal habitats, such as saline lakes and
vernal pools, characterized by low diversity of predators. Also, the coincidence of
increased predation and infaunalization of the lacustrine benthos may be significant.
As indicated by Vermeij (1987), the infaunal environment typically is regarded as a
haven from predation and, therefore, infaunalization may be regarded as an adap-
tive response to increased predation.

Relatively little is known about aquatic vegetation during the Jurassic. The domi-
nance of charophytes is apparent, with porocharaceans and nitellaceans occurring in
Early to Middle Jurassic Chinese basins (Wang et al. 1976), probably reflecting
accommodation to ephemeral lakes (Martin-Closas and Serra-Kiel 1991). By the
Late Jurassic, two charophyte families underwent diversification, the Characeae and
the Clavatoraceae, which were associated with oligotrophic and alkaline lakes
(Martin-Closas and Serra-Kiel 1991). This may have resulted in the displacement of
porocharaceans to higher latitudes and brackish-water settings (Martin-Closas
2003). Nonflowering vascular plants were represented by relatives of Azolla ferns
along littoral zones (Cohen 2003). An incipient colonization of ponds by ferns also
is apparent by the Late Jurassic (Martin-Closas 2003), particularly the
Hymenophyllaceae (filmy ferns), that preferred hydric habitats (Hennequin et al.,
2008). Lacustrine phytoplankton retained its ancestral condition, with Chlorococcales
remaining dominant (Martin-Closas 2003).

Beginning toward the end of the Early Jurassic, and culminating during the
Middle to Late Jurassic, a distinctive, fluvio-lacustrine ecosystem is recognized in
Eurasia. This ecosystem represents a continuation of earlier, similar, Late Triassic
ecosystems, but is characterized by a suite of physical, chemical, and biological
features that were distinct from other contemporaneous and later ecosystems
(Table 11.1). The overwhelmingly Jurassic biotas that occupy this ecosystem are the
“Assemblage B” of Sinitshenkova and Zherikhin (1996), characterized by a
detritivore-based food web, in which primary production consisted of coarse and
fine detritus and dead benthic algae. These sources of food were channeled to filter-
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feeding and shredding invertebrates, particularly insects, but also crustaceans, mollusks,
and bryozoans (Table 11.1 and Fig. 11.6). Although this biota persisted into the
Early Cretaceous, the geochronologic acme of this community type was during the
Middle to Late Jurassic.

A prime example of an Assemblage B community is the Mesoleuctra—Mesoneta
assemblage at Ust’-Balei, in Transbaikalian Russia, representing a lacustrine deposit
from uppermost Lower Jurassic strata (Sinitshenkova and Zherikhin 1996). The
Mesoleuctra—Mesoneta assemblage was more productive, through the fixation of
organic carbon by chemotrophic and autotrophic organisms, than those from coex-
isting Assemblage A lakes. However, the Mesoleuctra—Mesoneta assemblage was
considerably less productive than Assemblage C lakes of the Early Cretaceous
(Table 11.1 and Fig. 11.6). This assemblage type may have occurred in several
Gondwanan sites, although documentation is poor. The dominant biotal features of
the Mesoleuctra—Mesoneta assemblage at Ust’-Balei was an epibenthic fauna that
consisted dominantly of mayfly and stonefly taxa, the absence of chaoborid dipteran
larvae, and the general presence of some algae, bivalves, and fish. Deposits contain-
ing an Assemblage B biota are associated with lignitic and coal-bearing strata,
paleobotanical indicators suggesting oxygen depletion (Samylina 1988), and a set-
ting in which microbial activity was strongly suppressed. At Ust’-Balei, the
Mesoleuctra—Mesoneta assemblage inhabited an aquatic environment similar to a
modern, disaerobic peat lake wherein bacterial metabolic activity is limited by
water acidity (Kuznetsov 1970).

Jurassic lacustrine deposits are present in North America as well (see review of
ichnologic literature above), but unlike those in Eurasia, they have been less studied
in a paleoentomological context, typically lacking body fossils, notably insects.
Deposits such as the deep, graben-fill deposits of the Late Triassic (Theismeyer
1939) and the more laterally persistent, epicontinental strata of the Late Cretaceous—
Early Paleogene temporally bracket the Middle Jurassic (Callovian) Sundance and
Late Jurassic (Tithonian) Morrison Formations. The Morrison Formation evidently
included a series or large, relatively shallow alkaline lakes, most of which were
intermittent and lacked significant freshwater input due to water limitation within
an arid, subtropical belt (Turner and Fishman 1991; Demko and Parrish 1998;
Engelmann et al. 2004). Although much is known of the vertebrates of landscapes
surrounding Morrison lakes, little is understood of their aquatic invertebrate faunas.
Lacustrine insects are unknown, and the only significantly studied invertebrates are
lacustrine ostracods (Schudack 1998) and bivalves occurring in associated fluvial,
floodplain and pond environments (Good 2004).

The Sundance Formation perhaps provides the sole exception of a Jurassic,
North American lacustrine biota on par with numerous Eurasian examples of the
same period (Fig. 11.7). The Sundance Formation occurs along the central-northern
Wyoming and central-southern Montana border, and provides paleoentomologi-
cally the best documented Jurassic lacustrine ecosystem in North America (Santiago-
Blay et al. 2001; Grimaldi and Engel 2005). In particular, the thinly laminated,
interbedded paper shales of the Hulett Sandstone Member provide considerable
evidence for a modestly diverse lacustrine fauna. The deposit was formed from
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Fig. 11.6 Trophic structure reconstruction for primary producers and arthropods of a Middle

Jurassic hypotrophic lake (Zherikhin and Kalugina 1985). This lake represents the Mesoleuctra—

Mesoneta biotal assemblage typifying Lake Ust’Balei, in the Irkutsk Region of northern Siberia,
Russia. This trophic reconstruction corresponds to the Type B lake biotal assemblage of

Sinitshenkova and Zherikhin (1996). See Assemblage B in Table 11.1 for additional physical, chem-

ical and biological details. Redrawn, with modification, from Sinitshenkova and Zherikhin (1996)
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freshwater to brackish water input and includes locally a back-barrier shoal and
tidal inlet consistent with a more estuarine environment during certain time inter-
vals (Uhlir et al. 2006; Stone and Vondra 2013). Vertebrate footprints and bone
material have been found in other strata of the Sundance Formation. The biota of the
Hulett Sandstone Member consists of pollen, land-plant fragments, aquatic insects,
and a leptolepid fish, presumably of continental provenance (Fig. 11.7a—p). The
insects are modestly diverse, consisting minimally of about 15 species, and include
a variety of typically freshwater nepomorph heteropterans, especially notonectids,
corixids, belostomatids, and possibly the extinct Enicocoridae. Adephagan beetles
include dytiscids and possible parahygrobiids, and elytra assigned to Holcoptera
are suggestive of a polyphagan lineage (Santiago-Blay et al. 2001; Grimaldi and
Engel 2005). Other faunal constituents are very rare caddisfly cases. Whereas much
of these strata, particularly those containing the insects, indicate lacustrine deposi-
tion, other strata indicate a more marine influence, suggesting harsh, occasionally
hypersaline conditions and an uninhabitable benthic environment. Palynomorph
and mesofossil land-plant material reveal a xerophytic coastal vegetation of cheiro-
lepidiaceous and araucariaceous conifers and possible gnetaleans indicated by
Eucommiidites pollen. A similar, approximately coeval lacustrine deposit, the
Todilto Formation, occurs in central New Mexico, is less diverse but has a similar
depositional environment with periodic influxes of fresh and brackish water alter-
nating with marine incursions from the east, and has a similar lacustrine biota
(Bradbury and Kirkland 1966; Anderson and Lucas 1996; Ulmer-Scholle 2005).

11.5.4 Persistence of Previous Trends During the Early
Cretaceous

Early Cretaceous lake-margin ichnofaunas have been documented in England
(Goldring et al. 2005), Spain (Moratalla et al. 1995; Moratalla and Herndn 2009),
Mongolia (Johnson and Graham 2004) and Korea (Kim and Paik 1997; Kim et al.
2002, 2005, 2012a,b,c; Paik et al. 2012; Lockley et al. 2012). Dinosaur (e.g.
Ornithopodichnus, Dromaeosauripus, Caririchnium, Minisauripus), bird (e.g.
Koranornis, Jindongornipes, Uhangrichnus, Ignotomis), crocodile, turtle
(Emydiphus), and pterosaur (e.g. Pteraichnus, Haenamichnus) tracks are extremely
common, in many cases forming megatracksites (Moratalla et al. 1995; Meyer et al.
2001; Moratalla and Herndn 2009; Lockley et al. 2012; Kim et al. 2012a,b,c).

As is the case for their earlier Mesozoic counterparts, Early Cretaceous lake-
margin invertebrate ichnofaunas are dominated by shallow-tier striated or nonstriated
meniscate, backfilled structures (Scoyenia, Taenidium), and simple horizontal
(Planolites, Palaeophycus) and vertical simple or U-shaped (Skolithos,
Diplocraterion) features (Zhang 1987; Kim and Paik 1997; Kim et al. 2002, 2005;
Johnson and Graham 2004; Goldring et al. 2005). Arthropod trackways (Diplichnites),
simple grazing trails (Helminthopsis, Cochlichnus), and branching burrows
(Thalassinoides) occur locally (Kim et al. 2002, 2005; Goldring et al. 2005).



Fig. 11.7 The late Middle Jurassic (Callovian, 165 Ma) Sundance Biota from the lacustrine
Sundance Formation, central-northernmost Wyoming and adjacent central-southernmost Montana,
United States (Santiago-Blay et al. 2001). (a) Leptocerid fish (USNM-597438, Specimen 605); (b)
Leptocerid fish (USNM-597439, Specimen 1281); (¢) Hemiptera: ?Belostomatidae (USNM-597440,
Specimen 554-39); (d) Hemiptera: Belostomatidae (USNM-597441, Specimen 775); (e) Hemiptera:
Corixidae (USNM-597442, Specimen 1377A); (f) Hemiptera: Corixidae (USNM-597443, Specimen
1801); (g) Hemiptera: ?Notonectidae (USNM-597444, Specimen 2688B); (h) Hemiptera:
Enicocoridae (USNM-597445, Specimen 2194); (i) Coleoptera: undetermined family (USNM-
597446, Specimen 24); (j) Coleoptera: undetermined family (USNM-597447, Specimen 2443); (k)
Coleoptera: (USNM-597448, Specimen 2501); (1) (USNM-597449, Specimen 1936B); (m) (USNM-
597450, Specimen 2398B); (n) (USNM-597451, Specimen 2260); (0) (USNM-597452, Specimen
2906); (p) Coleoptera: (USNM-597453, Specimen 2149). Scale bars: solid, 10 mm; striped, 1 mm
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Early Cretaceous examples of fully lacustrine ichnofaunas have been recorded in
Spain (de Gibert et al. 1999, 2000, 2016; Buatois et al. 2000a) and Brazil (Buatois
and Mdngano 1998). Information is sparse, and examples are known from quite dif-
ferent lacustrine settings, further complicating the establishment of general pat-
terns. The Spanish paleolake deposits are carbonates, and their ichnofaunas are
dominated by very shallow-tier trails and burrows (Gordia, Cochlichnus,
Steinsfjordichnus, Cruziana, Helminthoidichnites, Palaeophycus, Treptichnus,
Planolites), with a very minor contribution of arthropod trackways (Hamipes) (de
Gibert et al. 2000, 2016; Buatois et al. 2000a) (Fig. 11.8a—d). The vertebrate com-
ponent of the subaqueous biota is represented by the fish trail Undichna (de Gibert

Fig. 11.8 Characteristic trace fossils from Lower Cretaceous fully subaqueous lacustrine carbonate
deposits of Las Hoyas, Spain. (a) Cruziana isp.; (b) Helminthoidichnites tenuis; (¢) Palaeophycus
tubularis; (d) Surface containing high density of poorly developed Treptichnus pollardi; (e)
Undichna unisulca. All scale bars are 1 cm wide, with the exception of e, which is 2 cm long
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Fig. 11.9 Ichnofabrics from the Lower Cretaceous lacustrine shoreface deposits of the Coqueiro
Seco Formation of northeast Brazil. (a) General view of cross-bedded pebbly very coarse-grained
sandstone (foreground) interbedded with intensely bioturbated fine-grained sandstone (back-
ground); (b) Close-up of intensely bioturbated sandstone displaying mottled texture. Lens cap
diameter is 5.5 cm long

et al. 1999) (Fig. 11.8a—e). In contrast, the Brazilian ichnofauna is derived from
intensely bioturbated, lacustrine, clastic shoreface deposits, and displays mottling
attributable to Planolites (Buatois and Mdngano 1998) (Fig. 11.9a-b).

Lower Cretaceous shallow-lake deposits present within the nonmarine Sindong
Group of South Korea are useful to illustrate the major characteristics of lacustrine
ichnofaunas from this age (e.g. Kim and Paik 1997; Kim et al. 2002, 2005; Paik
et al. 2012). In particular, the Jinju Formation has been the object of several ichno-
logic studies (e.g. Kim et al. 2002, 2005, 2012c¢). This unit was deposited in a shal-
low lake periodically affected by immersion and desiccation. The ichnofauna
contains a variety of feeding (Beaconites antarcticus, B. coronus, Planolites annu-
laris, P. beverleyensis, Taenidium barretti), locomotion (Octopodichnus cf. didacty-
lus, Diplichnites ispp., unassigned sauropod trackways), dwelling (Palaeophycus
sulcatus, P. tubularis, Skolithos magnus), and grazing (Cochlichnus anguineus,
Helminthopsis hieroglyphica) traces (e.g. Kim et al. 2005). The vast majority of
these ichnotaxa are common in the Scoyenia Ichnofacies, which is consistent with
the lake-margin interpretation for these deposits. The sharply defined margins of the
trackways suggest firm substrates. However, Kim et al. (2005) noted that some of
the grazing trails may have been emplaced in softgrounds, implying colonization
under subaqueous conditions and transition to the Mermia Ichnofacies. Potential
producers include several groups of dipterans as well as nematodes and spiders.
Overall, the Early Cretaceous, South Korean lake ichnofaunas show a similar trace-
fossil distribution to those ichnofaunas recorded in shallow-lacustrine deposits of
the Newark Supergroup. In both cases, colonization by benthic organisms reflects
changes in the degree of consolidation of the substrate as a result of progressive
subaerial exposure.

Early Cretaceous lotic and especially lentic insect taxa are derived from the same
taxonomic families as those of the Late Jurassic (Martinez-Delclos et al. 1995;
Delclos et al. 2008). Representatives of this faunal assemblage are a lentic, ephem-
eropteran fauna that consists of siphlonurids, hexagenitids and mesonetids.
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Hexagenitid naiads, as well as ephemeroid naiads, are very common in some Early
Cretaceous lentic assemblages (Sinitshenkova 2002), including taxa that produced
the bioerosion ichnogenus Asthenopodichnium subaqueously in woods (Thenius
1989). Most of the Early Cretaceous mayfly genera did not survive into the Late
Cretaceous (Sinitshenkova 2002), and only one lineage, the Australiephemeridae,
became extinct at the end-Cretaceous (K-Pg) boundary.

The Early Cretaceous aquatic odonatan fauna is quite different from that of the
Jurassic. The diversification of modern anisopteran (dragonfly) and zygopteran (dam-
selfly) lineages appear for the first time. Curiously, the Pseudomyrmeleontidae, inter-
preted by some as related to the Paleozoic Meganeuroidea, were still present as a relict
group. Unlike ephemeropteran assemblages, odonatan assemblages appear to have
most of their evolutionary development in lotic habitats. The dominant Early Cretaceous
odonatan lineages are the Isophlebioidea, Heterophlebioidea, Calopterygoidea, and
other anisopteran clades. Among these lineages are a few specialized types, such as
naiads of the Eurasian Hemeroscopidae and Sonidae (Pritykina 1986), which include a
morphotype with long legs possessing paddling locomotion and a nectic, predatory
existence. By contrast, other taxa, such as the Nothomacromyiidae lacked swimming
structures but retained actively cursorial, long legs, indicating predatory pursuit habits.
Another ecomorph is represented by the short-legged, burrowing Gomphidae (Bechley
1998). The labial-mask mouthpart structure has been examined for a select few species
of these lineages, and no conclusions could be made regarding prey-specific relation-
ships (Sinitshenkova 2002).

Plecopteran family-level diversity increased during the Early Cretaceous.
Jurassic plecopteran clades persisted into the Early Cretaceous and were supple-
mented by the earliest occurrences of several, modern, family-level lineages. All of
the modern, plecopteran functional feeding groups were present during the Early
Cretaceous, such as collectors and shredders engaged in detritivory, algal herbivory
and insect predation. In addition, chresmodids are still present in some lacustrine
settings, but probably became competitively excluded by emerging, Early Cretaceous
gerrid lineages.

True bugs of the Hemiptera are ubiquitous and diverse throughout the Early
Cretaceous, and with the exception of the Shurabellidae, are continuations of
Jurassic lineages (Sinitshenkova 2002). By contrast, the Gerridae and Mesoveloidea
(water treaders) initially appear during the Early Cretaceous, ecologically supple-
menting and replacing an earlier convergent ecotype, the orthopteroid Chresmodidae,
which had affinities to orthopteroid insects (Martinez-Delclos et al. 1995). This
replacement included larger-sized, surface-skimming gerrids during the Late
Cretaceous that approached in size many of the medium-sized Jurassic chresmo-
dids, the latter of which had legspans of up to 16 cm (Labandeira pers. observ.).
Corixids, notonectids, mesotrephids and notably large, predaceous belostomatids
continued into the Early Cretaceous (Delclos et al. 2008). Although there are some
evolutionary novelties between Jurassic and Early Cretaceous aquatic bug faunas, it
appears that all of the Jurassic ecologic feeding types were present during the Early
Cretaceous and encompassed surface water and neuston-zone feeders on dead or
dying arthropods, nectic algivores, nectic predators and epibenthic predators.
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There are minimal taxonomic and ecologic differences between Late Jurassic
and Early Cretaceous beetle faunas. Archostematan schizophorids became very
rare; the largely aquatic Adephaga retained a similar spectrum of major taxa as
before, although the proportions of major lineages change. The major shifts are that
the Parahygrobiidae become more abundant; the Coptoclavidae become dominated
by a newly emerging, advanced clade, the Coptoclavinae; the Gyrinidae increase in
diversity; the Liadytidae become rarer; the Dytiscidae remain rare; and the
Haliplidae have their earliest occurrence (Ponomarenko 1969). The dominantly ter-
restrial Polyphaga are represented by the same families in the Early Cretaceous as
during the Jurassic, including the Scirtiidae (marsh beetles), but especially the detri-
tivorous Hydrophilidae, represented by new taxa such as Cretotaenia.

Other holometabolous insect clades with aquatic stages include the Megaloptera,
Neuroptera (lacewings, antlions, and related forms) and Mecoptera. These clades
express a similar pattern of mostly lotic-based diversity, as do their descendants in
modern ecosystems. The predaceous larvae of megalopterans, such as the Corydalidae
(dobsonflies), neuropterans such as the Osmyloidea (net-winged lacewings and rela-
tives) and the detritivorous mecopteran larvae of the Nannochoristidae occur in Lower
Cretaceous deposits of Eurasia and Australia (Zherikhin 1978; Jell and Duncan 1986).
These lineages currently reside in the same habitats, although they have been overshad-
owed by more derived Cenozoic lineages that entered the same aquatic niches.

During the Early Cretaceous, caddisflies experienced major evolutionary novel-
ties, as new family-level lineages emerged, other groups assumed dominance, and a
profusion of larval case-making activity ensued. Evidence from adult caddisflies
indicate that the earliest Mesozoic caddisflies, necrotaulids, became rare; others,
such as the extinct phryganeoid families Dysoneuridae, Vitimotaulidae, and
Baissoferidae were common, as were the extant Phyganeoidea, the Calamoceratidae
(flat-case caddisflies), Lepidostomatidae (lepidostomatid casemaker caddisflies),
Plectrotarsidae (plectrotarsid caddisflies), and Helicopsychidae (snail-case caddis-
flies) (Sinitshenkova 2002). Of these, the Vitimotaulidae were the most numerically
abundant, or at least were common across most Eurasian localities. There was
significant differentiation of the Vitimotaulidae at the generic level across Eurasia,
and the dominance of particular local genera occurred throughout the region.

An important event in lotic and especially lentic environments was the global
diversification of caddis larval-case morphotypes (Sukatcheva 1982). This expansion
of domicile morphotypes that used a variety of mineral, plant, and animal resources
evidently commenced during the earliest Cretaceous in northern Asia, and penecon-
temporaneously in Europe, South America and Australia (Sinitshenkova 1999).
Circumstantial evidence indicates that the Vitimotaulidae were the dominant fabrica-
tors of these cases. In localities where adult body fossils and larval cases are both
abundant and diverse, it appears that each case morphotype likely is associated with
one adult species. Apparently, each case morphotype was made by an adult species
that was restricted to a particular lotic or lentic habitat, partly reflected by use of
building materials that were available for case construction. Cases were variously fab-
ricated from conchostracan shells, Karkenia ginkgoalean seeds, conifer needles, plant
twigs, quartz grains, mica flakes, and other available materials (Sukatcheva 1982).
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The dominant lacustrine lineages of the Diptera during the Early Cretaceous were
the same as for the Late Jurassic. Planktivorous chaoborids were more abundant but
less speciose during the Early Cretaceous when compared to the Late Jurassic,
whereas chironomids had an opposite trend. Both groups are represented primarily
by adult and pupal fossils; larvae are relatively rare and poorly preserved. This pat-
tern of differential preservation of developmental stages also exists for limoniids,
eoptychopterids and other nematocerous fly lineages. Not only compression deposits
capture this pattern, but this pattern also is found in amber occurrences, such as
Lebanese Amber. In Lebanese Amber the most common families are, in decreasing
rank: Chironomidae, Ceratopogonidae, Psychodidae, and Eoptychopteridae
(Kalugina 1980). However, in Paleolake Baissa deposits, chaoborids were very abun-
dant and likely were a major food resource for consumers that sustained much of the
upper tier of the food-web. One interesting development in Early Cretaceous lakes
was the emergence of brachyceran fly larvae, including the Stratiomyiidae (soldier
flies), Empididae (dance flies), other asilomorphs, and possibly the Sciomyzidae
(snail-eating flies) (Whalley and Jarzembowski 1985).

Arguably, one of the major innovations by the Early Cretaceous is the appear-
ance of aquatic angiosperms which, together with ferns (Schneider et al. 2004),
started to replace charophytes as the dominant macrovegetational elements in lacus-
trine ecosystems (Martin-Closas 2003; Friis et al. 2003, 2010; Gandolfo et al. 2004;
Coiffard et al. 2007). The presence of freshwater species representing among the
first angiosperms documented in the fossil record is hard to interpret, because it may
reflect an initial evolution and diversification in aquatic habitats or a taphonomic
bias (Martin-Closas 2003). Regardless of these alternatives, the appearance of
angiosperms was an evolutionary breakthrough that may have had a considerable
impact on aquatic life in ponds and lakes (Ponomarenko 1998; Friis et al. 2010).
Specifically, aquatic angiosperms (Sun et al. 2002; Friis et al. 2003; Dilcher et al.
2007) would have been instrumental in providing substrates for epiphytic organ-
isms, increasing the release of phosphorous by decaying macrophytes, promoting
light attenuation, steepening of the vertical temperature gradient, retarding of water
flow and enhancing fine-grained sediment deposition, among other processes
(Carpenter and Lodge 1986; Granéli and Solander 1988; Ponomarenko 1998; Cohen
2003). Paralleling this pattern, aquatic ferns experienced further diversification
(Schneider et al. 2004), but lycophytes remained abundant (Martin-Closas 2003).
With respect to phytoplankton, although Chlorococcales were still abundant, the
appearance of freshwater dinoflagellates is a major evolutionary innovation which
signaled the demise of green algal dominance in freshwater phytoplankton (Martin-
Closas 2003; Leliaert et al. 2011).

As with the Triassic and Jurassic, Cretaceous lotic and lentic insect faunas have
been divided into distinctive lacustrine assemblages, each characterized by specific
dominant and ecologically important insect species occurring in a particular environ-
mental setting (Zherikhin 1978; Sinitshenkova and Zherikhin 1996; Sinitshenkova
1999; Sinitshenkova 2002). For the Cretaceous, 18 such assemblages have been
described (Sinitshenkova 2002), one of which is Assemblage 5SA, or the Ephemeropsis
melanurus—Hemeroscopus baissicus Assemblage, whose environmental conditions
and trophic structure have been examined in detail (Table 11.1 and Fig. 11.10). This
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Fig. 11.10 Trophic structure reconstruction of an Early Cretaceous pseudoligotrophic lake
(Zherikhin et al. 1999). This lake represents the Ephemeropsis melanurus—Hemeroscopus bassicus

biotal assemblage typifying Paleolake Baissa in southern Siberia, Russia. This trophic reconstruc-

tion corresponds to the Type C lake biotal assemblage of Sinitshenkova and Zherikhin (1996). See
Assemblage C in Table 11.1 for additional physical, chemical and biological details. Redrawn,

with modification, from Sinitshenkova and Zherikhin (1996)



214 L.A. Buatois et al.

assemblage, from Paleolake Baissa, occurs in the Zaza Formation, Buryat Republic,
in Transbaikalian Russia, and was deposited in a deep, intermontane, meromictic
lake. Paleolake Baissa periodically dried out in shallower regions, indicated by mass
mortality occurring as dense accumulations of the same instar of large coptoclavid
larvae that became locally confined to a few bedding surfaces. Accumulations of
chaoborid larvae are present at more widespread event horizons and at small uncon-
formities or possibly diastems separating adjacent beds (Zherikhin et al. 1999).

The Ephemeropsis melanurus—Hemeroscopus bassicus Assemblage is more tax-
onomically and ecologically diverse than earlier Jurassic Eurasian paleolakes. This
assemblage includes tetrapods, birds, and osteoglossomorph fish such as Lycoptera,
and a rare Stychopterus sturgeon; phyllopod, conchostracan and ostracod crusta-
ceans, gastropods, bivalves and freshwater bryozoans (Vinogradov 1996). Most of
the estimated 1000 species of insects in the fauna are terrestrial and allochthonous
in origin (Zherikhin et al. 1999). The autochthonous lacustrine component of the
biota consists of ca. 80—120 species of lake residents, and was dominated by the
aquatic immatures of odonatans, heteropterans, coleopterans, dipterans and numer-
ous caddisflies (as cases). Insect fossils typically are shed exuviae rather than whole,
dead individuals. The surrounding vegetation consisted of Pseudolarix forest, a
Podozamites—Czekanowskia shrubland, and groundcover of horsetails, ferns, and
very rare angiosperms of uncertain affiliation (Zherikhin et al. 1999). Although this
assemblage represents one of the earliest occurrences of angiosperms in an Eurasian
lake deposit, the effect of angiosperms were insignificant, and it was toward the end
of the Early Cretaceous, during the Aptian and Albian Stages, during which the role
of angiosperms were manifest in terrestrial ecosystems (Labandeira, 2014;
Labandeira et al. 2016) and likely in freshwater ecosystems as well.

In most Mesozoic deposits intraspecific links between growth stages, such as
naiads and adults innonholometabolous insects and larvae and adults in holometabolous
insects are not possible (Zherikhin and Sinitshenkova 2002). However, in the
Ephemeropsis melanurus—Hemeroscopus bassicus Assemblage, some larval and
adult taxa are associated based on a variety of evidence. Strong associations include
the dragonfly adult of the hemeroscopid Hemeroscopus baissicus and a very common
species of an aeschnidiid naiad, and similarly the hydrophilid beetle adult
Hydrophilopsia baissensis with the hydrophilid larva Cretotaenia pallipes. Adults and
larvae of the dobsonfly Crefochaulus lacustris and the adephagan beetle Coptoclava
longipoda are also found in this assemblage, although the latter may be a complex of
several species (Zherikhin et al. 1999). It appears that most of the caddisfly cases were
constructed by various species of Vitimotaulidae. However, many of these fossils are
immature individuals of lentic taxa whose adults are associated with nearby, lotic,
especially rhythral, habitats that were allochthonously transported into Paleolake
Baissa. The transported lotic taxa are represented by rare odonatans, plecopterans,
simuliid dipterans, and nannochoristid mecopterans. These connections between
immatures and adults in different aquatic habitats within lakes and rivers indicate a
greater autecologic partitioning within species by life stage, as well as among species.
This twofold, intraspecific and interspecific subdivision of resources can be inter-
preted as a maturation of terrestrial aquatic habitats that became more widespread
during the Early Cretaceous (Zherikhin et al. 1999).
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11.5.5 The Late Cretaceous Biotal Replacement

Ichnologic information from Late Cretaceous paleolakes is remarkably scarce, pre-
cluding a detailed discussion. Late Cretaceous examples of lake-margin ichnofaunas
are known from the southern United States (Montgomery and Barnes 2012), western
Canada (Rylaarsdam et al. 2006), Botswana (Du Plessis and Le Roux 1995), Bolivia
(Meyer et al. 2001), China (Zhang 1987), and Korea (Paik et al. 2012; Lockley et al.
2012; Minter et al. 2012). However, most of these studies do not address the ichno-
faunas in a comprehensive fashion. As for fully lacustrine deposits, we are aware of
only one study documenting Late Cretaceous ichnofaunas in this setting, namely
perennial lake deposits in Botswana (Du Plessis and Le Roux 1995).

The crayfish burrow Camborygma is present in lake-margin deposits
(Montgomery and Barnes 2012), indicating the persistence of this deep tier through-
out the Mesozoic. Vertical burrows (e.g. Skolithos) and branching structures (e.g.
Thalassinoides) occur as well (Zhang 1987; Du Plessis and Le Roux 1995).
Arthropod trackways (Lithographus) have been recorded locally (Minter et al.
2012). Dinosaur and bird tracks preserved along lacustrine paleoshorelines also are
known (Meyer et al. 2001; Rylaarsdam et al. 2006; Paik et al. 2012; Lockley et al.
2012). In particular, intense bioturbation by dinosaurs continued to have an impact
on the sedimentary fabric of lake-margin deposits throughout the Late Cretaceous
(Rylaarsdam et al. 2006).

A complex mosaic of lacustrine deposits is preserved in Upper Cretaceous gra-
bens, whose infill is recorded in the Kalahari Group of Botswana (Du Plessis and Le
Roux 1995). The succession includes deposits of ephemeral and perennial alkaline
lakes. In both systems, an irregular network of tunnels, showing Y-shaped bifurca-
tions, attributed to Thalassinoides, has been recorded (Du Plessis and Le Roux
1995). In the ephemeral lake deposits, these structures are present in sand and mud
flats flanking the lake system. In the perennial lake deposits, Thalassinoides occurs
in fully lacustrine deposits in great abundances, commonly forming intensely biotur-
bated fabrics, which most likely record less saline conditions in relatively deeper
water environments (Du Plessis and Le Roux 1995). In these deposits, Thalassinoides
commonly occurs in association with vertical shafts that have lateral tunnels, which
have been compared with the poorly known vertical burrow Lennea (Du Plessis and
Le Roux 1995), but this attribution needs further confirmation. In short, the sparse
information available suggests continuation in lake-margin environments of the
same trends evidenced earlier in this setting. As well, the presence of intensely bio-
turbated, fully lacustrine deposits resembles similar deposits of the Lower Cretaceous.

Much less is known about Late Cretaceous lacustrine biotas when compared to those
of the Early Cretaceous. Most likely this is a reflection of limited outcrop that resulted
from the end of the broad extensional-tectonic regime that dominated the mid-Mesozoic
continental breakup, which promoted the formation of widespread lacustrine rifts
(Cohen 2003). The fossil record of aquatic insects documents mid-Cretaceous extinc-
tion of some lineages that were thriving during the Early Cretaceous but are not present
during the Late Cretaceous. This event included the extinction of about 20 family- and
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superfamily-level lineages (Zherikhin 1978; Sinitshenkova and Zherikhin 1996). Of
ephemeropterans, none became extinct; for odonatans, the latest meganeuroid lineage,
the Protomyrmeleontidae, became extinct, as did the Isophlebioidea and
Heterophlebioidea. For plecopterans, the family Oecanthoperlidae is extinguished, as
was the Chresmodida, a major Jurassic clade of aquatic Archaeorthoptera. With the
exception of the Shurabellidae, apparently no lineage of hemipterans became extinct, as
early originating lineages such as corixids, notonectids, belostomatids, and mesoveliids
survive to the present day. Coleopterans experienced several major extinctions, such as
the Ademosynidae, Parahygrobiidae, Schizophoridae, Coptoclavidae, and Liadytidae.
No major extinctions are known for the major lineages of the relatively undiverse neu-
ropteroid groups Megaloptera, Raphidioptera, or Neuroptera, or for the Mecoptera, of
which the extant Nannochoristidae is an aquatic representative. For the Trichoptera,
major extinctions of family-level taxa were the Dysoneuridae, Necrotaulidae,
Baissoferidae, and Vitimotaulidae, the latter of which produced a high diversity of cad-
disfly case morphologies. The Diptera remained unaffected by the mid-Cretaceous
extinction events; evidently the nematocerous Eoptychopteridae and possibly the
Hennigmatidae are the only family-level lineages that became extinct (Zherikhin 1978;
Sinitshenkova and Zherikhin 1996).

Perhaps more important are the originations of new aquatic insect lineages during
the mid Cretaceous, almost all of which survive to the present and essentially form
the modern lentic and lotic aquatic insect fauna. Approximately 19 family- and
superfamily-level lineages have their first fossil occurrences during the mid
Cretaceous, consisting of approximately the same number of lineages that go extinct.
For the Ephemeroptera, only the earliest Heptagenoidea is known to occur close to
the Early—Late Cretaceous boundary. In odonatans, modern family-level lineages of
the Zygoptera (damselflies) may have originated during this interval, but geochrono-
logical timing is poorly constrained. No known major lineages of plecopterans origi-
nated during the mid Cretaceous. As for hemipterans, the diverse clade Gerromorpha
had its earliest major bout of diversification during the mid Cretaceous, including
some of the first occurrences of sublineages within the Gerridae, Hydrometroidea
(water measurers), probably the Hebroidea (velvet waterbugs and relatives), and the
extinct Mesotrephidae. Of coleopterans, only the Haliplidae and Scirtiidae have their
earliest occurrences during the mid Cretaceous. Five lineages of the Trichoptera have
their first occurrences at this time, including the Hydrobiosidae (pincer-clawed cad-
disflies), Sericostomatidae (bushedtailed caddisflies), Odontoceridae (mortarjoint
casemakers), Calamoceratidae (comblipped casemakers), and Leptoceridae (long-
horned caddisflies). The origin of these lineages curiously is associated with a sig-
nificant decline in case morphotype diversity, as early Cretaceous cases range from
10-15 morphotypes in a typical assemblage, to ca. 5 per assemblage in the Late
Cretaceous (Sukatcheva 1991). This decline may be attributable to the disappearance
of the diverse Vitimotaulidae which became extinct at this time. Several nematocer-
ous lineages of dipterans with aquatic larvae diversified during the mid Cretaceous,
particularly the Ptychopteridae (phantom crane flies), Culicidae (mosquitoes),
Chaoboridae (phantom midges), Corethrellidae (frog-biting midges), and
Ceratopogonidae (biting midges). Interestingly, while the number of known aquatic
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insect extinctions and originations for the mid Cretaceous appear to balance out with
ca. 20 lineages in each category, the totals of insect herbivore turnover is much
greater for the mid-Cretaceous terrestrial realm (Labandeira 2014).

The biologies of these aquatic insect lineages indicate that, whereas the aquatic
immatures (naiads, larvae) were well integrated into aquatic ecosystems, the adults
became more removed from aquatic habitats than in previous freshwater biotas. For
example, whereas the naiads of damselflies were major aquatic predators, their adults
preyed on aerially winged insects. The adults of aquatic heteropterans became preda-
tors on other aquatic insects (Anderson 1998). Almost all dipteran lineages were com-
prised of larvae that were aquatic filter-feeders whereas their adults—at least the
females—were obligate blood feeders on vertebrates (Labandeira 2002). As the
aquatic larvae of caddisflies increasingly became herbivorous, their terrestrial adults
targeted angiosperm nectar or similar nutritive sources (Porsch 1958), or lacked feed-
ing capabilities altogether. The disjunction of habitats between immatures (naiads,
larvae) and adults increased during the Late Cretaceous, exhibiting an even more pro-
found separation between the life habits of immatures and adults than ever before.

The Late Cretaceous witnessed the continuation of the radiation of aquatic
angiosperms and ferns (Martin-Closas 2003; Gandolfo et al. 2004; Schneider et al.
2004), the former showing increased interaction with modern insect families. The
shift from gymnosperm-dominated floras to angiosperm-dominated floras was
accompanied by a major turnover in their terrestrial insect associates (Labandeira
2014; Labandeira et al. 2016). This transition occurred during the angiosperm radia-
tion, and included episodes of extinction and origination that paralleled a similar
pattern characterizing the MLR, although it appears that there is a time shift between
the two major events. By contrast, no such pattern is seen in freshwater algal groups.
Charophyte assemblages became dominated by the Characeae (Martin-Closas
2003). During the Late Cretaceous, lacustrine phytoplankton displays a similar
composition to that of the Early Cretaceous, as indicated by the presence of
Chlorococcales and freshwater dinoflagellates (Martin-Closas 2003). However, evi-
dence of diatoms is known from the Late Cretaceous, suggesting early diversifica-
tion, albeit playing a limited role as lacustrine plankton (Chacén-Bacca et al. 2002).
Chrysophytes also are documented from the Cretaceous (Cornell 1979; Adam and
Mahood 1981), but as with diatoms, they radiated later in the Cenozoic when they
became an important phytoplankton component (Leliaert et al. 2011). In any case,
the major changes in the plankton composition involved the diversification of fresh-
water diatoms and chrysophytes.

11.6 The Aftermath of the Revolution

An examination of the trace- and body-fossil records, as well as the ecological
structure of Cenozoic lakes, provides a picture of the aftermath of the MLR,
thereby revealing whether additional evolutionary novelties or innovations took
place. Interestingly, the biological response to the MLR is not straightforward.
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A review of the Cenozoic lacustrine trace-fossil record shows that Cenozoic lake-margin
invertebrate ichnofaunas are similar in composition to those of the Late Cretaceous
(Table 11.2). Apparently there was minimal effect of the Cretaceous—Paleogene
(K-Pg) events on the MLR (see Chap. 12). This is in sharp contrast, for example,
with the ongoing rapid diversification of insect nesting structures in paleosols that
took place during the Cenozoic (see Chap. 13).

Little is known of complete inventories of bulk aquatic insect faunas from amber
and compression—impression deposits during the Late Cretaceous and Paleocene,
unlike the significantly better documented terrestrial fossil insect record (Zherikhin
and Sinitshenkova 2002; Labandeira 2005b). Perhaps more importantly, paleoeco-
logical data indicate that the modern ecologic structure from one, well-documented
lake was well established by the early—middle Eocene boundary interval at Paleolake
Messel (Fig. 11.12), and resembled in all measured food-web indices that of a vari-
ety of modern lake ecosystems (Dunne et al. 2014). This study proposes that earlier,
well preserved lake deposits that postdate the MLR but predate Messel (and strad-
dling the K-Pg boundary) also be examined to determine how far back in geologic
time modern lacustrine food-web structure extends (Dunne et al. 2014). Until food-
web studies that use similar analytical techniques and trophic measurement indices
as those used for Messel are applied to well-preserved lake deposits before and after
the MLR, analytical detection of the trophic shift left by the MLR may be difficult.
Nevertheless, studies of ichnofaunas and insect biotas, particularly those from the
Paleogene may provide robust results in lieu of detailed food-web analyses of lake
deposits using modern ecological techniques. One particular approach that may be
useful is to attempt an associational approach in the freshwater, especially lacus-
trine realm that has been done for the terrestrial realm (Labandeira et al. 2002; Wilf
et al. 2006). In lieu of more complete knowledge of aquatic, arthropod body-fossil
faunas during this time interval, analyses of interactions may provide an another
approach for detecting the trophic shift toward herbivore-dominated aquatic com-
munities following the MLR.

Ichnofaunas from lake-margin deposits are known from the Paleogene of the west-
ern United States (Melchior and Erickson 1979; Lamond and Tapanila 2003; Bohacs
et al. 2007; Scott and Smith 2015), Spain (Rossi 1992; de Gibert and Sédez 2009),
China (Hsiao et al. 2010), Antarctica (Yang and Shen 1999; Perea et al. 2001), the
Neogene of the western United States (Toots 1975; Smith et al. 1982; Squires and
Advocate 1984; Scrivner and Bottjer 1986; Lucas et al. 2002), Spain (Rodriguez-
Aranda and Calvo 1998; Uchman and Alvaro 2000; Ort{ et al. 2003) and Kenya
(Laporte and Behrensmeyer 1980; Cohen 1982; Ekdale et al. 1989; Cohen et al. 1991,
1993; Lamond and Tapanila 2003). Shallow-tier, horizontally striated or non-orna-
mented, meniscate, backfilled structures (Scoyenia, Taenidium, Beaconites), simple
horizontal structures (Planolites, Palaeophycus), vertical burrows (Arenicolites,
Polykladichnus),and striated ornon-ornamented branching burrows (Spongeliomorpha,
Labyrintichnus) are the dominant elements (Toots 1975; Smith et al. 1982; Squires
and Advocate 1984; Rodriguez-Aranda and Calvo 1998; Uchman and Alvaro 2000;
Orti et al. 2003; Bohacs et al. 2007; de Gibert and Saez 2009; Hsiao et al. 2010). The
crayfish burrow Camborygma has been locally recorded (Hsiao et al. 2010). Vertical
burrows with a terminal chamber, ascribed to the ichnotaxon Liticuniculatus erectus,
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were compared with similar structures produced by decapods (Melchior and Erickson
1979). This is a poorly known ichnotaxon that may elicit comparisons with
Camborygma. Simple grazing trails (Archaeonassa, Cochlichnus) are very rare (Smith
et al. 1982; de Gibert and Saez 2009).

In some cases lake-margin deposits are overprinted by a suite of insect nests
(Celliforma, Roselichnus; Uchman and Alvaro 2000), which are particularly com-
mon in Cenozoic terrestrial settings (see Chap. 13). Spectacular examples of sur-
faces and beds containing several overprinted suites from fully aquatic to transitional
and fully terrestrial facies are known from a number of Quaternary localities in
Kenya (Scott et al. 2009; Owen et al. 2009). Borings (Trypanites, Sertaterebrites)
and embedment cavities have been documented in lacustrine stromatolites (Ekdale
et al. 1989; Lamond and Tapanila 2003; but see Corsetti and Grotzinger 2005 for an
alternative interpretation). Evidence of insects capable of burrowing in highly
stressed, hypersaline environments of underfilled lakes are observed for the first
time in some of the Neogene basins of Spain (e.g. Rodriguez-Aranda and Calvo
1998; Uchman and Alvaro 2000; Orti et al. 2003).

Vertebrate trace fossils in Cenozoic lake-margin deposits include bird (e.g.
Gruipeda) and mammal tracks (Scrivner and Bottjer 1986; Yang and Shen 1999;
Pereaet al. 2001; Lucas et al. 2002; de Gibert and Saez 2009). A wealth of informa-
tion has been produced on how vertebrates modify lake-margin surfaces. Large
mammals (e.g. hippos) are known to produce trampled surfaces, actively modifying
lake-margin landscapes (Laporte and Behrensmeyer 1980; Cohen et al. 1991, 1993;
Ashley and Liutkus 2002; Deocampo 2002; Scott et al 2007, 2008) (Fig. 11.11a—c).
Additionally, flamingos produce nest mounds and alter lake-margin deposits by
trampling and churning wet clayey sediments (Scott et al. 2009, 2012b). These
authors documented that these nests may be so compacted that they contribute to the
stability of deltaic distributary channels in lake margins, leading to channelization
of flow by water diversion around the mounds. Indeed, the impact of flamingos on
lake-margin sediments results in the development of a distinctive mounded topog-
raphy that qualifies as an ichnolandscape (sensu Buatois and Mdngano 2011a),
which can be preserved in the fossil record (Fig. 11.12a-b).

Ichnofaunas from fully lacustrine deposits have been recorded nearly worldwide in
Cenozoic deposits. They have been documented from the Paleogene of the western
United States (Moussa 1968, 1970; Melchior and Erickson 1979; Loewen and de
Gibert 1999; Bohacs et al. 2007; Martin et al. 2010; Scott and Smith 2015), Antarctica
(Yang and Shen 1999; Perea et al. 2001), the Neogene of the eastern (O’Brien and
Pietraskek-Mattner 1998; Benner et al. 2009; Knecht et al. 2009) and western (Smith
et al. 1982) United States, eastern Canada (Gibbard and Dreimanis 1978), Hungary
(Babinszski et al. 2003; Magyar et al. 2006; Cziczer et al. 2009), Slovakia (Starek et al.
2010; HyZny et al. 2015), England (Gibbard and Stuart 1974), Lithuania (Uchman
etal. 2008, 2009), Finland (Gibbard 1977), Sweden (Uchman and Kumpulainen 2011),
Germany (Walter 1985; Walter and Suhr 1998), Greece (Owen et al. 2011), Turkey
(Price and McCann 1990; Uchman et al. 2007), China (Yang 1996), Indonesia
(Whateley and Jordan 1989), Thailand (Gibling et al. 1985; Flint et al. 1989), Japan
(Allison et al. 2008), Kenya (Feibel 1987) and New Zealand (Lindqvist 1994).
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Fig. 11.11 Fossilized trampled surface consisting of a high-density of hippopotamus tracks,
Pleistocene, Ilosowuani horst near Logumukum, Lake Bogoria Basin, Kenya. (a) General view of
the trampled surface; (b) Close-up of one of the tracks; (c¢) Cross-section view showing intense
disturbance of the primary sedimentary fabric

Ichnofaunas from fully lacustrine, Cenozoic deposits are known from both nongla-
cial and glacial settings. Nonglacial lake deposits that accumulated under low energy
conditions tend to be dominated by a combination of very shallow-tier grazing trails
(Cochlichnus, Helminthopsis), shallow-tier mottlings attributed to Planolites, and
deeper-tier branching burrows (Vagorichnus) (Moussa 1968, 1970; Smith et al. 1982;
Gibling et al. 1985; Feibel 1987; Flint et al. 1989; Whateley and Jordan 1989; Yang and
Shen 1999; Perea et al. 2001; Bohacs et al. 2007; Uchman et al. 2007; Owen et al.
2011). Oligichnos limnos, an ichnotaxon erected by Melchior and Erickson (1979) and
suggested to have been made by oligochaetes, needs re-evaluation and may become a
junior synonym of Helminthopsis. Also, the presence of the bivalve burrow Lockeia
has been mentioned (Feibel 1987). Interbedded sandstone tempestites and dolomites
contain deeper-tier vertical burrows (Skolithos, Arenicolites Polykladichnus) (Price and
McCann 1990; Magyar et al. 2006). Vertical burrows similar to 7richichnus have been
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Fig. 11.12 Fossilized flamingo nests, Pleistocene, High Magadi Beds, Lake Magadi, Kenya. (a)
General view of the nest-bearing surface showing a spectacular biogenic topography (i.e. ichno-
landscape); (b) Close-up of nests. Scale bar is 10 cm long

mentioned in lacustrine shales (Lindqvist 1994). Burrow systems from long-lived
brackish- to freshwater fossil Paleolake Pannon have been attributed a new ichnotaxon,
Egbellichnus jordidegiberti (HyZny et al. 2015). These burrows have been interpreted
to have been produced by ghost shrimps, indicating that these marine organisms were
able to survive for a long time after the closure of the seaway connecting this water
body with the central Paratethys sea (HyZny et al. 2015). Vertebrates are represented by
the fish trail Undichna (Loewen and de Gibert 1999; Martin et al. 2010) and the fish
nest Piscichnus (Feibel 1987).

Glacial lakes are dominated by very shallow-tier grazing trails (Cochlichnus,
Gordia, Helminthoidichnites) and arthropod trackways (Glaciichnium,
Warvichnium, Dendroichnites, Lusatichnium), with the branching burrow
Treptichnus and the conchostracan resting trail Surculichnus locally present
(Gibbard and Stuart 1974; Gibbard 1977; Gibbard and Dreimanis 1978; Walter and
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Suhr 1998; O’Brien and Pietraskek-Mattner 1998; Uchman et al. 2009; Benner
et al. 2009; Knecht et al. 2009; Uchman and Kumpulainen 2011). Vertebrates are
represented by the fish ichnotaxa Undichna, Broomichnium and Piscichnus
(Benner et al. 2009; Uchman and Kumpulainen 2011). The ichnofaunas of
Pleistocene glacial lakes are somewhat unusual in that they closely resemble
those that are typical of the Paleozoic, displaying a dominance of very shallow-
tier ichnotaxa and an underutilized infaunal ecospace. The anachronistic nature of
Pleistocene glacial lacustrine ichnofaunas may represent another example of the
so-called déja vu effect (Buatois and Mdngano 2011b). The dominance of very
shallow-tier structures in Pleistocene glacial deposits may reflect very limited
burial of organic matter in highly oligotrophic lakes, restricting the habitable zone
to a few millimeters below the sediment—water interface.

It should be noted, however, that suppressed bioturbation is not restricted to
these types of settings, but also occur in highly productive lakes having oxygen-
ated bottom waters, as evidenced in Lake Turkana (Cohen 1984). In this lake, pri-
mary productivity is extremely high toward the lake shore, but phytoplankton
populations are markedly less productive offshore. As a result, food content is
quite low in offshore lake bottoms and the invertebrate fauna essentially consists
of epibenthic detritivores which do not disturb the primary sedimentary fabric. In
addition, the lack of sediment mixing results in a redox discontinuity surface very
close to the sediment—water interface, further restricting infaunalization (Cohen
1984). This pattern may be regarded as reminiscent of Paleozoic settings display-
ing limited colonization of infaunal ecospace.

To summarize, a review of the Cenozoic lacustrine trace-fossil record fails to show
the appearance of any major evolutionary novelty or innovation from an ichnologic
perspective. The spectacular trampled surfaces produced by large mammals that char-
acterize Neogene and modern lake margins were preceded by equally extended and
bioturbated surfaces produced by dinosaurs in the Mesozoic. Cenozoic ichnofaunas
suggest a continuation of trends that started during the MLR. However, these exten-
sive ichnologic studies need to be linked with examination of body-fossil assemblages
from lacustrine and other aquatic environments, particularly during the Paleogene, to
more comprehensively document the effects of the MLR. It is notable that, as dis-
cussed below, aquatic organisms and ecosystems were better buffered from extinction
and ecological reorganization than terrestrial ecosystems during and after the K-Pg
crisis (also see Chap. 12). This buffering has multiple sources, including (1), behav-
ioral modifications of lacustrine organisms, including infaunalization, encystment,
and planktotrophic larvae that would predispose organisms toward avoiding major
environmental vicissitude (Chap. 12); (2), more generalized and less specialized food
webs occurring in lakes than for coexisting, surrounding terrestrial communities, at
least known for the middle Eocene (Dunne et al. 2014); and (3), the temporally
ephemeral nature of lake communities that require considerable dispersal mecha-
nisms for continuity of lake biotas (Cohen 2003), Additionally, the responses to the
K-Pg event were variable by the taxonomic group involved, by their occupied habitat,
by where they occurred in regional landscapes and in their worldwide distribution,
and were variably dampened by the effects of time.
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A major effect of the end-Cretaceous global crisis (see Chap. 12) was not only
extensive taxonomic extinction and subsequent origination for many non-arthropodan
terrestrial lineages, but equally important, trophic pruning of ecosystem structure.
On land, the consequences of this event meant the demise of numerous lineages,
particularly vertebrates (Archibald and Bryant 1990) and plants (Nichols and Johnson
2008), but this extinction only minimally affected arthropod groups, when evaluated
as body-fossil taxa at the family level (Labandeira 2005b). However, when plant—
insect interactions are examined at the K-Pg boundary interval, the consequences
were important, and hit especially specialized insects such as gallers and leaf miners,
while leaving taxa with generalized feeding habits relatively intact (Labandeira et al.
2002; Wilf et al. 2006). In aquatic ecosystems, there was less of an effect (but see
Bailey et al. 2005 for possible taphonomic biases). Aquatic insects were minimally
affected, at least at the family level (Labandeira 2005b), although there may have
been significant changes in food-web structure that persisted well into the Paleogene
(Dunne et al. 2014). One important pattern documented for aquatic invertebrates was
the differential effects that the K-Pg event had on organisms that inhabited the ben-
thos of water bodies (Twitchett 2006). Detritivorous organisms in or on the sediment
were considerably more buffered both from extinction and destruction of their food
resources than those trophic networks subsisting on food resources derived from
photosynthetic organisms such as algae, diatoms, or aquatic vascular plants (Sheehan
and Hansen 1986). This immunity was enhanced for those aquatic invertebrates,
such as many detritivorous arthropodan groups, that had planktic immature stages
and thus were more able to withstand extinction. For aquatic, especially lentic and
lotic—potamic habitats, there was a reduced effect from the end-Cretaceous crisis,
particularly for local trophic networks whose dietary resources were not dependent
on the herbivory of photosynthetic organisms.

The history of Paleogene insects in aquatic ecosystems is poorly known outside
of Central Europe and North America. Most aquatic insect orders have been mini-
mally documented, and many assemblages are woefully deficient in species-level
descriptions and revisions. The number of autochthonous lentic taxa is poorly
known. Better documented are exceptionally well preserved compression deposits
that include the Green River, Messel, Kishenehn, and Menat paleolakes (Nel and
Roy 1996; Smith ME et al. 2008b; Greenwalt and Labandeira 2013; Dunne et al.
2014). These well-documented deposits represent only a broad outline of Paleogene
aquatic insect history, even though their temporal proximity to the modern fauna
should allow easier identification and ecological interpretation of the insect taxa
present (Zherikhin and Sinitshenkova 2002). These and almost all Paleogene aquatic
taxa are assigned to extant families. The only significant exceptions to this general-
ization lie within the Odonata, in which the families Sieblosiidae (which disap-
peared during the Pliocene) and Zacallatidae (Paleogene only) and the subfamilies
Dysagrioninae (Paleogene only) and Eodichrominae (Paleogene only) are absent
from the modern fauna (Zherikhin and Sinitshenkova 2002). The overwhelming
majority of modern lotic and lentic aquatic families extend at least to the Paleogene,
and occur in compression and amber deposits. There are many cases of extant aquatic
genera extending to the middle Eocene, and apparently living species present in
sediments as old as the Eocene (Askevold 1990; Murray 1976; Kluge 1986).
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The naiads of ephemeropterans are uncommon in Paleogene compression depo-
sits. Some amber deposits, such as Baltic Amber have provided the overwhelming
majority of known mayfly adults. A common, modern epibenthic form, the Baetidae,
is virtually absent from Paleogene aquatic faunas. Paleogene odonatan assemblages
exhibit minimal similarity with those of today when compared to other aquatic
insect lineages (Zherikhin and Sinitshenkova 2002). The relative rarity of Lestidae
(spreadwing damselflies), Coenagronidae (narrow-winged damselflies), Corduliidae
(emerald dragonflies) and Libellulidae (darner dragonflies) are in stark contrast to
the abundance of these lineages in extant aquatic faunas. Naiads are rare in Paleogene
aquatic deposits, whereas they are much more common in Neogene faunas, a pat-
tern mirrored by ephemeropterans and attributable to styles of preservation in lacus-
trine deposits rather than any intrinsic biologic cause.

Paleogene Plecoptera are represented principally by adults in resins and are
referable to extant genera. These fossil Plecoptera probably were confined to lotic
habitats, consistent with the rarity of their naiad stages in lentic deposits. Apparently,
stoneflies do not exhibit any shift in taxonomic proportions between the Paleogene
and Neogene (Zherikhin and Sinitshenkova 2002), and display a dominance similar
to corixids and notonectids. Aquatic bugs (Hemiptera), unlike paleopterous taxa,
are common in Paleogene deposits, where they are often numerically dominant.
Similarly, aquatic beetles are diverse in the Paleogene, but are marked by the
absence of the algivorous Haliplidae and the overwhelmingly presence of the
Hydrophilidae and Dytiscidae, particularly during the Oligocene. Aquatic megalop-
terans and neuropterans are represented only by extinct genera, and aquatic mecop-
terans have not been documented.

In contrast to several modern aquatic groups that were uncommon during the
Paleogene, the Trichoptera were quite common in local assemblages. All Paleogene
taxa have been assigned to modern lineages, many which consist of extant genera
(Sukatcheva 1982; Wichard and Weitschat 1996). However, there is a significant
difference in family-level dominance between the Paleogene and Neogene assem-
blages, and in compression versus resin deposits, with the Oligocene being a transi-
tional interval. During the Paleogene, the currently dominant families, the
Hydropsychidae (net-spinning caddisflies), Leptoceridae, and Limnephilidae
(northern caddisflies) are either rare or absent. Similarly, the diversity of caddisfly
cases are rare when compared to the Cretaceous or present-day levels (Zherikhin
and Sinitshenkova 2002). Some of these taxa may have colonized floating algal
mats (Ponomarenko 1996) or dwelled amid the floating leaves, as appears to be the
case for fossils from earliest middle Eocene Paleolake Messel (Lutz 1991).

The Paleogene aquatic dipteran fauna is particularly depauperate in culicids,
chironomine chironomids (nonbiting midges), and higher brachyceran taxa.
However, the abundance of the enigmatic botfly-like larvae of Lithohypoderma
continues to elude taxonomic placement and ecologic understanding (Stokes 1978;
Sinitshenkova 2002). Culicids (mosquitoes) and brachyceran taxa became more
abundant during the Oligocene. Toward the Oligocene—Miocene boundary, the
aquatic fauna attained an even more modern cast than in the previously described
Paleogene assemblages.
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Paleogene aquatic angiosperms continued to be dominant in ponds and lakes,
forming diverse assemblages and displaying increased provincialism (Martin-
Closas 2003). Aquatic ferns also exhibited further diversification (Schneider et al.
2004), whereas taxonomic turnover within the Characeae took place during the
Paleogene (Martin-Closas 2003). Further extinctions and replacements occurred
within the charophytes later in the Cenozoic. Aquatic bryophytes became common
in shallow lakes and swamps (Mai 1995). The most significant changes, however,
are those experienced by lacustrine phytoplankton, essentially by expansion of
freshwater diatoms and chrysophytes during the Eocene (Martin-Closas 2003;
Wolfe and Edlund 2005; Sims et al. 2006; Leliaert et al. 2011). During the Neogene,
diatoms clearly dominated over the Chlorococcales (Martin-Closas 2003; Sims
et al. 2006). The overall ecologic impact of the colonization of freshwater bodies by
diatoms cannot be overemphasized. In particular, diatoms typically exert a signifi-
cant effect on the biogeochemical cycling of silica, promote a diversion of other
nutrients into other trophic pathways and increase overall lacustrine productivity
(Cohen 2003).

One of the most highly investigated Cenozoic lacustrine deposits is the series of
four major paleolake basins that form the Green River Formation in the Western
Interior of the United States. The Green River Formation is dated from ca. 54.0—
43.5 Ma (Smith ME et al. 2008b), and consists of a mixture of open lacustrine,
lake-margin lacustrine, shallow playa, carbonate mudflat, fluvial, deltaic and allu-
vial deposits (Ferber and Wells 1995; Chetel and Carroll 2010; Aswasereelert et al.
2013). The Green River Formation is assigned to Cenozoic Lake Assemblage Type
8 (Zherikhin and Sinitshenkova 2002), dominated by brachyceran fly larvae with
few, if any, other aquatic insects (Zherikhin and Sinitshenkova 2002). Green River
fossils overwhelmingly preserve land-based organisms, especially plants, insects,
and vertebrates, to the near exclusion of autochthonous aquatic organisms (Wilson
1978), which likely was taphonomically modulated by depositional biases favoring
terrestrial taxa (Smith, 2000, 2008). The insect fauna is very diverse, consisting of
about 26 of the ca. 35 modern recognized orders for the Piceance Creek Basin of the
Green River Formation (Pribyl et al. 1996). The apparently under-represented
aquatic insect fauna is autochthonous, but only consists of several major lineages of
mostly nematocerous Diptera, principally tipulids, cylindrotomids, culicids, chi-
ronomids, and the occasional aquatic beetle. In spite of the extensive geographic
coverage and numerous fossiliferous strata, there is only minor representation of
lotic and lentic fossils from the Green River Formation. Nevertheless, three families
of dragonflies are represented (Wilson 1978; PetruleviCius et al. 2007), two families
of Hemiptera, two families of beetles, four families of nematocerous Diptera and
the enigmatic Lithohypoderma “botfly” (Pribyl et al. 1996; Sinitshenkova 2002).
The Trichoptera includes the Hydropsychidae, Hydroptilidae (micro caddisflies),
Limnephilidae, and Sericostomatidae. The particular reason for such an under-
representation of the lentic and lotic fauna, especially when adjacent terrestrial
insects are exceedingly abundant by comparison, is likely attributable to the role of
size in the formation of live versus death assemblages of insects. In the Green River
biota, death assemblages that become incorporated in the fossil record are smaller
sized and more robust than live equivalents (Smith 2000). Although the role of size
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and robustness applies to beetles (Smith 2000), it is unclear if such a relationship
also applies to softer-bodied, more gracile insects that are often disarticulated prior
to sediment burial.

The taxonomic composition and ecologic structure of Neogene paleolakes is very
similar to that of modern lakes (Zherikhin and Sinitshenkova 2002). Many modern
aquatic species occur throughout the Neogene. A few extinct insect clades are known,
such as the subfamily Electrobatinae of the Gerridae and the coral bug species
Halovelia electrodominica, both from early Miocene Dominican Amber; the coeval
dytiscid genus Palaeogyrinus from Germany; several extinct aquatic taxa of the
Megaloptera and Neuroptera, including the species Sialis strausi from the Pliocene of
Germany; and several new caddisfly case morphotypes that are difficult to attribute to
potential modern or extinct genera (Illies 1967; Galewski and Glazek 1997; Sukatcheva
1982; Anderson 1998). Throughout the Miocene, these occurrences do not represent
any significant change in aquatic insect community characterization, a conclusion
buttressed by the similarity of overall lake ecologic structure between the middle
Eocene and the present (Dunne et al. 2014), indicated in Fig. 11.13.

There is evidence for an increase in lentic habitats and their biotas at the beginning
of the Neogene. This extension is indicated by greater submergent and emergent angio-
sperm vegetation that increased habitat structural complexity, resulting in an expansion
of herbivory, greater constancy of O, levels and nutrient cycle stability (Zherikhin

Fig. 11.13 Visualization of the middle Eocene (48 Ma) food web of Paleolake Messel, in central-
west Germany, representing a post MLR lake. Spheres designate trophic taxa and lines represent
feeding links. A trophic taxon is a species or group of species (in the case of microorganisms) that
have links to organisms that consume it and to other organisms that it consumes. Plants have links
only to their consumers. Looped links refer to cannibalism. The vertical axis corresponds to short-
weighted trophic level, with autotrophic taxa and detritus at the bottom. The colors of nodes indi-
cate the taxonomic assignment of species: green =plants, algae and diatoms; blue =bacteria, fungi
and detritus; yellow =invertebrates; orange = vertebrates. This image was produced with Network
3D software (Williams 2010), and reprinted with permission from the Royal Society
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1978; Kalugina 1980). Nevertheless, special sedimentary environments occupying
spatially small areas could have hosted aquatic communities of distinctive taxonomic
composition and ecologic structure. Examples of these biotic microcosms include
small bodies of water associated with sinter structures, ponds in asphaltum depres-
sions, karst sinkholes, impact craters, and pits created by subsurface diatreme explo-
sions. Such deposits are typically spatiotemporally ephemeral and constitute a very
minor part of the lacustrine record that is represented preferentially toward the recent.

11.7 Discussion

There are four issues about the MLR that necessitate further discussion. The first
issue is whether the MLR is indirectly or directly connected to other obvious, major
biotic events during the mid Mesozoic, such as the Mesozoic marine, parasitoid,
angiosperm, and Cretaceous terrestrial revolutions. The second issue is to what
extent did the MLR involve not only a change in the diversity and abundances of
participating fossil groups, but also their effect on the sedimentological record
through the increased variety of ichnotaxa and bioturbation intensities recorded
from well sampled sections. A third issue is how modern lacustrine trophic webs
were established. These trophic webs are recorded in a well-examined Paleogene
lake deposit, but also should be present in earlier, mid-Mesozoic food webs. Finally,
what is the role of behavioral convergence in shaping the aquatic marine and conti-
nental trace fossil records, and to what extent should ichnotaxonomic nomenclature
be applied across the marine/continental divide to very similar trace fossils that
involve convergent morphologies (and presumably behaviors).

11.7.1 Possible Connections to Other Mesozoic, Biotal
Revolutions

Other than the MLR, four other, major biotic revolutions occurred during the mid to
late Mesozoic: the Mesozoic marine revolution in the marine realm and the parasit-
oid, angiosperm and Cretaceous terrestrial revolutions in the continental realm.
These mid-Mesozoic, global ecologic shifts may have had an effect on the MLR
that may be relevant to the development of lacustrine food webs throughout the later
Mesozoic. The possible connections among these five prolonged events may shed
light on the shift of detritivore- to herbivore dominated ecosystems in lacustrine and
other freshwater habitats during the mid Mesozoic.

One of the aspects involved in the Mesozoic marine revolution (see Chap. 9) was the
notable increase in mechanical sturdiness and increased robustness of other structural
features that promoted the resistance of shells, principally gastropods, to crushing by
predators (Vermeij 1977; Stanley 1977). Major structural transformations favored dura-
ble shell architecture of molluscan prey, and involved new modes by mostly arthropods
and teleost predators of pursuing, capturing, and overcoming the mechanical defenses
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of their prey. Another aspect of the Mesozoic marine revolution was intensification of
marine herbivory, such as grazing on algae at relatively shallow and subsurface depths.
Added to the expansion of durophagy and grazing pressure was increased predation in
benthic communities that led to infaunalization of many former epibenthic groups, as
well as a significant reduction of the sessile life habit (Stanley 2008). The major conse-
quence of these innovations has been the relegation of their certain life forms to extinc-
tion or to refugial habitats (Oji 1996), and the occupation of their adaptive zones by
competitively superior, new, predatory groups (Vermeij 1977; Stanley 1977). This
worldwide marine reorganization has been linked to continental breakup, widening of
latitudinal belts, and the emergence of angiosperms on land (Vermeij 1977).

The parasitoid revolution is based on an observation that the first appearances of
several major clades of parasitoid insect clades occur primarily during the mid
Jurassic (Labandeira 2002). Parasitoids are a distinctive type of carnivore in which
a small, invading organism attaches to or lives on or in an animal and slowly feeds
on internal tissues and organs of their relatively long-lived but still alive host. The
much smaller parasitoid feeds on host such that the most vital organs are consumed
immediately before the host dies, followed by its emergence from the host as an
adult parasitoid (Vinson and Barbosa 1987). Parasites, by contrast, such as mosqui-
toes do not kill the host, but use host tissues such as blood to feed on. For insects,
the actively feeding parasitoid stage is always a holometabolous larva, overwhelm-
ingly a parasitoid wasp, and less frequently a brachyceran fly. Parasitoids may feed
on their hosts internally (endoparasitoids) or externally (ectoparasitoids) and attack
arthropod hosts, such as myriapods, arachnids, especially insects, and some verte-
brates (Godfray 1994). The earliest appearance of the parasitoid guild was the mid
Early Jurassic, during which several clades of parasitoid wasps appear. This was
followed and supplemented by more modest brachyceran dipteran diversification
and the massive radiation of several parasitoid superfamilies during the Late
Jurassic, and continued with the addition of occasional neuropteran, beetle, and
lepidopteran parasitoid lineages into the Paleogene (Labandeira 2002).

A major consequence of the parasitoid revolution was the increased complexity
of food webs by insertion of a significant more efficient mode of carnivory. This
greater efficiency resulted from the targeting of particular species of prey by a host-
specific parasitoid using specific chemical, behavioral, visual, and other cues ema-
nating from prey. With the proliferation of the host-specialist, parasitoid feeding
guild that originated during the mid Mesozoic, carnivory became considerably
more targeted than was the case for food webs earlier in time based solely on diffuse
generalist predation patterns (Labandeira 2002). This ecological shift resulted in
consumer-driven, top—down regulation of herbivores, rather than bottom-up,
resource-driven regulation, based on modern food-web studies (Dunne et al. 2002).
In modern ecosystems, parasitoid loads on insect herbivores are elevated (Memmott
and Godfray 1993), and are much more efficient at assimilating prey biomass into
consumer biomass than either predators such as dragonflies or parasites such as
fleas or lice (Eggleton and Belshaw 1992). In lacustrine systems, unionacean and
mytilacean bivalves are dispersed in their larval stages as ectoparasites on fish;
some copepod and isopod crustaceans are also parasitic on fish, as well as certain
flatworms and trematodes (Cohen 2003). One of the major effects of the parasitoid
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revolution on lake biotas was to further separate immature aquatic stages of insects
from their adult terrestrial counterparts. Additional work needs to be done to prop-
erly address the importance of parasitoids in lacustrine food webs.

The angiosperm revolution consists of the early, major diversification interval of
flowering plants, ranging during the mid Cretaceous from 125 to 90 million years
ago (Crane et al 1995). The angiosperm revolution had a major effect on terrestrial
ecosystem structure (Wing and Boucher 1998). The emergence of numerous clades
of angiosperms over a ca. 35 million-year interval resulted in a major replacement
of fern- and gymnosperm dominated floras by angiosperms in most habitats glob-
ally (Crane 1987), including aquatic settings (Wing and Boucher 1998).

The Cretaceous terrestrial revolution is directly connected to and may be a con-
sequence of the angiosperm revolution because it encompasses not only the evolu-
tionary radiation of land-dwelling organisms, but involves the replacement of ferns
and gymnosperms by angiosperms (Lloyd et al. 2008). Therefore, the comments
outlined for the angiosperm revolution are prefatory to the Cretaceous terrestrial
revolution. Together with the rapid expansion of flowering plants, the Cretaceous
terrestrial revolution includes the diversification of herbivorous and social insects
(see Chap. 13), squamates, birds, and mammals (Lloyd et al. 2008). However, these
authors (Lloyd et al. 2008) questioned the notion that dinosaur evolution was driven
directly by angiosperm diversification. From an ichnologic standpoint, the appear-
ance of trampled surfaces is a direct consequence of the expansion of dinosaur
faunas that significantly altered lake-margin landscapes.

Both the Mesozoic marine revolution and the parasitoid revolution provided a greater
efficiency in the conversion of prey biomass into consumer biomass. The angiosperm and
Cretaceous terrestrial revolutions expanded the amount of photosynthetic biomass cre-
ated by a new group of primary producers that had a major global impact. The MLR was
characterized by increased infaunalization and a major trophic shift from detritivore-
based to herbivore-based foodwebs in lacustrine and other terrestrial aquatic ecosystems.
However, the detritivore to herbivore shift occurred much earlier in terrestrial ecosystems
than in aquatic ones (Vermeij and Lindberg 2000; Miller and Labandeira 2002) — a shift
that was already noticeable during the Permian (Labandeira 2006). This is not surprising,
as in the continental realm, aquatic ecosystems always have been lagging behind terres-
trial ecosystems in other features such as species diversity, trophic relationships, and
food-web development (Vermeij and Lindberg 2000; Sinitshenkova 2002). Nevertheless,
it is unclear whether there are satisfactory explanations invoking cause-and-effect links
among any of these four major revolutions to lacustrine ecosystems.

11.7.2  Secular Changes in Global Ichnodiversity
and Bioturbation

A systematic review of the ichnologic record indicates that the MLR is expressed
not only by body-fossil data. Ichnologic evidence demonstrates that colonization of
freshwater habitats has been a protracted process (Buatois and Mdngano 1993a;
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Buatois et al. 1998a), with the MLR representing a pivotal point (Cohen 2003)
(Table 11.2). Freshwater colonization may have been delayed due to the need to
develop complex osmoregulatory systems and innovative styles of reproduction and
dispersal (Miller and Labandeira 2002).

Unlocking the evolutionary significance of the lacustrine trace fossil record
requires integration of several conceptual and methodological tools. Patterns of
change in global ichnodiversity may be misleading, and should not be analyzed in
isolation (Buatois and Mdngano 2013; see Chap. 16). Mesozoic global invertebrate
ichnodiversity in lacustrine environments does not show any significant increase
with respect to late Paleozoic levels (Buatois and Médngano 1993a; Buatois et al.
1998a), in contrast to what may have been expected by diversity curves based on
body fossils (Labandeira 2005b). Indeed, whereas global ichnodiversity levels for
fully lacustrine environments have remained more or less constant since the
Carboniferous, global ichnodiversity of lake-margin settings is actually higher in the
late Paleozoic than in the Mesozoic. However, it often has been suggested that the
Permian ichnodiversity peak reflects at least in part splitting tendencies in arthropod
trackway taxonomy (see discussion in Buatois et al. 1998a and Chap. 6). Also, the
fact that diversity trajectories for body and trace fossils are markedly dissimilar is not
unexpected. The three groups that diversified the most — aquatic insects, aquatic
macrophytes, and teleosts — are unevenly represented in the ichnologic record.
Aquatic insects are thought to have been widespread tracemakers; some fish (e.g.
cichlids) may contribute locally to sediment disturbance (Feibel 1987; Martin et al.
2010; Abbate et al. 2012); and aquatic macrophytes are represented by root struc-
tures but technically do not contribute to ichnodiversity. (No formal ichnotaxonomic
names are given to root trace fossils.) In addition, it long has been recognized that
equating ichnodiversity with biological diversity is fundamentally misleading, and
one-to-one correspondences between ichnotaxa and biotaxa is simply not possible
(Bromley 1996). This is particularly true for very simple structures (Buatois and
Madngano 2011a), which tend to be dominant in lacustrine settings.

However, an evaluation of changes of ichnodiversity that parallel changes in inten-
sity and depth of bioturbation may be illuminating. In both lake-margin and fully
lacustrine deposits, an increase in extent and depth of bioturbation long has been
recognized (Miller 1984; Buatois and Mdngano 1993a; Buatois et al. 1996, 1998a;
Miller and Labandeira 2002; Miller et al. 2002) (Fig. 11.14). In lake-margin settings,
trace fossils of the Scoyenia ichnoguild became more abundant, leading to increased
sediment mixing since the Middle Triassic (Buatois et al. 1998a). In addition, a sta-
tionary deep crayfish infauna , referred to as the Camborygma ichnoguild, was estab-
lished by the Triassic, further contributing to destruction of primary sedimentary
fabric. This is in sharp contrast with the situation of Paleozoic lake-margin deposits,
which overwhelmingly are dominated by very shallow-tier trace fossils, mostly
arthropod trackways (Buatois and Madngano 1993a; Buatois et al. 1998a; see Chap. 6).
Arthropod trackways, although locally present in Mesozoic lake-margin deposits, are
never dominant components, and they essentially disappeared from the Cenozoic
lacustrine trace-fossil record with the exception of glacial lakes, where they tend to
occur in distal facies rather than in lake-margin deposits (Uchman et al. 2009).
Seilacher (2008) underscored the importance of bioglue for trackway preservation,
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Fig. 11.14 Secular changes in bioturbation in lake-margin and fully subaqueous lacustrine
deposits. Note progressive colonization of the infaunal ecospace through time

suggesting that the scarcity of trackways in post-Paleozoic lake-margin deposits may
have resulted from the appearance of a bioturbating meiofauna, therefore precluding
the formation of coherent biofilms. In any case, it is clear that there is a negative
correlation between diversity of shallow-tier trace fossils and intensity and depth of
bioturbation. This trend also has been noted for tidal flats, which display high diver-
sity during the late Paleozoic due to a richness of shallow-tier structures and decreased
ichnodiversity during the Mesozoic—Cenozoic, with ichnofaunas characterized by
deeper-tier structures (Mdngano et al. 2002; Mdngano and Buatois 2015). This
decrease in tidal-flat global ichnodiversity is arguably a taphonomic product resulting
from increased colonization of infaunal ecospace (Mdngano et al. 2002; Buatois and
Maingano 2011a; Mdngano and Buatois 2015). A similar argument can be posited to
explain the post-Paleozoic decrease in global ichnodiversity in lake-margin deposits.
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In fully lacustrine settings, a similar increase in intensity and depth of bioturba-
tion is apparent throughout the Mesozoic, although changes seem to have been
slightly more gradual, lagging behind those in lake-margin environments. During
the Middle to Late Triassic, assemblages dominated by very shallow-tier grazing
trails, not unlike those of the late Paleozoic, were still common (Metz 1995, 1996,
2000; Melchor et al. 2003; Melchor 2004). However, the simultaneous appearance
of penetrative trace fossils is evidenced by systems of irregularly branched burrows,
most likely produced by oligochaetes or insect larvae (Voigt and Hoppe 2010). The
high density of these burrows contributed locally to disruption of the primary fabric,
generating patches of intense bioturbation in lacustrine mudstones. Branching bur-
rows occur in Lower Jurassic turbidites as well, reflecting the establishment of the
Vagorichnus ichnoguild, which represents the activity of a mobile, mid-tier, deposit-
feeding infauna (Buatois et al. 1995, 1996). These mid-tier trace fossils persisted in
Cenozoic lacustrine deposits (Uchman et al. 2007). Interestingly, although Lower
Jurassic turbidites contain many ichnotaxa (e.g. Cochlichnus, Helminthopsis) com-
mon in older deposits, these are more robust and produced infaunally, reflecting
penetration into the sediment and unlike those of the late Paleozoic. In the example
of the Vagorichnus-bearing deposits, the increase in maximum bioturbation depth is
not associated with an increase in bioturbation intensity. The decoupling of biotur-
bation depth and intensity of bioturbation results from the observation that these
burrow systems were emplaced at lithologic interfaces without causing major dis-
turbance of the primary sedimentary fabric (Buatois et al. 1995, 1996).

This pattern contrasts with Cretaceous ichnofaunas, which include pervasive
mottlings reflecting establishment of a shallow-tier deposit-feeding infauna, referred
to as the Planolites ichnoguild. The high density of these structures caused major
disruption of lacustrine sedimentary fabrics (Buatois and Mdngano 1998; Buatois
et al. 1998a). These observations may suggest that the establishment of the mixed
layer in these settings is a result of the MLR. Although further work needs to be
done to detect the exact timing of formation of the mixed layer, sparse data suggest
that this sediment zone was already incipiently developed in lake bottoms by the
Middle to Late Triassic and well established by the beginning of the Cretaceous. As
is the case of lake-margin deposits, the appearance of these active bioturbators was
detrimental for the preservation of very shallow-tier structures. In any case, biogenic
homogenization of the lacustrine bottom sediments is not a universal phenomenon,
as indicated by the dominance of very shallow-tier trace fossils, in pristinely pre-
served, sedimentary fabrics of other Lower Cretaceous lacustrine deposits (de
Gibert et al. 2000, 2016; Buatois et al. 2000a), as well as in modern glaciolacustrine
varves (Gibbard and Stuart 1974; Uchman et al. 2009). Studies in other modern
lakes, such as the Great Lakes in North America, indicate up to 10 cm of deep
reworking by insects, oligochaetes, bivalves, and amphipods (McCall and Tevesz
1982; Miller and Labandeira 2002), suggesting a well-established mixed layer.

The pattern of increased infaunalization during the MLR is empirically well sup-
ported, but the underlying causes remain more speculative. As a first approach, the
increase in sediment penetration and disruption during the MLR is connected with the
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expansion and diversification of certain groups of benthic aquatic organisms, most
likely dipterans (such as chironomids), which together with oligochaetes, are among
the key bioturbators in modern lacustrine settings (McCall and Tevesz 1982; Duck and
McManus 1984; Wootton 1988; Evenhuis 1994; Buatois et al. 1998a). At a deeper
explanatory level, one may invoke protection from environmental disturbance, escape
from predators and increased rates of buried organics as potential causes of infaunal-
ization. It long has been known that burrowing is a key strategy intended to minimize
environmental stress, such as salinity variations and sediment disturbance by currents
or waves (see Buatois and Mdngano 2011a for discussion). However, environmental
disturbance may only work as an explanation for infaunalization at a local scale. In a
situation such as the MLR, infaunalization occurred globally and no overarching dis-
turbance factor can be associated with this macroevolutionary trait, therefore preclud-
ing protection from environmental disturbance as a likely causal factor of infaunalization.
In contrast, the link between increased predation pressure and infaunalization seems to
be a more robust explanation because the former is considered a driving force in mac-
roevolution, with the infaunal ecospace serving as refugium for predation. As discussed
above, the coincidence between increased predation and infaunalization during the
MLR is consistent with a causal link. The possibility that infaunalization can be linked
to exploitation of increasing amounts of organic matter buried within the sediment can-
not be disregarded. Higher quantities of food supply may have resulted from increased
eutrophication in lacustrine systems combined with increased delivery of terrestrially
derived and aquatic organic matter resulting from macrophyte diversification. Indeed,
nutrient availability may be regarded as an overarching factor controlling lacustrine
ecospace utilization in deep time (Cohen 2003). The ultraoligotrophic conditions pre-
dominant during the early Paleozoic were most likely the key limiting factor prevent-
ing colonization of lacustrine bottoms, a situation that started to change during the late
Paleozoic, albeit with colonization limited to a narrow inhabitable zone close to the
sediment—water interface (Buatois and Mdngano 1993a; Buatois et al. 1998a). Finally,
it may be argued that invoking complex geobiologic feedbacks between bioturbation
and a wide range of abiotic to biotic factors (e.g. Mdngano and Buatois 2014) probably
is more realistic than strict causal linkage. In the case of the MLR, the timing of events
suggests that the interplay of increased predation pressures and food availability may
have been the casual drivers forces in lacustrine infaunalization.

To summarize, whereas the Paleozoic is characterized by an increase in global
ichnodiversity as a result of the progressive colonization of continental environ-
ments (Buatois and Mdngano 1993a; Buatois et al. 1998a; see Chap. 6), the ichno-
logic expression of the MLR is one of increased colonization of infaunal ecospace
(Table 11.2). This is reflected by an increase in both degree and depth of bioturba-
tion, although these increases occurred first in lake margins and subsequently in
fully lacustrine settings. In addition, the increased intensity of bioturbation lagged
behind greater penetration in burrowing depth in both settings. For further evalua-
tion of the evolutionary significance of the MLR, we turn now our attention to
trophic webs.
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11.7.3 The Establishment of Modern Lacustrine Trophic Webs

Biotic interactions are of fundamental importance to understand ecosystem struc-
ture and function in lakes. In particular, deciphering food webs, the complex net-
works among predators, herbivores, autotrophs, and detritus/deposit feeders is a
central issue in reconstructing the biotic dynamics of lakes. Experimental studies
show that lacustrine food webs reflect an interplay of both bottom—up and top—down
selective pressures. Bottom—up processes involve food/nutrient resource availability
and competition for those resources whereas top—down processes involve trophic
cascades in which predation and selective consumption are the main regulators of
community structure (Carpenter and Kitchell 1993). Various groups of benthic
invertebrates, including crustaceans, mollusks, annelids, and larval insects play
important roles in mediating energy flow, nutrient cycling, and the ingestion of
organic and inorganic detritus and fecal production (reflected to some extent by
bioturbation) that is a central component of lacustrine food webs (Charbonneau and
Hare 1998; Covich et al. 1999; Voigt and Hoppe 2010). However, from an energetic
point of view, the importance of planktonic and nektonic components of the lacus-
trine food web is probably much greater (Schweitzer et al. 2007).

Accordingly, exploring the timing of the establishment of the modern lacustrine
food web and its potential connection with the MLR may yield insights into the evo-
lutionary history of lake ecosystems. There is little known about Early Triassic lakes
or their fossils. Late Middle—early Late Triassic Paleolake Madygen, discussed ear-
lier (Voigt et al. 2006), included organisms representing at least five trophic levels
(Fig. 11.15). Phytoplankton (of which there is no fossil evidence as yet) and macro-
phytes (e.g., Ricciopsis, Neocalamites, and some lycopsids) were presumably the
major primary producers. An important external source of food must have been dead
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Fig 11.15 Ecosystem of the Madygen Formation of Kyrgyzstan. Trophic levels and their respec-
tive constituents as proposed for the Triassic Madygen lake environment. Note the absence of
macro herbivores After Voigt et al. (2006, 2016)
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organic matter (e.g., plants, insects, tetrapods) transported from the land into lakes.
Zooplankton (of which there is no fossil evidence as yet), microconchids, gastro-
pods, bivalves, conchostracans, ostracods, kazakharthrans, certain insects (schizo-
phorid beetles), and wormlike aquatic invertebrates such as oligochaetes or particular
insect larvae, based on indirect evidence from trace fossils, are interpreted as primary
consumers. These organisms in turn served as food for a variety of fishes including
actinopterygians (Palaeoniscidae, “Perleididae”), dipnoans (Asiatoceratodus), and
durophagous sharks (Lonchidion). Four large carnivorous fishes — Saurichthys,
Oshia, a currently unknown xenacanthid (suggested by Fayolia-type egg capsules),
and coelacanths — can be considered tertiary consumers. The semi-aquatic reptilio-
morph Madygenerpton may have been the apex predator of Paleolake Madygen. This
system shows clear evolutionary innovations when compared to Paleozoic lakes, as
it represents among the earliest known record of a well-developed, deep lacustrine
infauna (Voigt and Hoppe 2010), and documents a quantitatively important pattern of
macrophytic colonization of the shoreline (Moisan et al. 2012a).

Although energy-flow diagrams have not been constructed for a Late Triassic
lake, coarse-grained trophic webs have been estimated for the biota of a hypotrophic
(low primary production, high O,) Middle Jurassic lake (Fig. 11.6; Sinitshenkova
and Zherikhin 1996), and for a pseudoligotrophic (high O, but with an active herbi-
vore guild) Early Cretaceous lake (Fig. 11.10; Zherikhin et al. 1999). These data
indicate that there was a major shift in lacustrine productivity and biotal complexity
later in the Mesozoic (Table 11.1). However, it appears that these changes likely
began during the Late Triassic. The trophic structure of the Jurassic Mesoleuctra—
Mesoneta Assemblage (Sinitshenkova and Zherikhin 1996) occurred throughout the
warm temperate region of Siberia and other Eurasian and perhaps Gondwanan
Jurassic localities (Sinitshenkova 2002). In the lowlands at temperate latitudes, par-
ticularly in Eurasia, these shallow, hypotrophic (type B) lakes of the Jurassic con-
sisted of depauperate lentic and lotic faunas that allowed high O, levels to accumulate,
and with a near exclusive trophic emphasis on detritivory (Fig. 11.6). The high abun-
dance of O, throughout these hypotrophic lakes, and particularly the benthos, is
attributable to the absence of respiring organisms to sufficiently take up the O, that
was being produced by autotrophic microorganisms (Sinitshenkova and Zherikhin
1996). In addition, Sinitshenkova and Zherikhin (1996) state that these lakes were
littered with incoming ginkgoalean and czekanoskialean plant detritus that exerted a
negative control on productivity of the lake by having an antimicrobial effect on
decomposers, judging by the negative effect that modern Ginkgo biloba litter has on
modern lake productivity (Samylina 1988). Consequently, productivity in these lakes
had two, related features: there was poor development of a detritivore base, in part
likely hindered by the dominant terrestrial vegetation of the time that favored build-
ups of O,. In addition, there was absence of large, especially vascular, hydric plants
that would allow herbivores to expand herbivory, as seen in later Cretaceous lakes
(Fig. 11.10). The subsequent changeover is notable, particularly establishment of a
guild of grazing herbivorous organisms, present in pseudoligotrophic Paleolake
Baissa, a type C lake but also with high O, levels, is notable. This shift during the mid
Early Cretaceous from a detritivore-based to herbivore-driven food web, occurred in
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the switch from Type A and B to Type C to E lakes, documented in Eurasia, and is
probably the single most important event associated with the MLR. The ecologic
structure of Early Cretaceous Paleolake Baissa differs significantly from that of its
predecessor lacustrine biotas during the Jurassic (Table 11.1).

The basic trophic structure of Cretaceous Paleolake Baissa was a highly produc-
tive, pseudo-oligotrophic lake in which there were relatively low levels of dissolved
nutrients supporting an abundant and diverse standing crop of green plants, espe-
cially algae. Paleolake Baissa apparently is a lake type without a clear modern ana-
log. The algae was limited by high consumption levels, but promoted a complex,
herbivore-based food web within an ecosystem of de-emphasized detritivore food
chains (Sinitshenkova 2002). The elevated O, levels were sufficiently depressed to
allow a diverse, detritivorous insect fauna (Zherikhin et al. 1999) at greater depths
in the water column, the hypolimnion. At intermediate depths, in the mesolimnion,
but below the surface-water layer of the epilimnion, there was an herbivore com-
munity of grazing and algivorous gastropods and insects, including case-bearing
caddisflies, which were supported by abundant and diverse benthic, planktonic, and
floating algae (Sinitshenkova 2002). Paleolake Baissa was an early lake ecosystem
where aquatic invertebrate herbivory played a significant trophic role. Other coeval
deposits of similar origin are the lacustrine beds of the Yixian Formation in China
(Barrett 2000; Pan et al. 2011) and the Las Hoyas wetland deposits of Spain
(Buscalioni et al. 2016 and references therein).

In particular, the Las Hoyas fossil site, which is now interpreted as a freshwater
carbonatic, lentic wetland, has been analyzed recently from a trophic-web approach
(Buscalioni et al. 2016). According to this study, hydrophytic vegetation is domi-
nated by charophytes and aquatic angiosperms. The large mass of hydrophytic
plants allowed the presence of abundant grazers, such as ostracods, gastropods, spe-
laeogryphaceans, and aquatic insects, pointing to the importance of herbivory in this
trophic web, as is the case of Paleolake Baissa. Various worm-like organisms have
been regarded as feeding on phytoplankton and zooplankton, whereas unionid
bivalves were suspension feeders and crayfish are considered omnivorous scaven-
gers. Some large aquatic insects may have preyed on fish larvae and medium-sized
fish consumed various aquatic insects. Buscalioni et al. (2016) also emphasized the
importance of insects and fish in lake productivity, which is consistent with data
from modern wetlands.

During the Cretaceous, physical and chemical lake conditions exhibit a major
shift favoring development of certain lake types based on a variety of physiochemi-
cal conditions. These features were increased aridity, greater topography, more
unstable and variable lake levels, enhanced variability in annual temperature, greater
water-column stratification, and higher water turbidity. Chemical indicators show
elevated nutrient levels, a tendency toward alkaline over acidic water pH’s, and
more variable and lower dissolved oxygen levels. These physiochemical shifts pro-
vided an opportune environment for biotal changes, such as less allochthonous plant
detritus as input, much greater turnover rates, higher microbial activity, and consid-
erably higher algal production, but anomalously, lower macrophyte production. For
food-web development, there was a shift from detritivore to herbivore processing of
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primary productivity (via more intensive levels of herbivory), greater complexity of
food webs, and an emphasis from K-selected to r-selected evolutionary strategies.
Among benthic insects there was a trophic shift from shredders and scrapers to
filter-feeding and live-plant ingesters as the dominant feeding types (Sinitshenkova
and Zherikhin 1996).

Finally, a recent examination of the 48 million-year-old deposit of Paleolake
Messel, near Darmstadt, in central Germany, produced an exhaustive food-web
analysis that was made for 94, well-documented organisms, including amphibious
taxa, that constituted the lake portion (Fig. 11.13) of the total food web (Dunne et al.
2014). This study provides valuable information on food webs in the aftermath of
the MLR. The Messel lacustrine web was constructed by using highly-resolved,
well-documented data of feeding relationships among all taxa. The lacustrine food-
web data from Messel indicate an ecologic structure very similar to modern lake
webs, and notably, a stability of trophic relationships that were likely in place
shortly after the K-Pg extinction (Dunne et al. 2014). However, the fact that
Chlorococcales dominated over diatoms in Paleolake Messel represents a departure
from the situation in modern lakes.

11.7.4 Behavioral Convergence Between Marine
and Continental Benthic Fauna

A comparison between marine and lacustrine ichnofaunas suggests that use of
freshwater infaunal ecospace may have been less complete than in marine environ-
ments (Miller and Labandeira 2002). In addition, levels of ichnodiversity and com-
plexity of biogenic structures are significantly lower in lakes than in marine settings
(Buatois and Mdngano 1998). Evaluation of the extent and limitations of behavioral
convergence on both sides of the salinity barrier may help to understand evolution-
ary constraints on the lake colonization process.

Ichnotaxonomic problems undoubtedly prevented an adequate recognition of the
similarities and differences between the marine and continental realms. There are two
sides to this problem: uncritical use of marine ichnotaxa in continental settings and
unsupported erection of new ichnotaxa apparently exclusive to continental settings.
Whereas the former has contributed to the overemphasis of behavioral convergence,
the latter promoted its lack of appreciation. This is essentially an issue with freshwa-
ter, rather than terrestrial trace fossils. The vast majority of the latter (e.g.
Coprinisphaera, Termitichnus, Vondrichnus, Celliforma, Eatonichnus, Castrichnus,
Quirogaichnus) are exclusively found in paleosols, and their ichnotaxonomic intrica-
cies have been clarified by extremely detailed and solid work (e.g. Genise 2000, 2004;
Laza 2006).

Freshwater trace fossils tend to be characterized by relatively simple morpholo-
gies, typically including facies-crossing ichnotaxa that occur in marine environ-
ments (e.g. Gordia, Helminthoidichnites, Cochlichnus). In contrast, there are many
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ichnotaxa that are restricted to marine environments, including the typical elements
of the Nereites and Zoophycos Ichnofacies and a considerable number of those in
the Cruziana Ichnofacies (Buatois and Mdngano 2007). Arguably, the best example
of this confusion is Scolicia. This ichnogenus consists of bilobate or trilobate hori-
zontal structures displaying a complex meniscate backfill and two parallel strings,
representing the feeding and locomotion activities of irregular echinoids (Smith and
Crimes 1983; Uchman 1995; Bromley et al. 1997), which are restricted to the
marine realm. Although Scolicia has been the subject of a number of taxonomic
revisions and is well understood among ichnologists, surprisingly the name contin-
ues to be applied for continental, simple epirelief furrows that lack the complex
morphology of this ichnogenus (Turner 1978; Hasiotis 2002, 2004; Lovelace and
Lovelace 2012). Less commonly, other typical marine ichnotaxa, such as
Paleodictyon, Nereites, and Chondrites, are used for much simpler freshwater
trace fossils. Structures included in Paleodictyon from freshwater settings (e.g.
Archer and Maples 1984; Wu 1985; Pickerill 1990) are quite simple, and do not
display the regular pattern that characterizes this ichnogenus in marine turbidites.
A feeding trace referred to as Nereites in lacustrine turbidites (Hu et al. 1998)
lacks the internal, complex backfill structure of this ichnogenus, displaying only
superficial similarities with Nereites. Feeding traces doubtfully assigned to
Chondrites in lacustrine deposits (Smith et al. 1982; Kim et al. 2005) may super-
ficially resemble this ichnogenus, although the dichotomous, primary successive
branching that is diagnostic of Chondrites has never been documented in conti-
nental settings.

By contrast, some names that have been introduced for freshwater trace fossils
fail to pass ichnotaxonomic validation. The classic example is Isopodichnus, a com-
bination of short, bilobate resting traces and more continuous bilobate trails.
Although Isopodichnus was frequently used in the past for continental bilobate
trace fossils, recently its use essentially has been abandoned, following convincing
demonstration that it is a junior synonym of Rusophycus and Cruziana (Bromley
1996). More recently, however, meniscate trace fossils present in continental depos-
its, previously referred informally as “adhesive meniscate burrows” (Hasiotis 2004),
were subsequently included in a new ichnogenus, Naktodemasis (Smith JJ et al. 2008).
However, Naktodemasis clearly falls within the diagnosis of Taenidium (Krapovickas
et al. 2009; Diez-Canseco et al. 2016), an ichnogenus known from marine environ-
ments as well.

Behavioral convergence may also be evaluated by examining categories of
ichnodisparity (architectural designs) rather than ichnotaxa. Of the 58 architectural
design categories defined for invertebrate bioturbation structures (see Chap. 16),
none are exclusive to freshwater settings, six are only present in terrestrial settings
(vertical to oblique simple ornamented burrows; isolated, clustered, or intercon-
nected cells; chambers with discrete thick linings; excavated chambers with thin
linings undetachable from rock matrix; interconnected chambers and boxworks;
and Holes, pits and galleries in walls and fillings), and one is shared by terrestrial
and marginal-ichnofaunas (Simple to complex burrows with terminal chambers).
Indeed, the only ichnogenus in the latter present in both marine and continental
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environments is Macanopsis, which actually occurs in backshore coastal areas,
rather than in fully marine settings.

Freshwater ichnofaunas are represented by twenty architectural design catego-
ries, all of which also occur in marine environments: (1) simple horizontal trails
(Archaeonassa,  Circulichnis, — Cochlichnus,  Gordia, = Helminthoidichnites,
Helminthopsis, Herpystezoum, Mermia); (2) trails with undulating transverse bars
and furrows (Steinsfjordichnus); (3) bilobate trails and paired grooves (Cruziana,
Didymaulichnus, Diplopodichnus); (4) trackways and scratch marks (e.g.
Diplichnites, Hamipes, Keircalia, Lithographus, Siskemia, Stiallia, Stiaria,
Tasmanadia, Umfolozia); (5) bilaterally symmetrical short, scratched impressions
(e.g. Avolatichnium, Rotterodichnium, Tonganoxichnus); (6) bilaterally symmetri-
cal short, scratched burrows (e.g. Rusophycus); (7) passively filled horizontal bur-
rows (Palaeophycus); (8) simple actively filled (massive) horizontal burrows (e.g.
Planolites); (9) simple actively filled (meniscate) horizontal burrows (e.g. Scoyenia,
Taenidium, Beaconites); (10) simple actively filled (pelletoidal) horizontal burrows
(e.g. Edaphichnium, Sphaerapus); (11) complex actively filled (meniscate) horizon-
tal burrows (Scolecocoprus); (12) horizontal branching burrow systems
(Labyrintichnus, Paracanthorhaphe, Shanwangichnus, Vagorichnus); (13) horizon-
tal burrows with horizontal to vertical branches (Ctenopholeus, Treptichnus); (14)
burrows with horizontal spreiten (Fuersichnus, Rhizocorallium); (15) isolated and
serial almond-shaped burrows (Calceoformites, Lockeia, Ptychoplasmay); (16) verti-
cal simple burrows (e.g. Skolithos); (17) vertical U- and Y-shaped burrows (e.g.
Arenicolites, Diplocraterion); (18) vertical multiple U- and Y-shaped burrows
(Polykladichnus); (19) Simple to complex burrows with terminal chambers
(Camborygma, Castrichnus, Katbergia, Macanopsis, Platicytes); and (20) mazes
and boxworks (Thalassinoides, Spongeliomorpha, Virgaichnus)

The common feature of this list is that these freshwater biogenic structures col-
lectively represent relatively simple behaviors. Miller and Vokes (1998) categorized
trace fossils as incidental and deliberate. Incidental trace fossils are those that record
a single or dominant behavioral activity, and typically are structurally simple.
Deliberate trace fossils are those that represent restructuring of habitats, modulation
of disturbances, and control of food resources, and are typically structurally com-
plex. Freshwater trace fossils tend to fall within the first category. In some cases, the
same groups of producers were involved (Lockeia produced by both marine and
freshwater bivalves). In other cases, true behavioral convergence can be invoked.
The U-shaped burrow Arenicolites in marine environments is produced by a wide
variety of organisms, such as polychaetes, echiuran worms, crustaceans, holothuri-
ans, and enteropneusts (e.g. Bromley 1996; Mangano et al. 2002), whereas in fresh-
water settings insects and oligochaetes are involved (e.g. McCall and Tevesz 1982;
Scott et al. 2012a). Amphipods produce U-shaped burrows in both freshwater and
marine settings. Behavioral convergence on both sides of the salinity barrier seems
to have occurred only with the simplest ethologic types. The most complex archi-
tectural categories, such as burrows with helicoidal spreiten, dichotomous branch-
ing burrows, and those included within graphoglyptids, do not have a freshwater
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counterpart. This is clearly illustrated by the contrasting trace-fossils suites present
in lacustrine and marine turbidites (Buatois and Mdngano 1998).

Although the term “salinity barrier” has been commonly used to contrast the
nature of freshwater and marine ichnofaunas, the term is somewhat misleading.
Differences between ichnodiversity levels and the degree of morphologic complex-
ity of trace fossils most likely are explained by the stability-time hypothesis devel-
oped by Sanders (1968), rather than salinity per se. According to this hypothesis,
species diversity — and parallel to this, the degree of complexity of biogenic struc-
tures — is a function of environmental stability or predictability of the environment.
Because lakes are considerably shorter-lived than oceanic basins, they tend to dis-
play lower taxonomic diversity (and ichnodiversity) levels and more simple struc-
tures than marine settings (Buatois and Mdngano 1998). In addition, this line of
reasoning can be applied to understand contrasting ichnodiversity levels in different
lakes. For example, lakes from recently glaciated regions exhibit lower diversity
levels than those from the long-lived, large, and deep lakes such as Lakes Baikal
and Tanganyika (Saunders 1968).

Finally, regardless of the specifics of the MLR and lacustrine ecosystems in
general, there are at least two common themes between the macroevolutionary
aspects of marine and lacustrine settings. First, the overall trend in increased infau-
nalization discussed above also took place in marine basins, albeit with very differ-
ent timing, because infaunalization in lacustrine basins lagged behind the same
process in marine settings (Buatois and Mdngano 1993a; Buatois et al. 1998a).
Second, an analogue of the onshore — offshore pattern recognized in marine com-
munities seems to be apparent in freshwater settings as well. An onshore origina-
tion of novelties and subsequent migration or expansion into deeper water has been
proposed in marine settings based on body fossils (e.g. Jablonski et al. 1983;
Sepkoski and Miller 1985; Jablonski 2005; Sepkoski and Sheehan 1983) and trace
fossils (Crimes and Anderson 1985; Bottjer et al. 1988; Jensen and Mens 1999). In
freshwater settings, an analogue of the onshore-offshore pattern is indicated by
increases in the depth and extent of bioturbation that took place progressively
through time, expanding from fluvial and lake-margin settings to permanent sub-
aqueous lacustrine environments (Buatois et al. 1998a). These commonalities
between the continental and marine trace-fossil records suggest the existence of
recurrent macroevolutionary patterns of animal-substrate interactions through
time (see Chap. 16).

11.8 Conclusions

Our review of the trace-fossil and body-fossil histories of the continental aquatic
record suggests that the Mesozoic Lacustrine Revolution (MLR) represents a signifi-
cant evolutionary event for lacustrine ecosystems that took place in a protracted fash-
ion in time and space. Although ichnologic data demonstrate that both lake-margin
and fully lacustrine deposits were colonized prior to the MLR, benthic activity


http://dx.doi.org/10.1007/978-94-017-9600-2_16

11 The Mesozoic Lacustrine Revolution 245

essentially was restricted to a very narrow zone at the sediment—water interface, leav-
ing the overwhelming portion of infaunal ecospace empty or underutilized. This situ-
ation commenced first in lake-margin environments during the Middle to Late
Triassic, as shown by widespread presence of mid-tier meniscate trace fossils and
deep-tier crayfish burrows. Colonization of the infaunal ecospace in these deposits
resulted in more intense sediment reworking, typically precluding preservation of
superficial trace fossils such as arthropod trackways. Although incipient penetration
of the substrate in fully lacustrine settings has been recorded locally during the
Middle to Late Triassic, ichnofaunas from these settings are typically reminiscent of
those from the Paleozoic, suggesting that colonization of lacustrine bottoms was
delayed in comparison with lake margins. Deeper penetration into the substrate
became more common during the Early Jurassic, but the intensity of bioturbation
remained low. The lacustrine mixed layer seems to have become well-established by
the Early Cretaceous, as indicated by intense bioturbation mottlings.

The MLR also is recorded by examination of the record of body-fossils, particularly
arthropods and angiosperms, and by trophic interactions at both the interorganismic
and entire-lake foodweb levels. From an ecosystem perspective, prior to the MLR,
lacustrine primary production by microorganisms was low and the depressed level of
invertebrate consumption was overwhelmingly detritivorous. After the MLR, lakes are
characterized by the appearance of macrophytes and a significantly more robust herbi-
vore guild of microorganisms and increasingly larger arthropods and vertebrates, espe-
cially grazers on plants other than microscopic and small algae. This transition occurred
during elevated lake oxygen levels, attributable to the insufficiency of detritivorous
microorganisms before the MLR and detritivorous plus dominant herbivorous organ-
isms after the MLR to use all available O, for respiration. Given this context, the MLR
actually represents the incremental trophic shift from a detritivore-based to an herbi-
vore-based lacustrine biota and concomitant food-web adjustments. But this change
also represents a shift toward infaunalization that results from predatory escalation,
also seen in other parts of the lake environment postdating the MLR. Perhaps related to
predatory escalation is the distinct evolution of insect species in which their immature
aquatic stages become increasingly more environmentally decoupled from their con-
specific, exclusively terrestrially occurring adult stages. Based on the arthropod body-
fossil record, this switch took place during the Late Jurassic to Early Cretaceous, but
may have had a variable spatiotemporal occurrence in other mid-Mesozoic continents.
Information from both trace fossils and body fossils suggests that this shift to more
mixed trophic strategy consisting of detritivores, herbivores, predators, and other mac-
roguilds that form animal communities has persisted to the present since initiation of
the MLR, as demonstrated by the Paleolake Messel food web.
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Chapter 12
The End-Cretaceous Extinction
and Ecosystem Change

Conrad C. Labandeira, Francisco J. Rodriguez-Tovar, and Alfred Uchman

12.1 Introduction

One of the most phenomenal events in the history of Phanerozoic life was the end-
Cretaceous (K-Pg) mass extinction, occurring 66.04 Ma ago (Vandenberghe et al.
2012; Husson et al. 2014 for recent calibrations), an event that has been important
for the subsequent evolutionary and ecological history of the continental and
marine biota. Interest in this event was reignited during the early 1980s, when evi-
dence for extraterrestrial causation was proposed based on several lines of evidence
(Alvarez et al. 1980, 1984), later identified with an impact site (Hildebrand et al.
1991). Currently there is near consensus that the K-Pg event was caused by a bolide
hitting the carbonate platform in Yucatan, Mexico (but see Schoene et al. 2014),
which resulted in a significantly altered global environment, including altered sedi-
mentation patterns (D’Hondt 2005), wildfires (Wolbach et al. 1985), and elevated
atmospheric temperatures, and pCO, and pO, concentrations (Gale et al. 2001;
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Beerling et al. 2002; Schulte et al. 2010). However, the most consequential, long-
lasting effects were on organisms, not only immediately after the event, but also
throughout the intervening time between the event and today.

In the continental realm, the most obvious group that became extinct were major
lineages of non-avian dinosaurs (Sereno 1999), which suffered a sudden fate
(Sheehan et al. 2000); the previously declining pterosaurs (Penny and Phillips
2004); and several lineages of birds (Hou et al. 1996, but see Cooper and Penney
1997) that underwent major diversity declines (Gelfo and Pascual 2001). For birds,
nine lineages survived that became the progenitors to the 42 extant orders of birds
(Jarvis et al. 2014). There was extinction of at least one and probably several major
clades of mammals (MacLeod 2005), although 39 lineages continued across the
boundary, giving rise to the 25 orders of mammals of today (Bininda-Emonds et al.
2007). The similar style of survivorship of bird versus mammal lineages across the
K-Pg boundary is noteworthy. Both major vertebrate lineages seem to support a
slow-fuse model (Bininda-Emonds et al. 2007; Jarvis et al. 2014), in which over-
whelmingly fewer, nondiverse lineages were present deep in the Cretaceous or ear-
lier. These comparatively few lineages were “triggered” soon after the end-Cretaceous
ecological crisis to provide a stunningly rapid cascade of evolutionary diversifica-
tion within 10-15 Ma into the numerous lineages of birds and mammals that pres-
ently occupy virtually every significant continental and marine habitat on the planet.

Other organisms in terrestrial and freshwater habitats suffered considerable
losses, including land plants (Johnson 2002; Wilf and Johnson 2004; McElwain and
Punyasena 2007), with important regional differences (Askin and Jacobson 1996);
bivalves (Hartman 1998; Hartman et al. 2009); crocodyliforms (Brochu 2004); and
many avian dinosaurs (Sereno 1999; Retallack 2004). Groups that were minimally
or not affected were amphibians (Archibald and Bryant 1990); and non-archosaurian
reptiles such as turtles, lizards, rhynchocephalians, amphisbaenians, and
choristoderes (MacLeod et al. 1997; Novacek 1999). Major insect lineages were
unaffected at the family level (Labandeira and Sepkoski 1993), although ecological
relationships with plants were significantly reduced (Labandeira et al. 2002a, b;
Wilf et al. 2006; Donovan et al. 2014). Spiders, predators overwhelmingly
consuming insects, also were not reduced in family-level diversity (Penney et al.
2003), and appear to track the family-level diversity of insects before and after the
event (Penney 2003).

For the marine realm, as in the continental realm, some clades experienced
significant or outright extinctions, whereas others did not (D’Hondt 2005). The
principle clades that suffered major extinctions at the K-Pg boundary were diatoms
(MacLeod 1998); calcareous nannoplankton (Bown 2005); other phytoplankton
(MacLeod et al. 1997); benthic and planktic foraminifera (Kuhnt and Collins 1996;
Arenillas et al. 2000; Molina 2015); scleractinian corals, particularly colonial taxa
inhabiting warmer waters (Rosen and Turnsek 1989); echinoderms (Jeffrey 2001);
mollusks such as belemnoids, ammonites (Marshall and Ward 1996) and inoceramid
and rudistid clams (Ward et al. 1991; Raup and Jablonski 1993; Lockwood 2003).
Vertebrate extinctions included many lineages of teleost fish (Friedman 2009,
2010), mosasaurs (MacLeod et al. 1997), and plesiosaurs (O’Keefe 2001).
Apparently, there were minimal levels of extinctions, if any, of radiolaria (MacLeod
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et al. 1997), dinoflagellates (Gedl 2004); probably ostracods (Brouwers and De
Deckker 1993); and brachiopods, which experienced a diversification event during
the early Paleocene (MacLeod et al. 1997).

It is evident that these data are overwhelmingly based on identifications and tal-
lies of body fossils, inventoried as either specimens or taxa, which represent diversi-
ties or abundances through time. A neglected but crucial aspect toward understanding
the K-Pg event and its recovery phase is the collection, analysis, and interpretation
of ecological data. When appropriately linked to various types of diversity data and
to assessments of phylogeny based on paleobiological occurrence data and molecu-
lar phylogenies, ecological data can yield insights into mechanisms and patterns
that may not be evident solely from a focus on taxonomic affiliations or occurrence
tallies in particular habitats. In this contribution, we attempt to fill this void by pro-
viding two approaches toward understanding the ecology of the K-Pg extinction in
both the continental and marine realms. For the continental realm, we will employ
the system of analyzing damage types (DTs), that record distinctive plant—insect
interactions throughout the K-Pg event to the late Paleogene (Labandeira et al.
2007). This approach has resulted in a fuller understanding of the patterns and
processes during this tumultuous interval in terrestrial earth history. From a differ-
ent branch of paleoichnology, we employ sedimentologically based tools for under-
standing marine organism—sediment relationships and behavioral correlates,
mainly based on detailed ichnofabrics from studies of polished sections and exam-
ined burrow fills, including isotopic composition studies, which yields a better
understanding of organism response to changes in the marine realm.

12.2 Evolutionary and Ecological Dynamics of the K-Pg
Event and Its Recovery

There are two basic aspects to the generation of new lineages and their associated
ecologies during a major mass-extinction crisis. The initial phase involves lineage-
sorting processes inherent in the extinction, whereas the subsequent phase molds
the selected lineages within the context of newly created ecospace.

12.2.1 Selectivity and Sorting During the Mass Extinction

The effect of the K-Pg event on the evolutionary trajectory of life has been exam-
ined extensively, particularly for marine mollusks (Jablonski 1989, 2001, 2005).
The K-Pg mass extinction resulted in dramatic decreases in standing diversity
(Jablonski 2005), although there were other significant patterns that have been
recorded related to lineage selectivity and its consequences on affected taxa
(Jablonski and Raup 1995). One of the more important conclusions of these studies
has been the central role that mass extinction selectivity plays in favoring certain
taxa-specific attributes over others (Jablonski 2001). The targeting of attributes
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during mass extinctions differs substantively from times of ambient, background
extinction rates (Kitchell et al. 1986). In addition to providing dramatic decreases in
standing diversity, another pattern resulted in more widely distributed taxa becom-
ing considerably extinction averse compared to taxa with much narrower biogeo-
graphic ranges (Jablonski 2005). This extinction differential tends to favor
taxonomically higher-ranked taxa for survival over their lower-ranked subordinates.
Consequently, there was extinction of species with narrower geographic ranges,
many of which were members of more broadly distributed (and temporally persis-
tent) genera.

Perhaps the most important factor for selectivity during mass extinction was the
relationship between life habits and feeding biology (Jablonski 2005). Most buffered
of all were deposit feeders that occurred in the benthos or on sediment substrates
that subsisted on detritus or dead organisms (Arthur and Zachos 1987; Twichett
2006). Deposit-feeding clades suffered much lower extinction levels than those
groups occurring in the water column or having more direct trophic links to
photosynthetic organisms (Sheehan and Hansen 1986). Consequently, in the marine
realm, benthic deposit feeders and scavengers were favored over suspension and
filter feeders existing in the water column that were embedded in food webs
connected to photosynthetic organisms. For the continental realm, small
insectivorous animals and aquatic invertebrates in streams were favored over most
large-bodied vertebrates such as dinosaurs (Sheehan and Hansen 1986). Nevertheless,
Levinton (1996) suggested that deposit feeders should have suffered extinction
levels comparable to organisms more directly linked to photosynthetic organisms.
This alternative pattern would be attributable to all dead organic material ultimately
originating from more inclusive food chains of primary producers and their
herbivores, although the effects would have been separated by a temporal lag of 3—-6
months after impact. Contrary evidence is the presence of a local detritivorous
earthworm fauna within several thousand years of the K-Pg event that consumed
organic material preserved regionally as lignites (Chin et al. 2013). Another life-
history source of immunity from extinction was marine organisms that possessed
planktic life stages, versus those that do not (Kitchell et al. 1986). Those organisms
with planktic life stages, such as many crustaceans with planktotrophic larvae,
preferentially survived the K-Pg extinction. A considerably longer effect, resulting
from a decrease of organic flux to the sea, were the negative consequences on
calcium carbonate production by marine plankton, which took a few million years
for the open-ocean ecosystem to be restored to full operational capacity, well into
the mid Paleocene (D’Hondt 2005).

12.2.2 Establishing New Lineages and Ecologies
During the Recovery

The recovery phase also had interesting evolutionary and ecological dynamics that
were separate from the much shorter, preceding extinction phase. One secondary
effect, based on a combination of theoretical models (Erwin 2001) and observations
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(Jablonski 2001), was the probable lack of an association between the severity of
the extinction and the length of recovery. In part, this would have been attributable
to the collapse of ecosystems and thus the removal of ecospace that would disallow
a rapid, orderly, logistic recolonization of pre-existing habitats. The destruction of
ecospace was rebuilt, figuratively and trophically, from the ground up, and the
idiosyncratic nature of lineage survivorship suggests that the recovery pattern was
not attributable to global trophic principles, but rather represent a summation of
lineages resulting from disparate patterns in time and space (McKenna and Farrell
2006), with no single, unifying ecological explanation (Jablonski 2005).

The vagaries of organismic occupation of ecospace during the recovery phase
also indicate that origination rates of major lineages are reset at mass extinction
episodes, rather than at intervals of background extinction (Jablonski 1989). It is
during the recovery phase that entirely novel ecologies are created for surviving
lineages (Solé et al. 2002); indicating that mass extinction and subsequent recoveries
ultimately are the key intervals for establishing major evolutionary trajectories
(Erwin 1998; Krug and Jablonski 2012). Indeed, the effects of the K-Pg event are
reflected in current disruptions in the biogeographical distributions and ages of
marine bivalve genera (Krug et al. 2009), and in the times of origin of particular
extant plant—insect interactions (Labandeira 2005). These patterns indicate an
increase in origination rates that followed the K-Pg mass extinctions and eventually
reached a peak about 10 my after the event (Kirchner and Weil 2000). Effects of
these origination-rate increases persist to the present day. An associated, but
opposite, phenomenon is the survival of some lineages that survived the mass
extinction event in radically decreased diversity, only to be finally extirpated early
within a short-lived recovery (Erwin 2001). Such clades are termed “dead clade
walking” (Jablonski 2002), and their early, post-event demise probably involved
mismatches among biotic interactions.

12.3 The Continental Perspective of Ecological Disruption
and Its Consequences

In this section, the effects of the K-Pg crisis on aquatic and terrestrial communities
will be discussed, although the focus will be insects and their associations with
plants from floras spanning the K-Pg boundary in the Western Interior of North
America (Labandeira et al. 2002a, b; Wilf et al. 2000, 2006; Winkler et al. 2010;
Labandeira and Currano 2013; Donovan et al. 2014). The analytical techniques used
in these studies were developed during the late 1990’s (Wilf and Labandeira 1999;
Wilf et al. 2001; Labandeira et al. 2007), and have expanded in scope to allow
examination of plant—insect herbivore dynamics immediately preceding, during,
and following the Paleocene—Eocene Thermal Maximum (PETM) floras that occur
in the same or nearby basins (Wilf and Labandeira 1999; Wilf et al. 2001; Currano
et al. 2008, 2010). Examination of plant-host and insect herbivore dynamics of the
PETM studies can be seen as an extension of the K-Pg work, the latter detailed
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below, particularly as it documents the final stage of recovery from the major effects
of the end-Cretaceous ecological crisis.

Parenthetically, it should be noted that study of plant—insect interactions in the
fossil record never has been a major theme in paleoichnology. Mainstream
paleoichnology has been principally driven by varied studies of the organismic
alteration of sediment substrates in the fossil record from a wide variety of
continental and marine depositional environments (Bromley et al. 2007). By
contrast, much of the recent study of plant—insect interactions, principally herbivory,
has targeted well-preserved, angiosperm-dominated fossil floras from several well-
studied areas worldwide, including western North America (Wilf et al. 2001, 2006;
Labandeira et al. 2002a), western Europe (Wappler et al. 2009, 2012), east Africa
(Currano et al. 2011), and southern Patagonia and northern Colombia in South
America (Wilf et al. 2005; Wing et al. 2009). The two approaches —sedimentologi-
cal and plant—insect associational have allowed for differing collection proce-
dures, statistical protocols, interpretations, research-driven questions, and reference
to overarching theory.

12.3.1 Agquatic Communities

The fate of invertebrates in freshwater aquatic communities during the K-Pg event
is minimally understood, but is best demonstrated for bivalves, which experienced
a major contraction of taxa that survived into the Paleocene (Hartman 1998). Major
insect lineages such as mayflies, dragonflies, stoneflies, caddisflies, nematocerous
flies, and beetles, which have actively feeding aquatic immatures, did not suffer
extinction at the family level above that of the background level (Labandeira 2005),
and likely were preferentially buffered against extinction (Sheehan and Hansen
1986). There is virtually no data on survivorship of major freshwater malacostracan
lineages across the boundary.

12.3.2 Terrestrial Communities

Terrestrial communities house the bulk of biodiversity in the modern world, and
undoubtedly did so during the latest Cretaceous. Most of this biomass occurs as
land plants and arthropods, the two hyperdiverse groups that provide macroscopic
structure to terrestrial ecosystems. Because of the ecological importance of these
two groups and the absence of body-fossil insects near the K-Pg boundary (e.g.,
Larsson 1975; Pike 1994), a plant—insect associational analysis was conducted
across the boundary in the Williston Basin of North Dakota, where abundant,
diverse, and well-preserved floras are widespread (Johnson 2002; Labandeira et al.
2002a, b; Wilf et al. 2006; Donovan et al. 2014). When these ecological studies of
K-Pg plant—insect interactions (Labandeira et al. 2002a, b) were linked to those of
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the PETM (Wilf et al. 2006; Currano et al. 2008, 2010; Donovan et al. 2014), the
results (discussed below) parallel those found in the evolutionary studies of birds
(Jarvis et al. 2014) and mammals (Bininda-Emonds et al. 2007), also occurring
within 10 to 15 my after the boundary. Additionally, examinations of K-Pg to PETM
floras have been extended to western Europe (Wappler et al. 2009, 2012; Dunne
etal. 2012), and the results are suggestive of the pattern in North America. However,
a valid test of Williston Basin data in Europe would require a regional, continuous
section of well-preserved floras traversing the K-Pg boundary, currently absent, for
further progress toward understanding the broader biogeographical extent of this
global event.

12.3.2.1 Plants

The change in plant diversity across the K-Pg boundary was once thought to have
been gradual (Hickey 1981) or stepwise (Frederiksen 1989), based on megafloral
and palynological data, respectively. However, subsequent evidence from more
intensely collected sections from the Williston Basin have clearly established a
catastrophic extinction pattern (Johnson 2002), equivalent to a 57 % maximum
estimate for extinction based on megafloral species-level data (Wilf and Johnson
2004), and a 30% minimum estimate based on palynological genus-level data
(Nichols 2002). These more recent data indicate a major turnover from more highly
diverse and warm-adapted late Maastrichtian floras occupying a variety of habitats,
to depauperate, cool-adapted early Paleocene floras that largely occupied mire
habitats (Johnson 2002).

12.3.2.2 Insect Herbivory

With the possible exception of the Denver Basin to the south, the Williston Basin
floral sequence represents the best combination of conditions for an analysis of
insect herbivore patterns on floras straddling the K-Pg boundary. These floras are
stratigraphically linked to a composite section of 183 m of strata that represent 2.2
my, of which the lower 1.4 my interval is of latest Cretaceous age and the upper 0.8
my interval is of earliest Paleocene age (Fig. 12.1). Within this system of floras,
13,441 specimens representing 380 plant-organ morphotypes were examined from
143 localities derived from 106 discrete stratigraphic levels (Fig. 12.1). Typical of
most floras for this time interval, the Williston Basin floras are dominated by dicoty-
ledonous angiosperms (86.3 %), but also include monocotyledonous angiosperms,
conifers, cycads, ginkgos, ferns, a horsetail, and bryophytes (Fig. 12.2). The total
assemblage represents a variety of fluvially dominated environments, including
abandoned channels, sand bars, overbank deposits, ponds, and swamps, which
formed a mosaic of distinctive habitats. Additional details are provided in the two
reports from this study (Labandeira et al. 2002a, b).
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Fig. 12.1 Stratigraphic and sampling data for the 51 insect-mediated damage types from a
183 meter composite section straddling the K-Pg boundary (orange bar), from the Williston Basin
of southwestern North Dakota. The estimated time duration for this interval is 2.2 million years
(my) before present, of which 0.8 my are assigned to the postboundary interval and 1.4 my are
allocated to the pre-boundary interval. The Cretaceous strata are within the Hell Creek and Fort
Union formations, and the Paleocene strata are entirely within the Fort Union Formation. Placement
of the zero datum is at the K-Pg boundary, not the Hell Creek/Fort Union formational contact,
because the contact is diachronous with respect to the K-Pg boundary timeline. Depicted are the
raw presence/absence data for damage types, categorized by functional feeding group and DT
subgroup at bottom, and representing 106 discrete horizons. Eight damage types have single
stratigraphic occurrences (dots); the ranges of those with multiple stratigraphic occurrences are
shown as vertical shaded bars, categorized by host specificity from the color scheme at upper left
(see text). Of the 14 specialized damage types with multiple stratigraphic occurrences that
disappear at or below the K-Pg boundary, six (42.9 %) reappear during the latest Paleocene to
middle Eocene of Wyoming and Utah. All associations are extant today. Four confidence intervals
that exceed our sampling range are shown without end bars. Total specimen frequencies are given
at right, including all plant organs; note logarithmic scale. The gray horizontal lines in the main
figure and corresponding gray squares at right indicate the 14 horizons with more than 200
specimens of identified dicot leaves; meter levels for these floras are: —75.0, —65.0, —56.8, —47.8,
-36.9, =314, -15.0, -3.6, +0.2, +1.3, +30.9, +42.4, +50.0. Abbreviations: mar margin feeding,
skeleton. skeletonization, spl. surface feeding, p. piercing-and-sucking, o. oviposition. Limitations
on graphical presentation cause the flora at +0.2 m, which are Paleocene, to appear within the
orange line representing the K-Pg boundary. From Labandeira et al. (2002b), reprinted with
permission by the National Academy of Sciences
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Fig. 12.2 A spectrum of generalized (¢, g, i, j) and specialized (a, b, d, e, f, h, i, k) plant—insect
associations from the Williston Basin of southwestern North Dakota. Associations range from the
earliest Paleocene at upper left, 14.4 m above the K/T boundary, and continue to the older
associations of the latest Cretaceous at lower right, 85.5 m below the boundary. All material is from
the Denver Museum of Nature and Science (DMNH) or the Yale Peabody Museum (YPM).
Following each plant host are, respectively, morphotype number (indicated by the prefixes HC or
FU), specimen number, NMNH locality number (loc.), and + meter distances from the K/T
boundary. Damage types are indicated by the prefix DT. Scale bars: solid, 1 cm; backslashed,
0.1 cm. (a) Two linear mines with oviposition sites (arrows), following secondary and then primary
venation, terminating in a large pupation chamber (DT59) on the dicot Paranymphaea crassifolia
(FU1), DMNH-20055, loc. 563, +14.4 m. (b) Single gall (DT33) on primary vein of Cercidiphyllum
genetrix (Cercidiphyllaceae, FUS), DMNH-20042, loc. 562, +8.4 m. (c¢) Free feeding (DT26) on
Platanus raynoldsi (Platanaceae, FU16), DMNH-20035, loc. 2217, +1.3 m. (d) Skeletonization
(DT51) on a probable lauralean leaf (HC32), DMNH-19984, loc. 2097, —31.4 m. (e) Multiple galls
(DT33) on Trochodendroides nebrascensis (Cercidiphyllaceae, HC103), DMNH-19976, loc.
1489, —33.7 m. (f) Initial phase of a serpentine mine (DT45) on Marmarthia pearsoni (Lauraceae,
HC162), DMNH-7228, loc. 2087, —=36.9 m. (g) Cuspate margin feeding (DT12, arrow) on
Metasequoia sp. (Cupressaceae, HC35), DMNH-13108, loc. 567, =56.8 m. (h) Serpentine leaf
mine (DT43) assigned to the Nepticulidae (Lepidoptera) on unidentified Rosaceae (HC80), YPM-
6367a, loc. 567, —56.8 m. (i) Hole feeding pattern (DT57) on an unknown genus of Urticales
(HCS81), DMNH-19539, loc. 2203, —=56.8 m. (j) General skeletonization (DT16) on Erlingdorfia
montana (Platanaceae, HC57), DMNH-11013, loc. 571, —-61.7 m. (k) Large scale-insect
impressions (DT53) centered on primary veins of E. montana, DMNH-18829b, loc. 571, =61.7 m.
(D) Slot hole feeding (DTO08) on an unidentified genus of Platanaceae (HC109), DMNH-18658, loc.
434, —88.5 m. See Labandeira et al. (2007) for descriptions of damage types. From Labandeira
et al. (2002b), reprinted with permission by the National Academy of Sciences
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Of the examined specimens, 9292 (69 %) were late Maastrichtian and 4149
(31 %) were early Paleocene in age. This breakdown approximately was associated
with the Hell Creek Formation, and the Fort Union Formation, respectively, but
since the Hell Creek—Fort Union formational contact is diachronous with respect to
the K-Pg boundary (the zero datum of Fig. 12.1), some earliest Paleocene floras
were within the uppermost Hell Creek Formation. Sampling did not favor either the
Paleocene or the Maastrichtian portions of this study, as specimen coverage was
approximately equal for any 5-m interval above and below the boundary. In addition,
confidence intervals were placed on the tops of ranges for each damage type (or DT)
to correct for sampling intensity and to provide estimates for the likely time of
extinction for each relevant DT (Labandeira et al. 2002a).

The presence—absence matrix represented 51 DTs from eight functional feeding
groups (FFGs): hole feeding, margin feeding, skeletonization, surface feeding, gall-
ing, leaf mining, piercing-and-sucking, and oviposition (Figs. 12.1, 12.2, and 12.3).
Each DT was categorized as to whether it was a generalized, intermediate, or spe-
cialized interaction (Figs. 12.1 and 12.2), but with particular attention to document-
ing unique host-specialist associations (Fig. 12.3), based on a variety of criteria.
Three major patterns resulted from an analysis of the plant-insect interactions data-
set. First, generalized DTs are better represented than intermediate and specialized
DTs in the Paleocene side, with all generalized DT’s crossing the boundary whereas
10 of 16 of the intermediate and 6 of 20 of the specialized cross the boundary.
Second, of the 14 Maastrichtian DTs that are represented by large sample size, 10
have a last appearance just below the boundary, indicating extirpation at or just
below the K-Pg boundary, a finding buttressed by confidence intervals. Third, after
the decrease of the early Paleocene, herbivory increases in both frequency and rich-
ness during the later Paleocene. Most of this herbivory is generalized, as the more
specialized DTs remain consistently low in frequency and richness. The frequency
and richness of insect damage was analyzed throughout the section, and confined to
the 14 discrete horizons (Fig. 12.1) and to the most abundant, identifiably dicot
leaves to avoid biases in DT sampling on less abundant and poorly preserved non-
dicot leaves. These analyses show a decrease in herbivory at the boundary, with the
most significant decrease attributed to the intermediate and specialized DTs (data

»

Fig. 12.3 (continued) (i) Detail of mine in h, showing median frass trail at upper left. (j) Three
aborted leaf mines, two of which have coiled initial phase (loc. 900, DMNH-7325). (k) Complete
leaf mine with extensive terminal chamber illustrating trail (loc. 900, DMNH-7264). (1)
Enlargement of terminal mine chamber in k, showing path of undulatory frass trail, indicated by
white arrows. (m) Two aborted leaf mines with coiled initial phases (loc. 428, DMNH-7498). (n)
Enlargement of leaf mine at upper left in m, showing coiled (darkened) initial phase. (0)
Enlargement of leaf mine at lower right in m, revealing coiled leaf mine at lower right in k, indi-
cating coiled (darkened) initial phase, and subsequent curvilinear phase along median primary and
branching secondary veins (arrow). (p) Two adjacent leaf mines aborted early in development (loc.
900, DMNH-7313). Abbreviations: DMNH Denver Museum of Nature and Science, YPM Yale
Peabody Museum. Scale bars: 1.0 cm, solid; 0.1 cm, striped. From Labandeira et al. (2002a),
reprinted with permission by the Geological Society of America
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Fig. 12.3 Host-specific association between Marmarthia pearsoni (Laurales) and a gracillariid
leaf miner (Lepidoptera), from the uppermost Hell Creek Formation. This highly stereotyped dam-
age type, DT45, represents a specialized serpentine miner typically with an initial coiled phase, a
subsequent curvilinear trajectory, and modestly expanded terminal chamber. It occurs exclusively
on plant host HC162 at YPM localities 900 and 428. (a) Near-complete leaf mine following the
primary venation (loc. 900, DMNH-7313). (b) Enlargement of a, with dark colored, medial frass
trail detectable at upper left corner, along a primary vein. (¢) Complete leaf mine with terminal
chamber at upper right (loc. 900, DMNH-7263). (d) Enlargement of latter serpentine phase and
terminal chamber of leaf mine in c. (e) Close-up of terminal chamber displaying dark frass trail
(top arrow) and chamber edge (bottom arrow). (f) Fragment of leaf with a portion of leaf mine; note
coiled early phase (loc. 900, DMNH-7199). (g) Close-up of mine in f. (h) Complete leaf mine bounded
by median and lateral primary veins of plant host, typical for this species (loc. 900, DMNH-20023).
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Fig. 12.4 Plant and insect-feeding diversity for bulk floras, standardized to sample sizes of 400
leaf specimens each. Orange-yellow data points are Cretaceous floras; blue data points are
Paleocene floras. Ma million years ago. Plant richness (a) was standardized by means of rarefaction,
with error bars indicating 95 % confidence intervals. Insect damage was standardized by means of
random resampling without replacement, with =16 error bars around the mean of 5000 iterations,
both for (b) all damage morphotypes and (¢) mine morphotypes only. There is a strong negative
correlation of plant and insect damage richness for Mexican Hat (Mex. Hat) and Castle Rock
(C. Rock). A separate analysis (not shown in the figure) excluded most external feeding and other
generalized damage morphotypes, yielding results nearly identical to (b). Abbreviations: K-T
Cretaceous—Paleogene boundary, P-E Paleocene—Eocene boundary. Reprinted from Wilf et al.
(2006), with permission from the American Association for the Advancement of Science

not shown; Labandeira et al. 2002a, Fig. 3). The sustained decrease of herbivory
above the boundary, and the failure of intermediate and specialized DTs to recover
do record a major event affecting insect herbivores, documented in particular for
leaf-mining taxa (Donovan et al. 2014).

These results were tested in a subsequent study (Wilf et al. 2006), in which insect
feeding damage from 14,999 dicot leaves were examined from 14 latest Cretaceous,
Paleocene, and early Eocene sites to understand post-extinction patterns of herbiv-
ory, including generalized and specialized forms of interactions (Fig. 12.4).
Expectedly, most of the Paleocene sites displayed low richness of plants and insect
damage, with two unexpected exceptions in the early Paleocene, both within 1.7 my
of the end-Cretaceous extinction. One site from the Denver Basin, Castle Rock,
showed exceptionally high plant diversity but virtually no specialized feeding;
another site from the Williston Basin, Mexican Hat, conversely exhibited a typically
depauperate Paleocene flora but high levels of specialized herbivory. These dispa-
rate results indicate that, for about 2 my after the end-Cretaceous extinction, local
community structure of plants and insect herbivores remained significantly unbal-
anced, and did not regain latest Cretaceous levels of herbivory and specialization
until much later, during the late Paleocene.
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12.3.2.3 Implications for Macroevolutionary Patterns of Specialist
Insect Herbivores

The above studies are based on assessments of insect herbivore functional feeding
groups and their damage types in floras across the K-Pg boundary, through the
Paleocene, and well into the early Eocene. These data may be important for detect-
ing the immediate and longer-term ecological processes of plant—insect interactions
after a major environmental perturbation. Given the long lag times toward increased
levels of herbivory and host-plant specialization following the K-Pg event, it would
appear to support the gradual rather than instantaneous colonization of plant hosts
after a major ecological crisis. This pattern also is detected from examination of
specialized leaf-mining lineages and their delayed colonization of available plant
hosts (Lopez-Vaamonde et al. 2006; Donovan et al. 2014), consistent with the long
lead-times to diversification predicted by the resource abundance—dependent diver-
sification hypothesis (Nyman et al. 2012). The post-event fossil pattern also is
inconsistent with geologically rapid, synchronous patterns of insects that co-radiate
onto their host plants, documented for certain chrysomelid beetles and their bursera-
ceous hosts (Becerra 2003). Alternatively, these data could address the issue of
quick, local adaptation to allopatric populations of novel host plants from a broadly
distributed specialist species (Rosenzweig 1995; Zvereva et al. 2010).

If host specialists were disproportionately extirpated at the K-Pg mass extinction
event, then specialization of insect herbivores could be an evolutionary dead end. A
tendency toward lineage phylogenetic stasis has been documented for recent clades
of leaf miners (Connor and Taverner 1997; Lopez-Vaamonde et al. 2003), those
gallers with more limited host ranges (Hardy and Cook 2010), and some
Dendroctonus bark beetles (Kelley and Farrell 1998). This especially would be true
if the lineages of host-plant specialists are clustered in particular clades vulnerable
to a mass extinction (Roy et al. 2009). However, there are good reasons to indicate
that some specialized relationships are not evolutionary cul-de-sacs (Colles et al.
2009); counterexamples include doniciine beetles on aquatic reeds (Koélsch and
Pedersen 2008) and perhaps other Dendroctonus bark beetle taxa (Kelley and Farrell
1998). While host-plant specialization may lead to extinction at times of major eco-
system crises, such as the K-Pg, during other, much more prolonged intervals of
background extinction, specialist and generalist herbivore lineages may experience
stasis and have bidirectional acquisition of host-plant feeding preferences
(DiMichele et al. 2004; Forister et al. 2012; Thompson 2013).

12.3.2.4 Insect Pollination

The data and methods of assessing patterns of insect pollination across the K-Pg
boundary are considerably more difficult than that those that evaluate insect her-
bivory. The palynological record, however, can reveal broad trends in the frequency
of zoophilous (insect vectored) versus anemophilous (wind dispersed) pollen.
Several examinations have documented a significant reduction of zoophilous pollen
at the K-Pg boundary (Frederiksen 1989; Sweet and Braman 2001), indicating a
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disproportionate extinction of pollen vectored by insects at the boundary. In one
study documenting a lineage of dominantly Late Cretaceous zoophilous pollen
across the K-Pg boundary, a sole anemophilous palynospecies evidently survived
the event in a local section (Mclver et al. 1991). Other lines of evidence also indi-
cate the emergence of pollinators immediately after the K-Pg event. One is a fortu-
itous occurrence of an entrapped stingless bee associated in a flower of its orchid
host found in Dominican amber (Ramirez et al. 2007). A molecularly based recon-
struction of orchid phylogeny based mostly on this fossil indicated that the time of
origin of the insect-pollinated orchid lineage was immediately after the K-Pg event.
This result parallels the same time of origin, using a similar method of phylogenetic
reconstruction, for nymphalid butterflies (Wahlberg et al. 2009), another major pol-
linator clade likely originating in the wake of the K-Pg crisis.

12.3.2.5 Blood Feeding on Dinosaur Hosts

Some associations are known from the Late Cretaceous involve live and dead dino-
saurs. Perhaps the most intriguing association involves an example of blood feeding
between Culicoides, the most diverse genus of extant blood-feeding of the mos-
quito-like dipteran family Ceratopogonidae (biting midges, no-see-ums, punkies)
and its inferred live host, the dinosaur Corythosaurus. Female ceratopogonids cur-
rently are major vectors of arboviruses, parasitic protozoa, and filarial worms that
cause diseases such as African Horsesickness, Bovine Ephemeral Fever, Bluetongue
Virus, and occasional filariasis, which are associated with acute dermatitis and skin
lesions (Lehane 1991). (Male ceratopogonids are nectar feeders and often are pol-
linators.) Early appearing ceratopogonid lineages occur in Early Cretaceous ambers
and include taxa whose modern representatives, such as Lepfoconops and certain
basal species of Forcipomyia and Culicoides feed on reptiles such as turtles, iguanas
and lizards (Wirth and Hubert 1962; Auezova et al. 1990). In particular, these cera-
topogonids attack hosts with vulnerable skin regions lacking scales such as eye
membranes, the anal vent area, and underbelly of individuals, or alternatively in
heavily vascularized regions of the skin that have narrow spaces of exposed skin
between thickened scutes (Auezova et al. 1990; Borkent 1995).

An association has been between certain Late Cretaceous species of Culicoides—
particularly C. canadensis and C. bullus of Campanian Grassy Lake Amber of
Canada and possibly C. filapalpis of Coniacian Taimyr Amber of Russia—and dino-
saurs (Borkent 1995). This interaction is based on the mouthpart structure of fossil
and modern Culicoides (Borkent 1995). Those Culicoides species with a combina-
tion of finely toothed mandibular stylets and coarse, retorsely toothed maxillary
stylets indicate feeding on vertebrates, rather than insects (Mclver et al. 1991). In
addition, the number CO, detecting capitate sensillae on the maxillary palps of
Culicoides species is directly associated with vertebrate host size: those with a
greater number of sensillae (n=29-74) feed on small hosts such as small birds and
small mammals, whereas those species with fewer sensillae (n=11-17) feed on
large mammals, with some species possessing an intermediate number of sensillae
(n=29-36) that feed on birds and mammals of intermediate sizes (Rowley and
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Cornford 1972; Braverman and Hulley 1979). An examination of the fossil record
from both the Late Cretaceous of north-central North America northern Russia indi-
cate that mammals and birds were comparatively small and that the only large ver-
tebrate candidates as hosts were large dinosaurs, such as Corythosaurus which
possessed exposed integumental surfaces for blood-feeding ceratopogonids that co-
occurred with Grassy Lake species of C. canadensis and C. bullus (Borkent 1995)
Both of these and the Russian species of Culicoides have several features of mouth-
part structure and anatomy that would strongly indicate blood feeding on vulnerable
integumental areas of large dinosaurs.

12.3.2.6 Other Interactions

Based on scant evidence, there are other types of interactions that likely were extir-
pated at the K-Pg boundary. Most of these associations involve plant pathogens, and
those involving various relationships with large vertebrates, particularly dinosaurs.

The documented fossil record of plant pathogens is almost nonexistent, with the
exception of epiphyllous fungi (Labandeira and Prevec 2014). Mid-Cretaceous
floras such as the Dakota Formation display a significant epiphyllous mycota (DT58
on page 15 of Labandeira et al. 2007), and foliar fungi are known from floras
spanning the K-Pg boundary of the Williston Basin (Labandeira personal
observation), though they have not been characterized other than assignment to
DT58. The other major plant-parasitic pathogen groups of viruses, bacteria, and
nematodes may have instances of tissue damage in the fossil record (Labandeira and
Prevec 2014), but have not been documented formally.

Sediments from approximately the same age as the example of the biting midge
and dinosaur parasitism reveal an association between scarab beetles and dinosaur
dung rich in conifer fragments (Chin and Gill 1996). Evidence of carrion
communities on dinosaur carcasses includes beetle borings in and on bone material
from the Campanian of southern Utah and northwestern Montana, and from the
Maastrichtian of northwestern Madagascar (Rogers 1992; Roberts et al. 2007).
Wasp cocoons associated with decomposing dinosaur eggs were described from
middle Campanian to lower Maastrichtian sediments of northern Patagonia, in
Argentina (Genise and Sarzetti 2011). These Late Cretaceous associations occur
within several million years of the K-Pg boundary likely were extirpated by the
demise of their dinosaur hosts.

12.4 The Marine Perspective of Ecological Disruption
and Its Consequences

Although the end-Cretaceous mass extinction is one of the best documented events
of the Phanerozoic, until recently, there have been few detailed ichnological analy-
ses focusing on this extinction in marine environments (Ekdale and Bromley 1984a;



280 C.C. Labandeira et al.

Savrda 1993; Stinnesbeck et al. 1993, 1996; Keller et al. 1994; Ekdale and
Stinnesbeck 1998). This absence of research is a consequence of difficulties inherent
in examining discrete trace fossils from lower Danian sediments. However, in Spain
and France, the K-Pg boundary transition usually is marked by a 2-3 mm-thick red,
iron-rich, boundary layer at the base of several-centimeter-thick interval of dark
clay. In most cases, material infilling the earliest Danian trace fossil assemblage is
similar in color to that of host Danian strata, precluding any direct, visual, differen-
tiation. Typically, both the latest Maastrichtian and the earliest Danian ichnoassem-
blages are observed below the K-Pg boundary, and contrast with the light color of
Maastrichtian strata. The latest Maastrichtian ichnoassemblage consists of struc-
tures filled with sediments that are only slightly darker than the host material, while
the earliest Danian forms are filled with a dark-colored matrix similar to marly,
lowermost Danian strata that contrast strongly with the light color of the
Maastrichtian host rock. In order to analyze the ichnology of the K-Pg transition in
Spain and France, one recent, fruitful methodology has been applied in four bound-
ary sections. These methods have focused on detailed ichnofabric analysis based on
the study of polished sections and on analyses, including isotopic studies, of mate-
rial infilling various sedimentary trace fossils (Rodriguez-Tovar et al. 2002, 2004,
2006; Rodriguez-Tovar and Uchman 2004a, b, 2006, 2008).

12.4.1 A Selective Impact Favoring the Deposit Feeding
Community

Marine ichnoassemblages recorded in pelagic and hemipelagic, non-turbiditic
facies of the K-Pg boundary transition globally are very similar in composition.
At one distal, continental shelf deposit in Denmark, the Maastrichtian assemblage
consists mostly of Thalassinoides, Zoophycos, and Chondrites, whereas basal
Danian sediments are comprised of Planolites, Thalassinoides, and “small
Chondrites-like forms” that now are recognized as Phycosiphon (Ekdale and
Bromley 1984a). In very proximal, continental shelf deposits from Alabama, Savrda
(1993) observed that Thalassinoides, Ophiomorpha, and Planolites penetrated
estuarine sandy deposits of the lowermost Danian. In shallow neritic settings
examined in Mexico, trace-fossil assemblages principally consisted of Chondrites,
Ophiomorpha, Planolites, and Zoophycos (Ekdale and Stinnesbeck 1998). In sec-
tions studied from the south (Agost and Caravaca) and north (Sopelana) of Spain
and in southwestern France (Bidart), there is correspondence to open, deep-sea
pelagic sedimentation (Fig. 12.5). At these Spanish and French sites, a well-
developed, oldest Danian, endobenthic community is recognized, composed typi-
cally of Chondrites, Zoophycos, Planolites, Thalassinoides, and Alcyonidiopsis
(Rodriguez-Tovar and Uchman 2004a, b; Rodriguez-Tovar et al. 2011) (Fig. 12.6).

Ichnoassemblages at the K-Pg boundary transition principally consist of Chond-
rites, Zoophycos, Planolites, Thalassinoides, Ophiomorpha, and Alcyonidiopsis as
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Fig. 12.5 The range of black-filled trace fossils are displayed in stratigraphic sections from Bidart,
southwestern France, and Caravaca, southeastern Spain. The trace-fossil infilling is derived from
the K-Pg boundary layer. The Bidart lithologic column is after Rodriguez-Tovar et al. (2011).
Abbreviation: ¢/ base colonization levels in lowermost Danian dark sediments. The planktic
foraminiferal zonation and stratigraphic correlation of the Caravaca section is based on Arz et al.
(2000) and Arenillas et al. (2004)

the most common ichnotaxa (Figs. 12.5 and 12.6), and are similar to those from
other Late Cretaceous, fine-grained, marly sediments (Ekdale and Bromley 1984b).
These assemblages reveal the dominance of feeding traces that consist of a variety
of behaviors including domichnia, fodinichnia, pascichnia, and chemich-
nia and were produced predominantly by deposit feeders obtaining food from
the sediment. This spectrum of feeding ecologies agrees with favorable conditions
for detritus- and deposit-feeding tracemakers, associated with the availability of
abundant food that was established immediately after the impact event (Morrow and
Hasiotis 2007). As mentioned above, deposit-feeding clades were less affected by
the extinction than by groups inhabiting the water column or narrowly linked
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Fig.12.6 Black-filled, lowermost Danian trace fossils are shown from the uppermost Maastrichtian
in stratigraphic sections of Bidart, southwestern France, and Caravaca, southeastern Spain. (a)
Chondrites targionii occurring in a polished section of a horizontal slab, Caravaca section. (b)
Thalassinoides isp. (Th) and Planolites isp. (Pl) occurring in an oblique parting surface, Bidart
section. (¢) Thalassinoides isp. (Th) and Planolites isp. (PI) occurring in a horizontal parting
surfaces, Bidart section. (d) Thalassinoides isp. (Th), Chondrites isp (Ch), and Planolites isp. (Pl)
occurring in a polished section of a vertical slab, Bidart section. (e) A lobe of Zoophycos isp. in a
horizontal parting surface, Caravaca section. (f) Zoophycos isp. in a vertical section of a parting
surface, Caravaca section

trophically to photosynthetic organisms (Arthur and Zachos 1987; Jablonski 2005;
Twichett 2006). However, along K-Pg sites along the Gulf Coastal plain, apparently
the producer of Thalassinoides experienced a significant bout of dwarfism after the
boundary, as burrow diameters underwent a significant decrease in earliest Paleocene
sediments (Wiest et al. 2015).
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Ichnological studies of the K-Pg boundary interval from deep sea turbidite
facies are less well known than those from non-turbiditic sediments. In the Uzgrun
section of Moravia, in the Czech Republic, Chondrites intricatus, Ch. targionii,
Ophiomorpha annulata, O. rudis, Palaeophycus tubularis, Planolites isp.,
Phycosiphon incertum, Thalassinoides isp., and Trichichnus isp. occur through the
boundary interval (Uchman et al. 2005). They occur in the sediments underlying
and overlying the boundary, and lack distinct morphological changes. In addition,
the trace-fossil diversity pattern at the ichnogenus level does not display signifi-
cant change through this interval (Uchman 2004, 2007). Interestingly, after a
Cretaceous peak, the number of new graphoglyptid ichnogenera in the Paleocene
decreased considerably, while the contribution of graphoglyptid taxa in ichnoas-
semblages of turbiditic sediments increased in general (Uchman 2003).
Stratigraphic resolution of these changes is poor, making it very difficult to link
these changes precisely to the K-Pg event. However, it is possible that the coinci-
dental the drop of ambient, deep-sea, water temperature during the Paleocene
(Barron and Peterson 1991) may have affected the infaunal farming activity of
graphoglyptid tracemakers.

12.4.2 Minor Disruption in the Macrobenthic Tracemaker
Community

As noted above, in the Spanish and French sections there is a differentiation between
pre-event latest Maastrichtian ichnoassemblages, consisting of trace fossils with
lighter-hued infillings of Chondrites, Zoophycos, and Planolites, versus post-event,
earliest Danian ichnoassemblages of darkly filled structures that contain principally
Chondrites, Zoophycos, Planolites, Thalassinoides, and Alcyonidiopsis (Rodriguez-
Tovar and Uchman 2004a, b; Rodriguez-Tovar et al. 2011). These two ichnoassem-
blages are differentiated by matrix color, nature of the burrow infill material, and
isotopic composition. Minor variations between sections, such as the presence or
abundance of Chondrites and Zoophycos, probably have local importance that can
be related to differences in feeding strategies of the trace-fossil tracemakers related
to food content or site bathymetry.

Similarly, in other K-Pg boundary sections, Thalassinoides, Zoophycos, and
Chondrites are representative of the upper Maastrichtian assemblage, while
Planolites and Thalassinoides are dominant in the lower Danian (Ekdale and
Bromley 1984a; Savrda 1993). Thus, trace-fossil assemblages do not change sig-
nificantly across the K-Pg boundary, appearing in lower Danian ichnoassemblages,
and by comparison are less abundant and diverse than Maastrichtian ichnoassem-
blages. Environmental changes associated with K-Pg boundary phenomena appar-
ently did not have a significant impact on macrobenthic tracemakers, and had a
minimal effect on the marine macrobenthic tracemaker community at the K-Pg
boundary.
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12.4.3 An Unfavorable Habitat for Macrobenthic
Colonization?

Historically, the rusty, red boundary layer in various K-Pg boundary sections of
Spain and France has been considered non-bioturbated, presumably revealing unfa-
vorable environmental conditions that were inhospitable for colonization by organ-
isms. Nevertheless, a detailed analysis does show that the K-Pg boundary layer at
the Caravaca section exhibits a highly bioturbated fabric that includes Zoophycos
and Chondrites vertically crossing the boundary layer (Rodriguez-Tovar and
Uchman 2008). This boundary interval also is penetrated horizontally by Chondrites
ramifications. The “unfavorable” conditions displayed by the iron-rich boundary
layer evidently did not impede colonization by tracemakers. This important coloni-
zation event was related to a repertoire of producer behaviors that was not depen-
dent on substrate features. Zoophycos and Chondrites tracemakers constructed
open, or at least partly ventilated, burrows that accommodated various substrate
features, and this was followed by further infaunal colonization of sediment poor in
oxygenated pore waters and food (Rodriguez-Tovar and Uchman 2008).

By way of analogy, a recent environmental disaster occurred at Doflana National
Park in southern Spain that was caused by the failure of a tailings pond adjacent a
pyrite mine at Aznalcdllar, near Sevilla (Rodriguez-Tovar and Martin-Peinado
2009). The sedimentary wedge resulting from the outflow of sedimentary mine
waste from the tailings pond, replete with elevated concentrations of pollutants and
toxic elements, was colonized within 10 years by the ghost ant, Tapinoma nigerrima.
Tapinoma nigerrima is characterized by aggressive life habits and opportunistic
behavior. Notably, the colonized mine-waste substrate was enriched in various
pollutants that included mercury, arsenic, lead, thallium, antimony, and iridium, and
was characterized by locally elevated heavy elemental concentrations. A comparison
of the leaked element abundances from Aznalcéllar with K-Pg boundary sections
revealed that in several cases, such as iridium, the values obtained in the polluted
soil of Aznalcdllar are higher than those recorded for the K-Pg rusty brown boundary
layer (Rodriguez-Tovar and Martin-Peinado 2009). Nests of T. nigerrima occurred
throughout the tailings layers, and an ant-fashioned biofabric was created from
particles within the polluted soil, providing evidence for the irrelevance of substrate
structure in determining the ant-generated biofabric in the polluted substrate. The
particular response of 7. nigerrima to the Aznalcdllar disaster is relevant to
interpretation of ichnofaunal colonization of the K-Pg boundary event, at least for
sections from Spain and France. This relevance is based on similarities between
Aznalcdllar soils and the K-Pg boundary layer, such as the presence of strongly
anomalous, life-destroying chemical elements.

A similar example recently has been studied in the contaminated marsh area of
the Tinto River near Huelva, in southwestern Spain, This marsh is characterized by
high soil concentrations of toxic elements, such as copper, zinc, and arsenic
(Rodriguez-Tovar and Martin-Peinado 2014). An ichnological analysis revealed the
presence of biogenic structures produced by the activity of the earthworm Lumbricus
terrestris and the beetle Platystethus. Colonization of this polluted substrate is
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possible due to the particular features of the tracemakers: Lumbricus terrestris
shows a great resistance to elevated concentrations of a number of contaminating
elements, whereas Platystethus produces traces that are relatively independent of
substrate features. These patterns indicate that substrate colonization at Huelva
could be comparable to that of Planolites and Thalassinoides tracemakers immedi-
ately after the K-Pg boundary event (Rodriguez-Tovar and Martin-Peinado 2014).

12.4.4 A Relatively Rapid Recovery

Based on observations on microfaunal assemblages, calibrations of the initial recov-
ery of the marine biota associated with the K-Pg boundary were estimated in the
range of thousands of years (kyr). The initial recovery of planktic foraminifera was
estimated at about 230 kyr (Keller and Barrera 1990), and the early pioneer, calcare-
ous nannoflora appeared approximately 25 kyr after the K-Pg mass extinction event
(Lamolda et al. 2005). Approximately ten kyr is proposed for the time involved in
restoration of food webs and restructuring of marine ecosystems, a process occur-
ring after the oceans were repopulated by planktonic species with high turnover
rates. After an initial, comparatively low occurrence of post-event benthic foramin-
ifera, a subsequent and rapid recovery was found, as complex trophic webs reap-
peared approximately seven kyr after the K-Pg boundary. During the early phase of
the recovery interval, the presence of an epifauna tolerant of low oxygen occurred
from 600 to 1200 years after the event (Coccioni and Galeotti 1994).

Two significant observations are important for understanding the response of the
macrobenthic tracemaker community to the K-Pg boundary event and their subse-
quent, comparatively rapid recovery. First is the presence of iron oxide spherules in
Thalassinoides burrow infillings (Rodriguez-Tovar 2005). A second consideration
is physical disturbance resulting from bioturbation of the K-Pg boundary layer
(Rodriguez-Tovar and Uchman 2008). Stereomicroscopic and field-emission SEM
analyses of Thalassinoides at the K-Pg boundary layer from Agost display numer-
ous iron oxide spherules in the infilling material. In addition, the composition, inter-
nal texture, morphology, and size of the infilling were similar to the ichnofabric that
was confined to other sections of the 2-3 mm-thick, rusty, K-Pg boundary layer
(Martinez-Ruiz et al. 1997, 1999). These observations, in conjunction with the
homogeneity of the infilling material and the absence of erosional surfaces capping
Thalassinoides burrows, were interpreted as evidence of rapid colonization by
Thalassinoides tracemakers, occurring almost contemporaneously with the spher-
ule layer deposit (Rodriguez-Tovar 2005) and by a smaller-bodied species revealed
by data from the Gulf of Mexico (Wiest et al. 2015). Subsequently, a detailed analy-
sis of the dark boundary layer from the Caravaca section revealed discrete bioturba-
tion that commenced about 14 mm from the rusty-boundary layer, immediately
above the first laminated interval (Rodriguez-Tovar and Uchman 2008). Recently,
high-resolution geochemical analyses from the K-Pg boundary at the Caravaca sec-
tion support the conclusion that the recovery to pre-impact levels of oxygenation
was almost instantaneous, with absolute values in the order of 10? yr (Sosa-Montes
de Oca et al. 2013).
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12.4.5 Iterative and Continuous Colonization after the Mass
Extinction

The absence of a clear color differentiation between burrow infillings of the earliest
Danian ichnoassemblage and the dark, marly, lower Danian host sediments from
the K-Pg boundary sections of Spain and France prevented, at least initially, con-
clusive identification of the colonized stratal horizons and possible assessment of
the recovery’s initiation. In this context, the analysis of carbon isotope composition
of the infill from passively filled burrows became a useful tool (Rodriguez-Tovar
et al. 2002, 2004, 2006). A comparison of the 8'3C data from infilled Danian trace
fossils in the uppermost Cretaceous sediments in the Agost section allowed for
identification and assessment of the relative timing of the macrobenthic coloniza-
tion phases. This examination distinguished Cretaceous from Danian trace fossils
based on isotopic composition, and revealed that different isotopic values from the
dark-infilling material could be correlated with those obtained in particular hori-
zons within the Danian marly interval. This analysis provided evidence for different
phases of colonization, deployed in succession across the K-Pg boundary interval
(Rodriguez-Tovar et al. 2002, 2004, 2006).

A subsequent, detailed ichnofabric analysis of the 7-10 cm-thick, dark Danian
boundary layer at the Caravaca section allowed for identification of two bioturbated
horizons, separated by two laminated, unbioturbated layers (Rodriguez-Tovar and
Uchman 2006). The first laminated layer, 14 mm thick, rests just above the rusty
boundary layer. It is overlain by a 26 mm thick, bioturbated horizon, which is
covered by a 36 mm thick layer that exhibits convolute lamination. Above, the
sediment is again bioturbated (Rodriguez-Tovar and Uchman 2008). From the
bioturbated horizons in the dark boundary layer, trace fossils pipe downward
continuously to the uppermost horizons of lighter-hued, Maastrichtian sediments.
These ichnofossils cross-cut the rusty boundary layer, penetrating up to 90 cm
below into Maastrichtian marls. Zoophycos and Chondrites penetrate up to 90 cm
and 35 cm, respectively, below the rusty boundary layer (Rodriguez-Tovar and
Uchman 2006, 2008). These data suggest multiple, post-event colonization events.

12.5 Can Trace-Fossil Records Address Biologic Effects
of the K-Pg Event?

Although several advantages of trace-fossil data over body-fossil data previously
have been discussed (Labandeira 2007), the following eight issues, derived from
studies in this contribution, represent utilitarian, recent approaches toward under-
standing ecological and environmental issues in the deep-time fossil record. These
approaches can be applied to both continental and marine trace-fossil records.
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12.5.1 Previously Unapplied Analytic Techniques

Trace-fossil data are as eminently amenable to quantification and analysis by a vari-
ety of statistical techniques, as are body-fossil data. The quantification of abundant
trace-fossil data can be seen as a departure from studies of single, or at most a few
specimens of ichnological taxa in previous studies. As well, carbon isotopic analy-
sis, heavy element analysis, and SEM field emission studies provide detailed docu-
mentation at local to regional scales of organism—environment relationships before,
at, and after the K-Pg boundary. The analytic techniques developed for character-
izing plant—insect interactions of entire floras and for understanding the substrate
relationships of organisms expand the applicability of trace-fossil approaches to
new areas of inquiry.

12.5.2 A Multitude of Data

Plant-insect associational studies of bulk floras or biotas require hundreds to (tens
of) thousands of specimens. Such studies also capture data from a multitudinous
array of specimens, plant morphotypes, insect damage types, localities, stratal lev-
els, and habitats. As a result, data from plant—insect interactions become ideally
suited for examinations of time series originating from bulk-collected floras from
multiple stratal horizons. Such data are concordant with modern ecological tech-
niques for examining trends in space, but importantly, the fossil data uniquely offer
the opportunity for examining temporal patterns. For example, the effects of the
K-Pg event in macroinfaunal habitats of the offshore marine realm in Spain and
France took approximately 10°-10* yr, according to recent high-resolution geo-
chemical information (Sosa-Montes de Oca et al. 2013). By contrast, in terrestrial,
angiosperm-dominated communities of North Dakota the recovery time was 107 yr
(Wilf et al. 2006), a difference of approximately 4-5 orders of magnitude.

12.5.3 Unique Ecological Data

The analyses of plant—insect interaction trace fossils are the most successful way of
capturing large datasets of trophic data in the fossil record. Because of the absence
of interpretable insect body-fossil data in most deposits, plant—insect interactional
data can provide trophic data that otherwise would be unavailable. These paleoeco-
logical data also can be used as raw input in other approaches recently used in the
fossil record, such as the construction of site-specific food webs (Wilf 2008; Dunne
et al. 2012), and studies of niche conservatism through time (Solé et al. 2002).
Similarly, unique ecological data such as detailed ichnofabric analysis from pol-
ished microscopic sections can reveal a variety of specific organism—substrate rela-
tionships that are unavailable from more traditional, more macroscopically based
ichnological approaches.
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12.5.4 Ability to Test and Generate Hypotheses

Because of typically large datasets, trace-fossil data can provide the type and
amount of data that are available to test hypotheses established by modern plant—
insect interaction theory. Alternatively, trace-fossil data also can generate hypothe-
ses from deep-time trends of plant—insect interactions that are testable using modern
data. Specific examples of fossil plant—insect associational data, such as lag times
involved in post-event occupation of ecospace, increasingly are becoming important
for evaluating hypotheses and concepts that are derived from modern theories.
Likewise, in the shallow marine realm, hypotheses regarding the phases of post-
event organism colonization of sediment and hardrock substrates can provide evi-
dence for or against the geochronologically instantaneous establishment of
burrowing or whether a more prolonged colonization process is involved.

12.5.5 Employing Data from Both the Preserved
and “Nonpreserved” Sedimentary Record

An analysis of the material in passively infilled, earliest Danian burrows supports
other significant types of data that have been gathered from the sedimentary record
for the post-K-Pg recovery event. Collectively, these data provide inferences indi-
cating the prevalent environmental conditions at that time. In some cases, there is
recognition of a laterally extensive horizon of colonization if the original layering in
sediment was preserved. However, if the initial sediment is not preserved, burrows
store the lost sedimentary record, and provide some portion of information. Such
information can be used to characterize different phases of colonization and provide
an evaluation of the relative time to recovery.

In the terrestrial plant—insect associational record, relevant data can be found in
more distant basins. Such basins can provide quantifiable insect damage data that
may be closer to the major event boundary of interest. In both the marine and con-
tinental records, regionally extensive strata should be intensively explored for col-
lection of data that are unavailable at historically more intensively explored but very
local stratigraphic sections.

12.5.6 Data with Enhanced Biostratigraphic Resolution

A consequence of the impact of the K-Pg boundary event on microplankton is the
near-complete absence of these groups in the first few centimeters immediately
above the K-Pg boundary. The K-Pg event strongly affected diatoms, calcareous
nannoplankton, phytoplankton, and planktic foraminifera. Depauperate micro-
planktic biotas impede a high-resolution biostratigraphy, resulting in doubts about
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completeness of the sedimentary record or the existence of hiatuses that are
biostratigraphically unresolvable. However, in the Agost section, there is the initial
appearance of Paleogene planktonic foraminifera located a few centimeters above
the K-Pg boundary (Arenillas et al. 2004), calibrated to ~5.7-6.7 kyr later in the
K-Pg boundary. The high-resolution (intrasubzone), stable isotope data that were
obtained from infill material of trace fossils in the Agost section show a close cor-
respondence with those from the upper Maastrichtian and lower Danian sediments.
These data provide evidence for completeness, and the absence of hiatuses within
biostratigraphic resolution (intrasubzone) (Rodriguez-Tovar et al. 2006). On land, a
similar exploration of the thin and locally present FUO layer in the Williston Basin,
for example, can reveal illuminating patterns of plant—insect interactions at the
K-Pg boundary that could be different from the subjacent latest Maastrichtian and
superjacent earliest Paleocene strata (Labandeira et al. 2002b).

12.5.7 A Major Role in the Debate on Catastrophic vs. Gradual
Extinction

The perennial debate about how catastrophic was the end-Cretaceous mass extinc-
tion, include two, highly differentiated and opposite positions of catastrophic versus
gradual perspectives (e.g., Smit 1990 vs. Keller et al. 1995, respectively).
Catastrophism versus gradualism perspectives still represent an unsolved flash point
regarding the biologic consequences of the end-Cretaceous event. This issue, in
part, can be related to the presence/absence of several species of microfossils,
principally planktic foraminiferans and calcareous nannofossils, immediately below
and above the K-Pg boundary, data that has been perceived to support both positions.
Maastrichtian taxa found in Danian sediments are considered as totally or partially
reworked (e.g., Smit 1990; Pospichal 1994; Henriksson 1996; Molina et al. 1998;
Tantawy 2003; Gallala et al. 2009), or as taxa that survived the disaster, but rapidly
disappear during the earliest Danian (e.g., Perch-Nielsen et al. 1982; Keller 1988;
Keller et al. 1995; Gardin and Monechi 1998; Gardin 2002; Bown 2005).

Within this debate, the sedimentological context of trace fossils is important. For
example, the redistribution of microfossils by tracemakers, even immediately below
the K-Pg boundary, remains a possibility that has been considered minimally and
currently lacks deeper analyses by micropaleontologists and paleoecologists
(Thierstein and Okada 1979; Thierstein 1981; Smit and Romein 1985; Pospichal
and Wise 1990; Pospichal et al. 1990; Henriksson 1996; Pospichal 1996; Romein
et al. 1996; Mai et al. 2003; Bown 2005; Lamolda et al. 2005). Recently, detailed
analyses focusing on calcareous nannofossils from the burrow fillings of Zoophycos,
Thalassinoides, Chondrites, and their surrounding sediments across the K-Pg
boundary transition at the Bidart (Rodriguez-Tovar et al. 2010), and Caravaca
(Kesdzierski et al. 2011) sections, revealed Danian calcareous nannofossils in
lightly-hued Maastrichtian sediments. In these boundary sedimentary sequences, it
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was only the dark infillings of Danian burrows that piped down across the K-Pg
boundary, and conversely, Cretaceous nannoplankton occurred above the boundary
layer that was conveyed up onto the seafloor by earliest Danian tracemakers such as
Thalassinoides through burrow excavation (Rodriguez-Tovar et al. 2010; Kedzierski
etal. 2011).

The response of generalized to specialized insect herbivores to their plant-host
spectrum after the end-Cretaceous event can provide a terrestrial perspective.
Although the terrestrial stratigraphic record is poorer than the marine record at this
time, the considerable delay in the recovery of associational diversity and special-
ization levels to that of the latest Maastrichtian is significant. The presence of lag
times from 10* to 10° orders of magnitude between the rapid response of the marine
realm, versus the much more prolonged terrestrial recovery, may hint at differences
in ecological structure. The ecological recovery potential and flexibility of the shal-
low marine realm evidently is considerably greater than that of the terrestrial realm.

12.5.8 Understanding Ecologic and Evolutionary Response
to Future Environmental Crises

Uncertainties regarding the effect of the K-Pg mass extinction event on evolution-
ary and ecological aspects of the biota can be addressed by analogy to the response
of modern organisms soon after recent disasters. Although a comparison of
paleoenvironmental events with recent examples of environmental crises is rarely
applied, nevertheless it is a useful tool (Kuhnt et al. 2005) to understand biotic
response to dramatic past, recent, and future environmental change. The response
of tracemakers after the K-Pg boundary event as well as those recorded after a
drastic environmental disaster occurring at Doflana National Park in southern Spain
(Rodriguez-Tovar and Martin-Peinado 2009; Martin-Peinado and Rodriguez-Tovar
2010) — and a parallel crisis associated with the Tinto river marsh at Huelva
(Rodriguez-Tovar and Martin-Peinado 2014), in southwestern Spain—indicate that
high concentrations of heavy metals accumulated in soils and sediments can be
dispersed at geologically ephemeral time scales (Rodriguez-Tovar and Martin-
Peinado 2011). These two, recent incidents reveal that a better understanding of
significant paleoenvironmental change, either abrupt or extended in time, can have
profound consequences for the biota, their lag recovery times, and colonization of
previously “uninhabitable” habitats.

Though not discussed in this contribution, related studies relevant to the recovery
of plant—insect interactions have been done in real time in defaunation experiments
of small, mangrove islands in Florida Bay. These studies have recorded the lag
times of recolonization of major plant and insect groups and their associations
following complete island defaunation (Simberloff and Wilson 1969). The pattern
of the re-establishment of major trophic groups (Simberloff 1976), including gener-
alized and specialized associations of a local biota is relevant to issues such as the
return of plant—insect associations after the K-Pg event.
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12.6 Conclusions

Based on the results of studies from the terrestrial and marine realm that are detailed
in this contribution, there are several major applications of ichnological data, some
of which cannot be replicated solely by examination of body-fossil data. For a better
understanding of the consequences of major crises in the history of life, such as the
K-Pg ecological crisis, the combination of ichnological data with body-fossil and
physical data is essential, such as analyses of the diversity and abundance of insect
damage on plant hosts in conjunction with various sedimentological and geochemi-
cal studies. Integration of such data provides a realistic assessment of organismic
response that takes into account all of the major, relevant parameters involved.
These features are: (1) the environment in the broadest sense of the term; (2) the
organisms themselves; (3) organismic behavior and organism interactions with one
another and their environment; and (4) and the temporal dimension that includes
event durations and times to recovery. Application of all four aspects of the data
provides a more integrative and complete approach toward understanding environ-
ment—organism interactions during crucial ecologic crises in the fossil and associ-
ated sedimentological record. Moreover, understanding organism response to such
events can be put to practical use in approaching similar catastrophes for the future.
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Chapter 13
The Phanerozoic Four Revolutions
and Evolution of Paleosol Ichnofacies

Jorge F. Genise, Emilio Bedatou, Eduardo S. Bellosi, Laura C. Sarzetti,
M. Victoria Sanchez, and J. Marcelo Krause

13.1 Introduction

Which is the appropriate scale to analyze how paleosol ichnology reflects major
evolutionary events in the history of life? Surely, the scale of the ichnofacies model,
which arises from the most elementary aspect of scientific reasoning: to recognize
recurrent patterns. Repetitive ichnoassemblages are typical of different periods in
the history of life and that they can be grouped in major categories: Seilacherian
ichnofacies. Ichnofacies are recurrent associations of trace fossils in time and space,
and it is their recurrence that grants the essential, broad scale, data for this evolu-
tionary analysis. Mesozoic ichnoassemblages include or are dominated by crayfish
and earthworm trace fossils, whereas insect trace fossils dominate most Cenozoic
assemblages (Genise 2016). To ignore these patterns would result minimally in an
unacceptable loss of scientific information.

Life on Earth has been evolving since its beginning during the Archean.
Accordingly, paleosol ichnofacies, as a reflection of behaviors and ecologic prefer-
ences of soil-inhabiting organisms, should also have evolved. As pointed out by
MacEachern et al. (2007, 2012), the Coprinisphaera Ichnofacies cannot be older
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than the Paleogene when grass-dominated communities appear. What happened,
then, with paleosol ichnofacies prior to the Cenozoic? How did ichnofacies evolve?
It is impossible to think in static ichnoassemblages from the oldest paleosols-
bearing rhizoliths recorded in the Early Devonian to the youngest ones in the
Holocene. Alternatively, tracking ichnofacies evolution, an uncommon approach in
theoretical ichnology, should allow us a better understanding of evolution of life
itself and it would represent a significant contribution of ichnology for its delayed
integration with other paleontological disciplines. The idea of major evolutionary
changes characterizing the history of life has been designed mostly from data and
interpretations provided by paleontological disciplines other than ichnology. Can
ichnology, and particularly paleosol ichnology, with its own major evolutionary
steps, offer a parallel exploration to the history of life?

On the other hand, which is the influence of soil types on the evolution of paleo-
sol ichnofacies? Much of the major events in life history, such as the end-Permian
crisis, the advent of angiosperms during the mid-Cretaceous, or the end-Cretaceous
mass extinction, produced no significant changes in the nature of soils. In contrast,
it is clear that the increasing complexity of terrestrial ecosystems, from early micro-
bial habitats to the development of complex plant communities, triggered the
appearance of the different soil types. Retallack (1992a) proposed that the principal
changes of land environments were deployed in a stepwise mode following the ori-
gin of different plant formations, from microbial earths to grasslands. Is it possible
to use paleosol ichnofacies to test this hypothesis?

In this chapter, we will travel along a two-way road looking at the consequences,
if any, that major evolutionary changes had on paleosol ichnofaunas, and vice versa.
As aresult, we expect to unveil the big picture of the evolution of paleosol ichnofa-
cies accompanying major evolutionary changes in the history of life.

13.2 The Rhizolith Revolution: The Paleozoic Shy Beginning
of Paleosol Trace Fossils

The Paleozoic was a very innovative period for history of life (see Chaps. 3-7). It
includes the appearance of the first soils bearing subaerial trace fossils (Tables 13.1
and 13.2; Figs. 13.1 and 13.3). Before that, different paleosol features produced
mostly by chemical and physical weathering have been recognized in Archean and
Proterozoic rocks (Retallack 2001a). These characters would include microbial
borings, soil horizons, peds, illuviation argillans, cryogenic cracks, slickensides,
nodules, and sepic-plasmic clay microfabrics (Retallack 1992b). These paleosols
older than 1 Ga would include Entisols, Inceptisols, Aridisols, Gelisols, Andisols,
Vertisols, and Oxisols, whereas “green clays” would have formed in a reducing
atmosphere older than 2.2 Ga (Retallack 2001a). Microbial earths would have devel-
oped also in terrestrial environments during the Precambrian (Driese et al. 1997).
For various reasons, including the absence of most groups of soil invertebrates
that produce preservable traces, paleosol trace fossils are scarce during the Paleozoic.
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Fig. 13.1 Stratigraphic ranges of crustacean, earthworm, plant, and undetermined trace fossils in
paleosols. Figure starts in the Devonian when the first rizholiths are recognized in paleosols. Only
reliable attributions to producers in each group are included, whereas trace fossils with nonreliable
attributions are included in the group of trace fossils with undetermined affinities. Numbers in
unnamed trace fossils with reliable attributions indicate consulted references: (1) Bown (1982),
Fiorillo (1999), Hasiotis (1993, 1999, 2004), Hasiotis and Demko (1996, 1998), Hasiotis and
Kirkland (1997), Retallack (1997a), Tanner (2000), Therrien et al. (2009); (2) Pierikowski and
Niedzwiezki (2008); (3) Bedatou et al. (2005, 2006, 2007, 2008a, b), Bedatou (2010); (4) Pierikowski
and Niedzwiezki (2008), Retallack (1976, 1997a); (5) Smith et al. (1993)
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A possible oldest evidence of subaerial trace fossils are drab haloes attributed to
filaments of biological soil crusts produced by microorganisms and lichens from the
Early Cambrian Flinders Ranges, Australia (Retallack 2008). The Cambrian-
Ordovician Grindstone Range Sandstone of Australia shows trackways and resting
traces of arthropods (Diplichnites, Selenichnites), which are interpreted as being
produced on the surface of thin and weakly developed paleosols (Retallack 2009).
Since Middle-Late Ordovician, soils included liverwort plants, representing low-
biomass, high soil-respiration ecosystems (Retallack 1997b). Examples of these
conditions would be the red, well-drained, weakly calcareous paleosol of Nova
Scotia, which displays small reduction haloes assigned to mold colonies (Boucot
et al. 1974), and the Aridisol of the Late Ordovician Juniata Formation from
Pennsylvania (Retallack and Feakes 1987; Feakes and Retallack 1988; Retallack
1993, 2001b). However, this evidence was recently criticized based on the deposi-
tional environment, evidence for liverworts, and the nature of S. beerboweri and its
producer, among other issues (Davies et al. 2010) (see Chap. 5).

Undisputed subaerial meniscate trace fossils are younger. They come from the
upper Silurian-Middle Devonian Old Red Sandstone of Wales (Morrissey and
Braddy 2004; Hillier et al. 2008; Morrissey et al. 2012), the Middle Devonian
Oneonta Formation of the USA (Dunagan and Driese 1999), and the Late Permian
Abo Formation of the USA (Mack et al. 2003). Also recorded are Skolithos from
the Early Devonian Wood Bay Formation of Norway (Volohonsky et al. 2008) and
the Middle Carboniferous Seaham Formation of Australia (Retallack 1999a).
Absence of true assemblages and the paucity of data hamper a more definite inclu-
sion of these assemblages in the ichnofacies model. However, they would be con-
sidered herein tentatively as the oldest examples of the Scoyenia Ichnofacies.
Usually this ichnofacies, indicative of alternative subaerial and subaquatic condi-
tions (Fig. 13.4a), is not recognized as a paleosol one. However, during subaerial
exposure the substrate may develop a temporal plant cover producing roots and
traces of soil organisms (Genise et al. 2010b; Melchor et al. 2012). Its mention
herein responds to its record as the only Paleozoic one indicative of subaerial expo-
sure bearing invertebrate trace fossils. However, for practical purposes, the
Scoyenia Ichnofacies will not be treated further in this chapter (neither included in
Table 13.1), as it has a very different background and approach from the other
ichnofacies that occur in post-Paleozoic paleosols (see Chaps. 5, 6 and 12).

Apart from the 9 undisputed cases of Paleozoic paleosols bearing invertebrate
trace fossils, other 17 examples show different types of rhizoliths as exclusive
trace fossils (Table 13.1, Fig. 13.1). The first assemblage composed only of rhizo-
liths is Early Devonian (Driese and Mora 2001), in correspondence with the first
plant origination event, marked by the advent of lycophytes and sphenophytes,
and the first large adaptive radiation of plants (Cascales et al. 2010). This assem-
blage is recognized herein as the first ichnologic revolution in paleosols (Fig. 13.3).
These exclusive rhizolith assemblages, assuming the diversity of different types of
rhizoliths is underestimated, are considered herein for practical purposes as cases of
a Rhizolith Ichnofacies, a proposal similar to that of Melchor et al. (2012). Its name
refers to the initial appearance of rhizoliths, the “Cinderella” of paleosol trace fossils,
considering that root traces are largely understudied and unnamed in comparison


http://dx.doi.org/10.1007/978-94-017-9597-5_5
http://dx.doi.org/10.1007/978-94-017-9597-5_5
http://dx.doi.org/10.1007/978-94-017-9597-5_6
http://dx.doi.org/10.1007/978-94-017-9597-5_12
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with animal traces. After future and badly needed research on different root sys-
tems and rhizolith branching patterns, the paleoenvironmental meaning of this
ichnofacies could be extended greatly. For instance, rhizoliths and root systems
constitute indicators of subaerial exposure or vegetation type, but also of drainage
conditions in soils and paleosols (Sarjeant 1975; Jenik 1978; Retallack 1988;
2001a). The study of iron oxide-depleted zones around root trace fossils also
assists to define several specific categories of drainage conditions in paleosols
(Kraus and Hasiotis 2006). In addition, further analyses on the reasons for the
absence of associated invertebrate trace fossils in these assemblages will also
increase its value. There are about 38 cases of the Rhizolith Ichnofacies occurring
along different intervals of the Phanerozoic, even though Table 13.1 is not an
exhaustive compendium of all cases recorded from the literature.

Late Silurian and Devonian soils vegetated by the first herbaceous and rhizomatous
plants (xeromorphic rhyniophytes), called “brakeland” formations, were repre-
sented by stronger developed, well-drained paleosols showing complicated biotur-
bation patterns (Retallack 1992a, 2001a). By the Early Devonian, root systems of
primitive vascular plants were large and stout, reaching 1 m deep (Elick et al. 1998).
Rhizome trace fossils in these Entisols consist of dichotomous and fibrous casts and
molds presumably produced by trimerophytes. In addition, expansion of swampy
vegetation in permanently waterlogged terrains gave way to peaty soils or Histosols
(Rice et al. 1995). An old Inceptisol showing large root trace fossils, leaf litter, and
spodic attributes was recognized in the Late Devonian of the USA (Retallack 1985).
The advent of forested soils represented a change in weathering of soil minerals,
and also a renewed step in stability and reduced erosion of landscapes due to deeper
penetration of tree roots. Decaying vegetation of these more complex ecosystems
probably favored the recycling of nutrients, thus originating new subsurface soil
horizons that resulted in the illuviated clay accumulations of Alfisols and Ultisols,
or in the iron and organic matter concentrations of Spodosols (Retallack 2001a).
The most ancient forest ecosystems are recorded in Middle Devonian reddish
Alfisols of Antarctica. These well-drained paleosols bear calcareous rhizoconcre-
tions, ferruginized concretions, and deep and robust root trace fossils surrounded by
large drab-haloes, attributed to highly seasonal, warm subhumid environments
(Retallack 1997b). Diversity in vegetation communities since the Middle Paleozoic
increased weathering rates, which consequently reduced the stability of minerals
through the exportation of ions from soil waters and acidizing the rhizosphere
(Knoll and James 1987). Root structures diversified anatomically in the Mississipian
with the expansion of various forest types (Pfefferkorn and Fuchs 1991). Gill and
Yemane (1996) described an ancient Ultisol from the lower Pennsylvanian of the
USA, containing deep carbonaceous root trace fossils. A more ancient sandy soil
enriched in iron and organic matter (Spodosol) exhibits stout woody root trace fossils
probably of conifers (Vanstone 1991). Pennsylvanian calcic Vertisols, Inceptisols,
and Alfisols formed in alluvial floodplains of the Appalachian basin bear different
root trace fossils (rhizohaloes, rhizocretions, rhizotubules) that vary in depth, repre-
senting fluctuating water tables (Hembree and Nadon 2011). Tropical rain forests
dominated by large-leaved seed ferns (pteridosperms), are recorded since the
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Pennsylvanian (USA), and are represented by kaolinitic Oxisols showing large root
trace fossils (Retallack and German-Heins 1994).

In sum, the most important soil types were already developed by the Devonian—
Carboniferous, as well as most types of plant formations from different environ-
ments, from arid herbaceous communities to swampy or forested habitats developed
under humid climates. Thus, the paucity of data on paleosol ichnofaunas should
respond to other causes, such as the still relatively scarce record of Paleozoic
paleosols or to the scarcity of soil inhabiting organisms capable of leaving preserv-
able traces. The latter will be a recurrent issue along this chapter. Most of the rec-
ognizable tracemakers of Mesozoic and Cenozoic ichnoassemblages, such as
earthworms and crayfishes, have no body fossil record for the Paleozoic, whereas
the first holometabolous insects appear at the Mississippian—Pennsylvanian transi-
tion (Nel et al. 2007; Béthoux 2008; Wiegmann et al. 2009; Labandeira 2011). In
turn, most Paleozoic invertebrate trace fossils in paleosols have been attributed to
millipedes (Retallack 1999a, 2001b; Morrissey and Braddy 2004; Hembree 2009).
Voigt (2007) analyzed the possible occurrence of insect trace fossils in Permo-
Carboniferous basins of North America and Europe.

The Paleozoic records the appearance of the first paleosols bearing subaerial trace
fossils. Paleozoic assemblages are composed only of rhizoliths (the Rhizolith
Ichnofacies) or in some cases dominated by invertebrate burrows and trackways (the
Scoyenia Ichnofacies) (Table 13.1). The largest floral extinction, occurred at the end
of the Carboniferous (Cascales et al. 2010) is not reflected in changes in paleosols or
trace fossil assemblages. This stasis is only interrupted after the end-Permian mass
extinction event. The assemblages containing only rhizoliths, which dominate the
Paleozoic, are grouped in the Rhizolith Ichnofacies that is recorded extensively from
the Devonian along the rest of the Phanerozoic (Table 13.1, Figs. 13.1, and 13.3).
The Rhizolith Ichnofacies is a practical concept, to be explored considering three
points: (1) the recurrency of paleosols showing only root traces, (2) the dominance of
these assemblages in Paleozoic paleosols, and (3) the potential paleoenvironmental
significance of different rhizolith morphologies.

13.3 The Camborygma Revolution: The Triassic Appearance
of Crayfish and Earthworm Trace Fossils

The Late Permian catastrophic loss of plant biodiversity (Ward et al. 2000;
Michaelson 2002; Arche and Lépez-Gomez 2005) had an uncommonly long period
of recovery in the Triassic. The modification in terrestrial ecosystems was represented
by a global change in vegetation corresponding to the appearance and expansion of
seed plants and the culmination of widespread coal accumulation (Faure et al. 1995;
Retallack et al. 1996D).

In the Southern Hemisphere, this biotic crisis on land is documented in few
paleosols from high latitudes that cross the Paleozoic-Mesozoic boundary (Smith
1995; Retallack 1999b; Retallack and Krull 1999). According to Retallack
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(2001a), Late Permian—Early Triassic paleosols from Antarctica, South Africa,
and Australia record abrupt environmental (e.g., acidification, biological produc-
tivity) and paleontological changes, also reflected in the replacement of paleosol
types (e.g., Histosols to ferruginized paleosols). In several localities of Antarctica,
Late Permian carbonaceous root traces (Vertebraria) were replaced by silica or
clayey infilled roots (Retallack et al. 2005). Mid-latitude paleosols from China
show similar climate controlled, long-term changes, from gleyed, organic-matter
rich paleosols indicative of humid conditions, to paleosols with calcic and gypsic
concentrations formed in unstable, semiarid environments, through the Permian-
Triassic boundary (Thomas et al. 2011). Rhizoliths, root haloes, and root moulds
were the only trace fossils observed in these paleosols.

Advanced cone-bearing and seed-producing gymnosperms, along with free-sporing
lycopsids and ferns, became the dominant groups in early Mesozoic floras (Niklas et al.
1985; Visscher et al. 2004; Retallack et al. 2011). The major radiation of conifer fami-
lies (Cephalotaxaceae, Pinnaceae, Taxaceae, Araucariaceae, Podocarpaceae, and
Cheirolepidiaceae) occurred during the Triassic in a global scenario of increasing tem-
perature and seasonality (Archibold 1995; Willis and McElwain 2002). By the early
Jurassic, the expansion of Cycadales, Bennettitales, and Ginkgoales resulted in a new
floristic change at global scale. Eighty percent of plant species were Gymnosperms by
the Middle Jurassic (Hallan 1994; Brenchley and Harper 1998).

In spite of the mentioned large-scale vegetational changes, new or particular types
of paleosols were not observed in Mesozoic strata. The flora preserved in the Upper
Jurassic Morrison Formation illustrates an environment that supported giant sauro-
pods under warm, semiarid to subhumid, seasonal conditions. Floodplains had an
herbaceous groundcover mixed with low-growing woody shrubs (ferns, seed ferns,
ginkgos, horsetails) adapted to severe droughts (Parrish et al. 2004). Watercourses
and lake margins show riparian open-forests of conifers with an herbaceous and
shrubby understory (Turner and Peterson 2004; Engelmann et al. 2004). Calcic
Vertisols, Aridisols, and Alfisols developed in such scenario with fluctuating water
tables (Retallack 1997c; Demko et al. 2004).

The Early Triassic shows the appearance of the first assemblages of paleosol
trace fossils that display a moderate diversity of ichnotaxa and trace makers
(Table 13.1; Figs. 13.1 and 13.3). Crayfish, earthworm, and other invertebrate bur-
rows, probably some of them produced by insects made their appearance in the
geologic record. Nevertheless, the attribution of Early Triassic trace fossils to par-
ticular groups of animals was mostly tentative or weakly supported in the different
study cases. Retallack (1976, 1997a) mentioned crayfish, insect, and earthworm
burrows from the Narrabeen Group of Australia. Among them, earthworm traces,
containing fecal pellets, are the most reliable identified ones (Retallack 1976).
The body-fossil record of earthworms, as of other soft-bodied organisms, is fragmentary
and probably very incomplete to be used as control for the trace-fossil record. Some
tentative body fossils of oligochaetes were recorded earlier during the Middle
Ordovician (Conway Morris et al. 1982). However, these identifications are uncer-
tain and have been disputed (Humphreys 2003). Unquestionable evidence was pre-
sented by Pierce et al. (1990), who described a fossil earthworm embryo
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(Oligochaeta: Lumbricidae) preserved with part of its cocoon from beneath a
Holocene midden at Potterne, UK. The earliest evidence is not body fossils but
rather clitellate cocoons, parataxonomically named Burejospermum, Dictyothylakos,
and Pilothylakos, attributed either to Hirudinea or Oligochaeta. These cocoons are
diverse and were recorded worldwide from the Late Triassic to the Neogene (Manum
et al. 1991; Jansson et al. 2008; Tosolini and Pole 2010). The earliest specimens
were described from the Upper Triassic of Greenland (Harris and Rest 1966) and
Sweden (Manum et al. 1991). Other records were documented in the Jurassic of
Norway (Manum et al. 1991), England (Harris 1961), and Australia (Jansson et al.
2008). Cretaceous cocoons were described from Greenland (Manum et al. 1991),
Germany (Manum et al. 1991), Australia, and New Zealand (Tosolini and Pole
2010). Younger material comes from Holocene (post-glacial) deposits from Ontario,
Canada (Schwert 1979).

The body-fossil record of crayfishes is more complete. Miller et al. (2001) dis-
cussed the difficulties in separating burrows of crayfish from those of small tetrapods
in the Lower Triassic Fremeuow Formation of Antarctica. By contrast, Retallack
etal. (2003) and Gastaldo and Rolerson (2008) attributed very tentatively, Macanopsis
and Katbergia respectively, from the upper Permian—Lower Triassic interval of the
Karoo Basin from South Africa, to crustaceans. The oldest body fossil of Parastacidae
is Palaeochinastacus australianus (Martin et al. 2008), recorded from the Lower
Cretaceous of the Otway Group in Australia. Other body fossil records from the
Southern Hemisphere are younger (Sokol 1987; Aguirre-Urreta 1992; Feldmann and
Pole 1994). In a recent molecular phylogeny of the Parastacidae calibrated by body
fossils, Toon et al. (2010) estimated that the Parastacidae originated around 185 Ma
during the Early Jurassic. The oldest Astacidae comes from the Lower Cretaceous of
Spain (Garassino 1997). The oldest body-fossil record of possible Cambaridae
comes from the Upper Triassic Chinle Formation of USA (Hasiotis and Mitchell
1993; Crandall et al. 2000). Although this particular attribution has been disputed
(Rode and Babcock 2003), well documented, reliable crayfish trace fossils included
in the ichnogenus Camborygma, are recorded from this formation (Hasiotis and
Mitchell 1993; Hasiotis et al. 1993b). These trace fossils undoubtedly share with
modern crayfish burrows the typical Y branching, longitudinal connecting tunnels,
chambers, wall surface texture, and dependence on the water table (Hasiotis and
Mitchell 1993; Hasiotis et al. 1993b).

In contrast, the attribution of Late Triassic and Late Jurassic trace fossils from
the Chinle and Morrison formations of the USA (Hasiotis 2000, 2003, 2004) to
particular groups of insects, such as bees, dung beetles, ants, and termites, among
others, and of Early Jurassic trace fossils from the Elliot and Clarens formations of
South Africa to termites (Bordy et al. 2004), has been disputed and mostly unac-
cepted (Engel 2001; Genise et al. 2004, 2005; Grimaldi and Engel 2005; Bromley
etal. 2007; Alonso-Zarza et al. 2008; Lucas et al. 2010; Tapanila and Roberts 2012).
Undoubtedly, insects would have been conspicuous inhabitants of the Triassic and
Jurassic soils and probably many of the simple vertical, inclined, J-shaped, menis-
cate, or chambered burrows of the Chinle or Morrison Formations belong to them.
However, it is hard to unequivocally attribute any trace fossil in a paleosol from
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these units to a particular group of insects because most of these simple trace fossils
lack diagnostic characters. The Chinle and Morrison formations are exceptional in
that preserve diverse ichnofaunas, which would contribute significantly to our
understanding of ichnofacies evolution and the ichnofacies model. Unfortunately,
the lack of ichnotaxonomic treatment of these trace fossils and the brief and poorly
documented descriptions reflected in the poor understanding of their affinities and
paleoenvironmental significance allow us only a tentative inclusion of these asso-
ciations in the ichnofacies paradigm (Bromley et al. 2007). The end-Triassic mass
extinction event seems to have had little effect on diversity of paleosol ichnofaunas
judging by their increase in diversity between the Early and Late Triassic, represented
in the Chinle Formation, and the comparable ichnodiversity between the Chinle and
Morrison formations (Hasiotis 2000, 2004).

Genise et al. (2008a) proposed that terrestrial crayfishes could be capable of con-
structing nests, which basically showed two architectures: necked cells attached to
parental burrows (Cellicalichnus meniscatus) and central chambers surrounded by
radiating, short, meniscate tunnels (Dagnichnus titoi). The attribution of these struc-
tures from the Upper Jurassic and Lower Cretaceous of Argentina to crayfishes
were based on their occurrence in the same beds, with abundant crayfish trace
fossils (Loloichnus baqueroensis) (Bedatou et al. 2008a), and in the case of
Cellicalichnus meniscatus because its cells are connected to tunnels indistinguish-
able from the former. In addition, Dagnichnus resembles the bauplan of thalassini-
dean calichnia (i.e., small cells or tunnels connected with large chambers or tunnels).
There are two outstanding and well described trace fossils from Lower Jurassic
paleosols of Poland and Iran that deserve special comment (Piefikowski and
Niedzwiezki 2008; Fiirsich et al. 2010). Are these trace fossils the pioneer expres-
sions of larval parental care? Do they represent a major step in the evolution of
paleosol ichnofaunas? Piefikowski and NiedZwiezki (2008) described a trace fossil
composed of a central chamber surrounded by radiating cells, resembling the bau-
plan of Dagnichnus, from the Lower Jurassic of Sottykéw in Poland. Fiirsich et al.
(2010) described Cellicalichnus antiquus, a trace fossil composed of horizontal tun-
nels bearing opposite pairs of side branches that are considered breeding cells, from
the Lower Jurassic Aghounj Formation of Iran. These authors made a well sup-
ported analysis of the affinities of these trace fossils, evaluating the possibilities of
bees or bee ancestors, and crayfishes (Genise et al. 2008a; Genise and Verde 2010)
as putative producers. They concluded that an insect origin was more likely because
its morphology was more similar to that of insect nests than of extant crayfish traces.
These cases, which probably have counterparts in the Chinle or Morrison forma-
tions, may represent a major acquisition in soil invertebrate behavior, the construc-
tion of cells in soils for larval development, regardless their crustacean or insect
affinities (Genise 2016; Genise et al. 2008a; Genise and Verde 2010).

The Upper Jurassic and Lower Cretaceous formations of Patagonia, where the
most diverse ichnoassemblages are recorded, are clearly dominated by earthworm
and crayfish trace fossils (Bedatou et al. 2008a; Bedatou 2010), whereas other
ichnoassemblages elsewhere are less diverse. At present, burrowing crayfishes
are found in a diversity of soils and vegetation supporting periodical waterlogging.
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In South America, crayfishes inhabit swamp, marshes, and mossy bogs occurring in
evergreen forests and grasslands (Rudolph 1997; Rudolph and Crandall 2005;
Buckup 2003; Noro 2007) (Fig. 13.4b). In North America they live in wet prairies
with emergent sedges and grasses, marshes, and swamps (Grow 1981; Huner and
Barr 1991; Jordan et al. 2000), whereas in Oceania they inhabit marshes, swamp,
peatlands, and wetlands, occurring in grasslands, low shrublands, scrubs, and for-
ests (Lake and Newcombe 1975; Suter and Richardson 1977; Horwitz and Knott
1983, 1991; Richardson 1983; Horwitz et al. 1985; Growns and Richardson 1988;
Hamr and Richardson 1994; Richardson and Wong 1995; Whitmore et al. 2000).
Accordingly, the Camborygma Ichnofacies would be indicative of local marshes,
bogs, swamps, or wetlands as a subset of forest, scrub, and open herbaceous com-
munities (Mueller-Dombois and Ellenberg 1974).

In sum, Triassic, Jurassic, and most Cretaceous trace-fossil associations recorded
from paleosols of Australia, USA, South America, and Europe include or are domi-
nated by earthworm, crayfish, root, and/or undetermined trace fossils, which in
some cases could be produced by unidentified groups of insects (Tables 13.1 and
13.2; Figs. 13.1, 13.2, and 13.3). The Mesozoic record of trace fossils in paleosols
is greater than that of the Paleozoic, but it contains fewer and less studied occur-
rences than those of the Cenozoic. The lack of formally defined Mesozoic paleosol
ichnofacies until now reflects this scenario. A new ichnofacies dominated by cray-
fish and earthworm trace fossils, indicative of paleosols with fluctuating, high water
tables and distinctive of wetlands and swamps, may be defined at least tentatively
with the database presented herein. This ichnofacies is called the Camborygma
Ichnofacies, honoring the first ichnogenus named after crayfishes and also the oldest
record of crayfishes (Hasiotis and Mitchell 1993; Hasiotis et al. 1993b). The
Camborygma and Rhizolith Ichnofacies are the dominant paleosol ichnofacies from
the Early Triassic to the Early Cretaceous, and represent stasis until the advent of
new ichnotaxa and ichnofacies by the Late Cretaceous, the next revolution.

13.4 The Celliforma Revolution: The Late Cretaceous
Advent of Recognizable Insect Trace Fossils
in Paleosols and New Ichnofacies

By the Cretaceous, the Triassic—Jurassic scenario began to change slowly because
of the appearance and early diversification of different groups of holometabolous
insects capable of constructing preservable and distinct traces in soils (Genise and
Bown 1994a). This already “old” observation, put forward almost 20 years ago, is
still in force. Ants, bees, some groups of beetles, wasps, and termites that construct
preservable and recognizable traces in soils, probably favored by the diversification
of flowering plants, appeared by the Cretaceous when their first trace fossils are
also recorded (Genise 2016).

The body-fossil record of these distantly related groups of insects began in the
Cretaceous, even though there are abundant and impressive Triassic and Jurassic
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Fig. 13.2 Stratigraphic ranges of insect trace fossils in paleosols. Only reliable attributions to
insects are included. Numbers in unnamed trace fossils with reliable attributions indicate consulted
references: (1) Gregory et al. (2009); (2) Genise and Bown (1994a, 1996), Hamer et al. (2007),
Iriondo and Krohling (1996), Krohling (1999), Laza (1982, 1995, 1997), Sandau (2005), Tauber
(1996); (3) Gregory et al. (2009); (4) Hamer et al. (2007), Gregory et al. (2009); (5) Genise and
Verde (unpubl.), Verde and Genise (2007), Veroslavsky and Martinez (1996), Veroslavsky et al.
(1997); (6) Hamer et al. (2007), Yelinek and Chin (2007); (7) O’Geen and Busacca (2001); (8)
Hasiotis and Bown (1996), Hembree and Hasiotis (2007), Netto et al. (2007), Retallack et al.
(1995), Sandau (2005), Sheldon and Hamer (2010), Thackray (1994); (9) Gonzalez (1999), Sciutto
and Martinez (1996); (10) Sciutto and Martinez (1996); (11) Moore and Picker (1991); (12) Bown
and Genise (1993), Darlington (2005, 2011), Genise et al. (2000), Krell and Schawaller (2011),
Laza (1995, 2006a), Radies et al. (2005)

localities bearing fossil insects worldwide (Grimaldi and Engel 2005). Here, it is
provided a brief summary of the body-fossil record of common insect producers of
trace fossils in Cretaceous—Cenozoic paleosols. The records of Dynastinae
(Scarabaeidae) are from the Cenozoic of the USA and Germany, the oldest one of
which is Oryctoantiquus borealis from the Middle Eocene of the USA (Ratcliffe
et al. 2005). There are records of Melolonthinae (Scarabaeidae) from the Cenozoic
of Russia, Germany, Czech Republic, and the USA, but the oldest records are from
the Lower Cretaceous of Russia: Cretoserica latitibialis Nikolajev (1998) and three
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species of Lithanomala Nikolajev (1993) (Krell 2007). The oldest weevils, mostly
from the families Nemonychidae and Belidae, come from Late Jurassic deposits of
Karatau in South Kazakhstan (Gratshev and Zherikhin 2003; Oberprieler et al.
2007; McKenna et al. 2009; Legalov 2010). The oldest Curculionidae is
Arariperhinus monnei from the Santana Formation, Brazil (Lower Cretaceous,
Aptian-Albian) (Fernandes de Aquino Santos et al. 2011). Other Early Cretaceous
weevil fossils come from Sierra del Montsec (Spain), Yixian (China), Bon-Tsagan,
(Mongolia), Khetana and Ulya River (Russia), and Santana (Brazil); most of these
are members of the Nemonychidae (Gromov et al. 1993; Oberprieler et al. 2007,
Fernandes de Aquino Santos et al. 2011). Most families of extant weevils arose by
the end of the Cretaceous (McKenna et al. 2009). The oldest termite body fossils are
Baissatermes lapideus Rasnitsyn (2008) from the Lower Cretaceous (Barremian) of
Baissa, Siberia (Engel et al. 2007, 2009) and Morazatermes krishnai Engel and
Delclos (2010) from the Lower Cretaceous (Albian) of Spain. Other termites, also
recorded from the same deposits but presently known only from the forewings are
Cantabritermes simplex Engel and Delclos (2010) and Aragonitermes teruelensis
Engel and Delclos (2010) in amber from Teruel, Spain. The oldest undisputed bee
is Cretotrigona prisca from New Jersey amber, which is closely related to the extant
stingless bees (Michener and Grimaldi 1988a; Engel 2000). The precise age of C.
prisca is still unclear since it was considered initially to be 80 My (Michener and
Grimaldi 1988a, b) but later estimated in 70 My (Grimaldi 1999), and still later in
65 My (Engel 2000). Poinar and Danforth (2006) described Melittosphex burmensis
from the Lower Cretaceous Burmese amber (Myanmar), which was originally con-
sidered as a transitional form between crabronid wasps and extant bees. More
recently, Danforth and Poinar (2011) proposed that M. burmensis was a pollen-
collector and accordingly the oldest bee.

The oldest ants are recorded from the Early Cretaceous (Dlussky 1996; Nel et al.
2004; Ward 2007, Perrichot et al. 2008), and are unexpectedly diversified with several
distinct genera assigned minimally to two subfamilies (Perrichot et al. 2008).
The oldest body-fossil records are Haidomyrmodes mammuthus (Sphecomyrminae)
(Perrichot et al. 2007) and Gerontoformica cretacica (uncertain subfamily) (Nel et al.
2004) from the Lower Cretaceous (Upper Albian) of Charente-Maritime locality
(France), and Haidomyrmex cerberus (Dlussky 1996), Sphecomyrmodes orientalis,
Sphecomyrma sp. (both Sphecomyrminae), Burmomyrma rossi, and Myanmyrma
gracilis (both uncertain subfamily) from the Lower Cretaceous (Upper Albian) of
the Myanmar locality in Burma (France) (Dlussky 1996, Engel and Grimaldi 2006,
Ward 2007; Perrichot et al. 2008). Finally, the oldest Aculeata is from the Upper
Jurassic of Karatau in Kazakahstan (Central Asia) and was placed in the extinct
family Bethylonymidae (Rasnitsyn 1975, 2002). This family probably represents
the closest relative and gave rise to all modern aculeates (Rasnitsyn 2002; Brady
et al. 2009). Many modern vespoid families diverged in the Late Jurassic and
throughout the Early Cretaceous, although few families, including Pompilidae,
Mutiliidae, and Sapygidae, may have originated considerably more recently
(Brady et al. 2009). The earliest specimens of Sphecidae (Angarosphecidae)
appeared during the Early Cretaceous and these were recorded from many localities
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principally in Eurasia (Spain, Burma, Mongolia, China, Russia, UK, and
Transbaikalia) (Evans 1969; Rasnitsyn 1975, 1980, 2000; Darling and Sharkey
1990; Rasnitsyn et al. 1998, 1999; Rasnitsyn and Ansorge 2000; Rasnitsyn and
Martinez-Delclos 2000). The oldest Pompilidae is Bryopompilus interfector (tribe
Bryopompilini) from the Lower Cretaceous (Albian) amber of Myanmar (Burma)
(Engel and Grimaldi 2006).

These phylogenetically unrelated groups of insects, the most common producers
of trace fossils in paleosol since the Cretaceous, share a similar behavioral trait.
Representatives of these taxa line or construct different parts of their nests, cocoons,
or pupation chambers, which are not mere excavations, increasing significantly the
potential of preservation (Genise and Bown 1994a). Analogously, insects reinvented
several millions of years later, two behavioral acquisitions of Jurassic crayfishes:
linings for reinforcing walls and chambers for rearing larvae (Genise et al. 2008a).
The need of Jurassic and Cretaceous crayfishes to maintain water for breathing
inside their burrows probably favored the acquisition of pelletal linings to increase
isolation from soil and retain water within the burrows (Bedatou et al. 2008a).
Similar behavioral acquisitions, such as pelletal and fluidized linings, and other
features exclusive of insects, such as free-standing walls and organic linings, occur
for the first time in Late Cretaceous paleosol trace fossils, such as cocoons, pupa-
tion chambers, and nests, which can be attributable to insects. These behavioral
traits are recorded for the first time in a few deposits worldwide (Table 13.1;
Figs. 13.2 and 13.3).

The advent of flowering plants by the Early Cretaceous was probably one of
the greatest innovations, together with the radiation of Triassic seed plant lin-
eages, for Mesozoic continental environments. Examples of paleosols related to
primitive angiosperms are known from North and South America. Paleosols of
Barremian age are related to the earliest angiosperms in the eastern USA and cor-
respond to Entisols, pink clayey Inceptisols, and coaly Histosols covered by coni-
fers (Retallack and Dilcher 1986; Retallack 2001a). In southern Patagonia
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Fig. 13.3 (continued) because they constitute about half of the Paleozoic cases. The dotted line
indicates that it is recorded up to the Holocene, but these post-Paleozoic cases are not treated herein.
The first case of a paleosol bearing only rhizoliths, the rhizolith revolution, took place during the
Early Devonian. The Rhizolith Ichnofacies is later extensively recorded along the Phanerozoic. The
Camborygma revolution, during the Early Triassic, indicates the advent of assemblages dominated
or including earthworm and crayfish trace fossils (Camborygma Ichnofacies). The last record of this
ichnofacies is from the Eocene, but dotted line indicates that extant equivalent examples exist. The
Celliforma revolution, during the Late Cretaceous, is indicated by a rise in the ichnodiversity, which
includes records of the first recognizable insect trace fossils in paleosols and the oldest records of
the Celliforma Ichnofacies. The Coprinisphaera revolution, by the early Eocene, is envinced by
another rise in the ichnodiversity triggered by the EECO, the appearance and spreading of grass-
dominated habitats, and of the oldest cases of the Coprinisphaera Ichnofacies. The Termitichnus
Ichnofacies appeared by the Oligocene in closed forest paleoenvironments. The Celliforma and
Termitichnus ichnofacies could have been originated by the Early Cretaceous due the diversification
of its producers by that time. Accordingly, its possible origin is prolonged by a dotted line, although
there is no record of trace fossils attributable to soil termites, bees, or wasps
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(Argentina), the first Barremian—Aptian angiosperms occupied wetlands that were
affected by recurrent volcanic ashfalls. They grew on andic and kaolinitic Entisols
that supported diverse conifers (Cheirolepidaceae, Podocarpaceae and subordinate
Araucareaceae, Cupressaceae), along with Bennettitales, Cycadales, some
Ginkgoales, ferns, lycopods, and bryophytes (Cladera et al. 2002; Del Fueyo et al.
2007). Similar, poorly-drained, Aptian environments of the central USA were
also occupied by angiosperms, growing on Entisols and Histosols of lowlands and
coastal-marine settings (Retallack and Dilcher 1981). Apparently, Early and mid
Cretaceous angiosperms were early-successional colonizers (Retallack and
Dilcher 1986). Detailed sedimentologic and ichnologic information from Upper
Jurassic-Lower Cretaceous continental successions of southern Patagonia
(Argentina) indicates that terrestrial environments, paleosols and associated trace
fossils show no changes with the appearance of angiosperms. Lithofacies associa-
tion and paleosol types of the pre-angiosperm Late Jurassic Bajo Grande
Formation are similar to those of the post-angiosperm Aptian Bajo Tigre Formation
(Cladera et al. 2002; Bedatou et al. 2009).

According to Retallack (1986, 1991b) the significant modification on the weath-
ering pattern produced by the expansion of angiosperms since the Cretaceous (Knoll
and James 1987) had no consequences on soils since Jurassic paleosols are similar
to those of the early Paleogene. However, the diversification of termites, related to
the radiation of angiosperms, may have caused a change in Oxisols (Schaefer 2001)
through the incorporation of oval pellets rich in gibbsite, Fe-oxides, and charcoal,
along with elongate burrows filled with these microaggregates (Eschenbrenner
1986; Schaefer 2001). Thus, it is probable that proliferation of termites intro-
duced a modification of soils in tropical ecosystems. Nevertheless, most of middle
and Late Cretaceous examples of new insect trace fossils suggest no comparable
changes in paleosols in temperate regions. In any case, the appearance of flower-
ing plants had little effect on soil types, which remained mostly the same since the
Carboniferous.

The record of the third revolution, mostly Late Cretaceous in timing (Table 13.1;
Figs. 13.2 and 13.3), includes Fictovichnus gobiensis from the Djadokhta Formation
of Mongolia (Johnston et al. 1996); Cellicalichnus dakotensis from the Dakota
Formation of the USA (Elliot and Nations 1998); Pallichnus dakotensis and
Fictovichnus sciuttoi from the Bajo Barreal Formation of Argentina (Genise et al.
2007); Cellicalichnus chubutensis and Rebuffoichnus casamiquelai from the
Laguna Palacios Formation of Argentina (Genise et al. 2002a), and Fictovichnus
sciuttoi from the Allen Formation of Argentina (Genise and Sarzetti 2011).
Particularly interesting are the first records of assemblages of the Celliforma
Ichnofacies in the Mercedes Formation of Uruguay (Alonso-Zarza et al. 2011) and
the Two Medicine Formation of the USA (Martin and Varricchio 2011). The for-
mer assemblage is composed of Celliforma spirifer, C. germanica, Fictovichnus
gobiensis, and rhizoliths, whereas the latter is composed of Fictovichnus sciuttoi,
Rebuffoichnus isp, and Skolithos isp. It is possible that other cases mentioned pre-
viously also may represent examples of the Celliforma Ichnofacies, such as that of
the Allen Formation (Genise and Sarzetti 2011). However the lack of recorded
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assemblages composed of different ichnotaxa or carbonate-rich paleosols preclude
their inclusion until more evidence is recovered to understand the complete
paleoenvironmental significance of this ichnofacies. Even when some of these ich-
nogenera, such as Fictovichnus, Pallichnus, or Rebuffoichnus, are also representa-
tives of the Coprinisphaera or Celliforma Ichnofacies (Genise et al. 2000, 2010b),
when they do occur in associations dominated by earthworm or crayfish traces
(i.e., Laguna Palacios Formation), they can be considered more likely as secondary
participants of the Camborygma Ichnofacies, rather than indicators of Cretaceous
examples of the Coprinisphaera or Celliforma Ichnofacies. The same is true for
North American formations, like Claron and Willwood, in which insect trace fos-
sils like Parowanichnus, Eatonichnus, Celliforma, Naktodemasis, and wasp
cocoons are associated with crayfish and earthworm traces (Bown and Kraus 1983,
1987; Bown et al. 1997; Hasiotis and Bown 1996). The Celliforma ichnofacies is
indicative of calcretes developed under arid or semiarid conditions and palustrine
carbonates (Fig. 13.4c, d).

The presence of the Termitichnus Ichnofacies during the Cretaceous is a pos-
sibility considering that termites were already diversified by this period. However,
there are no cases recorded of associations of termite nests for the Mesozoic, with
the exception of those structures described by Bordy et al. (2004) from the Jurassic
of the Karoo Basin, which probably deserve a different interpretation (Genise
et al. 2005; Alonso-Zarza et al. 2008). Two cases of trace fossils attributed to
social insects, including termites, require a brief analysis. Genise et al. (2010a)
described rhizolith balls from the Lower Cretaceous Cerro Barcino Formation of
Argentina, and discussed their affinities, such as self-induced and localized over-
growth of secondary and tertiary rootlets, crayfish feeding chambers, and termite
or ant chambers for agricultural purposes. Tentatively, they were assigned to ant
fungus gardens, the oldest evidence of insect agriculture, which would represent
an important element of the Cretaceous revolution. The other case, Socialites
tumulus, described by Roberts and Tapanila (2006) from the Upper Cretaceous
Kaiparowits Formation of the USA, was interpreted as an ant or termite nest.
However, the morphology may also resemble bioturbated stump casts or megarhi-
zoliths. In any case, both records do not qualify as Cretaceous examples of the
Termitichnus Ichnofacies.

In sum, bee cells and nests, putative ant and termite nests, coleopteran pupation
chambers, and wasp cocoons are the Late Cretaceous pioneer trace fossils that sig-
nal another great change that would undergo paleosol ichnofaunas during the
Eocene, the fourth revolution (Tables 13.1 and 13.2; Figs 13.2 and 13.3). The
increase of ichnodiversity; the appearance of the first recognizable, constructed or
lined, insect trace fossils in paleosols included as secondary components of the
Camborygma Ichnofacies; and the first record of the Celliforma Ichnofacies, also
are keystones of the third revolution in paleosol ichnofaunas. The possibility of the
oldest physical evidence of sociality and insect agriculture is equally significant
from an evolutionary viewpoint. According to the body-fossil record, Early—mid
Cretaceous records of the Celliforma Ichnofacies could be expectable. The lack of
them could be an artifact or it could correspond to the absence of some behaviors
related to wall construction in the earliest representatives of the involved groups.
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Fig. 13.4 Modern analogous environments of the six paleosol ichnofacies. (a) Scoyenia
Ichnofacies. Drying ephemeral lake deprived of vegetation in Bajo de los Huesos, Chubut,
Argentina. Note several vertebrate trackways in the foreground, and some dessiccation cracks in
the lower right corner; (b) Camborygma Ichnofacies. Wetland in a glade of an evergreen forest at
Rucapihuel, Chile. Note the soil flooded by the rise of water table in the center of the figure. (c)
and (d) Celliforma ichnofacies at Las Tablas de Daimiel, Spain. Bare soil in a palustrine environ-
ment rich in carbonate (c¢), and carbonate rich soil supporting sparse vegetation. The calcrete was
broken and exposed to the surface by plowing. (e) Coprinisphaera Ichnofacies. Savanna domi-
nated by grasses at the Pilanesberg National Park, South Africa. Bare soil produced by trampling
of the rhino (at the center) and other large mammals is optimal for bee nesting. Large size herbi-
vores like this provide dung for coleopteran brood balls. (f) Termitichnus Ichnofacies. Closed for-
est of warm and humid climate in Misiones, Argentina. Tall trees, with interlocking crowns and
understory of tree ferns
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13.5 The Coprinisphaera Revolution: The Paleogene
Explosion of Insect Trace Fossils Related
To Grass-Dominated Habitats

The end Cretaceous mass extinction event seems to have had little effect on paleosol
ichnofaunas (Fig. 13.3), although the Paleocene record is comparatively scarce for
an accurate evaluation. One of the most significant floristic changes related to this
biotic crisis was the extinction of several species of evergreen angiosperms and the
subsequent predominance of conifers and deciduous angiosperms in the early
Paleogene vegetation (Retallack 2001a).

In South America, particularly in Central Patagonia, the Late Cretaceous succes-
sions end with a clear dominance of earthworm and crayfish trace fossils, as in most
Mesozoic units, and with the appearance of a few insect trace fossils (Genise et al.
2002a, 2004; Bedatou et al. 2008a). For the same region, the Paleocene—Eocene Rio
Chico Group shows scarce trace fossils, including the appearance of the first trace
fossil attributable to cicadas, Feoichnus challa, in the Koluel Kaike Formation of
Patagonia (Krause et al. 2008, 2010). The earliest body fossils of true cicadas
(Cicadoidea) are from the Triassic of Russia, France, and Australia (Shcherbakov
2008). These specimens are included in the family Tettigarctidae (hairy cicadas).
However, the distinct fossorial forelegs of Cicadoidea nymphs apparently were
present only by the mid Cretaceous, in amber from New Jersey (Grimaldi and Engel
2005). In South America, body fossils of hairy cicadas also are known from the
Lower Cretaceous of Brazil (Lefebvre et al. 1998; Shcherbakov 2008). The earliest
record of the family Cicadidae is from the Paleocene (ca. 60 Ma) of North America
(Cooper 1941). Another ichnogenus, Eatonichnus, attributable to dung beetles
(Bown et al. 1997; Krause et al. 2007; Sdnchez et al. 2010a), is recorded for the first
time from the Pefias Coloradas Formation in Patagonia (Genise et al. 2001a) and the
Claron and Colter formations in the USA (Bown et al. 1997). Few recognizable
earthworm burrows and doubtful crayfish trace fossils are recorded from the Rio
Chico Group (Krause et al. 2007; unpub. data).

In contrast, in North America, crayfish burrows (Camborygma) are still abundant
in Upper Paleocene-Lower Eocene units of Wyoming (Hasiotis and Honey 1995,
2000; Smith et al. 2008b) and Utah (Hasiotis and Bown 1996). The most diverse
Paleocene assemblage is from the Willwood Formation (Bown and Kraus 1983,
1987, Hasiotis et al. 1993a; Smith et al. 2008a, b, ¢, 2009) and from the Paleocene—
Eocene Claron Formation (Hasiotis and Bown 1996; Bown et al. 1997), both of
which are Cenozoic cases of the Camborygma Ichnofacies. The evidence that sup-
ports this assumption is: (1) the abundance of Camborygma and Edaphichnium in
the former deposits, (2) the abundance of Camborygma in the latter deposits, and
(3) the paleosols exhibiting fluctuating water tables. In those assemblages, recog-
nizable insect trace fossils are associated with crayfish and earthworm ones, as in
the Upper Cretaceous deposits of Patagonia. The Paleocene—Eocene Thermal
Maximum (PETM) produced the reduction in size and an increase in diversity of
trace fossils in the Willwood Formation of USA (Smith et al. 2009).
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In both Patagonia and the Western Interior of the USA, crayfish trace fossils are
mostly absent in younger deposits. In South America, soil crayfishes are at present
restricted to humid environments of Chile and Brazil (Bedatou et al. 2008a).
Earthworm trace fossils, although less recorded, are similarly present in Cenozoic
trace-fossil assemblages from younger units. Earthworms and crayfishes inhabit
modern South and North American soils, indicating that at a global scale the
end Cretaceous mass extinction had little direct effect on these organisms (Figs.13.1
and 13.3), even though regionally they displayed changes in their geographic
distribution (Bedatou et al. 2008a). In sum, the end Cretaceous mass extinction
(see Chap. 14), a major event in the history of life, was less important for paleosol
ichnofaunas than previous events, as the rising and diversification of angiosperms
during the Early Cretaceous, and later events, such as the origin and diversification
of grass-dominated habitats during the Middle-Late Eocene cooling trend after the
EECO. The fossorial habit of invertebrate soil organisms could have favored its
survival in critical episodes, such as proposed for fossorial vertebrates (Archibald
and Bryant 1990; Sheehan and Fastovsky 1992; MacLeod et al. 1997; Robertson
et al. 2004; Longrich et al. 2012).

The last major step in the evolution of plant communities and soils took place
during the middle Paleogene—early Neogene with the expansion of new, fast-
growing monocot plants: the grasses. Grass-dominated habitats (Fig. 13.4e) are
high-productivity ecosystems associated with dry or nonhumid habitats (subhumid
to semiarid) of different continents, currently occupying 40 % of global land surface
(Anderson 2006). However, grasses can also grow in less favorable conditions and
environments, such as highly seasonal and tropical, cool temperate, high-mountain
prairies, salt marshes, and are successional after periodic fires. Grass-dominated
habitat expansion promoted significant changes in biota, favoring development of
large vertebrates (grazers) on ground and diverse soil invertebrates, despite of the
development as a defensive strategy of chemically harmful effects on mammals,
insects, mites, and fungi (Retallack 2001a). As a consequence of changes in their
rooting system and soil biota, grassland soils acquired particular characteristics in
their soil aggregates, such as coarse granular or near-mollic to very fine-granular or
crumb ped structure. Other diagnostic character of these new soils is a dark surface
horizon rich in nutrients (mollic epipedon), displaying evidence of intense activity
of burrowing invertebrates, such as fecal pellets of earthworms (Retallack 2001a).
These features defined a new type of soil: the Mollisol. The appearance of a granu-
lar surface horizon in Oligocene-Miocene paleosols of the USA was considered a
proxy for grasslands, which replaced and displaced wooded shrublands and dry
woodlands (Retallack 1990). Fossil Mollisols present abundant, short and fine root
traces. Desert grasslands, bunch grasslands, and rangelands developed in the latest
Eocene—carly Oligocene in NW and central USA (Retallack 2001a, 2009). The first
short (sod) grassland Mollisols with fine crumb peds and dense and fine rhizoliths
appeared by the early Miocene (19 Ma) in the USA and Kenya. Both examples
occurred in dry climates based on the presence of shallow, calcic horizons (Retallack
2004; Retallack et al. 1995).
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Twenty millions years before, a set of particular factors converged in Central
Patagonia (Argentina) to trigger the formation of more ancient grass-dominated
habitats. Main factors were probably a wetter climate and soils formed in fresh vol-
canic ashes. In addition, the effect of herbivorous mammals and associated dung
beetles would also have contributed to the spread of these habitats. Paleosols of the
Sarmiento Formation formed in pyroclastic mudstones composed of dacitic—rhyo-
litic glass shards (61-99 %) and andesine plagioclase (Bellosi 2010). The distinctive
properties of this acid, low bulk-density volcaniclastic material benefited plant
growth and rooting by providing high fertility, rapid weathering, a high moisture-
holding capacity, and elevated macroporosity resulting in an appropriate medium
for the extension of root hairs in a well-aerated medium (Nanzyo 2002). The appear-
ance of the oldest grass-dominated habitats and grasslands is matter of debate and
controversial evidence (Genise 2016). The first documented grass-dominated habi-
tats for South America are middle Eocene (39 Ma) and occur at Gran Barranca in
the middle Eocene-lower Miocene Sarmiento Formation of Patagonia. This pro-
posal is supported by paleosols and loessic deposits (Bellosi and Gonzdlez 2010),
phytoliths (Zucol et al. 2010; Sdnchez et al. 2010c) and density and diversity of
dung beetle brood balls (Sdnchez et al. 2010b). The only thorough and comparative
phytolith analysis of Coprinisphaera and bearing paleosols (Sdnchez et al. 2010c)
showed that grasses were the second dominant group after palms, as expectable for
grassy savannahs with palms or palm groves (Cabrera 1971). The oldest dung bee-
tles attributable to ball-making species are Eocene (Krell 2007). Morphology and
behavior of dung beetles reflect a strong adaptation to exploit mammal excrement in
open-grass habitats (Halffter and Edmonds 1982; Hanski and Cambefort 1991).
African savannahs show the greatest diversity of dung beetles, whereas South
American forests show a large diversity because of the Quaternary extinction of
large mammals (Halffter 1991). Trace fossils of the Sarmiento Formation are clear
examples of the Coprinisphaera Ichnofacies, indicating open-herbaceous commu-
nities (Genise et al. 2000). High density (40—100 balls/m?), abundance and diversity
in sizes and ichnospecies of Coprinisphaera, indicating a large number and diver-
sity of dung beetles (Sdnchez et al. 2010b), reflect the middle Eocene appearance of
open-grass habitats (Bellosi et al. 2010), coincident with the increase of diversity
and size of mammals (Woodburne et al. 2014). Probably the appearance of grass-
dominated habitats was diachonous in different continents through the middle
Paleogene—early Neogene. Those of Gran Barranca were probably similar to the
present Chaco landscapes of northern Argentina (Cabrera 1971), represented by a
mosaic vegetation composed of grassy savannahs with palms and palm groves, and
forest in patches and riverbanks. Such a paleolandscape is concordant with all sedi-
mentologic, pedologic, paleontologic, and ichnologic evidence for Gran Barranca.

A possible still older evidence for a wooded grass-dominated habitat, developed
at lower latitudes, is represented in the renowned lower Eocene Asencio Formation
of Uruguay. The precise age of this unit is unknown because of the lack of datable
organisms or rocks. However, the lateritic character of the soils triggered by the
Early Eocene Climatic Optimum, the presence of abundant large Coprinisphaera
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that can be only related with large mammals, and the age of the underlying and
overlying formations, indicate that this formation is early Eocene in age (Genise
et al. 2004; Bellosi et al. 2004, 2016). The Asencio Formation represents not only
the oldest example of the Coprinisphaera Ichnofacies, but also one of its best exam-
ples because of the diversity of the ichnoassemblage. The presence of a grass-
dominated habitat is indicated by the extraordinary development of the
Coprinisphaera Ichnofacies and the record of Ultisols (Gonzdlez 1999), developed
under a warm and seasonal-humid climate. When analyzed with more resolution,
the Asencio Formation comprises two alternating ichnoassemblages which corre-
spond to the different ichnofabrics recognized either in the duricrusts or in nodular
beds Bellosi et al. (2016). The duricrusts, representing drier periods and shallower
layers of the soil, bear ichnoassemblages dominated by Palmiraichnus, Teisseirei,
and secondarily Rebuffoichnus. In turn, the nodular beds, representing wetter peri-
ods and deeper layers of the soil, bear more diverse ichnoassemblages including all
ichnotaxa recorded for the formation. Previous and current research shows that the
Asencio ichnofauna is composed of traces of cicadas (Monesichnus), dung beetles
(Coprinisphaera),bees (Palmiraichnus, Elipsoideichnus, Uruguay, Corimbatichnus,
Celliforma), sphinx moths (Teisseirei), termites (Krausichnus), beetles
(Rebuffoichnus), crayfish (Loloichnus), and cleptoparasites and detritivores
(Tombownichnus, Lazaichnus) (Genise and Bown 1996; Genise and Hazeldine
1998a, b; Genise and Laza 1998; Genise 2000; Genise et al. 2002b, 2013c; Genise
and Verde 2000; Mikilas and Genise 2003; Sanchez and Genise 2009; Verde and
Genise 2010). The extraordinary diversity of this trace-fossil assemblage reveals in
turn a higher diversity of insects inhabiting lateritic soils that may be the direct con-
sequence of the high temperatures and precipitation related to the EECO in this
grass-dominated habitat. This and the contemporaneous assemblage from the Gran
Salitral Formation of La Pampa (Melchor et al. 2002) record the first appearance of
Teisseirei barattinia, the only paleosol trace fossil attributed to sphinx moths Genise
et al (2013c). The oldest records of Sphingidae recognized by Sohn et al. (2012) are
an adult from the middle Eocene Baltic Amber (Kusnezov 1941), and a caterpillar
from the early Miocene of Baden-Wiittemberg, Esslinger, Germany (Zeuner 1927).
Other early body fossil Sphingidae is Mioclanis shanwangiana from the middle
Miocene (~15-17 My) of Shanwang, Shandong, China (Zhang et al. 1994). Other
species named Sphinx snelleni was described by Weyenbergh (1869) as a sphingid
from the Upper Jurassic Solenhofen Limestone deposits in Bavaria, Germany.
However, it has later proved to be a wood wasp of the hymenopteran family Siricidae
(Kitching and Sadler 2011). Skalski (1990) recorded also a Sphingidae from the
Baltic amber, but Ross (1996) considered this claim to be unsubstantiated.

Other outstanding assemblages belonging to the Coprinisphaera Ichnofacies are
those from different stratigraphic levels of the middle Eocene—lower Miocene
Sarmiento Formation of Argentina (Genise 2016; Genise et al. 2004; Bellosi et al.
2010; Séanchez et al. 2010b). Previous and current research demonstrates that the
Sarmiento ichnofauna is composed of trace fossils of cicadas (Feoichnus), dung
beetles (Coprinisphaera, Chubutolithes, Eatonichnus, Pallichnus), sphinx moths
(Teisseirei), bees (Celliforma), earthworms (Lazaichnus, Castrichnus, diffuse box-
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works), and cleptoparasites (Tombownichnus) (Krause and Genise 2004; Krause
et al. 2008; Bellosi et al. 2010; Sanchez and Genise 2009; Sanchez et al. 2010b). In
this case, several paleolatitudinal degrees southwards and about 10 million years
later, the extraordinary diversity of dung beetle trace fossils (Sdnchez et al. 2010b)
cannot be attributed directly to the EECO, but to the establishment of extended
grass-dominated habitats, bearing abundant large mammals, which provided the
dung for beetle brood masses. The high-resolution ichnostratigraphy of
Coprinisphaera at the locality of Gran Barranca records important paleoenviron-
mental changes in those former grass-dominated habitats, including an increase in
mammal size by the late Oligocene (Sdnchez et al. 2010b).

The major evolutionary event during the Eocene, which represents the appear-
ance and establishment of grass-dominated habitats, produced the appearance of
larger mammals and abundant dung, which in turn promoted the evolution of
coprophagy in dung beetles. Ichnology can reconstruct partially this history (Genise
2016). The first ichnologic evidence of dung-beetle coprophagy is probably recorded
by trace fossils found in dinosaur coprolites from the Upper Cretaceous Two
Medicine Formation of Montana (Chin and Gill 1996) (but see Arillo and Ortufio
2008). Theoretically, in the early stages of coprophage evolution, dung beetles pro-
duced meniscate burrows inside the dung pads and underneath in the soil substrate.
In more derived behavioral stages, dung beetles construct, and bury in the soil,
brood balls for rearing their larvae, which are preserved as trace fossils and recog-
nized as specimens of Coprinisphaera. Which is the oldest record of Coprinisphaera
and accordingly of brood ball construction? Halffter and Edmonds (1982) and Krell
(2006) hypothesized about ball-making dung beetles utilizing the abundant dung of
dinosaurs, whereas Arillo and Ortufio (2008) disregarded dinosaurs as dung provid-
ers. Arillo and Ortufio (2008) based their conclusions first, on the mixture of reptil-
ian feces with excretory products; and second, on the poor attraction of extant dung
beetles to those feces. With the only exception of a single putative specimen of
Coprinisphaera found in the Cretaceous of Brazil (Souza Carvalho et al. 2009), there
are no reliable records older than Eocene. Which is the ichnologic record of the evolu-
tion of coprophagy between the Cretaceous burrows of the Two Medicine Formation
and the Eocene brood balls of South America? Sanchez et al. (2010a) described a
pupation chamber of extant dung beetles, which matches the morphology of
Eatonichnus (and partially Chubutolithes), trace fossils that are found in Paleocene—
early Eocene deposits of Argentina and the USA (Bown et al. 1997; Genise et al.
2001a; Krause and Genise 2004; Krause et al. 2007), predating the appearance of
Coprinisphaera. These Paleocene trace fossils probably reflect the life habit of
Paleocene dung beetles that exhibit similar behaviors to extant species of Eucranini
(Scarabaeinae), which provision their nests with fecal pellets of small mammals, as
those recorded for the Paleocene. Mature larvae construct a helical pupation chamber
composed of pellets similar to Eatonichnus (Sdnchez et al. 2010a).

Can the body-fossil record of dung beetles corroborate this evolutionary history
proposed by ichnology? Regrettably, the body-fossil record of American dung
beetles is young. The oldest body fossils identified as Scarabaeinae are Prionocephale
deplanate Lin (1980) from the Upper Cretaceous of China and Cretonitis copripes



346 J.F. Genise et al.

Nikolajev (2007) from the Lower Cretaceous of Russia (Krell 2007). However,
among those genera whose species are recognized ball makers, the oldest is
Gymnopleurus eocaenicus Meunier (1921) (Gymnopleurini) from the Eocene of
Germany (Krell 2007). The fossil record of other ball makers is still younger. The
oldest Dichotomiini are Heliocopris antiquus Fujiyama (1968) from the Miocene of
Noto, Japan, and Anachalcos mfwangani Paulian (1976) from the Miocene of Lake
Victoria, Kenya. The oldest Phanaeini are Phanaeus antiquus Horn (1876) from the
Pleistocene of the Port Kennedy caves, in the USA, and Palaeocopris labreae Pierce
(1946) from the Pleistocene of Rancho La Brea, USA. Finally, the oldest Canthonini
are Copris leakeyorum Paulian (1976) and Metacatharsius rusingae Paulian (1976)
from the Miocene of Lake Victoria, Kenya.

By the Eocene, there are also diverse assemblages belonging to the Celliforma
Ichnofacies from palustrine carbonates. The Gran Salitral Formation of Argentina
(early Eocene) probably was influenced by the elevated temperatures of the EECO,
but in drier conditions than those recorded for the Asencio Formation. The assem-
blage is represented by Celliforma ispp., Teisseirei, Rosellichnus, Skolithos,
Taenidium, and Fictovichnus (Melchor et al. 2002). Another assemblage of possible
late Eocene age occurs in the Queguay Formation of Uruguay, and is represented by
Celliforma spirifer, C. germanica, C. rosellii, Fictovichnus gobiensis, Fictovichnus
sciuttoi, and rhizoliths (Alonso-Zarza et al. 2011).

After the Eocene, few diverse ichnoassemblages in paleosols can be recognized.
The youngest paleosol ichnofacies appeared by the Oligocene in the Jebel Qatrani
Formation of Egypt. Paleosols of closed-forest paleoenvironments (Fig. 13.4f) pre-
served in this unit include the first assemblage dominated by termite and ant trace
fossils (Termitichnus, Fleaglellius, Vondrichnus, Krausichnus) (Genise and Bown
1994b), composing the Termitichnus Ichnofacies (Tables 13.1 and 13.2; Figs. 13.2
and 13.3). This incipient ichnofacies has another potential example in some paleo-
sols of the Chui Formation in Brazil (Netto et al. 2007). Even when diverse ichnoas-
semblages may be expected in closed-forest soils, the geologic record of these
associations is very scarce. The lateritization process involves the destruction and
incorporation of old termite nests to the soils (e.g., Eschenbrenner 1986; Schaefer
2001), probably reducing the probability of tropical termite nests to cross the tapho-
nomic barrier.

Other diverse trace-fossil assemblages in paleosols are recorded in the lower
Oligocene White River Formation of the USA (Hembree and Hasiotis 2007); the
upper Oligocene—lower Miocene John Day Formation of the USA (Retallack 2004);
the lower Miocene Pinturas Formation of Argentina (Genise and Bown 1994a;
Bedatou 2010); Miocene gypsum and gray shales of Spain (Uchman and Alvaro
2000); the Miocene Pawnee Creek Formation of the USA (Hembree and Hasiotis
2008); the upper Miocene Collon Cura Formation of Argentina (Bedatou 2010);
and the upper Miocene of the northern African Chad Basin (Duringer et al. 2007).
The remaining Miocene, Pleistocene, and Holocene record is composed mostly of
descriptions or citations of single or a few trace fossils of the above mentioned
groups of insects from different formations, which can be included in the
Coprinisphaera and Celliforma Ichnofacies. The peaks shown by Fig. 13.3 for the
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Neogene, even when comparable with older ones, correspond to no particular
evolutionary events, but rather to more extensive research mostly carried out in
Pliocene and Pleistocene deposits of Argentina and Africa.

13.6 Conclusions

Our analysis of a database composed of 166 cases of invertebrate and plant trace
fossils in paleosols resulted in the recognition of four major evolutionary steps from
the first paleosols-bearing rhizoliths preserved in Early Devonian rocks to those of
the Holocene. Each step constitutes a revolution for paleosol ichnofaunas, which
triggered the appearance of a new ichnofacies. These events reflect some of the
major changes in the history of life. Other historical events, such as the Cretaceous—
Paleocene event, have no reflection in paleosol ichnofaunas or alternatively the data
is too scarce for detection.

The first revolution is associated with the appearance and expansion of vascular
plants, and took place in the Early Devonian with the first paleosols showing only
ichnoassemblages composed of rhizoliths, which constitute half the cases of the
Paleozoic and are recorded up to the Holocene. The appearance of vascular plants
by the late Silurian resulted in the Early Devonian appearance of several types of
paleosols (i.e., Histosols, Spodosols, Alfisols, and Ultisols) linked to the develop-
ment of new ecosystems. These rhizolith assemblages compose an archetypal ich-
nofacies, the Rhizolith Ichnofacies, which would be indicative of subaerial exposure
and the presence of different types of vegetation. Depending on needed and pending
studies on rooting patterns, in the future this ichnofacies can yield more precise and
significative paleoenvironmental data. Also, the absence of invertebrate trace fossils
may be a clue to interpret better the paleoenvironment. Other Paleozoic ichnofau-
nas, composed of scarce invertebrate trace fossils, some of them meniscate, are
considered herein as representative of the Scoyenia Ichnofacies, reflecting the peri-
odical subaerial exposure of the deposits.

These ichnoassemblages are the only recorded for the rest of the Paleozoic until
the second revolution, after the end-Permian mass extinction occured, with the
appearance of trace-fossil assemblages dominated by earthworm (Edaphichnium,
Castrichnus, diffuse boxworks) and crayfish (Camborygma, Loloichnus,
Dagnichnus, Cellicalichnus, Katbergia) trace fossils. These ichnoassemblages,
indicative of paleosols with high fluctuating water tables and representative of local
marshes, bogs, swamps, and wetlands, may be grouped into a new archetypal ich-
nofacies: the Camborygma Ichnofacies, which should be defined more completely
in the future, when better-documented cases are available.

The third revolution occurred in the Late Cretaceous. By that time, the diversi-
fication of flowering plants triggered the diversification of certain soil-inhabiting
insects, such as ants, termites, bees, wasps, and some beetles, which were capable
of constructing linings and free-standing walls for their chambers and nests that
consequently acquired a high preservation potential. By the Late Cretaceous, the
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first recognizable insect trace fossils in paleosols occurred, either as isolated exam-
ples, as part of the Camborygma Ichnofacies, or in a new one: the Celliforma
Ichnofacies. The end Cretaceous mass extinction shows no global changes in
paleosol ichnofaunas, although the Paleocene record is scarce for a thorough evalu-
ation. In southern South America, the Camborygma Ichnofacies, which was domi-
nant since the Late Jurassic, dissapeared. In North America the Camborygma
Ichnofacies remains dominant in Paleocene—Early Eocene deposits, bearing recog-
nizable insect trace fossils, resembling those assemblages of the South American
Late Cretaceous.

The fourth and most important revolution for ichnodiversity took place in the
middle Eocene, influenced by the advent and expansion of grass-dominated habitats.
Other favorable conditions that promoted this ichnofacies were the early Eocene
Climatic Optimum, and the establishment of modern insect groups. These conditions
also lead to the appearance of a new soil type, the Mollisols, displaying granular or
crumb peds. Trace fossils of cicadas (Feoichnus, Monesichnus, Naktodemasis), dung
beetles (Coprinisphaera, Eatonichnus, Chubutolithes), bees (Palmiraichnus,
Elipsoideichnus, Uruguay, Corimbatichnus, Rosellichnus), sphinx moths (Zeisseirei),
ants (Attaichnus), termites (Krausichnus), and cleptoparasites and detritivores
(Tombownichnus, Lazaichnus) appeared or diversified during this revolution that led
to the establishment of the Coprinisphaera Ichnofacies. By the Oligocene, in
closed-forest environments, also appears the first assemblage dominated by termite
and ant trace fossils (Termitichnus, Fleaglellius, Vondrichnus, Krausichnus), com-
prising the Termitichnus Ichnofacies. The Coprinisphaera revolution is followed
during the Neogene by stasis that was interrupted by the occasional appearance of
new trace fossils of the same, previously mentioned groups of insects. In contrast
with older ichnofacies (Scoyenia and Camborygma), which are recorded in flooded
or high water table paleosols, the younger ichnofacies (Celliforma, Coprinisphaera,
and Termitichnus) reflect paleosols with lower water tables. It is as if the terrestrial
ichnofaunas would have shift to drier environments, favored by morphological and
behavioral adaptations of their producers.

The ichnofacies model for paleosols is an ongoing approach that still has weak
points, all of which arise in the present incompleteness of the trace-fossil record.
For developing a stronger foundation, additional documentation will be required,
and surely it will be a future task of ichnologists to complete and strengthen the
models. There are about 166 case studies (25 for the Paleozoic, 39 for the Mesozoic,
and 102 for the Cenozoic), many of which are understudied or involve few trace
fossils that presently are insufficient to resolve the entire scenario. Despite this, the
model is a very promising one, and currently allows us to recognize within the fog
of incompleteness, the silhouettes of five paleosol ichnofacies, each one including a
number of ichnoassemblages that show sharply or broadly defined paleoenviron-
mental significance. After the novel approach presented in this chapter, the paleosol
ichnofacies model also provides an evolutionary scenario to track the major changes
in the history of terrestrial life.
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Chapter 14
The Cenozoic Radiation of Mammals

Veronica Krapovickas and Sergio Vizcaino

14.1 Introduction

Mammals are at present among the most successful vertebrates on Earth. On land
they inhabit almost all the habitats from the desert to the poles and have diverse
locomotor and dietary niches and size ranges. The Mesozoic record of mammals
spans about 155 Ma (the earliest mammals are known from the Late Triassic), more
than twice the duration of the entire Cenozoic Era (Luo 2007). Even though their
fossil record is relatively scarce, Mesozoic mammals were diverse and had assorted
biologic roles (Luo 2007). The end-Cretaceous mass extinction event that elimi-
nated non-avian dinosaurs and many other mostly marine taxa has been proposed
to having triggered the evolutionary radiation of Cenozoic mammals (Archibald
and Deutschman 2001). Following e.g. Alroy (1999), Benton (1995), and Foote
et al. (1999), among others, most mammalian orders originated and diversified in a
short period of time (10 Mya) soon after the Cretaceous/Tertiary (K/T) boundary.
Studies based on molecular data introduced two other models for the diversifica-
tion on mammals: the long-fuse and the short-fuse models. The first model postu-
lated an extended lag for the radiation of mammals as orders originated in the
Cretaceous but diversified after the K/T transition (e.g. Springer et al. 2003). The
second model proposed that the origin of orders and their diversification occurred
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well back into the Cretaceous (e.g. Springer 1997; Kumar and Hedges 1998).
Recent studies integrating morphologic and molecular data proposed that the ori-
gin of extant orders of mammals occurred during the Late Cretaceous and major
diversification occurred during and after the early Eocene, remaining the diversifi-
cation rates unchanged after the K/T transition (Bininda-Emonds et al. 2007). Up
to now, fossil evidence supporting the previous models was restricted to body fos-
sils. However, although even more sparse, the Mesozoic footprint record of early
mammals may provide further evidence.

In this contribution we briefly summarize the Mesozoic and Cenozoic record of
footprints attributed to mammals worldwide. Also, we address in more detail the
evolutionary implications of the Cenozoic ichnologic record of South American
mammals. Regarding the latter, we will first analyze chronologic and geographic
changes in the composition of the mammalian ichnofaunas and compare them with
those of body fossils. Second, we will consider the paleoenvironmental distribution
of mammalian footprints and their paleoecological significance.

14.1.1 Mammalian Ichnology Before the K/T Transition

The Mesozoic record of mammals is mostly composed of isolated teeth; postcranial
skeletons and skulls are rare (Kielan—Jaworowska et al. 2004). This fact complicates
in-depth evaluation of morphologic variations of footprints produced by distinct
early mammalian lineages, making the assignment to putative producers of
footprints vague. Distinguishing footprints assignable to mammals from other taxa
of the mammalian evolutionary line as nonmammalian cynodonts and even basal
synapsids is problematic (e.g. Schultz-Pittman et al. 1996; Lockley et al. 2004).

One of the mostremarkable footprints known from the Mesozoic is Ameghinichnus
patagonicus, from the Middle Jurassic La Matilde Formation of Santa Cruz
Province, Argentina. They are one of the unquestioned examples of footprints
attributed to early mammals. Casamiquela (1964) proposed a mammalian
trackmaker due to the morphology of the manus and pes prints and the galloping
and hopping gaits evidenced on the trackways. This author inferred that the
trackmaker was a quadrupedal animal with similarly-shaped, pentadactyl manus
and pes, with the manus being slightly smaller than the pes. The impressions of
manual and pedal digits II-IV are of similar length, and those of digits I and V are
slightly shorter. The metacarpal/tarsal and phalangeal pads are well preserved, and
there are no claw marks (Casamiquela 1964). The trackways record a walking gait,
with the manus-pes sets in an alternate position in relation to the midline. In contrast,
hopping trackways have manus-pes sets grouped at relatively the same position in
relation to the midline (Casamiquela 1964). Most authors supported Casamiquela’s
(1964) identification of the Ameghinichnus trackmaker as an early mammal (e.g.
Leonardi and de Oliveira 1990; Leonardi 1994; Rainforth and Lockley 1996; Martin
and Rauhut 2005; Rougier et al. 2007a, b). Casamiquela (1964) proposed
“pantotheres” as the mammalian producer, whereas Kielan-Jaworowska and
Gambaryan (1994) attributed Ameghinichnus to multituberculates.



14 The Cenozoic Radiation of Mammals 373

Similar tracks from other ichnofossiliferous localities worldwide have been
referred to Ameghinichnus, as it is the best defined ichnotaxa assigned to an early
mammal. Olsen (1980) described a series of ichnofossils from the Lower Jurassic
Newark Supergroup, later recognized as representing several species of
Ameghinichnus, which he ascribed to nonmammalian cynodonts, possibly
tritheledontids (Olsen et al. 2002). Footprints with hair impressions have been
recorded in the Triassic Stomberg group in Lesotho and inferred to have been
produced by nonmammalian cynodonts or early mammals (Ellenberger 1972, 1974,
1975). De Valais (2009) recognized the ichnotaxa Eopentapodiscus to be the only
synonymous with Ameghinichnus, after reviewing numerous icnotaxa
(Acropentapodiscus, Amphibiopodiscus, Aristopentapodiscus, Dinopentapodiscus,
Eoameghinichnus, Grypopentapodiscus, and Pseudameghinichnus) once attributed
to the ichnogenus from the Upper Triassic-Lower Jurassic Elliot Formation of
Lesotho (Ellenberger 1970), and accepted the assignment to Ameghinichnus given
by other authors to materials from the Towaco Formation (Lower Jurassic) of the
Newark basin, USA (Olsen and Rainforth 2001), and the Lower Jurassic of
Sottykéw, Poland (Gierliniski et al. 2004).

Another ichnotaxon, Brasilichnium elusivum, attributed to Mesozoic early
mammals is recorded in numerous localities. This ichnotaxon was originally
described from the Botucatu Formation (Upper Jurassic-Lower Cretaceous) of
Brazil and interpreted as corresponding to small-sized mammals (Leonardi 1980,
1981; Fernandes and Carvalho 2008). Later, it was recorded in classical Lower
Jurassic outcrops of USA, including the Navajo Sandstone and the Moenave
Formation, and reinterpreted as possibly produced by advanced therapsids or early
mammals (Lockley and Hunt 1995; Lockley et al. 1998; Rainforth and Lockley
1996; Loope 2006). Other Cretaceous footprints of mammals have been reposted
from the Gate Formation (Late Cretaceous) of Alberta, Canada, and ascribed to
several mammalian trackmakers (Sarjeant 2000; McCrea and Sarjeant 2001).

At present, there is just one example of footprints attributed to marsupial
mammals, Duquettichnus kooli, described by Sarjeant and Thulborn (1986) from
the Lower Cretaceous of the Peace River Canyon, British Columbia. The footprints
record syndactyly of pedal digits I and III, supporting a marsupial origin.

Some of the most significant and better preserved ichnologic records of Mesozoic
mammals are from Gondwana, despite their relatively scarce body-fossil record
(e.g., Kota Formation, India; Yadagiri 1984). This differs from the body-fossil
record in boreal landmasses, where Mesozoic mammalian diversity and abundance
is much higher (Bonaparte 1986, 1990, 1995; Bonaparte and Kielan-Jaworowska
1987; Luo et al. 2002; Kielan—Jaworowska et al. 2004).

14.1.2 Mammalian Ichnology After the K/T Transition

The global ichnologic record of mammals is poor for the Paleogene, most likely
representing less than 17 % of the record for the entire Cenozoic (McDonald et al.
2007). Paleocene footprints are extremely rare, with just a few tracksites reported
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worldwide (Hunt and Lucas 2007), all of them in North America (e.g. Peabody
1954; Johnson 1986; Lockley and Meyer 2000).

The only confirmed tracksite that contain Paleocene mammal footprints is from
Alberta, Canada. It corresponds to a trackway preserved on a fallen block from
strata belonging to the Porcupine Hills Formation at Calgary (McCrea et al. 2004).
The footprints were ascribed to Sarjeantipes whitea and interpreted as produced by
creodont mammals. In 1928, Rutherford and Russell unveiled Paleocene footprints
found near Red Deer, Alberta, attributed to a mammalian track maker (Rutherford
and Russell 1928; Russell 1930). McCrea et al. (2004) re-studied the material
suggesting a crocodilian track maker. It is notable that, even apparently depauperate,
the Paleocene tetrapod footprints have scarce mammals represented and is mostly
composed by amphibian, reptiles, and birds, in contrast with mammal footprints
represented during the rest of the Cenozoic (Hunt and Lucas 2008) that became
more frequent through the Eocene and Oligocene.

The most diverse and well-studied Eocene mammalian ichnofauna is from the
late Eocene of Texas (Sarjeant and Langston 1994). It records footprints attributed
to insectivoran, creodont, carnivore, mesonychian, rodent, perissodactyl, and
artiodactyl trackmakers. The trans-Peco ichnofauna is one of the best recorded
examples of a Paleogene ichnofauna globally, even though it could be enlightening
to reevaluate this ichnassemblage in the light of new discoveries. Another remarkable
ichnofauna is from the Chuckanut Formation of Northern Washington, USA
(Mustoe 2002). This ichnofauna is mainly composed of multiple bird tracks and
also record remarkable mammal footprints attributed to extinct lineages, such as
Pantodonta or Dinocerata and early equids or tapiroids. Other records are from
Europe (e.g. Desnoyers 1859; Ellenberger 1980), Asia (West et al. 1983; Abbassi
and Lockley 2004; Ataabadi and Khazaee 2004), North America (e.g. Greben and
Lockley 1992; Lockley and Hunt 1995; Moussa 1968), and South America (e.g.
Noblet et al. 1995).

One of the best preserved and abundant mammalian footprints corresponds to the
lower Oligocene of southeastern France (Demathieu et al. 1984; Costeur et al.
2009). It records abundant perissodactyl (early Rhinocerotids) and artiodactyl
(Lophiomerycids and/or Entelodonts) track and trackways and a footprint attributed
to a mustelid-like carnivore. Some other examples are recorded from additional
localities of Europe (e.g. Tobein 1952; Casanovas-Cladellas and Santafé-Llopis
1982; Astibia et al. 1994; Prats and Lopez 1995; Murelaga et al. 2000; Uchman
et al. 2004), North America (e.g. Nixon 1991; Lockley and Hunt 1995; Terry and
Wells 1995), and South America (e.g. Noblet et al. 1995).

For the Neogene the number of recorded tracksites grows exponentially (for
more detail, see McDonald et al. 2007). Herein, we briefly highlight some of the
classic outcrops documenting relevant mammal footprints. The research performed
in these localities has documented a wide variety of mammal footprints and
established the most used ichnotaxonomy of Cenozoic tracks and trackways. This is
the case of the work of Vyalov (1965, 1966) who reported numerous bird and
mammal footprints from the Miocene of Ukraine. The mammalian footprints were
ascribed to numerous ichnotaxa assigned to canids (Bestiopeda gracilis), felids
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(Bestiopeda bestia, Bestiopeda sanguinolenta), artiodactyls (Pecoripeda amalphaea,
Pecoripeda dicrocervoides, Pecoripeda djali, Pecoripeda gazelle, Pecoripeda
satyri), and perissodactyls (Hippipeda aurelianis). The Miocene of the Romanian
Carpathians records also a diverse and excellent preserved avian and mammalian
ichnofauna (Panin and Avram 1962; Panin 1965). Mammals are represented by
canids (Canipeda longigriffa), felids (Felipeda felis, Felipeda lynxi), artiodactyl
(Pecoripeda gazelle), and proboscidean (Proboscipeda enigmatica) footprints.
Other significant records are known from Europe (e.g. Pérez-Lorente et al. 1999;
Astibia et al. 2007; Fornés et al. 2002), North America (e.g. Robertson and Sternberg
1942; Scrivner and Bottjer 1986; Lockley and Hunt 1995; McNeil et al. 1999; Lucas
2007), Oceania (e.g Carey et al. 2011), Africa (e.g. Leakey and Harris 1987; Robert
et al. 2008; Scott et al. 2009), and South America (e.g. Aramayo and Manera de
Bianco 1987a, b). Globally, the Neogene mammalian record is dominated by
ungulate footprints as perissodactyls, artiodactyls, and proboscideans, followed by
carnivores as felids and canids.

Reviews of Cenozoic vertebrate ichnology are scarce. The contributions of
Leonardi (1994), McDonald et al. (2007), Hunt and Lucas (2007), and Lucas (2007)
are the starting point to deeper ichnologic analyses, not only compiling bibliography,
but also evaluating the biologic, ethologic, and ecologic information provided by
footprints in the framework of the evolutionary history of their producers. Hopefully,
identifying the problems and promises of the mammalian paleoichnologic record of
each continent will help to develop a research program that will permit global
comparisons.

14.2 The South American Case Study

The geologic history of the main continental land masses has influenced the evolu-
tion and dispersal of their mammal faunas, resulting in radical differences among
them. Thus, from many aspects, direct comparisons of mammalian communities
between continents are a difficult task. For instance, the magnitude of the disparity
achieved is so that the faunas are not used for global age correlations and particular
land-mammal-age systems are used for different continental land masses (see
Woodburne 2006 for North America; Lindsay 1997 for Eurasia; Megirian et al.
2010 for Australia; and Flynn and Swisher 1995 for South America).

The long-term isolation of the South American continent for the greater part of
the Cenozoic produced a highly peculiar terrestrial biota, of which one of the best-
known components is its endemic mammalian fauna; probably the best fossil record
of mammals among southern hemisphere continents (Croft 2012). Several of the
main groups discussed below became partially or fully extinct and/or developed
morphologies many times outlying the shape ranges of their living closest relatives
(e.g., carnivorous marsupials, glyptodonts, and sloths among xenarthrans, native
ungulate groups). As a consequence, inferences about their paleobiology cannot
rely on simplistic actualistic reference to the biology of their living closest relatives.
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In the last two decades, some effort has been made to overcome this situation
through the application of morphofunctional, biomechanical, and ecomorphologic
approaches. 