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Abstract In this paper, heat and heat-like equations with classical and non local
boundary conditions are presented and a homotopy perturbation method (HPM) is
utilized for solving the problems. The obtained results as compared with previous
works are highly accurate. Also HPM provides continuous solutions in contrast to
traditional methods, like finite difference method, which only provides discrete
approximations. It is found that this method is a powerful mathematical tool and
can be applied to a large class of linear and non linear problems in different fields of
science and technology.
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1 Introduction

Recently, new analytical methods have gained the interest of researchers for finding
approximate solutions to partial differential equations. This interest was driven by
the needs from applications both in industry and sciences. Theory and numerical
methods for solving initial boundary value problems were investigated by many
researchers see for instance [1–9] and the reference therein. In the last decade, there
has been a growing interest in the new analytical techniques for linear and non
linear initial boundary value problems. The widely applied techniques are pertur-
bation methods. He [10] has proposed a new perturbation technique coupled with
the homotopy technique, which is called the homotopy perturbation method (HPM)
for solving non linear problems. In contrast to the traditional perturbation methods,
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a homotopy is constructed with an embedding parameter p 2 ½0; 1�, which is con-
sidered as a small parameter. Homotopy perturbation method has gained reputation
as being a powerful tool for solving linear or non linear partial differential equa-
tions. He [11], applied HPM to solve initial boundary value problems which is
governed by the non linear ordinary (partial) differential equations, the method has
been shown to effectively, easily and accurately solve a large class of linear and non
linear problems with components converging rapidly to exact solutions. Thus the
main goal of this work is to apply the homotopy perturbation method (HPM) for
solving heat and heat-like equations subject to different type of boundary condi-
tions. The obtained results are more accurate than those obtained recently by
Damrongsak et al. [12]. In this paper we consider a one-dimensional heat equation,
one-dimensional and three-dimensional heat-like equations. The implementation of
the method has shown reliable results in that few terms are needed to obtain either
exact solution or to find an approximate solution of a reasonable degree of accuracy
in real physical models. Numerical examples are presented to illustrate the effi-
ciency of the homotopy perturbation method, the obtained results are all in good
agreement with exact ones.

2 The Linear Heat Equation with Dirichlet and Neumann
Conditions

2.1 Problem Definition

We consider the diffusion equation given by

@u
@t

¼ a
@2u
@x2

; 0\x\l; t[ 0 ð1Þ

subject to the Initial condition:

u x; 0ð Þ ¼ u0 xð Þ; 0\x\a ð2Þ

and the boundary conditions:

u 0; tð Þ ¼ g0 tð Þ; t[ 0 ð3Þ

u 1; tð Þ ¼ g1 tð Þ; t[ 0 ð4Þ

ux 0; tð Þ ¼ g2 tð Þ; t[ 0 ð5Þ

ux 1; tð Þ ¼ g3 tð Þ; t[ 0 ð6Þ
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where the diffusion coefficient α is positive, uðx; tÞ represents the the temperature at
point ðx; tÞ and f x; tð Þ; g0 tð Þ; g1 tð Þ; g2 tð Þ; g3ðtÞ are sufficiently smooth known
functions.

2.2 Analysis of Homotopy Perturbation Method

To illustrate the basic ideas, let X; and Y be two topological spaces. If f and g are
continuous maps of the spaces X into Y ; it is said that f is homotopic to g, if there is
continuous map F : X � ½0; 1� ! Y such that F x; 0ð Þ ¼ f xð Þ and F x; 1ð Þ ¼ g xð Þ
for each x�X, then the map is called homotopy between f and g. We consider the
following nonlinear partial differential equation:

A uð Þ � f rð Þ ¼ 0; r 2 X ð7Þ

subject to the boundary conditions

Bðu; @u=@gÞ ¼ 0; r 2 C ð8Þ

where A is a general differential operator, f is a known analytic function, Γ is the
boundary of Ω and @=@g denotes directional derivative in outward normal direction
to Ω. The operator A, generally divided into two parts, L and N; where L is linear
while N is nonlinear. Using A ¼ Lþ N; Eq. (7) can be rewritten as follows:

L vð Þ þ N vð Þ � f rð Þ ¼ 0 ð9Þ

by the homotopy technique, we construct a homotopy defined as

H v; pð Þ : X� ½0; 1� ! R ð10Þ

which satisfies:

H v; pð Þ ¼ 1� pð Þ L vð Þ � L u0ð Þð Þ þ p A vð Þ � f rð Þð Þ;
p 2 0; 1½ �; r 2 X:

ð11Þ

Or

H v; pð Þ ¼ L vð Þ � L u0ð Þ þ pL u0ð Þ þ p N vð Þ � f rð Þð Þ ¼ 0;

p 2 0; 1½ �; r 2 X:
ð12Þ
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Where p is an embedding parameter, u0 is an initial approximation of Eq. (7), which
satisfies the boundary conditions. It follows from Eq. (12) that:

H v; 0ð Þ ¼ L vð Þ � L u0ð Þ ¼ 0 ð13Þ

H v; 1ð Þ ¼ A vð Þ � f rð Þ ¼ 0 ð14Þ

The changing process of p from 0 to 1 monotonically is a trivial problem.
H v; 0ð Þ ¼ L vð Þ � L u0ð Þ ¼ 0 is continuously transformed to the original problem

H v; 1ð Þ ¼ A vð Þ � f rð Þ ¼ 0 ð15Þ

In topology, this process is known as continuous deformation.
L vð Þ � Lðu0Þ and A vð Þ � f ðrÞ are called homotopic. We use the embedding

parameter p as a small parameter, and assume that the solution of Eq. (12) can be
written as power series of p:

v ¼ p0v0 þ p1v1 þ p2v2 þ p3v3 þ � � � þ pnvn þ � � � ð16Þ

Setting p ¼ 1 we obtain the approximate solution of Eq. (7) as:

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ v3 þ � � � þ vn þ � � � ð17Þ

The series of Eq. (17) is convergent for most of the cases. But the rate of the
convergence depends on the linear operator NðvÞ. He [13] has suggested that:

1. The second derivative of NðvÞ with respect to v should be small because the
parameter may be relatively large i.e. p ¼ 1:

2. The norm of L�1ð@N=@vÞ must be smaller than one so that the series converges.

2.3 Solution Procedure

The solution is considered in the form below:

v ¼ p0v0 þ p1v0 þ p2v2 þ � � � ð18Þ

Setting p ¼ 1, we obtain the approximate solution of Eq. (1) as follows:

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � ð19Þ
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Substituting Eq. (18) into Eq. (12) and comparing the coefficient of like powers
of p, we have

p0 : ðv0Þt � ðu0Þt ¼ 0; v0 ¼ u0 ¼ u x; 0ð Þ
p1 : ðv1Þt � v0ð Þxx�s x; tð Þ ¼ 0

v1 ¼ Zt

0

ððv0Þxx � sðx; tÞÞdt; v1ðx; 0Þ ¼ 0

p2 : ðv2Þt � ðv1Þxx ¼ 0 ) v2 ¼ Zt

0

ðv1Þxxdt; v2 x; 0ð Þ ¼ 0

p3 : ðv3Þt � ðv2Þxx ¼ 0 ) v3 ¼ Zt

0

ðv2Þxxdt; v3 x; 0ð Þ ¼ 0

..

.

ð20Þ

Hence the approximate or exact solution of problem (1) is obtained as:

u x; tð Þ ¼ v0 þ v1 þ v2 þ v3 þ � � � ð21Þ

3 The One Dimensional Heat-Like Equation

3.1 Problem Definition

We consider the problem in two cases one-dimensional heat-like equation given by:

ut ¼ a xð Þ þ b xð Þuxx; 0\x\1; ð22Þ

subject to the initial condition

u x; 0ð Þ ¼ x2 ð23Þ

and the boundary conditions

u 0; tð Þ ¼ Z1

0

u x; tð Þdxþ c1 ¼ cðtÞ ð24Þ

u 1; tð Þ ¼ Z1

0

u x; tð Þdt þ c2 ¼ dðtÞ ð25Þ

Analytic Method for Solving Heat … 83



3.2 Solution Procedure

Writing the approximate solution in the series form as the following:

v ¼ p0v0 þ p1v1 þ p2v2 þ � � � þ pnvn þ � � � ð26Þ

Substituting Eq. (26) into Eq. (22) and equating the coefficients of the same
powers of p we get the system of equations as follows:

v0t � u0t ¼ 0 ) v0 ¼ u0
v1t � a xð Þ � b xð Þv0xx ¼ 0; v1 x; 0ð Þ ¼ 0

v1 ¼ Zt

0

a xð Þ � b xð Þv0xxð Þdt

v2t � v1xx ¼ 0; v2 x; 0ð Þ ¼ 0

v2 ¼ Zt

0

v1xxdt

..

.

ð27Þ

and so on, we obtain the approximate solution in a series form as below:

u x; tð Þ ¼
X1
i¼0

vi:

4 Three-Dimensional Heat-Like Equation

4.1 Problem Definition

Consider the three-dimensional heat-like equation as

ut ¼ p xð Þq yð Þr zð Þ þ a xð Þuxx þ b yð Þuyy þ c zð Þuzz; 0\x; y; z\1; 0\t� T ð28Þ

subject to the initial and boundary conditions

u x; y; z; 0ð Þ ¼ f ðx; y; zÞ ð29Þ
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u 0; y; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g1 ¼ k1ðtÞ

u 1; y; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g2 ¼ k2ðtÞ

u x; 0; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g3 ¼ k3ðtÞ

u x; 1; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g4 ¼ k4ðtÞ

u x; y; 0; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g5 ¼ k5ðtÞ

u x; y; 1; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g6 ¼ k6

ð30Þ

4.2 Solution Procedure

We just consider three-dimensional equation which includes two other cases.
Substituting Eq. (18) into Eq. (28) and equating the terms with identical powers of
p, we have

p0:ðv0Þt � ðu0Þt ¼ 0 ) v0 ¼ uðx; 0Þ ð31Þ

p1:ðv1Þt � p xð Þq yð Þr zð Þ � ðða xð Þv0Þxx þ ðb yð Þv0Þvv þ ðc zð Þv0ÞzzÞ ¼ 0

v1 ¼ Zt

0

ðp xð Þq yð Þr zð Þ þ ðða xð Þv0Þxx þ ðbðyÞv0Þyy þ ðc zð Þv0ÞzzÞÞdt ð32Þ

p2:ðv2Þt � ðp xð Þq yð Þr zð Þ � ða xð Þv1Þxx � ðb yð Þv1Þyy � ðc zð Þv1ÞzzÞ ¼ 0

v2 ¼ Zt

0

ðp xð Þq yð Þr zð Þ þ ððaðxÞv1Þxx þ ðb yð Þv1Þyy þ c zð Þv1Þzz
� �Þdt

p3:ðv3Þt � p xð Þq yð Þr zð Þ � ða xð Þv2Þxx � ðb yð Þv2Þyy � ðc zð Þv2Þzz ¼ 0

v3 ¼ Zt

0

ðp xð Þq yð Þr zð Þ þ ððaðxÞv2Þxx þ ðb yð Þv2Þyy þ c zð Þv2Þzz
� �Þdt

:

:

So we can calculate the terms of
P1

k¼0 vk , term by term and the series solution
thus entirely determined. However, in many cases the exact solution in a closed
form may be obtained. For numerical purposes, we can use the approximation
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u x; y; z; tð Þ ¼ lim
m!1;m

where

;m ¼
Xm�1

k¼0

vk ð33Þ

It is worth to mention that the errors are getting smaller with the growing number
of terms in the sum (33).

5 Numerical Examples

5.1 Example 1: One Dimensional Homogeneous Heat
Equation

We consider the one-dimensional diffusion equation:

@u
@t

¼ @2u
@x2

; 0� x� 1; t[ 0 ð34Þ

with the Initial condition:

uðx; 0Þ ¼ sinðpxÞ: ð35Þ

and the boundary conditions

u 0; tð Þ ¼ 0; u 1; tð Þ ¼ 0 ð36Þ

To solve (34) with initial condition (35), according to the homotopy perturbation
technique, we construct the following homotopy:

H v; pð Þ ¼ 1� pð Þð v0ð Þt� u0Þt
� �þ p vt � vxxð Þ ¼ 0 ð37Þ

Substituting of Eq. (16) into Eq. (37) and then equating the terms with like
powers of p, we get the following
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ðv0Þt � ðu0Þt ¼ 0; v0 ¼ u x; 0ð Þ ¼ sinðpxÞ
ðv1Þt � ðv0Þxx ¼ 0; v1 x; 0ð Þ ¼ 0

ðv1Þt ¼ �p2sinðpxÞ
v1 ¼ Zt

0

ð�p2 sin pxð Þdt ¼ �p2 sin pxð Þ � t

ðv2Þt � ðv1Þxx ¼ 0; v2 x; 0ð Þ ¼ 0

v2 ¼ Zt

0

p4 sin pxð Þ � tdt ¼ p4sinðpxÞ � t2

2!

ðv3Þt � ðv2Þxx ¼ 0; v3 x; 0ð Þ ¼ 0

v3 ¼ Zt

0

�p6 sin pxð Þ � t2

2!
dt ¼ �p6sinðpxÞ � t3

3!

..

.

ð38Þ

and so on, we can calculate vn as follows:

ðvnÞt � ðvn�1Þt ¼ 0; vn x; 0ð Þ ¼ 0

vn ¼ Zt

0

ð�1Þnp2n sin pxð Þ � tn�1

n� 1ð Þ! dt ¼ �1ð Þnp2nsinðpxÞ � tn

n!

Finally, we obtain the approximate solution as follows:

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ v3 þ � � � þ vn þ � � �

And this leads to the following solution

u x; tð Þ ¼ sinðpxÞe�p2t ð39Þ

Substituting Eq. (39) into Eq. (34), we conclude that the approximate solution
coincides with the exact one.

5.2 Example 2

Consider the diffusion problem:

ut ¼ uxx; 0� x� 1; t[ 0 ð40Þ
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subject to the Initial condition

u x; 0ð Þ ¼ cosðpxÞ ð41Þ

and the boundary conditions:

ux 0; tð Þ ¼ 0; ux 1; tð Þ ¼ 0 ð42Þ

solving the Eq. (40) with the initial condition (41), yields:

ðv0Þt � ðu0Þt ¼ 0; v0 ¼ u0 ¼ cosðpxÞ ð43Þ

ðv1Þt � ðv0Þxx ¼ 0; v1 x; 0ð Þ ¼ 0

v1 ¼ �p2 cos pxð Þ � t

ðv2Þt � ðv1Þxx ¼ 0; v2 x; 0ð Þ ¼ 0

v2 ¼ �p4cosðpxÞ � t2=2!

The next components vk; k� 3 are calculated as the following:

ðvkÞt � ðvkÞxx ¼ 0; vk x; 0ð Þ ¼ 0

vk ¼ ð�1Þkp2kcosðpxÞ � tk=k!
ð44Þ

Combining all the terms in the above gives

u x; tð Þ ¼ cos pxð Þð1� p2t=1!þ p2t
� �2

=2!� ðp2tÞ3=3!þ � � �Þ

The series solution is:

u x; tð Þ ¼ e�p2tcosðpxÞ ð45Þ

5.3 Example 3: One Dimensional Non Homogeneous Heat
Equation

Consider the non homogeneous diffusion equation:

ut ¼ uxx þ p2 � 1
� �

e�t � cos pxð Þ þ 4x� 2 ð46Þ

with the initial condition

u x; 0ð Þ ¼ cos pxð Þ þ x2 ð47Þ
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and the boundary conditions

u 0; tð Þ ¼ e�t; u 1; tð Þ ¼ �et þ 4t þ 1 ð48Þ

according to HPM algorithm, we have

H p; vð Þ ¼ 1� pð Þððv0Þt � ðu0ÞtÞ þ p vt � vxx � fð Þ ¼ 0 ð49Þ

where f ¼ p2 � 1ð Þe�t þ 4x� 2
by equating the terms with the identical powers of p, yields

ðv0Þt � ðu0Þt ¼ 0; v0 ¼ u0 ¼ cosðpxÞ þ x2

ðv1Þt � ðv0Þxx � 4xþ 2� p2 � 1
� �

e�t ¼ 0; v1 x; 0ð Þ ¼ 0

v1 ¼ 4xt þ cos pxð Þð�p2t þ p2 � 1
� �

1� e�tð ÞÞ
v2t � v1xx ¼ 0; v2t ¼ cos pxð Þðp4t � p2 p2 � 1

� �
1� e�tð ÞÞ

v2 ¼ cos pxð Þð p4 � p2
� �

1� t=1!� e�tð Þ þ ðp2tÞ2=2!ÞÞ

continuing like-wise we get:

v3 ¼ cos pxð Þððp6 � p4Þ 1� t=1!þ t2=2!� e�t
� �� ðp2tÞ3=3!ÞÞ

v4 ¼ cos pxð Þððp8 � p6Þ 1� t=1!þ t2=2!� t3=3!� e�t
� �þ p2t

� �4
=4!Þ

and so on we then have

u5hpm ¼ x2 þ 4xt þ cos pxð Þ p8 1� t=1!þ t2=2!� t3=3!� e�t
� �þ e�t

� � ð50Þ

From this result we deduce that the series solution converges to the exact one:

u x; tð Þ ¼ x2 þ 4xt þ cosðpxÞe�t

5.4 Example 4

Once again, consider the non-homogeneous heat equation with non-homogeneous
Neumann boundary conditions:

ut ¼ uxx þ ðp2=2Þeð�p2=2Þt cos pxð Þ þ x� 2; 0� x; � 1; t[ 0 ð51Þ

ux 0; tð Þ ¼ t; ux 1; tð Þ ¼ 2þ t
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and the initial condition

u x; 0ð Þ ¼ x2 þ cosðpxÞ ð52Þ

The theoretical solution is:

u x; tð Þ ¼ x2 þ xt þ eð�p2=2ÞtcosðpxÞ

now, applying the homotopy perturbation method we get:

p0:v0t � u0t ¼ 0; v0 ¼ u0 ¼ cosðpxÞ þ x2

p1:v1t � v0xx � ðp2=2Þeð�p2=2Þt cos pxð Þ � xþ 2 ¼ 0; v1 x; 0ð Þ ¼ 0

v1 ¼ xt þ cos pxð Þð1� p2t � eð�p2=2ÞtÞ
p2:v2t � v1xx ¼ 0; v2 x; 0ð Þ ¼ 0

v2 ¼ cos pxð Þð2� p2t þ ðp2tÞ2=2!� 2eð�p2=2ÞtÞ
p3:v3t � v2xx ¼ 0; v3 x; 0ð Þ ¼ 0

v3 ¼ cos pxð Þð4� 2p2t þ ðp2tÞ2=2!� ðp2tÞ3=3!� 4eð�p2=2ÞtÞ

ð53Þ

p4 : v4t � v3t ¼ 0; v4 x; 0ð Þ ¼ 0

v4 ¼ cos pxð Þð8� 4 p2t
� �þ ðp2tÞ2 � ðp2tÞ3=3!þ ðp2tÞ4=4!� 8eð�p2=2ÞtÞ

Continuing in this way, we obtain

u x; tð Þ ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ v3 þ v4 þ � � �

or

u x; tð Þ ¼ x2 þ xt þ cos pxð Þeð�p2=2Þt

þ 15 1� ðp2=2Þt=1!þ ððp2=2Þ tÞ2=2!� ððp2=2ÞtÞ3=3!
nh

þ ððp2=2ÞtÞ4=4!� :þ � � �Þ
o
� eð�p2=2Þt

i

and this leads to the following solution

u x; tð Þ ¼ x2 þ xt þ cosðpxÞeð�p2=2Þt ð54Þ

this solution coincides with the exact one.
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5.5 Example 5: One Dimensional Non Homogeneous
Heat-Like Equation

Consider the problem

ut ¼ x5 þ 1=20ðx2uxxÞ; 0\x\1; 0\t� ð55Þ

subject to the initial condition

u x; 0ð Þ ¼ 0 ð56Þ

and the boundary conditions

u 0; tð Þ ¼ Z1

0

u x; tð Þdxþ g1 ¼ 1=6ðet � 1Þ; g1 ¼ 0

u 1; tð Þ ¼ Z1

0

u x; tð Þdxþ g2 ¼ ð1=6Þet; g2 ¼ 1=6
ð57Þ

After substitution of Eq. (18) into Eq. (55) and identifying the terms of the same
powers of p, we obtain the system of equations:

p0:v0t � u0t ¼ 0; v0 ¼ u0 ¼ 0

p1:v1t � ð1=20Þx2v0xx ¼ 0; v1 x; 0ð Þ ¼ 0

v1 ¼ x5t

p2:v2t � ð1=20Þx2v1t ¼ 0; v2 x; 0ð Þ ¼ 0

v2 ¼ x5t2=2!

p3:v3t � ð1=20Þx2v2t ¼ 0; v3 x; 0ð Þ ¼ 0

v3 ¼ x5t3=3!

..

.

pn:vnt � ð1=20Þx2v n�1ð Þt ¼ 0; vn x; 0ð Þ ¼ 0

vn ¼ x5tn=n!

Hence the series solution is given by:

u x; tð Þ ¼ v0 þ v1 þ v2 þ v3 þ � � � þ vn þ � � �
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or

u x; tð Þ ¼ x5 1þ t=1!þ t2=2!þ t3=3!þ � � � þ tn=n!þ � � �� �� x5

and in a closed form:

u x; tð Þ ¼ x5ðet � 1Þ ð58Þ

5.6 Example 6: Three Dimensional Non Homogeneous
Heat-Like Equation

Let us consider the problem

ut ¼ x5y5z5 þ ð1=60Þðx2uxx þ y2uyy þ z2uzzÞ; 0\x; y; z\1; 0\t� T ð59Þ

with the following initial condition:

u x; y; z; 0ð Þ ¼ 0 ð60Þ

and the boundary conditions

u 0; y; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g1 ¼ 1=216 et � 1ð Þ; g1 ¼ 0

u 1; y; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g2 ¼ 1=216ðet � 1Þ þ ð1=2Þt; g2 ¼ ð1=2Þt

u x; 0; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g3 ¼ 1=216 etð Þ; g3 ¼ 1=216

u x; 1; z; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g4 ¼ ð1=216Þðet þ 3Þ; g4 ¼ ð4=216Þ

ð61Þ

u x; y; 0; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g5 ¼ ð1=216Þðet þ 4Þ; g5 ¼ 5=216

u x; y; 1; tð Þ ¼ Z1

0

Z1

0

Z1

0

u x; y; z; tð Þdxdydzþ g6 ¼ 1=216ðet þ 1Þ; g6 ¼ 1=108

According to Eqs. (18) and (59) the following terms are calculated successively:
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p0:v0t � u0t ¼ 0; v0 ¼ u0 ¼ 0

p1:v1t � x5y5z5 � ð1=60Þðx2v0xx þ y2v0yy þ z2v0zzÞ ¼ 0; v1 x; y; z; 0ð Þ ¼ 0

v1 ¼ x5y5z5ðt=1!Þ
p2:v2t � ð1=60Þðx2v1xx þ y2v1yy þ z2v1zzÞ ¼ 0; v2 x; y; z; 0ð Þ ¼ 0

v2 ¼ x5y5z5ðt2=2!Þ
..
.

pn:vnt � ð1=60Þðx2v n�1ð Þxx þ y2v n�1ð Þyy þ z2v n�1ð ÞzzÞ ¼ 0

vn ¼ x5y5z5ðtn=n!Þ

ð62Þ

Hence, the approximate solution is given by:

u x; y; z; tð Þ ¼ v0 þ v1 þ v2 þ � � � þ vn þ � � �

Or

u x; y; z; tð Þ ¼ x5y5z5ð1þ t=1!þ ðt2=2!Þ þ � � � ðtn=n!Þ þ � � �Þ � x5y5z5

The solution in the closed form is given as

u x; y; z; tð Þ ¼ x5y5z5ðet � 1Þ

This result is in good agreement with the exact one (Tables 1, 2 and 3).

Table 1 Example 1
hx ¼ 0:1; ht ¼ 0:004,
3-iterates

xi uex uhpm uex � uhpm
�� ��

0.0 0.0 0.0 0.0

0.1 0.2971 0.2971 0.0

0.2 0.5650 0.5650 0.0

0.3 0.7777 0.7777 0.0

0.4 0.9142 0.9142 0.0

0.5 0.9613 0.9613 0.0

0.6 0.9142 0.9142 0.0

0.7 0.7777 0.7777 0.0

0.8 0.5650 0.5650 0.0

0.9 0.2971 0.2971 0.0

1.0 0.0 0.0 0.0
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6 Conclusion

The main concern of this work has been to construct an approximate solution to
heat and heat-like equations with different types of boundary conditions using
homotopy perturbation method (HPM). Our approach differs from existing tradi-
tional methods like, finite differences, finite elements, spectral method, … etc., in
that we find the solution in a closed form without, linearization, discretization,
transformation or restrictive assumptions. The problems solved using (HPM) gave
satisfactory results in comparison to those recently obtained other researchers
(Figs. 1, 2 and 3).

Table 2 Example 2
hx ¼ 0:1; ht ¼ 0:004,
3-Iterates

xi uex uhpm uex � uhpm
�� ��

0.0 0.9613 0.9613 0.0

0.1 0.9142 0.9142 0.0

0.2 0.7777 0.7777 0.0

0.3 0.5650 0.5650 0.0

0.4 0.2971 0.2971 0.0

0.5 0.0 0.0 0.0

0.6 −0.2971 −0.2971 0.0

0.7 −0.5650 −0.5650 0.0

0.8 −0.7777 −0.7777 0.0

0.9 −0.9142 −0.9142 0.0

1.0 −0.9613 −0.9613 0.0

Table 3 Example 3
hx ¼ 0:1; ht ¼ 0:004,
2-Iterates

xi uex uhpm uex � uhpm
�� ��

0.0 0.9960 0.9960 0.0

0.1 0.9589 0.9589 0.0

0.2 0.8490 0.8490 0.0

0.3 0.6802 0.6802 0.0

0.4 0.4742 0.4742 0.0

0.5 0.2580 0.2580 0.0

0.6 0.0618 0.0618 0.0

0.7 −0.0842 −0.0842 0.0

0.8 −0.1530 −0.1530 0.0

0.9 −0.1229 −0.1229 0.0

1.0 0.0200 0.0200 0.0
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Fig. 1 Example 1 Variation of the approximate solution for different values of x and t
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Fig. 2 Example 2 Variation of the approximate solution for different values of x and t
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