
Chapter 6
Geometry and Topology of Nanotubes
and Nanotori
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Ottorino Ori and Mihai V. Putz

Abstract A molecular graph is the graph of a molecule in which the vertices are
atoms and edges are chemical bonds. We review the recent results on computing
symmetry of series of armchair polyhex, zig-zag polyhex and C4C8(R/S) nanotubes
and nanotori. The topological properties of these nanostructures are also investigated.

6.1 Introduction

A graph G is a pair (V, E) consisting of a set V=V(G) of vertices and a set E=E(G)
of unordered pairs {x, y}= xy of distinct vertices of G called edges. Suppose M is a
chemical system like a molecule (having dimensionality 	= 0), a carbon nanotube
(	= 1), a graphenic lattice (	= 2) or a diamond crystal (	= 3). The molecular
graph of M is a simple graph such that vertices are atoms and edges are chemical
bonds. The degree δ of each vertex (the number of chemical bonds) in a molecular
graph is assumed to be at most four. Taking into consideration sp2 carbon systems,
we mention here that in the Hückel theory only pi electron molecular orbitals are
included because these determine the general properties of these molecules and the
sigma electrons are ignored. Thus, when we are talking about Hückel theory we need
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the molecule to have a pi network and therefore all molecular graphs should have
max degree 3 or less—a vertex of degree 4 represents a saturated carbon atom that
cannot be part of a pi system and which is typical of diamond-like bulk structures.
The max degree 4 also holds for alkanes, which are not included in the present
research.

Being this chapter devoted to the investigation of the structural and topological
properties of some families of nanostructures, a few formal tools have to be shortly
introduced here starting with a simple recap of the concept of group.

A group is a mathematical structure that is usually used to describe the symmetries
characterizing a given set of mathematical objects. It is a set of elements G equipped
with a binary operation of multiplication *: G × G→G such that:

i) it is associative, e.g. for all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z;
ii) there exists an element e ∈ G such that for an arbitrary element g in G, g ∗ e =
e ∗ g = g;

iii) and, for each x ∈ G there exists y ∈ G such that x ∗ y = y ∗ x = e.
A group is then called finite if the underlying set G is finite. The symmetry structure
of G can be formalized by the notion of finite group action. To describe it, we assume
G is a group and X is a set. We also assume that there is a map φ : G×X→ X with
the following two properties:

a. for each x ∈ X,φ(e, x) = x,
b. and, for all elements x ∈ X and g,h ∈ G,φ(g,φ(h, x)) = φ(gh, x).

In this case, G and X are called a transformation group and a G-set, respectively.
The mapping φ is called a group action. For simplicity it is convenient to define
gx = φ(g, x).

Suppose now G is a group and H is a non-empty subset of G. H is said to be
a subgroup of G, if H is closed under group multiplication. A subgroup H of G is
called to be normal in G, if for all g ∈ G we have g−1Hg=H. When both H and K
are subgroups of G such that H is normal in G,H ∩K = 1, and G=HK, then G is
called a semi-direct product of H by K. Here, HK is the set of all elements of G in
the form of xy such that x ∈ H and y ∈ K .

An automorphism of G is a permutation g of V(G) such that g(u) and g(v) are
adjacent if and only if u and v are adjacent, where u, v ∈ V (G). It is well-known that
the set of all automorphisms of G, with the operation of composition of permutations,
is a permutation group on V(G), denoted Aut(G). The name topological symmetry
is also used for this algebraic structure. Randić (1974, 1976) showed that a graph
can be depicted in different ways such that its point group symmetry or even the 3D
representation may differ, but its automorphism group symmetry remains the same.
The topological symmetry of a molecular graph is not usually the same as its point
group symmetry but it corresponds to the maximal symmetry the geometrical real-
ization of a given topological structure may possess. This very important topological
feature will play an instrumental role in the present investigations.

Computationally, several software packages are may be sourced on line for solving
computational problems related to finite groups. GAP is an abbreviation for Groups,
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Fig. 6.1 The molecular graph
of an armchair [p, 10]
nanotube

Algorithms and Programming (The GAP Team 1995). Since all symmetry elements
of a physical object is a group under composition of functions, the package is useful
for this topic. Our calculations are based however on three other packages. These
are HyperChem (HyperChem package Release 7.5 for Windows 2002), TopoCluj
(Diudea et al. 2002) and MAGMA (Bosma et al. 1997).

Calculations reported in this paper are done by using a combination of these
packages. We first draw a nanotube or nanotorus by HyperChem. Then we will
compute the adjacency matrix by TopoCluj. We then apply MAGMA and GAP for
computing symmetry group. All notations are standard and taken from the standard
book of group theory. We encourage to reader to consult the celebrated book of
Trinajstić (1992) for more information on symmetry.

6.2 Nanotubes and Nanotori Topological Indices

A carbon nanotube is a new allotrope of carbon with a tubular structure at the
nanoscale. The molecular graphs of armchair and zig-zag polyhex nanotubes are
depicted in Figs. 6.1 and 6.2, respectively. We associate two parameters [r, s] to
each armchair and zig-zag polyhex nanotube as follows. In an armchair nanotube,
Figs. 6.1 and 6.2, the parameter s denotes the number of vertical zig-zags, while in a
zig-zag nanotube, Figs. 6.3 and 6.4, s denotes the number of horizontal zig-zags. On
the other hand, the parameter r in an armchair polyhex is the number of rows and in
a zig-zag nanotube it returns the number of hexagons in each row.

A C4C8 net is a trivalent (atom degree 3) decoration made by alternating squares
C4 and octagons C8. Such a plane covering can be derived from square net by the
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Fig. 6.2 The 2D lattice of an
armchair [11, 6] nanotube

Fig. 6.3 The molecular graph
of a zig-zag [13, 13] nanotube

Fig. 6.4 The 2D lattice of a
zig-zag [6, 8] nanotube



6 Geometry and Topology of Nanotubes and Nanotori 135

Fig. 6.5 The molecular graph
of a C4C8(R) nanotube

Fig. 6.6 The 2D lattice of a
C4C8(R) nanotube

Fig. 6.7 The molecular graph
of a C4C8(S) nanotube

leapfrog operation, Figs. 6.5 and 6.6. A C4C8(R) nanotube is another beautiful math-
ematical object constructed by squares and octagons. An charming example is shown
in Figs. 6.7 and 6.8. A carbon nanotorus is geometrically obtained by connecting
the two ends of a carbon nanotube into a ring, Figs. 6.9, 6.10, 6.11 and 6.12.

The symmetry properties of these nanostructures are one of the main subject of
this study.

Suppose (G, ·1) and (H , ·2) are groups. The cartesian product G × H is the set of
all ordered pairs (a, b) where a ∈ G and b ∈ H , together with the following group
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Fig. 6.8 The 2D lattice of
C4C8(S) nanotube

Fig. 6.9 The molecular graph
of a C4C8(R) nanotorus

Fig. 6.10 The 2D Lattice of
C4C8(R) Nanotorus

structure:

(a, b) ∗ (x, y) = (a·1x, b·2y) (6.1)

The concept of semi-direct product is a generalization of cartesian product. In
the cartesian product of two groups, each component represents in fact a normal
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Fig. 6.11 The 2D lattice of
C4C8(S) nanotorus

Fig. 6.12 The molecular
graph of a polyhex nanotorus

subgroup, their intersection is trivial and the components generate the whole group.
In the semi-direct product instead we admit one of the subgroup to be non-normal.
In mathematical exact phrasing: in semi-direct product a group can be constructed
from two subgroups, one of which is a normal subgroup, the intersection of two
subgroups is trivial and they generate the group.

It is easy to see that if N and H are groups and ϕ is a homomorphism of H into
the automorphism group of N then the set N × H by operation (n1, h1) · (n2, h2) =
(n1ϕh1(n2), h1h2), n1, n2 ∈ N and h1, h2 ∈ H, has a group structure. This group is
denoted by N × ϕ H and called the semi-direct product of N by H.

A graph invariant is a quantity that is invariant under all graph automorphisms.
The topological indices are numerical graph invariants used in theoretical chemistry
to encode molecules for the classification an design of chemical compounds with
given physico-chemical properties or given pharmacological and biological activities
(Trinajstić 1992) (MIHAI). Notice that the bond relations between atoms do not fully
determine the molecular geometry and so, in general, topological indices cannot
uniquely determine a chemical compound, but they are usually useful to obtain
information on some physico-chemical properties of compounds.
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We now recall some algebraic definitions used here. Suppose G is a simple graph
and {u,v} ⊆ V(G). A path connecting u and v in G is a sequence:

u = u0, e1, u1, e2, . . . , en, un= v (6.2)

of distinct vertices u1, . . . , un and distinct edges e1, . . . , en such that ei is an edge
with end vertices ui−1 and ui. The distance d(u, v) is define to be the length of a
minimal path connecting u and v. The half-summation of all distances between pairs
of vertices in G is called the Wiener index of G which is denoted by W(G). The Wiener
index has been the first distance-based graph invariant and it was introduced by an
the American chemist Harold Wiener (1947). Suppose e= uv individuates an edge
in G. Define quantities mu(e) and mv(e) as follows: mu(e) is defined as the number of
edges lying closer to the vertex u than the vertex v, and mv(e) is defined analogously.
The edges equidistant from both ends of the edge uv are not counted. In a similar
way, we define nu(e) to be the number of vertices lying closer to the vertex u than v.
The PI index (Khadikar et al. 2001) of G is defined as

PI(G) =
∑

e=uv
[mu(e)+mv(e)] (6.3)

For acyclic molecular graphs G, Wiener discovered a remarkably simple algorithm
for computing W(G). To explain his method, we assume that e= ij is an edge of G,
N(i) is the number of vertices of G lying closer to i than to j and N(j) is defined
analogously. Thus,

N (i) = | {u ∈ V (G)|d(u, i) < d(u, j )} | and

N (j ) = | {u ∈ V (G)|d(u, j ) < d(u, i)} | (6.4)

Then the Szeged index of G is defined as the half-summation of all products N(i)N(j)
over all graph edges e= ij. This generalization was conceived by Ivan Gutman (1994)
at the Attila Jozsef University in Szeged, and so it was called the Szeged index. It is
useful to mention here that Gutman in his 1994 paper proposed the existence of the
cyclic index and abbreviated it by W*. In that paper he has not given any name to
this index. Khadikar et al. (1995) used the name “Szeged index” and abbreviated as
Sz. According to a long-known result in the theory of graph distances, if G is a tree
then Sz(G)=W(G), reproducing Wiener’s original method.

Klavžar et al. (1996) proved that for every connected graph G we have
W(G)≤Sz(G). So it is natural to ask about equality of these graph invariants. To
find a characterization of graphs satisfy the equality, we need some notation. A max-
imal 2-connected subgraph of a connected graph G is called a block of G. The block
graphs are those in which every block is a clique. Dobrynin and Gutman (1995) inves-
tigated the structure of a connected graph G featuring the property that Sz(G)=W(G).
They proved that Sz(G)=W(G) if and only if G is a block graph (Dobrynin et al.
1995). A new proof for this result is recently published (Khodashenas et al. 2011).

The Wiener, PI and Szeged indices are all distance based invariants of a graph.
There are some other graph invariants based on degree sequence of the molecular
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graph under consideration. The first such invariants are Zagreb group indices. The
Zagreb indices have been introduced more than forty years ago by Gutman and
Trinajstić (1972). They are defined as:

M1(G) =
∑

v∈V (G)
deg(v)2 and M2(G) =

∑
uv∈E(G)

deg(u)× deg(v) (6.5)

where deg(u) is the degree of the vertex u of G. A historical background, compu-
tational techniques and mathematical properties of Zagreb indices can be found in
papers (Gutman and Das 2004; Khalifeh et al. 2009; Zhou 2004; Zhou and Gutman
2005).

The Randić molecular connectivity index, Randić index for short, is a second
degree-based topological invariant, introduced in (Randić 1975). It is defined as:

χ (G) =
∑

uv∈E(G)
(deg (u) deg (v))−1/2. (6.6)

It reflects molecular branching and has several applications in chemistry (Klarner
1997).

The atom-bond connectivity (ABC) index is another degree-based topological
index introduced by Estrada et al. 1998 to study the stability of alkanes and the strain
energy of cycloalkanes. This index is defined as follows:

ABC(G) =
∑

uv∈E(G)

√
deg (u)+ deg (v)− 2

deg (u)+ deg (v)
. (6.7)

Estrada (2008) presented a new topological approach which provides a good model
for the stability of linear and branched alkanes as well as the strain energy of cy-
cloalkanes. He also reported that the heat of formation of alkanes can be obtained as
a combination of stabilizing effects coming from atoms, bonds and protobranches.
Furtula et al. (2009) studied the mathematical properties of the ABC index of trees.
They found chemical trees with extremal ABC values and proved that, among all
trees, the star tree Sn, has the maximal ABC index. Das (2010) presented the lower
and upper bounds on ABC index of graphs and trees, and characterize graphs for
which these bounds are best possible. Fath-Tabar et al. (2011) obtained some inequal-
ities for the atom-bond connectivity index of a series of graph operations and proved
that the bounds are tight. They applied their result to compute the ABC indices of
C4 nanotubes and nanotori.

The relationship between degree-based topological indices of graphs is an impor-
tant problem in chemical graph theory. Das and Trinajstić (2010) compared the GA
and ABC indices for chemical trees and molecular graphs and proved some results.

The Balaban index of a molecular graph G is defined by Balaban (1982, 1983) as:

j (G) = m�(μ+ 1)
∑

e−uv

[d(u)d(v)]−0.5 (6.8)

where m is the number of edges of G,μ(G) = |E(G)|−|V (G)|+1 is the cyclomatic
number of G and for every vertex x, d(x) is the summation of topological distances
between x and all vertices of G.
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In the end of this section the concept of eccentric connectivity index of molecular
graphs is presented. Let G be a molecular graph (Sharma et al. 1997; Sardana and
Madan 2001). The eccentric connectivity index ξ (G)is defined as:

ξ (G) =
∑

u∈V (G)
degG(u)εG(u) (6.9)

where degG(u) denotes the degree of vertex u and εG(u) is the largest distance between
u and any other vertex v of the graph G.

6.3 Symmetry Considerations on Nanotubes and Nanotori

A dihedral group is the group of symmetries of a regular polygon, including both
rotations and reflections. These groups play an important role in chemistry. Most of
point group symmetry of molecules can be described by dihedral groups. It is easy
to prove that a group generated by two involutions on a finite domain is a dihedral
group. A dihedral group with 2n symmetry elements is denoted by Dn. This group
can be presented as follows:

Dn =
{
x, y|xn = y2 = (xy)2 = 1

}
(6.10)

We now consider the molecular graph of a zig-zag and armchair (achiral) polyhex
nanotorus.Yavari and Ashrafi (2009) proved in some special cases that the symmetry
group of armchair and zig-zag polyhex nanotorus is constructed from a dihedral
group and a plane symmetry group of order 2.

Arezoomand and Taeri (2009) presented a generalization of this result. They
proved that:

Theorem 1 (Arezoomand and Taeri) The symmetry group of the molecular graph
of a zig-zag and armchair (achiral) polyhex nanotorus is isomorphic to D4m × Z2,
where Z2 denotes the cyclic group of order 2.

Hypergraphs are a generalizations of graphs in which an edge can connect more
than two vertices. In the graph theoretical language, a hypergraph consists of a set
of vertices V and a set of hyper-edges E which is a collection of subsets in V in such
a way than the union of hyper-edges are the whole vertices. A k-hypergraph is a
hypergraph with the property that any edge connects exactly k vertices. The case of
k= 2 corresponds to the usual graphs considered so far. The best generalization of
the mentioned result was introduced by Staic and Petrescu-Nita (2013).They studied
the symmetry group of two special types of carbon nanotori by using the notion of
Cayley hypergraph. To explain this concept, we assume that G is a group and S is a
non-empty subset of G such that S= S−1 and G = 〈S〉. We define a graph Cay(G,
S) as follows: (i) V(Cay(G, S))=G, and, (ii) two vertices a and y are adjacent if and
only if xy−1 ∈ S. The graph Cay(G, S) is called the Cayley graph of G constructed
by S. If G is a group and T is a generator set for G containing elements of order 3
such that a ∈ T implies that a−1 /∈ T then 3-hypergraph Cay3(G, T) can be defined
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as follows: take the set of vertices to be G. A cyclically ordered 3-subset {g1, g2, g3}
is a hyper-edge if there exists a ∈ T such that g2= g1a and g3= g1a. The main result
of Staica and A. Petrescu-Nita is as follows:

Theorem 2 (Staic and Petrescu-Nita) Suppose Tn is a group presented as follows:

Tn = {a; b|a3 = 1;b3 = 1;(ab)3 = 1;(ab2)
n = 1} (6.11)

Then Tn is a semi-direct product of Zn × Zn by Z3. Moreover, the Cayley hypergraph
associated with the group Tn can be placed on a torus.

If SL(2,3) denotes the set of all 2 × 2 matrices over a field of order 3 then a
Cayley hypergraph associated with this group can be placed on a torus.

We end this section by a result on the symmetry group of nanotubes. Suppose
A[p, q], B[p, q], C(R)[p, q] and C(S)[p, q] are zig-zag polyhex, armchair polyhex,
C4C8(R) and C4C8(S) nanotubes with parameters p and q, respectively.

Theorem 3 The symmetry groups of A[p, q], B[p, q], C(R)[p, q] and C(S)[p, q] are
computed as follows:

1. Aut(A[p, q]) =

⎧
⎪⎨

⎪⎩

D4p p �= q

C2 ×D2p p = q
,

2. If q is even and p �= 3 then Aut(B[p, q]) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2q p is even

D2q
q

2
is odd

C2 ×Dq q

2
is even

p is odd

3. If p �= 2 then Aut(C(R)[p, q]) ∼= Aut(C(S)[p, q]) ∼= Z2 ×D2p.Moreover, if p= 2
then Aut(C(S)[2,1]) ∼= Z2×D8 and Aut(C(S)[2, q]) = C2×C2×C2, when q �= 1.

Previous theorems clearly illustrate the power of topological methods in predicting
geometrical properties of carbon nanostructures.

6.4 Topology of Nanotubes and Nanotori

The history of computing topological indices of nanotubes and nanotori started by
publishing two paper by Diudea and his co-workers (Diudea et al. 2004; John and
Diudea 2004) about Wiener index armchair and zig-zag polyhex nanotubes. After
publishing these seminal papers, several scientists focus on computing such numbers
for the molecular graphs of nanostructures. For the sake of completeness we record
the mentioned results of Diudea and his co-workers in Theorem 4.

Theorem 4 Suppose A=A[p, q] and B=B[p, q] are zig-zag and armchair polyhex
nanotubes, respectively. Then the Wiener index of these nanotubes can be computed
by the following formulas:
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1) W(A) =

⎧
⎪⎪⎨

⎪⎪⎩

qp2

24
(4q2 + 3qp− 4)+ q2p

12
(q2 − 1) q ≤ p

2
+ 1

qp2

24
(8q2 + p2 − 6)− p3

192
(p2 − 4) q >

p

2
+ 1

,

2) W(B) =

⎧
⎪⎨

⎪⎩

p

12
[p2(12q2− 2p2+ 8)+ 8pq(p2+ q2− 2)+ 3(−1+ (−1)p)] q ≥ p

p

12
[24p2q2+ 2q4− 8q2+ 3(−1)p(1− (−1)q)] q ≤ p

.

In a series of papers (Yousefi and Ashrafi 2006, 2007, 2008a, 2011; Yousefi et al.
2008c, d; Ashrafi and Yousefi 2007a, b) introduced a matrix method to recalculate
the Wiener number of armchair, zig-zag polyhex nanotubes, C4C8(R/S) nanotube,
polyhex nanotorus and C4C8(R/S) nanotorus. Choose a zig-zag polyhex nanotube
T. The main idea of this matrix method is choosing a base vertex b from the 2-
dimensional lattice of a T and then label vertices of hexagon by starting from the
hexagon containing b. By computing distances between b and other vertices, we
can obtain a distance matrix of nanotubes related to the vertex b. It is clear that by
choosing different base vertices, one can find different distance matrices for T, but
the summation of all entries will be the same. To explain, we assume that b is a base
vertex from the 2-dimensional lattice of T and xij is the (i, j)th vertex of T, Fig. 6.6.
Define D(1,1)

m×n = [d(1,1)
i,j ], where d(1,1)

i,j is distance between (1,1) and (i, j), i= 1, 2, . . . ,
m and j= 1, 2, . . . , n. There are two separates cases for the (1,1)th vertex, where in
the first case d(1,1)

1,1 = 0,d(1,1)
1,2 = d(1,1)

2,1 = 1 and in the second case d(1,1)
1,1 = 0,d(1,1)

1,2 =
1,d(1,1)

2,1 = 3. Suppose D(p,q)
m×n is distance matrix of T related to the vertex (p, q) and

s(p,q)
i is the sum of ith row of D(p,q)

m×n. Then there are two distance matrix related to (p,
q) such that s(p,2k−1)

i = s(p,1)
i ; s(p,2k)

i = s(p,2)
i ; 1 ≤ k ≤ n/2, 1 ≤ i ≤ m, 1 ≤ p ≤ m.

If b varies on a column of T then the sum of entries in the row containing base vertex
is equal to the sum of entries in the first row of D(1,1)

m×n. On the other hand, one can
compute the summation of all entries in other rows by distance from the position of
base vertex. Therefore, if 2 | (i+ j) then

s(i,j)
k =

⎧
⎨

⎩
s(1,1)

i−k+1 1 ≤ k ≤ i ≤ m, 1 ≤ j ≤ n

s(1,2)
k−i+1 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ n

and if 2 � |(i+ j) then we have s(i,j)
k =

⎧
⎨

⎩
s(1,2)

i−k+1 1 ≤ k ≤ i ≤ m, 1 ≤ j ≤ n

s(1,1)
k−i+1 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ n

.

We now describe our algorithm to compute distance matrix of a zig-zag polyhex
nanotube. To do this, we define matrices A(a)

m×(n/2+1) = [aij], Bm×(n/2+1) = [bij] and

A(b)
m×(n/2+1) = [cij] as follows: (Fig. 6.13).
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Fig. 6.13 Two Basically
Different Cases for the
Vertex b

(1,1)

(1,1)x

1,3

2,2

x
Base

Base
a

b

For computing distance matrix of this nanotube we must compute matrices
D(a)

m×n = [da
i,j] and D(b)

m×n = [db
i,j]. By these calculations, on can see that

da
i,j=

⎧
⎨

⎩
Max{ai,j, bi,j} 1 ≤ j ≤ n/2

di,n−j+2 j > n/2+ 1
and db

i,j=
⎧
⎨

⎩
Max{ai,j, ci,j} 1 ≤ j ≤ n/2

di,n−j+2 j > n/2+ 1
.

By continuing this method, the mentioned authors proved that:

Theorem 5 Suppose A and B are an armchair and zig-zag polyhex nanotube, re-
spectively, with exactly m rows and n columns, Fig. 6.2. Moreover, we assume that
C is a polyhex nanotorus with similar parameters. Then,

1. (Yousefi and Ashrafi 2007)

W(A) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m2n

12
(3n2 +m2 − 4)+ n

8
(−1)

n

2 [1− (−1)n] m ≤ n

2
+ 1

mn2

24
(n2 + 4m2 + 3mn− 8)− n3

192
(n2 − 16)+ n

8

⎡

⎣(−1)

n

2 − 1

⎤

⎦ m >
n

2
+ 1

,

2. (Ashrafi and Yousefi 2007a)

W(B) =

⎧
⎪⎪⎨

⎪⎪⎩

mn2

24
(4m2 + 3mn− 4)+ m2n

12
(m2 − 1) m ≤ n

2
+ 1

mn2

24
(8m2 + n2 − 6)− n3

192
(n2 − 4) m >

n

2
+ 1

.
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3. Yousefi-Azari et al. (2008e)

W(C) =

⎧
⎪⎪⎨

⎪⎪⎩

pq2

24
(6p2 + q2 − 4) q < p

p2q

24
(3q2 + 3pq+ p2 − 4) q ≥ p

.

Suppose E = TUC4C8(R)[m, n], F = TUC4C8(S)[m, n] are two different types of
C4C8 nanotubes and G=TC4C8(R)[m, n] is a C4C8 nanotorus in terms of the number
of rhombs in a fixed row (m) and column (n). We have

Theorem 6 The Wiener indices of E, F, G and H can be computed as follows:

1. (Yousefi and Ashrafi 2006)

W(E) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2m

3
(m2 − 1)+mn(m+ 3n)− k1 m < n

2n

3
(n2 − 1)+mn(3m+ n)− k2 m > n

n

3
(14n2 − k3) m = n

in which k1=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 2|n & 2|m
n−m 2|n & 2 � |m
m 2 � |n & 2|m
n 2 � | n & 2 � |m

k2=
⎧
⎨

⎩
0 2|m
m 2 � |m k3 =

⎧
⎪⎨

⎪⎩

2 2|n

5 2 � |n
.

2. (Ashrafi and Yousefi 2007b)

W(F) =

⎧
⎪⎪⎨

⎪⎪⎩

nm2

6
(6m2 + 3nm+ n2 − 4) n ≤ m

mn2

6
(6n2 + 3mn+m2 − 4) m < n

.

3. (Yousefi and Ashraf 2008b, 2011)

W(G) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2mn2

3
(4m2 + 9mn− 4)+ m2n

6
[16m2 − 7+ 3(−1)n] m ≤ n+ 1

2
2mn2

3
(12m2 + 3mn+ 2n2 − 5)− n3

6
(n2 − 1)

−n

8
(8m2 + n2 − 4mn− 1)[1− (−1)n] m >

n+ 1

2

.

Suppose e= uv and M(e) denotes the number of edges that are equidistant to the ver-
tices u and v (including the edge e itself), then evidently mu(e)+ mv(e)+M(e)=m.
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Therefore, PI(G) = m2 −∑
e=uv M(e). Using this simple equation, it can be proved

that if G is an acyclic graph containing n vertices then PI(G)= (n− 1)(n− 2). In
particular, PI= 0, for acyclic graphs when n= 1 and 2. Since every acyclic graph
with n vertices has exactly m= n−1 edges, the previous result states that in every
acyclic graph G with m edges PI(G)=m(m− 1).

The notion of PI partition was introduced by Klavžar (2007) to find a formula
for the PI index of product graphs. Suppose G is a graph and X is a subset of V(G).
The subgraph of G induced by X will be denoted 〈X〉. Moreover, let ∂X stands for
the set of edges of G with one end vertex in X and the other not in X. For an edge
e= uv of G, we define V1(e) and V2(e) as follows:

V1 (e)={x ∈ V (G) |d (x,u)<d (x,v)} and V2 (e) = {x ∈ V (G) |d (x,u)>d (x,v)}.
It is easily seen that if G is bipartite then for any edge e of G, V1(e) and V2(e) form
a partition of V(G). We say that a partition E1, . . . , Ek of E(G) is a PI-partition of G
if for any i, 1≤ i≤ k, and for any e, f ∈ Ei we have V1(e)=V1(f) and V2(e)=V2(f).
If e= uv is an edge a G then we define V3(e) to be the set of all vertices that are at
equal distance from u and v. Thus V(G) = V1(e) ∪V2(e) ∪V3(e). Klavžar (2007)
proved that if E1, . . . , Ek is a PI-partition of a graph G then PI(G) = |E(G)|2 −∑k

i=1 |Ei|(|Ei| + |E(<V3(e)>)| + |∂V3(e)|). If G is bipartite then ∂V3(e) = V3(e) =
∅; and consequently PI(G) = |E(G)|2 −∑k

i=1 |Ei |2.
Using the mentioned method of Klavžar or a straightforward calculation by the

mentioned simple equation, one can prove the following two results:

Theorem 7 The PI index of armchair polyhex, zig-zag polyhex and polyhex
nanotorus nanotubes can be computed as follows:

1. (Ashrafi and Loghman 2006a)

PI(B[2p, q]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
X− p q ≤ p+ 1

Y− p q ≥ p+ 1
2|p & 2|q− 1

⎧
⎨

⎩
X q ≤ p+ 1

Y q ≥ p+ 1
Otherwise

,

where X = 9p2q2– 12p2q – 5pq2 + 8pq + 4p2– 4p and Y = 9p2q2– 20p2q –p
q2 + 4pq+ 4p3 + 8p2– 4p.

2. (Ashrafi and Loghman 2006b)

PI(A[2p,q] =

⎧
⎪⎨

⎪⎩

p2(9q2 − 7q+ 2)− 4pq2 q ≤ p

p2(9q2 − 15q+ 4p− 2)+ 4pq q ≥ p
.
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3. (Ashrafi and Rezaei 2007)

PI(C) =

⎧
⎪⎨

⎪⎩

9p2q2 − pq2 − 12p2q+ 4pq q ≥ 2p

9p2q2 − 7pq2 + 4pq q < 2p

Theorem 8 The PI index of TUC4C8(R/S) nanotubes and TC4C8(R/S) nanotori can
be computed as follows:

1. (Ashrafi and Loghman 2008)

PI(E[p,q]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩
36p2q2 − 26pq2 − 2p2q+ 8pq q < p

36p2q2 − 26p2q− 2pq2 + 8pq q ≥ p
if p & q are even

⎧
⎨

⎩
36p2q2 − 10pq2 − 2p2q q < p

36p2q2 − 10p2q− 2pq2 q ≥ p
if p & q are odd

⎧
⎨

⎩
36p2q2 − 18pq2 − 2p2q q < p

36p2q2 − 18p2q− 2pq2 + 8pq q > p
if p is even & q is odd

⎧
⎨

⎩
36p2q2 − 18p2q− 2pq2 q > p

36p2q2 − 18pq2 − 2p2q+ 8pq q < p
if p is odd & q is even

2. (Ashrafi and Loghman 2006c)

PI(F[4p, q]) =

⎧
⎪⎨

⎪⎩

X q ≤ p

Y q ≥ p
,

where X = 36p2q2– 28p2q+8p2−8pq2 and Y = 36p2q2– 36p2q – 4pq2+4pq+4p3

+ 4p2.

3. (Ashrafi et al. 2009)

PI(G[p, q]) =

⎧
⎪⎨

⎪⎩

36p2q2 − 8p2q− 10pq2 + 4pq q ≤ 2p

36p2q2 − 20p2q− 4pq2 + 4pq q > 2p
.

We are now ready to investigate the Szeged index of nanotubes and nanotori.
Dobrynin and Gutman (1994) proved that if G is a connected bipartite graph with

n vertices and m edges, then Sz(G) = 1
4

(
n2m − ∑

e∈E(G)
(d(u)− d(v))2

)
. Using this

result Yousefi et al. (2008d) proved that the Szeged index of a polyhex nanotorus
is computed by Sz(C) = 3

8 p3q3. Another application of the mentioned result
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of Dobrynin and Gutman is computing Szeged index of C4C8(S) nanotubes. In
(Heydari and Taeri 2009) and (Manoochehrian et al. 2008) the Szeged index of
TUC4C8(S)[p, q] and zig-zag polyhex nanotubes are computed as follows:

Theorem 9 Suppose F denotes the TUC4C8(S)[p, q] nanotube. Then

1. If q≤ p, then the Szeged index of F is given by the following formula:

Sz(F) = pq

3
(−2q4 + (64p2 + 2)q2 − 16p2).

2. If q> p, then Szeged index of long TUC4C8(S) nanotubes is given by

Sz(F) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p

15

(
12p5 − 80qp4 + (

160q2 − 20
)

p3 + 200q3p2

+ (
20q4 − 60q2 + 8

)
p− 2q

(
q4 − 5q2 + 4

))
q ≤ 2p

p2

15

(−52p4 + 80qp3 + 60p2 + (
280q3 − 120q

)
p− 8

)
q > 2p

.

3. The Szeged index of zig-zag polyhex nanotube is as follows.

Sz(A[p, q]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8

3
p3q3 − 2

3
p3q+ 1

6
pq3 − 1

6
pq5 q ≤ p

5

2
p6 + 43

6
p5 + 35

6
p4 + 5

6
p3 − 1

3
p2 q = p+ 1

2

3
p3q3 + 2

3
p3q− 2

15
pq+ 2

15
p2 − 1

5
pq5 + 4

3
p2q4

−5

3
pq3 + 8

3
p2q2 − 1

3
p4 − 4

3
p5q+ 1

5
p6 p+ 1 < q < 2p

89

5
p6 − 5

3
p4 − 1

15
p2 q = 2p

2p3q3 − 4

3
p3q− 2

15
p2 + 4

3
p5q− 13

15
p6 + p4 q > 2p

.

Recently, (Farahani 2012) computed some degree-based topological indices of zig-
zag and armchair polyhex nanotubes. His calculations shows thatχ (A[m, n]) = mn+
2m

(√
6− 1
3

)
,ABC(A[m, n]) = 2mn + 2m

(√
2− 2

3

)
, M1(A[m, n])= 18mn+ 8,

M2(A[m, n])= 27mn+ 6, χ (B[m, n]) =
(

n+
√

6− 1
3 + 1

2

)
m, ABC(B [m, n ]) =

(
2 n+ 3

√
2

2 − 2
3

)
m, M1(B[m, n])= 18mn+ 8 and M2(B[m, n])= 27mn+ 7m.

Moreover, (Asadpour et al. 2011) proved that χ (E[p, q]) = 4pq, M2(E[p, q]) =
108pq, ABC(E[p, q]) = 12

√
2√

3
pq, χ (F[p,q]) = 6pq +

(
4√
6
− 3

)
(p + q) + 4 − 2√

6
,

M2(F[p, q]) = 16(3pq+ p+ q− 1) and ABC(F[p, q]) = √2(8pq− 3p− 3q+ 4)+
4
√

3
5 (p+ q− 2).
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The Balaban index J which is defined as the average distance sum connectivity
is the least degenerate single topological index proposed till now. The mathematical
properties of this distance-based topological index in the classes of polyhex and
TUC4C8(R/S) nanotori are investigated by (Iranmanesh and Ashrafi 2007). They
proved that:

Theorem 10 Suppose C[m, n], E[m, n] and F[m, n] are polyhex and TUC4C8(R/S)
nanotori, respectively. Then,

a) J(C[m, n]) =

⎧
⎪⎪⎨

⎪⎪⎩

12m2n

(mn+ 4)(6m2 + n2 − 4)
n < m

12mn2

(mn+ 4)(3n2 + 3mn+m2 − 4)
n ≥ m

,

b) J(E[m, n] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

108m3n3

(mn+ 1)[2m(m2 − 1)+ 3mn(m+ 3n)− 3k1]
m < n

108m3n3

(mn+ 1)[2n(n2 − 1)+ 3mn(3m+ n)− 3k2]
m > n

108m2n3

(n2 + 1)(14n2 − k3)
m = n

,

in which

k1=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if 2|n & 2|m
n−m if 2|n & 2 � |m
m if 2 � |n & 2|m
n if 2 � |n & 2 � |m

, k2 =
⎧
⎨

⎩
0 if 2|m
m if 2 � |m

, k3 =
⎧
⎨

⎩
2 if 2|n
5 if 2 � |n

,

and, “|” denotes the divisibility relation.

c) J(F[m, n]) =

⎧
⎪⎪⎨

⎪⎪⎩

54mn2

(mn+ 2)(6n2 + 3nm+m2 − 4)
n ≤ m

54mn2

(mn+ 2)(6m2 + 3mn+ n2 − 4)
m < n

In the end of this chapter we report two recent results in computing eccentric
connectivity index of nanotubes and nanotori.

Theorem 11 The eccentric connectivity index of armchair and zig-zag polyhex
nanotubes are computed as follows:

1. (Saheli and Ashrafi 2010a) The eccentric connectivity index of a zig-zag polyhex
nanotube is as follows:
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ξ (A[p, q]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−7

2
pq+ p+ 9

2
pq2 p ≤ q+ 1

−1

2
pq+ p+ 21

4
pq2 − 3p2 + 3

4
p3 − 3

2
qp2

+1− (−1)q

2
3p

(
p− q− 1

4

)
q+ 1 < p < 2q

−4pq− 2p2 + 7

4
p+ 9

4
pq2 + 3

2
qp2

+1− (−1)q

2

3

2
p(p+ q+ 1) p ≥ 2q

.

2. (Saheli and Ashrafi 2010b) The eccentric connectivity index of an armchair
polyhex nanotube with parameters p and q is as follows:

ξ (B[p, q]) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q2(3p− 2) p ≤ q

2
+ 1

3

4
q3 + 1

2
q2 + 2q− 5qp+ 3qp2 q

2
+ 1 < p ≤ q

9

4
qp2 − 7

2
qp+ 3

2
q2p− q2 + 5

4
q p ≥ q+ 1

.

Theorem 12 The eccentric connectivity index of TUC4C8(R/S) nanotubes and
nanotori can be computed as follows:

1. The eccentric connectivity index of E[p, q] is given by

ξ (E[p, q]) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(p+ 1)[(9q2 + 18pq+ 15p+ 22q+ 10)+ R(p, q)] q <
[p

2

]

(p+ 1)[6p2 − (6pq+ 33q2 + 5p+ 42q+ 14)+ R(p, q)]
[p

2

]
≤ q < p

(p+ 1)[(27q2 + 6pq+ 5p+ 42q+ 14)+ R(p, q)] q ≥ p

,

where R[p,q] =
[
(6q+ 5) 1−(−1)p

2 + 3 1−(−1)q

2

]
.

2. The eccentric connectivity index of F[p, q] is given by

ξ (F[p, q]) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

22pq+ 8p2 + 12p2q+ 18pq2 p ≤
[

q+ 1

2

]

28pq− 4p2 + 12p3 + 21pq2 + 8p+ 3p
1− (−1)q

2

[
q+ 1

2

]
< p ≤ q+ 1

8pq+ 16p2 + 24p2q+ 9pq2 + 3p+ 3p
1− (−1)q

2
p > q+ 1

.
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3. The eccentric connectivity index of G[p, q] is given by

ξ (G[p, q]) =

⎧
⎪⎪⎨

⎪⎪⎩

12p(q+ 1)(p+ q+ 1) p ≤
⌈

q+ 1

2

⌉

4p+ q

2
+ 1− (−1)q

4
p >

⌈
q+ 1

2

⌉ .

6.5 Conclusions

We have presented here a review of topological-based methods for evaluating the
symmetry constraints and topological indices for carbon nanostructures such as nan-
otubes and nanotori. The first task, has been fulfilled by considering the topological
symmetry of the graph of a given chemical system; such a symmetry just reflects the
symmetry properties of the automorphism group of the graph providing the upper
limit—fully rooted in topology—on the geometrical symmetry of the nanostructure.
The second goal considers the application of topological indices in characterizing
nanostructures. The reported theorems are very useful because they allow a fast com-
putation of the topological indices for complex graphs (nanostructures) starting from
their structural building elements, to derive exact algorithms easy to programme on
the computer.

While the primary application concerns the description of carbon-networks in
chemical compounds, other applications exist to rank for example proteins according
to their degree of folding and topological invariants are useful in social-networks
description.
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