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Abstract In a distributed recurrent neural network equivalent changes at one
synapse might correspond to different patterns of activity and changes in strength
at particular links between two cells may become meaningless.The information is
not necessarily resident in the links among the units, but is likely to be provided by
the activity organized in a highly precise temporal mode. Precise spatio-temporal
firing sequences and attractor dynamics may be strongly associated, such that the
detection of spatio-temporal firing patterns may reveal the existence of underlying
modes of activity controlled by few parameters in deterministic chaotic dynamics.
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1 Spatio–Temporal Firing Patterns

The majority of neural circuits of the forebrain, i.e. the basal ganglia thalamocortical
circuit, are formed by highly interconnected networks of neurons in which the
activity of each cell is necessarily related to the combined activity in the neurons
that are afferent to it. Reentrant activity through chains of neurons is likely
to occur due to the presence of recurrent connections at various levels of the
circuits. Developmental and/or learning processes determine the strengthening and
weakening of synaptic interactions between the neurons of selected pathways. In
cell assemblies interconnected in this way, some ordered, and precise (in the order
of few ms) interspike interval relationships referred to as spatio–temporal firing
patterns, may recur within spike trains of individual neurons, and across spike
trains recorded from different neurons. For this to be true, temporal firing patterns
must occur to a significant level above chance (Fig. 1). Then, whenever the same
information is presented in the network, the same cell assemblies will be activated
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Fig. 1 Outline of the general procedure for pattern detection. (a) Three cells, labeled A, B, and
C, participate to a patterned activity. Three occurrences of two precise patterns are detected. Each
occurrence of the first pattern has been labeled by a specific marker in order to help the reader
to identify the corresponding spikes. (b) Estimation of the statistical significance of the detected
patterns. Two patterns, n = 2, <A,C,B> and <C,C,C> were found. Each pattern was formed by
three neurons, c = 3, and was repeated three times, r = 3, in the analyzed record. The expected
number of patterns of this complexity and repetition number was N = 0.04. The probability to
observe 2 or more patterns when 0.04 patterns are expected is noted as pr{0.02, 4}. (c) Display of
the pattern occurrences as a raster plot aligned on the patterns’ start (Adapted from [19])
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and the same temporal pattern of firing will be observed. A remarkable invariance
in the firing times of the tested neurons, indicating a high degree of reliability of
their response and not a stochastic nature of the discharges, was experimentally
observed after complex patterns of stimulation [5,14]. Experimental evidence exists
that correlated firing between single neurons recorded simultaneously in the primate
frontal cortex may evolve within tens of milliseconds in systematic relation to
behavioral events without modulation of the firing rates [21, 26]. Precise firing
sequences have been described in relation to particular temporal relationships to
stimuli [23], or movement [1], or differentially during the delay period of a delayed
response task [16, 24, 27]. When a specific input pattern activates a cell assembly,
the neurons are activated following a certain mode. Then, a mode of activity defines
how an information is processed within a neural network and how it is associated
to the output pattern of activity that is generated. In this framework the state of the
neural network is defined by a set of parameters characterizing the neural network
at a certain time. Then, the state of the network at any given time is represented
by the values of these parameters and a network state were fully determined if all
parameters were known for each neuron.

2 Dynamical System Analysis

The brain is characterized by biochemical reactions whose energy requirement
is derived almost entirely from glucose consumption coupled with processes
intended to transmit and integrate the information carried by the spikes across
the neural networks. For sake of simplicity it is rationale to describe the activity
of the neural network with the spike trains of all its elements. Spike trains are
statistically expressed by point-like processes with the meaning that point process
system are systems whose input and output are point processes. In a dynamical
system the subsequent state of the system is determined by its present state.
The irreversible dissipative processes associated to brain metabolism introduce an
essential metastability of brain dynamics. A dynamical system in a whole is said to
be deterministic if it is possible to predict precisely the evolution of the system in
time if one knows exactly the initial conditions and the subsequent perturbations.
However, a slight change or incorrect measurement in these values results in a
seemingly unpredictable evolution of the system. A passage in time of a state
defines a process. Whenever a process is completely deterministic at each step of
its temporal evolution but unpredictable over the long term it is called a chaotic
process or simply chaos.

An equivalent definition of a process is a path over time, or trajectory, in the
space of states. The points approached by the trajectory as the time increases to
infinity are called fixed points and the set of these points forms an attractor. If the
evolution in time of the system is described by a trajectory forming a closed loop
also referred to as a periodic orbit then the system is said to have a limit cycle. It is
unlikely that the irreversible dissipative processes associated with brain dynamics
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produces always the same repeating sequence of states. However, this aperiodic
behavior is different from randomness, or stochastic process, because an iterated
value of the point process (all spike trains in the network) can only occur once in
the series, otherwise due to the deterministic dynamics of the system the next value
should also be a repetition and so on for all subsequent values. The perturbations
applied to any combination of the governing set of parameters move a dynamical
system characterized by fixed points away from the periodic orbits but with passing
of time the trajectory collapses asymptotically to the same attractor. If the system
is deterministic, yet sensitive to small perturbations, the trajectory defining its
dynamics is an aperiodic orbit, then the system is said to have a chaotic attractor,
often referred to as a strange attractor. Then, the set of all possible perturbations
define the inset of the attractor or its basin of attraction.

By extending this approach to the spike trains recorded from all elements of
the neural network it is theoretically possible to develop an acceptable model for
the identification of the system. Notice that the goodness of fit of a certain kernel
estimate as plausible is evaluated by means of a function f describing its mode
of activity–the mode of activity being defined by how an information is processed
within a neural network and how it is associated to the output pattern of activity
that is generated. In formal terms f is a probability function that describes how
a state x is mapped into the space of states. If the function is set by a control
parameter � we can write f�.x/ D f .�; x/. A dynamical system x0 is a subset
of the space of states and can be obtained by taking the gradient of the probability
function with respect to the state variable, that is x0 D rf�.x/. Mathematically
speaking, the space of states is a finite dimensional smooth manifold assuming that
f is continuously differentiable and the system has a finite number of degrees of
freedom [18].

If the activity is generated by chaotic attractors, whose trajectories are not
represented by a limit set either before or after the perturbations, the attracting
set may be viewed through the geometry of the topological manifold in which the
trajectories mix. It is likely that several attractors may appear, moving in space
and time across different areas of the network, in the dynamics of large neural
networks. Such complex spatio-temporal activity may be viewed more generally as
an attracting state, instead of simply an attractor [3]. In particular, simulation studies
demonstrated that a neural circuit activated by the same initial pattern tends to
stabilize into a timely organized mode or in a asynchronous mode if the excitability
of the circuit elements is adjusted to the first order kinetics of the postsynaptic
potentials [10, 22].

3 The Brain Catastrophe

Let us assume that the dynamical system is structurally stable. In terms of topology
structural stability means that for a dynamical system x0 it exists a neighborhood
N .x0/ in the space of states with the property that every Y 2 N .x0/ is
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Fig. 2 Topological
interpretation of neural
dynamics as a function of two
control parameters, the cell
excitability and the kinetics
of the postsynaptic potentials.
The equilibrium surface is
represented by a cusp
catastrophe where transitions
can occur either suddenly or
continuously between
temporally organized firing
patterns and asynchronous
activity
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topologically equivalent to x0. This assumption is extremely important because a
structurally stable dynamical system cannot degenerate. As a consequence, there is
no need to know the exact equations of the dynamical system because qualitative,
approximate equations, i.e. in the neighborhood, show the same qualitative behavior
[2]. In the case of two control parameters, x 2 R, � 2 R

2, the probability function f

is defined as the points � of R2 with a structurally stable dynamics of x0 D rf�.x/

[15]. That means the qualitative dynamics x0 is defined in a neighborhood of a
pair .x0; �0/ at which f is in equilibrium (e.g. minima, maxima, saddle point).
With these assumptions, the equilibrium surface is geometrically equivalent to the
Riemann-Hugoniot or cusp catastrophe [20]. The cusp catastrophe is the universal
unfolding of the singularity f .x/ D x4 and the equilibrium surface is described by
the equation V.x; u; v/ D x4 Cax2 Cbx, where a and b are the control parameters.
We suggest that metastable modes of neural activity could lie in the equilibrium
surface with postsynaptic potential kinetics and membrane excitability as control
parameters (Fig. 2).

We assume that the same neural network may subserve several modes of activity
through modulation of its connectivity, e.g. according to learning or pathological
processes, or by modulation of its excitability, e.g. by modulation of the resting
potential or of the synaptic time constants. The state of a neural network being
defined by a set of characteristic control parameters at a certain time then, at
any given time, the state of the network is represented by the values of control
parameters and a network state is fully determined if all parameters were known for
each neuron. It is not possible to know all variables determining brain dynamics, yet
the analysis of experimental spike trains has confirmed the existence of deterministic
chaotic dynamics in neural networks [4, 8, 11].

The paths drawn on the cusp illustrate several types of transitions between
network states. In this framework at Point .a/ in Fig. 2 the network state is such
that an input pattern will evoke precisely time structured activity detectable by
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preferred firing sequences. This point corresponds to a high level of excitability
and a relatively long decay time of the postsynaptic potentials, e.g. 12 ms. This may
be associated to the tonic mode of firing described in the thalamo-cortical circuit,
where bistability of firing activity has been well established. Different firing patterns
might be evoked by the same input if the synaptic dynamics is changed within a
certain range of cellular excitability, as suggested for neuromodulatory mediators.
Also, different input patterns of activity may produce similar modes of activity,
somewhat like attractors. The transitions between these states are represented by
paths .a � b � a/, .a � e � a/ and .a � g � a/ in Fig. 2. Several types of neurons
tend to switch towards a rhythmic or bursty type of firing if the excitability is
decreased due to a hyperpolarization of the cell membrane or by modifying the
spike threshold level [9, 17]. In the former case a smooth passage between timely
structured activity and asynchronous firing is likely to occur, as suggested by path
.b�c�b/, especially if the synaptic decay is long. On the opposite, a sudden switch
from temporal patterns of firing to desynchronized activity will occur, as indicated
by paths .a � d/ and .e � f /, in the case of a fast synaptic decay and a modulatory
input modifying the threshold potential.

Complex spatio-temporal firing patterns may also occur with low levels of
excitability (point .e/ in Fig. 2), as suggested by cholinergic switching [25] and
control of synchronous activation within the basal ganglia thalamocortical circuit
[12, 13]. Point (e) on the equilibrium surface can be particularly unstable because a
further decrease in excitability, path .e � f /, but also an increase in synaptic decay,
path .e � d/, may provoke a sudden change in the mode of activity, as observed
in simulation studies [10]. During long lasting hyperpolarization the excitability is
low and the kinetics of the postsynaptic potential is often irrelevant with regarding
the input pattern such that the output activity would always tend to be organized in
rhythmic bursts. Conversely, an increase in excitability from point .f / with a fast
time constant of the synaptic decay, say 4–5 ms, the input patterns could turn on
either stable, path .f � g/, or unstable temporally organized modes of activity only
through sudden transitions, path .f � e/ [17].

4 Discussion

The detection of precise spatio-temporal firing patterns or attractors necessarily
requires the stability of the generating processes over a relatively long period of
time. Thus, precise spike patterns in single or across multiple neurons may be mostly
involved in long-term processes (e.g., memory traces, learned motor programs),
whereas the ensemble coding based on systematic firing rate modulations may be
related to short-term operational processes (e.g. motor action, attentional or feature-
binding). The research presented here is not discussing some questions that most
neurophysiologists usually ask: which is the most adequate stimulus for a given
neuron, how is the external world mapped in the cortex, what are precisely the
receptive fields of single units, etc : : : What is being discussed here is the association
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of neural activity in distributed brain information processing with deterministic
chaotic dynamics. In the nervous system the problem of learning is crucial and can
hardly be approached without taking into account synaptic modification. However,
changes in strength at particular links between two cells may become meaningless
because in a distributed system equivalent changes at one synapse might correspond
to different patterns of activity. Therefore, the information is not necessarily resident
in the links among the units, but is likely to be provided by the activity organized in a
highly precise temporal mode (precise spatio-temporal firing patterns and attractors)
that is considered meaningful if it is associated to an outcome that is validated by
the re-entrant neural activity, or spurious otherwise [6, 7].
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