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Abstract Based on a heuristic idea and by computer experiment, we show that
chaos introduced into a recurrent neural network model can enable “complex control
with simple rule(s)” under ill-posed situations. Furthermore, we show behavioral
interactions of two individual arm robots driven by independent chaos implemented
into each arm control system using recurrent neural networks.
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1 Introduction

Since a few decades, brain science has been greatly developed, however,
the mechanisms of advanced functions of brain have been still beyond our
understanding. In these situations, there are people who think that recently
discovered chaos in brain or biological systems could play an important role in
their advanced functions [1–3]. Nara and Davis proposed that chaotic dynamics can
occur in a recurrent neural network model by changing a system parameter, and
they have studied that it can be applied to solving ill-posed problems, for example,
memory search or synthesis, to solve maze (labyrinth) with use of chaotic roving
robot, and so on [4–6]. In their opinion, chaotic dynamics with certain dynamical
structures plays an important role in complex functions. In this paper, based on
the same idea with them, and by computer experiment, we propose that chaos
introduced into a recurrent neural network model can enable “complex arm control
with simple rule(s)” under ill-posed situations [7, 8], and as an actual example, we
show that an arm robot without having advanced visual processing function (see
Figs. 1 and 2) can take an target object to a set position under ill-posed situations.
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Fig. 1 Our arm model in
Euler angle scheme

Fig. 2 Firing pattern of 400
neurons & sub-vectors’
codings which correspond to
incremental motions via
Euler angles

Furthermore, we show behavioral interactions of two individual arm robots driven
by independent chaos implemented into each arm control system using recurrent
neural networks.

2 Method and Model

Our study works with an interconnected recurrent neural network model (abbrevi-
ated as RNNM hereafter) consisting of N binary neurons, and the updating rule is
defined by
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Fig. 3 The cycle attractor
patterns

where xi(t) D ˙1 (i D1 � N) is the firing state of a neuron specified by space site
index i at time t, and wij is connection weight from the neuron xj to the neuron
xi. wii is taken to be 0. r (0< r < N) is fan-in number for neuron xi, named
connectivity that is the most important system parameter in our work. Gi(r) is a
spatial configuration set of connectivity r for neuron xi., the number of which are
N�1Cr. Therefore, with full connectivity r D N � 1, determination of wij by means
of a kind of orthogonalized learning method enables us to embed a group of N
dimensional state patterns (vectors) as cycle memory attractors in N dimensional
state space. Let us employ our arm model as shown in Fig. 1, and introduce coding
of sub-vectors of neuron firing pattern (vector) as increment of the Euler angles in
arm motion. In our neural model system, attractor patterns consists of (K patterns
per cycle) � L cycles, and each patterns has N neurons. In this work, we take
K D 4, L D 8, and N D 400, where the firing states of N D 20 � 20 D 400 neurons
are represented by black pixel or white pixel (see Fig. 2). Long time updating makes
an initial pattern converge to one of the embedded cycle attractors.

Now, when we reduce connectivity r by blocking signal transfer from the
other neurons, then attractors gradually become unstable, and the network state
changes from attractor dynamics to chaotic dynamics, where we discard the detailed
description of the destabilizing processes [5]. Let us describe actual arm motions
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Fig. 4 The embedded four definite motions corresponding to the Fig. 3

and neural firing patterns (vectors). In the full connection state, when one of the
embedded cycle attractors appears, then, at each time step, decoded quantities
following the corresponding relations shown in Fig. 2 stationary give incremental
Euler angles, so the generated motion by them is one of the definite motions
shown in Fig. 4, whereas they are snap shots of the definite periodic motions of
arm. It should be noted that, to display the results of computer experiment, we
used the software “Insilico IDE” which is opened to the public on the web site
“Physiome Platform”. Once connectivity is reduced to one order of magnitude
smaller than full connection number, then dynamics of firing pattern becomes
chaotic. Correspondingly, decoded motions indicate chaotic behaviors, in which
fragmental motion of the embedded definite motions are coming out, vanishing,
coming out vanishing, and repeating them chaotically.

Now, we apply these two types of motions, definite motions and chaotic motions
to realizing (a) catching a target object, (b) catching a target and taking it back
to the set position, (c) catching a target and taking it back to the set position
under the existence of unknown obstacles, (d) competitive catching a target object
between two independent arm robots, where, in all cases, we assume that robot has
no advanced ability of visual information processing, and only adaptive switching
between attractor regime (full connection) and chaotic regime (small connection)
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Fig. 5 A schematic
description of the condition
about connectivity switching.
If the object is inside a
certain cone the axis of which
is an elongation of direction
from the position of arm edge
at time t-1 to the position of
arm edge at time t, then r D
N � 1, otherwise r D small.

Fig. 6 Control algorithm of
connectivity switching at
each time step, corresponding
to Fig. 5

depending on situations with including uncertainty (ill-posed situations) is used by
means of simple rule. Figure 5 shows a schematic description of switching condition
of connectivity and Fig. 6, the rough algorithm of this control system, where Figs. 7
and 8 are actual two examples of set situations (c) and (d) given above. All the
computer experiments are successfully done and only about the case of (d), the
result to evaluate the success rate with respect to connectivity is shown in Fig. 9.

One can recognize that chaos generated by rather small connectivity give better
results, which means that chaos with having strong ruin of embedded attractors
prevents the robots from generating various and/or adaptive motions in given
environments. So, chaos having certain weak dynamical structures could be useful,
however, optimization of dynamical structures is quite difficult problem and it would
be big issues including learning of chaos in this scheme.
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Fig. 7 Experiment of the
situation (c) given in the text

Fig. 8 Experiment of the
situation (d) given in the text

Fig. 9 Computer experiments of competitive taking of a target object between two arm robots,
where evaluated success rate depending on connectivity is shown.
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3 Concluding Remarks

1. Using Euler angle model of an arm robot having 6ı (angles) of freedom, we
made computer experiments to solve ill-posed problems using chaos in RNNM
installed into the control systems of the robot, where the robot can obtain
only information about target direction with uncertainty, and without any pre-
knowledge about configurations of obstacles.

2. By the computer experiments, we were able to show that chaos realize
autonomous and adaptive functions with use of simple rule(s)

3. The computer experiments in which the two robots competitively behave as
taking off and back a target, show that functional performance strongly depends
on dynamic structures of chaos generated by reducing connectivities in RNNM.
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