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Abstract In processes where ionic concentrations vary significantly, the standard
cable equation fails to accurately predict the transmembrane potential. Such pro-
cesses call for a mathematical description able to account for the spatiotemporal
variations in ion concentrations as well as the subsequent effects of these variations
on the membrane potential. We here derive a general electrodiffusive formalism for
consistently modeling the dynamics of ion concentration and the transmembrane
potential in a one-dimensional geometry, including both the intra- and extracellular
domains. Unlike standard cable theory, the electrodiffusive formalism accounts
for diffusive currents and concentration-dependent variation of the longitudinal
resistivities.
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1 Introduction

In standard cable theory, the effect of ionic diffusion on the net electrical currents is
neglected. Longitudinal resistivities, which in reality depend on ion concentrations,
are assumed to be constant [6,9,12]. These are typically good approximations when
modelling short-term electrical neural activity, as ion concentration typically vary
little at the relevant time scale (<100ms). However, in small intracellular volumes,
such as dendritic spines, the local ion concentration can change quite dramatically
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within a few milliseconds [11], and in slower, macroscopic transport processes,
concentration gradients may build up over time [2, 7]. For processes involving
significant ion concentration gradients, the cable model will fail to give accurate
predictions.

Qian and Sejnowski [11] have previously developed a consistent, electrodiffusive
scheme for modelling the dynamics on vM and ion concentrations [11]. Like the
standard cable model, the electrodiffusive model assumes that transport phenomena
are essentially one-dimensional. Unlike the standard cable model, the electrodiffu-
sive model derived vM from the ion concentration dynamics, accounting for all ionic
movements (membrane fluxes, longitudinal diffusion, and longitudinal electrical
migration), as well as for the concentration-dependent variation of the intracellular
resistivities. An important limitation with this model [11] is that it only includes
the dynamics in the intracellular space (ICS), whereas the extracellular space (ECS)
was assumed to be isopotential and with constant ion concentrations.

Here expand the electrodiffusive formalim [11] to explicitly include both the
ICS and the ECS. The result is a general mathematical framework for consistently
modelling the dynamics of the membrane potential and ion concentrations in the
intra- and extracellular domain. We believe that this framework will be of general
value for the field of neuroscience. In the discussion, we give a few examples of
processes that the formalism can be applied to.

2 Electrodiffusive Formalism

We seek a general mathematical framework for consistently modelling the dynamics
of the membrane potential (vM ) and the concentrations in the ICS (Œk�I ) and ECS
(Œk�E) of a set (k) of ionic species in a geometry as that depicted in Fig. 1.

2.1 Particle Conservation

We consider the continuity equations for an ion species k with valence zk in domains
I and E:
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with the sealed-end boundary conditions (n D I or E):

jkn.0; t/ D jkn.l; t/ D 0: (3)
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Fig. 1 A two domain-model for ion concentration dynamics in the intra- and extracellular
space. The ICS is represented as a cylindrical cable (I ), coated by ECS (E). The geometry is
specified by three parameters, where aI is the cross section area of the cable, aE is the cross
section area of the ECS and OM is the circumference of the cable. The concentration of ion
species k is denoted Œk�n where n represents domain I or E. Ionic movement is described by the
transmembrane flux density (jkM ) and the longitudinal flux densities due to electrical migration
(j fkn) and diffusion (j dkn)

Here aI and aE are the cross sections of the ICS and ECS, respectively, and OM is
the circumference of the membrane. The longitudinal flux densities are given by the
generalized Nernst-Planck equation (to keep notation short, we skip the functional
arguments .x; t/ from here on):

jkn D �Dk

�2n

@Œk�n

@x
� Dkzk
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Œk�n
@vn
@x
; (4)

where the first term on the right represents the diffusive flux density (j dkn) and the

last term is the flux density due to ionic migration in the electrical field (j fkn). The
effective diffusion constant D�

k D Dk=�
2
n is composed of the diffusion constant

Dk in dilute solutions and the tortuosity factor �n, which summarizes the hindrance
imposed by the cellular structures [2, 10]. We use  D RT=F , where R is the gas
constant, T the absolute temperature, and F is Faraday’s constant. The formalism
we derive is general to the transmembrane flux density (jkM ), as long as jkM is a
local function of vM , ionic concentrations in I and E, and possibly some additional
local state variables. The formalism can be combined with any external input (j inkn)
which fulfills the constraint:
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k
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as we shall explain later.
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With N ion species, Eqs. 1 and 2 (with jkn, jkM and j inkn as described above)
represent a system of 2N C3 variables which are functions of x and t . These are the
2N concentration variables (Œk�n for k D 1; 2; : : :N and n D E; I ), and the three
additional variables (vM ; @vI =@x and @vE=@x) occurring in the expressions for the
flux densities. We now seek to express vM ; @vI =@x and @vE=@x as functions of ionic
concentrations, so that Eqs. 1 and 2 constitute a fully specified (and numerically
solvable) system of equations.

2.2 Voltage Expressions

To reduce the number of independent variables to the 2N state variables (Œk�n) we
use three additional constraints:

vM D aI

CMOM
�I (6)

aI

CMOM
�I D � aE

CMOM
�E: (7)

vM D vI � vE ) @vM
@x

D @vI
@x

� @vE
@x

(8)

Equation 6 is the assumption that the membrane is a parallel plate capacitor. Then
vM is determined by the density of charge on the inside of the membrane, which in
turn is determined by the ionic concentrations:

�n D F
X

k

zkŒk�n C �sn: (9)

For practical purposes, we have included a density of static charges (�sn) in
Eqs. 6 and 7, representing contributions from ions that are not considered in the
conservation equations. If the set Œk�n include all present species of ions, then
�sn D 0.

As a capacitor separates a charge Q from a charge �Q (equal in magnitude,
opposite in sign), the ECS charge density must be also consistent with vM . This is
the second constraint (Eq. 7). To our knowledge, we are the first to make use of it in
an electrodiffusive model. When using Eqs. 6 and 7, we implicitly assume that all
local net charge in the system is stuck on the capacitive membrane (in the Debye-
layers), and that the bulk solutions in the ICS and ECS are electroneutral [4, 8].
In order not to violate Eq. 7, the external input to the system must also be locally
electroneutral (cf. Eq. 5).
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We shall now use Eq. 7 together with the general definition of the transmembrane
potential (Eq. 8) to derive our expressions for @vI =@x and @vE=@x. We start by
summing the particle conservation laws (Eqs. 1 and 2) to obtain:
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If we multiply this by F zk and take the sum over all ion species, k, the terms
involving j inkn disappear due to Eq. 5 and the terms involving Œk�n disappear due
to Eqs. 7 and 9. We are left with:
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The last implication follows from the sealed-end condition (Eq. 3). If the charge
symmetry condition is satisfied at a given time t D 0, Eq. 11 is the condition that it
remains satisfied at all times t .

The flux densities jkn are defined by Eq. 4. We note that Eq. 11 contains the sum
of jkn over all ionic species. These sums can be converted to current densities. For
convenience, we distinguish between the current densities due to diffusion (idn ) and
migration in the electrical field (ifn ), defined as [6]:
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where rn denotes the resistivity [6]. With Eqs. 4, 12 and 13, Eq. 11 can be
rewritten as:
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By combining Eq. 8 with Eq. 14 we may finally derive our expressions for the
voltage gradients:
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Here, rn is given by Eq. 13, idn by Eq. 12, and vM by Eqs. 6 and 9. All voltage
terms are thereby expressed in terms of ionic concentrations, and the conservation
equations (Eqs. 1 and 2) represent a fully specified system.

3 Discussion

We presented a one-dimensional, electrodiffusive framework for modeling the
dynamics of the membrane potential (vM ) and the ion concentrations .Œk�n/ of all
included ion species .k/ in an intra- and extracellular domain.

3.1 Implementation

A step-wise procedure of how to use this formalism is a follows:

1. Specify initial conditions for the membrane potential (vM0) and k ion concentra-
tions (Œk�n0) that is to be simulated. The main charge carriers are believed to be
Na+, K+ and Cl-, but other species can be included.

2. Specify the static charge density (�sn) so that Œk�n0 and vM0 are consistent
according to Eqs. 6 and 7.

3. Specify the membrane mechanisms (functions for jkM ) representing ion chan-
nels, ion pumps and other membrane mechanisms relevant for the cell type that
is to be modelled.

4. Specify an external input function that fulfills Eq. 5.
5. Solve the 2N conservation equations (Eqs. 1 and 2), with the boundary condition

in Eq. 3. This can be done numerically by using a spatial discretization method
(e.g., the Matlab-solver pdepe). For each time step, vM , @VI =@x and @VE=@x are
defined algebraically by Eqs. 8, 15 and 16.

3.2 Applications

In the most direct interpretation, the ICS in Fig. 1 represents a single neurite coated
with a thin sheath of ECS. For example, the ICS could represent an axon that
has been removed from the ionic solution and placed in air or oil, so that only
a thin layer of the ionic solution surrounds its membrane [12]. Alternatively, the
ICS could represent an individual axon in e.g., the optical nerve, where axons
are densely packed in bundles, and separated by constrained gaps of extracellular
space [1]. However, cases where it is biologically meaningful to consider the ECS
as a relatively thin coating faithfully following a single cell may be limited. For
most single cell processes, the assumption that aI � aE , and that conditions in
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the ECS are constant, may be more reasonable. In this limit the electrodiffusive
formalism reduces to the one-domain (ICS) model presented previously by Qian
and Sejnowski [11].

A geometrical simplification as that in Fig. 1 has also been justified for certain
macroscopic transport processes through a chunk of neural tissue [2,3,5]. Typically,
the ECS comprises about 20 % of the total neural tissue volume, while the remaining
80 % is the ICS of various cells [2]. Assuming that a large number of cells (e.g.,
all cells belonging to a specific species) participate in simultaneous ion exchange
with the ECS, the impact on the ion concentrations in the ICS and ECS may be of
the same order of magnitude. This calls for a two-domain formalism such as ours.
When addressing a macroscopic transport process, the ICS in Fig. 1 does not refer
to a single cell, but the total amount, within the chunk of tissue, of the participatory
cell type. Similarly, ECS refers to the total extracellular volume in the chunk. For the
geometrical parameters aE , aI and OM , one could then use, respectively, the ECS
volume per total tissue volume, the ICS volume per total tissue volume, and the
membrane surface area per total tissue volume. Such a macroscopic interpretation
of Fig. 1 allows for a broader range of applications.

We have previously presented the electrodiffusive formalism with the specific
application to a model of spatial potassium buffering by astrocytes [5]. We refer to
the previous work for a specific, illustrative implementation.
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