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Abstract In the present study, we have formulated a phase description of a neuronal
oscillator with non-instantaneous synaptic inputs, by using the phase sensitivity
function. By numerical simulation, we found that the synaptic time constant is an
important factor for global network synchronization. If the synaptic time constant
is smaller, perfectly synchronized behavior quickly occurs. As the synaptic time
constant is increased, periodic synchronization emerges. However, synchronized
activity is lost for larger synaptic time constant. The external periodic stimulation
can change the synchronized patterns in the neuronal population. With a stronger
stimulation or high-frequency stimulation, synchronized bursting occurred in the
neuronal population.
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1 Introduction

Oscillations are ubiquitous in the nervous system. Many experiments have shown
that the complex interaction between neurons can induce various rhythmic activity
in the nervous system [1]. Both the normal physiological function or abnormal
physiological disorders (such as Parkinson’s disease, epilepsy and so on) are related
to the synchronized neural activities with various frequency [2, 3]. Synchronized
activity among neurons and the formation of neuronal clusters are considered as a
fundamental mechanism for cognitive function and consciousness [4, 5]. Despite the
ubiquity and importance of synchronized activity, the underlying mechanism and the
key system parameters are not yet known, and little attention has been paid to inves-
tigating the dynamic response of an oscillator network to external stimuli. The phase
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response curve (PRC) represents how an external stimulus affects the timing of
spikes immediately after the stimulus in repetitively firing neurons [6]. PRC describe
the phase shift of the perturbed neuronal oscillator when a neural oscillator receive
external input or synaptic input [7–9]. In order to explore the dynamic mechanism of
synchronous activity in the nervous system, the phase response curve is an important
and effective method [10–14]. In the nervous systems, cortical neurons undergo
massive synaptic bombardment and ever-found perception information stimulation.
To understand the response properties of neurons operating in this regime, we
investigate a model neuron as a neuronal oscillator with non-instantaneous synaptic
inputs represented by ˛� function, and external periodic stimulus.

2 Model

We consider a neural population composed of N neural oscillators, where neuronal
oscillators are identical and globally coupled with each other, subject to a common
external periodic force. The phase of jth oscillator � j obeys the evolution equation:
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is the input to the jth neuronal oscillator from the kth

neuronal oscillator, " is weak coupling constant, N is the total number of neuronal
oscillators, tk

n is the nth firing time of the kth neuronal oscillator, ˛(t) is a causal
coupling function. � j is the phase of jth neuronal oscillator, ! is the natural
frequency of a neuronal oscillator, Z(� ) is a phase response curve of a neuronal
oscillator, c sin(!0t) is an external periodic force with a strength c and frequency !0.

We assume that the mutual interaction shift the frequency of the mean phase of
these oscillators by "� from the natural frequency !, and define the relative phase
 j D � j � (!C "�)t. The relative phase  j changes slowly compared with and will
hardly change during the oscillation period � j. Therefore, we substitute  j into
Eq.(1), and average Eq. (1) over one period keeping  j constant, so the relative
phase  j obeys the following equation:
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In order to investigate the dynamic response of neural population, we introduce
complex order parameters describing synchronized phenomenon in the neuronal
population
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where R is the amplitude of the order parameters describing the degree of syn-
chronization of neuronal oscillators, 0 � R � 1, the bigger R show that synchronous
activity is stronger,  is the average phase of the neuronal population.

3 Result

We investigate the response property of neuronal population to external periodic
stimulus. The phase sensitivity function Z(� ) is considered as a sinusoidal sensitivity
function sin(� ) as in Ref. [15]. As synaptic time constant � is smaller, the
neuronal population quickly synchronized in-phase (Fig. 1a); but with � increased,
periodic synchronization occurred, and as the synaptic time constant is larger, the
synchronization become weaker (Fig. 1b, c); even more, synchronized activity can
be lost (Fig. 1d). This shows that synaptic time constant is an important condition
under which the global neural network synchronized.
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Fig. 1 Time evolution of the order parameter R by varying � in the absence of stimulation.
Parameters: "D 0.01, !D 3, �D 2� , T D 2.05, (a) �D 0.4, (b) �D 0.5, (c) �D 0.7 (d) �D 1.4
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Fig. 2 Time evolution of the order parameter R in the presence of stimulation. Parameters:
"D 0.01, ¨D¨0 D 3, �D 2� , �D 0.485, (a) cD 0, (b) cD 0.003, (c) cD 0.03 (d) cD 1.5
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Fig. 3 Time evolution of the order parameter R in the presence of stimulation. Parameters:
"D 0.01, !D!0 D 3, �D 2� , �D 0.485, (a) !0 D 0.03, (b) !0 D 0.03, (c) !0 D 3 (d) !0 D 30
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Without stimulation, the neuronal population quickly tend to perfect synchro-
nization (Fig. 2a); With a weak stimulation, the neuronal activity transition from the
perfect synchronization to synchronized bursting occurred (Fig. 2b); As the stimulus
intensity was increased, the synchronized bursting duration is prolonged (Fig. 2c);
However, the synchronized bursting duration is shorten in the presence of stronger
stimulus (Fig. 2d). As the stimulus frequency was increased, the neuronal activity
transition from the perfect synchronization to synchronized bursting occurred
(Fig. 3b); As the stimulus frequency was further increased, the synchronized
bursting becomes stronger (Fig. 3c, d).

4 Conclusions

In the present study, we have formulated the phase description of the neuronal
oscillator with non-instantaneous synaptic inputs represented by ˛� function, and
external periodic stimulus by using the phase sensitivity function. The synaptic
time constant is an important parameter for perfect synchronization, periodic
synchronization, synchronized bursting in the global neural network synchronized.
The influence of external periodic stimulation on the neuronal population depends
on stimulus intensity and frequency. With a stronger stimulation or a high frequency
stimulation, synchronized bursting occurred.
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