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Preface

Cognition in its essence is dynamic and multilayered, and the pursuit of new
clues inevitably leads from one layer to the next, both bottom-up and top-down.
Similarly, the nervous system can be described at different organizational levels,
e.g. sub-cellular, cellular, network and the level of the entire brain, and each level is
characterized by its dynamical states and processes. Knowledge and understanding
of the great complexity of neural systems has increased tremendously in the last
few decades. Experimental methods, such as patch clamp technique, EEG, MEG,
PET, fMRI etc., have provided a huge amount of data. At the same time, statistical,
mathematical, and computational analysis and modeling have contributed to an
understanding of the intricate relations between structure, dynamics, and function
of neural systems at different scales. Both holistic and reductionist approaches have
proven essential for a more comprehensive description.

The young and rapidly growing research field of cognitive neurodynamics has
evolved from the inter-play between experimental and theoretical/computational
neuroscience and cognitive science. Inevitably, this field is highly interdisciplinary,
where scientists from many different fields, such as neuroscience, cognitive science,
psychology, psychiatry, medicine, mathematics, physics, and computer science
contribute to the advancement of the field. In particular, methods to describe,
analyze, and model nonlinear dynamics, including spiking, bursting, oscillating,
and chaotic behavior, often in combination with stochastic processes, need to be
further developed and applied. Also, advanced techniques to implement the models
in artificial systems, computers, and robots are called for.

In order to promote the integration of cognitive science and neurodynamics
as a whole, the International Conference on Cognitive Neurodynamics (ICCN) is
held biennially since 2007 with support from the international journal Cognitive
Neurodynamics (Springer). The first two conferences in the series were held in
China (Shanghai and Hangzhou, respectively) and the third conference was held
in Japan (Hokkaido).

The 4th conference, ICCN2013, on which these proceedings are based, was for
the first time organized outside Asia, in Sigtuna, Sweden, on 23–27 June 2013,
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right after the Swedish Midsummer. The conference was held in the inspiring
and creative atmosphere of the Sigtuna Foundation, offering a stimulating forum
for scientists, scholars, and engineers to review the latest progress in the field
of cognitive neurodynamics, and to exchange experiences and ideas. The Sigtuna
Foundation, with its unique architecture on a hill near the shore of lake Mälaren,
provided an excellent setting for the talks and intense discussions, often extending
late into the bright midsummer nights.

ICCN2013 attracted 153 participants from 20 different countries, who made this
conference a successful and memorable event. There were four keynote talks by
leading scientists in the field of cognitive neurodynamics: Prof. Walter Freeman,
Prof. Riitta Hari, Prof. Fabio Babiloni, and Prof. Yoko Yamaguchi. In addition,
eight plenary talks were given by Prof. Steven Bressler, Prof. Barry Richmond,
Prof. Yanchao Bi, Prof. Scott Kelso, Prof. John Hertz, Prof. James Wright, Prof.
Paul Rapp, and Prof. Aike Guo. In total 120 papers were presented in oral or poster
sessions. The topics ranged from macro- and meso- to microscopic levels, from
social and interactive neurodynamics, all the way down to neuronal processes at
quantum levels.

This volume fairly well reflects the large span of research presented at
ICCN2013. The papers of this volume are grouped in ten parts that are organized
essentially in a top-down structure. The first parts deal with social/interactive (I)
and mental (II) aspects of brain functions and their relation to perception and
cognition (III). Next, more specific aspects of sensory systems (IV) and neural
network dynamics of brain functions (V), including the effects of oscillations,
synchronization, and synaptic plasticity (VI), are addressed, followed by papers
particularly emphasizing the use of neural computation and information processing
(VII). With the next two parts, the levels of cellular and intracellular processes
(VIII) and finally quantum effects (IX) are reached. The last part (X), with the
largest number of papers of mixed topics, is devoted to the contributions invited by
the Dynamic Brain Forum (DBF), which was co-organized with ICCN2013.

We wish to express our gratitude to all those who made ICCN2013 and this
Proceedings possible. In addition to all the contributing authors, we owe thanks
to the special session organizers, Drs. Katarzyna Blinowska, Erik Fransén, Walter
Freeman, Pavel Herman, Wlodzimierz Klonowski, Jan Lauwereyns, Sisir Roy,
Emmanuelle Tognoli, Felix Tretter, Hong-bo Yu, and Tao Zhang. We gratefully
acknowledge support from The Swedish Research Council, the Grant-In-Aid G4103
MEXT Japan, the Sigtuna Foundation, Agora for Biosystems, Uppsala University,
the Swedish University of Agricultural Sciences, as well as from Springer. We are
also grateful to all the helpful students who assisted during the conference, and to
the friendly staff at the Sigtuna Foundation, including those in the kitchen, who
provided us with excellent food throughout the conference.

The 5th conference in the series, ICCN2015, will be held in Sanya on the
Chinese island of Hainan, 3–7 June 2015, organized by Prof. Rubin Wang and
colleagues at the East China University of Science and Technology. We have no
doubt that ICCN2015 will be as successful as the previous ones, bringing together
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an interdisciplinary group of scientists in an inspiring atmosphere for the discussion
of new exciting knowledge and surprises in the exploration of the human brain and
mind. This is the guiding idea that will make each ICCN meeting a most adventurous
event for many years to come.

Hans Liljenström
Hans A. Braun
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Brain Network Efficiency and Intelligent Scores
of Children

Fang Duan, Hiroyuki Tsubomi, Yuko Yoshimura, Mitsuru Kikuchi,
Yoshio Minabe, Kastumi Watanabe, and Kazuyuki Aihara

Abstract Graph theory is recently becoming a popular method to study brain
functional networks and evaluate efficiency of brain function. However, only a
few studies have focused on children. One of the main reasons is that children’s
data are usually contaminated by artifacts. We propose to construct brain graphs
after applying independent component analysis (ICA) to remove artifacts in the
magnetoencephalography (MEG) data of children. The clustering coefficient and the
harmonic average path length are calculated from artifact-free MEG data. Analysis
showed that certain values of the clustering coefficient and harmonic average
path length denoted more intelligent performance, as assessed by the Kaufman
Assessment Battery for Children, which may indicate better network efficiency.

Keywords Graph theory • Independent component analysis • MEG •
Intelligence • Network efficiency

1 Introduction

Magnetoencephalography (MEG) is a noninvasive technique to measure the mag-
netic fields of the brain. The application of MEG data has succeeded in studying
brain networks [1]. Graph theory has been employed to understand brain-network
structure in several studies, and it has been found that brain networks hold a high-
efficiency small world structure [2]. Because children are not yet fully developed,
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their brains should show a more significant plasticity. Therefore, studies of the brain
function of children can provide great assistance in understanding the plasticity of
the brain, and its involvement in the rehabilitation of the brain after cerebropathy or
many other issues. The limited self-restraint of children makes it difficult for them
to fully complete the experimental tasks. This reduces the reliability of experimental
data. Therefore, improving the data quality of children is also essential. In this paper,
we will show an efficient way to remove the noise in the MEG data of children by
ICA. Furthermore, the relationship between the network efficiency of children and
intelligence scores, acquired by the K-ABC, was evaluated.

2 Methodology

The MEG recording sessions required the participants to lie as still as possible
on a bed with their head inside the helmet of the MEG system. In order to
help the participants stay calm, they were allowed to watch a video during the
experiment. MEG was recorded with a whole-head coaxial gradiometer system (PQ
1151R; Yokogawa/KIT) for children, with 151 channel superconducting quantum
interface devices. The recording session lasted for 3 min with a sampling rate of
1000 Hz. MEGs of 58 children (10 girls, 48 boys) at an age of 39–93 months
were recorded. The collection of data was approved by the Ethics Committee of
Kanazawa University Hospital.

The Kaufman Assessment Battery for Children (K-ABC) [3] was applied for
all children to measure their intelligence. In total, three kinds of general scores,
including the sequential processing, simultaneous processing, and achievement
scales were measured before the experiment. To find the relationship between
network efficiency and intelligence scores, we compared the clustering coefficient
and harmonic average path length between high low scoring children, 25 children
in each group, based on each scale.

In this paper, the MEG data were resampled to 250 Hz. We employed ICA to
discriminate the noise produced by muscle movement and cardio artifact from the
data. In this work, kurtosis was utilized as the index to classify the ICA components.
In brain signal processing most ICA components show positive kurtosis. The
artifacts, especially, always have extremely high kurtosis indexes.

We use synchronization likelihood (SL) to estimate the association matrix. SL is
a non-linear measurement scheme using the method of time delay embedding [4].
For two time series x(t) and y(t), SL can be defined as follow:

SL D 2

.N � w/ .N � wC 1/ Pref

�
N�wX

iD1

NX

jDiCw

� .rx � jx.i/� x.j /j/ � �ry � jy.i/� y.j /j�; (1)
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where � (x) is the Heaviside function. Variable w is the dead band to exclude
temporal neighbors. We set Pref D 0.05, and wD 140. For the time delay embedding,
we set � D 10, dD 14. The association matrix is computed by using 5,000 sample
points.

In this paper, we construct the brain graph using 43 channels covering the frontal
lobe and parietal lobe, which play an important role in attention, memory, language,
and other cognitive function. The value of the threshold was set under the criterion
that ensures all brain graphs hold the same number of edges and can thus be easily
compared between groups. In this way, the two groups of graphs hold the same
number of vertexes and edges [2].

We consider brain networks as undirected and unweighted graphs. The clustering
coefficient and the characteristic path length are two popular indexes for undirected
unweighted graphs in small world network theory [5]. We use harmonic average
path length as one kind of revised path length index in this study. The equations of
clustering coefficient and harmonic average path length are given as follows:

C D 2

N

X
i

XN�1
jD1

XN

mDjC1aijajmami

ki .ki � 1/ ; (2)

L D N .N � 1/
2
XN�1

iD1
XN

jDiC1
1

dij

; (3)

where aij is equal to 1 when vertexes i and j are connected, ki is the number of edges
incident with i, dij is the shortest path length between vertexes i and j, and dij is
infinity when i and j are isolated from each other.

3 Results and Discussion

A comparison of the graph indexes between the high scoring group (HG) and
low scoring group (LG) was performed. Figures 1, 2, and 3 show the means
and standard deviations of the clustering coefficient and harmonic average path
length as a function of the degree of graph. In the figures, the blue and red lines
represent the HG and low LG, respectively. Triangles and asterisks indicate that the
differences between groups were statistically significant (p< 0.05 and p< 0.01 in
t-test, respectively).

Figures 1, 2, and 3 show that the differences of the harmonic average path length
between HG and LG were statistically significant. The harmonic average path length
of brain network in HG was lower than LG. We suggest that the brain networks of
children in HG possess shorter information transfer paths than LG. Our results were
compatible with the result in the reference [6].
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a b

Fig. 1 The harmonic average path length (a) and the clustering coefficient (b) as a function of the
degree of the networks. The groups were divided based on the sequential processing scale

a b

Fig. 2 The harmonic average path length (a) and the clustering coefficient (b) as a function of the
degree of the networks. The groups were divided based on the simultaneous processing scale

a b

Fig. 3 The harmonic average path length (a) and the clustering coefficient (b) as a function of the
degree of the networks. The groups were divided based on the achievement scale

The most significant point of the path length was shown at a degree value
between 3 and 4. For a random network, the mean degree to ensure the graph is
entirely connected is at least O (lnN) [2]. In this work, the number of nodes was
43. Therefore, the significant difference of harmonic average path length showed a
broad line of degree value to make the graph connected.
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Figures 2 and 3 show that the clustering coefficient was associated with the
simultaneous processing and achievement scales. The clustering coefficient of HG
was higher than LG. The difference, with statistical significance, could be found
around a degree of 10.

In references [4, 6], the results both show that the clustering coefficient of
brain networks was not associated with the participants’ physiological features. In
these studies, the relationship between the clustering coefficient and participants’
features was assessed when the brain graphs were at a very sparse level in these
previous studies. In this work, the relationship between the clustering coefficient
and intelligence scores was found when the mean degree of graph were more than
10, which means that these brain networks were much denser than in the related
studies.

Acknowledgment This research is partially supported the Aihara Project, the FIRST program
from (MEXT Program for Fostering Regional Innovation).
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Computational Emotions

Mauricio Iza Miqueleiz and Jesús Ezquerro Martínez

Abstract Research on the interaction between emotion and cognition has become
particularly active in the last years, and many computational models of emotion have
been developed. However, none of these models is able to address satisfactorily
the integration of emotion generation and its effects in the context of cognitive
processes. This work tries to unify several models of computational emotions
for embodied agents with the work done in cognitive architectures, based on
psychological theories and applications.

Keywords Emotion processes • Computational models • Embodied agents •
Communication

1 Introduction: Computational Models

Computational models take different frameworks in research and applications [1].
On the one hand, psychological models emphasize on fidelity with respect to human
emotion processes. On the other hand, AI models evaluate how the modeling of
emotion impacts reasoning processes or improves the fitness between agent and
its environment. That is to say, the model improves and makes more effective the
human-computer interaction.

Several models have been proposed and developed. However, some fundamental
differences arise from their underlying emotional constructs. For instance, as we
will see below, some discussions on whether emotion precedes or follows cognition
disappears if one adopts a dynamic system perspective. Here, we will discuss three
main approaches.
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2 Discrete Approach

This approach assumes appraisal theories of emotion [2]. In appraisal theories
emotions are connected with how organisms sense events, relate them to internal
needs, characterize appropriate responses and recruit cognitive, physical and social
resources to act in adaptive ways.

Some models focus on appraisal as the core process to be modeled. In this sense,
emotion is not completely elaborated. Mechanisms for deriving appraisal variables,
via if-then rules, model specific emotion label. Emphasizing on a cognitive model
of the situation, many models assume that (i) specific appraisal patterns are needed
for emotion arising; and (ii) cognitive responses are determined by these appraisals.

This perspective is mainly concentrated on the cognitive structure of emotions,
but doesn’t account for the overall emotion process. As we will see below, the
resulting computational models reflect this limitation [3]. Embodied emotion is
considered as a dynamic and situated process, adjusting to the changing demands of
the environment, rather than an appraisal of cognitive representations [4].

3 Dimensional Approach

Dimensional theories argue that emotions are not discrete entities. Rather, it is
a continuous dimensional space [5]. These theories conceptualize emotion as a
cognitive label attributed to a perceived body state, mood or core affect [6]. An
agent is considered in an affective state at a given moment and the space of possible
states within broad, continuous dimensions.

Although there is a relationship between both approaches, appraisal dimension
is a relational construct that characterizes the relationship between some specific
event (or object) and subject’s emotion (belief, desire or intention). Furthermore,
several appraisal variables can be active at the same time. Contrarily, the dimension
of affect is a non-relational construct, indicating only the overall state of the subject.

These dimensional theories focus on the structural and temporal dynamics of
core affect and often do not deal with affect’s antecedent in detail. Affective states
are not conceived intentional states, in the sense that affects are not about some
formal object or target. Here, despite of symbolic intentional judgments, many sub-
symbolic factors could contribute to a change in main affect.

Dimensional models are generally used for animated agent behavior generation.
They translate emotion into a small number of dimensions that are continuously
mapping features of behavior such as the spatial extent of a gesture. Similarly, these
representational models can recognize human emotional behavior and are better at
discriminating user affective states than the approach that only relies on discrete
labels [5].
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4 Communicative Approaches

These theories provide the social-communicative function of displays and can argue
for dissociation between internal emotional processes and emotion displays that
need not be selected on the basis of an internal emotional state. Their models
often embrace this dissociation and dispense with the need for an internal emotional
model, focusing on mechanisms that decide when an emotional display would effect
on an agent.

For instance, Bicho et al. [7] have tried to validate a Dynamic Field model of joint
action that implements neuro-cognitive mechanisms supporting human joint action.
It has explained the existence of persistent inner states that lead to the emergence
of high-level cognitive function. That is, cognitive processes unfold continuously in
time under the influence of multiple sources of information.

Their robotics experiments show: (i) principles of DFT scale to high-level
cognition in complex tasks (e.g., decision making in a social context, goal inference,
error detection, anticipation, etc.); (ii) embodied view of “motor cognition” strongly
contrasts with traditional AI approaches.

In this framework, taking the right actions is the result of efficient cognition:
(i) action understanding and goal inference; (ii) anticipation of the user’s needs
(for fluency of team performance and acceptance); (iii) action monitoring, error
detection and repair.

It does not look like a classical AI architecture (see [8]). It is a complex,
fully integrated dynamical system, with no encapsulated modules or subsystems
and an embodied view: high level cognitive functions like goal inference are
based on sensorimotor representations. More, learning can be integrated in the DF
framework.

5 Discussion

Several global principles can be extracted from the possibilities offered by this
kind of models. Three of these are arguably the most important. Firstly, attention,
as a control system to filter lower-level brain activity in order to allow few input
representations to enter the higher level of thought and manipulation of neural
activities (e.g., filters controlled by activity in parietal and pre-frontal cortices).
Therefore, higher level processes such as thinking and reasoning work on a smaller
number of input representations. Secondly, emotion, in terms of value maps learnt
in orbito-frontal cortex (also coded in associated amygdala sites) in order to bias
what is to be processed and to guide the choice of task goals (by their associated
predicted rewards), constraining the inference chain. These value maps, joined with
body activations and automatic brain-stem responses, are used to give emotional
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value to decisions for action. Thirdly, long-term memory created on-line, in order to
allow for incremental wisdom about the environment for use as a guide for further
interactions.

A number of global principles could be added to these three possibilities,
such as the use of hierarchical processing (as can be noted in vision, in order to
create flexible visual codes for complex objects which can be used at a variety
of scales). Another possibility involves the use of synchronization of neurons over
long distances, such as 40 Hz frequency, in order to solve the binding problem of
combining the different codes for objects (as happens in multi-modal hierarchical
coding schemes). A further principle is that of recurrent loops of neural activity, to
allow for the creation of short-term (or working memory) sites for the temporary
holding of such activity for spreading around to other similar sites, in order to
acting as report centers in the brain. Finally, there are the principles of integration
and segregation of the neural systems of the brain that play a core role in brain
processing efficiency.

Although there are a number of human psychological theories of emotion [9], it is
generally agreed that emotions serve the purpose of increasing our ability to interact
with our environment in a successful way. We have discussed that emotions can
thus be used to increase collective behavior in a dynamic model, as it happens in the
communicative approaches. We have analyzed the use of computational emotions
toward increasing collaboration and collective behavior for both avatar and agent.

There exists broad experimental evidence on grounded language comprehension,
such as when action related speech activates mirror system or action Sentence
Compatibility Effect [10], where verbal description of spatially directional actions
facilitates movements in the same direction. For instance, “Give me the wheel”
activates the motor representation of a pointing/request gesture; whereas “I give
you the wheel” activates the “reach-grasp-hold out” sequence.

In this sense, we have shown that Dynamic Field Theory offers a powerful the-
oretical language to endow autonomous robots with high-level cognitive capacities.
DF-architecture for joint action represents a complex dynamical system of coupled
neural populations, each with a specific functionality. Embodied and dynamic view
on cognition strongly contrasts with more traditional AI approaches. It will be
interesting in the future to develop a system in which each agent could evolve
his communication strategies to evaluate how the agent’s dynamics and collective
behavior are both affected by this additional dynamic.

Acknowledgements This work has been supported by the project (FFI2009-08999) of Spanish
MICINN.
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Group Neurodynamics: Conceptual
and Experimental Framework

Darius Plikynas, Saulius Masteika, Gytis Basinskas, Darius Kezys,
and Pravin Kumar

Abstract Our multidisciplinary research challenges few essential and actual
problems in the area of social neuroscience, i.e. (i) fundamental lack of
understanding what is individual and collective consciousness, (ii) how to
bridge group neurodynamics data to the behavioral social phenomena, and
(iii) technological challenges addressing simultaneous measurements of brain
EM activations and analyses in terms of spatial/temporal synchronizations and
spectral coherence for the group of people. Our basic assumptions follow field
theoretic consciousness interpretation approach and precede it assuming, that
mutually entangled individual mind states create coherent social networks and
behavior as well. The latter supposes that collective consciousness can be
empirically investigated in a form of simultaneous group-wide coherent brain
activations (e.g. using EEG measured delta, theta, alfa and beta oscillations). For
the experimental validation of the proposed paradigm we have designed a three level
experimental and simulation research framework, which starts from the modeling
and benchmark estimates of correlations for the individual mind states, proceeds
with estimates of the coherence and synchronicity measures for the group-wide
neurodynamics and ends up with construction of oscillations based multi-agent
social system simulation model.
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Keywords Group neurodynamics • Social neuroscience • Oscillating agents •
Multi-agent system

1 Introduction

Following technological advances, some new multidisciplinary research niches are
opening up. One of such promising new experimental research areas is in the field
of social neuroscience [1], which, enriched with the below listed conceptual field
theoretic consciousness interpretation approaches, promises novel interpretation of
coherent social networks and collective consciousness as well.

A review of conceptually related multidisciplinary research literature has
revealed some other field theoretic cognitive and coordination interpretation
approaches like the field model of consciousness (EEG coherence changes as
indicators of field effects) [2], the CEMI theory of consciousness, the neurophysics
of consciousness [3], the modeling of the neurodynamics complexity of teams [4],
intra- and inter-cellular communication mechanisms [5], field computations in
natural and artificial intelligence [6], the field-based coordination mechanisms
for multi-agent systems in a robotics domain [7], amorphous or pervasive
computation in contextual environments, nonlocal observations as a source of
intuitive knowledge [8, 9] etc.

Based on the review of field based cognitive and coordination approaches, we
made conceptual assumptions, hypothesis and postulates, which are framed by the
proposed OSIMAS (oscillations based multi-agent system) simulation paradigm.
It employs three conceptual models: PIF (pervasive information field), OAM
(oscillating agent model) and WIM (wavelike interaction mechanism) [10]. Hence,
proposed OSIMAS simulation paradigm potentially consolidates individual, group
and social neurodynamics in the unified conceptual framework. Below we very
briefly introduce experimental and simulation framework designed for the validation
of the proposed paradigm.

2 Experimental and Simulation Framework: Individual,
Group and Social Coherence Levels

For the experimental validation of the proposed paradigm we have designed a
three level experimental and simulation research framework, which starts from the
benchmark individual mind states, proceeds with estimates of the coherence and
synchronicity measures for the group-wide neurodynamics, and ends up with the
simulation of social coherence level, i.e. multi-agent system (MAS) design, see
Fig. 1.
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Fig. 1 Overall research framework: three major experimental and simulation research levels
(individual, group-wide and MAS simulation)

2.1 Individual Coherence Level

The main purpose of the proposed individual experimental EEG framework – to find
out whether brain-wave patterns, i.e. EEG-recorded mind-fields, can demonstrate
mutually correlated behavior that depends solely on the states of people’s minds.
Hence, we tested few hypothesis (H0(1) and H0(2)), see Fig. 1. In short, our
results also confirm, that temporally separated people doing the same mental
activities demonstrate an increase of specific spectral coherence in their brain-wave
patterns. Due to the space limitations in the current paper, plenty of obtained results
can be provided in the extended version of this paper.

In short, benchmark EEG experimental results have shown partial confirmation
of major OSIMAS assumptions concerning (a) oscillatory nature of the agent’s
mental states and (b) some common principles of power spectra redistribution in
different mental states. Based on these experimental findings, we made adjustments
to the conceptual oscillating agent model (OAM).

In order to find further insights about oscillatory nature of human mental states,
we have designed a simulation of human brain EEG signal dynamics using a refined
Kuramoto model [11], i.e. coupled oscillator energy exchange model (COEEM),
which simulates human brain single channel EEG signal dynamics (see Fig. 2),
using fourth-order Runge-Kuta algorithms (RK4).

We have obtained unique prognostication results, suitable for relatively accurate
prognoses of the human brain EEG signal dynamics for the chosen EEG channels,
see http://vlab.vva.lt.

http://vlab.vva.lt
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Fig. 2 The systems of the internal and external oscillators in the COEEM model

2.2 Group Coherence Level

Real-time group-wide EEG experiments (see Fig. 1) have also revealed spectral
coherence and temporal synchronization patterns for the people in the same
mental states (like concentration, contemplation, meditation, etc.). For analyses
and visualization of group-wide neurodynamics we have designed GMIM method
(URL: http://osimas-eeg.vva.lt), which shows simultaneous dynamics of the
group-wide neurodynamic processes, see Fig. 3.

2.3 Social Coherence Level (MAS Approach)

From the individual and group-wide experiments we observe (see above), that
mutually coherent individual mind states create coherent social networks and
ordered social behavior as well. The latter supposes that collective consciousness
can be empirically investigated in a form of simultaneous group-wide coherent
brain activations. Technologically it is already possible. At this stage, though, more
challenging is conceptual design and programmable construction of the oscillations
based MAS simulation model, which is in the agenda of the OSIMAS project.

3 Conclusions

Empirical evidences of neurodynamic coherence of brain waves for the people
in the similar mental states at individual and real-time group-wide levels provide
conceptually novel way for the simulation of (i) social agents as oscillatory entities

http://osimas-eeg.vva.lt
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Fig. 3 Spectral power activation of brain wave dynamics for four persons in chosen mind state and
spectral range (smaller diagrams and connecting lines indicate spectral power differences between
respective persons)

and (ii) societies as coherent systems composed from such agents. This remarkable
observation could start a new page in the social neuroscience further development.
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The Activity Modalities: A Priori Categories
of Coordination

Lars Taxén

Abstract A conceptualization of a-priori forms of coordination as activity
modalities is proposed. Sensations in various sensory modalities are integrated
by our brain into a coherent, actionable percept, structured by the processes of
objectivation, contextualization, spatialization, temporalization, stabilization, and
transition. This conceptualization promises to bridge neuroscientific and applied
research into the coordination problem.

Keywords Coordination • Sensations • Contextualization • Activity modalities •
Integration

1 Introduction

The understanding of how actions are coordinated and integrated in the pursuit of
fulfilling needs is of prime importance for brain research:

I do not see any way to avoid the problem of coordination and still understand the physical
basis of life [1, p. 176]

Coordination has been extensively investigated “internally” in various
neuroscientific and cognitive studies, and “externally” in applied areas like, for
example, organizational studies. Usually, neuroscientific research focuses of the
inner workings of the brain, while the external environment is conceptualized in
rather general, non-specific terms. As a case in point, see Fig. 1.

The brain is modeled in an elaborate way, while the environment is simply
described as the “world”. Thus, it is recognized that neural representations are
influenced by the external world, but the character of these representations is not
problematized. Also, influences in the opposite direction – from neural representa-
tions to the “world” – are not considered.
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Fig. 1 An example of conceptualizing the brain – environment relation (Adapted from [2])

In a similar vein, “external” sciences such as organizational science, social sci-
ences, information system development, system engineering, project management,
etc., tend to regard the individual as a homogeneous ideal type that can be
analyzed and manipulated as other, non-human elements. Thus, human abilities
and limitations for acting are disregarded, which may have severe consequences for
research in areas where humans are relevant. For example, models of organizations
are often so complex that they are exceptionally hard to overview, understand and
agree upon (see e.g. TOGAF [3]; a framework for developing so called enterprise
architectures).
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The separation between the internal and external research areas is understandable
since research efforts have to be somehow delimited. However, this dichotomy needs
to be overcome in order to advance our understanding of coordination. The brain,
body and the environment should be seen in a unitary way, as succinctly stated by
Llinás [4]:

[The internal functional space that is made up of neurons must represent the properties of
the external world – it must somehow be homomorphic with it [4, p. 65]

Concerning coordination, it is reasonable to assume that every healthy human
being is born with certain phylogenetically evolved predispositions to coordinate
actions in the same sense that we are born with legs for walking. Such predisposi-
tions need to be ontogenetically developed by acting in the various situations that the
individual encounters during her life-span. These actions are manifested internally
as a changed state of mind, and externally as various means enabling the actions.
For example, the ability to orientate oneself in space is certainly alleviated by a map,
once the significance of it has been understood by the individual.

The purpose of this contribution is to suggest that the homomorphy between
the internal and external worlds can be conceptualized as activity modalities.
These modalities – objectivation, contextualization, spatialization, temporalization,
stabilization, and transition – should be conceived as a-priori forms, i.e. exigencies
for coordinating actions in the same vein that Kant suggested time and space as
a-priori forms for knowledge. Thus, the modalities are not something that can be
experienced or sensed in the external world. Rather, they are evolutionary developed
categories by which our brains are equipped for enabling action. The gist of this
position is that sensations in various sensory modalities are integrated by our brain
into a coherent, actionable percept structured by the activity modalities and their
interdependencies.

The activity modality construct was conceived in my work with the coordination
of extremely complex development projects in the telecommunication industry [5].
Gradually, after many years, external manifestations such as information models
(spatialization), process models (temporalization), business rules (stabilization), as
well as other organizational artifacts, were elaborated into the activity modality
construct as putative, general categories of coordination.

The rest of the paper is organized as follows. First, I illustrate the activity
modalities by the activity of ancient time mammoth hunting. Next, in order to
provide a “foothold” from the external world into the intricacies of the inner
world, I suggest modeling the brain as dependencies between capabilities. This
approach is inspired from efficacious attempts to capture the essentials of complex
systems in the telecom industry [6]. The paper is concluded with a discussion of the
implications of the activity modality approach. In conclusion, I suggest that this line
of thinking is promising enough for motivating further research efforts along this
path.
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2 The Activity Modalities

Imagine that you can travel some 30,000 years back in time, and you are one of the
hunters in Fig. 2, motivated by the need to get food, acquire material for clothing,
making arrowheads, and the like. What coordinative capabilities must you have in
order to participate in this activity?1

A basic ability is that you can direct your attention to the object in focus for
the activity – the mammoth. If you are unable to recognize the very target that
your actions are meant to affect, you cannot coordinate your actions with the other
hunters.

Second, given the object and the motive for acting, you need to conceive of a
context – a center of gravity so to say – that enables you to recognize that which is
relevant to the activity (and disregarding irrelevant things): hunters, bows, arrows,
actions, shouts, gestures, and so on. For example, the river in the background is
certainly relevant, since it is obstructs the mammoth from escaping in that direction.
On the other hand, from participating in fishing activities you know that there are
fishes in the river; but these are surely irrelevant in the mammoth hunting activity.

Fig. 2 Illustration of an activity (Original wood engraving by Bayard [8])

1“Activity” (German: Tätigkeit; Russian: deyatel ‘nost’) as used here refers to the rather specific
sense it has in Activity Theory [7], meaning roughly “socially organized work”. Thus, it is more
precise than every-day English understanding of “activity”. By “action” I refer to the actions of
individuals participating in an activity.
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The context is fundamental for making sense of individual actions. For example,
it can be seen in the background of Fig. 2 that beaters scare the pray away by
means of making noises and a lit fire. These actions would appear completely
counterproductive if seen in isolation. It is only in the context of the entire activity
that the beaters’ actions become intelligible.

Third, a sense of the spatial structure of the activity needs to be developed in
your mind. This enables you to recognize how the relevant things are related to each
other, and what properties you confer upon them.

Fourth, you must acquire a sense for the temporal or dynamic structure of the
activity. Your actions must be carried out in a certain order. For example, shooting
an arrow involves the steps of grasping the arrow, placing it on the bow, stretching
the bow, aiming at the target, and releasing the arrow.

Fifth, you cannot shoot your arrows in any way you like. If shooting in a wrong
direction, other hunters may be hit rather than the mammoth. You need to know
where to aim in order to hurt the mammoth the most. An understanding of how to
perform appropriate mammoth hunting will be accrued after many successful (and,
presumably, some less successful) mammoth hunts. Eventually, this lends a sense
of stability to the activity; of the “taking for granted”; rules and norms indicating
proper patterns of action that need not be questioned as long as they work.

Sixth, an activity is typically related to other activities. For example, the prey
will most likely be cut into pieces and prepared to eat. This is done in a cooking
activity, which in turn has its particular motive – to still hunger – and object, which
happens to be the same as for the hunting activity: the mammoth. However, in this
context, other aspects of the mammoth are relevant (as, for example what parts of
the mammoth are edible). In order to participate in or conceive of other activities,
you must be capable of refocusing your attention; to make a transition from one
activity to another.

The six dimensions outlined above – objectivation, contextualization, spatializa-
tion, temporalization, stabilization, and transition between contexts – are denoted
activity modalities. In order for an individual to coordinate her actions, her brain
must be able to integrate multimodal sensory impressions into an actionable Gestalt
in the form of the activity modalities and their interdependencies. This integration
may be precluded by neurological deficiencies. For example, a brain lesion in
the hippocampal area severely impairs spatial navigation, which in turn impedes
orientation towards a desired target [9].

Even if coordinative capabilities are strictly individual, our social and physical
environment is imperative for how these capabilities are manifested in the brain.
Coordination between individuals can only occur through external means that
enable individual actions to be sufficiently synchronized. Such means can be
anything relevant for the activity: tools, speech, writings, gestures, symbols, and
whatever else as long as they are pertinent for the coordination and integration of
actions in order to achieve a common goal. This indicates that the activity should
be the prime unit of analysis for coordinative inquiries. In order to pursue this
line of thinking, I have suggested denoting activities characterized by the activity
modalities as activity domains [5].
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The idea behind illustrating the activity modalities by a historical activity such
as a mammoth hunt is to convey that the underlying structure of activity domains is
the same, regardless of time and place. The reason is simply that our phylogenetic
constitution has not changed much (if at all) since we were hunting mammoths in
ancient times. However, contemporary ontogenetic manifestations of the modalities
are of course very different, not least because of the technological development of
means.

3 An “Anatomy” of the Brain

If we hypothesize that the activity modalities are relevant for inquiring about
coordination, we need to investigate how these capabilities are realized in the brain.
In order to address this task, I propose to model the brain as dependencies between
capabilities; from the most basic ones upwards.

This approach is inspired by experiences from managing the coordination of
extremely complex development tasks in the telecom industry, where the system
under development was conceived in precisely this way [6]. The principle behind
is quite simple: the most important thing for understanding how a complex system
works is to understand dependencies. Images illustrating such dependencies have,
perhaps somewhat impertinent, been coined “anatomies” since it captures how the
system “comes alive”. So, for example, if the power on button of a computer is
malfunctioning, none of the inherent capabilities of the computer can be actuated.
In Fig. 3, such an “anatomy” of the brain is shown.

This anatomy should be regarded as a highly speculative and preliminary first
attempt that needs further elaboration. Its character is strictly structural; there is no
aspect of time or dynamics involved. Also, it is meant to illustrate the phylogenetic
predispositions which are further elaborated into coordinative capabilities during
ontogenesis. Thus, the ensuing capabilities of the individual are realized by the inter-
play between these predispositions and external influences from the environment.

How the capabilities are realized in Fig. 3 is not illustrated. This may appear
strange at first glance, since the anatomy is meant to assist in finding out exactly
that. However, the purpose of the anatomy is to provide a model of the whole of
the brain; a model that is simple enough, yet adequate, for achieving a common
understanding about it.

The anatomy should be read from the bottom up. A basic brain capability
is the motivating one, indicating that the brain is capable of auto-activation and
continual exploration of the environment. Next, a sensing capability is necessary,
which is realized by the different sensory systems in the brain (visual, auditory,
somatosensory, gustatory, and olfactory ones).

Sensing is a prerequisite for attention, which in turn depends of the capabilities
alerting (achieving and maintaining a state of high sensitivity to incoming stimuli),
orientation (the selection of information from sensory input), and executive atten-
tion (monitoring and resolving conflict among thoughts, feelings, and responses)
[10].
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Fig. 3 Dependencies between capabilities in the brain

The contextualization capability is dependent on attention and the capability to
resolve ambiguous percepts, which requires retrieval of akin percepts from long-
term memory: “analogies are derived from elementary information that is extracted
rapidly from the input, to link that input with the representations that exist in
memory” [11, p. 1235].

With contextualization in place, the objectivation, spatialization, and temporal-
ization capabilities can be invoked. In particular, it can be noted that objectivation
depends on contextualization; indicating that the discrimination of an object in focus
requires a contextual background. The transition modality is modeled as being
dependent on contextualization, since transition is not possible if the contextual-
ization capability is inhibited.

Next, the integration capability can be actuated, i.e., the formation of a pre-motor,
actionable percept, which enables the evaluation of proper action alternatives
utilizing similar percepts retrieved from long term memory. After the motor
system executes the action, its consequences are evaluated by a “consummation”2

capability, and the experience is stored in long term memory. This in turn is a
prerequisite for the stabilization capability.

2Consummation is the last stage in Mead’s conceptualization of the act “upon which the
encountered difficulty is resolved and the continuity of organic existence re- established” [12, pp.
3–25]
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4 Discussion and Conclusions

The approach presented in this paper is an attempt to address “The most important
issue in brain research today [ : : : ,] that of the internalization or embedding of the
universals of the external world into an internal functional space” [4, p. 64].

The basic idea put forward is that our individual capabilities for action will
inevitably reflect how we construct our artifacts and social institutions. Thus,
the “universals of the external world” are not something that exists out there
before mankind appeared on earth; rather these reflect “universals” of our brains,
which evolution has brought about. This means that the activity modalities can be
apprehended as “coordinative universals” by which our internal and external worlds
are unified.

In fact, the capabilities that the activity modalities provide are so vital for our
lives that they remain unnoticed by us, like the air we breathe. Every moment of our
daily life, we effectuate these capabilities without reflection. It is only when we are
struck by some lesion that the lack of a modality capability becomes apparent.

There exists a substantial amount of research that substantiates the idea of the
activity modalities in the “external world” e.g. [5, 6]. However, there is a huge
gap in extant research regarding how the modalities are realized in our brains. In
spite of this, some interesting threads can be noticed. For example, the stabilization
modality implies that every activity needs to uphold a delicate balance between
the extremes of complete segregation and all-encompassing integration. At one
extreme, the activity is disintegrated into non-communicating fragments, and at the
other extreme, the activity is solidified and unable to change. This view has a striking
resemblance to the concept of metastability:

Metastability, [ : : : ] leads to a looser, more secure, more flexible form of function that can
promote the creation of new information. [ : : : ] Too much autonomy of the component
parts means no chance of coordinating them together. On the other hand, too much
interdependence and the system gets stuck, global flexibility is lost. [13, p. 43]

Another putative connection is the formation of “global neurocognitive state”
which “plays a critical role in adaptive behavior by allowing the organism to
perceive and act in a manner consistent with the context of the changing situation in
which it exists” [14, p. 61]. An idea worth pursuing is that the dynamical assessment
of the state of an organism can be conceptualized, at least concerning coordination
of actions, as activity modalities.

Concerning the grounding of the activity modality construct, relevant results
from the immense knowledge base that exist in neuroscientific research today need
to be addressed. In order to coordinate these results, a brain anatomy such as the one
in Fig. 3, might be used. Such an image would function as a common target where
pertinent research results can be related to different capabilities in the anatomy.
After all, such images have been successfully used in coordinating other complex
tasks!

I suggest that the activity modality approach may provide insights both in
the internal and external worlds. In the external world, we may use the activity
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modalities as a guiding framework for analyzing and constructing our social and
physical environment. Likewise, we may study the nature of activity modality
manifestations such as artifacts, norms, institutions, etc., in order to gain insight into
the coordinative, functional organization of the brain. In conclusion, I claim that the
conceptualization of coordination proposed in this contribution is promising enough
to motivate further research efforts along this path.

References

1. Pattee, H.H. (1976). Physical theories of biological coordination. In M. Grene &
E. Mendelsohn (Eds.), Topics in the philosophy of biology, 27, Boston: Reidel.

2. Knudsen, E.I. (2007). Fundamental Components of Attention. Annual Review of Neuro-
science, 30, 57–78.

3. TOGAF (2013). Retrieved July 28th, 2013, from http://pubs.opengroup.org/architecture/
togaf9-doc/arch/

4. Llinás, R.R. (2001). I of the vortex: from neurons to self. Cambridge, Mass.: MIT Press.
5. Taxén, L. (2009). Using Activity Domain Theory for Managing Complex Systems. Information

Science Reference. Hershey PA: Information Science Reference (IGI Global).
6. Taxén, L. (Ed.) (2011). The System Anatomy – Enabling Agile Project Management. Lund:

Studentlitteratur. ISBN 9789144070742.
7. Kaptelinin, V., and Nardi, B. (2006). Acting with Technology – Activity Theory and Interaction

Design. Cambridge, MA: The MIT Press.
8. Bryant, W. C., Gay, S. H., (1983). A Popular History of the United States. Vol. I, Charles

Scribner’s Sons, New York.
9. Posner, M.I., and Petersen, S.E. (1990). The Attention System of the Human Brain. Annual

Reviews of Neuroscience, 13, 25–42.
10. Posner, M.I., and Rothbart, M.K. (2007). Research on Attention Networks as a Model for the

Integration of Psychological Science. Annual Review of Psychology, 2007 (58), 1–23.
11. Bar, M. (2009). The Proactive Brain: Memory for Predictions. The Philosophical Transactions

of the Royal Society, (364), 1235–1243.
12. Mead, G.H. (1938). Philosophy of the act. Chicago: University of Chicago Press.
13. Kelso, J. A. S, & Tognoli, E. (2007). Toward a Complementary Neuroscience: Metastable

Coordination Dynamics of the Brain. In L. I. Perlovsky, R. Kozma(Eds.) Neurodynamics of
Cognition and Consciousness (pp. 39–59). Berlin Heidelberg: Springer.

14. Bressler, S.L. (2007). The Formation of Global Neurocognitive State. In L. I. Perlovsky,
R. Kozma(Eds.) Neurodynamics of Cognition and Consciousness (pp. 61–72). Berlin Heidel-
berg: Springer.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/


On the Use of Cognitive Neuroscience
in Industrial Applications by Using
Neuroelectromagnetic Recordings
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Abstract Nowadays there is an emerging interest to apply the cognitive
neuroscience recent scientific findings into the industrial context, to increase the
efficacy of the interaction between humans and devices. The aim of the present
chapter is to illustrate the possibilities of the use of electroencephalographic (EEG)
signals recorded in humans to improve several industrial applications. In fact, the
main message of this chapter is that the actual EEG technologies could be not
only used in medical environments but also widely exploited into aeronautics and
marketing contexts. It will be highlighted the use of EEG signals for application
including the on-line monitoring of the mental workload of pilots, air traffic
controllers and professional drivers. Physiological variables that can be used in
neuromarketing analysis to assess variation of cognitive and emotional states during
the perception of advertisements will be also illustrated. Finally, preliminary results
of the first EEG experience of recording the brain activity during a visit of a real art
gallery will be shown. Overall, such findings testify how the electrical neuroimaging
seems to be now ready to pave the way to the industrial neuroscience.
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Neuroaesthetic

G. Vecchiato (�) • F. Babiloni
Department of Physiology and Pharmacology, University “Sapienza”, Rome, Italy

Brainsigns s.r.l., Via Sesto Celere 7/c, 00152, Rome, Italy
e-mail: giovanni.vecchiato@uniroma1.it; fabio.babiloni@uniroma1.it

A.G. Maglione
Brainsigns s.r.l., Via Sesto Celere 7/c, 00152, Rome, Italy

Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome
“Sapienza”, Rome, Italy
e-mail: antongiulio.maglione@uniroma1.it

© Springer Science+Business Media Dordrecht 2015
H. Liljenström (ed.), Advances in Cognitive Neurodynamics (IV),
Advances in Cognitive Neurodynamics, DOI 10.1007/978-94-017-9548-7_5

31

mailto:giovanni.vecchiato@uniroma1.it
mailto:fabio.babiloni@uniroma1.it
mailto:antongiulio.maglione@uniroma1.it


32 G. Vecchiato et al.

1 Introduction

Brain Computer Interface (BCI) is a very active area of research in neuroscience
aimed to investigate the on-line recognition and decoding of the brain activity,
mainly through the use of electroencephalographic signals (EEG). BCI techniques
have been developed along the last decade to improve the interaction of patients
with a reduced or impaired muscular mobility with software or devices useful for
them [1]. Applications have been realized in the BCI in the areas of prosthetics, or
for the control of domotic applications.

2 Beyond the Use of EEG in Clinical Contexts

After focusing on neuroprosthetics, assistive technologies and domotic applications
for motor impaired patients [2], Brain Computer Interfaces (BCIs) have been
employed also in areas of interest for healthy subjects, such as playing videogames
or controlling the mobility of helicopters or cars scale models [3, 4]. In fact,
neurophysiological and electroencephalographic (EEG) measurements have been
used in an attempt to characterize different mental states and to estimate the activity
of the central and autonomous nervous system related to the driving tasks. This
attempt is related to the generation of future devices able to detect on-line the degree
of mental workload in pilots or human operators engaged in difficult surveillance
tasks (reviewed by Borghini et al. [3]).

The attempt to decode brain activity of subjects related to the observation of
incoming commercial stimuli is at the base of another industrial application of the
EEG, usually called consumer neuroscience or neuromarketing. More precisely,
such field of study concerns the application of neuroscience methods to analyse
human behaviour related to marketing stimuli [5]. The reason why marketing
researchers are interested in using brain imaging tools arises from the assumption
that people are not usually able to fully explain their preferences when explicitly
asked.

Another frontier for the industrial application of cognitive neuroscience is related
to the evaluation of the brain activity during the appreciation of aesthetic stimuli,
called neuroaesthetic. Such discipline was founded more than a decade ago and
specifically refers to the study of the neural bases of beauty perception in art
(reviewed recently in [6]). In fact, the modern EEG technology allows to record the
brain activity in different environments and mobile conditions such as during the
fruition of real masterpieces in fine art galleries, where they are usually experienced
by visitors.

In the following sections we want to provide evidences of how the recording and
analysis of brain activity through the EEG technology is now ready to be applied
in several aspects of our everyday life. At this purpose, applications in BCI, on-line
mental workload monitoring, neuromarketing and neuroaesthetic fields performed
by our research team will be provided.
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2.1 Active and Passive Brain Computer Interfaces

BCIs provide severely motor disabled people with an alternative channel to commu-
nicate and control simple devices. EEG based BCIs operate a real-time translation of
predefined features into commands reflecting the users’ intent. Many of the currently
available BCI applications exploit different classes of EEG features as control
signals, such as sensorimotor rhythms, steady-state visual evoked potentials, event-
related potentials (ERPs) and the modulation of sensorimotor rhythms (SMRs;
[1]). Different kind of BCI applications can be thought on the base of these
kinds of potentials. In addition, such as measurements could be useful in several
applications related to the monitoring of the brain states in complex tasks, such as
driving cars or piloting aircrafts. The general idea of the “Passive Brain Computer
Interfaces” (PBCI) is to provide to the operator a real-time feedback, by measuring
the continuous EEG activity, about the mental engage required by the task. In
such a case it could be possible to derive objective measurements of the internal
cognitive state of the user during the task. The use of such PBCI enlarge the area of
application of standard BCI toward different industrial applications, such as the on-
line detection of operators’ mental workload during simulated car driving. Figure 1
presents a typical experimental setup for such PBCI technology, jointly performed
by the Authors and prof. Wanzeng Kong, responsible of the laboratory of the Dept.
of Computer Science in the Hangzhou Dianzi University, Hangzhou, China

Fig. 1 A typical setup for a study involving the measurements of the mental workload during the
drive of a simulated car. The passive BCI return real-time information about the “perceived” mental
effort of the subject performing the driving task
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2.2 On-Line Mental Workload Estimation and Monitoring

The aim of this area of research is to design, implement and evaluate an online,
passive, EEG-based BCI system to quantify the mental workload of the subject
during tasks performed at three different difficulty levels, using machine learning
techniques. The system was tested by subjects performing the Multi Attribute Task
Battery (MATB; [7]). We tested the system during the online run performed in
each session. In particular, for each session, we trained the classifier using the data
acquired during the first three runs of the session (easy and hard), and we applied
the parameters to the online run in order to allow the operator to visualize directly
on the visual interface the output of the classifier (mental workload index), for all
the subtasks (easy, medium and hard) provided by the online run (Fig. 2).

Fig. 2 Screenshot of the visual interface provided to the operator that allows to visualize the
workload index (classifier output) over time. The red line is the average workload index, estimated
in real time by the EEG recordings of the human operator. Note as during the different difficulty
of tasks proposed to the subject (indicated by the different colors of the bar at the center of the
figure, being red the most difficult task, and the green the easiest one) the workload index shows a
different value. The higher the index, the higher the estimated workload
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2.3 Neuromarketing

The final goal of the study is to link significant variations of electroencephalographic
and autonomic variables with the cognitive and emotional reactions during the
observation of TV advertisements. In an interview after the recording, subjects were
asked to recall commercial clips they remembered and to score them according to
the degree of pleasantness they perceived. Hence, the dataset has been divided into
several subgroups in order to highlight differences between the cerebral activity
related to the observation of the remembered and forgotten ads, and those between
the liked against the disliked commercials. Both cognitive and emotional processing
have been described by the Memorization (MI), Attention (AI) and Pleasantness
Index (PI), which have been presented a previous work [8]. The percentage of
spontaneous recall is linearly correlated with the MI values (R2D 0.68, p< 0.01).
In particular, when both MI and AI are under their average values the percentage
of spontaneous recall (18 %) is under average as well. This percentage is slightly
increased (20 %) when the AI exceeds the average threshold. The highest values of
spontaneous recall correspond to MI values over average. In fact, in this case the
percentage reaches the value of 33 % when the AI is under average and the value of
41 % when both MI and AI are over average (Fig. 3).

As to the PI, the de-synchronization of left alpha frontal activity is positively
correlated with judgments of high pleasantness.

Fig. 3 Picture shows the percentage of spontaneous recall when Memorization Index (MI) and
Attention Index (AI) are above or below their average value



36 G. Vecchiato et al.

2.4 Neuroaesthetic

The aim of this research is to investigate the neuroelectrical correlates of brain
activity during the observation of real paintings in a visit of the “Scuderie del
Quirinale” art gallery in Rome, Italy, during an exhibition of the XVII century
Dutch’s painters, including J. Vermeer (1632–1675). Interest for this study was to
examine as the emotional and motivational factors, indexed by EEG asymmetry
[9], could be related to the experience of viewing paintings. For this purpose, a
proper Approach/Withdrawal index (AW) has been defined, as already presented in
a previous study [8]. To our knowledge, this is the first study facing the collection
of brain activity during the observation of real masterpieces in a national art gallery.
Almost all the paintings received an appreciation substantially greater than the
baseline (p< 0.05). It is also possible to note that the maximum value of the z-
score (10.3) for the AW index is reached in occurrence of the painting number 8
of the visit, related to the J. Vermeer’s “Woman with a red hat”. Such evaluation
was in agreement with the verbal judgments obtained in the analyzed population.
The Pearson correlation between the verbal judgments provided by the sample
considered and the values of the AW index was 0.505, that was indeed statistically
significant (p< 0.05) (Fig. 4).

Fig. 4 Variation of the Approach/Withdrawal index along the paintings observed during the
gallery visit. Number refers to the different pictures visited along the gallery in the same order
by all the subjects involved in the experiment



On the Use of Cognitive Neuroscience in Industrial Applications by Using. . . 37

All the above mentioned examples suggest that it is now possible to employ
the neuroelectrical activity to address issues related to our perception of cognitive
workload, commercial advertisements and also pictures in an art gallery. How this
will open the way for a more intense use of the cognitive neuroscience in the
industrial contexts it is still to be clarified in the next years. However, it is out of
doubt that the process to use the knowledge from cognitive neuroscience in the
industrial contexts has already started.
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A Study of c-VEP/SSVEP BCI Hybrid System

Gang Zhang, Guangyu Bin, and Xiaorong Gao

Abstract Recently, there has been an increasing interest in hybrid brain-computer
interface (BCI) systems. Many hybrid BCI studies have been reported, using ERD
(event-related desynchronization), SSVEP (steady-state visual evoked potentials)
and other responses to construct hybrid BCI systems.

Hybrid BCI research is a novel research area. A hybrid BCI is a communication
system that combines BCI with another means of sending information [3]. It
requires more complex controls and processes.

c-VEP – (Coded visual evoked potential) BCI system has been approached using
pseudo-random sequence encoding to evoke VEPs in BCI system. c-VEP BCI
system successfully achieved 32 targets at 60 Hz display frame rate. SSVEP BCI
is based on frequency modulation frequency modulation VEP. Since frequency dis-
tribution of c-VEP is wide band around nearly white noise, it can be superimposed
with the SSVEP fixed frequency signal.

Keywords Hybrid BCI • SSVEP • ERD

1 Introduction

The system consists of an EEG amplifier and a PC with a LCD monitor. Figure 1
depicts the basic structure of the system. Mipower amplify (Design by Laboratory
of Neural Engineering, Tsinghua University), which has a parallel port for trigger
synchronization, was used in the test system. Visual stimuli were presented on a
LCD monitor with a 60 Hz refresh rate. For precise timing control of stimulus
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Fig. 1 (a) c-VEP stimulation matrix. (b) SSVEP stimulation blocks

presentation, DirectX technology (Microsoft Inc.) was utilized in the stimulus
program, with the refresh rate of the monitor is 60 Hz. The stimulation sequence
in c-VEP is: 100001111001101111110101000101100.

As shown in Fig. 1, four Rectangle background areas represent in four different
frequencies flickering inside, with 16 targets were arranged as a 4� 4 matrix
(in Fig. 1a). Four flicking frequency (8 Hz, 9 Hz, 11 Hz, 12 Hz) was used to evoke
SSVEP (in Fig. 1b), Four flicking frequency (60/9 Hz 60/8 Hz, 60/7 Hz, 60/5 Hz)
was used in former experiment.

Each target was periodically modulated by a 63-bit binary m-sequence that could
evoke C-VEP. Time lag between two consecutive targets is set to four frames, and
the used modulation sequences in one period were the same m-sequence for all
targets. The experiment studied the feasibility of the hybrid BCI systems based on
c-VEP and SSVEP. SSVEP stimulate was used as the back ground to divide the
screen into four regions, each region used M pseudo-random sequence to divide
into 16 targets. There were total 64 targets in this system. Canonical correlation
analysis (CCA) method was performed to extract frequency information associated
with the SSVEP. A template matching method was used for target identification of
c-VEP [1, 2].

As shown in Fig. 2, the ellipse mask is c-VEP stimulation, the Rectangle
background is SSVEP stimulation. CCA: canonical correlation analysis method.

A template matching method is generally used for target identification. To obtain
the template, a training stage must be implemented. The steps of target identification
are as follows:

1. In the training stage, the user is instructed to fixate on one of k targets, with the
fixation target denoted by T0. During N stimulation cycles, EEG data Xn, n51,
2 : : :N is collected.
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Fig. 2 A c-VEP/SSVEP BCI hybrid system structure diagraph

2. A template T is obtained by averaging over N cycles.

T .t/ D
NX

nD1
Xn (1)

3. The templates of all targets are obtained by shifting T:

Tk.t/ D T
�

mod
�
t � .�k � �/; p

�
(2)

4. For a segment of EEG data x, the correlation coefficient between x and the
template T is calculated as:

�k D Tkx
T

p
TkTk

T xxT
(3)

5. The target will be selected with the C which have the max correlation coefficient
value.

C D max
i
.�k; i D 1; 2 : : :K/ (4)

6. The SSVEP correlations between the projections of the variables onto these basis
vectors are mutually maximized. Consider the linear combinations which use
canonical correlation analysis.

In Fig. 3 Circle c-VEP stimulation has almost the same Autocorrelation with
Square stimulation c-VEP. In experiments, they have almost the same good perform
(Fig. 4).
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Table 1 Results

Accuracy (%) ITR (bits/s)
Subject Hybrid SSVEP c-VEP Hybrid SSVEP c-VEP

S1 85 100 100 80 81 55
S2 70 95 90 66 80 43
S3 75 95 80 70 82 47
S4 65 75 85 53 38 39
S5 92 98 94 129 62 87

2 Results and Conclusions

Compares the average training accuracy and ITR (information transfer rate) with
c-VEP BCI system, with selection twice decision and unshielded environment. Six
channel O1, O2, Oz, Po3, Po4, Poz has been used, reference was Cz channel. The
results of the experiment were summarized in Table 1.

The border style and size of SSVEP stimulation would affect ITR value when
using as background. The experimental results illustrated that the hybrid BCI system
combines the four targets SSVEP BCI and 16 targets c-VEP BCI to get the 64 targets
hybrid BCI.
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Memory Consolidation from Seconds to Weeks
Through Autonomous Reinstatement Dynamics
in a Three-Stage Neural Network Model

Florian Fiebig and Anders Lansner

Abstract Long-term memories for facts and events are not created at an instant.
Rather, memories stabilize gradually over time and involve various brain regions.
The shifting dependence of acquired declarative memories on different brain
regions – called systems consolidation – can be tracked in time by lesion exper-
iments and has led to the development of the Complementary Learning Systems
framework, which focuses on hippocampal-cortical interaction. Observations of
temporally graded retrograde amnesia following hippocampal lesions, point to a
gradual transfer from hippocampus to cortical long-term memory. Spontaneous
reactivations of hippocampal memories, as observed in place cell reactivations
during slow-wave-sleep, are supposed to drive cortical reinstatements and facilitate
this process.

We propose a functional neural network implementation of these ideas and
furthermore suggest an extended three-stage framework that also includes the pre-
frontal cortex and bridges the temporal chasm between working memory percepts
on the scale of seconds and consolidated long-term memory on the scale of weeks
or months.

We show that our three-stage model can autonomously produce the necessary
stochastic reactivation dynamics for successful episodic memory consolidation. The
resulting learning system is shown to exhibit classical memory effects seen in
experimental studies, such as retrograde and anterograde amnesia after simulated
hippocampal lesioning.

Keywords Memory consolidation • Working memory • Complementary
Learning Systems • Synaptic depression • Neural adaptation • Retrograde
amnesia • Anterograde amnesia
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1 Introduction

Based on theoretical consideration of incremental learning in artificial neural
networks, McClelland et al. [1, 2] concluded, that the existence of at least two Com-
plementary Learning Systems (CLS) appears to be necessary, serving an adaptive
function, allowing for processes of selective learning, memory strength modulation
and gradual acquisition into stable long-term memory without sacrificing one-shot
learning capability.

Today, multiple brain areas are thought to support declarative memory. While
Working Memory is supported by the pre-frontal cortex (PFC), intermediate
memory involves the medial temporal lobes and especially the hippocampus (HIP);
Neocortex (CTX) provides a slow learning substrate for long-term memories.
Current memory consolidation models [3, 4] assume that long-term memory
consolidation of declarative memory is facilitated by the repeated reinstatement of
previous activations in the neocortex.

Reactivations are known to be driven by the hippocampus and have been well
studied with respect to place cells [5, 6]. Sleep and its various phases have been
proposed to modulate network dynamic and plasticity, thus promoting the memory
consolidation process [7–9], whereby interference between new learning (awake)
and consolidation (asleep) is avoided.

Bilateral damage to the hippocampus incurs significant anterograde amnesia
along with often temporally graded retrograde amnesia [10–14]. Prefrontal working
memory is also aided by hippocampus, but only when demand exceeds its own very
limited capacity [15].

2 Aims

We aim to build a neural network model that can autonomously consolidate memory
from the scale of seconds (working memory) to weeks (long-term memory).
Our dynamically interconnected model of three key brain areas is a functionally
improved extension of the Complementary Learning Systems (CLS) framework
[1, 16].

We focus on three major challenges:

• Replicate the temporal dynamics of memory consolidation seen in biological
data, including effects of hippocampal damage.

• Implement autonomous replay as an intrinsic neural mechanism for consolidation
• Functionally bridge the full temporal range from seconds to weeks
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3 Model and Methods

By implementing a Hebbian depression of synaptic connections, a biologically
inspired Bayesian Confidence Propagation Neural Network (BCPNN) can
autonomously reinstate previously learned attractors without need for external cues,
noise bursts or other top-down controls [17]. The dynamics rest on slow synaptic
depression in conjunction with neural adaptation, which allows an otherwise fast
converging attractor network to shift randomly between learned attractors. Due to
inherently balanced learning and forgetting in BCPNNs, the network retains its
ability to learn new memories/attractors indefinitely and does not suffer from the
potential pitfalls of other types of attractor networks, such as catastrophic forgetting.

Our model rests on three BCPNN-type populations of varying size and drastically
different degrees of plasticity on the order of 3 min (PFC), 3 h (HIP), and 6 days
(CTX) respectively.

The simulation evolves in three phases (Figs. 1 and 2) plus one phase for recall
testing afterwards, during which plasticity is turned off. Each new training pattern is

Fig. 1 From prefrontal working memory to long-term neocortical memory. The four panels show
the three simulation phases (1–3) and their active components, as well as the configuration during
cued recall (4). Activity in the cortical areas is organized into hypercolumns, while hippocampal
activity is sparser, pattern-separated and lacks columnar organization
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Fig. 2 The simulation cycle with its three alternating phases, named perception, reflection and
sleep. Online learning occurs only during perception

shown for only one simulation timestep (brief online learning episode), forcing one-
shot learning in the PFC, as the other networks learn too slowly for recall after this
short exposure. Consolidation is then achieved through spontaneous reactivation of
learned patterns, which will in turn cause the corresponding patterns to be projected
in the next network and thus potentially learned or strengthened. Neural network
dynamics are simulated in steps of 10 ms. Due to runtime considerations (simulating
more than a month of time), plasticity of all networks was scaled by a factor of
26,000, so one day can be simulated in 330 steps.

4 Results

The three modeled brain regions learn and forget dynamically over time, as can
be seen by plotting the probability of successful recall for each stage (Fig. 3). For
added clarity, Recall was averaged (daywise) for patterns of the same age. Also
note that the x-axis of Fig. 3 is logarithmic. The PFC reliably stores only the
most recent patterns of the current day (ageD 1d), while HIP can recall patterns
for about a week. CTX memories can last for over a month, but consolidation is
highly competitive as not all patterns are replayed/reinstated often enough: About
a third of all patterns become consolidated into neocortical long-term memory.
This dynamic can be biased, however, by introducing a plasticity modulation (e.g.
relevance signal) which temporarily boosts hippocampal encoding. This, in turn,
raises replay strength and frequency and thus improves consolidation odds and
speed. On average, maximum systems consolidation is reached after about a week.
For patterns between 2 and 5 days old, combined recall drops sharply following
simulated hippocampal lesioning.

Retrograde amnesia is temporally graded, confirming experimental lesion data
[1, 18, 19], see Fig. 4. Very recent pattern recall is not impacted as it is supported by
working memory (PFC). Anterograde amnesia is flat, because future consolidation
is permanently impaired, as well as hippocampal performance. This amnesia pattern
is markedly different from simulated sleep deprivation (a consistent 50 % reduction
in simulated sleep), which decreases system consolidation performance notably,
but leaves hippocampal memory functional, so the anterograde effect becomes
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Fig. 3 The probability of successful recall plotted against age of patterns, for the three different
modeled brain regions (PFC, HIP, and CTX)

Fig. 4 Amnesia gradients, expressed as percentage wise performance changes, following partial
or complete hippocampal lesions (deletion of a fraction of HIP units)
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noticeable only after about 5 days. Also, because of reduced overwriting, cortical
forgetting is also lower, which reduces the degree of amnesia for very old patterns.

5 Conclusion

Our model produces the necessary stochastic dynamics for episodic memory
consolidation. Working Memory can hold patterns for less than a day and cortical
learning is much too slow for any useful online learning from brief percepts, yet
autonomous consolidation through the hippocampal system can yield stable cortical
long-term memories, some of which can be recalled from cortex more than a month
later.

Despite significant simplifications, the model show many of the properties and
characteristics observed experimentally. These include competitive consolidation,
retrograde facilitation after impaired acquisition (not specifically shown here), as
well as typical amnesia effects after simulated hippocampal lesions.

With respect to the latter, we conclude that the model exhibits temporally graded
retrograde amnesia (RA) qualitatively similar to pathologies seen in animal lesion
experiments [12, 18, 19] and human case studies, such as Patient H.M. [10] and oth-
ers [20]: Intact working memory, temporally graded RA, preserving remote cortical
memories, as well as severe, flat anterograde amnesia. Our model predicts strong
recall of very recent patterns, as they are supported by hippocampally-independent
working memory. This is a testable prediction, given neurophysiological deactiva-
tion of hippocampal function on the timescale of working memory, such as focal
cooling may allow [21]. Experimental lesion studies cannot account for the fleeting
storage of new percepts in short-term memory. For example, test animals (rats,
monkeys) require a resting period after the lesioning operation, before retesting and
thus necessarily exclude short-term memory.

A similar network model to the one presented here, but with spiking model
neurons is currently under development and future developments might include
multiple trace theory, schema consolidation, hippocampal reconsolidation by letting
the HIP stay plastic during replay, such that we not only consolidate neocortical
traces during SWS, but replayed hippocampal attractors also reinforce, degrade or
otherwise change themselves with each reinstatement event as demonstrated, for
instance, by Lundqvist et al. [22].

Our results should be seen as mainly qualitative. The values of almost all our
parameters – including the scaled learning rates – can be questioned on biological
grounds. However, our model features a broad array of neurobiological details
and to the authors knowledge, it is the first to show the viability of a three-stage
consolidation chain, driven by autonomous replay that turned attractors into more
useful quasi-stable attractors and thus expands the architectural options available to
memory researchers looking for appropriate neural network models today.
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Biologically Inspired Models of Decision Making

Wlodzimierz Klonowski, Michal Pierzchalski, Pawel Stepien,
and Robert A. Stepien

Abstract We present two biologically inspired models, demonstrating how people
make decisions – one, called Game of Choosing (GoC), demonstrates how promo-
tion and autopromotion influence decision making, and second, called Chaosen-
sology Model (ChS), demonstrates how emotions may influence logical decision
making. Our results confirm what has been known in psycho-sociology since
William James works.

Keywords Selection • Elections • Logical thinking • Emotions • Neurodynam-
ics

1 Introduction

We have been stressing the importance of time scale differences for a long time
(cf. [1, 2] and references therein). But until very recently most economists assumed
that people act rationally while undertaking economic decisions, like what to buy,
when, and for how much. In 2002 Daniel Kahneman, a social psychologist, got
Nobel Prize in Economy for demonstrating that process of decision making in
most cases has rather emotional character than really rational one. Kahneman used
notions of two Systems – ‘System 2’ that is responsible for conscious thinking and
logical decisions, while ‘System 1’ is responsible for emotions and subconscious
‘decisions’ [3]. Psychologists suggested existence of a ‘central executive structure’
between our consciousness and our subconsciousness [4].

Here we present two biologically-inspired models. The first model demonstrates
how small differences in initial preferences of a subject influence the decision (e.g.
which mating partner to choose) and shows that such decisions are made based
practically only on emotions. This model may be applied also to economic and
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even socio-political decision making. Our second model shows that what distinguish
logical thoughts from emotions is the difference of the characteristic times of these
two kinds of brain neurodynamics processes.

2 Game of Choosing Model

Our Game of Choosing (GoC) model [5] is inspired by process of choosing
mating partner. That is why we have called subclasses of this model adequately
‘monogamic’ and ‘polygamic’, The subjects – system elements that make deci-
sions – may act independently or may interact one with another. Also objects –
system elements that are being chosen – may be independent or may be somehow
correlated. Other subdivision is into ‘natural’, when environment is neutral, and
‘controlled’, when environment ‘puts pressure’ on the subjects making decisions.
So we have together 16 subclasses of GoC models. The model is characterized by
discrete time – subsequent moments are called steps. We have developed software
to simulate such decision making processes with different parameters. The simplest
class is the ‘natural monogamic’ model with independent subjects and uncorrelated
objects – any subject after several steps makes decision to choose one given object
and both the subject and the object are not taking part in further steps of the process.

Initially (step ‘0’) each subject has some preference towards each object, so
we have certain preference matrix (Fig. 1). To make decision to choose a given

Fig. 1 Preference matrix; columns – subjects (11); lines – objects (22); greenish – rather ‘yes’,
p> 0.5; reddish – rather ‘no’, p< 0.5
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Fig. 2 Impact matrix; columns – subjects (11); lines – objects (22); greenish – rather ‘positive’,
i> 1.0; reddish – rather ‘negative’, i< 1.0

object the subject’s preference must exceed certain threshold. The preference matrix
evolves in each step being multiplied element by element by impact matrix that
represents influence of the objects on the subjects (Fig. 2). In more complicated
GoC classes one also averages the impact over neighbour subjects and/or objects
and takes into account external impact of the environment (Figs. 3 and 4; cf. [6]). In
such cases chaos may emerge in the system [7].

For example, in Fig. 3, each of 11 subject chose one and only one object (‘mating
partner’)’; subject 9, needed 77 repetitions (objects presentations) to make the
choice while subject 10 made decision already after 46 presentations. In ‘polygamic
model’ on Fig. 5, subject 5, chose as many as six objects (shown in dark green),
while several subjects still chose only one object each; moreover subject 7 strongly
rejected object 14 (shown in dark red). When interactions between subjects is taken
into account objects 3, 4, 8, 14�17, and 22 are rejected by all 11 subjects, with
subject 14 being strongly rejected by as many as six subjects (Fig. 6). In Fig. 7,
objects belonging to class 7 are chosen by all but two subjects. In a controlled GoC
with feedback between subject and environment again, like in simple monogamic
case, each subject has chosen one object but rejections are scattered (Fig. 8) while
when feedback between subjects is added all subjects reject objects 1, 3, 4, 8, 14,
16, 17, 22. Such situation may be observed rather during elections of MPs then in
choosing a mate.
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Fig. 3 Natural GoC – ‘monogamic model’ (additional material: mono.mpeg)

Fig. 4 Controlled GoC with feedback between subjects and the environment and with interactions
between subjects (additional material: oenv_m.mpeg)
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Fig. 5 Natural GoC – ‘polygamic model’ (additional material: poly.mpeg)

Fig. 6 Natural GoC with interaction between subjects (additional material: env_m.mpeg)
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Fig. 7 Natural GoC with interaction between subjects with the number of objects in each subclass
at least equal to the number of subjects (additional material: ienv_m.mpeg)

Fig. 8 Controlled GoC with feedback between subjects and the environment – without interaction
between subjects (additional material: omono.mpeg)
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3 Chaosensology Model

In GoC models decisions are based on emotions – a subject does not think
logically, comparing ‘pros’ and ‘cons’ for the decision which subject to choose. Our
Chaosensology Model (ChS) (from Latin word sensus – feeling, emotion) explains
cognitive neurodynamics difference between logical thoughts and emotions. It is
inspired by process of occupying biological ‘niches’ by different species – the
given niche has to be vacated by one species before it may be occupied by another
one. Niches are represented by lattice cells (Figs. 9 and 10). A logical thought
represented by black line starting in lower-left cell that tries to move towards
upper-right may be blocked because the cells in its front are occupied by randomly
coiling colourful emotions (cf. [2]). We assume that � for logical thoughts is q-
times longer than for emotions, and we also change ‘memory parameter’ that is how
long a lattice cell remains occupied (cf. Figs. 9 and 10). Similar but statical lattice
models with excluded volume effect have been used e.g. for calculating entropy
of mixing. Analogically, any neuron may at any given moment takes part in only
one brain process and after action potential had been generated the neuron may be
‘vacated’ and after a certain refractory period it may be involved into another brain
process.

But like any complex dynamical system human brain is characterized in any
moment by momentary values of its state variables and so the brain state may
be characterized by a point in a multi-dimensional phase space with appropriately
defined coordinates. Then psycho-physiological processes in the brain may be rep-
resented by some trajectories in this space. Each process shows some characteristic
time, � , that defines the specific time scale for this process, i.e. time for each process
should be measured as no dimensional quantity t/� , expressed in units equal � , rather
than in ‘absolute’ units like seconds. Processes that are characterized by small � are
quick, these characterized by relatively large � are slow.

Our hypothesis is [1, 2] that emotions are quick processes, while logical
thoughts are relatively much slower. Quick neurodynamics processes constitute our
subconsciousness while slow processes constitute our consciousness. To analyze
significance of time scale difference we carry out simulations on a two-dimensional
lattice (Figs. 9 and 10) and on an extremely simplified two-dimensional phase space
of the brain (Fig. 11) on which logical thoughts move in horizontal direction and
emotions move in vertical direction.

Optical nerve does not connect the eyes directly with visual cortex. Visual tracts
pass first through limbic system that is responsible for emotions. So, emotions
outside of the conscious awareness precede logical analysis of what has affected
the eyes. One may say that ‘we see what we feel’ or that ‘believing is seeing’. In
our ChS model emotions always start first and logical thoughts start with delay
and moves through the lattice or through the phase space on which emotions had
been already moving (cf. [2]). In our model, like in reality, logical thinking may
be blocked by emotions as is easily observed on Figs. 9b, c and 10. On the other
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Fig. 9 Chaosensology
modeling on two-dimensional
lattice, short memory variant,
(a) for qD 1; (b) for qD 4;
(c) for qD 16; (additional
materials: q01.avi, q04.avi,
q16.avi)
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Fig. 10 Chaosensology modeling on two-dimensional lattice, qD 4, ‘long memory’ variant

hand, some emotions can be ‘transformed into logical thoughts’ and start moving in
horizontal direction that is they may eventually reach conscious awareness as might
be seen on Fig. 11b, c.

4 Results and Conclusions

Even the simplest GoC model with impact matrix that does not change during
the whole process confirms what the father of modern psychology William James
(1842–1910) said: “There’s nothing so absurd that if you repeat it often enough,
people will believe it”. This statement was broaden and ‘creatively’ applied by V.I.
Lenin.

Our simple simulations based on ChS model demonstrate that intensive emotions
may inhibit logical thoughts and even cause a complete blockage of logical decision
making [2].

Our simulations also demonstrate that there is no need for any ‘central executive
structure’ between consciousness and subconsciousness, the existence of which
were suggested by psychologists [4].
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Fig. 11 Chaosensology
modeling on two-dimensional
phase space, (a) for qD 1; (b)
for qD 4; (c) for qD 16;
(additional materials:
phase_q01.avi,
phase_q04.avi,
phase_q16.avi)
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Decision Making Mechanisms Based
on Fundamental Principles of Thermodynamics

Anton P. Pakhomov

Abstract In this research, possible mechanisms of decision-making described by
language of thermodynamics are considered. A three modular model of decision-
making constructed from thermodynamics is offered. In this model, emotional,
cognitive and mixed components in formation of the forthcoming choice are con-
sidered. As a basic function of a decision making condition entropy is considered.
At the first stage (in case of emotional decision) emotion, which is comparable
to energy of external system, influences closed system – emotional brain zones
where fluctuations and the analysis of possible alternatives, taking into account the
influence of accumulated emotional and cognitive experience, in reply to an emotion
vector. At the second stage, the decision which will operate further behavior of an
individual and will be transferred into environment is formed. In case of domination
of a cognitive component over emotional the closed system reacts to the situation
which has arisen in environment by means of the rational analysis, calculations,
logics, comparing incoming information with the evolutionary accumulated expe-
rience fixed in memory. In this case emotion probably is a noise. At the following
stage the created decision is transferred into the environment, then there is also an
adaptation to the decision and training of the individual. In the closed system there is
no fluctuations lead to chaos, bifurcation conditions are not formed and dissipative
structures are not appeared as in case of emotional decision.

Keywords Decision making • Thermodynamics • Emotions • Cognition •
Three modular model
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1 Introduction

Decision making is probably one of the main types of activity, characteristic for
human beings. That is why attempt to understand, explain and predict behavior of
the individual making a choice became the main task of behavioral and social sci-
ences [8]. Brain evidence complicates standard assumptions about basic preference,
to include homeostasis and other kinds of state-dependence, and shows emotional
activation in ambiguous choice and strategic interaction [1]. Economists generally
emphasize rationality; psychologists emphasize cognitive limits and sensitivity
of choices to contexts; anthropologists emphasize acculturation; and sociologists
emphasize norms and social constraint. It is possible that a thermodynamics basis
for behavior in neuroscience, perhaps combined with some other natural sciences
standpoints, could provide some unification across the social and natural sciences
[17–19]. Researchers J. Gross and R. Thompson [5] have carried out the analysis
and evaluation of core features of emotion. They observed the situation – attention –
appraisal – response sequence specified by the modal model of emotion. They
indicate that the emotional responses generated by appraisals are thought to involve
changes in experimental, behavioral and neurobiological response systems. There
are several other models emphasizing the complex of choice: mechanistic models
of decision making, behavioral models based on information theoretic bounds on
predictive performance [2, 16]. Models include explicit decision variables that can
be calculated on every trial; these quantities can then be used as proxies for the state
of the subject’s true internal decision variables.

2 Material and Methods

The thermodynamic investigations implemented by Nobele laureate Prigogine I.
[10, 22, 23] show that any of processes occurring in the nature are irreversible.
All processes are irreversible though it is possible to think up some actual processes
as wished to be close to the reversible. It is impossible to return system to an initial
state so that from happened event did not remain any trace. For instance, in case of
fallen stone, there were following processes: its potential energy transferred at first
into kinetic energy, and then into the heat dissipating in environment. The fallen
stone, of course, can be lifted and put on the same place, however in the surrounded
world there are indelible traces: the potential energy of the stone dissipated in the
form of heat, and in our body at a rising of the stone there were various biochemical
and biophysical processes.

We suppose it is apparent that proposed here model should be considered as an
irreversible process as we can’t say even with small probability that the system
from the state II will return to the state I, without having undergone changes.
Additionally, it would be reasonable to characterize system (II) considered in this
research from the standpoint of thermodynamics as loop (closed) system because
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the system which cannot exchange matter with environment is called closed; –
the only exchange of energy is possible [10, 22, 23]. Let’s consider in our case
thermodynamic indicator “entropy”, – which is the index of evolution. Thanks to
entropy, the system in which there is initially a chaos, aspires to an equilibrium state
and to the answer energetically adequate to external influence. The unit S which
depends only on initial and terminating states and doesn’t depend on transition from
one state into another, called an entropy (from Greek – transformation), allows to
describe an irreversible process as follows: dSD dSIC dSII; or proceeding from
the record of the second law of thermodynamics offered by Clauzius in shape:
dS D ıQ

T
C ıQ0

T
; for all irreversible changes in closed system: dS � ıQ

T
; entropy

increment (characterizing entropy exchange of closed system with environment), in
frames of our model it is possible to impress as follows: dS D ıQ

T
CıSII ; here dSI

is the change of system’s entropy, caused by exchange of energy with environment,
dSII is the change of entropy caused by irreversible processes in system, •Q – heat
of environment, •Q0 – noncompensated heat, always positive for closed systems,
T – absolute temperature. Thus, the entropy of system can be changed owing to only
two reasons – either as result of transfer (transport) of entropy from environment
or into environment through system borders, or as a result of entropy emergence in
very system. For the closed system the stream of entropy dS can be both positive and
negative and the entropy of system can both increase and decrease. Surely positive
has to be entropy emergence dSII caused by changes in system, but not entropy
increment dS. In case the system is in a condition of a thermodynamic equilibrium,
the velocity of increase of entropy is equal to zero.

3 Results and Discussion

In our case emotion as the energy vector influences mentality of person, the
corresponding sites of a brain being closed system. When this system starts
analyzing alternatives in reply to emotion, it generally leaves equilibrium state
due to fluctuations of decision searching and brings system into chaos, generating
irreversible processes in closed system. After the analysis of possible alternatives
spectrum is carried out and the decision is made, the entropy by an exchange with
environment stabilizes closed system, returning it out of chaos, brings the zones of
a brain activated by emotion into equilibrium state. As according to Kondepudi D.,
Prigogine I. [10] the entropy grows in irreversible processes, and in the reversible -
does not change, we believe that significant increase of entropy, instead of its
invariance on a phase of the alternatives choice in reply to emotion impulse, leads
system to chaos and then balances it.

In the shown mechanism the possible analogy is looked through data of
some biochemical investigations. In particular, the considerable heterogeneities are
observed at cellular level. The potassium ion concentration in neurons is much
higher, than in the extracellular environment whereas for an ion concentration of
sodium the revertive situation is observed. These differences which mean the strong
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disequilibrium underlie processes like innervations. Noted misbalance is supported
by fissile transport of chemical components, electric and bioenergetics’ reactions
such as glycolysis and respiration [29].

4 Three-Modular Model of Decision Making Mechanisms
Based on Thermodynamics Principles

There are several scientifically important researches of an assessment of energy
efficiency in brain functioning, mechanisms of governing the evolution of cortical
networks, innovative theories of informational energy coding, entropy generation
[4, 13, 18, 24, 28, 30].

We will make an attempt to consider here out of principles of thermodynamics
the complex theory of decision making including the following factors: emotionally
and cognitively induced decisions as well as the situation when emotion and mind
struggle for the choice. Let’s look at the situation of emotion impact on behavior
of an individual given to theoretical system, in which environmental factors (threat
or usefulness levels in the context of future action / decision) are ignored. Emotion
will be considered as the function of vector transfer of energy in the loop system
of movement and of analysis of possible alternatives of decision-making. From the
point of view of the sequence of events our model can be presented as follows:
environment impacts on brain zones via emotion or/ and information (1)! analysis
of alternatives or/ and cognitive estimation in brain (closed system) (2)! decision-
making and adaptation to the choice (3).

At the first stage emotion which is comparable with energy of external system,
influences closed system – human brain zones where fluctuations and the analysis
of possible alternatives, taking into account the influence of accumulated emotional
and cognitive experience, in reply to the emotion vector are going on. Though, the
most probable it’s seemed to be that the rational component in this situation is a
noise. At the second stage the decision which will operate further behavior of an
individual and will be transferred into environment is formed. Further implements
adaptation to and/ or at the same time, there is to be probable further analysis of
already made decision at present which will evolutionary sedimentated in reply to
an affect memory in the zone of a rational choice – a dorsolateral frontal cerebral
cortex (DLFCC) [14, 27]. Sometimes even at this stage made decision can be either
emotionally or rationally changed (e.g. it was decided to buy a pullover which was
pleasant and suitable, but on the way to the cash desk it was found another pullover
which is not at all conceding to the chosen one). Than the process is coming back
to one of the options of three modular model.

Extrapolating data [25] on our proposed model we receive the following
integrated processes. In the environment (I) initially there is an emotional reaction
or the cascade of emotional splashes, in reply to the occurred event. Emotion
influences the corresponding sites of a brain and the closed system (II) in which
value of a choice of this or that behavioral defined mechanism is involved in process,
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the alternate options are compared, including sedimented both emotional and
cognitive experience, and there is a choice of expected to be the best decision.
Then process is transferred to environment (I) in which there is an adaptation to
the decision and tutoring of the individual, i.e. updating of information which was
stored in memory so that all subsequent actions were carried out with the greatest
possible effectiveness.

In case of domination of a cognitive component over emotional the closed
system reacts to the situation which has arisen in environment by means of
the rational analysis, calculations, logics, comparing incoming information with
the evolutionary accumulated experience fixed in memory. In this case emotion
probably is a noise, a kind of background. At the following stage the created
decision is transferred into environment, than also there is an adaptation to the
decision and training of the individual. The cognitive analysis requiring calculations,
obviously, longer while, than emotional reaction results. At the same time, in the
closed system there is no fluctuations lead to chaos, bifurcation conditions are
not formed and dissipative structures are not appeared. In spite of the fact that
in connection with energy assumption, production of entropy dSII in the closed
system will be still carried out, its increment dS will be much lower, than in case of
emotionally made decision. As the decision is rigid it can hardly be reconsidered at
the stage of adaptation to the made decision.

Let’s consider the opportunity of decision-making in terms of competition of
emotional impact and rational approach. Process of decision-making is represented
generally to be similar to the way of emotional decision. The main difference is that
in case of the emotional decision, the cognitive component was more noise, than in
this case. Here the rational brain enters fight for leadership with emotion. Anyway
ideal in this mechanism might be the situation when in a counterbalance to fight;
emotion harmoniously supports the cognitive decision. From the thermodynamic
point of view, as a whole, process will be proceed as the sum of two earlier described
processes, and entropy increment can be expressed by the following equation:

dS D dSI C dSII D dSI C d .Se C Sr/ D ıQ

T
C ıQe0 C ıQr 0

T
I

here Se - entropy produced in the closed system due to emotion, Sr - entropy
produced in closed system due to cognitive process, •Qe0 – noncompensated
heat of emotional brain, •Qr0 – noncompensated heat of rational brain. Several
investigations suggest that value might be encoded by neurons in numerous brain
regions, including dorsolateral prefrontal cortex [12], premotor cortex [26], frontal
eye-fields [26], supplementary eye-fields [26, 27], superior colliculus [6], basal
ganglia [3, 9], amygdale [20], and centromedian nucleus of the thalamus [15]. Platt
M. and Padoa-Schioppa C. [21] propose that value signals expressed by different
neuronal populations contribute to different mental processes. In sensory areas,
value signals may contribute to perceptual attention (a process of choice between
different sensory stimuli); in frontal areas, value signals may contribute to economic
choice (a choice between different goods); in motor areas, value signals may
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contribute to action selection (a choice between different motor acts). Miller E. and
Cohen J. [14] describe that prefrontal cortex playing an important role in cognitive
control, in the ability to orchestrate thought and action in accordance with internal
goals. They believe that cognitive control stems from the active maintenance of
patterns of activity in the prefrontal cortex that represent goals and the means to
achieve them. They provide bias signals to other brain structures whose net effect is
to guide the flow of activity along neural pathways that establish the proper mapping
between inputs, internal states, and outputs needed to perform a given task.

In the closed system initially there is a chaos, fluctuations of possible alterna-
tives – responses to external influence of emotion which then are ordered or/ and
rational calculations in response of income information, and finally there is a choice,
according to initially given entrance conditions and to the state of the closed system.
The choice is carried out either spontaneously or selectively owing to sedimentation
of the accumulated evolutionary experience of the individual and due to effect
of emotion or cognitive approach. Other factors in our case are insignificant, in
connection with the initial stipulation on ideality of system. In case of the selection
choice we can assume momentary surge in entropy which as a result will balance
an equilibrium state of the closed system in the form of the decision. The entropy
following from the closed system, always higher than the entropy entering into
the system; the difference arises because of entropy produced by irreversible pro-
cesses inside the system. Our system which exchanges entropy with environment,
possibly, in case of emotion or combination of emotion and mind undergoes very
strong spontaneous transformations, transferring into a self-organizing mode. Order
achievement through fluctuations is possible only in essentially non-linear systems
(from trigger threshold processes of transfer of a nervous impulse up to evolution,
irreversible development of biological systems). Such organized states are created
by irreversible processes making entropy. Correspondingly, it seems that irreversible
processes are that motive power which creates an order.

5 Systems of Choice Realization in Terms
of Thermodynamics Knowledge

Having considered possible mechanisms of a decision making, proceeding from
the principles of thermodynamics, here we would like to propose in addition to
Kahneman’s theory [7, 8] three main systems for discussion: System 1 which
is based on an emotional priority, including moral aspect; System 2 which is
characterized by rational approach to decision making and System 3 which is based
on competition of affective and cognitive approaches in decision making.

The system 1 will be characterized by indeterminacy, short-time decision making
which can be risky, inaccurate and unjustified. Being in emotionally excited state,
the individual expecting utility of the made decision can face its real uselessness.
Due to intuitively made decision the expected result hardly can provoke the true
result. Probably, in evolutionary biological, financial economic and social cultural
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process, decisions which analogically accepted by system 1, further become rational
and will result in system 2. The system 2 will differ from system 1 with considerable
determinacy, though longer-time process of decision-making as it requires the
analysis and logical considering of a situation, calculations and attention, working,
autobiographical, evolutionary, cognitive and some other concerned memories. As
the reasonable decision is made, – it runs minimum possible risks and characterized
of high degree of utility, justification of expected result. The system 3 is most
complex as both emotional and rational components enter into the game. Events
can develop in two ways. The first and the most optimal is when emotions elegantly
accompany the cognitive decision. The second, catastrophically complex as both
components enter fight for a choice. Emotions are capable to sabotage logical
sense. In this system it could be reasonable to admit the assumption of LeDoux
[11] concerned possibility to have a safe time due to the emotions which needs for
the analysis of current situation and a probable choice of the most reasonable and
adequate decision. Thermodynamic characteristics of all three systems are presented
in section “Three-Modular Model of Decision-Making Based on Thermodynamic
Principles”.

6 Conclusions

Applying a thermodynamic approach to decision making system, author assume
that emotion carries out energy function in system, thereby providing possibility
of irreversible changes in system and entropy increase. Through fluctuations, being
accompanied entropy increase, it is possible to observe achievement of order in
systems at any level – from molecular-cellular processes to social changes at larger-
scale groups. Emotions might provide one of the basic catalysts and an inductor
of the energy inducing the individual to make solution of different degree of
utility and polarity. In situation of the suppressed emotional hum noise the system
won’t transfer to other condition as there is no source of an internal energy of
system. Here it is presented three-modular model of mechanisms of decision-
making based on thermodynamic principles covering the following components:
affective, cognitive factors and competing between them. Based on thermodynamic
approach we propose in this study three systems of choice realization in support of
Kahneman’s theory.
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Reward Prediction in Prefrontal Cortex
and Striatum

Xiaochuan Pan, Rubin Wang, and Masamichi Sakagami

Abstract The prefrontal cortex (PFC) and striatum have mutual connections
through direct and indirect pathways, and both are involved in reward prediction.
But it has been suggested that the PFC and striatum may have different mechanisms
in reward prediction. To understand the nature of reward process in the two areas, we
recorded single-unit activity from the lateral PFC (LPFC) and striatum in monkeys
performing a reward inference task. We found that prefrontal neurons could predict
the reward value of a stimulus even when the monkeys had not yet learned the
stimulus-reward association directly. Striatal neurons, however, could predict the
reward only after directly experiencing the stimulus-reward contingency. Our results
suggested dissociable functions in reward predictions: the LPFC utilized causal
structure of the task or higher-order conditioning in a generative process of reward
inference, whereas the striatum applied direct experiences of stimulus-reward
associations in the guidance of behavior.

Keywords Prefrontal cortex • Striatum • Reward prediction • Neuron • Monkey

1 Introduction

The prefrontal cortex (PFC) and striatum are two major structures in the brain,
locating at the frontal part of cerebral cortex and the forebrain, respectively.
Anatomically, the PFC and striatum have mutual connections through direct and
indirect pathways [1]. It is known that the PFC and striatum are involved in reward
processing [2–4]. Several single-unit studies with monkeys demonstrated that PFC
and striatal neurons encoded reward information related to reward type [2], amount
[3] and probability [4] indicated by conditioned visual stimuli. On the other hand,
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some theories hypothesized that the PFC and striatum have different mechanisms to
process reward information [5]. The striatum is thought to be involved in model-free
learning to learn action values directly by trial and error, without building explicit
models of the environment and task [6]. In contrast, the PFC has been shown to play
an important role in model-based learning [7], such as in the encoding of abstract
rules [8], in planning behaviors [9], and in dynamic decision-making [10].

To understand the nature of reward processing in the PFC and striatum, we
recorded single-unit activity from the two areas in monkeys performing a reward
inference task using an asymmetric reward schedule [11]. We found dissociable
functions in the two areas in reward predictions. The PFC was able to infer reward
value for the stimuli; but the striatum did not, instead, the striatum predicted reward
based on direct experiences of stimulus-reward associations.

2 Materials and Methods

The detail description of the task can be found in [11]. Briefly, the monkeys
were trained to learn two stimulus-stimulus associative sequences (Fig. 1a) in a
sequential paired-association task (Fig. 1b). After that, the monkeys learned an

 

A C

(A1) (B1)

(A2) (B2)

a b Sequential paired-association task

RT

Fixation (800-1200ms)

First cue (250ms)

600 ms

200 ms

Second cue

Third cue

RT
First saccadic choice

Second saccadic choice

Delay (700-1200ms)

time

Reward

Sequential paired-association trial

Reward instruction trial

+

+

c

+

+

B

(C1)

(C2)

Fig. 1 The sequential paired-association task with an asymmetric reward schedule. (a) Two
associative sequences (A1!B1!C1 and A2!B2!C2) learned by the monkey. (b) Schematic
illustration of time events in a sequential paired-association trial (SPAT). The monkey makes a
choice by a saccadic eye movement, as indicated by small yellow arrows. RT response time. (c)
An asymmetric stimulus-reward contingency is introduced in reward instruction trials, and used in
the following SPATs in one block
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asymmetric reward schedule in reward instruction trials. Having fully acquired the
reward instruction task and the sequential paired-association task, the monkeys were
required to perform a combination of the two tasks in one block (Fig. 1c). In addition
to pairing these stimuli (old stimuli) with well learned rewards, we subsequently
introduced new stimuli. The monkeys learned associations between the new stimuli
(e.g., N1, N2, : : : ) and B1 or B2 in a delayed matching-to-sample task with a
symmetric reward rule.

Action potentials of single neurons were recorded extracellularly with tungsten
electrodes (FHC, Bowdoinham, ME, 0.8–1.5 M�) from the LPFC and striatum of
the monkeys. We further recorded the activity of a neuron using the new stimuli
if its activity was modulated by reward using the old stimuli (A1 and A2). Once
a pair of new stimuli was tested with one neuron, it could no longer be used for
another neuron. We analyzed the activity of each neuron in two time periods prior
to the second cues by a two-way ANOVA. The “first cue period” occurred within
100–500 ms after the first cue onset and the “early delay period” occurred within
500–900 ms after the first cue onset.

3 Results

We recorded the activity of 546 neurons from the LPFC, and the activity of
366 neurons from the striatum of the monkeys while they performed the reward-
instructed SPATs with old stimuli (the first cues: A1 and A2). The activity of each
neuron was analyzed using a two-way ANOVA: (stimulus (A1 or A2) vs. reward
(large or small), P< 0.01) in the first cue and early delay periods, respectively.
In this study, we focused on reward neurons that showed only a significant main
effect of reward to illustrate how reward information was processed in the LPFC
and striatum independently of stimulus properties.

In the LPFC we found 92 and 63 reward neurons in the first cue and early
delay period, respectively. There were 113 and 44 striatal reward neurons in the
first cue and early delay periods. The proportion of reward neurons in the LPFC
was significantly lower than that in the striatum (28.4 % (155/546) in the LPFC;
42.9 % (157/366) in the striatum, �2–test, P< 0.01). Within these reward neurons,
the activities of 106 LPFC and 100 striatal reward neurons were further recorded
using the new stimuli. In the later analysis, we focused on these reward neurons
whose activity was recorded using both the old and new stimuli.

We found that the majority of the 106 reward neurons in the LPFC (93/106,
87.7 %) also showed reward-type activity to the new stimuli in the first cue and/or
in the early delay periods. Within those 100 striatal reward neurons, 95 neurons
showed reward-modulated activity to the new stimuli in the first cue and/or in the
early delay period (two-way ANOVA (stimulus vs. reward), P< 0.05).

We were interesting in whether the reward neurons in the LPFC and striatum
could predict the reward value of the first cue stimulus (particularly for the
new stimulus) presented in SPATs just after reward instruction with C1 and C2.
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Fig. 2 Population activity of LPFC and striatal neurons as a function of SPAT order in blocks.
(a) and (b) show the activity of LPFC reward neurons to old stimuli (a) and new stimuli (b).
(c) and (d) show the activity of striatal reward neurons to old stimuli (c) and new stimuli (d).
The normalized activity was sorted into the preferred reward condition (orange curves) and the
non-preferred reward condition (blue curves). Statistical significance was determined by Mann-
Whitney U test (** P< 0.01). Error bars indicate the s.e.m

We focused on the neural activity in the first SPAT blocks in which the new or
old stimuli had been presented for the first time to each recorded neuron (Fig. 2).
We found that when an old stimulus was presented as the first cue, both LPFC
and striatal reward neurons discriminated the two reward conditions (large and
small reward) from the first SPATs (Fig. 2a, c). However, regional differences in
response activity were found when the new stimuli were presented as the first
cue. LPFC reward neurons were still able to predict the reward value of the new
stimuli from the first SPATs after reward instruction (Fig. 2b) despite the fact that
the monkeys had never directly learned the new stimulus-reward contingency. In
contrast, striatal reward neurons did not distinguish the preferred from non-preferred
reward conditions in the first SPAT (Fig. 2d). After experiencing the contingency
between reward and the new stimulus in the first SPAT, these neurons subsequently
showed significantly differential activity in the two reward conditions from the
second SPAT onwards.

4 Discussion

The current task design with new stimuli ruled out the possibility that the monkeys
simply used mnemonic representations to predict reward, as they only learned
associations between the new stimuli and B1 or B2 in a symmetric reward schedule.
Effectively the monkeys had to integrate several independently acquired associa-
tions in order to infer the reward value for the new stimuli. The task with the new
stimuli also allowed us to dissociate functions between the LPFC and striatum.
LPFC and striatal neurons showed similar response patterns to those old stimuli
(A1 and A2) that had been well experienced in the asymmetric task. Only when the
new stimuli were presented first time in the very first SPATs, LPFC neurons still can
predict reward for them, but striatal neurons cannot, indicating their different roles
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in reward inference process. The LPFC might be directly involved in this reward
inference process, and the striatum would be more likely engaged in rapidly learning
and encoding the conditional stimulus-reward associations.

The neural activity observed in the LPFC and striatum was consistent with
the predictions from the model-based and the model-free processes proposed by
Daw et al. [5]. The model-based process is based on higher-order computations
that allow simulations to predict outcomes using internal models, such as category
being represented in the LPFC. The striatum encodes for stimulus-outcome relations
through direct experiences as a result of a model-free process (e.g., temporal-
difference learning). Overall, our findings supported the existence of two distinct
computational strategies in the LPFC and striatum to predict reward, the former
could apply inference strategy, whereas the latter utilized the direct experience of
stimulus-reward contingency for guiding behavior.
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The Integrated Neuropsychiatric Assessment
System: A Generic Platform for Cognitive
Neurodynamics Research

Paul Rapp, David O. Keyser, Dominic Nathan, and Christopher J. Cellucci

Abstract The Integrated Neuropsychiatric Assessment System is a portable
platform for cognitive neurodynamic research and for clinical evaluations.
It provides simultaneous acquisition of heart rate variability, quantitative
electroencephalography and event related potentials during a neuropsychological
assessment. The analysis protocol includes measures derived from dynamical
systems theory including analysis of causal networks, event-dependent interregional
synchronization and small world modeling.

Keywords Neuropsychiatric diagnosis • Event related potentials • TBI • PTSD

1 Overview

This contribution reports on the continuing development of a generically applicable,
physiologically based neuropsychiatric assessment system. While physiological
measures constitute our present focus, an essential statement concerning the bio-
logical analysis of psychiatric illness should perhaps be made explicitly. Ultimately
psychiatry is about two people facing a crisis together. Insofar as there are
psychiatric cures, it is the relationship that cures. This is not an area of medical
practice which will admit a dispositive quantitative measure like tumor size, blood
pressure or plasma glucose concentration. As in all areas of medicine the final arbiter
of psychiatric treatment is the response to the question “how are you feeling?” But
while physiology, specifically psychophysiology, will never be the entire story, it
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is certainly part of the story. Our present purpose is to construct an integrated
assessment technology that can address the three central questions of clinical
psychophysiology.

1. Initial Assessment/Diagnosis: Can physiological measures be used to classify a
patient at intake in a manner that informs treatment?

2. Longitudinal Assessment: What is the response to treatment? Do physio-
logical variables normalize in response to treatment, where it is understood
that this question is asked without prejudice as to the form of treatment be
it psychopharmacological, transcranial magnetic stimulation, electroconvulsive
therapy, psychotherapy or psychoanalysis?

3. Identification of Prodromes: Can psychophysiological assessments identify
asymptomatic or marginally symptomatic individuals who are at risk of future
presentation of a major neuropsychiatric disorder?

The system architecture is shown in the diagram. Subsystems, for example
heart rate variability or neuropsychological testing, can be used in stand-alone
mode. It is not necessary to utilize the entire system in every evaluation. Simul-
taneous signal acquisition across subsystems does, however, reduce patient burden
and allows an integrated multivariate assessment. The prototype system now
undergoing evaluation is portable, weighs less than 10 k and can operate on
batteries. The discussion follows the system architecture diagram from left to right.
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2 Patient History

The patient history is an electronic record that will be integrated with the neu-
ropsychological and physiological data. It can be a modified version of a standard
document (DoD/VA). If the system is utilized in a clinical study, the electronic
history can be the FDA-negotiated Case Report Form (CRF).

3 Imaging and Biomarkers

Integrated Analysis will include biomarker data (e.g. blood/plasma components,
cerebral spinal fluid components, and genomic information) and quantitative results
from imaging studies when these data elements are available.

4 Neurological and Psychiatric Assessment Instruments

The Neurological and Psychiatric Assessment Instruments module contains elec-
tronic versions of standard instruments, for example Combat Exposure Scale, Mayo
Classification for Traumatic Brain Injury, Rivermead Post-Concussion Symptom
Scale, Short Form Health Survey, Symptom Checklist-90-Revised, Beck Depression
Inventory, and PTSD Checklist [1]. There are hundreds of possibilities. Choices can
be made based on the patient population and the objectives of the study. Licensing
is required for proprietary instruments.

5 Neuropsychological Evaluation

The Neuropsychological Evaluation module includes standard NeuroCognitive
Assessment Tests (NCAT) such as the DoD’s ANAM (Automated Neuropsycho-
logical Assessment Metrics) which is a large collection of neuropsychological
tests, as well as the Simon and Flanker Arrow Tasks. The INAS extends this
with (1) improved timing accuracy, (2) enhanced mathematical analysis of reaction
time data, (3) introduction of more demanding neuropsychological tasks, and (4)
introduction of perithreshold (subliminal) stimuli. The orange analysis band of the
system architecture diagram indicates the addition of conditional accuracy functions
and delta analysis to the reaction time analysis section.
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6 Electrophysiology

The electrophysiology subsystem now includes electrocardiology (heart rate vari-
ability) and electroencephalography (quantitative EEG and event related potentials).
Eye tracking is scheduled for the next system iteration. The implementation of an
electromyography capability is not yet in the engineering schedule.

Heart rate variability provides a noninvasive means of assessing autonomic
nervous system integrity. The technology implemented here focuses on using
HRV to assess psychological resilience. The HRV assessment places an emphasis
on differential measures of HRV in rest and during cognitive stress Differential
values (between state differences) and, most particularly, the rate of recovery from
acute stress are hypothesized to be clinically disclosing when absolute values
of HRV (within state values) alone are nondisclosing. In our operationalization,
psychological resilience is not the absence of a response to stress. It is the
ability to recover quickly from a stressful event. We argue that the derivative of a
multivariate measure of heart rate variability during the recovery period will provide
a physiological measure of psychological resilience generically applicable to a
broad range of psychiatric presentations, and may be a prodrome of delayed onset
disorders.

In the case of the event related potentials, ERPs, we’re targeting the “neuropsych
asymptomatic” patient who receives a clean bill of health in a conventional
neuropsychological assessment but who nonetheless reports “I’m not the same.”
Our results suggest that an ERP study may, in some instances, make it possible to
identify these individuals. Longitudinal ERP assessment may provide a quantitative
mechanism for assessing response to treatment.

The results shown in the next diagrams are average ERP responses from one
control participant and one TBI, traumatic brain injury, participant. While this
presentation uses TBI as an example it should be noted that disease related
alterations of ERPs are observed in many psychiatric populations. The TBI patient
would be classed as a moderate TBI with additional orthopaedic injuries. He
suffered an active duty MVA resulting in a below the knee amputation of one
leg. He endorses some PTSD symptoms and a neuropsychological evaluation that
we conducted showed deficits in reaction time and spatial memory. He is now in
full-time, professional-level, civilian employment. Notably his current neurological
examination is unremarkable. He reports, however, that neurologically “I’m not the
same.” The signals shown were obtained in the Brain Synchronization facility at
USUHS. The test protocol has now been implemented in the INAS system and can
be administered in an out-patient office visit.
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Average responses to two different stimuli obtained from a control participant
(left) and a clinical participant (right). Signals were recorded at scalp site Cz. The
large separation between the two responses, the separation between the red and blue
curves, in the case of the control participant is consistent with expectations. The
absence of a separation in the case of the TBI participant is clinically significant.

The failure of response separation is indicative of CNS injury and can be
observed in the absence of deficits in neuropsychological testing or in a conventional
neurological examination. Additionally, these injuries are usually not observable in
an imaging study. Signal separation can be quantified and used as a longitudinal
measure. The EEG/ERP analysis section incorporates recently developed analysis
procedures derived from dynamical systems theory. They include measures of
stimulus-dependent inter-regional synchronization, analysis of CNS causal relation-
ships and analysis of CNS networks with small world models. Alterations of these
measures have been observed in psychiatric populations.

7 INAS: Integrated Analysis and Evaluation

The culmination of any combination of data element selections is represented in
the red Integrated Analysis, Model Selection, Random Forest Classifier box. Here
we apply non-linear analytic techniques that allow for the analysis of complex
data sets. The output of this analysis is the probability that the patient’s data are
indistinguishable from an appropriately matched control population [2].
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An Interaction Between Orbitofrontal
and Rhinal Cortices Contributing to Reward
Seeking Behavior

Barry J. Richmond

Abstract Monkeys given a disconnection of rhinal cortex from orbitofrontal
cortex do not distinguish among different reward sizes, in a manner similar to
that seen in monkeys with a bilateral rhinal cortex removal. Thus, it seems that
reacting to differences among rewards requires communication between rhinal and
orbitofrontal cortices. We suggest that the orbitofrontal cortex assesses value and
rhinal is important for remembering the relations among the different reward sizes.
This interaction provides a platform for studying information exchange across brain
regions.

Keywords Reward value • Orbitofrontal cortex • Rhinal cortex • Disconnection
• Monkey

The two overriding principles on which we base our interpretations of brain function
are, first, that neurons and networks of neurons provide the major substrate for
information processing on most time scales, and, second, that there is specialization
of function in different brain areas. The consequence of these assumptions is that we
expect information to be transformed as it passes from on specialized brain region to
others with different, though we hope, related specializations. An historical example
of how such a transformation might take place is the description of how lateral
geniculate neurons with center-surround receptive fields can be aligned to give rise
to the orientation specificity seen in neurons of primary visual cortex [2]. This theme
of increasing specialization is followed through a sequence of visual areas into the
inferior temporal cortex, where images are given their highest integrative sense in
that neurons respond to complex objects such as faces and hands (Fig. 1; refs [3]).
This sequence of processing in this ventral visual stream is thought to fulfill the
function of giving rise to perception of complex whole objects when the signals
reach the rostral end in area TE [1].
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Fig. 1 Left image: Side view of rhesus monkey brain with eye underneath frontal lobe for
orientation. The tail of the red line is over primary visual cortex (V1), the body overlies the
visual areas in the temporal representing the cascade of the ventral visual stream, and the arrow
head suggests that information goes underneath to medial temporal lobe structures. The turquoise
region is area TE, thought to be a final step for visual pattern recognition. Right image: bottom
view of brain, now oriented with frontal cortex at the top and primary visual cortex at the bottom.
The purple highlights the classical orbitofrontal cortex (OFC), the blue rhinal cortex (Rh) which
includes perirhinal and entorhinal cortices, and the turquoise the lateral inferior temporal cortex
area TE. The long red arrow is placed to match the one on the right image, and the short red arrow
indicates the existence of the reciprocal connections between OFC and Rh cortex [1]

To study how information is transformed as it passes from one brain region
during reward evaluation, we have studied the contributions of the rhinal cortex in
the medial temporal lobe and the orbitofrontal cortex in the monkey (Fig. 1). These
regions are known to have reciprocal intrahemispheric connections, and ablations
of them are followed by deficits in normal reward related behavior. Monkeys
discriminate less well between rewards of different sizes after bilateral removals
of orbitofrontal cortex than before the removals. After bilateral removals of rhinal
cortex monkeys have a severe deficit in distinguishing among rewards also [4]. This
set of results led us to ask whether the ability to distinguish among different reward
sizes relied on communication between these brain regions.

We used a disconnection experiment [5]. In this study the rhinal cortex on one
side and the orbitofrontal cortex on the other were removed. We then compared
these monkeys to control monkeys, to monkeys with bilateral removals of rhinal
cortex and to monkeys with bilateral removals orbitofrontal cortex. We used a very
simple behavior in which the monkeys just touched and released a touch sensitive
bar. For each set of 25 trials, a single size reward was delivered, and after each set
of 25 trials, the reward side was changed randomly, with the set of rewards being 1,
2, 4, and 8 drops of juice. We measured the ‘release interval’, that is, the length of
time from touch to release.

The control monkeys react faster for larger rewards (Fig. 2). The monkeys with
bilateral OFC removals show a similar tendency, although they react faster overall,
a result similar to that seen when visual cues, rather than relying on the local history
(here the monkeys know what reward is forthcoming because, overall, the next
reward will be the same as the preceding one). In both the case with bilateral rhinal
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Fig. 2 Self-initiated bar pressing task. The monkey received a reward for each bar press-release
sequence. The reward size was constant for 25 press-release sets, and then randomly changed to
another reward size, chosen from 1, 2, 4, & 8 drop rewards. The release interval is the length of
time from press to release. The results are from different sets of 4 monkeys/group. The monkeys
with bilateral removal of rhinal cortex, and with the crossed rhinal-orbitofrontal removal appear to
be insensitive to the difference in reward size

lesions and the rhinal-orbitofrontal disconnection, the monkeys do not change the
performance with which they carry out the behavior. They act as if they unable to
distinguish one reward from another.

These results seem to show that rhinal cortex must communicate with
orbitofrontal for normal assessment of reward size. Our results show that the normal
monkeys are sensitive to the contextual relation among the available rewards. Two
processes need to occur for this to happen. First, there must be a value representation
of different rewards, and second, the relative value scale needs to be remembered.
Based on a considerable amount of work on OFC [6–8] and Rh we hypothesize that
the OFC is critical for encoding reward value rhinal cortex must interact for the
normal representation of relative reward values [9–12]. Our hope is that this OFC-
Rh system provides a good substrate for studying how information is transformed
as it passes between brain regions with different specialization.
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Exploring Dynamic Temporal-Topological
Structure of Brain Network Within ADHD

Rong Wang, Pan Lin, and Ying Wu

Abstract The brain is a complex network with an anatomical and functional
organization. The brain organization of attention-deficit/hyperactivity disorder
(ADHD) is still not well understood. We used complex network method to
investigate ADHD subject’s brain network during resting state. Our results show
that the node degree, clustering coefficient, local efficiency and global efficiency
dynamically evolve during resting state, modularity, and the results also show
the stable difference in brain network topological structure of ADHD subjects
compared with normal subjects. These results would suggest the important role
of the dynamic temporal-topological structure of ADHD linking to underlying
dysfunctional neuronal activity.

Keywords ADHD • Resting-state functional connectivity • fMRI • Complex
networks

1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly
diagnosed childhood neuropsychiatry and characterized by inattention, hyperac-
tivity and impulsivity. Children with ADHD are found easily to be distracted,
difficultly to focus on one task, and constantly to be in motion and impatient, which
all affect their academic performance and social life.
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Brain is a complex dynamic system [1, 2]. Recent developments in neuroimaging
have revealed the complex brain organizing of large-scale network. A large-scale
brain functional network shapes brain function and facilitates cognitive process-
ing. Numerous studies have demonstrated that functional brain complex network
properties could be affected by aging and brain diseases such as schizophrenia and
Alzheimer’s disease. Understanding the brain network organization could facilitate
better diagnosis brain disorder and guide treatment for psychiatric disorder.

More important, complex network analysis approaches have recently been shown
to be sensitive to pathology in ADHD. For example, one used graph theoretical
approaches based on resting state fMRI data to explore the brain networks of
ADHD patients. This study suggests that the brain network topological properties
of ADHD patients have been altered. Other studies also found a loss of the optimal
organization pattern in ADHD [3, 4].

However, what remains unclear is how the brain network organizes dynamic con-
figuration across resting state within ADHD. To better understand dynamic temporal
topological structure of brain network of ADHD, we used complex network based
on different sliding time-windows to investigate ADHD subject’s brain dynamic
network structure during resting state. Our results reveal that the brain networks of
ADHD subjects are reorganized compared with normal subjects in brain functional
networks. The results would show the important role of the dynamic temporal-
topological structure of ADHD brain network linking to underlying dysfunctional
neuronal activity. Our results can be a sensitive and specific biomarker of ADHD.

2 Materials and Methods

fMRI data was extracted from the open-access ‘1,000 Functional Connectomes
Project’ (http://fcon_1000.projects.nitrc.org/) in which resting-state fMRI scans
have released by M.P. Milham and F.X. Castellanos at December, 2009. These
data were acquired at resting state by 3 T Siemens scanner. We selected 24 ADHD
subjects from group A, 19 male and 5 female, with the mean age of 34.87, and
then we selected 24 normal controls from group B, 18 male and 6 female, with
the mean age of 34.65. The TR is 2 s. The functional images were preprocessed
using a combination of analysis of fMRI data based on AFNI (http://afni.nimh.
nih.gov/afni/) and FSL’s software Library (http://www.fmrib.ox.ac.uk/fsl/). EPIs
were motion and slice-time corrected, and spatially smoothed using a Gaussian
kernel of 6 mm FWHM. The temporal band-pass filtering (0.005 Hz < f <0.1 Hz)
was performed in order to reduce the effects of low-frequency drift and high-
frequency physiological noise. After eliminating redundant information of CSF
and white matter, fMRI data were further spatially normalized to the Montreal
Neurological Institute (MNI) EPI template and resampled to a 3 mm cubic voxel.
In the present study, we constructed brain functional networks using automated
anatomical labeling (AAL) atlas to divide the brain into 108 regions of interest
(ROIs). For each participant resting state fMRI data, ROIs mean time series were
calculated by taking the mean of the voxel time series within each region.

http://fcon_1000.projects.nitrc.org/
http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://www.fmrib.ox.ac.uk/fsl/
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The dynamic correlation coefficients were computed between each pair of brain
regions for each subject based on a sliding time-window and sliding step of one
TR, and then dynamic correlation matrix based on a sliding time-window for
each subject was obtained. Correlation coefficient matrix represents the functional
connectivity strength between the each pair of brain regions. For further statistical
analysis, a Fisher’s r-to-z transformation was applied to improve the normality
of the correlation coefficients. Then we characterized the dynamic temporal-
topological structure of whole brain network for each sliding time-window by
using complex network analysis method based on BCT Matlab toolbox (http://
www.brain-connectivity-toolbox.net]. To date, most brain network studies have
investigated topological properties using binarized graph. The related complex
network topological measures include degree, global efficiency and local efficiency,
modularity, and clustering coefficient, which are defined seeing BCT Matlab
toolbox reference paper [5].

3 Results and Discussion

Through the global brain functional network with 108 nodes, we investigated the
differences of global brain network topological properties between ADHD and
control groups for given costs at different sliding time-windows.

To assess the differences of brain network topological properties between ADHD
and control groups, statistical comparisons of clustering coefficient,local efficiency,
modularity and other topological properties were performed by using t-test based on
different sliding time-windows for each value over a wide range of cost. The results
are shown in Figs. 1 and 2.
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Fig. 1 Topological properties of whole brain network metrics of each group using 3 min sliding
time-window. (a) Clustering coefficient (b) local efficiency (c) modularity (d) global efficiency (e)
degree of whole brain network for ADHD and control groups as a function of cost
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Fig. 2 Topological properties of whole brain network metrics of each group using 1 min sliding
time-window. (a) Clustering coefficient (b) local efficiency (c) modularity (d) global efficiency (e)
degree of whole brain network for ADHD and control groups as a function of cost
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Fig. 3 Topological properties of whole brain network metrics of each group for all sliding time-
windows. (a) Clustering coefficient (b) local efficiency (c) modularity (d) global efficiency (e)
degree of whole brain network for ADHD and control groups as a function of cost

In addition, in order to study the difference of overall properties between two
groups, we calculated the characteristic coefficients within the all sliding time-
windows at each value over a wide range of cost. Figure 3 shows that, from the
overall level of sliding time-window, the clustering coefficient, local efficiency and
modularity of ADHD group are larger than that of control group for the costs, but it
is converse to global efficiency and degree.

The clustering coefficient, local efficiency and modularity of ADHD group are
always larger than that of control group, and global efficiency and degree of ADHD
group are always smaller than that of control group at different widths of sliding
time-window or all sliding time-windows for each value over a wide range of cost.
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Fig. 4 The distribution of dynamic temporal-topological properties during time-windows sliding
for all costs. (a) Clustering coefficient (b) local efficiency (c) modularity (d) global efficiency (e)
degree for all time-windows and costs

Figure 4 illustrates the working scope of brain during experiment with a
view point of complex network. The result show, compared with normal group,
ADHD group has larger clustering coefficient, local efficiency, and modularity
corresponding to the max-number which correspond to the most common working
state of brain. It indicates the degree of ADHD patient’s brain network are easier
to gather together, the ability of information transmission at local ADHD patient’s
brain regions increases, and the sub-networks are more likely to be formed within
ADHD patient’s brain network. However, ADHD group has smaller degree and
global efficiency, which means the ability of information transmission at global
brain network decrease and the brain functional network shifts toward to sparse
network in ADHD group compared with normal group.

Taken together, we find the stable differences in characteristic coefficients of
dynamic brain networks of ADHD group compared with normal group. It is found
that the clustering coefficient, local efficiency and modularity of ADHD group are
always larger than that of control group, and global efficiency and degree of ADHD
group are always smaller than that of control group for different sliding time-
windows at given costs. These results suggest that ADHD brain functional network
architecture has obviously decreased brain network integration and increased brain
network segregation. Our results reveal that the important role of the dynamic
temporal-topological structure of ADHD brain network linking to underlying
dysfunctional neuronal activity.
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Study on the EEG Rhythm in Meditation

Tinglin Zhang, Ruxiu Liu, Chungang Shang, Ruifen Hu, Hans Liljenström,
and Guang Li

Abstract Meditation affects the brain rhythm significantly. Compared with
non-meditators, the power of delta band was lower while high frequency band was
higher for a meditator. Alpha band over the scalp was much more active in normal
state for meditator with decreased dominant alpha frequency. Obvious transient
process between normal eyes-closed rest and meditation was observed after EEG
analysis. The active time and the power of beta and gamma band increased
significantly in meditation. The inter-hemispheric and intra-hemispheric coherence
beta and low gamma bands for meditative state were higher than normal state.

Keywords Meditation • EEG • Energy ratio • Topographic map • Coherence

1 Introduction

Meditation is a kind of mental training to turn into the “inner self” with conscious of
the surroundings [1]. The individual may find inner peace and explore a particular
resource that lies possibly within the subconscious to get an improved sense of
well-being during the meditation. Scientific exploration confirmed the effectiveness
of meditation on health promotion, anxiety reduction and stress manipulation,
etc. [2, 3].

EEG is an important tool for detecting and monitoring the nervous system
clinically. EEG of different meditating techniques has been researched since 1960s
[4], in which Zen meditation, Transcendental Meditation (TM), Qigong and yogic
meditation were the most common techniques studied [3–8]. However, it remains
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an open question as different meditation techniques display diverse EEG patterns,
and even for the same meditation technique the distinction between meditation and
eyes-closed rest is still controversial [6, 7]. Some EEG patterns under meditation
were observed in the meditators such as increased [4, 6] or blocked [5] alpha activity,
or a burst of theta [6, 7] waves which differed from eyes-closed rest EEG.

The unique meditation technique in this study contains four different stages and
obvious transient process between normal eyes-closed rest and meditation. The aim
of this paper is to study effects of this kind of meditation on brain dynamics and
rhythms as well as the difference between normal state and meditative state.

2 Methods

2.1 Experiments and EEG Recording

The study subject was a 64-year-old man with 42 years practice in meditation.
The meditator could go into four different phases during meditation: first three
short phases (phase1, phase2, and phase3), each sustaining less than 1 min, and
the fourth phase (phase4) sustaining more than 15 min. The subject focused on
different imagined images in the first three phases which could help him to search
the unconscious resource and reach subconscious state finally in the fourth phase.
Four males and one female, 24–26 years old, without any experience in meditation
served as control group. All the subjects were right-handed.

The meditator should keep relaxed with eyes closed for 3 min before meditation.
He was asked to press a button to mark the time when perceived himself entered
a new phase during the meditation. EEG was also recorded for 5 min after the
meditator came back to normal resting state. For the control group, the subjects
were asked to keep relaxed with eyes closed for 20 min with EEG recorded. Five
trials meditation experiments were performed by the meditator and five trials resting
experiments were accomplished by the control group.

Neuroscan SynAmps2 Digital Amplifier with a 64-electrode cap was applied
for EEG recording. Figure 1 shows the locations of 62 electrodes according to the
International 10–20 System. The signal was sampled at 1,000 Hz, and referenced to
the left mastoid with an analog filtering pass-band of 0.05–100 Hz.

2.2 Signal Processing

The raw EEG data were digitally referenced to the linked mastoids [9]. EEG
with significant myoelectric artifacts was manually excluded. FFT, calculated in
MATLAB software, was applied for time-frequency analysis on the EEG with
1,024 ms time window and sliding 512 ms. Power on each channel was computed by
FFT for 1-min time window in each state. Mean energy ratio of five trials, energy
of different frequency bands to total energy, for the meditator (the study subject)



Study on the EEG Rhythm in Meditation 101

Fig. 1 Locations of the 62
electrodes

and non-meditators (control group) were compared. Topographic maps represented
the power distribution of EEG over the scalp were plotted by using interpolation
on a fine Cartesian grid. Mean coherence at different frequency for four pairs,
F3-F4, P3-P4, F3-P3, and F4-P4 in 1 min EEG for five trials was estimated by a
normalized cross spectral density function [8] implemented by function “mscohere”
in MATLAB. Coherence coefficient, which varied between 0 and 1, increased with
high coherence.

Meditative state is considered to be similar to a stage of sleep or drowsiness.
For comparison, sleep EEG from ten male adults was recorded with the Neuroscan
NuAmps Digital Amplifier on Fz channel, sampled at 250 Hz and referenced
to linked mastoids followed by a band-pass filtering between 0.5 and 30 Hz.
Meditation EEG on Fz channel was down-sampled to 250 Hz and band-pass filtered
from 0.5 to 30 Hz before the power distribution of meditation and sleep in the low
frequency band (<30 Hz) was compared.

3 Results

3.1 Power Distribution Analysis

The EEG of study subject (meditator) in normal resting state before meditation was
different from control group (non-meditators). The power of delta band (<4 Hz)
was lower while high frequency band (4–80 Hz) was higher for meditator than non-
meditators as shown in Figs. 2 and 4.

Alpha band (8–13 Hz) over the scalp was much more active for meditator than
non-meditator in normal state and dominant alpha frequency decreased in meditator
which was displayed in Fig. 3 and topographic maps Fig. 5. For normal resting
state, EEG of meditator was dominated with parietal occipital alpha compared with
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Fig. 2 Average energy ratio in different frequency bands on channel CZ for 1 min in normal state
of the meditator and non-meditators
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Fig. 3 Average power of EEG recorded from all channels for 1 min in normal state of the
meditator compared with non-meditator
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meditator and (b) control group for five trials
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Fig. 6 Average energy ratio in different bands of normal state and meditative state of the meditator.
EEG was recorded by channel CZ for 1 min

midline frontal (7–9 Hz), parietal and occipital (9–13 Hz) alpha dominance in the
control group. Active alpha rhythm was correlated with feeling of calm and positive
affect in early biofeedback studies [10, 11]. Therefore, the meditator was much
easier to get this positive state than non-meditator.

The active time and power of the alpha band (8–13 Hz) decreased, while
the power of delta-theta rhythm (<8 Hz) increased in the first three phases of
meditation, followed by significantly increased gamma activity in the fourth phase
according to time-frequency analysis (Fig. 6). Phase4 was apparently different from
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Fig. 8 Mean coherence at
different frequency for four
pairs, F3-F4, P3-P4, F3-P3,
and F4-P4 in 1 min EEG for
five trials. Coherence was
higher in phase4 than normal
state either for meditator or
control group
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Fig. 9 Average energy ratio
in different frequency bands
on channel FZ. EEG was got
from light sleep and
meditation for 1 min
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normal state and other meditative states as the first three phases were searching
process and the fourth phase was final subconscious state. The increased power in
gamma band might be associated with thinking activities of the meditator. EEG
rhythm of the meditator could quickly return to normal state after meditation.
The dynamic quantitative power variation of EEG during the whole meditation
experiment could see in Fig. 7. In contrast, the EEG power maintained stable during
the whole resting experiment for control group.

3.2 Coherence Analysis

The inter-hemispheric coherence was higher for frontal pairs F3-F4 as well as
parietal occipital pairs P3-P4, when comparing normal with meditative state phase4
in beta and low gamma band. Large coherence coefficients of F3-P3 and F4-P4
represented the fronto-parietal intra-hemispheric coherence was also high in phase4.
Coherence was higher in phase4 than normal state either for meditator or control
group (Fig. 8).

Meditation was discriminated from sleep. Power distribution of meditation EEG
in the low frequency band was quite different from light sleep, during which the
dominant delta-theta rhythm took over. Low frequency band of sleep EEG was more
active than meditative EEG, while high frequency band had less activity (Fig. 9).
Furthermore, alpha coherence decreased during sleep [12], however, it increased in
meditation.

4 Conclusions

Meditation has a great effect on the brain rhythms, which varies with different
phases. Hence, it seems possible to study the effect of meditation on mental
function. High coherence in beta and low gamma bands for meditation gives the
inspiration that phase synchronization over the scalp could be tested for future study.
More work is necessary on classifying normal and different meditative states or
phases, which might provide a valid indicator for meditation practice.
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and Cognition



Set-Related Neurocognitive Networks

Steven L. Bressler

Abstract The term “set” refers to the anticipatory neurocognitive processes that
prepare an individual to engage in a particular behavior. Set entails a specific
configuration of anticipatory perceptual, motor, or cognitive brain processes that is
initiated by task context and actively maintained for subsequent task performance.
Set is made possible by prior perceptual, motor, or cognitive experience with the
same or a similar task. Set-related processes are thought to establish conditions that
guide and channel the fast communications between areas of the cerebral cortex that
underlie perception, action, or cognition. It is proposed that set-related processes
change the functional connectivity of cortical areas within and between large-scale
networks of cognition, or neurocognitive networks. The operation of set has been
implicated from the analysis of neuroimaging data recorded in a study of human
subjects performing a demanding cued visuospatial attention task. From analysis of
long-range directed (top-down) functional connectivity, a neurocognitive network of
frontal and parietal cortical areas, called the Dorsal Attention Network, was inferred
to modulate activity in retinotopic areas of Visual Occipital Cortex (VOC): top-
down influences were larger to VOC subregions representing the attended visual
hemifield than to subregions representing the unattended hemifield. This difference
was maintained over seconds to minutes throughout the entire task. Bottom-up
influences from the two subregions did not differ. The maintenance of task-specific
top-down modulation of VOC throughout a recording session suggests that it reflects
visuospatial attentional set.
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1 Introduction

Set is an essential component of normal human behavior. As people anticipate
events in the environment and perform tasks in daily life, they prepare appropriate
perceptual, motor, and cognitive processes. Perceptual set is the predisposition
to perceive a specific sensory stimulus or stimuli; motor (preparatory) set is the
intention to perform a specific action or actions; and cognitive set is the tendency to
execute a specific cognitive function or functions. In general, set may be viewed as
any configuration of perceptual, motor, and cognitive processes that is initiated by
behavioral context and actively maintained for subsequent behavior [19].

Set-related effects are known in a variety of cognitive functions, including motor
speech [1], saccadic eye movements [7], visual search [8], rule-based behavioral
selection [13, 18], visuospatial attention [14], and visual discrimination [20]. Most
studies on the neural basis of set have centered on prefrontal cortex [2, 5, 13, 19],
although posterior parietal cortex [10, 15, 22] and basal ganglia [16] have also been
implicated.

NeuroCognitive Networks (NCNs) are large-scale systems of distributed and
interconnected neuronal populations in the central nervous system organized to
perform cognitive functions [3]. NCNs involving prefrontal and posterior parietal
cortical areas figure prominently in important aspects of cognition [17]. This report
considers the functional configuration of NCNs as a potential mechanism for the
instantiation of set in the brain.

Changing the functional interdependency relations among their component
brain areas according to task-related processing demands is a potentially pow-
erful mechanism for the set-related configuration of NCNs. It is known that a
high-level frontoparietal NCN, called the Dorsal Attention Network (DAN), is
responsible for controlling the selection of task-specific sensory information in
humans and non-human primates [6]. The frontal and parietal regions of the DAN
are consistently activated by central cues indicating where a peripheral object
will subsequently appear. Set-related NCN configuration is postulated to occur in
visuospatial attention as the top-down functional modulation of “low-level” visual
cortical areas by “high-level” cortical areas of the DAN.

2 Methods

Is it possible to quantitatively assess the top-down functional modulation of low-
level sensory areas of the brain by high-level control areas during attentional set?
Wiener [25] proposed that statistical prediction of the activity in one brain region
from that in another region might come from the study of “coefficients of causality
running both ways” between regions. This idea would be useful for determining top-
down functional modulation related to attentional set if such statistical prediction
measurements could be practically derived from neural time series data recorded
during set-related behavior.
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Can measurements of the type proposed by Wiener actually be made? Following
the lead of Wiener, Granger [11] proposed a method for measuring “coefficients of
causality” from empirical data by what has come to be known as Granger Causality
(GC) [12]. Granger, considering two arbitrary time series, yt and xt, proposed
to compare two autoregressive (ar) models, called the restricted and unrestricted
models, of yt. The restricted model of yt is an ar model that includes only past
terms of yt. The unrestricted model of yt includes those same past terms of yt,
but also includes past terms of xt. The improvement in predictability of yt by
inclusion of xt in the unrestricted model, as compared to that of the restricted
model, is taken as a measure of statistical “causality”. In other words, if inclusion
of xt in the unrestricted model significantly improves the predictability of yt, as
compared to the restricted model, then xt has a Granger casual influence on yt.
Determination of this improvement can be made by comparing the variances of the
residual time series of each model: if the unrestricted model residual variance is
significantly lower than that of the restricted model, then the unrestricted model
is better at predicting yt than the restricted model, and it is said that xt Granger
causes yt. Not only can yt be modeled using xt, but xt can also be modeled using
yt. Therefore, for any two time series, xt and yt, their interdependency relations
may be either symmetric, i.e. GCx!y � GCy!x, or asymmetric, i.e. GCx!y

¤ GCy!x. Multivariate autoregressive modeling may also be used in place of
the bivariate models [24]. Autoregressive modeling is increasingly being used to
measure directed functional connectivity in the analysis of brain networks.

To follow Wiener’s proposal for measuring the statistical prediction of activity
in one brain region from that in another may thus be accomplished by applying
autoregressive modeling to neural time series data. To measure directed functional
connectivity related to top-down attentional modulation in the brain, then, mini-
mally requires that neural time series data be recorded during attention-demanding
task performance, and that directed functional connectivity be measured from
those time series. Recording modalities that currently provide potentially suitable
time series data include the electroencephalogram (EEG), magnetoencephalogram
(MEG), and functional Magnetic Resonance Imaging (fMRI) in normal humans;
electrocorticogram (ECoG) in human patients with intracranial electrodes; and local
field potential (LFP), spiking single-unit activity (SUA), and multi-unit activity
(MUA) in experimental animals.

The following section discusses results obtained by measuring directed func-
tional connectivity from fMRI Blood Oxygen-Level Dependent (BOLD) time series
recorded from human subjects engaged in a demanding visuospatial attention task.
The subjects performed the task in experiments conducted by the research group
of Maurizio Corbetta and Gordon Shulman at Washington University School of
Medicine, St Louis [23]. Whole-head fMRI BOLD data were acquired with a
Siemens Allegra 3T scanner. Trial-based analysis was performed with ROIs from the
DAN (FEF, IPs) and VOC (V1, V2, V3A, VP, V4) of each hemisphere [4]. GC was
computed as an F-statistic from bivariate ar models, in both top-down and bottom-
up directions for every DAN-VOC voxel pair. A significant F-statistic indicated that
the activity in one voxel was predictable from that in another.
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3 Results

The fraction of significant voxel-pair F-statistics was found to be variable across
ROI pairs, indicating that ROIs were not spatially homogeneous in their influences
on one another. Significantly greater GC in the top-down than bottom-up direction
over all ROI pairs and subjects suggested that the Dorsal Attention Network (DAN)
exerts top-down modulation of the Visual Occipital Cortex (VOC) in relation to
visuospatial attention [4]. In addition, top-down GC to intermediate-tier ventral
VOC regions (VP and V4) was significantly greater than that to low-tier regions
(V1 and V2), suggesting that these intermediate-tier VOC regions serve as portals
for top-down modulatory influence on lower-tier visual cortex.

In a subsequent analysis of the same data [24], the average net influence to voxels
in the receiving ROI was computed in each direction between DAN and VOC ROI
pairs. This average net influence to receiving voxels was computed from voxel-
voxel influences measured as multivariate ar coefficients for voxel pairs preselected
by the Least Absolute Shrinkage Selection Operator (LASSO). Advantages of this
method were that: (1) the coefficients were obtained from multivariate rather than
bivariate ar models, with each voxel-voxel influence conditional on all other voxels
in the model; (2) the average receiving-voxel net influence was a summary statistic
that represented directed functional connectivity at the inter-regional level; and
(3) the LASSO procedure allowed insignificant influences to be eliminated from
consideration. The directional asymmetry (top-down > bottom-up) between the
DAN and VOC reported in the earlier study was confirmed using this LASSO
method to compute the average receiving-voxel net influence.

4 Discussion

In unpublished results using the LASSO method, we have found that, in the
visuospatial attention task, top-down influences are spatially selective, being larger
to VOC subregions representing the attended visual hemifield than to subregions
representing the unattended hemifield. Furthermore, spatial selectivity in the task is
specific to the top-down direction, is maintained over seconds to minutes throughout
the entire task, and is absent in randomized controls. These results suggest that top-
down influences from the DAN modulate VOC, and that this modulation is related
to task set.

Our findings indicate that set plays an important role in visuospatial attention,
and furthermore, that the Wiener-Granger approach offers a practical course for the
analysis of set-related behavior from fMRI BOLD time series data. The relation
of the fMRI BOLD signal to underlying electrophysiological signals is still poorly
understood. Some studies have suggested that ar modeling applied to fMRI BOLD
data does not accurately reflect the directionality of electrophysiological interactions
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[21], but others have suggested that it can be effectively employed to measure
directed functional connectivity in neural systems when methodological issues are
carefully considered [9].
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The Dissipative Many-Body Model and Phase
Transitions in Brain Nonlinear Dynamics

Antonio Capolupo, Walter J. Freeman, and Giuseppe Vitiello

Abstract We study the energy consumption of the brain in the framework of
the dissipative many-body model and the generalized Carnot cycle model. We
focus our attention on the expenditure of energy to facilitate the emergence of
patterns and dissipation of so-called dark energy in knowledge retrieval. The general
picture of the process, by which brains construct knowledge from information
and how the generalized Carnot cycle describes it, is presented in terms of Bose-
Einstein condensate in the system ground state. We postulate that the extremely high
density of energy sequestered briefly in cortical activity patterns can account for the
vividness, richness of associations, and emotional intensity of memories recalled by
stimuli.

Keywords Neural energy consumption • Many-body dynamics • Phase
transitions • Cortical activity patterns • Brain dark energy

1 Introduction

Neurophysiological data [1, 2] show that an extremely intricate net of neuronal
correlation forms among distant part of the brain under the action of conditioned
stimuli. The correlation manifests itself to the observer in the form of coexisting,
physically distinct amplitude modulated (AM) and phase modulated (PM) patterns
(wave packets) that are classifiable with categories of conditioned stimuli. The
onset of AM patterns into irreversible sequences is so rapid that it resemble
cinematographic frames. The brain appears then as a many-body system [3, 4] and
the description of the neuronal dynamics can be faced by use of the field concept
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proper of the many-body physics. The dissipative quantum model of brain [4, 5] is
proposed along this line of thought introducing the further requirement that the brain
is an open dissipative system permanently linked to the environment. The dissipative
model then allows [6] the description of each AM pattern as a consequence of the
spontaneous breakdown of symmetry triggered by external stimulus and associated
with one of the quantum field theory unitarily inequivalent ground states [6]. The
patterns rapid sequencing is associated to the non-unitary time evolution implied by
dissipation.

In trained animals, use of arrays of electrodes to record the electroencephalogram
(EEG) from the surfaces of the visual, auditory, somatic and olfactory cortices as
the animals respond to conditioned stimuli [1,2] show that the brain is continuously
moved out from its ground state activity entering a non-stationary dynamical regime,
it goes through a continuous flow of phase transitions [4, 5]. It is observed that
an abrupt decrease in the analytic power of the background activity to near zero,
depicted as a null spike [1, 2, 7], initiates a perceptual phase transition. A brief state
of indeterminacy, in which the significant pass band of the ECoG is near to zero
and phase of ECoG is undefined, is induced by the reduction in the amplitude of
the spontaneous background activity. The phase transition process to a new AM
pattern can be driven by the stimulus arriving at or just before this state. The
cortical dynamical regime between the null spikes is stationary and is called a
frame [1, 2, 7].

Topologically non-trivial structures (phase cones and vortices) characterize the
system dynamics during the non-equilibrium phase transition process [1, 2, 7]. The
phase cone, a spatial phase gradient, is imposed on the carrier wave of the wave
packet in a frame by the propagation velocity of the largest axons having the highest
velocity in a distribution. The apex location is a random variable across frames
determined by the accidents of where the null spike is lowest and the background
input is highest. The null spike behaves as a vortex and has rotational energy at the
geometric mean frequency of the pass band. In this paper, the dynamic formation of
phase cones and vortices in brain waves are described in terms of non-homogeneous
boson condensation processes in the formalism of the dissipative model [7].

2 Phase Transitions, Vortices and Phase Cones

In the process of non-instantaneous phase transition the amplitudes of the filtered
ECoG [1, 2] often shows clockwise or counterclockwise rotation, giving the
appearance of a vortex occupying the whole area of the phase-locked neural activity
of the cortex beginning at a point in time and space [8]. The dissipative model
predicts [7] the existence of singularities at the phase cone apex associated with the
abrupt decrease (null spike) of the order parameter (the feature vector specifying
the spatial AM pattern of the analytic amplitude) and the concomitant increase of
spatial variance of the phase field (the analytic phase).
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In the dissipative many-body model, the spontaneous breakdown of the rotational
symmetry related to the electrical dipoles of water and other molecules [4,5] implies
the existence of collective fields, called the Nambu-Goldstone (NG) boson modes
[4, 5, 9, 10]. We denote them by P.x/ and P�.x/. The system ground state is a
coherent condensate of these NG modes [7,9,10]. Let P D �ı be the non-vanishing
polarization density, where the charge density � and the (average) dipole length ı
are real quantities. The charge density wave function �.x/ is

�.x/ Dp�.x/ei�.x/ : (1)

The phase �.x/ is the NG boson field associated with the breakdown of phase
symmetry under the (global gauge) transformation, �.x/ ! ei	�.x/; A
.x/ !
A
.x/, where A
.x/ is the electromagnetic (e.m.) field and 	 is space-time
independent. The symmetry breakdown occurs when the charge density �.x/ has
a non vanishing expectation value in the system ground state (the vacuum) j0i:
h0j�.x/j0i D v ¤ 0.

The system is also invariant under the local gauge transformation

�.x/ ! eie0	.x/�.x/; A
.x/ ! A
.x/C @
	.x/; (2)

with 	.x/! 0 for jx0j ! 1 and/or jxj ! 1, @
A
.x/ D 0, and

�@2A
.x/ D j
.x/ � @
�.x/ ; (3)

with j
.x/ denoting the current. We remark that a shift in the �.x/ phase field, i.e.

�.x/! �.x/ � f̨ .x/ ; (4)

describes non-homogeneous boson condensation of the field �.x/ in the system
ground state, namely the formation of coherent domains of finite size [7, 9, 10]. ˛
is a constant, f .x/, called the boson condensation function, acts as a “form factor”
specific for the considered domain [7,9,10] and satisfies the same equation satisfied
by the �.x/ field, i.e. @2f .x/ D 0.

In order for the condensation process to be physically detectable, f .x/ has to
carry some topological singularity, it has to be path-dependent [7, 9, 10] (a regular
f .x/ do not produce any observable effect). However, observables are influenced
by gradients, @
 f .x/, in the boson condensate and therefore @
 f .x/ has to be
single-valued. The stationary function f .x/ may carry a vortex singularity given by

f .x/ D arctan

�
x2

x1

�
; (5)

which shows that the phase is undefined on the line r D 0, with r2 D x21 C x22 ,
consistently with the observed phase indeterminacy in the process of transition
between two AM pattern frames. As a result of the single-valuedness of �.x/, the
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topological singularity is characterized by the winding number n:
H rf .x/ � dl D

2�n, n D 0;˙1;˙2; : : :, when the integration path is along the closed circle .0; 2�/
(flux quantization). Phase transitions can be shown to be induced only by a singular
boson transformation function f .x/ [7, 9, 10]. For this reason topologically non-
trivial extended objects, such as vortices, are initiated during the critical regime of
phase transitions. The apex of phase cones, where vortices start to be formed, is not
initiated within frames, but between frames (during phase transitions). As in obser-
vations, the initial site where non-homogeneous condensation starts (the phase cone
apex) is not conditioned by the incoming stimulus, but is randomly determined by
the concurrence of a number of local conditions. The non-homogeneous condensa-
tion of the phase field �.x/, out of which the vortex arises, spans (almost) the whole
system since it is a (quasi-)massless field. This is why in its life-time the vortex is
observed to occupy the whole area of the phase-locked neural activity of the cortex.

The null spike appearing in the critical regime acts as a shutter that blanks the
intrinsic background ECoG. When the order parameter goes to zero the microscopic
activity does not decrease, but, as the model predicts, it becomes disordered,
unstructured (fully symmetric). At very low analytic amplitude, the analytic phase is
undefined, as it is indeed at the vortex core, and, under the incoming weak sensory
input, the background activity may re-set in a new AM frame, if any, formed by
reorganizing the existing activity, not by driving it by input (except for the small
energy provided by the stimulus that is required to selectively excite a Hebbian
nerve cell assembly needed to force the phase transition). As in the observations,
in the model the reduction in activity constitutes a singularity in the dynamics at
which the phase is undefined. The aperiodic shutter allows opportunities for phase
transitions.

The model predicts converging (imploding) and diverging (exploding) regimes
[7]. Many phase cones show little or no rotation but repetitive outward or inward
pulsations with each cycle [8]. The singularity of to their rotational gradients
(vortices) is associated to the one of the vortex core. The model explains all four
types of these observed spatiotemporal phase gradients. The negative gradient could
be explained in conventional neurodynamics (e.g. in terms of a pacemaker), but not
the positive gradient. There is no explanation in the conventional framework of why
both gradients, the positive and the negative one, occur, one or the other at random.

3 Brain Dark Energy

The neural mechanism of perception depends on repeated transfer of mesoscopic
energy to microscopic energy and vice-versa, as the basis for the disintegration of
a mesoscopic AM pattern and the formation of a new one, respectively. Provided
changes in the inverse temperature ˇ are slow, as it actually happens in mammalian
brains which keep their temperature nearly constant, these energy transfers are
controlled by the time derivative of the numberN of the NG field condensate [6,7]:
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dE D
X

k

Ek
dNk

dt
dt D 1

ˇ
dS : (6)

Ek and Nk are the energy and the number of the NG excitations of momentum
k. Equation (6) relates the changes in the energy E � P

k EkNk and entropy S
implied by the minimization of the free energyF at any t , dF D dE�.1=ˇ/dS D
0. Through the changes in time of the NG condensate, the entropy changes and
heat dissipation, dQ D .1=ˇ/dS , involved in the disappearance/emergence of the
coherence (ordering) associated to the AM patterns, turns into energy changes. Heat
dissipation is indeed a significant variable in laboratory observations. Brains require
constant perfusion with arterial blood and venous removal to dispose of substantial
waste heat.

Let j0i and j0.�/iN denote (see Refs. [4, 6, 7] for details) the states of the
brain activity corresponding to the absence of NG quanta describing the long range
neuronal correlations Ak and QAk (j0i is “the vacuum”) and the condensate state
of condensation density NAk (and N QAk ), respectively. The inner products of these
states is given by: limV!1h0j0.�/iN D 0 and limV!1 N h0.�/j0.�/iN 0 D 0,
for any N and any N 0 ¤ N . These relations signal that in the limit of infinitely
many degrees of freedom the process of condensation of the A and QA modes is a
phase transition process: the states j0i and j0.�/iN , for any N , represent ‘distinct’
phases of the brain activity since no overlap exist among them for different values
of N . These relations also express the criticality present in the brain background
activity since their meaning is that no unitary transformation exists able to lead
from one phase coded by N to another phase coded by N 0, with N 0 ¤ N : they
are ‘unitarily inequivalent phases’ and transitions from phase to phase are critical
transition processes. The non-equilibrium dynamics has been studied in detail by
use of the Ginzburg–Landau (GL) time dependent equation in [11]. For any t ¤ t 0
it is limV!1 N h0.�; t/j0.�; t 0/iN D 0, which shows that brain activity is far from
the equilibrium and characterized by criticality at any time t , indeed. Time evolution
of the phase coded by N appears to be a far from the equilibrium critical process
(j0.�; t/iN and j0.�; t 0/iN are unitarily inequivalent phases). In the non-stationary
regime, the non-vanishing dF expresses the rate at which the system approaches
the stationary regime at the minimum of the free energy. In [11] it is shown that
the rate of change of the condensate d NA=dt in the non-stationary regime, named
the critical GL regime, is proportional to the relaxation term Rdiss � ��RNA,
with the ‘damping’ �R � �1 C �2, where �1 depends on the diffusion coefficient
DGL � 2GL=�GL, (GL and �GL are the GL correlation length and the GL relaxation
life-time, respectively). �2 depends on non-homogeneities.

By closely following Ref. [12], we now compute the condensate energy used to
feed criticality and phase transitions. Criticality means for the brain to be in a high-
energy state of readiness for phase transition in order to face unpredictable events in
its surrounding world. The criticality energetic needs add to the losses of energy by
leakage. As a result, the brain constantly dissipates energy in self-sustained clouds
of axonal action potentials and dendritic currents.
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The condensate density in the state j0.�; t/iN , the time evolved at time t of
j0.�/iN , is given by [4, 6, 12]

NAk .t/ D N h0.�; t/jA�kAkj0.�; t/iN D sinh2.�kt C �k/ D 1

eˇ.t/Ek � 1 : (7)

�k denotes the life-time constant of the k-modeAk and ˇ.t/ is assumed to be slowly
varying in time in order to ensure quasi-stationarity at any time t . The energy density
of the condensate, at a given time t , is computed to be [12]

� D 4�2
Z 1

0

dk k2 !k sinh2.�kt C �k/ D 4�2
Z 1

0

dk k2
!k

eˇ.t/Ek � 1 ; (8)

which is the energy contribution of the condensation density (7) to the energy
requirements for criticality and phase transitions. It is the brain “dark energy” [13].
Setting the phase velocity vp D 1 and � D c D kB D 1, for massless fields, such as
NG fields, !k D k, we have

�mD0 D 4�2
Z 1

0

dk
k3

eˇ.t/Ek � 1 D
4

15
�6 T 4.t/: (9)

Boundary effects and impurities may contribute to give a non-vanishing effective
mass to the NG fields [4, 9, 10]. In such a case, the integral in Eq. (8) converges and
its upper bound is given by Eq. (9).

Criticality is characterized by chaotic, scale-free, power laws behavior, as
laboratory observations show [2, 14], which are features also implied by the model
since phase transition processes turn out to be described by chaotic “trajectories”
from phase to phase [15], and coherent states have been shown to be characterized
by scale-free, power law features [16].

The thermodynamic process of creating knowledge from information in a
sensory cortex is cyclic. We have modeled it using the generalized Carnot cycle
[12, 17], in which entropy is reduced by the expenditure of energy to facilitate
the emergence of patterns (Fig. 1). In Fig. 1a, the gas and liquid phases coexist in
varying degrees. Energy is put in by heating in .2 � 3/ and removed as waste heat
in cooling .4 � 1/.

A cycle begins with a sensory cortex in a state of random background activity
with low analytic power, A2.t/, that is symmetric in having 1=f power spectral
density (PSD) and no spatial or temporal pattern. The arrival of a stimulus-evoked
sensory volley of pulses breaks the symmetry by initiating a narrow band oscillation
that synchronizes the background pulse firings without increasing mean rates
(isothermal compression). A peak on the PSD and a spatial pattern of amplitude
modulation (AM) in the EEG appear. In Fig. 1b the cortex uses information from
step (1) to construct, and transmit knowledge in step (3). In step 2 the AM pattern
is fixed and the analytic power continues to rise, not by synchronization but
by expenditure of energy in transmission of the AM pattern (adiabatic heating),
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Fig. 1 (a) The the generalized Carnot cycle. (b) The cortex generalized Carnot cycle [2]

leading to maximal power and minimal entropy, with maximal classification of
EEG patterns with respect to the conditioned stimuli containing information. The
height of the cycle .2 � 3/ is determined by the degree of arousal as indexed by
the asymptotic maximum of axonal gain, Qm [18]. Average brain temperature is
homeostatically regulated by blood circulation, but local fluctuations are widespread
and closely related to analytic power. In step three the AM pattern dissolves as
the firing rates diminish owing to the refractory periods of the neurons, and the
strength of synaptic coupling wanes (isothermal expansion). Free energy is derived
from oxidative metabolism and is dissipated as heat in all four steps. In step 4
the distribution of characteristic frequencies in the PSD spectral peak go out of
phase and cancel (adiabatic cooling). The area enclosed by the loop is a measure of
pragmatic information [19], i.e. the ratio of the rate of energy dissipation (power) to
the rate of decrease in entropy (increase in information).

In the transition from step four to step one an existing AM pattern undergoes
the rapid and reliable extinction of the commitment of energy to an attractor. This
extinction is necessary in order that a new AM pattern might form in step 1–2. Our
experiments suggest that a singularity [2, 20] appears during the temporal minima
of analytic power. Cinematic display of log10 A2 .t/ reveals brief, sharply localized
minima, the null spikes, at which the power may decrease from the mean levels by
six orders of magnitude or more, coinciding with a temporal discontinuity in the
analytic phase.

4 Conclusions

In the action-perception cycle, by the continual updating of the meanings of the
flows of information information exchanged in its engagement with the environ-
ment, the brain proceeds from information to knowledge in its own world that
we describe as its Double [5]. Our model, by resorting to the mechanism of
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the spontaneous breakdown of symmetry and on dissipation, accounts for the
observed dynamical formation of spatially extended domains of neuronal ‘in phase’
oscillations and of their rapid sequencing. It allows to study the transient non-
homogeneous patterns of percepts appearing during the brain non-instantaneous
phase transitions. Brains dissipate metabolic energy at rates ten-fold greater than
rates in any other organ (so-called brain dark energy). The Carnot cycle and the
dissipative many-body model account for the high density of energy sequestered
briefly in cortical activity patterns and also account for the mobilization of the
myriad microscopic details that are stored in the modified synapses into the
macroscopic order that is expressed by the pulse cloud and its controlling field of
dendritic currents observed in the EEG. In [12] it is suggested that ephapsis may
play a role in the phase transition process (ephapsis denotes action of a neuron on
others in apposition that is mediated by local chemical and/or electrical fields and
not by chemical or electrical synapses).

Mesoscopic/macroscopic dynamical properties of the system are derived from
the many-body dynamics: it appears that the system classical behavior cannot be
explained without recourse to the underlying many-body dynamics. This brings us
to the description of energy dissipation as heat in the disappearance and emergence
of coherence. The neurons, the glia cells and their subcellular components are not
quantum objects [4–6]. The quantum degrees of freedom are those associated to the
dipole vibrational field and to other fields such as the phase field.
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Abstract Here the phenomenon of interest is the flash of recognition and
accompanying emotion one experiences when one receives a familiar stimulus.
We explain the speed and richness of the event by postulating phase transitions in
cortical neuropil: condensation from a gas-like phase to a liquid-like phase followed
by evaporation. We model the process with a Carnot-like thermodynamic cycle
at three successive levels of complexity: primary sensory cortices; limbic system;
global neocortex. We replace the thermodynamic state variables of pressure, volume
and temperature with neurodynamic variables, respectively mean beta-gamma
power, pattern stability (negentropy), and neural feedback gain (mean interaction
strength). We cite evidence that all sensory cortices use this cycle, necessarily
so for two reasons. They all evolved from the primordial forebrain of vertebrates
dominated by olfaction; they all transmit the same form of perceptual information,
wave packets, so signals in all modalities armodel by linear matrix concatenation.
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1 Introduction

Information is a microscopic variable that is expressed in the pulse intervals and
rates of individual neurons. It brings to the cortex the kinds and intensities of all
forms of signaling energy derived from the environment, and it carries from cortex
all motor commands that thrust the body into the environment. Knowledge is a
mesoscopic variable that is stored in modified synapses among networks of neurons
and expressed in the spatiotemporal coherences of pulse firings. Each network
integrates large quantities of information. Examples are the Hebbian nerve cell
assembly [1], the ‘cognit’ of Fuster and Bressler [2], the ‘bubbles’ of Taylor [3] and
the ‘IIT’ of Tononi [4]. Meaning is a macroscopic variable that can be expressed
in wave packets [5]. These are observed as bursts of oscillatory field potentials in
the beta and gamma ranges that recur at rates in the theta and alpha ranges (Fig. 1).
Each burst has a narrow band carrier frequency that is amplitude modulated (AM)
temporally and spatially. A wave packet carries perceptual information in an AM
pattern. The bursts mobilize the knowledge in the cortex and use it in the action-
perception cycle by which the goals of subjects are pursued. Intelligence is the
ability to use knowledge to formulate and solve problems. In our view wave packets
provide the neural activity that carries thoughts. Therefore to understand how brains
think we need to know how cortex creates each wave packet, uses it, and ends it
efficiently in the cinematic stream of thought.

In this review we focus on the process by which brains use sensory information
(I) to create fragments of knowledge (K) in each sensory modality. The fragments

Fig. 1 64 superimposed band pass filtered ECoGs
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have the same form in all modalities. They are integrated into Gestalts on trans-
mission through the entorhinal cortex in the limbic system. We model the action-
perception cycle as a thermodynamic process, because it far transcends neural
networks in depending on neural mass action, and because cortices use metabolic
energy at rates far exceeding those of any other tissue [6]. Sadi Carnot (1796–1832)
founded thermodynamics by conceiving a cycle that incorporated the variables of
pressure, volume mass, and temperature with the gas laws that interrelated them. He
did this by defining the four variables, fixing mass and temperature, and graphing
pressure-volume relation as an isocline, fixing temperature at another value, and
calculating a new isocline. Rudolf Clausius (1822–1888) generalized the model
by replacing pressure with energy and volume with entropy. Macquorn Rankine
(1820–1872) extended the cycle to include gas-liquid phase transitions. We follow
their lead by replacing three thermodynamic state variables with three measurable
variables in neurodynamics: energy by ECoG power in frequency bands in the beta-
gamma range; rate of negentropy by AM pattern stationarity (implying stability) as
measured by rates of movement along trajectories in high-dimensional measurement
space; and temperature by neural interaction strengths that we deduce by modeling
neural activity patterns with K-sets [1, 5].

2 Methods

Square arrays of 64 electrodes were implanted on the surfaces of sensory cortices
(visual, auditory, somatic, olfactory) or scalp of subjects (cats, rabbits, humans)
giving windows ranging in size from 5� 5 mm to the whole head. Subjects were
trained in simple sensory discrimination tasks by reinforcement learning. Sets of 64
EEGs and ECoGs were recorded in blocks of 40 6-s trials, band pass filtered, and
transformed to analytic amplitude and phase by the Hilbert transform. A moving
window was stepped across the arrays of 64 channels by which AM patterns (given
by 8� 8 values of analytic amplitude at each step) were extracted from signals
recorded from reinforced trials (CSC), unreinforced trials (CS-) as well as control
trials (CS0). Each AM pattern was expressed as a 64� 1 feature vector, A(t), giving
a point in 64-space. Similar AM patterns projected in 2-space gave clusters of points.
AM patterns were inferred to carry knowledge when the significance of correct
classification with respect to behaviors gave values of p< 0.01 consistently in a
given trial set [1].

3 Results

Bursts were extracted using band pass filters (Fig. 1). The temporal FFT was used to
identify the temporal locations of beta-gamma bursts having high power, which were
deemed likely to carry information yielding classifiable AM patterns. The Hilbert
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Fig. 2 Band pass filtering imposes beats in A2(t)

Fig. 3 Log10 A2(t) shows time location of beats in band pass filtered ECoG due to frequency
dispersion [1]

transform was used to calculate 64 analytic amplitudes, Ax(t), where xD 1, : : : ,
64 (Fig. 2), which were squared to get analytic power). The range between high
and low power in the window often exceeded two orders of magnitude, so the
measurements were displayed as log10 power (Fig. 3) in the beta or gamma pass
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Fig. 4 The extremes show frequency indeterminacy. Arrows are at minima in spatial variance of
frequency.

band at each step. The log10 mean amplitude squared estimated the ECoG power,
A2(t) in the narrow band of each wave carrier frequency. The analytic phase was
unwrapped and converted to successive differences. Dividing each phase difference
in radians by the digitizing step (2 ms) gave estimates of the analytic frequency,¨(t)
in radians/s (Fig. 4).

The feature vector of normalized amplitudes, A(t)/A(t) (spatial mean amplitude
at each step) gave the AM pattern expressed as a point in 64-space. The Euclidean
distance between successive points in 64-space divided by the digitizing step gave
the rate of change in AM pattern, De(t). In background chaotic ECoG the values
of De(t) varied widely and unpredictably. A burst with high values of power, A2(t),
gave an unbroken sequence of low values of De(t) revealing stationarity of an AM
pattern (Fig. 5). The persistence of a stationary AM pattern increased the certainty
with each digitizing step that the AM pattern manifested an attractor that expressed
a fragment of knowledge as a memory.

We verified this conjecture by collecting sets of AM patterns and classifying
them with respect to CSs. The optimal measure of AM patterns for classification
was the pragmatic information, He(t) (Fig. 6).

Alternatively expressed, the product of the minimal rate of reduction in entropy,
which we estimated by calculating 1/De(t), and the maximal rate of dissipated
energy (power He, max(t)) in each burst gave the pragmatic information. Carnot used
the area in each cycle to estimate the work done in each cycle. We used the product
(corresponding to the area of the 1,234 rectangle, Fig. 7) to index the amount of
knowledge in each burst [1].
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Fig. 5 De(t) (grey) varied inversely with A2(t) (black). Bars show bursts >3 cycles of gamma
oscillation
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Fig. 6 Pragmatic information, He(t), at peak values gave optimal behavioral AM pattern classifi-
cation [1]

We conceive the phase transition in each burst to have four Steps (Fig. 7). In
Step 1–2 (binding and coherence) a conditioned stimulus carried by a microscopic
volley of action potentials from receptors ignites a mesoscopic Hebbian assembly
that generalizes input to a category of equivalent receptors, abstracts by removing
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Fig. 7 The four Steps of each cycle are labeled in a graph of a set of 64 values of analytic power,
A2(t) [1]

irrelevant detail, amplifies the volley, and selects a basin of attraction in cortical
memory. The binding in the assembly and the convergence to an attractor decrease
the disorder and entropy.

In Step 2–3 (condensation and transmission) the ignition of the Hebbian assem-
bly provides the mesoscopic transition energy needed to start a macroscopic,
spatially coherent burst of oscillatory dendritic current that carries the spatial AM
pattern (Fig. 7, Step 2–3). The low-density chaotic activity governed by a point
attractor and synaptic transmission undergoes an irreversible phase transition by
condensing to a high-density narrow-band activity that is governed by a limit
cycle attractor [5], shaped by synaptic transmission, and empowered by ephaptic
transmission [6, 7]. A mass of neurons is recruited into coherent subthreshold
oscillation, so that all neurons in the coherent domain can contribute their bits of
synaptic information to the recalled knowledge. The burst is not a representation of
the physical properties of a stimulus; it manifests the rich memory of a stimulus that
imparts the meaning of a stimulus.

In Step 3–4 (uncoupling, decoherence) the macroscopic pulse cloud shaping
and shaped by the dendritic current field down-samples the AM pattern, using
time multiplexing and pulse density modulation in cortical columns [1]. The cortex
sends bursts through a fan-out-fan-in tract. The tract performs a Gabor transform
that selects spatially coherent carrier waves, attenuates all else as noise due to
frequency dispersion [8, 9], and delocalizes the signal content [1]. The macroscopic
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Fig. 8 The null spike is seen
as a brief decrease in log10

analytic power in the pass
band of the carrier frequency
of an AM pattern�10�6

below a prevailing level.
Spikes are observed by
high-speed digitizing of 64
filtered ECoGs from dense
8� 8 arrays [1, 8]
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information density is spatially uniform. In effect the transform defines the signal as
power in spatially coherent narrow band oscillation. Frequency dispersion enhances
disorder by phase dispersion [interference, 8, 9]. Thereby AM patterns from all
modalities and frequencies can be integrated by linear matrix concatenation [1].

In Step 4–1 (evaporation) Declining power due to refractory periods and to
frequency dispersion evaporate the signal by another irreversible phase transition,
after a duration that is proportional to the width of the pass band [7–9]. Extremely
low values of analytic power appear at spatiotemporal points in cinematic displays
of the ECoG (Fig. 8), indicating the presence of a singularity in cortical dynamics
[1, 5, 10] that mediates the phase transition of neuropil from the liquid-like phase
governed by a limit cycle attractor to the gas-like background phase governed by a
point attractor.

We conceive that the null spike frees the cortex from the attractor by taking
the order parameter of the synaptic interactions sufficiently close to zero owing to
interference. Once initiated at a point on the surface, due to scale-free dynamics
the transition can spread over indefinitely large areas of cortex at the conduction
velocities of cortical axons as seen in conic ECoG phase gradients [1], either as an
explosion or an implosion.

4 Discussion

The Carnot cycle does not model phase transitions. That is done with the Rankine
cycle, which is used to model devices that use vapor instead of gas. In this form the
medium is a mixture of liquid and gas in a domain of criticality [1, 11] in phase
space (Fig. 9).
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Fig. 9 The Rankine cycle is
embedded in a domain of
criticality, in which the both
phases coexist and support
gradation in density as in fog
(Modified from [1])

We model the I-K process in thermodynamic terms with a Carnot-like cycle, in
which metabolic energy is expended to create and use knowledge. We conjecture
that our I-K cycle constitutes a modular dynamic operation at three levels of the
action perception cycle in the brain [1]. First is the creation from information of
a fragment of knowledge in each sensory modality. Second is the integration of
the several fragments into Gestalts in the limbic system, including specification by
the hippocampus of the location of the perceiver in time and space at the act of
perception. The operation of Hebbian assemblies at this level is revealed by the
properties of concept cells [12, 13] in the medial temporal lobe that manifest cross-
modal generalization and abstraction. Third is the creation of an AM pattern over
the entire forebrain [14–16], which unifies the sensory and motor cortices in the
choice of the next act of search in the action-perception cycle, including the strategic
plan, the next series of tactical maneuvers, and the changes in sensory input that are
predicted by preafference to result from the intended actions.

The salient insight provided by the cycle is the conception of a phase transition
(Step 2–3 in Fig. 6) by which the density of neurons that synchronize in subthreshold
oscillation in the selected narrow frequency band rises to saturation. The mechanism
may include ephaptic transmission [1, 6] based in the high packing density of
terminal branches of dendrites and axons in the neuropil. This coupling by electrical
interactions is well known in the dorsal spinal cord [17, 18] and has been shown to
synchronize cortical neurons both in seizure [19] and in normal function [20].

This feature of the liquid-like phase will require intensive experimental and
theoretical studies to determine what local forces are involved, whether there is a
threshold for condensation, whether there is hysteresis in evaporation (Step 4–1),
and whether the predicted local fluctuations in brain temperature can be measured
[10]. We believe that the research is important, because we contend that what makes
the difference between a machine that knows nothing and a brain that knows what
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it is doing resides in the possibility for high density and exceedingly fine grain
of ephaptic exchanges in energy and information in cortical neuropil during the
condensed phase of neural activity.
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Modeling Cortical Singularities During the
Cognitive Cycle Using Random Graph Theory

Robert Kozma and Walter J. Freeman

Abstract Recent brain monitoring experiments indicate intermittent singularities
in cognitive processing. We employ the biologically motivated Freeman K models
to interpret these findings. In particular, we show that random graph theory pro-
vides a suitable mathematical framework to describe the experimentally-observed
singularities as phase transitions across the cortical neuropil. We introduce the
hypothesis that the rapid propagation of phase dispersion over the hemisphere
is the manifestation of the cognitive broadcast as described in Baars’ global
workspace theory. In addition, our exponentially expanding brain graph model using
pioneer neuron sub-plates can be used for describing recent findings on the presence
of rich club structures in brain networks.

Keywords Neuropercolation • Freeman K sets • Cognitive cycle • Pioneer
neurons • Conscious broadcast

1 Introduction

Criticality in the cortex emerges from the seemingly random interaction of micro-
scopic components and produces higher cognitive functions at macroscopic scales.
Recent experiments with high-resolution brain imaging techniques with elec-
trocorticograms (ECoG), electroencephalograms (EEG), and functional magnetic
resonance imaging (fMRI) provide an amazing view on the singular dynamics of
cortical processes [5, 7]. In particular, singularities have been observed in analytic
amplitude and analytic phase patterns over a wide range of frequencies [11].

We employ a hierarchical approach to spatio-temporal neurodynamics based on
Freemans K sets [6]. The hierarchy includes microscopic, mesoscopic, and macro-
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scopic scales. The original manifestation of K models used differential equations.
The present study applies neuropercolation to implement Freeman’s principles of
neurodynamics [6]. Neuropercolation is a family of probabilistic models based
on the mathematical theory of probabilistic cellular automata over lattices and
random graphs and it is motivated by structural and dynamical properties of the
cortical neuropil [8]. Neuropercolation extends the concept of phase transitions to
large interactive populations of nerve cells as an alternative of models based on
differential equations.

We demonstrate intermittent synchronization in the neuropercolation model in
accordance with experimental findings. We introduce the hypothesis that the rapidly
propagating phase gradient is the neurophysiological manifestation of the conscious
broadcast as described in Baars’ Global Workspace Theory (GWT) [1, 12]. Finally,
we show that the exponentially expanding brain graph model (EEGm) [4] can
provide a feasible interpretation of recent findings about the so-called rich club
graphs in large-scale cortical networks [3, 14].

2 Freeman K Sets in Neuropercolation Domain

Freeman K sets represent a hierarchical approach to spatio-temporal neurodynamics
[6]. K sets are multi-scale models, describing increasing complexity of structure
and dynamics, including K0, KI, KII, KIII, and KIV sets. K0 sets model the
collection of non-interactive neurons forming cortical microcolumns. KI sets consist
of interacting K0 sets with nonzero background activity level. KII sets consist of
interacting excitatory and inhibitory KI sets with limit cycle oscillations. KIII sets
are made up of multiple interacting KII sets with incommensurate frequencies,
which can lead to chaotic oscillations; various sensory cortices are modeled as
KIII sets. Finally, KIV is made of several KIII sets and can exhibit intermittent
synchronization. KIV realizes multi-sensory fusion in the hemisphere as the basis of
intentional behavior. In the present work, we limit the studies to up to KIII models.

The first generation of K sets used as mathematical tools a system of nonlinear
differential equations. In order to give a more adequate characterization of singu-
larities observed in brains during cognition, neuropercolation uses the concept of
random graph theory. Random graphs provide natural means to describe criticality
in the behavior of the cortex [8,9]. In the past decade, neuropercolation approach has
proved to be an efficient tool to implement K sets and model cortical neurodynam-
ics. Freeman postulated ten basic principles of neurodynamics. Neuropercolation
systematically implements Freeman’s principles of neurodynamics. Here we list the
first five principles addressed in the present studies [9]:

• State transition of an excitatory population from a point attractor with zero
activity to a non-zero point attractor with steady-state activity by positive
feedback (KI).

• Emergence of oscillations through negative feedback between excitatory and
inhibitory neural populations (KII).
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• State transitions from a point attractor to a limit cycle attractor that regulates
steady-state oscillation of a mixed excitatory-inhibitory cortical population (KII).

• Genesis of chaos as background activity by combined negative and positive
feedback among three or more mixed excitatory-inhibitory populations (KIII).

• Distributed wave of chaotic activity that carries a spatial pattern of amplitude
modulation made by the local heights of the wave (KIII).

Neuropercolation is a thermodynamics-based random cellular neural network
model, which is closely related to cellular automata (CA). CA research has
been pioneered by Von Neumann, who anticipated the significance of CA in the
context of brain-like computing [13]. In this context, neuropercolation is a novel
mathematical tool helping us deciphering the language of the brain. Next we
introduce results of calculations with neuropercolation model system to interpret
some recent experimental results on brain dynamics [7, 10].

3 Singularities Cortical Dynamics Modeled by
Neuropercolation

Brain dynamics is viewed as a sequence of intermittent phase transitions in
an open system with synchronization-desynchronization transitions demonstrating
symmetry breaking demarcated by spatio-temporal singularities. Phase transitions
represent the centerpiece of neuropercolation models as the generalization of boot-
strap percolation [9]. Figure 1 gives an example of the intermittent synchronization
across 256 simulated channels in an array arranged in a line. The plots in Fig. 1 show

Fig. 1 Phase lag values (vertical axis) in the neuropercolation model with excitatory-inhibitory
layers; x-axis: time steps; y-axis: spatial steps (channels from 1 to 256). (a) Noise level 13 %
(subcritical): high synchrony is seen across the array; (b) Noise level 15 % (critical): observe
intermittent desynchronization across the array; (c) Noise level 16 % (supercritical): the synchrony
between channels is diminished [9]
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a sequence of synchronization starting with high level of synchrony (subcritical
state), through intermittent synchrony (critical state), up to the absence of synchrony
(supercritical state).

Near critical state, we observe intermittent desynchronization over large cortical
areas for a short period, see Fig. 1b. This is the period of phase transition, when
large phase gradients travel rapidly across the cortex. This rapid propagation
of phase synchronization-desynchronization resembles the rapid propagation of
conscious broadcast as described by the Global Workspace Theory [1]. Recent
ECoG experimental studies indicate that phase desynchronization and the collapse
of analytic amplitudes are associated by the ‘aha’ effect of cognitive processing
[11]. This leads us to the hypothesis that cortical singularities and phase dispersion
could serve as neural correlates of the conscious broadcast.

We have developed the Exponentially Expanding Graph model (EEGm) for
brains based on planar geometric principles [4]. The development of brain structures
can be described as the evolution that starts from an initial set of N pioneer neurons.
N is typically a small number compared to the size of the fully developed brain.
Pioneer neurons are modeled as small balls densely packed in a small area of
characteristic size. During the developmental stage, this tiny cortical tissue with
multiplies about 108-fold, to have the fully developed brain with about 1011 neurons.
The evolution of the brain is described as the inflation of the initial graph G0
formed by the interconnected pioneer neurons, see Fig. 2. As the cortex develops,
the space spanned by the neurons expands so that the distance between the original
neurons increases. The space created by this expansion is filled with the newly

Fig. 2 Sequential evolution of the neuropil starting from a small set of pioneer neurons (black
circles) G0, through exponentially increasing neural populations of grey and white circles, G1 and
G2, respectively [4]
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created neurons. These new neurons grow connections to the existing ones. In
the exponential model, an arriving new node makes connection to the existing
neurons in its neighborhood within a disk D. A schematic view of the initial
stage of development, from G0, G1, to G2 graphs is shown in Fig. 2. It is shown
mathematically that the in-degree distribution approximately follows exponential
distribution. The edge length distribution follows a power law. The exponent is
2, which equals to the dimension of the space in which the evolving neuronal
population lives.

The presence of scale-free structure of connection lengths and degree distribution
is an open question in the brain network literature. Robust signal transmission can
benefit from anatomical structures reflecting certain scale-free connectivity, and it
is just natural to explore if brains exhibit such behavior. A key advantage of scale-
free networks is their robustness to random failure of components [2]. However,
scale-free structure can become a liability if a mechanism systematically targets
and damages hubs. In order to provide resilience to loss of hubs, a deviation from
strict scale-free connectivity may be beneficial. Some duplication between highly
connected hubs is a potential solution to this problem. Interestingly, the EEGm
provide a solution to this question through the key role of pioneer neurons, which
remain tightly connected even if they become separated from each other spatially
during the brain network exponential expansion; see the highly connected pioneer
neurons (black circles) of graphG2, Fig. 2.

Similar effects have been described as rich club features in brains [3, 14]. The
rich-club is a network property that happens when the hubs of a network, the nodes
with largest number of neighbors, are densely interconnected. In this sense, the
EEGm model is characterized by rich club property due to the key role of pioneering
neurons. In addition to rich-club feature, the exponentially exploding brain model
(EEGm) reflect important experimentally observed properties of brain networks,
including short processing paths, the existence of massive parallel processing paths,
and the emergence of hub structures with modular architecture.

4 Conclusions

In this work, we employed neuropercolation model to describe dynamics of the
neuropil. We have studied singularities in cortical space-time dynamics using neu-
ropercolation models. Neuropercolation is a suitable tool to model several important
properties of cortical neurodynamics observed in ECoG and EEG experiments. The
demonstrated effects include:

• Intermittent desychronization of analytic phase across the cortex at brief inter-
vals;

• Rapid propagation of phase gradients across the hemisphere. We posed the
hypothesis that rapid desynchronization is the manifestation of the ‘aha’ effect
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of cognitive processing, and thus it could be the neural correlate of the conscious
broadcast in Baars’ global workspace theory;

• The exponentially expanding brain graph model seems to provide a plausible
interpretation of the rich club network property of brain networks.
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Concept Cells in the Human Brain

Rodrigo Quian Quiroga

Abstract In this article I illustrate and briefly describe the main characteristics of
concept cells; that means, neurons in the human medial temporal lobe that respond
selectively to specific concepts, like a particular person, place or object. Given the
converging evidence on the behavior of concept cells and the well-known role of
the medial temporal lobe in declarative memory, I argue that concept cells are the
building blocks of declarative memory functions.

Keywords Perception • Memory • Neural coding • Concept cells

1 Introduction

The mere act of seeing a friend in a crowd triggers a cascade of brain processes
that creates a representation leading to the recognition of our friend, the recollection
of details related to him (or her) and the generation of new memories. The study
of how neural populations give rise to such exquisite processes has been a subject
of active research for decades, and a large number of studies have established that
neurons in the ventral visual pathway – going from the primary cortical visual area
(V1) to the infero-temporal cortex (IT) – are involved in visual recognition [1, 2],
and that the interaction between neocortex and the medial temporal lobe (including
the hippocampus, amygdala and the entorhinal, perirhinal and parahippocampal
cortices) is critical for the creation of declarative memories, their consolidation and
recall [3, 4]. What has remained less studied, however, are the processes and the
subjacent neuronal representations that determine how external stimuli impinging
our senses lead to the creation of the conceptual, internal representation we use for
our thought and the formation of new memories [5].
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2 Methods

The data comes from patients with pharmacologically intractable epilepsy. Exten-
sive non-invasive monitoring did not yield concordant data corresponding to a single
respectable epileptogenic focus and, therefore, they were implanted with chronic
depth electrodes for 7–10 days to determine the seizure focus for possible surgical
resection. Recordings were performed in the hippocampus, amygdala, entorhinal
cortex, and parahippocampal cortex. The electrode locations were based exclusively
on clinical criteria. Each electrode probe had a total of nine micro-wires at its
end, eight active recording channels and one reference [6]. The differential signal
from the micro-wires was amplified using a 64-channel Neuralynx system (Tucson,
Arizona), filtered between 1 and 9,000 Hz and sampled at 28 kHz. Subjects sat
in bed, facing a laptop computer where pictures, text or sounds were presented
[5,7–9]. Each recording session lasted about 30 min. Spike detection and sorting
was carried out using ‘Wave_Clus’ an adaptive and stochastic algorithm [10].

3 Results

Figure 1 shows a representative single unit in the entorhinal cortex, which sum-
marizes the main findings of the recordings in the human medial temporal lobe.
The neuron responded selectively not only to three different pictures of Luke
Skywalker, but also to the presentation of his name written in the computer screen
and pronounced by a computer synthetized voice. For the sound responses, in this
case two different computer synthesized voices – one male and one female – were
tried. Both voices elicited significant responses. This unit also had a significant

Fig. 1 Responses of a neuron in the enthorinal cortex that fired to Luke Skywalker (highlighted
stimuli) and Yoda (picture nr. 63). Vertical dotted lines in the peri-stimulus time histograms denote
onset and offset of the stimuli, 1 s apart. For space reasons only the largest 20 (of 76) responses
are shown
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response to Yoda – only one single picture of Yoda was presented – another well
know character of the movie ‘Star Wars’, and did not respond to the other �70
pictures and names presented. So, we first conclude that the neuron selectively
responds to the concept of ‘Luke’ (and Yoda) and not to particular details of a
picture shown and second, that these neurons can fire to related concepts, a finding
of relevance given the importance of associations for memory functions.

4 Discussion

As illustrated with the example of Fig. 1, concept cells have a sparse, abstract
and explicit representation of the meaning of the stimulus. By “meaning” we
refer to the subjective, internal representation created by the subject for memory
functions (i.e. how something will be thought of, and potentially remembered). This
conclusion is based on the finding on concept cells and the well-established role of
the medial temporal lobe in declarative memory [3, 4]. It is therefore not surprising
that concept cells tend to encode personally-relevant items [11] – i.e. whatever the
subject may mind to store in memory. The representation by concept cells is sparse
because they get activated by relatively very few of the presented stimuli [12]; it
is abstract because a concept cell fires to the person or object presented and not to
particular details of the picture (or other type of stimulus) shown [7, 9] and it is
explicit because from the firing of a concept cell we can tell whether the particular
concept is being shown [12] or even thought [13]. The finding of concept cells
firing to related concepts [5, 9, 14] is in line with the key role of associations in the
formation of new declarative memories. Concept cells may then be the key neural
substrate for the formation of new declarative (and specifically episodic) memories.
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EEG Spatiotemporal Pattern Classification
of the Stimuli on Different Fingers

Tinglin Zhang, Lengshi Dai, You Wang, Walter J. Freeman, and Guang Li

Abstract Synchronous activity of brain is essential for perception. To study the
spatiotemporal pattern of a particular cortex area, a high definition electrode array
was made to record the EEG while stimuli on different fingers. Analytic amplitude
and analytic phase of high definition EEG estimated by the Hilbert Transform
represented the local synchrony of brain. Spatiotemporal patterns of stimuli on
different fingers can be extracted and classified by a specific algorithm. BP network
combined with the KIII model, a bionic olfactory system model, was applied to
achieve a better classification effect. It was proved that the patterns were nonlocal
and spread over the whole array.

Keywords Amplitude modulation • Phase modulation • High definition EEG •
Cone-fitting • Spatiotemporal pattern

1 Introduction

Synchrony among widely distributed neurons in large numbers is related to
emergence of spatial structure in cortical activity [1]. Specific spatial patterns of
cortical activity in various areas of cortex after differing perceptive stimulation will
emerge by modifying cortical background activity [2]. The cortex will return to
unpatterned state, waiting for other stimuli. Discrete spatial patterns, resembling
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cinematographic frames, occur with carrier wave in the beta (13–30 Hz) and gamma
(30–80 Hz) ranges. Synchrony activity in a local area of brain which may be
associated with particular perception could be estimated by phase and amplitude
of multiple-channel EEG records. As followed state transition in spatial patterns
begin with abrupt phase resetting and dramatic increased pattern amplitude, phase
modulation (PM) and amplitude modulation (AM) of shared waveforms in the high-
density electrode array were constituted [1–3]. There are lots of studies on EEG
synchronization [1–9], but more thorough studies should be carried on to find what
the synchronous activity is in a small local area of brain by scalp EEG instead of
invasive ECoG. It is generally known that the somatic sensory cortex, width is only
in millimeters and length in centimeters is responsible for sensation of different
parts of the body. The areas of sensory cortex related to different fingers are very
small and connect one by one, and if synchronous information can be extracted
from high-density EEG signals of this area when different fingers are stimulated,
perceptive patterns of fingers could be distinguished. The aim of this paper was
to study spatiotemporal patterns of the stimuli on different fingers by measuring the
synchrony of local scalp EEG, and distinguish the patterns of the stimuli on different
fingers.

2 Methods

EEGs were recorded from six right handed male adults aged 22–26 with an 8 � 8
electrode array made of 1.5 mm Ag/AgCl wires. The interelectrode distance was
6 mm.

The scalp of subject was cleaned and the array was bound on the left head where
corresponding to somatosensory cortex that represented fingers of right hand. Two
identical rubber bands were stretch to the same height to hit either index finger
or little finger of right hand randomly. There was 1-min interval between two
mechanical stimuli. One second before and 2 s after the stimulation EEGs were
recorded. The subject was asked to close his eyes, and keep conscious and relaxing
during the whole process. Forty trials hitting on each finger were accomplished.
Another experiment was also designed to test if the EEG patterns could be classified
with decreased distance of fingers. Index finger and ring finger of right hand were
each stimulated for 40 trials with EEGs recorded.

EEG data was recorded by a Neuroscan NuAmps Digital Amplifier, referenced
to the left mastoid, and sampled at 1,000 Hz with an analog filtering pass-band of
0.1–100 Hz.

Bad channels of raw EEG were replaced by adjacent signals. EEG data prepro-
cessing included removing channel bias, normalization by dividing global standard
deviation, low-pass spatial filtering and band-pass temporal filtering. Settings of
spatial and temporal filters could affect the extraction of patterns. It was necessary
to reduce spatial noise that was induced by high-density electrode array, therefore,
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a Gussian filter [1] was applied to do spatial low pass filtering at 0.43 cycles/cm
on the basis of the spatial power spectral density (PSDx). PSDx was calculated by
2D FFT in MATLAB software on the 64 EEG signals at each time sample in each
row and column [8], and then final result was got from the mean value of all time
samples in one trial. The temporal filtering, using Parks-McClellan algorithm, was
implemented by function firpm in MATLAB. Different bandwidth varying from 3 to
10 Hz steps in beta band (13–30 Hz) and from 5 to 20 Hz steps in low gamma band
(30–80 Hz) were explored for searching stable frames. The Hilbert transform was
applied to the filtered signal to get the analytic amplitude Ai.t/ and analytic phase
�i .t/ of the analytic signal vi .t/.

Vj .t/ D vj .t/C iuj .t/; (1)

Aj .t/ D
q

v2j .t/C u2j .t/; (2)

�j D a tan

�
vj .t/

uj .t/

�
; j D 1; : : : ; 64: (3)

Spatial structure of the analytic phase was fitted to a cone surface due to the
similarity [8], and the phase cones constitute the PM patterns. The 8 � 8 phase
surface at each time sample was fitted to in Eq. 4.

�.t/ D �0.t/C �.t/
p
Œxi � x0�2 C Œyi � y0�2: (4)

Where �.t/was the vertical offset of the cone apex, xj ; yj was the cone apex, x0; y0
was the center of the electrode array, and �.t/ was the slope of the cone.

Stable frames were obtained by applying technical criteria and physiologi-
cal criteria to these parameters of phase cones and frames. There was detailed
description of the criteria in [8–10]. Analytic power, which was square of analytic
amplitude, specified the spatial pattern of amplitude modulation. After analytic
power was subtracted by spatial ensemble average and normalized by dividing
temporal standard deviation, 64�1 feature vector of each stable frame was extracted
as root mean square of values over all time samples of the stable frame on each
channel. Each finger was stimulated for 40 times in one experiment so that each
feature matrix was 64 � 40.

Feature vectors were classified by a three-layer BP network with optimized
parameters. There were nine neurons on the hidden layer and function traingda()
in MATLAB was implemented as learning algorithm. The training set consisted
of half of the samples and the other half were used as the testing set. They were
then switched for crosscheck. The final result was computing the average for results
of test and crosscheck. KIII model, a bionic olfactory system model, has many
dynamic behaviors such as limit cycle, quasi-periodic oscillation and chaos [11,12].
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It has been widely applied to pattern recognition due to its reliable pattern learning.
Another classification algorithm for comparison was using KIII model to preprocess
the feature vectors, afterwards, the output be classified by the same BP network
applied before. Four samples of each class were used to train KIII model twice
for pattern learning and others were classified by BP after preprocessed. Sixteen
samples were selected as training set and 20 samples as testing set in each class for
BP network.

3 Results

It was necessary to remove spatial noise as the high-density EEGs were measured
locally (Fig. 1). The phase surfaces were much smoother with preprocessing
of the appropriate low-pass spatial filtering than those with no spatial filtering
preprocessing (Fig. 2).
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Table 1 Classification
accuracy of stimuli on index
finger and little finger in the
first 3 stable frames

Classifier
Frame BP KIII + BP

First 71:4˙ 5:5 88:4˙ 6:2
Second 67:5˙ 4:2 73:2˙ 3:6
Third 68:2˙ 5:9 78:6˙ 5:7

Table 2 Classification
accuracy of stimuli on index
finger and ring finger in the
first 3 stable frames

Classifier
Frame BP KIII + BP

First 72:5˙ 3:9 78:4˙ 2:3
Second 65:8˙ 3:3 69:2˙ 2:6
Third 69:8˙ 4:2 73:6˙ 5:0

Optimized preprocessing could improve classification rate. Optimal bandwidth
of the temporal filter was selected repeatedly as 15–24 Hz and cutoff frequency of
the spatial filter was 0.43 cycles/cm to get high classification rate.

The patterns of the stimuli on index finger and little finger of right hand were
recognized only in beta range in this study as well as index finger and ring finger of
right hand with shorter distance. Patterns in gamma band could not be classified.

The classifiable feature vectors were extracted from the first three stable frames
appeared within 500 ms after stimulation. Each of the four subjects S1, S2, S3 and
S4 attended three times the stimuli on index finger and little finger experiments.
Mean of these 12 classification ratios and standard error in the first 3 stable frames
emerged after stimulation was shown in Table 1. The classification rate was higher
by applying the BP network preprocessed by KIII model (KIII + BP) than a single
BP. Classification rate of feature vectors extracted from stable frames emerged
before stimulation was approximate 50 % which represented the reliability and
validity of feature extraction algorithm.

Each of the three subjects S4, S5 and S6 attended three times the stimuli on
index finger and ring finger experiments. Mean of these nine classification ratios
and standard error in the first three stable frames emerged after stimulation was
shown in Table 2.

However, it was difficult to classify the patterns with data from different
experiments, even the data was got from the same subject.

The contribution of EEGs recorded from different electrodes to spatiotemporal
pattern classification was tested by deleting groups of electrodes for all subjects
[13] to determine whether the information in the EEG used for classification was
localized to a few channels or not. Figure 3 shows the mean classification rate by
applying KIII + BP after the 40 times random removing groups of 4, 8, 16, 24, 32,
40, 48 and 56 random channels. Classification rate decreased with the increasing
deleted channels which meant the spatial patterns were nonlocal and spread over
the whole array of channels.
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Examples were taken from the first post-stimulus frame in stimuli on index finger and little finger
experiments

4 Conclusion

Synchronous activity of brain in a special area, which could be measured by
multiple-channel scalp EEG records, can be used to extract and classify the stimulus
patterns of different fingers. It proved once again that perceptive pattern of human
brain is modulated by phase and amplitude information. The patterns were nonlocal
and spread over the whole array of channels which illustrated that they were
perceptual.
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Time Varying VEP Evaluation as a Prediction
of Vision Fatigue Using Stimulated
Brain-Computer Interface

Teng Cao, Chi Man Wong, Feng Wan, and Yong Hu

Abstract During the operation of the visual stimulated brain-computer interfaces
(BCIs), users suffer fatigue when gazing at the stimulus. Loss of attention and
decreased vigilance caused by fatigue impair the users’ cognitive capabilities, which
consequently degrade the EEG quality and system performance. Cognitive neuro-
dynamics measured by EEG activity are related to the generalized performance on
cognitive tasks and mental efforts. Therefore, time varying EEG spectral analysis is
proposed as an objective method to evaluate fatigue during the cognitive process in
the visual stimulated BCIs. The results shows that the increase in ™, ’ and (™C’)/“,
as well as the decrease in ™/’ are associated with the increasing fatigue level during
the cognitive process.

Keywords BCI • SSVEP • Fatigue • EEG • Cognitive neurodynamics

1 Introduction

Brain-computer interface (BCI) is a technology that provides a direct communi-
cation pathway between the brain and an external device which is independent
of normal peripheral nervous and muscular systems [1]. Visual stimulation is the
most commonly used input for practical BCI systems. However, the user of visual
stimulated BCI usually claims vision fatigue. For example, steady-state visual
evoked potential (SSVEP) requires the user to gaze at flashing stimuli, resulting
in discomfort and tiredness, and consequently reduce the performance. Especially
for stimuli with high brightness and contrast, users will easily feel extremely
drowsy and have difficulty in concentration. SSVEP-based BCI, as an attention
dependent system, requires significant effort to focus on the flashing stimuli to
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produce sufficiently strong SSVEP signals, and the users may easily get fatigue.
The cognitive neurodynamics process of the visual system responding to an SSVEP
signal is easily affected by various mental states, attention, fatigue and so on [2,
3]. Loss of attention caused by fatigue will reduce the cognitive performance,
consequently reduce the SSVEP quality and system performance. There is a real
demand to establish an objective and online assessment to evaluate the fatigue
during cognitive process in SSVEP-based BCIs.

Previous studies proposed several questionnaires or subjects’ description to
indicate the fatigue degree [4–7]. However, they are quit raw, subjective, inaccurate
and difficult in on-line measurement. Cognitive neurodynamics measured by EEG
activity are related to generalized performance on cognitive tasks and mental
efforts. More specifically, the low cognitive capacity and decreased arousal level are
associated with global increase in ™ and ’ [8–10]. Therefore, the dynamic change of
EEG activity would be an indicator for fatigue. Time varying EEG spectral in theta
and alpha activity is proposed as an objective method to evaluate fatigue during
cognitive process in SSVEP-based BCIs.

2 Methods

An LCD monitor was used as the visual stimulator (ViewSonic 2200, refresh rate
120 Hz, 1,680� 1,050 pixel resolution) and the stimulus was programmed under
Microsoft Visual Studio 2010 using Microsoft DirectX SDK (June 2010). There
was a symbol “C” in the center of the flashing stimulus to keep the subjects
focusing on the target. The stimulus was flashing for 3 s for 30 trials, and 2 s pause
was set between each trial. EEG was collected from Oz channel by an amplifier
(g.USBamp, Guger Technologies, Graz, Austria) and were filtered by a 50 Hz notch
filter and a 0.5–60 Hz band-pass filter. The amplitude of frequency bands •, ™, ’
and “ were calculated in each trial by using fast Fourier transforms (FFT). The
average amplitude of each frequency band was selected as an index of this frequency
band, and was used to calculate the EEG ratio indices ™/’ and (™C’)/“. Eleven
subjects (aged from 22 to 28 years old, six males and five females) participated
in the experiments and were asked to complete a validate self-reported fatigue
questionnaire before and after the task work, which was called the Chalder Fatigue
Scale (CFS) [11]. The CFS had high reliability and validity, and it was used in this
study as a standard reference for fatigue levels. A linear regression analysis was
employed to compare the association of EEG indices and fatigue states.

3 Results

The CFS score was significantly increased (p< 0.001) with pre-mean CFS
scoreD 14.91, standard deviation (SD)D 1.22; post-mean CFS scoreD 25.73,
SDD 4.98; which indicated the fatigue level was significantly increased after
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Fig. 1 Time-varying EEG features during cognitive process. Vertical axis amplitude (�V),
horizontal axis number of trials. Blue curve time-varying EEG features, black straight line linear
fitting line

SSVEP-based BCI experiments. For the EEG evaluation of fatigue, it would find
the strong association between CFS and the EEG indices ™ and ’, as well as ratio
indices ™/’ and (™C ’)/“. Figure 1 presented the average value over all subjects
for time varying EEG indices ™ and ’, as well as ratio indices ™/’ and (™C’)/“,
which demonstrated the dynamic prediction for fatigue during cognitive process.
The results indicated significant correlations between EEG indices in ™, ’ and the
number of trials, with the R2 values equal to 0.68 (p< 0.001) and 0.77 (p< 0.001),
respectively. Both the ratio indices ™/’ and (™C’)/“ were found significantly
correlated with the number of trials, with the R2 values equal to 0.60 (p< 0.001)
and 0.78 (p< 0.001) respectively. Therefore, these results suggest that the increase
in ™, ’ and (™C’)/“, as well as the decrease in ™/’ are associated with the increasing
fatigue level during cognitive process.

4 Conclusion

The time varying EEG spectral analysis is proposed as an objective approach to
evaluate fatigue during cognitive process in SSVEP-based BCIs. The proposed
approach can provide a real-time evaluation of the fatigue with objective and
quantitative measurement. The promising result suggests the potential of objective
evaluation of fatigue by dynamic measurement in EEG indices ™ and ’, as well as
ratio indices ™/’, (™C ’)/“. The time varying EEG activity would predict the fatigue
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immediately, which may provide a useful online assessment of fatigue. The increase
in ™, ’ and (™C’)/“, as well as the decrease in ™/’ are associated with the increasing
fatigue level during cognitive process. In addition, this method can be used for
optimal selection of visual stimuli parameters (e.g., visual stimulus frequency, duty
cycle, color, etc.) to design a user-friendly BCI system, which cause less fatigue in
further study.
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Spike Synchronization Analysis in a Network
Model of the Olfactory Bulb

Ying Du and Rubin Wang

Abstract In the olfactory system, both the temporal spike structure and spatial
distribution of neuronal activity are important for processing odor information. This
paper simulates the firing activity of olfactory mitral cell. By varying some key
parameters of a biophysically-detailed spiking neuronal model, it is shown that the
spike train of single neuron can exhibit various firing patterns. Synchronization in
coupled neurons is also investigated as the coupling strength varying in the situation
of two neurons and network. It is illustrated that the coupled neurons can exhibit
different types of pattern when the coupling strength varies. These results may be
instructive to understand information transmission in olfactory system.

Keywords Olfactory • Spike train • Maximal conductance • Synchronization •
Network

1 Introduction

In the olfactory bulb, the temporal structure of neuronal activity appears to be
important for processing odor information [1]. The temporal patterns produced
by three simultaneously sampled projection neurons in the locust antennal lobe
indicate that each odor evokes a specific temporal activity pattern [2]. Mapping of
the sensory inputs has revealed that each odorant produces a reproducible spatial
pattern of activation in the glomerular layer of the bulb.

Some experiments suggest that the time course of dendrodendritic inhibition is
dependent on the network connectivity as well as on the intrinsic parameters on the
synapses [3, 4]. In response to simulated odor stimulation, strongly activated mitral
cells tend to suppress neighboring cells, the mitral cells readily synchronize their
firing, and increasing the stimulus intensity increases the degree of synchronization.
Preliminary experiments also suggest that slow temporal changes in the degree of
synchronization are more useful in distinguishing between very similar odorants
than the spatial distribution of mean firing rate. So it is necessary to explore the
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effect of some key parameters such as maximal conductances of the olfactory
model on temporal spike train pattern.

2 Method

We used a detailed, realistic model of the mitral-granule cell circuits in the olfactory
bulb that introduced by Bhalla-Bower [5] to investigate the spatio-temporal process-
ing of odor information. All parameter values are taken from the Senselab databank
[6]. The effect of multi-maximal conductance to the spike train pattern of olfactory
model was considered. If changing the maximal conductances of the Nap and Ks
currents simultaneously, the variation tendency of spike train patterns is different
to the case that only changes one parameter [7]. As shown in the Fig. 1 when two
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Fig. 2 Simulation of a network of 800 coupled spiking neurons. (a) The spike train pattern
of network neurons when G is taken as 0.2. (b) The situation of GD 0.4. (c) Completely
synchronization when G is taken as 0.8, right corner is enlarged situation

maximal conductance decrease simultaneously, the frequencies of olfactory spike
firing are increasing, This state is similar to the case of changing single gNap, but
if the value of gNap is smaller than 30 
S/cm2, cell do not fire at all, only if the
gKs decrease with the gNap simultaneously, the neuron can still generate membrane
potential.

Then we use this olfactory model to simulate a sparse network of 800 spiking
cortical neurons with 800� 799 synaptic connections. Spatiotemporal patterns of all
neurons with synaptic coupling in the complex networks are displayed in Fig. 2. We
simulate a network of globally connected 800 neurons in real time, whose coupling
strengths are chosen as different values. The coupled neurons were found located
in different states. The synaptic connection weights between the neurons are given
by the matrix GD (gi, j), so that firing of the jth neuron instantaneously changes
variable Vi by gi, j. In the Fig. 2a–c, neurons at different synaptic coupling weights
GD (gi, j) are considered. At first, GD 0.2 is taken, that is, all gi, j are taken the same
as 0.2. It is shown that the neurons organize into assemblies and exhibit collective
rhythmic behavior. With the coupling weights increasing, we find the width of the
assemblies is becoming larger (Fig. 2b), the coupled neurons could achieve local
synchronization inside the assemblies as showed in the enlarged picture of Fig. 2b.
When the coupling weights is added to GD 0.8, the coupled neurons eventually
achieve synchronization as shown in Fig. 2c. It is evident that the synaptic coupling
weight is increased and the synchronous action between neurons is strengthened.

3 Conclusion

The maximal conductances of the olfactory model have obviously effects on the
spike train pattern: the frequency of spike train firing is increasing with the gKs

increasing, while the frequency of spike train firing is decreasing when the gKs is
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increased. With changing the maximal conductances of the Nap and Ks currents
simultaneously, the variation tendency of spike train patterns is similar to the case
that changing single gNap, while opposite to the case of only changing gKs. It was also
shown that the coupled neurons could achieve synchronization with the variation
of coupling strength in the network situation. These analyses maybe helpful to
understood the integration of the many factors influencing the construction and
transformation of odor representations.
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Laterality of Gamma-Oscillations in Primate
Supplementary Motor Area During
Performance of Visually-Guided Movements

Ryosuke Hosaka, Toshi Nakajima, Kazuyuki Aihara, Yoko Yamaguchi,
and Hajime Mushiake

Abstract The neurons in the motor cortex show lateralization depending on the
arm to use. To investigate if local field potential (LFP) oscillations change with con-
tralateral and ipsilateral arm use, we analyzed the power of LFP in supplementary
motor areas (SMA) and pre-SMA while animals performed a delayed-response
arm use task. LFP power changed with the laterality of the arm use, but that it
was frequency dependent. Specifically, power in the gamma range increased during
contralateral arm use, while beta power increased with ipsilateral arm use. Our data
therefore suggest that lateralized movement is executed by gamma oscillations and
unit activities in the contralateral hemisphere, and is modulated by beta frequency
activities in the ipsilateral hemisphere.

Keywords Motor cortex • SMA • Local field potentials • Delayed-response •
Gamma oscillations

1 Introduction

Neuronal activity in the motor cortex alters in relation to the laterality of the
effector [1]. Over 80 % of primary motor cortex neurons increase activity before
and during movements performed using the contralateral effector. In the medial
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motor area (such as the supplementary motor area (SMA) and pre-SMA), 31 % of
neurons are contralateral neurons, and only 4 % neurons are ipsilateral neurons. In
the premotor cortex, the contralateral and ipsilateral neurons constitute 13 and 9 %
of total neurons, respectively. As such, movement representation is lateralized in the
medial and lateral motor cortex.

Populations of neurons co-activate repeatedly for short temporal epochs, result-
ing in synchronized oscillation expressed by unit activity and local field potentials
(LFP) [2]. Although EEG and MRI studies revealed lateralization of oscillatory
activity of the lateral motor cortex, the laterality in the medial motor cortex is less
well defined because the spatial resolutions of the EEG and MRI are too broad to
accurately separate left and right medial motor cortices. We therefore examined the
lateralization of beta and gamma oscillations in the medial motor cortex using the
LFP of the SMA and pre-SMA.

2 Methods

Two Japanese monkeys (Macaca fuscata, M and N, 6.5 and 5.8 kg) were used, and
were cared for in accordance with the Guiding Principles for the Care and Use
of Laboratory Animals of the National Institutes of Health. During experimental
sessions, the monkeys were seated in a primate chair facing a screen. The monkeys
held manupilandums in both forelimbs, and were trained to perform a delayed-
response forelimb movement task (Fig. 1). Trials started with the presentation of a
white spot of light (fixation point) in the center of a screen, which the monkeys
fixated on. They were then required to place the manipulandums in a neutral
position. After a 500-ms holding period, one of four colored squares appeared on the
display to instruct the monkey to perform supination or pronation of either forelimb.
After another 500-ms waiting period, a GO signal was displayed, prompting the
monkey to perform the movement as instructed. A single-site electrode, with an
impedance of 0.5–2 M �, was inserted into the left or right side of the pre-SMA
or SMA while the monkeys performed the task [3]. The epochs of the LFP were
filtered (5–300 Hz) and digitally sampled (at 1 kHz), starting from the fixation point
and lasting until 500 ms after the GO signal.

Fig. 1 The sequence of
events in the delayed
response task
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0.5s
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Delay

Execution
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3 Results

The monkeys performed the appropriate movements in response to the visual
instructions, and LFPs were recorded in the pre-SMA and SMA during the behav-
ioral task. A total of 57 sessions were recorded in the pre-SMA and 51 in the SMA
for monkey M, and 345 were analyzed in the pre-SMA and 191 in the SMA for mon-
key N. Figure 2a shows an example of LFP activity recorded in the pre-SMA. The
LFP fluctuated significantly, and contained several frequency oscillatory compo-
nents. The beta power (10–40 Hz) of the LFP increased during the initial 500 ms and
delay period, but was suppressed during presentation of the stimulus and after the
GO signal. Although the power of the gamma oscillation (40–200 Hz) was increased
throughout the trial, it was more pronounced during presentation of the stimulus.

Figure 2b, c show the time-frequency plots of an average of the LFP power of
monkey N. The LFP power in each trial was normalized by the power during the
initial 500 ms (0–500 ms from fixation). In the pre-SMA (Fig. 2b), gamma power
increased phasically during the stimulus presentation and after the GO signal, as
indicated by the red triangle and red arrow, respectively. During the delay period
(the period between the stimulus presentation and the GO signal), gamma power
remained at baseline. In addition, beta power decreased concurrently with the
increase in gamma power, indicated by the black triangle and arrow. In the SMA
(Fig. 2c), the increase in gamma power was not observed during stimulus presenta-
tion, and only occurred after the GO signal, shown by the red arrow. In contrast, the
beta power decreased only after the GO signal, indicated by the black arrow.
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Fig. 2 Representative LFP activity. (a) Raw LFP data recorded from the pre-SMA of monkey M
(top), the 10–40 Hz (beta) component of LFP (middle), and the 40–200 Hz (gamma) component of
LFP (bottom). The horizontal thick bar indicates the period of visual stimulus presentation. (b–c)
A time frequency plot of the average of the power of LFP in the pre-SMA (b) and SMA (c) of
monkey N. The LFP activity was normalized by power during the 0–500 ms after the fixation. The
colors indicate the z-score of the power: red triangles and arrows indicate the activation of gamma
power, whereas black triangles and arrows indicate the suppression of beta power. An example of
the LFP activity
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Fig. 3 (a–b) Time-frequency plots of power differences compared with arm use in pre-SMA
and SMA in two monkeys. Color codes indicate the regions where the gamma oscillations were
significantly stronger (p < 0:01) for ipsilateral (red) and contralateral arm use (blue). Thick
horizontal lines indicate the period of the stimulus presentation. (c–d) The area of the time-
frequency region showing lateralization for ipsilateral (red) and contralateral arm use (blue). The
areas for the early and late periods are depicted by the light and dark colors, respectively. The area
was represented by a ratio of the entire region (from stimulus onset to 500 ms after the GO signal).
M and N represent monkey M and N, respectively. (c) The laterality of the gamma oscillation. (d)
The laterality of the beta oscillation

To examine if the power of the LFP oscillations changed according to the
arm used, we used Welch t-test to compare the LFP power with ipsilateral and
contralateral arm use. The time-frequency plots of power differences with arm
use are shown in Fig. 3a, b. Thick horizontal lines indicate the period of stimulus
presentation, and the color codes indicate the regions where oscillations were
significantly stronger for either ipsilateral (red) and contralateral arm use (blue).
Beta and gamma oscillations showed different lateralization according to the arm
use. Specifically, gamma power was significantly stronger when monkeys were
about to perform a movement with the contralateral arm compared with the
ipsilateral arm (p < 0:01), whereas beta power was significantly stronger with
ipsilateral arm use (p < 0:01). The significant regions of the pre-SMA were
broadly distributed, whereas the distribution in the SMA was biased to the period
immediately following the GO signal. Interestingly, the distribution bias of beta
power resembled that of gamma power.

The areas of significance are summarized in Fig. 3c, d. To evaluate the effects of
stimulus presentation and movement execution on lateralization, the trial was sepa-
rated into two periods: early (from stimulus onset to 250 ms after the termination of
the stimulus), and late (from 250 ms after termination of the stimulus until 500 ms
after the GO signal). In the gamma frequency range, the total area (a sum of the
early and late periods) was larger for use of the contralateral arm compared with
the ipsilateral. In contrast, the total area for the ipsilateral arm use was larger than
the contralateral in the beta frequency range. In the SMA, the area of the late period
is larger than that of the early period in both the beta and gamma frequency bands,
which was not observed in the pre-SMA.
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Fig. 4 Reciprocal role of
gamma and beta oscillation in
arm use selection

ipsilateral

contralateral

beta

gamma

gamma

beta

4 Discussions

We carried out LFP recordings from primate bilateral pre-SMA and SMAs, and
found that beta and gamma frequency bands change the lateralization of LFP power
in the medial motor cortex. The power of the gamma oscillation increased with
contralateral arm use, whereas beta power was augmented during ipsilateral arm use
(Fig. 4). Gamma oscillations are closely related to neuronal spikes, and as such they
frequently exhibit simultaneous activation [4]. Gamma oscillation may therefore co-
operate with neuronal activities to select an appropriate effector for movement. In
contrast, beta power increased during ipsilateral movement [5]. The maintenance of
beta oscillation during ipsilateral movement implies that beta oscillation is involved
in withholding the ipsilateral arm movement.
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Thalamocortical and Intracortical
Contributions to Task-Related Cross-Frequency
Coupling in Auditory Cortex

Marcus Jeschke and Frank W. Ohl

Abstract Oscillations are a hallmark of the neuronal dynamics of neocortex.
Whereas earlier work investigated roles of individual frequency bands in cortical
computation, newer studies demonstrated that different frequencies can be coupled
and changed according to behavioral task demands. Thus, it was speculated that
cross-frequency coupling could serve the dynamic coordination of local neural
circuits and integrate or select larger communicating neural networks. However,
it is unclear which circuit elements contribute to cross-frequency coupling. Here,
we investigated the roles of thalamocortical and intracortical contributions using a
method we have previously developed. Our results indicate that different cortical
elements exhibit discernible cross-frequency coupling. The data further show
that microsurgical interference with intracortical communication leads to specific
modulation patterns of cross frequency coupling. Finally, we present a simple model
to account for the observed results.

Keywords Theta-gamma coupling • Current source density analysis • Thalamo-
cortical • Intracortical • Cross-frequency coupling • Auditory cortex

1 Introduction

Learning can elicit profound changes of the activity of cortical neuronal net-
works (e.g. [4]). Previously, we presented a discrimination learning and category-
formation paradigm that allows dissociating mesoscopic auditory cortical activity
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in the gamma-band related to stimulus feature processing from activity related
to semantic processing as separable elementary processes of cognition [7]. Tradi-
tionally, research has focused on individual frequency bands in neural processing
(cf. [1]) while newer work on cortex demonstrated coupling of bands during
various processing situations like sensory processing, attention and learning (e.g.
[9, 13, 14, 16]). Therefore it was suggested that this cross-frequency coupling
might serve dividing neuronal computation into frames by coordinating local neural
circuits with larger communicating neural networks [3, 6]. However, the role of
local cortical circuits, organized into columns and interconnected via horizontal
projections of various spatial extents, has been elusive. We propose that local and
global cortical circuit elements have distinct roles in organizing oscillatory cortical
activity. To dissociate thalamocortical, local contributions and intracortical, global
contributions to cortical activity patterns we have developed a method based on
the analysis of current source density patterns [5]. This method was used here
to investigate cross-frequency coupling after sensory stimulation based on the
activity of presumed local and global circuit elements. We further determined
discernible roles of thalamocortical and intracortical processes underlying task-
relevant modulation of gamma-oscillations by theta phase using microsurgical cuts
of intracortical connections.

2 Methods

Depth profiles of local field potentials (LFPs) were recorded from the auditory
cortex of ten ketamine-xylazine anesthetized, adult Mongolian gerbils (Meriones
unguiculatus). To disrupt the activity of intracortical horizontal connections micro-
surgical cuts were performed. Procedures were approved by an ethics committee
of the state Saxony-Anhalt and conformed to the NIH Guidelines for Animals
in Research. Stimuli were digitally synthesized and delivered via an electrostatic
headphone mounted 5 cm in front of the animal. Responses were driven by
200 ms long pure tones at 64 dB SPL from 0.25 to 16 kHz in half or one
octave steps, repeated 50 or 100 times every 0.6–0.8 s. Current source density
(CSD)[10] based measures were calculated from LFP profiles. Average rectified
CSDs (AvgRecCSD) were calculated to determine the overall activation strength. A
residual analysis (RelResCSD, [5]) determined the strength of recruitment of intra-
cortical transcolumnar circuits for cortical processing. The best frequency (BF) was
defined as the pure-tone frequency that elicited the strongest AvgRecCSD. Cross-
frequency coupling comodulograms (Fig. 1) of cortical activity were computed
using the cross-frequency coherence (CFC) between the phase at one frequency
(fphase) and the amplitude at a second frequency (famp) [12]. Statistical analyses of
the CFC were based on averages across all frequencies belonging to the frequency
bands for fphase and famp in which the maxima of the comodulograms were found
(Fig. 2). When referring to classic frequency bands we used the following intervals:
theta (3–8 Hz), alpha (8–13 Hz), beta (13–23 Hz), low gamma (30–50 Hz), high
gamma (60–100 Hz), respectively.
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Fig. 1 Cross frequency coupling during stimulation with the best frequency (BF) and non-optimal
frequencies (nonBF). In each panel the dashed, white oval indicates the CFC frequency ranges used
for statistical evaluation (Fig. 2). See main text for further description

Fig. 2 Statistical evaluation of the influence of dissecting intracortical connections on CFC. The
panel order follows Fig. 1. See main text for explanation

3 Results

3.1 Cross-Frequency Coupling Between Measures of Cortical
Activity

Stimulation frequencies were split into a BF and a nonBF group as presenting
non-optimal frequencies (nonBF) activates horizontal inputs in addition to thala-
mocortical inputs [5, 8]. For surface LFPs (Fig. 1 left panels) the strongest CFC
was observed after 13 Hz fphase and 38 Hz famp (BF stimulation) and at 8 Hz
fphase and 33 Hz fAmp (nonBF). The modulation of low and high gamma amplitude
by the theta phase appeared very similar to previous reports [3, 13, 16]. Peaks
of the CFC comodulograms based on intracolumnar activity (AvgRecCSD) were
found at 8 Hz fphase and 33 Hz famp (BF) and at 8 Hz fphase and 28 Hz famp

(nonBF) (Fig. 1, column 2). Comodulograms calculated from transcolumnar activity
(RelResCSD) peaked at higher frequencies (13 Hz fphase and 38 Hz famp BF and
nonBF]; Fig. 1, column 3). Further, the CFC was stronger for BF than for nonBF
stimulation (paired t-test: p< 0.032; Fig. 1, column 3). To test how columnar
activity influenced transcolumnar processing the fphase was calculated from the



174 M. Jeschke and F.W. Ohl

AvgRecCSD and famp from the RelResCSD (Fig. 1, column 4). Peaks were found
at 8 Hz fphase and 28 Hz famp for both stimulus groups. In contrast, the strongest
CFC was found at 13 Hz fphase and 38 Hz famp for BF and nonBF stimulation if
fphase was calculated based on RelResCSD and famp based on AvgRecCSD (Fig. 1,
column 5). In other words, theta-to-high-beta/gamma coupling was observed for
columnar to transcolumnar interactions and beta-to-gamma coupling was detected
for transcolumnar to columnar interactions.

3.2 Contribution of Intracortical, Horizontal Connections
to Cross Frequency Coupling

To investigate the role of long range processes for CFC, we performed surgical
dissections of intracortical, horizontal connections. For the surface LFP theta-
to-gamma coupling no significant effects were observed (Fig. 2, panel 1). In
contrast, there was a significant reduction of theta-to-low gamma coupling based
on the AvgRecCSD (Fig. 2, panel 2, paired t-test: pD 0.041 and pD 0.043 for
BF and nonBF). A reduction of RelResCSD based beta-to-gamma coupling was
observed after BF stimulation (Fig. 2, panel 3: paired t-test: pD 0.018). Next,
we addressed whether cortical cuts modified the coupling of the phase of local
activity and the amplitude of global activity (Fig. 2, panel 4). A significant decrease
of theta-to-gamma coupling was observed after nonBF stimulation (paired t-test:
pD 0.045). The beta-to-gamma coupling from global to local activity influences
was also changed with a significant interaction between stimulation frequency and
cut condition (Fig. 2, panel 5; RM-ANOVA: pD 0.012).

4 Discussion C Conclusions

Our data indicate that local, columnar cortical activity and global, transcolumnar
activity display distinct CFC patterns. While theta-to-gamma coupling was found
for local activity an alpha-to-gamma coupling was observed for global activity
no matter whether global activity was coordinated in general (RelResCSD to Rel-
ResCSD CFC) or global activity tied in local activity (RelResCSD to AvgRecCSD
CFC). In line with this idea, a study in human epilepsy patients reported a shift from
theta-to-gamma to alpha-to-gamma coupling if larger areas of cortex needed to be
coordinated for visual task performance [16].

The role of columnar and transcolumnar processes for cross-frequency coupling
in cortex can be summarized in a simple model (Fig. 3). Larger neural networks have
lower oscillation frequencies than smaller networks [2, 15], thus, local processes,
e.g. within a column or between neighboring columns, lead to higher frequency
oscillations than global processes, between distant columns. Accordingly, for local
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Fig. 3 Scheme illustrating the interaction of local and transcolumnar cortical processing. An
electrode records activity at a given column with a certain BF. Horizontal connections provide
short and long-range projections from other columns, whose contribution can be quantified by
residual CSD analysis

activity (AvgRecCSD) presentation of nonBFs leads to a peak in CFC at a lower
frequency than stimulation with the BF, as here columnar and transcolumnar pro-
cesses contribute. For global activity (RelResCSD) no dependency on stimulation
frequency was found as long range connections are recruited for all frequencies.
Local-to-global interactions were observed at a lower frequency combination than
for global-to-local interactions, which might be expected if local activity needs to act
on slower, global activity than if global activity acts on fast, local activity. Cortical
cuts of long-range connections led to reduced CFC of local activity for all stimuli.
This suggests that normal local interactions need global support. CFC of columnar
to transcolumnar processes was reduced for nonBFs as long-range horizontal
connections which carry information about nonBFs were disrupted. Cortical cuts
were more disruptive on BF based RelResCSD CFC than on nonBFs, indicating
a directionality of influences such that activity originating from the observed
column has a stronger impact on interactions based on horizontal connections than
activity originating elsewhere. This might explain the interaction of frequency and
cut condition for transcolumnar to columnar influences as BFs depend more on
horizontal connections.

Although more work is needed to disentangle the complex interplay of local and
global cortical circuitry, these results are fundamental for establishing a mapping
of elementary processes of cognition, like stimulus processing and meaning gener-
ation, to elements of cortical neuronal circuits.
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Temporal Characteristics of the Steady State
Visual Evoked Potentials

Maciej Labecki, Magdalena Zieleniewska, Karol Augustin,
Jaroslaw Zygierewicz, and Piotr Suffczynski

Abstract Steady State Visual Evoked Potentials (SSVEP), observed in EEG
over occipital areas of the scalp, are natural responses to flicker stimuli. This
phenomenon is used in Brain-Computer Interfaces (BCI) and in psychology as an
indicator of attention. Despite the fact that SSVEPs are used in these two fields of
neuroscience, the knowledge of their fundamental properties is still limited.

In this study we investigated time evolution during long term flicker stimulus.
The analysis was done using EEG signals recorded during a series of 60-s long
stimulation epochs interleaved with 30-s rest epochs. For nine out of ten subjects
we observed unequivocal decrease of SSVEP power during the first seconds of
stimulation. The habituation index was 0.49 %˙ 0.09 % on average across subjects
and it reached maximal value of 71 %˙ 0.10 % in a single subject.

These results may have direct implications on the research in the rapidly growing
field of biomedical engineering related to brain-computer interfaces. The BCI users
are often submitted to prolonged flickering light stimulation. Detailed knowledge
regarding the stimulus efficiency over the course of the stimulation is therefore
essential. These properties may also have an impact on the research field of
information processing in the neural systems and on the scientific applications of
these signals e.g. in psychological research.

Keywords SSVEP • BCI • Habituation • EEG

1 Introduction

Steady State Visual Evoked Potentials, which were discovered by [1] are the steady-
state responses elicited by flicker stimulation. Frequency of oscillations of these
neural responses corresponds to the stimulus frequency [2].

SSVEPs are used in two fields of neuroscience – in psychological studies as
an indicator of attention [3] and in brain-computer researches [4, 5]. Despite the

M. Labecki (�) • M. Zieleniewska • K. Augustin • J. Zygierewicz • P. Suffczynski
Faculty of Physics, University of Warsaw, Warsaw, Poland
e-mail: Maciej.Labecki@fuw.edu.pl

© Springer Science+Business Media Dordrecht 2015
H. Liljenström (ed.), Advances in Cognitive Neurodynamics (IV),
Advances in Cognitive Neurodynamics, DOI 10.1007/978-94-017-9548-7_25

177

mailto:Maciej.Labecki@fuw.edu.pl


178 M. Labecki et al.

SSVEPs are commonly used in these research fields, the knowledge of some of their
fundamental properties is still limited. Basic research mainly concerns the analysis
of the relation between stimuli parameters and the magnitude of the response. There
is a lack of research concerning the time evolution of these potentials and almost all
of their applications are based on assumption of their stationarity. The aim of this
study was to test this assumption.

2 Methods

2.1 Subjects

The study was done on group of ten healthy volunteers – five males and five females.
Their ages ranged from 19 to 28 years.

2.2 Data Acquisition and Pre-processing

The EEG signal was collected using the TMSi Porti 7 amplifier and 10–20 EEG
cap. The sapling frequency was 512 Hz. Collected EEG signal was filtered with
2 Hz high-pass filter (DC) and notch filter (50 Hz).

2.3 Stimuli and Stimulation Procedure

We used SSVEP stimulator which had been constructed in the Department of
Biomedical Physics [6]. Subjects were concentrating on the white flickering square
which was presented on the screen. We used series of 60-s long stimulation epochs
interleaved with 30-s rest epochs. Amount of 50 trials for each subject was recorded.
To reduce fatigue of the subjects, measurement sessions were divided to five sub-
sessions separated by 15 min brakes. The stimulation frequency was 15 Hz. A signal
from photodiode measuring the flickering light was recorded on a separate channel
simultaneously with EEG.

2.4 Data Analysis

The SSVEP strength was estimated by the instantaneous power of the EEG signal
that was bandpass filtered in a band around the stimulation frequency (14.5–
15.5 Hz) using first order Butterworth filter. Then, the square of signal was
computed and an envelope was estimated.
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Fig. 1 Instantaneous power of SSVEP for individual subjects exhibiting: fast habituation (left),
slow habituation (middle) and no habituation (right). The black line is the average across 50 trials,
and the blue lines mark the standard error. The vertical scale of each subplot was adjusted to
optimally present the power time course

3 Results

For nine out of ten subjects significant habituation of the response was observed.
Different types of the response time course may be distinguished across subjects.
In some subjects habituation follows a slow time course and is present throughout
whole stimulation period (Fig. 1, middle panel). In other subjects the habituation
is faster and is observed only during the first part of stimulation period, and
afterwards the SSVEP power remains stable (Fig. 1, left panel). Still in one subject
no significant habituation is observed during the 60 s of stimulation (Fig. 1, right
panel).

Habituation was quantified as 100 % � (E1-E2)/E1, where E1 is SSVEP energy
between seconds 2 and 3 after the stimulation onset, E2 is SSVEP energy
between seconds 3 and 2 before the stimulation offset. The habituation was
0.49 %C�0.09 % on average across subjects and it reached maximal value of
71 %C�0.10 % in a single subject.

4 Discussion

In this study we showed that for most of the subjects the strength of SSVEP
decreases during long term stimulation. The habituation mechanism is not well
understood. It is generally considered that attention modulates the SSVEP response
[3]. Therefore, one possible explanation would be that a subject cannot maintain the
same level of attention during whole stimulation period. Alternatively, the habitu-
ation may be caused by neuronal, plastic changes at the level of synapses. More
experimental work is needed to provide physiological explanation for habituation
phenomenon.

In most of the BCI systems the stimulation light flickers continuously during the
entire period when the device is used by the subject. Habituation processes may
decrease the SSVEP response affecting their proper classification. Possible solution
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to the problem would be to divide the stimulation with short rest periods allowing
SSVEP to recover. Influence of length of rest period for restoring SSVEP strength
should be examined in further studies.

5 Conclusion

In most cases SSVEP habituates significantly. That contradicts common assumption
that they correspond to stationary signals. Investigation of this phenomenon is
necessary for constructing more efficient BCI devices.
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A Novel Neural Coding Mechanism Study
of Interaural Time Difference Detection

Hong Zhang, Jiong Ding, and Qinye Tong

Abstract Interaural time difference (ITD) detection plays a critical role in sound
localization. Some neurophysiology experiments found that the ITD discrimination
threshold for single neuron in medial superior olive (MSO) is about 20 �s. In order
to reveal the ITD coding mechanism essentially, an ITD detection model has been
proposed in this paper based on the anatomical structure of the mammalian auditory
system. Most previous research only discuss the relationship between the ITDs and
the spike rate of the MSO neuron. In these results, the spike rate difference is under
1 spike/s when the ITD changes in 20 �s. It means the neuron needs more than 1 s to
distinguish the ITD by spike rate coding. This explanation contradicts with the rapid
and accurate sound localization response in animal psychoacoustics experiments. In
our study, the neural coding in ITD detection model has been investigated via the
approach of circle maps and symbolic dynamics. With these two methods, the ITDs
under 20 �s can be detected in 1 s. This neural coding hypothesis agrees with the
ITD detection response time in the animal behavior experiments.

Keywords Circle maps • Symbolic dynamics • Neural coding • Sound
localization

1 Introduction

Sound localization plays a critical role in animal survival and predation. Based on
the results from neurophysiology and psychoacoustics studies in the last century, it
proved that many mammals make use of interaural time difference to perform sound
localization. In the recent anatomy experiments, the neurons which are sensitive to
ITDs were found in the medial superior olive. Animal behavior studies reveal that
the resolution of ITD is about 20 �s [1].

The neural mechanisms of the mammalian auditory nervous system underlying
high-resolution ITD detection are still not fully understood. Currently, methods in
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studying the mechanism of ITD are concentrated on animal behavior experiments.
These results all show that the discharge rate of the MSO neuron is closely related
to the ITDs [2]. But the rate code cannot discriminate the tiny ITDs in a short time.
It conflicts with the obvious ability of sound localization in animal. For this study,
two nonlinear methods, circle maps and symbolic dynamics were used to analyze
the resolutions of ITDs from the neuron spike trains quantitatively.

2 Methods/Models

In our computer simulation, an ITD detection model is proposed based on the
anatomical structure and physiological data from an adult gerbil auditory system. It
includes a cochlea model and a neural network in the cochlear nucleus. The cochlea
model is composed of an inner hair cell model and an auditory model. The ITD
detection neural network consists of two globular bushy cells and an MSO neuron.
The auditory nerve fiber connects the cochlea and cochlear nucleus. Finally, the
ITD signal was encoded on the MSO neuron. The ITD detection circuit is shown in
Fig. 1. The time difference of the sound arrival in each ear is4T. The inner hair cell
(IHC) model, auditory nerve (AN) model, neuron cell models are described in the
following sections.

The inner hair cell (IHC) model corresponds to the transfer function VmD f1(x)
in Fig. 1. The basilar membrane (BM) displacement, a sine waveform, is the input
signal (x), the output signal is the membrane potential (Vm) of the inner hair
cell. The model is proposed by utilizing a realistic transducer conductance and
membrane time constant. It also assumes that the tension-gated channels are the
only apical channels [3]. The auditory nerve (AN) model corresponds to the transfer
function, FRD f2(Vm) in Fig. 1. This model is based on Mountain’s work in hearing
model research. The final output of this model is the action potential firing rate
on the auditory nerve [4]. All the neurons in the ITD detection neural network are
presented by the model of Rothman (a realistic biophysical neuron model based
on ionic channels) [5]. The main function of the neuron model is shown in Eq. 1.

Left Cochlear

Right Cochlear

Synaptic couple Synapse MSO HH

HH
SBC

SBC

HH

IHC Model

�T

AN Model

d0d1...dnI4

I3I1
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FR= f2(Vm)

A sin(wt)
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•
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VSBC
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Fig. 1 The computational model of the ITD detection neural circuit. The input signal of each ear
has the same frequency, and4T is the ITD signal
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The Rothman model is solved by the fourth-order Runge-Kutta method with the step
is 0.02 ms.

Cm
dV

dt
D IA C ILT C IHT C INa C Ih C Ilk C IE � Iext (1)

Cm is the membrane capacitance of the neuron; V represents the membrane potential
of the neuron; IA, ILT , IHT , INa and IE are ion current; Ilk is the leak current; Iext is the
external input current.

2.1 Circle Maps in the ITD Detection Model

The displacement in each cochlea BM has the same frequency. The right ear BM
displacement signal has a �T delay compared to the left one. The output of the
ITD model is the spike train of the MSO model. The ITD detection model can
be considered as a dissipative dynamical system with two competing frequencies:
the input BM displacement signal frequency and the oscillation frequency of MSO
neuron. But the ITD detection model is a high dimensional nonlinear model, our
quantitative knowledge about highly nonlinear system is meager. In order to analyze
the neural coding of the ITD model, first, the complexity of this model should
be reduced. Analyzing the interaction between these two frequencies is a effective
method to reveal the mechanism of ITD neural coding. Circle map is a valid method
to simplify a nonlinear dynamic system [6, 7].

Through the following operations, we can get the circle map of the ITD detection
model.

In the ITD detection model, the variable �n represents the phase of the MSO
spike train measured stroboscopically at periodic time point, tnD 2�n/! from the
periodic input BM displacement (x1DAsin(!t) in Fig. 1). A phase shift �n! �nC 1
represents a full rotation. Due to the complexity of the ITD model, the system
function �nC 1D f (�n) is difficult to express. But with the evolution of iterations
of the circle maps, the phase train � , f (�), f2(�), : : : , are computed. The detailed
steps are as follow. The time point train t1, t2, : : : , tn is the periodic time point from
the input signal x1DA sin(!t) . The firing time of the spike train is recorded and
denoted as ı1, ı2, : : : ın. ıi is the time of ith spike of the MSO neuron. The spike
phase, � i, is as follows:

�i D
�
ıi � tj

� � !=2� (2)

Reconstruction the phase train with the iterating operation, an one-dimensional
discrete map was obtained from the ITD model, as shown in Fig. 2.
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Fig. 2 Circle maps of the ITD detection computational model

2.2 Symbolic Dynamics of the ITD Detection Model

The basic idea of the symbolic dynamic is to compute the itineraries of orbits in
terms of the regions of the phase space. According to the principle of symbolic
dynamics [8, 9], the spike train symbolic rule is followed:

If the spike train is �D ı1ı2ı3 : : : ıi, then the symbolic equation is:

Si D Œ.ıi � ıi�1/ � !=2�� (3)

The circle map of the ITD is a monotonically increasing map, therefore, the
ordered rule of the symbol train is the same as Si. If there are two sequence trains:

A D fai g D a1a2a3 : : : an; (4)

B D fbi g D b1b2b3 : : : bn; (5)

then ai and bi represent any one of respectively. In order to compare these two
symbol trains, then the first symbols, a1 and b1, of the symbol sequences should
be compared. When there is no less than one symbol identical to each other at the
beginning of the train. The relationship is:

†p0 < †p1 < †p2 < � � � < †pr (6)

where,˙ represents the first of several successive same symbols.

3 Results

Supposed the frequency of the BM displacement is 500 Hz. The amplitude of the
BM displacement is 15 nm. Setting the �T in Fig. 2 from 0 to 100 �s, and solving
equations of the ITD model by Matlab, the symbolic sequences from the MSO
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Table 1 ITD detection
symbol sequence

ITD (�S) Symbol sequence

0 9 8 9 8 8 9 (8 9)10 8 8 9 (8 9)12 8 8 9 (8 9)11

20 9 8 9 8 8 9 (8 9)9 8 8 9 (8 9)12 8 8 9 (8 9)12

40 9 8 8 9 (8 9)10 8 8 9 (8 9)11 8 8 9 (8 9)12

60 9 8 8 9 (8 9)9 8 8 9 (8 9)12 8 8 9 (8 9)12

80 9 8 8 9 (8 9)9 8 8 9 (8 9)11 8 8 9 (8 9)12

100 8 9 (8 9)9 8 8 9 (8 9)11 8 8 9 (8 9)12

Note: .ab/n D abab : : : ab„ ƒ‚ …
n

neural spikes are listed in Table 1. The symbols which are marked as both bold
and underlined letters in all the whole tables are the first different symbols between
the neighboring symbolic sequences.

The ordered rule is that the symbol sequence is decreasing when the ITD value
is increasing. When the length of the symbol trains reach to 49 numbers, the ITD
detection resolution can be achieved at 20 �s. This means after 49 neural action
potentials, the ITD signals can be discriminated by the auditory neural circuits. In
the simulation, the average firing rate of the MSO neuron is 70 spikes/s, so the neural
circuits are able to measure the ITD signals accurately less than 1 s.

4 Conclusions

From the simulation results, using symbolic dynamics can discriminate ITD under
20 �s in 1 s. These results are close to the limits of mammalian sound localization.
Circle map is a method for reducing the dimensionality of the complex nonlinear
system to a one-dimensional discrete map. The ITD detection computational models
are reduced to the one-dimensional discrete map by the method of circle map.
On the one-dimensional discrete map, the neural coding on the MSO neuron is
decoded quantitatively by the method of symbolic dynamics. The ITD is expressed
by a series of symbol sequences with the aforementioned methods. The symbol
sequences make the ITD signals measurement in high-precision possible. The final
result reveals that using the methods of circle maps and symbolic dynamics is a
valid way to study the mechanism of sound localization.
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Multi-scale Neural Network Dynamics



Representation-Implementation Trade-Off
in Cortico-Limbic Ganglio-Basal Loops

Jean-Paul Banquet, Philippe Gaussier, Mathias Quoy, E. Save, F. Sargolini,
and B. Poucet

Abstract Unravelling the neural substrates of behavior has made possible to
dissociate a high level representation system dedicated to the build-up and storage
of a world model, and an implementation system for decision, strategic choices,
and sequential behavior. In most ecological situations, particularly in the animal
kingdom, a tight functional association between the two blurs their boundaries.
Nevertheless, some specific situations like sleep, memory consolidation, planning,
or conversely habit performance tax specifically one of the two systems.

Within the paradigm of spatial-temporal learning and navigation are presented
the contributions of the main structures of the representation system such as
hippocampus, entorhinal, prefrontal and parietal cortices; and of the implementation
system, the cortical-striatal loops in particular, monitoring the transition between
goal-oriented controlled behavior and automatic habit. The electrophysiological and
behavioral results of a continuous navigation task which taxes both systems, as well
as goal-oriented and habit spatial-temporal strategies are presented.

Keywords Hippocampus • Entorhinal • Prefrontal • Parietal cortices; limbic •
Associative-cognitive • Sensori-motor cortico-striatal loops • Goal-oriented
behavior • Habit

Stimulus-response and Tolman cognitive theories which issued from the splitting of
Behaviorism in early twentieth century, still provide surprisingly relevant accounts
of behavior, as well as a useful framework for unravelling its neural bases. Indeed,
cognitivist theory introduces the concepts of representation, and goal-oriented
behavior, while S-R paradigm may include habits as a repetition-related end product
of the previous mode.
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The outstanding progresses in identifying the neural components of behaviour
allow to recognize a representation system, comprising in particular medial
prefrontal (mPFC), entorhinal (EC) and posterior parietal (PP) cortices,
hippocampus (HS), and amygdala, in direct hold with an implementation system
made essentially of cortical-striatal-thalamic loops and cerebellum.

Early hierarchical models of information processing make a distinction between
the subcortical structures responsible for automatic behavior and the cortical
structures that allow representations of event-relationship and value responsible for
purposive behavior. The cortical/subcortical hierarchy is supplemented by an intra-
cortical hierarchy, which dissociates the posterior sensory areas and the anterior
associative areas, such as the prefrontal cortex.

After fronto-striatal loops discovery, cortico-subcortical relationships are often
described as segregated, parallel networks (limbic, associative-cognitive, sensori-
motor) [1]. This description, very different from the aforementioned hierarchical
organization of behavioral and cognitive processes, emphasizes a tight ‘vertical’
relationship between cortical and subcortical components within distinct, indepen-
dent, functional channels.

Nevertheless, recent evidence of “spiraling” connections between components of
these loops, in particular between striatum and midbrain dopamine (DA) systems,
and between thalamic relay nuclei and cortex [2], suggests that the loops are not
as closed as originally thought, but also support unidirectional, antero-posterior
interactions and integration, supposing oriented transfer of activation and learning
between devoted channels. Whereas, in the early models, the frontal pole of
the brain, at the top of the hierarchy constitutes the endpoint of the long-range
forward cortical connections, the frontal-limbic-striatal system, in the fronto-striatal
loop model, is at the origin of a backward-oriented spiraling connectivity, and
information transfer.

In this context, while cortico-striatal implementation systems stand at the
forefront of neurobiological research, and in particular modeling, the limbic repre-
sentation system is often under-considered. Indeed, in many situations, this limbic
part of the representation system plays a role in the preparation-for-action and
behavior. Nevertheless, there are conditions where active behavior is not the purpose
of representation processes. Furthermore, in a phylogenetic perspective, it could
be proposed that the degree of independence between the representation and the
implementation systems stands as an index of ‘encephalisation’, in the animal
kingdom.

We first draw a sketch of the relations of key components of the representation
and implementation systems, as well as their functional articulation. Then will be
presented the results of an experimental paradigm, the continuous navigation task,
where typically spatial and temporal representations are directly bound to action,
but also where learning deeply modulates the functional implication of the different
systems involved in the task.
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1 Representation System

As a prototypical exemplar of the representation system functions, spatio-temporal
encoding within archi-, meso- and neo-cortical structures will be considered. These
different levels lead to more abstract and complex representations, and eventually,
to cognitive maps.

The different stages of spatial representation are relatively well known, even
though their relations are not completely understood. Dorsomedial parts of the
entorhinal cortex (MEC) contain cells with multiple firing fields organized in a
regular grid-like structure of equilateral triangles, coextensive to the explored space
(Fig. 1). Grid fields with the same triangular geometry vary across different grid
cells, according to spatial frequency (field distance), orientation (tilt angle of the
map), and phase (field offset relative to an external reference) [3]. Because grid cells
patterns are relatively independent of the environment, and because a small number

Fig. 1 A gradient of grid
patterns spacing from dorsal
(small grids) to ventral
(larger grids) cells of the
MEC poles, combined to a
topographically organized
anatomical connectivity
between MEC and
ventral-dorsal hippocampus
results in dorsal (respectively
ventral) hippocampus
receiving predominant
connections from
dorsal(respectively ventral)
MEC. This could explain the
smaller size of the place fields
of the dorsal hippocampal
cells, compared to ventral
ones. Arrows’ thickness
figures connection weights
(Adapted from Solstad et al.
[6] and Gaussier et al. [5])
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of their firing patterns suffice to reconstruct animal’s position during navigation,
these EC patterns are thought to represent a universal metric of the environment,
from which downstream hippocampal (Fig. 1) and cortical spatial representations
are derived, even though some authors propose an alternative interpretation [4].

The properties of hippocampal place fields vary according to the exact location
where place cells are recorded (i.e. dentate gyrus: DG, CA3, CA1). However
place cells share the spatial specificity of their strongly location-related signal,
and exquisite sensitivity to the environment and context, either spatial or temporal.
Different models have mechanistically demonstrated how the combination of grid
cells with different spatial frequencies give rise to DG place fields of different
sizes [5, 6]. Further, in an entorhinal-hippocampal loop model [5, 7, 8], spatial
and temporal representations combine in CA3 and CA1 to provide a dynamic
representation of the animal’s navigation, under the form of transitions from
place to place, rather than pure locations, by associating allothetic and idiothetic
information. Transitions form the building blocks for sequence and trajectory
encoding.

Indeed, beyond the hippocampal stage, and in particular in deep MEC layers,
strict spatial specificity is lost, in favor of trajectory encoding. In particular, in
inverted W or in alternating T maze experiments, the firing field of EC pyramidal
cells expands to an entire maze arm (Fig. 2). A supra-ordinate factor, like heading
direction or path context could integrate successive firing fields in cells combining
place and direction or task information.

From HS, spatio-temporal information may be routed to the posterior pari-
etal (PP) cortex through the retrosplenium. In PP neurons, the trajectory coding
undergoes further abstraction, becoming trajectory, size and direction independent
(Fig. 2); mapping the order of multiple navigational epochs in a route; integrating
location and self-movement information.

The head direction system which pervades all these structures seems to provide
coherence between allo-centric and ego-centric representations.

Functional dissociation between representation and implementation systems can
result from at least two different rationales: the process has basically nothing to
do with action, like music listening, meditation in humans : : : ; the process relates
to action, but the brain is in a memory or planning mode, and implementation is
not relevant, like in quiescent phases or sleep, in rodents; in this case, it seems
that two opposite modulations take place: first, activation of the cortical areas
where memories are recorded, and simultaneously inhibition of the subcortical
implementation systems.

2 Implementation Structures

The phylogenetic evolution of the distinct cortical structures (archi-, paleo-, meso-,
neo-cortex) takes place through the dual process of increased complexity (e.g.,
number of layers) and inclusion of older structures into more recent ones. The same
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Fig. 2 Place fields in different anatomical structures: CA1, MEC, or Posterior Parietal cortex (PP)
in different maze experiments. Left: discharge rate-maps for CA1/MEC neurons in rats performing
a T-maze alternation task for right-to-left trials, to get reward at the white hole. Right: same rate-
maps for outbound (CA1) and outbound (upper plots) and inbound (lower plot) (PP) traversal of
a newly-learned path shown by broken yellow lines. For each of the two traversals the PP neuron
discharges along each path’s entire first segment and the final half of the last segment. While the
spatial specificity of the place fields of CA1 place cells remains very strong whatever the geometry
of the maze, this specificity is partly lost in MEC and furthermore in PP neurons, in favor of a more
functional, task-related significance (Adapted from Eichenbaum et al. [9] and Nitz [10])

type of inclusion is found within ventral and dorsal (neo)striatum, through (older)
patch and (recent) matrix compartments, such that authors suppose that cortical
evolution may have influenced striatal evolution. This could account for the tight
functional links between the two structures. Indeed, there is an anatomic, hodologic,
and functional coherence between the different compartments, limbic, associative-
cognitive and sensori-motor, at all levels of the cortico-ganglio-basal loops: cortex,
striatum, thalamus.

Following the characterization of cortico-striato-thalamic loops [1], the functions
of the different striatal compartments have been progressively refined, particularly
in relation to reinforcement learning, pavlovian conditioning, and instrumental
conditioning in goal oriented behavior. Thus, the nucleus accumbens (ACu) has
been more particularly associated to Pavlovian conditioning and stimulus-outcome
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(SO) association. The core is involved in preparatory CR and anticipatory approach;
core lesions impair drug-seeking behavior triggered by drug-associated reinforcers.
The shell mediates consummatory CRs and hedonic URs; its lesions preserve drug-
seeking acquisition.

Similarly, dorso-medial striatum (DMS), involved in instrumental conditioning,
during goal-oriented actions, plays a long-lasting role in the acquisition and expres-
sion of action-outcome (AO) learning, in clear contrast with the short-lived function
of the medial prefrontal cortex (mPFC) in the same conditions. It contributes to
the selection and learning of situations representing valuable parts of the task. The
dorsolateral striatum (DLS) transforms goal-oriented repetitive behaviors into habits
and skills, and contributes to learning behavioral sequences in general.

However, this view of dedicated functions of the striatal components of the loops
can only be partial if the spiraling connections between the different loops are not
taken into account [2]. Striatal neurons send direct inhibition to DA neurons from
which they receive projections, and also disinhibitory connections to DA neurons
projecting to the distinct next striatal area, allowing unidirectional activation-
propagation from limbic to associative to motor loops (Fig. 3). A learned condi-
tioned stimulus (CS) could simultaneously suppress a ventral tegmental area (VTA)
DA learning signal, and potentiate a substantia nigra compacta (SNc) DA signal in
the next cognitive loop. Thus, limbic striatal loops are in a position to control learn-
ing and processing within associative and sensori-motor cortico-striatal networks.

Pavlovian Instrumental Transfer (PIT) resorts to the same principle of learning-
transfer from one structure to the next: after separate learning of a classical
Pavlovian SO contingency, and of an instrumental AO contingency, with the same

DLS
DMS

IL

ACI

PL
SM

Core

Shell

mVTA

lVTA
vSNC

dSNC

Cortex

Striatum

Midbrain

Limbic

Associative

Motor

GPi/SNR

Thalamus

Fig. 3 Spiraling connections between striatal regions and midbrain DA system. Abbreviations:
ACI Anterior cingulate, DMS(DLS) dorso-median (lateral) striatum, IL(PL) infralimbic (prelim-
bic), mPFC medial prefrontal cortex, m(l)VTA medial (lateral) ventral tegmental area, v(d)SNC
ventral (dorsal) substantia nigra compacta (Adapted from Yin et al. [11])
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outcome, the expression of the instrumental contingency is potentiated by the
concomitant presentation of the CS, but not the reverse. The integrity of core
and shell is necessary for the expression of general and specific aspects of PIT,
respectively.

3 Experimental Results

In the continuous place-navigation task, the rat must reach an unmarked goal
location in an open arena with a single polarizing cue card. At this goal location,
it must stay immobile for a 2 s delay. A food pellet is then delivered by a food
dispenser above the arena. As it bounces when hitting the ground, it can end
anywhere in the arena. Therefore, the rat must explore the arena to find the food
pellet.

Despite its apparent simplicity, this paradigm combines two distinct instrumental
conditioning tasks: -goal-oriented navigation to the virtual goal zone, and -foraging
to find the food pellet; and also two variants of Pavlovian conditioning: -classical
(CSDclick of food dispenser; USDfood pellet); -secondary conditioning (CSDGoal
zone landmark configuration; USDClick). Therefore, all cortical and subcortical
areas presented in the branching tree describing learning and performance in general
(Fig. 4) should be concerned, if we suppose that goal navigation becomes an habit
after overtraining.

INCENTIVE
BEHAVIOR

GOAL - ORIENTED
AO

PAVLOV - CDTNG

HABIT

KNOWN GOAL

FORAGING

AMYGD - HS

IL - OFC

ACC - SHELL

DLS

SMC

EC

PL - DLC

DMS

ACC - CORE

ACI

PPTN

EVENT - DRIVEN
SR

PIT

Fig. 4 The different types of behaviors and their interrelations are associated to the structures
that support them. Abbreviations: ACC accumbens, AMYGD amygdala, AO action-outcome, DLC
dorsolateral prefrontal cortex, EC entorhinal cortex, OFC orbitofrontal cortex, PIT pavlovian-
instrumental transfer, PPTN pedonculo-pontine tegmental nucleus, SMC, sensori-motor cortex,
SR stimulus-response
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Fig. 5 Upper: place fields in PL-IL neurons of mPFC (Hok et al. [12]); -Lower left: spatial activity
of hippocampal CA1 place cells (Hok et al. [12]). Circles mark goal location and secondary fields;
Lower right: cumulative PETHs for all recorded CA1 place cells at the goal

Most of these results challenge classical knowledge on navigation: First, PL/IL
rather than anterior cingulate neurons of mPFC have clear spatial correlates, in
particular at the goal and landing zones [12, 13] (Fig. 5). This is all the more
important that no spatial correlates were found in a simple foraging task [14].

In HS, place fields were not overrepresented in the goal zone, as expected. Yet,
after overtraining, HS place cells presented, in addition to their location-specific
main place field, a weaker secondary field at the goal location as rats were waiting
for the required 2 s [13] (Fig. 5).

Third, HS secondary fields, as well as PL goal cell activity displayed a temporal
profile reaching a maximum just prior the end of the 2 s waiting period (Fig. 5)

Finally, ventral HS inactivation suppressed PL place and timing activity [15],
whereas mPFC inactivation did affect neither HS place cell timing activity nor
secondary fields [16].

These results confirm the supposed function of mPFC in combining place and
valence information to define goals; yet, confirming previous results, this function
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appears to be transient and limited to early learning stages. Indeed, inactivation
of mPFC after overtraining does not affect behavioral performance [16]. These
findings suggest both bottom-up and top-down information transfer between mPFC
and HS; top-down transfer could be expressed by the secondary fields of HS place
cells. Moreover, for the first time, to the best of our knowledge, the very same HS
pyramidal cells are shown to display simultaneously spatial and timing codes, which
are conveyed to neocortical structures. Space and time, possibly through frequency
modulation of the electrical field potentials could form a common frame for the
coordination, and eventually the synchrony of distant brain structures. As a whole,
these results shed new light on the role of the PF-HS circuits in goal-oriented and
other types of navigation.
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Source Differences in ERP Components Between
Pain and Tactile Processing

Yong Hu, Wutao Lou, Weiwei Peng, Li Hu, Zhiguo Zhang, and Jane Z. Wang

Abstract It is a promising method to use intra-epidermal electrical stimulation
(IES) as a practical stimulation for nociceptive pain study. There is a question on
whether IES involve other sensory receptors, e.g. tactile. This paper is to investigate
whether IES could selectively activate A•-nociceptors during an oddball paradigm
from the perspective of cortical sources by using sLORETA, and moreover,
the source differences between nociceptive and non-nociceptive processing. The
results provide further evidences to support that IES could effectively activate
A•-nociceptors selectively.

Keywords Intra-epidermal electrical stimulation • Perspective of cortical
sources • sLORETA • Nociceptive processing • Non-nociceptive processing

1 Introduction

Pain is an unpleasant experience that involves the conscious awareness of noxious
sensations, hurting and aversive feelings associated with actual or potential tissue
damage [1, 2]. The wide definition of pain recognizes that pain results not just
from the physical insult but also from a combination of physical, emotional,
psychological, and social abnormalities. Pain can therefore be expected to influence
brain processing on many levels.
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In the present study, we applied painful stimulation using intra-epidermal elec-
trical stimulation (IES) to activate nociceptors selectively [3–7], because electrical
pulses delivered through needle electrode inserted in the epidermis could excite
selectively A• and C fibre (i.e. without coactivating A“mechanoreceptors that locate
deeper than the epidermis). With an increase stimulation, the A“mechanoreceptors
will be excited and A“fiber will be inhibited, which induces tactile sensation [6].

We recorded 64-channel EEG responses from an oddball task paradigm, in which
sources of different ERP components were compared to investigate the difference
of somatosensory processing between pain and tactile inputs.

2 Method/Models

Eighteen right-handed healthy volunteers (nine females), aged from 19 to 29 years
(21.8˙ 2.5, mean˙SD), took part in the experiment.

Two rapidly-succeeding constant current square-wave pulses will be delivered in
the right hand dorsum. The inter-pulse interval will be 10 ms. Each pulse will last
50 �s. Stimuli will be delivered using a stainless steel concentric bipolar needle
electrode, consisting of a needle cathode (length: 0.1 mm, Ø: 0.2 mm) surrounded
by a cylindrical anode (Ø: 1.4 mm). By gently pressing the device against the skin,
the needle electrode will be inserted into the epidermis. In this study, two different
intensities were used: (1) twice the subject’s perceptive threshold, (2) twice the
subject’s somatosensory threshold, 5 mA. The stimulus intensity was two times
of the individual perceptual threshold, which was proved to be able to selectively
activate the A• nociceptive fibers without coactivation of the fast-conducting A“
fibers.

Since multiple cortical regions involve in the processing of pain/somatosensory
stimuli and sLORETA has been demonstrated as be a feasible tool for pain research
in previous studies, sLORETA was used to estimate the source localization.

Four ERPs components, N60, P100, N120, P300, were selected for further source
localization analysis, while source difference were compared between pain and
somatosensory inputs.

3 Results

By using sLORETA, the source analysis of the four components were shown
in Fig. 1. For early components N60 and P100, the source difference between
somatosensory and pain was mainly focused on BA3, i.e., ipsilateral SI area.
For N120, the difference was mainly focused on BA4, that is the ipsilateral primary
motor cortex. For P300, the difference was mainly focused on BA1, that is the
contralateral SI area.
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Fig. 1 Source difference between pain and tactile inputs

4 Discussion and Conclusions

During the early part of non-nociceptive/nociceptive processing, in addition to the
decreased activity in SI area, the decreased contralateral frontal and left precuneus
activation in the second and third phase was also found respectively. During phase
4, only significant decreased brain activity in the contralateral SI area was found for
nociceptive condition compared to non-nociceptive condition. Component in this
phase is consistent with the well-established ERP component of N2. The locations
of N2 were consistently reported to be mainly focused on the bilateral SII areas
by dipolar source analysis [8, 9]. During phase 4, only significant decreased brain
activity in the contralateral SI area was found for nociceptive condition compared



202 Y. Hu et al.

to non-nociceptive condition. The role of late SI activity in pain processing is
still unknown. In this phase, the nociceptive/non-nociceptive stimuli have been
transferred to pain/somatosensory perception, and subjects would detect the spatial
of stimulation sites so that they could make decision about whether the stimulus is
target or not in next step.

The promising result suggests the different processing and pathway between
pain and tactile inputs. Further study with time-varying source connectivity would
provide a useful tool to identify pain and tactile sensations.
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The Time-Varying Causal Coupling in Brain
and Organization of Its Networks

Maciej Kaminski, Katarzyna J. Blinowska, Aneta Brzezicka, Jan Kaminski,
and Rafal Kus

Abstract For investigation of time-varying brain networks an approach based on
estimation of causal coupling by means of multivariate method was applied. Two
cognitive experiments: Constant Attention Test and Working Memory task are
considered. Time varying version of a multivariate estimator—Directed Transfer
Function was used for calculating dynamically changing patterns of transmission
during the tasks. Well-defined centers of activity congruent with imaging, anatom-
ical and electrophysiological evidence were found. These centers exchanged the
information only during short epochs. The strengths of coupling inside the tightly
connected modules and between them was found by means of assortative mixing.
The results point out to the well determined, far from randomness structure of brain
networks in cognitive tasks. Very dense and disorganized structure of networks
reported in literature may be explained by the presence of spurious connections
produced by bi-variate measures of connectivity and further enhanced by giving all
connections equal weights.

Keywords Functional connectivity • Causal coupling • Directed transfer
function • Working memory • Dynamical EEG propagation • Directed networks
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1 Introduction

Herein we shall consider the organization of the brain networks in cognitive experi-
ments with the aim to reveal networks topographical structure, strength of coupling,
spectral and time-varying properties of transmission. The proposed approach is
based on estimation of time-varying causal coupling between EEG signals. To this
aim we applied multivariate method based on Granger causality principle—the
Directed Transfer Function—DTF [1]. As a next step, for identification of specific
brain modules constituting functional networks during the tasks, the assortative
mixing approach [2] was used. In this paper we describe applications of DTF to two
cognitive experiments: Constant Attention Test (CAT) and reasoning task involving
working memory (WM).

2 Method

The Directed Transfer Function is based on calculation of the transfer function of the
Multivariate Autoregressive Model (MVAR). The DTF describes causal influence of
channel j on channel i in frequency domain [1]. DTF is robust in respect to noise and
unlike bivariate methods does not produce spurious connections arising from the
common feeding. Moreover, because DTF is based on phase differences between
signals, in the absence of phase difference its value is zero. Volume conduction is a
propagation of electromagnetic field, so it does not produce the phase differences on
the electrodes, therefore DTF is practically not affected by the volume conduction.

Estimation of time varying version of DTF—SDTF—is based on application
of a short sliding data window and ensemble averaging over realizations, which
are obtained by repetitions of an experiment. The averaging concerns correlation
matrices (the model is fitted independently for each short data window); the data is
not averaged in the process [3].

3 Results

The CAT experiment consisted of the presentation of consecutively displayed
geometrical patterns. The target condition was defined as any immediately repeated
pattern, in this case the subject was instructed to press the button with his right
thumb. The description of the experiment may be found in [4].

In both cases (target/non-target) in the initial phase mainly the transmission
between prefrontal and frontal electrodes was observed, which are responsible for
information storage and working memory. For target situation at the end of the task
the burst of activity occurred from the hand motor-cortex, which can be interpreted
as a signal to move the finger. In case of non-target in the second stage of the task the
long-range transmission from the electrode overlying right Inferior Frontal Cortex



The Time-Varying Causal Coupling in Brain and Organization of Its Networks 205

Fig. 1 Snapshots from the animation showing the time-varying pattern of propagations for the
representative subject. The numbers in the upper left corner correspond to the time [s] after the
stimulus presentation

(rIFC) or from premotor Supplementary Cortex (preSMA) to the C3 (finger motor
cortex) was observed. Both structures are involved in go/no go tasks. The animations
presenting the dynamical propagation of EEG activity during CAT are accessible at
the address: http://brain.fuw.edu.pl/~kjbli/CAT_MOV.html.

The reasoning task involving working memory relied on memorizing and
retrieval of letters and relations between them [5]. The patterns of propagations
obtained by SDTF showed the existence of two main centers of activity located
in the frontal and posterior regions, in agreement with the imaging experiment
[6]. These two centers communicated by long range connections, which acted
during some short periods. The animations showing the dynamics of the task
are available at: http://brain.fuw.edu.pl/~kjbli/Cognitive_MOV.html. The snapshots
from the animation are displayed in Fig. 1.

We have defined as local: connections between the neighboring electrodes in the
(10–20) system and these along the diagonals of squares formed by the neighboring
electrodes and as distant all other connections. Inspection of time courses of long
range and short range connections revealed that at the moment of the premise
presentation for all frequency bands long- and short- range connectivities were
in phase and in the consecutive 3 s period they were mostly out of phase. The
estimated ratio of short to long connections was in the range: 1.4 for theta to 1.5
for beta rhythm [7]. Frontal, central and two parietal modules were identified and
the strength of intra-modular and inter-modular couplings were found.

4 Discussion

In CAT test the transmission between prefrontal and frontal areas observed during
the initial phase complies with the involvement of frontal lobes and especially the
PFC in information storage and working memory [8]. The observation of the burst

http://brain.fuw.edu.pl/~kjbli/CAT_MOV.html
http://brain.fuw.edu.pl/~kjbli/Cognitive_MOV.html
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of activity in target condition in beta and gamma band from C3 (contralateral finger
motor cortex) is compatible with a well known phenomena of gamma activation
and beta rebound connected with hand movement [9]. In case of non-target the
long-range transmissions occurred either from the electrode F8 overlying rIFC (six
subjects) or from premSMA (three subjects) to the finger primary motor cortex.
Both structures are known to be connected with “go/no go” tasks [10, 11]. The
observation of transmission between distant locations for no-go tasks (e.g. between
F8 and C3) is concordant with the hypothesis that inhibition of motor structures
originates from long-range cortico-cortical connections [12].

In a similar experiment involving semantic priming task Schinkel et al. [13]
applied as a connectivity measure joined recurrence plots followed by graph
theoretical analysis. For primed stimuli almost uniform pattern of connections
emerged, which was interpreted as existence of one large network component.
For unprimed stimuli broadly distributed left-lateralized network components were
reported. These results have no support in imaging or electrophysiological evidence.

The role of short- and long-range connections in information processing was
even better visible in the working memory experiment. In our study concerning the
WM task the involvement of the frontal and posterior parietal regions was observed,
which is in an excellent agreement with the imaging studies [6, 14]. Sauseng et al.
[15] showed that fronto-parietal coherence in theta and upper alpha reflect central
executive functions of working memory.

Working memory tasks were analyzed also by means of pairwise measures of
connectivity and graph theoretical analysis. Connectivity in WM tasks (namely
2Back check) was studied by Micheloyanis et al. [16] in EEG experiment and by
Kitzbichler et al. [17] by means of MEG. In both studies the connectivity patterns
were close to random, with some traits of “small world” structure. The patterns of
connections were very dense and did not indicate the brain regions involved in the
information processing.

The lack of correspondence of the above works with our findings and other
evidence may be explained by the methodological flaws present in the quoted
publications. Namely the bivariate measures applied in them produce a lot of
spurious connections which was demonstrated in [18, 19]. In fact, because of
common feeding effect, spurious connections may outnumber the true ones. If the
activity of a given source is recorded at N electrodes N true and N(N–1)/2 false
connections may be found by bivariate measures. The common practice in graph
theoretical analysis, of setting the threshold very low and giving all connections
equal weight, further enhances such spurious connections. As a result a very dense,
disorganized and close to random architecture of connectivity emerges.

Application of multivariate measure such as DTF allows for determination of
connectivity patterns and quantitative description of their structure, including the
dependence on frequency and the contribution of short- and long- range interactions.
By means of the proposed formalism it was possible: to determine the modular
structure of the brain networks, to found the intra- and inter-modular couplings
and estimate their strength. Moreover the dynamic patterns of the interactions were
identified involving intra-modular persistent coupling during the task, whereas the
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coupling between distant locations was less frequent. We have for the first time
reported the dynamics of the interaction between the modules, showing that the
exchange of information is taking place in certain specific moments.
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Enhancement of Weak Signal Detection
in Parallel Arrays of Integrate-and-Fire
Neurons by Negative Spatial Correlation

Yan-Mei Kang and Yong Xie

Abstract We apply the scheme of linear approximation to calculate the spectral
statistics for parallel arrays of Integrate-and-fire neurons with local spatially
correlated noise. Our investigation shows the curve of signal-to-noise ratio via
noise intensity has more prominent peak when the internal noise correlation is
negative, and thus negative correlation has advantage over positive correlation and
zero correlation in weak signal detection through the integrate-and-fire arrays. Our
investigation should help to understand the functional role of correlated noise.

Keywords Stochastic resonance • Negative correlation • Linear approximation

1 Introduction

The term of stochastic resonance (SR) was initially invoked in 1981 in the
explanation of the alternate occurrence of the hot climate period and the cold
climate period every 100,000 years [1]. Although the anti-intuitive idea cannot be
reproduced in meteorology research, it has been subsequently verified in host of
electrical circuit and biophysical experiments [2, 3].

Due to the prevalence of noise in neural system, the discovery that living
organisms use SR to detect weak signals in a noisy environment has aroused
much interest in the community of neuroscience. For instance, Longtin A checked
relation between the residence time distribution and SR in FitzHugh-Nagumo
(FHN) neuron model [4], Gong P L et al. disclosed the SR caused by the dynamical
bistability in the same model [5], Gong Y F proposed a simple theoretical model
for demonstrating the mechanism for weak sensory signal perception [6], and Liu F
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et al. used globally-coupled FHN neuronal systems and found that the global noise
spatial correlation has an inhibitive effect on signal processing [7]. Because of the
complexity in the structure of neural networks and the variability in the origin of
noise, the existing investigation has not completely clarified the problem of weak
signal detection in neural systems.

As far as the parallel array of neural oscillators is concerned, the previous
investigation was focused on independent internal noise, and as for the correlation
of the internal noise, the related result is basically in blank. Motivated by the fact
that negatively-correlated background noise are less noisy as a whole, we infer that
the advantage of local spatial negative correlation over its statistical independent or
positively-correlated counterpart should be universal in parallel systems including
the neural arrays, and consequently the local spatial negative correlation should
be more helpful for neural arrays to detect weak coherent signal. To confirm the
above inference in this paper, let us investigate the effect of local negative spatial
correlation on SR in parallel arrays of Integrate-and-Fire neurons (IF array).

2 Model and Method

The IF array under study is governed by the following Langevin equation system

� Pvi .t/ D �vi .t/C 
C
p
2D�i .t/C s.t/ (1)

for 1	 i	N, where vi denotes the membrane voltage of neuron i, 
 is a dc
component in the noisy synaptic input and � is the membrane time constant for
the subthreshold dynamics. We adopt the standard threshold-spike-reset condition
[8]: a spike is emitted whenever vi(t)DVT , and after that the voltage is reset and
held at vi(tC)DVR during a refractory period �R. Additionally, s(t) is a common
component in the input and the Gaussian white noise �i(t) (1	 i, j	N) models the
internal stochastic component for the ith neuron. For each neuron, the output spike
train yi(t)DPks(t� tk

i ) with tk
i being the kth spike time is of interest, and the average

spike train y.t/ D 1
N

X
i
yi .t/ is taken as the output for summing parallel array. We

assume that for 1	 i, j	N there is

˝
�i .t/�j .t C �/

˛ D �ıi;j C cıi;iC1
	
ı .�/ (2)

with c being a tunable nearest-neighborhood correlation coefficient.
Since the local spatial correlation does not affect the response of each neuron,

it is necessary to obtain the spectral statistics Gyy .!/ D h Qy .!/ Qy� .!/i for the

ensemble output spike train, where Qy .!/ D 1p
T

TZ

0

dtei!t .y.t/ � r0.D// is the
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Fourier transform of the zero average output spike train with r0(D) being the
stationary firing rate at the noise level D. For this aim, let us resort to technique
of linear approximation [9–11]. According to linear approximation, each neuron
can be regarded as a linear filter, and thus the frequency domain linear response for
each neuron can be approximated as

Qyi .!/ D Qyi;0 .!;D/C A .!;D/ s .!/ (3)

where Qy0 .!/ is the unperturbed part of stationary spectral density
˝ Qy0i .!/ Qy0�i .!/

˛

and A(!, D) is linear susceptibility on the noise level of D. The stationary spectral
density [12] and the linear susceptibility [13, 14] are explicitly given as

A .!;
;D/ D r.D/i!p
D .i! � 1/

QDi!�1
�

�vTp
D

�
� e� QDi!�1
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�
� e�ei!�R QDi!
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with � D �v2R � v2T C 2
 .vT � vR/
	
=4D. And then from Eq. (3), the auto-spectral

density Sii .!/ D
˝ Qyi .!/ Qy�i .!/

˛
for the ith neuron is obtained as

Si;i .!/ D jA .!;D/j 2Gss .!/ (6)

with Gss(!) standing for the spectral density of the input signal.
For calculating the cross-spectral density between the ith neuron and the (iC 1)th

neuron, we decompose the corresponding Langevin equations into

8
ˆ̂̂
<̂

ˆ̂̂
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n
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with sgn(�) being sign function and c0Djcj being the absolute value. Now  i(t),
 iC 1(t) and �(t) in Eq. (7) are mutually independent Gaussian white noises. Taking
the terms in brackets as perturbation, then the cross-spectral density SiiC1 .!/ D˝ Qyi .!/ Qy�iC1 .!/

˛
can be approximated as

Si;iC1 .!/ D jA .!;D .1 � c0//j 2
n
2cD CGss .!/

o
(8)
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Fig. 1 Dependence of the output SNR for the IF array on noise intensity with the nearest-
neighborhood correlation. The parameters VT D 1, VRD 0, �RD 0.1, 
D 0.8, �D 0.1 and
"D 0.05 and the array size is (a) ND 20; (b) ND 100; (c) ND 1,000. The correlation parameter
is 0.2 (red dot), 0 (green dash) and �0.2 (blue solid), respectively

with Gss(!) being the spectral density of the input coherent signal. Using Eqs. (6)
and (8), the spectral-density for the parallel array reads

Gyy .!/ D 1
N

n
S0 .!;D/C jA .!;D/j2Gss .!/

o
C N2�3NC2

N2 jA .!;D/j2Gss .!/

C 2.N�1/
N2

n
jA .!;D .1 � c0//j2

h
2cD CGss .!/

io
: (9)

Therefore by taking s(t)D " cos(�t) ("
 1), we obtain the output signal-to-noise
ratio (SNR)

SNRoutD
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3 Result and Discussion

To investigate the effect of local spatial correlation on SR, Fig. 1 shows the
evolutionary curve of SNR in Eq. (10) via noise intensity. From Fig. 1, it is clear that
negative correlation is the best among the three correlation cases for enhancing SR
using the parallel IF array in noise environment. To further check this conclusion,
Fig. 2 gives the results from stochastic simulation, and again the same conclusion is
observed.

We have investigated the phenomenon of SR in IF arrays with internal spatially
correlated noise. Although result from the analytic approximations which could be
improved has certain quantitative difference from that from stochastic simulation,
our investigation shows that negative correlation is optimal for detecting weak
signal among the three cases of statistically independence, positive correlation
and negative correlation. Additionally, our investigation also demonstrates that
local spatial negative correlation will inhibit the phenomenon of synchronization,
which is completely different from the previous investigation on global spatial
correlation enhancing synchronization [10], and this difference should reflect the
real deviation between local spatial correlation and global spatial correlation. Noise
correlation is prevalent in neural systems, and very recently negative correlation has
attracted novel interest in the community of neuroscience [15]. We suggest that the
conclusion in this paper might be meaningful in understanding the functional role
of correlation.
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D 0.8, �D 0.1 and "D 0.1 and the array size is ND 20. The correlation parameter is 0.3 (red),
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A Computational Model of Hippocampal-VTA
Microcircuit: Why Expectation of Reward
in Rat Striatum at Choice Point Is Covert?

Yongtao Li and Ichiro Tsuda

Abstract Hippocampal-VTA microcircuit is one of the most important components
of reward system. As a prominent feature in hippocampus, theta rhythm involves
a strong correlation with learning, memory and decision making. However, the
relation between theta rhythm and reward representation remains unclear. Based on
some recent experimental discovery, a computational model of hippocampal-VTA
microcircuit was proposed. By means of population activity analysis, dis-inhibition
effect of dopamine neurons in VTA caused by enhanced CA3 theta rhythm can
illustrate theoretically why expectation of reward in rat ventral striatum at choice
point is covert.

Keywords Hippocampal-VTA microcircuit • CA3 theta rhythm • Dis-inhibition
effect • Reward of expectation

1 Introduction

The VTA (ventral tegmental area) is the origin of dopaminergic neurons, which
project dopamine into numerous areas in the brain, and is widely implicated in
reward system, motivation, cognition, and drug addiction. As one of the most
important component of reward circuitry, hippocampal-VTA microcircuit plays
a crucial role in reward-related behaviors. As well known, hippocampal theta
rhythm is a prominent feature in extensive studies on hippocampus, and involves a
strong correlation with learning, memory. In particular, convergent evidences from
various experiments in neuroscience suggest that hippocampus could have great
contribution to decision making [1]. Interestingly, recent rat experiments on solving
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multiple T-maze tasks show some possible cues to unveil the relation between
hippocampal theta rhythm and reward expectation.

First, remarkably enhanced CA3 theta rhythm was observed when rats show
vicarious trial and error (VTE) behaviors at choice point in the initial (unfamiliar)
instead of later (familiar) stage [3]. Second, covert expectation of reward was
observed at ventral striatum when rats come at choice point in the initial (unfamiliar)
stage, but disappeared in the later (familiar) stage [2]. Since CA3 theta rhythm
and ventral striatum firing rate occur together, two questions arise: (1) Why the
representation of reward expectation in ventral striatum is covert? (2) What is
the relation between enhanced oscillation in CA3 and the covert representation
in ventral striatum? Despite of great efforts, the underlying mechanism of covert
representation remains unclear. Here, we proposed a computational model of
Hippocampal-VTA microcircuits that can answer the following questions from
theoretical viewpoint.

2 Models

A hippocampal-VTA microcircuit is shown in Fig. 1. As far, at least two distinct
pathways from hippocampus to VTA have been described: one originating from
ventral CA1/subiculum, which is considered as the provider of novelty signal, and
another one from dorsal CA3, which implements a gate operation on VTA by means
of dis-inhibition effect when dorsal CA3 received a stimulus with theta rhythm [4].
In the former pathway, a novelty signal is first sent to nucleus accumbens (NAcc),
where the efferent projection of medium spiny neurons (MSNs) to VTA can be

Fig. 1 A hippocampal-VTA model
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divided into two distinct groups. One group of MSNs project to VTA directly,
and rich type-1 dopaminergic receptors (D1Rs) are found in this direct pathway.
In contrast, another group of MSNs first project to ventral pallidum (VP) whose
GABAergic efferent neurons project to both VTA and pedunculopontine tegmental
nucleus (PPN). VTA also received glutamatergic projection from PPN.

We model the circuit shown in Fig. 1 using mean-field population analysis.
Normalized firing rate yi of i-th population is defined by

yi D f .xi ; "i / (1)

�i Pxi D �xi C Ii (2)

where xi is neural activity of i-th population, and

Ii D
X

j2G.i/
Wi;j yj

is the total input to the population, and � i is time constant for activity changes in the
population. A hyperbolic function is employed as the output function

yi D f .xi ; "i / D



0

.tanh .xi � "i /C 1/ =2
xi < "i ;

xi � "i ; (3)

where "i is the threshold of population firing rate, which can determine whether a
population has a baseline activity. By virtue of the abovementioned method, we
model five populations shown in Fig. 1: a population of MSNs with D1Rs that
project from NAcc to VTA directly; a population of MSNs with both D1Rs and
D2Rs, projecting from NAcc to VP; VP, PPN and VTA populations. The values
of connection strength among five populations are chosen following the relevant
anatomical features. The feedback dopamine modulation from VTA to NAcc can be
described by a coefficient which depends on activity changes in VTA.

3 Results

In order to investigate why expectation of reward in ventral striatum is covert at
choice point, we introduce a gate effect of hippocampal theta rhythm on VTA
to the proposed population model. When enhanced hippocampal theta rhythm
disinhibits VTA, a phasic increase occurs in VTA which responds to input from
NAcc. Simultaneously, the feedback dopamine modulation enhanced the NAcc
activity (Fig. 2a). In contrast, VTA is inhibited without hippocampal theta rhythm,
VTA seldom responds to input from NAcc, so NAcc activity shows no enhanced
modulation (Fig. 2b). Comparing Fig. 2a with Fig. 2b, small peak can be observed
in NAcc activity when dopaminergic neurons in VTA are disinhibited. This could be
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Fig. 2 Gate effects of hippocampal theta rhythm on VTA. (a) Dis-inhibition of VTA. (b) Inhibition
of VTA

the reason why the representation of reward expectation in ventral striatum is covert.
Importantly, it is likely that CA3 theta rhythm serves representation of expectation
of reward in ventral striatum through gate effect on VTA.

4 Discussion

We proposed a computational model of hippocampal-VTA microcircuit, and the
results suggest that modulation effect of dopamine from VTA to NAcc gets some-
what stronger when enhanced CA3 theta rhythm disinhibits dopaminergic neurons
in VTA. Although the model is simple, the results have brought us some important
implications. Particularly, it is likely to answer the questions abovementioned.
Dopaminergic modulation on ventral striatum can get stronger if dopaminergic
neurons in VTA are disinhibited. Despite VTA receives connections from numerous
brain areas, the concurrence of enhanced CA3 theta rhythm and covert represen-
tation in ventral striatum supports the hypothesis that enhanced CA3 theta rhythm
results in dis-inhibition of dopaminergic neurons in VTA. Modulator effect results
in expectation of reward in NAcc is not so easy to observe, and seems covert.

5 Conclusions

Covert representation of expectation-of-reward is observed in rat ventral striatum at
choice point during the earlier stage. However, the underlying neural mechanism
remains obscure. Based on recent experimental reports from neuroscience, we
proposed a computational model of hippocampal-VTA microcircuit, which can
bring us some inspiring understanding on the problem.
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• Enhanced CA3 theta rhythm could play an important role in disinhibiting the
activities of dopamine neurons in VTA.

• Modulation effect of dopamine from VTA to NAcc is enhanced when hippocam-
pal theta rhythm disinhibits VTA so that DA neurons in VTA fire in a phasic
mode.

• Due to modulatory effect, the representation of expectation-of-reward in NAs
seems covert.
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A Computational Model of Cortical Pathways
Formed with Electroencephalogram
Synchronization

Naoyuki Sato

Abstract In this paper, a possible contribution of electroencephalogram (EEG) on
spike transmission through multiple brain regions was evaluated by using computer
simulations of a multi-layered network under the hypothesis that EEG and spikes
are reciprocally activated. In the results, EEG activities across the multiple layers
appeared to be globally synchronized, which was shown to produce a globally
consistent pathway of spike transmission through the layers. This suggests that
the EEG synchronization contributes to organize the activity transmission through
multiple regions.

Keywords Decision making • Thermodynamics • Emotions • Cognition •
Modular model

1 Introduction

Long-range electroencephalogram (EEG) synchronization is thought to act as a
cue for interaction between distant regions [1]. Recent evidence [2, 3] shows a
strong correlation between local field potential and individual neuronal activities,
indicating that the long-range EEG synchronization may associate with spike
transmission between distant brain regions. Hence, as a neural mechanism, EEG
and spike activities can be hypothesized to be reciprocally enhanced. When EEG
activities are synchronized in two regions, it modulates spike timing in each region,
making the spike transmission more effective [4].

On the other hand, EEG can be induced by external signals, along with an
increase of neuronal population activity. Here, a question arises concerning whether
spike transmission in the network is still effective under the hypothesis of the EEG-
spike reciprocal activation, where such conditions may result in the divergence of
neuronal activity, or the locally dominated activation in a specific region.
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In this paper, a possible contribution of EEG to the spike transmission through
multiple regions was evaluated by using computer simulations of a multi-layered
network under the hypothesis of the EEG-spike reciprocal activation. For this
purpose, a neural unit consisting of a neural oscillator and a spiking neuron is
proposed where the neural oscillator is associated with the neural mass model [5],
and the spiking neuron is associated with a representative of the neural mass.

2 Model

A multi-layered network consisting of neural oscillators and spiking neurons
was evaluated to show the relationship between EEG synchronization and spike
transmission between distant regions. Figure 1 shows the basic construction of
the model. Each of the N layers consists of M units. Each unit consists of an
oscillatory (‘O’) module and a spiking (‘S’) module. The O-module models the
population activity of neurons in the local cortical region and the S-module models
a representative of neuronal activity in the population.

The S-module is described by a leaky integrate-and-fire model. It receives
excitatory input from the S-modules in the neighboring layers, and from the global
inhibition in the same layer. The S-module is also modulated by oscillatory activities
of the O-module in the same unit. The activity of the i-th S-module in the k-th layer,
vik, is given by,

dvik
dt
D� CL .vik � VR/C CSE

X

l

X

j

wikjlD
�
t � tpjl ; �S

�

� CSI

X

j

D
�
t � tpjl ; �S

�
� COS cos �ik C Iapp C "S

Fig. 1 Basic structure of the
model. The model consists of
multiple layers, of which the
unit is given as spiking
module (S-module) and
oscillatory module
(O-module). The unit receives
inhibitory input from the
units within the layer and
excitatory input from the
units in the neighbor layers
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with

D
�
t 0; �

� D
(
1 .0 	 t 0 	 �/
0 .otherwise/

where D(t,�) denotes a connection delay of a time constant � , wikjl denotes synaptic
weight from the l-th unit in the j-th layer (1 represents the existence of connection
and 0 represents no connection), t p denotes the time of the P-th spike, cos� ik denotes
the modulation from the O-module in the same unit, Iapp denotes the input current,
"s denote perturbation, and the capital letters are constants.

The O-module models neural oscillations of EEG described by a phase oscillator
[6]. In contrast to the neural mass model [5] in which variables are given by the
sum excitatory and inhibitory activities in a local region, the phase model does
not directly associate with physiological parameters, but it is nonetheless able to
sufficiently describe the temporal dynamic of neural oscillator [7]. The O-module
is activated by the S-module in the same unit and modulates its spike timing. The
O-module also receives excitatory input from the O-modules in the neighboring
layers and from the global inhibition within the same layer. The phase of the i-th
O-module in the k-th layer, � ik, is given by,

1

!

d�ik

dt
D 1 �

0

@COE
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X

i 0¤i
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where "O denotes perturbation, and capital letters are constants.
The spike transmission through multiple layers in the network is evaluated by

the uniqueness of the activity propagation pathway organized in the network. To
measure the uniqueness of the pathway, a pathway formation index, P, is defined as
follows,

P D
Y

.i;k/2Pathway

Spike count of .k; i/ unit
X

k0

Spike count of
�
k0; i

�
unit

:

where P ranges from 0 to 1 and it becomes large in the case of a continuous pathway
without branches and segmentation.

Parameters of the model are given as follows; CLD 50, VRD� 65, CSED 4800,
�SD 0.01, CSI D 3000, COSD 4000, !D 10� , COED 0.15, COI D 0.2, CSOD 1,
Cˇ D 1.2. These parameters were chosen to balance the excitatory input and the
global inhibitions in each module. The frequencies of S- and O-modules’ activities
are given around 40 and 10 Hz, respectively.
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3 Results

The Units’ Activities in a Small Circuit Figure 2a shows the temporal evolution
of the S- and the O-modules’ activities in a single unit. The application of the input
current to the S-unit resulted in the generation of spiking activity. This activity
evoked neural oscillation in the O-module. Then, the spiking activity became
bursting by receiving the modulation from the O-module. When the input current
was turned off, both activities went back to resting states.

In a network of two units reciprocally inhibited (Fig. 2b), the oscillations in each
unit quickly became anti-phase. When the third unit excitatory connected to each of
the two units were added to the network (Fig. 2c), one of the two units became active
and the other unit became inhibited. It is thought that the third unit stochastically
chooses one of the two units and reciprocally activates the chosen unit that strongly
inhibits the other unit. As illustrated in Fig. 2c, unit #2 was active, but it was found
to be stochastic in repeated simulations, i.e., unit #1 was active at a percentage of
around 50 %.

In the case of a network of four units forming two layers (Fig. 2d), there are four
possible pathways (from #1 to #3, from #1 to #4, from #2 to #3, or from #3 to #4). In
Fig. 2d, the activity propagation from units #1 to #3 appeared, while the appearance
of the pathway was found to be stochastic in repeat simulations. These properties of
the activity propagation are thought to also appear in the larger network.

A Network Leading to Ambiguous Pathways Figure 3 shows the results of
temporal evolution of each module in a five-layer network where the units in the
neighboring layers were connected all-to-all (Fig. 3a). This network was used to
evaluate the relationship between activity propagation and the EEG synchronization.
The input was given to two units of #1 and #15 where the former simulates a sensory
input and the latter simulates a memory-dependent activity.

Temporal evolution of each module is shown in Fig. 3b. At the beginning, many
units are simultaneously activated, but five units in the five layers (units #1, #5, #8,
#11, and #15) remained active after a few oscillation cycles. All of them were found
to be physically connected, including the initially activated units (#1 and #15). This
indicates that the activity propagation pathway links the two initially activated units.
In repeat simulations, the appearance of the route from unit #1 to #15 was found to
be stochastic.

Cross-correlations between activities of unit #1 and #15 (Fig. 3c, d) showed that
the activities of the S- and O-modules in the two units were correlated without
delay. Such correlation is thought to be associated with the existence of the activity
propagation pathway. In this result, the synchronization at 10 Hz was found to be
dominant in both the S- and the O-module, and the synchronization in the higher
frequency band was not clear.
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Fig. 2 Temporal evolution of each module’s activity in various small circuits. (a) A single unit,
(b) a network of two units reciprocally inhibited, (c) a network of three units in which the two units
are reciprocally inhibited and the other unit reciprocally activates both of them, and (d) a network
of four units forming two layers. In (b)–(d), activities of S- and O-modules are shown in the same
raw format
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Fig. 3 Results of the temporal evolution of units’ activities in the five layer network that can lead
ambiguous pathway from units #1 to #15. (a) Network structure. A resultant pathway is shown
by a gray line. Each numbered oval indicates units. Input was given to units #1 and #15. (b)
Temporal evolution of each module’s activity. (c) Cross-correlation of spikes between units #1 and
#15. (d) Cross-correlation of oscillations. (e) Pathway index as a function of the strength of EEG
modulation from the O-module to S-modules (ND 10)
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Moreover, the stronger modulation from the O-module to the S-module was
important for organizing the unique pathway (Fig. 3e). It suggests that the interac-
tion between neural oscillation and spike activity is important for organizing activity
propagation through multiple regions.

A Network Including Competing Pathways In the above result, the competition
of the units within each layer may play a dominant role in the organization of the
unique pathway. In this section, to evaluate the competition between pathways, a
network including three competing pathways was used (Fig. 4a) where two units
(#1 and #15) in different pathways were initially activated. In the results (Fig. 4b),
the units in the pathway of the left column were activated, while the units in the
pathway of the right column became resting. In repeated simulations, it was found
that the activation of the pathways of the left and right column were stochastic.

The competition between pathways was found to depend on the modulation from
the O- to the S-module. The stronger modulation was found to be important to
increase the uniqueness of the pathway (Fig. 4c). Moreover, the lower frequency
of the O-module’s activity was found to be essential to produce the unique pathway
(Fig. 4d). This result suggests that the difference of time scales between the O- and
the S-module is important for organizing the global pathway.

4 Discussions

In this paper, under the hypothesis that the EEG and spike activities were recipro-
cally activated, a multi-layered network consisting of spiking neurons and neural
oscillators was evaluated to show the possible contribution of EEG to the spike
transmission. In the results, the spike-induced EEG was associated with the
formation of the global activation pathway. It suggests that EEG organizes the spike
transmission through multiple brain regions.

As shown in Figs. 3 and 4, all units connected to the initially activated units
were initially activated, while the limited number of units forming a global pathway
was only activated after a few oscillation cycles. Here, the mechanism of the
reorganization of segmented local pathways is thought to be essential to produce
the global pathway. A speculated mechanism is illustrated in Fig. 5 where the
three units’ network, identical to Fig. 2b, is used for explanation purposes. At the
beginning, unit #2 activates unit #3 and unit #1 is inhibited. When an occasional
spike appears in unit #1, it evokes oscillation in unit #1 and that shifts the phase
of oscillation in unit #2. After that, the activity pathway can be stochastically
reorganized to be #1 and #3. This scenario proposes that the activity pathway is
a kind of ‘meta-stable’ structure that can be easily reorganized according to the
spatiotemporal context of the unit. This mechanism is similar to a dynamic linking
model proposed by the authors [8].

In the current study, the formation of the unique pathway is emphasized, and the
model can produce multiple pathways simultaneously in different phases of EEG.
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Fig. 4 Results of the temporal evolution of units’ activities in the five layer network with three
competing pathways. (a) Network structure. (b) Temporal evolution of each module’s activity. (c)
Pathway index as a function of the strength of EEG modulation from the O- to the S-modules
(ND 10). (d) Pathway index as a function of the frequency of the O-module’s activity (ND 10)
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Fig. 5 A speculated
mechanism of the
reorganization of the activity
propagation pathway

This can be implemented in the case of weaker global inhibition of the S-module
(analogous to Fig. 2b). Such phase-dependent processing has been discussed in both
experiment [9] and theory [10]. It may be important to evaluate the ability of the
model in formation of multiple pathways in future analysis.

Oscillatory modulation was proposed to modulate spike timing of neurons, which
contributes to synaptic plasticity and spike transmission [4]. In line with this effect,
the current study highlights the contribution of EEG to the organization of the global
pathway along multiple regions. Since the current model agrees with recent evidence
of cross-frequency coupling [11], it may be important to experimentally evaluate
the model in terms of EEG-spike correlation and the activity transmission pathway
through distant brain regions.
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Neurodynamics of Up and Down Transitions
in a Network Model

Xuying Xu and Rubin Wang

Abstract At the network level, populations of neurons have been observed to
make upward and downward transitions synchronously. This paper focuses on the
neurodynamics of these transitions in a network model which consists of 25 neurons
in the network. We study the spontaneous transitions between up and down states
and the ones induced by external inputs. We also compare these results with the
results of a single neuron model, trying to find out the function of the cortex and the
mechanism of how our brains work.

Keywords Up-down transition • Bistability • Spontaneous activity • Ion channel
model

1 Introduction

Different behavioral states of an animal are characterized by distinct patterns of
the global brain activity [1]. Both in vivo and in vitro recordings indicate that
neuronal membrane potentials can make spontaneous transitions between distinct
up and down states. Neural electrophysiology experiments show that during slow-
wave sleep in the primary visual cortex of anesthetized animals [2–4] and during
quiet wakefulness in the somatosensory cortex of unanesthetized animals [5, 6], the
membrane potentials make spontaneous transitions between two different levels,
called up and down states [7]. Transitions between up and down states can also be
evoked by sensory stimulation [2, 5]. Recent findings also show that activation of a
single cortical neuron can significantly modulate sensory and motor outputs [8, 9].
Furthermore, repetitive high-frequency burst spiking of a single rat cortical neuron
could trigger a switch between the cortical states resembling slow-wave and rapid-
eye-movement sleep [1]. This is reflected in the switching of membrane potential
of the stimulated neuron from high frequency and low amplitude oscillations to low
frequency and high amplitude ones, or vice versa. At the same time, cortical local
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field potentials (LFP) change over time. Here we use the local field potential (LFP)
to describe the state of the whole cortex [10–13]. Therefore, the up and down states
of a single neuron reflect distinct global cortical states, which resemble slow-wave
and rapid-eye-movement sleep, respectively [14–16].

2 Models

The neural network model based on the single neuron model is described by
equations as follows. This dynamic model [17] consists of the following currents:
an instantaneous, inward current (sodium current), a slow h-like current, an outward
current (a potassium current and a leak current) and the currents between neurons.
According to the numerical simulation of this model, we observe the results that
have been observed in electrophysiology experiments. The current equation for the
model is:

C
dV i

dt
D � �I iNa C I ih C I iK C I il C I isyn

�

The ionic currents are as follows:

I iNa D gNam1 .Vi � VNa/

I ih D ghhi .Vi � Vh/

I iK D gKbi .Vi � VK/

I i
l
D gl .Vi � Vl/

The current between neurons is:

I isyn D
X

j¤i
gj i

�
Vi � Vj

�

3 Results

3.1 Bistability

When we study on the single neuron model, we found that transitions between
up and down states can be induced by two different kinds of stimulus. One is to
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Fig. 1 In the period of 10 s,
we add a pulse current which
lasts 0.1 s every 2 s, with the
current intensity 7.2
A/cm2.
Average membrane potential
switches between the up and
down states
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Fig. 2 In the period of 10 s,
we add a stimulation which
lasts 4 ms every 2 or 1 s,
leading to the intensity of
sodium conductance
changing from 0.06 to
1.2 mS/cm2 instantaneously.
Average membrane potential
switches between the up and
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add brief outward current pulses, another is to improve the sodium conductance
to a certain value instantaneously. Now, we research on the neural network in the
same way to try to find out is there exist the similar phenomenon agrees with
electrophysiology experiment results. Results are showed in Figs. 1 and 2.

So from the above two results, we find that the average membrane potential
switches between the up state (about�45 mV) and the down state (about�65 mV).
So, this dynamic model can describe the bistability of up and down transitions of
neural networks. And the transitions can be modulated by external stimulations and
intrinsic nature of conductance of sodium.

3.2 Directivity

We find that the changing of sodium conductance can modulate the directivity
of the transitions. Figures 3, 4 and 5 describe different transition mode adjusted
by different values of sodium conductance. The tops of the figures are average
membrane potential V of the neural network, while the bottoms are phase plane for
the mean of two kinds of dynamic variables h and V, denoted by Vmean, hmean. The

red solid line shows all the points that
�
h D 0, the blue dot line shows all the points

that
�
V D 0, and the intersection of these two lines are stable point of the system.

The green solid line in the figure presents the transit process from one stable point
to another.
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Fig. 3 Average membrane
potential can transit from
down to up state or from up to
down state by adding a
stimulation that increase
sodium conductance to
gNaD 1.2 mS/cm2

instantaneously. The h-V
phase plane further shows
that the system transmits
between the two stable states
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Fig. 4 If the level of sodium
conductance is insufficiently
activated to gNaD 0.8mS/cm2,
the average membrane
potential can only transit
from the down to up state.
The h-V phase plane also
shows the same results
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Fig. 5 If the level of sodium
conductance is excessively
activated to gNaD 2mS/cm2,
the average membrane
potential can only transit
from the up state to the down.
The h-V phase plane also
presents the same results
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Fig. 6 Average membrane
potential transit between two
stable states spontaneously
and periodically without
external stimuli
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So, the dynamic model can describe the bidirectional or unidirectional charac-
teristic of up and down transitions of neural networks. And these transitions are
controlled by intrinsic nature of conductance of sodium.

3.3 Spontaneity

In this section, we introduce the dynamic variable b, the inactivation rate of
potassium conductance of each neuron, to study the spontaneous transitions of
neural networks. The calculated results are shown in Figs. 6 and 7.

The dynamic model with a slowly activating potassium current can describe
periodic spontaneous transitions between the up and down states in the absence
of synaptic input, suggesting that they are triggered by intrinsic processes and not
by external input.
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Fig. 7 The distribution of the
average membrane potential,
a two-peak distribution,
indicating the two stable state
of up and down transitions of
membrane potential
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4 Conclusions

This dynamic model can describe the bistability of up and down transitions of
networks modulated by external stimulations and conductance of sodium and the
bidirectional or unidirectional characteristic of up and down network transitions
controlled by conductance of sodium, also the periodic spontaneous transitions of
networks between the up and down states in the absence of synaptic input.
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Part VI
Oscillations, Synchronization

and Synaptic Plasticity



STDP Produces Well Behaved Oscillations
and Synchrony

David Bhowmik and Murray Shanahan

Abstract It has been demonstrated that, in a network of excitatory and inhibitory
neurons, a synchronous response gradually emerges due to spike timing dependant
plasticity acting upon an external spatio-temporal stimulus that is repeatedly
applied. This paper builds on these findings by addressing two questions relating to
STDP and network dynamics. Firstly, how does the choice of neuron model affect
the learning of oscillation through STDP? Our experiments suggest that the earlier
results hinge on the selection of a simple, biologically less realistic neuron model.
Secondly, how do neural oscillators that have learned to oscillate only in response
to a particular stimulus behave when connected to other such neural oscillators?

Keywords Spike timing dependent plasticity • Hebbian learning •
Hodgkin-Huxley neurons • Integrate-and-fire neurons • Synchronisation

1 Introduction

Spike Timing Dependent Plasticity (STDP) is a refinement of the Hebbian learning
principle for spiking neural networks, and has been reported in many experimental
studies [1]. STDP has further been studied in relation to oscillations. Hosaka et al.
[2] demonstrate oscillatory dynamics in a network of excitatory and inhibitory
neurons that has been trained using STDP with an external spatio-temporal stimulus
that was repeatedly applied. They found that a synchronous response gradually
emerges, and the synchrony becomes sharp as learning proceeds. The authors state
that the generation of synchrony itself does not depend on the length of the cycle
of external input, however they found that synchrony emerges once per cycle of the
length of the external stimulus trained upon.
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This paper addresses two issues relating to STDP and network dynamics.
Firstly, how does the choice of neuron model affect the learning of oscillation
through STDP? Secondly, how do neural oscillators that have learned to only
oscillate in response to a particular stimulus behave when connected to other neural
oscillators?

2 Methods

2.1 Quadratic Integrate-and-Fire Neurons

The Quadratic Integrate and Fire (QIF) model [3] displays Type I neuron dynamics
[4] with a saddle node bifurcation. The time evolution of the neuron membrane
potential is given by:

dV

dt
D 1

�
.V � Vr/ .V � Vt / I

C

where V is the membrane potential, with Vr and Vt being the resting and threshold
values respectively. C is the capacitance of the cell membrane. £ is the membrane
time constant such that £DRC with R being the resistance. I represents a depolar-
izing input current to the neuron.

2.2 Izhikevich Neurons

The Izhikevich (IZ) neuron model [5] is a two variable system that can model both
Type I and Type II neurons depending upon how it is parameterized. The time
evolution of the model is defined as follows:

dV

dt
D 0:04V 2 C 5vC 140� U C I

dU

dt
D a .bV � U/

if V> 30, then fV c, U UC d
I is the input to the neuron. V and U are the voltage and recovery variable

respectively, and a, b, c and d are dimensionless parameters. The chosen parameter
values dictate that the Izhikevich neurons used in this paper are Type II neurons with
a saddle node bifurcation.
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2.3 Hodgkin-Huxley Neurons

The Hodgkin-Huxley (HH) model [6] is a Type II neuron with an Andronov-
Hopf bifurcation. Hodgkin and Huxley found three different types of ion current:
sodium (NaC), potassium (KC), and a leak current that consists mainly of chloride
(Cl-) ions. From their experiments, Hodgkin and Huxley formulated the following
equation defining the time evolution of the model:

C
dV

dt
D gKn4 .V �EK/� gNam3h .V � ENa/� gL .u� EL/

C is the capacitance and n, m and h describe the voltage dependence opening
and closing dynamics of the ion channels. The standard parameterisation and rate
functions for each chemical and channel are used and can be found in Hodgkin and
Huxley’s book [6].

2.4 Synaptic Model

A conductance synaptic model is used for experiments using the QIF and IZ models
model, whereas the HH model uses synaptic reversal potentials to further scale
incoming spikes. The latter model is as follows:

Ij .t/ D
X

i
wij ti

�
Rev � Vj

�

where Ij(t) is the input to neuron j at time t, ti is the spike from neuron i arriving at
time t, and wij is the weight of the synapse connecting the two neurons. Rev is the
reversal potential and Vj is the voltage of the target neuron.

2.5 Spike Timing Dependent Plasticity

The STDP update method used in this paper is an ‘additive nearest neighbour’
scheme. A pre-synaptic spike followed by a post-synaptic spike potentiates the
synaptic weight, where as a post-synaptic spike followed by a pre-synaptic spike
depresses the weight. The change in weight (�w) is affected by the exponential of
the time difference (�t) and the learning rate constant (œ):

�w D 	e� j�t j
�

For potentiation, the learning rate value œ is 0.3, and the window £ is 20 ms. For
depression, the learning rate value œ is 0.3105 and the window £ is 10 ms.
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2.6 Evolution of Oscillatory Nodes

The neural architecture for generating oscillations used in this paper is pyramidal
inter-neuronal gamma (PING).

Whilst the general PING architecture is well understood, the specific details
required for both particular oscillatory frequencies and neuron model varies and
involves a large space of parameter values within the general PING framework. In
order to obtain these values we used a genetic algorithm. In the present work, all
neural populations used an excitatory layer of 200 neurons and an inhibitory layer
of 50 neurons. The excitatory layer drives the entire network and so is the only one
to receive external input. The networks were wired up with connections between
excitatory neurons, between inhibitory neurons, from excitatory to inhibitory
neurons, and from inhibitory to excitatory neurons.

The parameters that were evolved were the length in milliseconds of the external
stimulus presentation, the synaptic weights and delays, as well as the number of
synaptic connections between source and target neurons in each pathway. The
amount of time trained for was also an evolved parameter for networks that learnt.
Two types of PING architecture networks were investigated. The first learnt a
stimulus and then after learning would only oscillate to the learnt stimulus. The
second did not use learning and so would oscillate to any input stimuli.

2.7 Synchronisation Metric

We only calculated synchrony amongst the excitatory neuron layers. The spikes of
each neuron in each excitatory layer were binned over time, and then a Gaussian
smoothing filter was passed over the binned data to produce a continuous time
varying signal. Following this, we performed a Hilbert transform on the mean-
centred filtered signal in order to identify its phase. The synchrony at time t was
then calculated as follows:

' D 1

tmax

tmaxX

t

ˇ̌
ˇ̌
ˇ̌
1

N

NX

j

e� j
.t/i

ˇ̌
ˇ̌
ˇ̌

where � j(t) is the phase at time t of oscillatory population j. i is the square root of
�1. N is the number of oscillators, and tmax is the length of time of the simulation.

3 Results

3.1 Neuron Model and the Learning of Oscillation

Our first investigation explored how the neuron model affects the ability of a cluster
of neurons to learn to oscillate. In order to explore this we evolved neural learning
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Fig. 1 Raster plot of neuron firings from the excitatory layer of a QIF PING node that has learnt
to oscillate at 30 Hz

PING oscillators to oscillate at 30 Hz for QIF, IZ and HH neuron models. Figure 1
shows a raster plot of the firings of the excitatory layer from the evolved QIF
solution when it has been presented with a learnt stimulus after training. In accord
with the finding of Hosaka et al. [2], the network fires regularly at the stimulus
presentation, and has narrow and pronounced periodic bands. These thin bands
appear approximately every 33 ms giving the 30 Hz oscillation desired.

Figure 2 shows how the networks respond to between 0 and 100 % noise in
the stimulus averaged over 10 runs. The aim of this study is to ascertain if the
network only responds by oscillating to the learnt stimulus and no other. The
QIF network performs the best, showing a gradual decline in the amplitude of
the frequency response until it reaches a minimal response at 40 % noise. Less
than 0.5 amplitude implies that only a few neurons are firing hence no response
is really being produced, hence it is highly selective to only its learnt stimulus.
The IZ model performs almost as well. The HH model performs poorest with a
less pronounced frequency amplitude decline as noise rises, and also a less stable
response throughout. The less stable response is due to a high variance in the
amplitude over the 10 sample runs, and is indicative of the fact that the network
is inherently more volatile.

Figure 3 shows the effect of changing the length in milliseconds of the stimulus
trained upon (averaged over 10 runs). All learning stages for all stimulus lengths t
had the same learning time. We located the frequency with the highest amplitude
only. From the figure we can see that none of the models respond significantly to
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stimuli less than 10 ms long. Beyond this, the figure shows that for both QIF and
IZ models, the length of the stimulus is roughly proportional to the frequency (f ),
with f D 1,000/t. This cannot be said of the HH model, which is unable to use the
same network architecture to learn to oscillate at different frequencies, given only a
change in the stimulus length. Having found a dependency on stimulus length, we
removed the inhibitory layer from the networks and found it made no difference to
the performance of QIF, IZ and HH models. We conclude that, regular repetition
of a stimulus to a network that has been trained using STDP will cause oscillation
at the frequency of presentation. For the HH model this further means that whilst
stimulus length is important in achieving the result, the tuning of other variables is
necessary to achieve the desired oscillation.

The fact that oscillatory frequency is dependent upon the length of the
presentation can be elucidated by the work of Masquelier et al. [7]. They report
that, ‘Each time the neuron discharges in the pattern, it [STDP] reinforces the
connections with the presynaptic neurons that fired slightly before in the pattern.
As a result next time the pattern is presented the neuron is not only more likely to
discharge to it, but it will also tend to discharge earlier’ [7]. The fact that neurons
learn to always respond to a particular stimulus implies that the regular repetition
of a stimulus to a recurrent network would cause the network to fire regularly at the
stimulus presentation, and that this firing would become earlier and sharper, in the
sense of producing narrower and more pronounced periodic bands, as learning
proceeds. Hence, the resulting synchrony.

It follows from this that after an appropriate period of learning the frequency
of the oscillation can be adjusted by simply altering the length of the stimulus,
as it is only the beginning of the stimulus that is required to induce firing. To
test this hypothesis we generated a stimulus of 100 ms, trained the network on
it repeatedly until a satisfactory amplitude response was attained. We then tested
the network only using the first t milliseconds repeatedly. We did this for every
value of t between 13 and 100 ms. As can be seen by the results for the IZ model
shown in Fig. 4, the hypothesis is correct. Hosaka et al. [2] state that in a network
of excitatory and inhibitory neurons, STDP transforms a spatiotemporal pattern
to temporal information. However, from the evidence above we conclude that the
resultant temporality is not due to the network dynamics that result from the PING
architecture, but is an artifact of repeated periodic presentation of a learnt stimulus.
The network will respond “synchronously” whenever the stimulus is presented.

3.2 Critical Coupling Experiment

Our next investigation explored the critical coupling experiment [8] in which
synchrony increases smoothly but rapidly as connection strength increases in a
uniformally connected network of oscillators. We compare the results to neural
oscillators that respond to any stimulus to with those that only respond to a learnt
stimulus. We generated every frequency of oscillation between 10 and 50 Hz for
both types of architecture using QIF neurons.
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Fig. 4 IZ model after learning with stimulus. Frequency response for varying stimulus lengths
presented after learning

In all our experiments we used 64 neural oscillator nodes to form a network,
with frequencies selected using a Gaussian distribution with a mean of 30 HZ and a
variance of 10 Hz. The phase of each oscillator was determined by the time at which
external input to the oscillator was started, which varied from 0 to 100 ms. The
slowest oscillator was 10 Hz and therefore a random start point ranging from 0 to
100 ms allowed for 10 Hz oscillators (as well as all oscillators of higher frequency)
to be completely out of phase with each other. The neurons in the excitatory layers
of each node were synaptically connected to the neurons in the excitatory layers of
each other node with a connection ratio of 0.2. The experiments involved a sweep
of 200 synaptic weights for all inter-node connections. Weights were set to the same
value within each iteration in the parameter sweep, but with each different iteration
having a different synaptic weight. On each sweep the overall synchrony of the
network was measured. The networks were simulated for 2,000 ms for each iteration
of the sweep. Each network comprised 16,000 neurons and 36,256,000 synapses.

Figure 5 shows the synchrony results for the evolved PING architectures that
do not use learning. At 0 connection strength there is a synchrony of around 0.2,
which indicates no synchrony at all except for coincidental alignments in phase.
Synchrony rises with connection strength but so too does the spread of the dots,
indicating some variation in behaviour with these systems. The synchrony levels off
at 0.07 connection strength and remains the same until there is a major discontinuity
at 0.17 connection strength.
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Fig. 5 Synchrony of QIF models that have not used STDP to train to respond to a particular
stimulus and therefore responds to any stimuli

By contrast Fig. 6 show the synchrony for the neural oscillators that had learnt
to oscillate. Within a critical region of connection strengths, synchrony can be seen
to increase smoothly but rapidly as connection strength increases, in accord with
Kuramoto’s findings. The connection strength is effective at different levels from the
non-learning PING model due to different sensitivities in the different architectures,
Poisson process parameters, and scaling factors. However the behaviour is the key
difference to note. There is a very tight sinusoidal increase, indicating little variation
in behaviour with these learnt systems, unlike those in Fig. 5. There are also no
discontinuities.

On reaching 100 % synchrony both types of architecture exhibited saturation, by
which we mean all neurons were firing all the time. Figure 7 shows a 200 ms snippet
of the pairwise synchrony between oscillator nodes at their respective maximal
synchronies before saturation. The non-learning oscillator networks show deviations
from full synchrony in which the network separates into sub-groups, which although
they diverge, show similar phase movements indicating mutual influence between
the groups. The learning architectures show little group separation behaviour but
instead single oscillators seem to separate into their own phases away from full
synchrony. The same behaviours are manifest at lower global synchrony levels
albeit that the deviations are greater. The behaviour may be intuitively explained
by the fact that in the non-learning architectures the individual intrinsic oscillatory
frequencies of the nodes as well as the interaction between them are generated by
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Fig. 6 Synchrony of QIF models that have used STDP to train to respond only to a particular

the network architecture which forms a complete system, whereas in the learning
architectures the individual intrinsic oscillatory frequencies are created by an
external stimulus that is separate from the network system and as such is unable
to receive dynamic feedback and therefore facilitates more individual rather than
group behaviour.

4 Discussion

It has been shown that STDP generates robust synchronous responses. After
learning, the networks are highly selective for their learnt stimulus, responding at
the beginning of each repeated stimulus presentation, and do not respond to other
stimuli. We can conclude that repeated post-learning presentation of the stimulus
overrides or interferes with the oscillations that would otherwise be caused by the
delays in the PING architecture. A fast EI/IE loop will feed back and subside before
the next learnt stimulus response. In this case oscillations from the periodic stimulus
will take precedence over PING oscillations. Using neurons of either Type I or
Type II classification produces equivalent results with STDP. However, the HH
model does not perform in the same manner. The difference in the HH model is
the Andronov-Hopf bifurcation and the neuron’s synaptic reversal potential. The
result is a less robust network that is also unable to use the same architecture to



STDP Produces Well Behaved Oscillations and Synchrony 251

Pairwise Synchrony Non Learnt Oscillators
1

0.99

0.98

0.97

0.96

S
yn

ch
ro

ny

S
yn

ch
ro

ny

0.95

0.94

0.93

0.92

0.91

0.9

1

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9
1300 1350 1400

time (ms)
1450 1500 1300 1350 1400

time (ms)
1450 1500

Pairwise Synchrony Learnt Oscillators

Fig. 7 Pairwise synchrony of QIF models at maximal synchrony before saturation. 200 ms shown
only

learn to respond to stimuli that have a variety of presentation times. Further to
this, the critical coupling experiment demonstrates that the collective behaviour
of oscillatory architectures that have been pre-trained using STDP is well defined
and precise, in contrast to those that have not been trained. However, the internal
dynamical behaviour differs between the two architectures.
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Robust Synchronization in Excitatory Networks
with Medium Synaptic Delay

Hong Fan, Zhijie Wang, and Fang Han

Abstract The robust synchronization in a network coupled by excitatory synapses
with medium synaptic delay is explored. It is found that the robust synchronization
is sensitive to the reversal potential of the synapse. Furthermore, it is found that low
reversal potential, strong synapse strength, and weak external drive contribute to the
robust synchronization of an excitatory network. The important role of excitatory
neurons in the robust synchronization is ascribed to the mechanism that the neurons
firing earlier in previous cycle of the oscillation receive stronger inhibitory synaptic
currents (or weaker excitatory synaptic currents).

Keywords Robust synchronization • Excitatory-inhibitory network • Synaptic
currents

1 Introduction

Inhibitory neural networks are widely believed to confer advantages to the genesis
of robust synchronized oscillation of high frequency [1]. As synchronized firing
usually appears in neural circuits consisting of both inhibitory neurons and exci-
tatory neurons, it is worthwhile to study the role of the excitatory neurons in the
synchronization. The synchronization of excitatory neural networks may be robust
when there is no synaptic delay or synaptic delay is very long (for example, longer
than 10 ms). However, in locally interconnected neural circuits where synchronized
firing occurs, synaptic delay is usually medium (for example, between 0.5 and
10 ms) [2]. Therefore, whether the synchronization of excitatory neural networks
with medium synaptic delay is robust is an important problem. This problem has
not been studied sufficiently yet and we will investigate it in this paper.
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2 Models

The membrane potential of neuron i is described by:

Cm
dVi

dt
D INa

i � IK
i � IL

i � Isyn
i C Iapp

i : (1)

The first two terms in the right side of Eq. 1 are the ionic currents responsible for the
generation of the action potential; the third term is the leakage current; the fourth
term is the synaptic current; the fifth term stands for the external currents, which are
different neuron by neuron. The detailed description of the first three terms can be
found in [3]. The external drive for each neuron is drawn from a normal distribution
with mean Imean and standard deviation � . We assume that the synaptic current is the
linear summation of each post-synaptic current component resulting from a single
action potential. When neuron i receives a spike at time ti, the post-synaptic current
component is described by

Isyn
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where Esyn is the reversal potential of the synapse; tj is the recent firing time of
neuron j; other four parameters in Eq. 3 are the synapse strength, rise time constant,
decay time constant, and synaptic delay, respectively. If Esyn is high (for example
0 mV), the synapse is excitatory. The purpose of this paper is to search the parameter
space to find the important parameters which support the robust synchronization.
Synaptic delay is medium in this paper. If not stated otherwise, the parameter values
in the network are set as follows:

Cm D 1 �F=cm2; £d D 5 ms; £r D 0:1 ms; d D 5 ms;N D 200:

3 Robust Synchronization in Excitatory Networks

As the neurons connect with each other though synapses in networks, the robust
network synchronization depends on the properties of the synaptic currents. We can
see intuitively from Eq. 2 that the synaptic current difference between two neurons
is sensitive to the difference of the membrane potential vi(t) between two neurons,
if reversal potential Esyn is low (Note that Esyn cannot be too low, as the synapse
may be inhibitory if Esyn is too low) or synapse is strong. Consequently, the robust
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Fig. 1 Robust synchronized oscillations in excitatory networks. EsynD� 52mV, gsynD 2/N,
ImeanD 0.1�A, � D 0.01�A. (a) Raster plot the spikes of neurons; (b) Time course of the synaptic
current of a typical neuron; (c) Time course of the post-synaptic potential of a typical neuron

synchronization is sensitive to Esyn and synapse strength. Figure 1 shows that when
reversal potential is low and synapse is strong, the neural firing in the network
can be synchronized under a relatively high level of heterogeneity (the level of
heterogeneity is characterized by the ratio of the standard deviation to the mean
of the external drives). Figure 2 shows that the firing patterns in a network with
medium reversal potential and medium synapse strength, where synchronization is
less accurate than that in Fig. 1. When reversal potential is high and synapse strength
is weak, the firing of neurons cannot be synchronized (see Fig. 3).

Figure 1b shows the time course of the synaptic currents of a typical neuron,
which reveals that the synaptic current is excitatory (the negative peak of the
synaptic current is caused by the action potential, as the peak value of the
action potential is larger than reversal potential). Figure 1c reveals that the firing
events of neurons occur at the moment when the post-synaptic potentials (PSP)
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Fig. 2 Weak synchronized oscillations in excitatory networks. EsynD� 45mV, gsynD 0.7/N,
ImeanD 0.5 �A, � D 0.05 �A

Fig. 3 Non-synchronized firing in excitatory networks. EsynD 0 mV, gsynD 0.1/N,
ImeanD 0.5�A, � D 0.05�A

are decreasing. This is interesting because the stability of synchronization of a
network with current-based synapses [4] requires that the firing events occur at the
moment when the PSP is rising. But in a network with conductance-based synapses,
there are two kinds of synaptic components contributing to the robust network
synchronization [5, 6]. Stated in other words, the heterogeneity of the neurons can
be overcome by the two effects of PSP differences among these neurons. One is
the shape effect of PSP, which contributes to the network synchronization if PSP
is rising at the moment when firing event occurs. The other is the amplitude effect,
which contributes to the network synchronization due to the fact that neurons fire
earlier in the previous cycle of the oscillation will receive stronger inhibitory current
(or weaker excitatory synaptic current). The amplitude effect dominates in most
cases [6]. Ascribing to the amplitude effect, the network synchronization is robust
even the PSP is declining at the moment when firing event occurs. This explains
the robust network synchronization in an excitatory network with medium synaptic
delay, which is shown in Fig. 1a.

4 Conclusions and Discussion

Simulation results show that synchronization in excitatory networks with medium
synaptic delay is robust, when reversal potential is low, synapses are strong, and
external drives are weak. The robust synchronization in excitatory networks may
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also play an important role in the genesis of neural rhythm in E-I networks. In E-I
networks, each neuron receives both excitatory and inhibitory synaptic currents.
As well as inhibitory synaptic currents, excitatory synaptic currents contribute to
overcome the heterogeneity of the neurons. In E-I networks, synapses can be very
strong while the network frequency keeps roughly unchanged, as excitatory and
inhibitory synaptic currents cancel each other. However, the effects that excitatory
and inhibitory synaptic currents contribute to overcome the heterogeneity of the
neurons do not cancel each other. Therefore, it is conceivable that synchronization
in E-I network can be rather robust when synapses are strong.
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Synchronization in Neuronal Population
with Phase Response

Xianfa Jiao, Danfeng Zhu, and Rubin Wang

Abstract In the present study, we have formulated a phase description of a neuronal
oscillator with non-instantaneous synaptic inputs, by using the phase sensitivity
function. By numerical simulation, we found that the synaptic time constant is an
important factor for global network synchronization. If the synaptic time constant
is smaller, perfectly synchronized behavior quickly occurs. As the synaptic time
constant is increased, periodic synchronization emerges. However, synchronized
activity is lost for larger synaptic time constant. The external periodic stimulation
can change the synchronized patterns in the neuronal population. With a stronger
stimulation or high-frequency stimulation, synchronized bursting occurred in the
neuronal population.

Keywords Neuronal population • Phase response • Synaptic input • External
stimulus

1 Introduction

Oscillations are ubiquitous in the nervous system. Many experiments have shown
that the complex interaction between neurons can induce various rhythmic activity
in the nervous system [1]. Both the normal physiological function or abnormal
physiological disorders (such as Parkinson’s disease, epilepsy and so on) are related
to the synchronized neural activities with various frequency [2, 3]. Synchronized
activity among neurons and the formation of neuronal clusters are considered as a
fundamental mechanism for cognitive function and consciousness [4, 5]. Despite the
ubiquity and importance of synchronized activity, the underlying mechanism and the
key system parameters are not yet known, and little attention has been paid to inves-
tigating the dynamic response of an oscillator network to external stimuli. The phase
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response curve (PRC) represents how an external stimulus affects the timing of
spikes immediately after the stimulus in repetitively firing neurons [6]. PRC describe
the phase shift of the perturbed neuronal oscillator when a neural oscillator receive
external input or synaptic input [7–9]. In order to explore the dynamic mechanism of
synchronous activity in the nervous system, the phase response curve is an important
and effective method [10–14]. In the nervous systems, cortical neurons undergo
massive synaptic bombardment and ever-found perception information stimulation.
To understand the response properties of neurons operating in this regime, we
investigate a model neuron as a neuronal oscillator with non-instantaneous synaptic
inputs represented by ˛� function, and external periodic stimulus.

2 Model

We consider a neural population composed of N neural oscillators, where neuronal
oscillators are identical and globally coupled with each other, subject to a common
external periodic force. The phase of jth oscillator � j obeys the evolution equation:

d�j

dt
D ! C "

NZ.�j /

NX

kD1

X

n

˛
�
t � tnk

�C c sin .!t/Z
�
�j
�

(1)

where "
N

X

n

˛
�
t � tnk

�
is the input to the jth neuronal oscillator from the kth

neuronal oscillator, " is weak coupling constant, N is the total number of neuronal
oscillators, tk

n is the nth firing time of the kth neuronal oscillator, ˛(t) is a causal
coupling function. � j is the phase of jth neuronal oscillator, ! is the natural
frequency of a neuronal oscillator, Z(�) is a phase response curve of a neuronal
oscillator, c sin(!0t) is an external periodic force with a strength c and frequency!0.

We assume that the mutual interaction shift the frequency of the mean phase of
these oscillators by "� from the natural frequency !, and define the relative phase
 jD � j� (!C "�)t. The relative phase  j changes slowly compared with and will
hardly change during the oscillation period � j. Therefore, we substitute  j into
Eq.(1), and average Eq. (1) over one period keeping  j constant, so the relative
phase  j obeys the following equation:
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In order to investigate the dynamic response of neural population, we introduce
complex order parameters describing synchronized phenomenon in the neuronal
population



Synchronization in Neuronal Population with Phase Response 261

Rei D 1

N

NX

jD1
ei j (3)

where R is the amplitude of the order parameters describing the degree of syn-
chronization of neuronal oscillators, 0	R	 1, the bigger R show that synchronous
activity is stronger,  is the average phase of the neuronal population.

3 Result

We investigate the response property of neuronal population to external periodic
stimulus. The phase sensitivity function Z(�) is considered as a sinusoidal sensitivity
function sin(�) as in Ref. [15]. As synaptic time constant � is smaller, the
neuronal population quickly synchronized in-phase (Fig. 1a); but with � increased,
periodic synchronization occurred, and as the synaptic time constant is larger, the
synchronization become weaker (Fig. 1b, c); even more, synchronized activity can
be lost (Fig. 1d). This shows that synaptic time constant is an important condition
under which the global neural network synchronized.
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Without stimulation, the neuronal population quickly tend to perfect synchro-
nization (Fig. 2a); With a weak stimulation, the neuronal activity transition from the
perfect synchronization to synchronized bursting occurred (Fig. 2b); As the stimulus
intensity was increased, the synchronized bursting duration is prolonged (Fig. 2c);
However, the synchronized bursting duration is shorten in the presence of stronger
stimulus (Fig. 2d). As the stimulus frequency was increased, the neuronal activity
transition from the perfect synchronization to synchronized bursting occurred
(Fig. 3b); As the stimulus frequency was further increased, the synchronized
bursting becomes stronger (Fig. 3c, d).

4 Conclusions

In the present study, we have formulated the phase description of the neuronal
oscillator with non-instantaneous synaptic inputs represented by ˛� function, and
external periodic stimulus by using the phase sensitivity function. The synaptic
time constant is an important parameter for perfect synchronization, periodic
synchronization, synchronized bursting in the global neural network synchronized.
The influence of external periodic stimulation on the neuronal population depends
on stimulus intensity and frequency. With a stronger stimulation or a high frequency
stimulation, synchronized bursting occurred.
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Geometry of Dynamic Movement Primitives
in Neural Space: A FORCE-Learning Approach

Hiromichi Suetani

Abstract Dynamic movement primitives are one of key concepts for understanding
dexterous and flexible movements of biological bodies. In the field of robotics
engineering, simple types of nonlinear differential equations are used to generate
movement primitives from demonstrations, but it remains unclear how nonlinear
dynamics in the real brain can also generate movement primitives in biologically
natural ways. The aim of this study is to investigate a possible role of nonlinear
dynamics in random recurrent neural networks (RNNs) for skillful motor learning.
We show that one-shot temporal patterns such arm reaching movements can be
trained by a type of RNN-learning so-called FORCE-learning recently proposed
by Sussillo and Abbott and a number of patterns are summarized as a manifold
embedded in a space of synaptic weights of readout neurons. We also discuss
how generalization of learning against untrained motor patterns can be achieved
by identifying nonlinear coordinates (meta-parameters) on this manifold in a higher
level of the central nervous system.

Keywords Dynamic movement primitives • Nonlinear dynamics • Robotics •
Recurrent neural networks • Motor learning

1 Introduction

Generation of dexterous body movements is an indispensable condition of
biological systems [1]. As one of strategies for acquiring skilled movements, it has
been considered that human beings first acquire a number of standard movements
referred to as “movement primitives” through repetitive experiences, then integrate
them into rich varieties of sequential behavior.

From the viewpoint of nonlinear dynamical systems, movement primitives can
be regarded as objects of nonlinear dynamical systems, e.g., such as fixed points,
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limit cycle attractors and heteroclinic orbits from one of attractors to another one.
Actually, a number of movement primitives for humanoid robots with high degrees
of freedom has been successfully obtained from nonlinear differential equations
whose parameters are estimated from demonstrations of movement data [2].

On the other hand, the brain exhibits rich variety of nonlinear dynamics from the
single neural cell level to the cortex level. Especially, chaotic behaviors attracted
much attention in the context of biological functions of the brain [3]. From the
viewpoint of neuroscience, it becomes interests how movement primitives can be
interpreted and generated as nonlinear dynamics of neural networks.

In real biological brains, asymmetrical connectivity among neurons including
random recurrent connection is more natural than symmetrical ones like the Hop-
field networks yielding only static solution, and it actually shows more complicated
dynamics including limit cycles and chaos [4]. In this case, however, such chaos
does not play a functional role whereas patterns can be memorized as point attractors
in the Hopfield networks.

After several years have passed, random recurrent neural networks (RNNs)
attract considerable attentions again by the recent progress of the so-called reservoir
computing (RC) paradigm [5]. In this study, we employ a FORCE-learning machine
proposed by Sussillo and Abbott [6] along the paradigm of RC in order to explore
how chaotic activity in RNNs can be a useful function to organize dynamic
movement primitives.

2 Methods

A RNN for FORCE-learning is defined by the following equations

� Pxn.t/ D �xn.t/C g
XN

n0D1 wrec
nn0 tanh.xn0.t//

C
XM

mD1 win
nmum.t/C

XL

lD1 wfb
nl zl .t/: (1)

Here, xn; n D 1; : : : ; N is the internal state of the n-th neuron, um;m D 1; : : : ;M

is the m-th input current, and zl ; l D 1; : : : ; L is the state of l-th readout neuron
determined as

zl .t/ D
NX

nD1
wout
ln rn.t/; rn.t/ D tanh.xn.t//: (2)

From the spirit of RC, in the FORCE-learning process, wrec D .wrec
nn0/;win D .win

nm/

and wfb D .wfb
nl / are fixed and sparsely random matrices, and only the matrix wout D

.wout
ln / is incrementally modified according to the recursive least square (RLS) or

the gradient methods where the difference between the readout states and teacher
signals is used as error signals [6].
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input
output

generalized
Hebbian law

FORCE  learning

teacher

Fig. 1 Incorporation of generalized Hebbian-learning with FORCE-learning

In addition to the basic structure of the FORCE-learning, we also incorporate
an intermediate layer with K neurons as shown in Fig. 1, in order to (i) reduce the
number of essential dimensionality of the dynamics inside the RNN and (ii) compare
RNNs with different topologies (different realizations of random numbers for
preparing the recurrent connectivity matrix wrec). Here, the connections between
neurons in RNN and ones in the intermediate layer is incrementally updated through
the “generalized Hebbian-learning (GHA)” [7] as

�wgHkn D �.rn.t/ �
kX

k0D1
wgHk0nyk0.t//yk.t/ (3)

The k-th neurons yk gives the k-th principal component of the dynamics of RNN. It
is expected that the dynamics of two RNNs are statistically equivalent, the readout
matrices for these two RNNs are almost same against the same teacher signal. We
call neural networks with the structure shown in Fig. 1 the FORCE-GHA networks
in the following.

3 Numerical Experiments and Results

As an illustrative example of our approach, we consider generation of reaching
movement patterns executed by a two-link arm (Fig. 2a) by the training of the
FORCE-GHA networks. Here, the purpose of neural networks is to generate
the torques u1 and u2 that rotate the links of an arm. In actual motor learning, the
data of the torques is not directly given as teacher signals, neural networks have to
acquire them in an unsupervised way such as reinforcement learning. But, this is not
a main topic in this study. So, to skip this problem, we first generate arm movement
trajectories using the minimum jerk principle [8] in the joint space, then obtain the
torque data using the inverse model of a two-link arm used in [9]. We employ these
torque data as teacher signals for the training of the FORCE-GHA networks.



268 H. Suetani

0.5

7

8

9

10

11
12 13 14

15

16

1

2

3

456
0.45

a b c

0.4

0.35

0.3

0.25

0.2

0.15

0.1
-0.2 -0.15 -0.1 -0.05 0 0.05

X

Y

0.1 0.15 0.2

40
30

20

10
0

-10
-20

-30
80

60
40

20

10

3

2

11 12

1 16
15

14
13

4

8

9

5

6

7

0
-20

-40
-60

-80 -80
-60

-40
-20

0
20

40
60

80
100

PC3

PC2 PC1

Fig. 2 (a) Schematic plot of reaching movements by a two-link arm. (b) The 16 reaching
movements in the task space. (c) Synaptic weights of readout neurons corresponding to (a) in
PCA-space. It forms a one-dimensional closed curve S . g D 1:2

We focus on how arm movements are embedded in the neural space (here we
refer the neural space as the space of the readout matrices wout). Imagine that a
number of the FORCE-GHA networks forms a structure such as micro columns in
the cerebellum and each network is trained to generate a pair of torque patterns
u1 and u2. For each arm movement shown in Fig. 2b, there exists a FORCE-
GHA network and a fixed readout matrix wout after training. Figure 2c shows a
projections of 16 readout matrices wout into PCA-space in the case of g D 1:2,
which corresponds to 16 arm movements shown in Fig. 2b (here, each 2�K readout
matrix wout is re-aligned to a column vector with 2K dimensionality). We can see
that these points are lying on a nonlinear closed curve (one-dimensional manifold)
S in the PCA-space which keeps the topological continuity in arm movements in
the task space. This result implies that an untrained pattern of the torques for a
new reaching movement can be generated by interpolating between these trained
vectors. Such an interpolation is achieved as a coordinate ‚, i.e., “phase variable”,
on S , which is considered as a representation of movement in a higher level of
the central nervous system(CNS). Each point obtained from the training of finite
experiences is considered as a “primitive” in order to construct a manifold like S in
the CNS.

Furthermore, we investigate how the one-dimensional manifold S is changed
according to affine transformations of the starting point of reaching movements in
the task space, and results are shown in Fig. 3. We can see that S is changing
with preservation of its topology according to affine transformations in the task
space. Therefore, in addition to the coordinate ‚, there exist other coordinates to
characterize the total manifold constructed by integration of S . CNS can acquire
new, untrained patterns immediately using such higher level parameters given from
finite experiences.
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4 Conclusions

In summary, we have investigated motor pattern generations by learning of RNNs,
especially using a combination of FORCE-learning(supervised learning) and gen-
eralized Hebbian learning(dimensionality reduction). We showed that temporally
changing motor patterns can be encoded appropriately into fixed readout matrices
(synaptic weights) which keep topological feature of the task space for movements.
We also discussed a possibility of acquisition of generality for motor patterns by
learning of nonlinear coordinates that spans a manifold in the readout matrix space.
We will develop a unified approach to hierarchical learning for generalizations of
motor patterns in future study.
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Contribution of Endogeus Acetylcholine
to STDP Induction

Eriko Sugisaki, Yasuhiro Fukushima, Minoru Tsukada, and Takeshi Aihara

Abstract The synaptic plasticity is thought to play a crucial role in learning and
memory. It has been reported that the relative timing of pre- and postsynaptic
activity determines the direction and extent of hippocampal synaptic changes known
as spike-timing dependent plasticity (STDP). Pre-post timing where presynaptic
spike precedes a post synaptic spike induces long-term potentiation (LTP). Mean-
while, cholinergic inputs are considered to be integrated with sensory inputs and to
play an important role in learning and memory. Cholinergic neurons in the medial
septum are projecting their terminals to hippocampal CA1 to release acetylcholine
(ACh). In order to investigate the influence of endogenous ACh on STDP, pre-post
timing of STDP protocol was applied under interneuron-activated CA1 network. As
the results, STDP was enhanced in the presence of eserine, and this enhancement
was induced by the muscarinic and nicotinic activation not only on pyramidal
neuron but also on interneurons. These findings suggest that ACh plays a critical
role as a modulator for synaptic plasticity in hippocampal CA1 network.

Keywords Acetylcholine • Hippocampus • CA1 • Plasticity • STDP

1 Introduction

The synaptic plasticity is thought to serve as the cellular substrate for various forms
of learning and memory. It has been reported that the relative timing between pre-
and post-synaptic spiking determines the direction and extent of synaptic changes
in a critical temporal window, process known as spike timing-dependent plasticity
(STDP) [1, 2]. Pre-post timing of STDP protocol where excitatory postsynaptic
potential (EPSP) induced in Schaffer collaterals precedes a back-propagating action
potential (BPAP) from the postsynaptic neuron induces long-term potentiation
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(LTP), while the opposite timing induces long-term depression (LTD). Meanwhile,
cholinergic system is playing an important role in learning and memory [3].
Cholinergic neurons projecting to CA1 in hippocampus via fimbria [4] are dis-
tributed mainly in the medial septum. Shinoe et al. [5] reported that slow EPSP
[6] induced by the repetitive stimulation of cholinergic axons enhanced LTP due
to muscarinic acetylcholine (ACh) receptor (mAChR) activation. It is also reported
that the synaptic plasticity was enhanced by the activation of nicotinic ACh receptor
(nAChR) by the application of chronic nicotine [7].

In this study, cholinergically induced STDP in pre-post timing protocol was
investigated, and resulted in STDP was enhanced in the presence of eserine.
Furthermore, this regulation was influenced by the activation of mAChRs and
nAChRs not only on pyramidal neurons but also on interneurons.

2 Method

All procedures were approved by the Tamagawa University Animal Care and Used
Committee. Hippocampal slices (400 �m in thickness) were prepared from Wistar
rats (20–25 days old). Whole cell patch clamp recordings were made from the soma
of CA1 pyramidal neurons, and the membrane was kept at -64˙ 1 mV. In IPSC
experiments, IPSCs were isolated by holding the membrane potential at 0 mV in
voltage clamp. Depending on the experiments, eserine, atropine and mecamylamine
were added to ACSF 5 min. before the application of STDP-induction protocol
until it was finished. Picrotoxin was added throughout the experiments when
necessary. Stimulation in Schaffer collaterals was injected to induce EPSP of
2–4 mV amplitude as a baseline. STDP protocol pattern was shown in Fig. 1. The
magnitude of plasticity was defined as (averaged EPSP slopes obtained from 20 to
30 min after STDP-inducing stimulus)/(averaged baseline EPSP slopes).

Fig. 1 Stimulation pattern
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3 Result

3.1 STDP Was Enhanced by the Application of Eserine

First, in order to investigate the influence of endogenous ACh on the induction of
STDP, pairing stimulation was applied in the presence of different concentrations
(2 and 10 �M) of eserine. When an STDP-inducing stimulus in pre-post timing
was applied, LTD in the control condition (70.1˙ 7.1 %, nD 5, P< 0.05) was
changed to LTPs in the presence of 2 �M eserine (111.9˙ 2.1 %, nD 5, P< 0.01,
P< 0.01 vs. control) and 10 �M eserine (120.5˙ 4.8 %, nD 6, P< 0.01, P< 0.01
vs. control) respectively as shown in Fig. 2. These results show that STDP was
shifted toward potentiation by the activation of AChRs. Next, in order to clarify the
effect of GABAA receptor (GABAAR) activation on cholinergically induced STDP,
picrotoxin (25 �M) was added to ACSF in the presence of eserine 2 �M. When
the STDP-inducing protocol in pre-post timing was applied only in the presence
of 2 �M eserine, LTP was observed as in Fig. 2, and the LTP was significantly
enhanced in the additional application of picrotoxin (179.3˙ 9.1 %, nD 5, P< 0.01,
P< 0.01 vs. eserine 2 �M only; Fig. 3a). As these results indicate that GABAAR
contributed to the cholinergically-induced STDP, next the dependence of eserine
on IPSCs were confirmed. The magnitude of IPSCs in control condition was
significantly enhanced in the presence of 2 �M eserine (1.28˙ 0.06 %, nD 4,
P< 0.01, P< 0.01 vs. control; Fig. 3b, c). These results show that interneurons
were strongly activated by the application of eserine, therefore the cholinergically
induced STDP was regulated by interneurons.

Fig. 2 Eserine effect on STDP
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Fig. 3 Eserine effect on IPSC

3.2 Cholinergically-Induced STDP Was Contributed
by mAChR and nAChR

As STDP was enhanced by the application of eserine, in second, the dependence of
each AChR was clarified. When an STDP-inducing protocol in pre-post timing was
applied in the presence of eserine 2 �M and picrotoxin 25 �M, LTP was observed
as in Fig. 4a. When atropine at 1 �M was added to the eserine and picrotoxin
treated ACSF, LTP was abolished (109.2˙ 4.0 %, nD 6, N.S., P< 0.01 vs. eserine
2 �M only; Fig. 4a), while LTP was significantly reduced in the presence of 3 �M
mecamylamine instead of atropine (155.6˙ 4.3 %, nD 5, P< 0.01, P< 0.05 vs.
eserine 2 �M only, P< 0.01 vs. eserine 2 �M C atropine 1 �M). According
to the results, cholinergically-induced STDP was regulated by the activation of
mAChRs more effectively than nAChRs on pyramidal neuron. Furthermore, in
order to investigate the effect of AChRs on interneurons, similar experiments were
performed in the absence of picrotoxin. LTP induced in the presence of eserine
2 �M (Fig. 2) was significantly enhanced with additional application of atropine
1 �M (131.4˙ 5.7 %, nD 5, P< 0.01, P< 0.01 vs. eserine 2 �M only; Fig. 4b),
while STDP was changed to LTD in the presence of 3 �M mecamylamine instead
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Fig. 4 Eserine effect on AChRs

of atropine (76.5˙ 2.0 %, nD 5, P< 0.01, P< 0.01 vs. eserine 2 �M only, P< 0.01
vs. eserine 2 �M C atropine 1 �M). Therefore cholinergically-induced STDP
was regulated by AChRs on interneurons. Taken together, these findings show that
the activation of mAChRs contributed more effectively than nAChRs not only on
pyramidal neurons but also on interneurons.

4 Conclusion

In this study, to investigate the influence of endogenous ACh on synaptic plasticity in
hippocampal CA1 neurons, STDP-inducing stimulus consisting of the evoked firing
activities of neurons was injected. In order to influence ACh effect, cholinesterase
was blocked by eserine application to prevent ACh from breaking down. It is
generally known that LTP induction evoked by STDP protocols depends on the large
Ca2C influx through NMDARs in the hippocampus [8], while LTD is induced by a
moderate and sustained increase in Ca2C levels [9]. In addition, the responses to
NMDAR are selectively potentiated by ACh in rat hippocampal CA1 neurons [10],
and also our previous results showed NMDAR response was enhanced by eserine
application. These mechanisms, the increase in Ca2C influx through NMDAR by
the activation of AChRs, support our results that the cholinergically-induced STDP
was enhanced in the presence of eserine under interneuron activated CA1 network
(Fig. 2). Furthermore, it is considered that the sign (LTP or LTD) and the amplitude
of the cholinergically induced STDP in this study was decided depending on the
amount of Ca2C influx as the extended BCM rule that Nishiyama et al. have
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reported [11, 2]. We demonstrated in the previous study that STDP was enhanced
by the activation of mAChRs on pyramidal neurons in CA1 area. Furthermore,
nAChRs on pyramidal neurons facilitated LTP [7]. On the other hand, the majority
of interneurons of all layers of CA1 showed depolarization when exposed to
muscarinic agonist [12]. These reports support our results that the cholinergically
induced STDP was regulated by mAChRs and nAChRs not only on pyramidal
neurons but also on interneurons (Fig. 4). We conclude that ACh plays a critical role
as a modulator for spatial-temporal information processing in the hippocampus, and
thus attention modulates learning and memory at cell level.
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Bidirectional Wave Propagations Can Improve
Loop Finding Time

Kei-Ichi Ueda, Yasumasa Nishiura, Yoko Yamaguchi, and Keiichi Kitajo

Abstract Previous experimental studies have provided evidence that transient
large-scale synchronization of neuronal oscillations plays an important role in
switching brain states associated with human brain functions. In our previous
study, we investigated the behavior of switching between synchronized and desyn-
chronized states induced by inhibitory interactions between groups of neurons,
and proposed a continuous model for a loop-finding system, where a closed
loop is defined as a phase synchronization of a group of oscillators belonging to
corresponding nodes (K-I Ueda, Phys Rev E 87:052920, 2013). In this study, we
modify the previous models to improve the loop-finding time. It is demonstrated
that bidirectional flows of phase synchronized waves and interaction between them
can improve the loop-finding time.

Keywords Large-scale synchronization • Switching brain states • Loop-finding •
EEG • Wave propagation

1 Introduction

A growing body of evidence indicates that large-scale synchronization of neural
oscillations plays an important role in linking relevant brain regions for human
brain functions. Previous experimental electroencephalography (EEG) studies
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have demonstrated that large-scale phase synchronizations mediate human brain
functions such as visual awareness [1,2], perceptual switching [3], working memory
[4], and attention [5]. These results indicate that the transition between different
synchrony states is important in dynamically switching brain states. In this article
we study coupled oscillatory systems in a practical problem, the loop finding
problem, to develop a mathematical theory to elucidate the mechanism of transient
behavior of synchronized oscillatory patterns.

In recent years, inspired by adaptive behavior observed in biological systems,
continuous models for the pathfinding problem have been proposed. In laboratory
experiments, pathfinding algorithms based on self-organization processes have been
studied [6–8]. Continuous models for [8] have also been proposed [9].

In a previous study [10], we proposed a system which is capable of finding a
loop path in the network. The system can also show self-recovery properties; that
is, the system finds other possible paths when an existing path is broken due to the
removal of nodes and paths. The principal remaining shortcoming of the model is the
increasing rate of the finding time as the network size increases. In [11], it has been
found that the pathfinding time can be improved by the interaction of bidirectional
propagating waves of synchronized states. In this article, we apply the method to
the loop-finding system to improve the finding time.

2 Model

The graph structure we consider in this study has unidirectional edges between
vertices (Fig. 1a). We propose a model that is capable of finding a loop in the graph.
The model is as follows:
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Fig. 1 (a) A graph whose vertices (squares) are connected by unidirectional edges (arrows).
(b) Network structure corresponding to graph (a). The black solid and dashed arrows indicate
excitatory links corresponding to systems (1) and (2), respectively. The gray solid and dashed lines
indicate inhibitory links, which are added due to (C4). (c) (C1)(C2) Regulatory rules for excitatory
and inhibitory interactions. (C3) Transient behavior when a node receives no input. The solution
converges to an incoherent state for any initial condition. (C4) Bidirectional inhibitory interactions
take place at the branching point. The activity of the inhibitory interactions is also controlled by
sm (dashed line)
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PJ
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v; g.u; v/ D ".u � qvC r/; k˙ D 1˙; 2˙; : : : ; K˙; j D 1; 2; : : : ; J: Here,
t is dimensionless time, a dot above a variable indicates a derivative of the variable
with respect to t , and 
i (i D 1; 2; 3) are positive constants. The node number
k˙ is responsible for the k-th vertex in the graph. A node consists of a group of
oscillators. J and KC (or K�) correspond to the number of elements belonging
to each node and the number of nodes, respectively. We set J D 15. The state
of each node k˙ is determined by the average of the amplitudes of the oscillators

uk
˙

j in the corresponding node, for example, sk˙ . We assume that the interaction
function F has a threshold for activation. Regulation of on–off switching of the
connecting nodes depends on sk , and is simply defined by the Heaviside function
with a threshold Ns, where F.sI Ns / D 1 for s > Ns and F.sI Ns / D 0 for s 	 Ns.
The interactions affect all oscillators uniformly; that is, they are independent of j .
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Excitatory interaction directed from node l toward node k is expressed as al;k ,
where al;k D 1 and al;k D 0 indicate the presence and absence of such interaction,
respectively. We take ak˙;k˙ D 0 for all k˙.

The systems (1) and (2) are decoupled by taking �C D �� D 0. The former and
latter systems have forward and opposite directional excitatory links. That is, if a
link from iC ! jC exists for (1) (aiC;jC D 1), then a link from j� ! i� exists
for (2) (aj�;i� D 1). System (1) with �C D 0 is the same as the system proposed
in [10], and system (2) with �� D 0 is the same as the previous system, except for
the direction of the links. We refer to system (1) with �� D 0 and system (2) with
�C D 0 as system A and system B, respectively. We refer to the coupled system
with �˙ D 1 as system C.

The parameters p, q, r , and " are independent of k˙, and set p D 0:02, q D 1:0,
r D �0:04, and " D 0:01. Furthermore, w.t/ is a small amount of random noise
in the interval Œ0; 0:05�. The time constants �j take random values from the interval
between �� and �C, where the values of �� and �C are set to .��; �C/ D .6:0; 6:5/.
The distribution of �j is the same for all nodes; that is, it is independent of k.

Each node can have one of three possible states: synchronized oscillation with
a large amplitude, synchronized oscillation with a small amplitude, or incoherent
oscillation. We respectively refer to these states as large-amplitude synchronized
oscillation (LSO), small-amplitude synchronized oscillation (SSO), and incoherent
oscillation. SSO is observed due to inhibitory interactions, which are uniformly
applied to all oscillators. To realize SSO, we employ the FitzHugh–Nagumo equa-
tion, which is a typical equation exhibiting a small-amplitude relaxation oscillation.

The parameter values 
i are set so that the regulatory rules and the conditions
for C1, C2, and C3 in Fig. 1 are satisfied. Parameter 
2 is taken to be sufficiently
large to ensure that phase resetting propagates along the loops, which allows the
connected node to enter LSO (C1). Parameter 
3 is taken to be sufficiently large so
that SSO is observed due to the inhibitory interaction (C2). Parameter 
1 is taken
to be sufficiently close to but not at the limit of LSO, which enables the node to
undergo a transition SSO! LSO! incoherent oscillation (C3). The threshold Ns is
taken to be sufficiently large to ensure that the values of sk are smaller than Ns, and
the state of the node converges to incoherent oscillation when no input is received
(C3). The parameter values are set to .
1; 
2; 
3/ D .1:8 � 10�3; 0:06; 0:07/ and
Ns D 0:825. Inhibitory interaction takes place at branching points (C4), implemented
in am˙;l˙ � am˙;k˙ in the vk˙-equation.

3 Results

We examine numerical experiments using network L and network R, shown in
Fig. 2a. Each network has three possible loops. Here, a loop is defined as a phase
synchronization (or LSO) belonging to the corresponding nodes. As discussed in
[10], it is observed that LSO waves propagate across nodes, and that systems A
and B can autonomously find one of the possible loops. The systems also find a
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Fig. 2 (a) The network alternates between network L and network R, changing when the system
has succeeded in finding one of the possible loops. Arrows indicate the forward direction of links.
(b) The average finding time when � is taken as a control parameter

new loop when the network structures are changed between networks L and R. It is
confirmed that system C, too, can have the properties mentioned above. Due to the
mutual interactions between (1) and (2), it is found that both node kC and k� are in
LSO when system C has succeeded in finding a loop, and the nodes k˙ correspond
to the loop.

To compare the finding time between systems A, B, and C, we measured average
finding times NTA, NTB , and NTC ; NTA WD . NTA;LC NTA:R/=2, where NTA;L ( NTA;R) indicates
the averaged time to find one of the possible loops in network L (network R)
in Fig. 2a. During computations, the network structures are alternatively switched
between the network L and R when the corresponding system has succeeded in
finding a loop. NTB;L, NTB;R, NTC;L, and NTC;R are defined similarly. The total switching
number is 50 for each system, and � D 1 is fixed for systems A and B.

It is found that NTA � 3:54 � 104 and NTB � 5:62 � 104, where the difference
in the averaged times comes from the difference in position of inhibitory links. The
averaged time NTC can be improved by taking � as a control parameter. In fact, the
finding time is improved by increasing � from 1.2, and has a minimum value around
� D 2:3 ( NTC � 2:50 � 104) (Fig. 2b). No loop can be found for � � 2:5. Note that
the finding time is smaller than that of systems A and B; NTC 	 minf NTA; NTBg. This
means that the bidirectional wave propagations improves the loop finding time.

4 Discussion

The finding process of the present system fundamentally owes to that proposed in
the previous study [10]. In this study, we have considered the effect of interactions
of bidirectional flows of wave propagation of the LSO state. We confirmed that the
finding time can be improved by taking the threshold of the inhibitory interaction
functions in an appropriate regime.
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Sharp transition behavior from LSO to an incoherent state, which is needed for
(C3), can be generated due to the existence of the limiting point of LSO. To generate
the limiting point, we employed the step function as an interaction function. In fact,
when we employ F.xI Ns / D 1=.1C exp.��.x � Ns/// as a interaction function, we
observe a sharp transition from LSO to incoherent oscillation when � is sufficiently
large. Therefore, in this study, we take � D1, the Heaviside function.
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Phase Coupling Between Hippocampal CA1
and Prefrontal Cortex in a Depression-Model
Rats Indicating Impaired Synaptic Plasticity

Chenguang Zheng, Zhuo Yang, and Tao Zhang

Abstract Chronic stress induces profound learning and memory deficits with
a potential mechanism, impaired synaptic plasticity in hippocampus (HPC) and
medial prefrontal cortex (mPFC). We propose a hypothesis that the theta-rhythm
coupling in HPC-mPFC circuit is associated with the synaptic plasticity as an
underlying mechanism of the cognitive dysfunction in depression.

Keywords Hippocampus • Prefrontal cortex • Local field potentials •
Depression • Phase coupling

1 Introduction

Chronic stress induces profound learning and memory deficits in behavior of
humans and rodents, paralleled by impaired synaptic plasticity in hippocampus
(HPC) and medial prefrontal cortex (mPFC) as a potential mechanism [1, 2].
Furthermore, theta-frequency synchronization has been measured between the
hippocampus and downstream targets to demonstrate their cooperation during a
variety of behaviors and in several psychiatric disorders. The synchrony of theta
rhythm has been shown between the HPC and mPFC during working memory
[3, 4] and its impairment during anxiety and schizophrenia [5, 6]. In our previous
studies, theta coupling was decreased in depression partly associated with the
impaired long-term potentiation in thalamocortical pathway [7, 8]. Therefore, we
propose a hypothesis here that whether the theta-rhythm coupling in HPC-mPFC
circuit indicates the synaptic plasticity as an underlying mechanism of the cognitive
dysfunction in depression.
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2 Method/Models

2.1 Animals and Treatments

All the experiments were carried out according to the guidelines of the Beijing
Laboratory Animal Center, and approved by the Ethical Commission at Nankai
University.

Twelve Adult male Wistar rats (180–220 g body weight at the beginning of
the experiment) were reared under standard laboratory conditions (lights on from
7:00 A.M. to 7:00 P.M.; room temperature 24 ıC ˙2 ıC). Food and water were
supplied during all phases of the experiments. A group of six rats were handled
daily and served as controls (Con group). Another group of six rats (Dep group)
were submitted to 3 weeks of depression animal model establishment, the chronic
unpredictable stress (CUS) model [9].

2.2 Electrophysiological Experiments

The rats of both Con and Dep groups were placed in a stereotaxic frame under 30 %
urethane anesthesia (3.5 ml/kg, i.p., Sigma-Aldrich, St. Louis, MO, U.S.A.). The
recording electrode was placed in the prelimbic area (PrL) of PFC (AP 3–3.3 mm,
ML 0.8–1 mm, H 3.0–3.8 mm) and a bipolar stainless-steel stimulating electrode
was positioned into the CA1 area of the ventral hippocampus (AP -6.3–6.5 mm,
ML 5.5 mm, H 4.9–6.0 mm). The electrode positions were determined finally via
inducing a characteristic monosynaptic negative going field excitatory postsynaptic
potential (fEPSP) in the PrL by the stimulation of CA1 region.

Spontaneous local field potential (LFP) were collected first for 20 min from the
CA1 region and PrL respectively. The LFP signals were fed into a multi-channel
differential amplifier and acquired simultaneously at 1,000 Hz (bandpass filtered
from 0.3 to 200 Hz). After that, the LTP was induced in CA1-PrL circuit. After a
30 min baseline, high-frequency stimulation to induce LTP consisted of two series
of ten trains (250 Hz, 200 ms) at 0.1 Hz, 6 min apart, delivered at test intensity.
Following the LTP induction for 1 h, the LFPs were recorded for another 20 min at
both CA1 and PrL regions.

2.3 Power Spectra and Phase Coupling Analysis

Power spectra of LFPs were computed using the multitaper method with the
Chronux codes described elsewhere (http://www.chronux.org) [10]. An optimal
family of orthogonal tapers were used, parameterized with time-bandwidth product
TWD 5 and kD 9 tapers.

The EMA algorithm was developed as a measurement for direction of
information flow [11, 12]. Its theory and algorithm were described in detail in

http://www.chronux.org
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the previous studies [8]. Coefficients c could be employed to measure unidirectional
information transfer. For the phase coupling analysis, the original LFPs signals
were band-pass filtered into 1–8 Hz (delta C theta band), 3–8 Hz (theta band) and
30–100 Hz (gamma band), with a two-way least squares FIR filter (eegfilt.m from
the EEGLAB toolbox, bandwidthD 5 Hz). Hilbert transform was used to obtain the
instantaneous phase of neural signals approximately from the signals filtered in the
frequency bands.

2.4 Data and Statistical Analysis

All the data were expressed as mean ˙ SEM. For the slopes of the evoked fEPSPs
along with time, a two-way repeated measure ANOVA was used. In order to
compare the power spectra and coupling indices of LFPs between pre- and post- LTP
(in pair), Wilcoxon signed-rank test was applied in both groups. Student’s t-test was
used to compare the power and coupling indices between Con and Dep groups. All
the statistical analyses were performed using SPSS 18.0 software and the significant
level was set at 0.05.

3 Results

3.1 LTP Induction

In Con group, a lasting increase in the slope of the fEPSPs in the PrL induced by
HFS in CA1. However, the LTP was robustly impaired in the PFC when the rats were
exposed to CUS treatment. Two-way repeated measures ANOVA confirmed that
there was significant difference on the time course of normalized fEPSPs between
Con and Dep groups (F(1,10)D 21.283, pD 0.001), whereas there was no statistical
differences of time or time � groups interaction (p> 0.05) (Fig. 1a). Exposure to
CUS significantly impaired LTP in the PrL for the last 20 min of recording after
HFS, tested by Student’s t-test (Fig. 1b). (pD 0.005).

Fig. 1 The effects of CUS treatment on fEPSP slopes of LTP. (a) Time course of fEPSP slopes
evoked in the prelimbic area (PrL) in medial prefrontal cortex (mPFC) by stimulation of the CA1
region. Each point represents mean ˙ SEM of averaged evoked responses for 2 min epochs.
High frequency stimulation is indicated by arrows. (b) Mean fEPSP slopes for the last 20 min
of recording after HFS (**p< 0.01)
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3.2 Power Spectra Analysis

Wilcoxon signed-rank test showed that there was a significant increment of the mean
power after LTP at both CA1 and PrL regions (in pair test for CA1 of Con group:
pD 0.046; CA1 of Dep group: pD 0.116; PrL of Con group: pD 0.028; PrL of Dep
group: pD 0.046, Fig. 2). On the other hand, Student’s t-test was used to determine
the influence of CUS treatment on the LFPs for pre-LTP. The data showed that only
the mean power of LFPs at PrL increased in Dep group (pD 0.046), however the
mean power of LFPs at CA1 didn’t change (pD 0.716).

The power spectra in delta (1–3 Hz), theta (3–8 Hz) and gamma (30–100 Hz)
were extracted, and the relative power percent of these three frequency bands were
obtained by rhythm power

sum of power�100% (Fig. 3). Wilcoxon test showed that the relative power

Fig. 2 Mean power spectra in 1–100 Hz of LFPs from CA1 and PrL between pre- and post LTP
induction in both two groups *p< 0.05 between pre- and post LTP by Wilcoxon test, and #p< 0.05,
##p< 0.01, ###p< 0.001 between two groups by Student’s t-test

Fig. 3 Relative power percent (%) on delta, theta and gamma rhythms between pre- and post-LTP
at CA1 (upper panel) and PrL (lower panel) regions in both groups. *p< 0.05 between pre- and
post LTP by Wilcoxon test, and #p< 0.05, ##p< 0.01 between two groups by t-test
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Fig. 4 Phase coupling on CA1-PrL circuit. (a) Unidirectional coupling index cCA1!PrL on delta,
theta and gamma rhythms between pre- and post-LTP in both groups. (b) EMA ratio of post/pre
LTP on theta rhythm in both groups. *p< 0.05 between pre- and post LTP by Wilcoxon test, and
#p< 0.05 between two groups by Student’s t-test

percent didn’t increase after LTP in all the frequency bands at both CA1 and PrL
regions, especially for the gamma rhythm in CA1 which was reduced significantly
(pD 0.028). As for the comparison between groups, it can be seen that there is an
increased tendency only on delta rhythm (CA1 delta: pD 0.001) and a decreased
tendency on theta and gamma rhythms of rats in depression (CA1 theta: pD 0.009;
PrL theta: pD 0.028; CA1 gamma: pD 0.009).

3.3 Unidirectional Phase Coupling

The results implied that on theta rhythm the unidirectional index cCA1!PrL of
pre-LTP reduced significantly in Dep group (pD 0.024). However, the cCA1!PrL

index on theta rhythm was increased significantly after LTP induction in both Con
(pD 0.028) and Dep (pD 0.046) groups, measured by Wilcoxon test. Also, the
relative increment (post/pre ratio) of cCA1!PrL index in Con groups was higher than
that in Dep group (pD 0.043) (Fig. 4b).

4 Discussion

In this study, we found that the integral power spectra were increased in depression
rats, whereas the relative percentage of theta and gamma reduced, partly consistent
with our previous data [13, 14]. The phase coupling in theta rhythm on CA1-PrL
circuit was significant lower in depressed rats, which indicated the impaired
synchronization at baseline, i.e. pre-LTP, by the exposure to CUS. This result was
in line with impaired synchrony of neural activity between HPC and mPFC in other
psychiatric disorders such as schizophrenia and anxiety [5, 6]. Importantly, after
LTP induction, the theta-frequency coupling was enhanced for both normal and



288 C. Zheng et al.

depressed rats. However, the power ratio didn’t change between pre- and post-LTP.
It suggested that, the phase coupling in theta rhythm are implicated in synaptic
strength and could be maintained for long time course. Furthermore, the relative
increment of CA1-PrL coupling strength after LTP induction was higher in Con
group than in Dep group, which was strongly consistent with the LTP data. All
these results supported our hypothesis that the theta-frequency phase coupling was
implicated in HPC-mPFC synaptic plasticity and could further indicate the cognitive
level in depression disorder.
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Mapping of Cortical Avalanches to the Striatum

Jovana J. Belić, Andreas Klaus, Dietmar Plenz,
and Jeanette Hellgren Kotaleski

Abstract Neuronal avalanches are found in the resting state activity of the mam-
malian cortex. Here we studied whether and how cortical avalanches are mapped
onto the striatal circuitry, the first stage of the basal ganglia. We first demonstrate
using organotypic cortex-striatum-substantia nigra cultures from rat that indeed
striatal neurons respond to cortical avalanches originating in superficial layers. We
simultaneously recorded spontaneous local field potentials (LFPs) in the cortical and
striatal tissue using high-density microelectrode arrays. In the cortex, spontaneous
neuronal avalanches were characterized by intermittent spatiotemporal activity
clusters with a cluster size distribution that followed a power law with exponent
�1.5. In the striatum, intermittent spatiotemporal activity was found to correlate
with cortical avalanches. However, striatal negative LFP peaks (nLFPs) did not show
avalanche signatures, but formed a cluster size distribution that had a much steeper
drop-off, i.e., lacked large spatial clusters that are commonly expected for avalanche
dynamics. The underlying de-correlation of striatal activity could have its origin in
the striatum through local inhibition and/or could result from a particular mapping
in the corticostriatal pathway. Here we show, using modeling, that highly convergent
corticostriatal projections can map spatially extended cortical activity into spatially
restricted striatal regimes.
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Basal ganglia
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1 Introduction

Scaling laws are ubiquitous in nature. Earthquakes, landslides, and forest fires are
examples for systems in which local events can propagate over long distances
forming extended cascades. Cascade sizes are described by power laws that express
one variable as a function of another raised to a power, f (x)� x˛(˛¤ 0) [1]. An
interesting feature of power laws is that they show no characteristic scale, and when
plotted in log-log coordinates they produce a straight line with a characteristic slope
(’) for that system.

Power law distributions of neuronal activity at the network level were found in
vitro by recording local field potentials in cortical neural networks using slices of
rat cortex as well as cultured networks [2]. It was observed that the number of
electrodes activated over certain threshold during each single burst of spontaneous
neuronal activity was distributed according to a power law with a characteristic
exponent of �1.5 and those events were called neuronal avalanches. Since then,
neuronal avalanches were reported in vivo [3] and were shown to display long-term
stability, diversity and fast propagation of local synchrony [4]. Neuronal avalanches
also characterize networks that have a maximum dynamic range [5], maximal
variability of phase synchrony [6], and avalanches might play a central role in
information transmission and storage [7].

Here we study neuronal avalanches in an open-loop system of the cortex and
striatum. The input region of the basal ganglia (striatum) plays an important role in
reward based learning and control of actions [8]. The striatum is a major recipient of
massive glutamatergic inputs from the cerebral cortex and thalamus. Understanding
how the striatum responds to cortical inputs has crucial importance for clarifying
the overall functions of the basal ganglia. Medium spiny neurons (MSNs) dominate
in the striatum (up to 95 % in rodents). They are inhibitory (GABAergic) and have
membrane properties that give them a high threshold for activation [9].

In this paper, we investigate how the striatum responds to cortical neuronal
avalanches. We developed an abstract cortical model that reproduces statistics
observed in experimental data [4, 10, 14]. The model is giving values for entropy
and average mutual information that are in best agreement with experimental data
compared to the alternative models [5, 7] with all-to-all or random connectivity, and
where connectivity values were chosen from a uniform distribution. After that we
extended the model in order to determine which kind of connectivity between cortex
and striatum could account for the experimental observation of a steeper slope of the
clustered activity in the striatum compared to the cortex [13, 14].

2 Method

Organotypic Cultures on Microelectrode Arrays All animal procedures were in
accordance with National Institutes of Health guidelines. Coronal slices from rat
cortex (350 �m thick), striatum (500 �m thick), and midbrain (substantia nigra pars
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Fig. 1 (a) Organotypic cortex-striatum-substantia nigra pars compacta culture. The white circles
indicate the electrodes for which representative LFP traces are shown in (b). (b) Example of LFP
activity for four cortical and striatal electrodes. Red dots indicate significant negative LFP peaks

compacta; 500 �m thick) were cut on a vibratome in sterile Gey’s balanced salt
solution and cultured on planar, 60-channel microelectrode arrays (MEA) for the
recording of local field activity. For all MEA recordings a custom layout with two
sub-arrays for cortex (31 electrodes) and striatum (28 electrodes) was used (Fig. 1a).

Local Field Potential Analysis Local field potential (LFP) activity was recorded
at (or down-sampled to) 1 kHz, and subsequently band-pass filtered at 1–50 Hz.
Negative LFP (nLFP) deflections were detected by finding the minimum value of the
LFP signal that crossed a threshold of zD�4.5 standard deviations (SDs) (Fig. 1b).
Spatiotemporal clusters were detected as in previous work [2].

Computational Model Our abstract model of the cortical network was designed in
order to reproduce some of the main statistics observed in experimental data [10].
First, each of the N nodes was assigned a number that determined the out-degree of
each of them. The average number of connectivity was chosen to be 10 [10], and
afterwards we applied the preferential attachment rule. Each node was attached to
other nodes in proportion to the out-degrees of those nodes in order to get the node
degree linearly related to the average node strength for both in- and out-degrees
(Fig. 2a). Transmission probabilities pij (from node j to node i) were picked from
an exponential distribution (Fig. 2b). There were no self-connections and no more
than one connection between attached pairs of nodes. The weights were then scaled
(p

0

ij) such that the branching parameter for the entire network was equal to 1. The
probability that node i fired at time tC 1 was:

pij D
�
1 �

Y
j2j .�/

�
1 � p0ij

�
; (1)
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Fig. 2 (a) Node degree is linearly related to the average node strength for both in and out degrees.
(b) Plot of link weight probability. (c) Probability of activation for striatal nodes depending on the
cortical activity

where J(t) was a set of nodes that fired at time t. Node i actually fired at time tC 1
only if piJ>–, where – was a random number from a uniform distribution on [0,
1]. Then, each of the ND 30 nodes in the striatum was randomly connected with a
certain number (NkD 4 here) of nodes in the cortex. A node in striatum always fired
if the full pattern in cortex assigned to that node was present; otherwise it fired with
a very low probability (Fig. 2c). In a first approach, we focus on the contribution
of the corticostriatal pathway to explain the experimental results while ignoring
intrastriatal inhibition. Our future work will explore the role of the intrastriatal
GABAergic network.

3 Results

We recorded spontaneous LFP activity in organotypic cortex-substantia nigra cul-
tures simultaneously from 31 electrodes in the cortex to 28 electrodes in the striatum
[12, 13]. Negative LFPs were detected by applying a negative threshold to each
electrode. Analyses of the cluster size distributions in the striatum pointed to a more
negative exponent than the one obtained for the cortex [2, 13] (Fig. 3). The steeper
slope of the striatal cluster size distributions indicates reduced spatiotemporal
correlations.

In order to investigate how the observed striatal dynamics could be explained
by the corticostriatal connectivity, we developed an abstract computational model
(see section “Method”). We stimulated population events by randomly choosing
and triggering a single node (this procedure was repeated 30,000 times for each
trial) in the cortex, while simultaneously monitoring the resulting activity in the
striatum. When we gave to each striatal node the probability of activation presented
in Fig. 2c, we got a steeper slope of the striatal cluster size distribution, similar to
experimental results (Fig. 4).
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Fig. 3 Experimentally measured discrete (left panel) and continuous (right panel) cluster size
distributions for cortex and striatum. Black line indicates a power law with ’D�1.5 for
comparison

Fig. 4 Cluster size
distributions for cortex and
striatum in the model. Black
line indicates a power law
with ’D�1.5 for
comparison
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Table 1 Comparison of experimental results with results produced by different models (mean ˙
SD). Entropy and mutual information were calculated for ND 60 in the same way as published
previously [7]

Entropy H (bits) Site-to-site MI (bits)

Experimental data [7] 5.7˙ 1.6 0.2˙ 0.2
Our model 5.8˙ 1.5 0.24˙ 0.06
All to all connectivity 6.5˙ 0.3 0.15˙ 0.01
Random connectivity 6.2˙ 1.3 0.14˙ 0.03

Our cortical model has shown the best agreement with experimental data
regarding values for entropy and site-to-site mutual information [7] compared to
models where all-to-all or random connectivity was assumed (average connectivity
was set to 10) and strengths of connections were picked from a uniform distribution
(Table 1). We also found bigger deviations from experimental data in those cases
when the connection strengths in our model were chosen from uniform distribution
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instead of exponential, and when the branching parameter for each node (sum of
connection strengths of a particular node to other nodes) was set to one. By increas-
ing the connectivity we observed a decrease of site-to-site mutual information and
an increase of entropy. Parts of these results were previously published in the form
of abstracts [11, 12].

4 Conclusion

In the present study, we focused on how the corticostriatal pathway might contribute
to striatal processing of cortical avalanches. Experimentally, we demonstrated that
striatal cluster size distributions were characterized by a more negative power law
exponent as compared to that for cortical avalanches. We developed a corticostriatal
model in which cortical activity was mapped on striatal neurons through convergent
projections. This mapping resulted in striatal responses to cortical avalanches
in line with our experimental findings. Specifically, under the assumption of a
particular high activation threshold of striatal nodes we can reproduce power law
like distributions with a coefficient similar to the one found experimentally. Future
work is exploring the role of intrastriatal inhibition in shaping striatal responses to
cortical avalanches.
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Gauss-Markov Processes for Neuronal Models
Including Reversal Potentials

Aniello Buonocore, Luigia Caputo, Amelia G. Nobile, and Enrica Pirozzi

Abstract Gauss-Markov processes, restricted from below by a reflecting boundary,
are here used to construct inhomogeneous leaky integrate-and-fire (LIF) stochastic
models for single neuron’s activity in the presence of a reversal hyperpolarization
potential and different input signals. Under suitable assumptions, we are able to
obtain the transition probability density function with a view to determine numeric,
simulated and asymptotic solutions for the firing densities when the input signal
is constant, decays exponentially or is a periodic function. The our results suggest
the importance of the position of the lower boundary as well as that of the firing
threshold when one studies the statistical properties of LIF neuron models.

Keywords LIF • Reversal hyperpolarization potential • Transition probability
density function • Firing density • Statistical properties

1 LIF Models with Reversal Hyperpolarization Potential

We consider the Gauss-Markov process fY.t/; t � 0g characterized by mean
function

m.t/ D % �1 � e�t=#�C
Z t

0


./ e�.t�/=# d .t � 0/ (1)

and covariance function c.s; t/ D h1.s/ h2.t/ .0 	 s 	 t/ such that
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h1.t/ D �2#

2

�
et=# � e�t=#�; h2.t/ D e�t=# .t � 0/; (2)

where # > 0, � > 0, % 2 R and 
.t/ 2 C1Œ0;C1/. The transition density
fY .x; t jy; �/ is a normal density with mean and variance (cf., for instance, [1, 3]):

M.t jy; �/ D y e�.t��/=# C %
�
1 � e�.t��/=#

�
C
Z t

�


./ e�.t�/=# d;

V .t j�/ D �2#

2

�
1 � e�2.t��/=#�; .0 	 � 	 t/: (3)

The infinitesimal moments of Y.t/ are:

A1.x; t/ D �x � %
#
C 
.t/; A2.t/ D �2; .x 2 R; # > 0; � > 0; % 2 R/; (4)

that identify the drift and the infinitesimal variance of a time non-homogeneous
Ornstein-Uhlenbeck process defined in the interval .�1;C1/.

In the context of neuronal models, (4) characterize an inhomogeneous LIF
diffusion process Y.t/, describing the evolution of the membrane potential (see,
for instance, [1, 8, 9]). The time constant # governs the spontaneous decay of the
membrane potential to the resting level %, the function 
.t/ represents external
signal inputs to the neuron, whereas the infinitesimal variance �2 gives the
amplitude of the noise.

In the neuronal model (4) the state space for the underlying stochastic process
is the entire real axis, implying that arbitrarily large hyperpolarization values for
the membrane potential are possible. Some authors (see, for instance, [4,6,7]) have
considered alternative models by assuming the existence of a lower boundary for the
membrane potential. For this reason, in the sequel, we shall focus on the Ornstein-
Uhlenbeck process confined by a time-dependent reflecting boundary �.t/ that can
be looked at as the neuronal reversal hyperpolarization potential.

We consider the stochastic process fX.t/; t � 0g, defined in the interval
Œ�.t/;C1/, obtained by considering the Ornstein-Uhlenbeck process (4) in pres-
ence of a reflecting boundary

�.t/ D % .1 � e�t=#/C
Z t

0


./ e�.t�/=#d C B e�t=# ; (5)

with B 2 R. The transition probability density function (pdf) of X.t/ is (see, [4])

fX.x; t jy; �/ D fY .x; t jy; �/CfY Œ2 �.t/�x; t jy; ��; Œx � �.t/; y � �.�/�; (6)

with fY .x; t jy; �/ normal density with mean and variance given in (3).
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We now analyze the asymptotic behavior of X.t/ when the input signal 
.t/ is
a bounded function, asymptotically constant, i.e. limt!C1
.t/ D O
. Under such
assumption, from (3) and (5) one has:

E.Y / WD lim
t!C1M.t jy; �/ D lim

t!C1 �.t/ D %C O
#;

Var.Y / WD lim
t!C1V.t j�/ D

�2 #

2
;

so that from (6) one obtains the steady-state pdf of the restricted Ornstein-Uhlenbeck
process X.t/:

W.x/ WD lim
t!C1fX.x; t jy; �/ D

2

�
p
�#

exp
n
� .x � � � O
#/

2

�2#

o
.x � %C O
#/

and the related asymptotic mean and variance:

E.X/ D %C O
# C �
r
#

�
; Var.X/ D �2#

�1
2
� 1

�

�
:

We note that E.Y / D limt!C1 �.t/ for the free Ornstein-Uhlenbeck process Y.t/,
whereas E.X/ > limt!C1 �.t/ for the restricted Ornstein-Uhlenbeck process
X.t/. Furthermore, by comparing the asymptotic means and variances of X.t/ and
Y.t/, one has E.X/ > E.Y / and Var.X/ < Var.Y /.

We now consider the first passage time (FPT) problem to a threshold S.t/ >
�.t/, with S.t/ 2 C1Œ0;C1/, for the restricted Ornstein-Uhlenbeck process, with
reflecting boundary �.t/ given in (5). We denote by

Ty D inf
t��
˚
t W X.t/ > S.t/�; X.�/ D y < S.�/;

the random variable FPT of X.t/ from X.�/ D y � �.�/ to the threshold S.t/ and
by

gXŒS.t/; t jy; �� D @

@t
P
�
Ty 	 t

�
Œ�.�/ 	 y < S.�/�

its FPT pdf. In the neuronal modeling context, gXŒS.t/; t jy; �� identifies the firing
density of X.t/, i.e. the FPT pdf of X.t/ through the firing threshold S.t/ starting
from y at time � .

Figure 1 shows two simulated sample paths for the free process Y.t/ (green) and
for the restricted process X.t/ (blue), both obtained via an appropriate algorithm
based on the simulation of the Brownian motion in the presence of a constant
reflecting boundary and on suitable spatio-temporal transformations (the details of
the algorithm are object of our paper in preparation). The arrow in Fig. 1 indicates
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Fig. 1 Sample paths of the
free process Y.t/ (green) and
of the restricted process X.t/
(blue) in the presence of a
reflecting boundary �.t/
(black) for S D 1:5 (red) and
constant input signal

.t/ D 0:1
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the instant of the first passage time. The firing pdf gX ŒS.t/; t jy; �� is solution of the
nonsingular Volterra integral equation (see, [4])

gXŒS.t/; t jy; ��D�2‰X ŒS.t/; t jy; ��C2
Z t

�

gX ŒS.u/; ujy; ��‰XŒS.t/; t jS.u/; u� du

(7)
with �.�/ 	 y < S.�/ and where

‰XŒS.t/; t jy; �� D fXŒS.t/; t jy; ��

�


S 0.t/ �m0.t/

2
� S.t/ �m.t/

2 #

1C e�2.t��/=#
1 � e�2.t��/=# C

Œy �m.�/� e�.t��/=#
#
�
1 � e�2.t��/=#	

)

(8)

with �.t/ and fX.x; t jy; �/ given in (5) and (6), respectively. If 
.t/ is a bounded
function such that limt!C1
.t/ D O
, then the firing pdf gXŒS.t/; t jy; �� through
the bounded threshold S.t/, such that limt!1 S.t/ D OS , admits the following
exponential asymptotic behavior:

gX ŒS.t/; t jy; �� ' R. OS/ expf�R. OS/.t � �/g; (9)

for �.�/ 	 y < S.�/, where

R. OS/ D 2 Œ OS � .%C O
#/�
� #
p
�#

exp
n
� Œ
OS � .%C O
#/�2

�2 #

o
:

The goodness of the exponential approximation (9) increases as the threshold is
progressively moved away from the starting point and from the asymptotic mean of
the related processes.
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2 Neuronal Models with Different Input Signals

We now specialize our results to different types of functions 
.t/, by considering
the following cases: constant, exponential and periodic signals. In these three cases,
the asymptotic behavior of the firing pdf will be explicitly determined.

2.1 Constant and Exponential Input Signals

For t � 0, we assume that the input signal is


.t/ D 
C 	 e�t=# .# > 0I	;
 2 R/: (10)

We consider the process X.t/ restricted by the reflecting boundary

�.t/ D .%C 
#/ .1 � e�t=# /C 	 t e�t=# CB e�t=# ; (11)

with B 2 R. The transition pdf of X.t/ is given in (6) and the firing pdf can be
computated via (7) and (8) by using the numerical algorithm proposed in [3]. For
the case of exponential input signal (10), in the left part of Fig. 2 we plot the firing
density gY .S; t jy; 0/ of the free process Y.t/ (red curve) and the firing density
gX.S; t jy; 0/ of X.t/ (blue curve) through the constant threshold S D 1:5, starting
from the initial state y D �0:4 at time � D 0. The reflecting boundary for X.t/
is �.t/ D �0:8 � .0:2 C 0:1 t/ e�t . The dashed curves indicate the asymptotic
behaviors of the firing densities forX.t/ and Y.t/, respectively. The integration step
in the numerical algorithm is set at #=10 D 0:1. Instead, on the right of Fig. 2 the
simulated firing pdf for the process X.t/ is shown.
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Fig. 2 On the left: for the exponential signal (10), gY .S; t jy; 0/ (red curve), gX.S; t jy; 0/ (blue
curve) and their asymptotic exponential behaviors (dashed curves) are plotted with # D 1, 
 D
0:1, % D �0:9, 	 D �0:1, �2 D 1, B D �1, y D �0:4 and S D 1:5. On the right: the histogram
of a sample of 10;000 simulated firing times is compared with the firing density gX.S; t jy; 0/
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2.2 Periodic Input Signal

We suppose that the input signal is the periodic function


.t/ D 
C 	 cos.! t C �/ .
 2 R; 	 ¤ 0; � 2 R; ! > 0/ (12)

for t � 0, whose period is Q D 2�=!. LIF neuronal models with periodic input
signal are considered, for instance, in [2, 5, 9, 10] and references therein. For the
process X.t/ with the reflecting boundary

�.t/ D .%C 
#/ .1 � e�t=#/C 	#

1C !2 #2
�
n
cos.! t C �/C ! # sin.! t C �/� �cos� C ! # sin �

	
e�t=#

o
C B e�t=#

(13)

withB 2 R, the transition pdf is given in (6). For the case of the periodic input signal
(12), in the left part of Fig. 3 we plot the firing density gY .S; t jy; 0/ of the free
process Y.t/ (red curve) and the firing density gX.S; t jy; 0/ of X.t/ (blue curve)
through the constant threshold S D 1:5, starting from the initial state y D �0:4 at
time � D 0. As shown in Fig. 3, the firing densities gY .S; t jy; 0/ and gX.S; t jy; 0/
exhibit damped oscillations having the same period Q of the periodic input signal.
For the periodic input signal (12), in the right part of Fig. 3 the simulated and the
asymptotic firing density of the process X.t/ are compared with the numeric firing
pdf of the left part of Fig. 3.

Detailed proofs of the results shown so far as well as some their extensions will
be provided in future works.
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Fig. 3 On the left: for the periodic signal (12), gY .S; t jy; 0/ (red curve), gX.S; t jy; 0/ (blue curve)
are plotted for � D 5, # D 1, 
 D 0:1, % D �0:9, 	 D �0:1, ! D 0:2, �2 D 1, B D �1,
y D �0:4 and S D 1:5. On the right: the histogram of a sample of 10;000 simulated firing times
is compared with the firing density gX.S; t jy; 0/ (blue curve) and the asymptotic behavior (dashed
red curve)
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On Super-Turing Neural Computation

Jérémie Cabessa and Alessandro E.P. Villa

Abstract In this paper, we provide a historical survey of the most significant
results concerning the computational power of neural models. We distinguish three
important periods: first, the early works from McCulloch and Pitts, Kleene, and
Minky, where the computational equivalence between Boolean recurrent neural
networks and finite state automata is established. Secondly, the two breakthroughs
by Siegelmann and Sontag showing the Turing universality of rational-weighted
neural networks, and the super-Turing capabilities of analog recurrent neural
networks. Thirdly, the recent results by Cabessa, Siegelmann and Villa revealing
the super-Turing computational potentialities of interactive and evolving recurrent
neural networks.

Keywords Neural computation • Recurrent neural networks • Finite automata •
Turing machines • Turing machines with advice • super-Turing

1 The Early Works

In theoretical neuroscience, understanding the computational and dynamical capa-
bilities of biological neural networks is an issue of central importance. In this
context, much interest has been focused on comparing the computational powers
of diverse theoretical neural models with those of abstract computing devices.

This comparative approach was initiated by McCulloch and Pitts who proposed
a modelisation of the nervous system as a finite interconnection of threshold logic
units [19]. For the first time, neural networks were considered as discrete abstract
machines, and the issue of their computational capabilities investigated from the
automata-theoretic perspective. In this context, Kleene and Minsky proved that
recurrent neural networks made up of threshold activation units were computation-
ally equivalent to classical finite state automata [13, 20].
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Besides, in a seminal report entitled “Intelligent Machinery” [31], Turing
brilliantly introduced many concepts which have later become central in the field
of neural computation. For instance, Turing foresaw the possibility of surpassing
the capabilities of finite state machines and reaching Turing universality via neural
networks called “B-type unorganised machines”. The networks consisted of a
general interconnection of NAND neurons, and the consideration of infinitely many
such cells could simulate the behaviour of a Turing machine. Moreover, Turing
also introduced the key idea of “training” neural networks by considering the
possibility of modifying the synaptic connections between the cells by means of
what he called “connection-modifiers”. Later, the Turing universality of infinite or
heterogeneous neural networks has further been investigated in many directions, see
for instance [8,9,11,23]. These seminal works opened up the way to the theoretical
computer scientist approach to neural computation. However, the purely discrete
and mechanical approach under consideration quickly appeared too restrictive, far
from the biological reality.

According to these considerations, von Neumann proposed another relevant
approach to the issue of information processing in the brain from the hybrid
perspective of digital and analog computation [22]. He considered that the non-
linear character of the operations of the brain emerges from a combination of
discrete and continuous mechanisms, and therefore envisioned neural computation
as something strictly more powerful than abstract machines. Almost in the same
time, Rosenblatt proposed the so-called “perceptron” as a more general computa-
tional neural model than the McCulloch-Pitts units [24]. The essential innovation
consisted in the introduction of numerical synaptic weights and as well as a special
interconnection pattern. This neural model gave rise to an algorithmic conception
of “learning” achieved by adjusting the synaptic weights of the networks according
to some specific task to be completed. This study is nowadays considered as
foundational for the field of machine learning. The computational capabilities of
the perceptron were further studied by Minsky and Papert [21].

2 Two Significant Breakthroughs

Later, Siegelmann and Sontag made two significant steps forward concerning the
precise issue of the computational power of recurrent neural networks. Firstly, they
focused their attention on the consideration of more realistic activation functions for
the neurons and showed that by extending the activation functions of the cells from
boolean to linear-sigmoid, the computational power of the neural networks would
drastically increase from finite state automata up to Turing capabilities [28]. The
Turing universality of neural networks was then generalised to a broader class of
sigmoidal activation functions [12]. The computational equivalence between the so-
called rational recurrent neural networks and the Turing machines has nowadays
become standard result in the field.
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Secondly and most importantly, following von Neumann considerations, they
assumed that the variables appearing in the underlying chemical and physical
phenomena could be modelled by continuous rather than discrete numbers, and
therefore proposed a precise study of the computational power of recurrent neural
networks from the perspective of analog computation [27]. They introduced the
concept of an analog recurrent neural network as a classical linear-sigmoid neural
net equipped with real- instead of rational-weighted synaptic connections. This
analog information processing model turns out to be capable of capturing the
non-linear dynamical properties that are most relevant to brain dynamics, such as
rich chaotic behaviours [7, 25, 26, 29, 32]. In this context, they proved that analog
recurrent neural networks are computationally equivalent to Turing machine with
advice, hence capable of super-Turing computational capabilities from polynomial
time of computation already. They further formulated the so-called Thesis of Analog
Computation – an analogous to the Church-Turing thesis, but in the realm of
analog computation – stating that no reasonable abstract analog device can be more
powerful than first-order analog recurrent neural networks [26, 27].

3 Present and Future

But until the mid 1990s, the neural models involved in the study of the computa-
tional capabilities of recurrent neural networks have always been oversimplified,
lacking many biological features which turn out to be essentially involved in the
processing of information in the brain. In particular, the effects that various kinds
of noise might have on the computational power of recurrent neural networks had
not been considered. Moreover, the ability of neural networks to evolve over time
has also been neglected in the models under consideration. Biological mechanisms
like synaptic plasticity, cell birth and death, changes in connectivity, etc., – which
are widely assumed to be of primary importance in the processing and encoding
of information –, have yet not been taken into consideration in the study of the
computational capabilities of neural networks.

Concerning noise, Maass and Orponen showed that general analog computa-
tional systems subjected to arbitrarily small amount of analog noise have their
computational power reduced to that of finite automata or even less [17]. In
particular, the presence of arbitrarily small amount of analog noise seriously reduces
the capabilities of both rational- and real-weighted recurrent neural networks to
those of finite automata, namely to the recognition of regular languages. Maass and
Sontag then extended this result by showing that, in the presence of gaussian or
other common analog noise distribution with sufficiently large support, recurrent
neural networks have their computational reduced to even less than finite automata,
namely to the recognition of definite languages [18]. These two results were further
generalised to the broader classes of quasi-compact and weakly ergodic Markov
computational systems, respectively [1].
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Concerning the evolvability of neural networks, Cabessa and Siegelmann con-
sidered a more biologically oriented model where the synaptic weights, the connec-
tivity pattern, and the number of neurons can evolve rather than stay static [3]. The
so-called evolving recurrent neural networks were proven to be computationally
equivalent to the analog neural networks, and hence capable of super-Turing
computational power, regardless of whether their synaptic weights are rational or
real. These results are important, showing that the power of evolution brings up
additional potentialities to first-order recurrent neural networks and provides an
alternative and equivalent way to the incorporation of the power of the continuum
towards the achievement of super-Turing computational capabilities of neural
networks. This feature is particularly interesting since certain analog assumptions
in neural models have sometimes been argued to be too strong.

However, in this global line of thinking, the issue of the computational capa-
bilities of neural networks has always been considered from the strict perspective
of Turing-like classical computation [30]: a network is viewed as an abstract
machine that receives a finite input stream from its environment, processes this
input, and then provides a corresponding finite output stream as answer, without
any consideration to the internal or external changes that might happen during the
computation. But this classical computational approach is inherently restrictive,
and has nowadays been argued to “no longer fully corresponds to the current
notion of computing in modern systems” [16], especially when it refers to bio-
inspired complex information processing systems [14, 16]. Indeed, in the brain
(or in organic life in general), information is rather processed in an interactive
way, where previous experience must affect the perception of future inputs, and
where older memories may themselves change with response to new inputs. Hence,
neural networks should rather be conceived as performing sequential interactions
or communications with their environments, and be provided with memory that
remains active throughout the whole computational process, rather than proceeding
in a closed-box amnesic classical fashion. Accordingly, the computational power
of recurrent neural networks should rather be conceived from the perspective of
interactive computation [10].

Along these lines, Cabessa and Siegelmann studied the computational power
of recurrent neural networks involved in a basic interactive computational
paradigm [4]. They proved that the so-called interactive recurrent neural networks
with rational and real synaptic weights are computationally equivalent to interactive
Turing machines and interactive Turing machines with advice, respectively. These
achievements provide a generalisation to the bio-inspired interactive computational
context of the previous classical results by Siegelmann and Sontag [27, 28].
Besides, Cabessa and Villa also provided a study of the super-Turing computational
capabilities of analog neural networks involved in another kind of reactive and
memory active computational framework [5].

The last advances concerning the study of the computational power of recurrent
neural networks were provided by Cabessa and Villa [2, 6]. They studied the
computational potentialities of a recurrent neural model combining the two relevant
features of evolvability and interactivity introduced in [3, 4], and showed that the
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so-called interactive evolving recurrent neural networks are capable of super-Turing
computational potentialities, equivalent to interactive Turing machine with advice,
irrespective of whether their synaptic weights are rational or real.

These results show that the consideration of evolving capabilities in a first-
order interactive neural model provides the potentiality to break the Turing barrier,
irrespective of whether the synaptic weights are rational or real. They support the
extension of the Church-Turing Thesis to the context of interactive computation:
“Any (non-uniform interactive) computation can be described in terms of interactive
Turing machines with advice” [15]. As for the classical computational framework,
the super-Turing computational capabilities can be achieved without the need of
a framework based on the power of the continuum – in the case of interactive
evolving recurrent neural networks with rational weights. This feature is particularly
meaningful, since while the power of the continuum is a pure conceptualisation of
the mind, the evolving capabilities of the networks are, by contrast, really observable
in nature.

From a general perspective, we believe that such theoretical studies about
the computational power of bio-inspired neural models might ultimately bring
further insight to the understanding of the intrinsic natures of both biological
as well as artificial intelligences. We also think that foundational approaches
to alternative models of computation might in the long term not only lead to
relevant theoretical considerations, but also to important practical applications.
Similarly to the theoretical work from Turing which played a crucial role in the
practical realisation of modern computers, further foundational considerations of
alternative models of computation will certainly contribute to the emergence of
novel computational technologies and computers, and step by step, open the way
to the next computational era.
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Chasing Cognitive Neurodynamics
by Single-Trial Analysis
of Electroencephalogram (EEG)

Yong Hu, Li Hu, Hongtao Liu, Zhiguo Zhang, Guangju Zhang,
and Hongyan Cui

Abstract Single trial electroencephalogram (EEG) and evoked potential (EP) is a
very important tool to investigate cognitive neurodynamics. This paper introduced a
newly developed toolbox for single trial extraction of EP/ERPs (STEP v1.0). Its
application in laser evoked potential (LEP) and somatosensory evoked potential
(SEP) were presented to demonstrate the use of single trial analysis. Trial-to-trial
variability provide plentiful biological information, which helped us understanding
the function of the nervous system.

Keywords Nociceptive processing • Non-nociceptive processing

1 Introduction

Sensory, motor or cognitive events can elicit sudden and short-lasting changes in
Electroencephalogram (EEG), embedded in the ongoing spontaneous activities. In
addition to triggering evoked potentials (EP) or event related potentials (ERPs),
various events may also trigger transient modulations (ERS and ERD) of the
ongoing oscillatory brain activity. The amount of these event-related changes is
much smaller than that of the background EEG activity. Thus, changes triggered by
single trials are hardly detected, and the most widely used approach to identify them
is to average a large number of trials, which relies on the assumption that the shape
and the latency of EP/ERPs are equal from trial to trial. However, it has been clearly
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shown that there is a large dynamic variability in the EEG response from trial to trial.
However, this lost information is very important for EEG studies for the following
reason: (1) because it contains information about how the brain varies its response to
the same stimulus; (2) because it allows researchers to look for correlations between
this brain response and a behavioural performance for each single trial; (3) because it
allows researchers to compare this measure of the electrical brain activity with other
more measures of brain function. Therefore, methods that explore ERP dynamics at
the level of single trials can provide new insights into the functional significance of
the different brain processes underlying these brain responses [1, 2]. In this paper, a
series of various methods on single trial EP/ERPs analysis has been developed [1–4]
and a single trial extraction toolbox for EP/ERPs (STEP v1.0) was proposed.

2 Method

We have developed a single trail extraction toolbox for EP/ERPs (STEP v1.0). This
interactive Matlab toolbox includes: (1) Continuous Wavelet filtering (CWF), (2)
Multiple linear regression (MLR), (3) Multiple linear regression with Dispersion
Term (MLRd), (4) Constrained Second Order Blind Identification (CSOBI), (5)
Discrete Wavelet filtering (DWT), (6) Independent Component Analysis (ICA) and
Probabilistic Independent Component Analysis (PICA). In this paper, the usefulness
of this new toolbox was demonstrated by its applications in laser evoked potentials
(LEP) and somatosensory evoked potentials (SEP).

2.1 Time Domain Morphology of Single-Trial LEP

The signal to noise ratio (SNR) of LEP was improved by wavelet filtering. Then,
the latency, amplitude and morphology of single-trial N2-P2 complex in LEPs
was extracted by multiple linear regression (MLR) (Fig. 1). In MLR, variability
matrices that capture the variations of latency and morphology of each LEP peak
are generated by shifting and compressing the average LEP waveform (1). These
variability matrices are fed to a principal component analysis (PCA) (2). The
resulting three main principal components (PCs) are used to define three regressors
for each peak (3). These regressors are then applied against each single trial and
used to model each single-trial ERP peak (4).

2.2 Single-Trial Time-Frequency Domain LEP

Figure 2 shows the procedure when generating regressors for LEP in the TF-sMLR
approach using the nonparametric approach based on PCA, while the same number
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Fig. 1 Flowcharts describing the procedures of multiple linear regression (MLR) and multiple
linear regression with dispersion term (MLRd) to estimate the single-trial latency and amplitude of
ERP peaks

Fig. 2 Flowchart describing the procedure developed to generate the regressors for the TFD of
LEP in TF-sMLR using the nonparametric approach based on PCA

of regressors has also been obtained for ERS and ERD. The first three principal
component PCs obtained from the latency variability matrix explained 97.58 %,
95.30 %, and 95.36 % of the total variance for LEP, ERD, and ERS respectively, and
the first three PCs obtained from the frequency variability matrix explained 96.60 %,
93.26 %, and 97.28 % of the total variance for LEP, ERD, and ERS respectively.
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Fig. 3 Single trial SEP extracted by SOBI-R (left panel: Block diagram of cSOBI algorithm; Right
panel: single trial SEP)

2.3 Single Trial SEP Extraction

SEP is the most popular technique in spinal cord monitoring to avoid possible
neurological complication because of its advantages of low cost, easy to use, non-
invasive and higher successful rate. However, SEP monitoring is somewhat more
technically challenging than other evoked potential methods because of its weaker
signal and extremely low SNR, variable waveform and time-consuming acquisition.
Ensemble averaging (EA) is the most widely used method, which unavoidably
requires a longer measurement time. Significant irreversible neurological injury
might have already occurred during the lengthy data collection time. In addition,
there are a lot of features in single trial SEP which were ignored by averaging
a relatively large number of consecutive trials. We developed a new method to
extract SEP with rare channel by using one-unit second-order blind identification
with reference (SOBI-R) algorithm (Fig. 3).

3 Conclusions

While developing these methods of single trial EP/ERPs analysis and the toolbox
STEP v1.0, we have applied them to explore the single-trial dynamics between
these measures, behavioural variables and also measurements of brain activity.
Trial-to-trial variability and the explored relationships provide plentiful biological
information, which helped us understanding the function of the nervous system.
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Brain: Biological Noise-Based Logic

Laszlo B. Kish, Claes G. Granqvist, Sergey M. Bezrukov, and Tamas Horvath

Abstract Neural spikes in the brain form stochastic sequences, i.e., belong to
the class of pulse noises. This stochasticity is a counterintuitive feature because
extracting information—such as the commonly supposed neural information of
mean spike frequency—requires long times for reasonably low error probability.
The mystery could be solved by noise-based logic, wherein randomness has an
important function and allows large speed enhancements for special-purpose tasks,
and the same mechanism is at work for the brain logic version of this concept.

Keywords Neural logic • Deterministic logic • Logic variable • Neural spikes •
Stochastic signal

1 Noise-Based Logic and Brain versus Computer

Noise-based logic (NBL) [1], which has been inspired by the fact that the neural
signals in the brain are stochastic, utilizes independent stochastic processes as well
as their superposition to carry the logic signal. A basic brain logic version [2] of
NBL has been motivated by the following observations:
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(i) The number of neurons in the brain is similar to the number of switching
elements (MOS transistors) in a modern flash drive and about 10 % of those of
a Macbook Air laptop,

(ii) The maximum frequency of neural spikes is about 20 million times less than
the clock frequency, and

(iii) Neural spike sequences are stochastic, which suggests that their information
channel capacity is further limited.

The above facts indicate that the classical suggestions—that neural information
is statistical and is carried by the mean frequency of spikes or their cross-correlation
(between spike trains)—are likely to be false. Instead we propose that

(a) Single neural spikes potentially carry orders of magnitude more information
than a single bit, and

(b) The brain uses a number of special-purpose operations that allow it to achieve
reasonably accurate but not perfect results in a short time and with relatively
small “brain-hardware” and time complexity.

The fact that the brain operates in a different way than a computer can be easily
demonstrated. Figure 1 provides an illustrative example: the lines contain strings
that are identical with the exception of one line where there is a small difference.
The brain detects this different line immediately without reading each character
in every line. A computer, however, would scan the image character-by-character
and then make a comparison accordingly. If we try carry out the analysis in the
computer’s way—i.e., reading and comparing each element in the tasks described
above—we would perform extremely slowly in a large system. Clearly, the brain is
using different schemes than computers and employs various special-purpose, noise-
based operations, and it must do so because its “brute force” abilities are weaker
than those of a laptop.

Fig. 1 Simple demonstration of the difference between the ways of operation for the brain and a
computer
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Two more quick demonstrations of the difference between the brain and a
computer are these: We can try to multiply the first 100 integer numbers and check
how long it takes for a laptop computer, it takes less than a millisecond. And
we can try to memorize the string “saenstnsjrmenHixerLöeailarenecltcsrhel” or
its rearranged version “Hans Liljenström is an excellent researcher”. The second
version is much easier for the brain, while the rearrangement does not matter for the
computer. More precisely, the first version is easier for the computer because of the
lack of blank characters.

2 The Essential Feature of Noise-Based Brain Logic

Due to the limited space, we only illustrate the most essential feature of brain
logic [2], which is that the superposition of orthogonal stochastic spike trains
carries the information, and the identification of orthogonal components in the
superposition is done by coincidence detection (since the neuron is essentially a
coincidence detector). As soon as a spike belonging to a component is detected in the
superposition by comparing it to the reference signal of the component, its existence
is detected, as apparent from Fig. 2. Thus, though the signals are stochastic, no time
averaging is needed for interpretation of the signal, and the error probability decays
exponentially with increasing waiting time.

A

B

AB

AB

AB

Coincidence detector utilizing the reference (basis vector) signals.
Very fast. No statistics/correlations are needed.

Fig. 2 Demonstration why the brain is so fast notwithstanding that neural spikes are stochastic
and occur with low frequency. The existence or non-existence of any of the three orthogonal spike
trains in superposition sequences A and B can be quickly observed by coincidence detection, i.e.,
by neurons
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Fig. 3 Neural circuitry
realizing the XOR logic
function for neural spikes.
Circles signify neurons; the
“C” and “�” inputs are the
excitatory and inhibitory
inputs, respectively

3 Example: String Verification by Brain Logic

Below we show a method on how neurons can solve a string verification problem
very rapidly and with non-zero error probability that decreases exponentially versus
time of operation. The non-brain version of this computational scheme, based on
bipolar random telegraph waves, was described in earlier work [3]. In the present
paper we propose a brain version and provide the neural circuitry for that, as
introduced next.

Suppose that two communicating parts of the brain, called A (Alice) and B (Bob),
must verify pairs of N-long bit strings via a slow communication channel within
the brain. We represent the possible bits in the strings by 2 N partially overlapping
random neural spike sequences (neuro-bits). Via the brain wiring, Alice and Bob
have the ability to access these neuro-bits and use them as a reference signal. Then a
hyperspace neural signal is generated by making the pairwise XOR function of the
N neuro-bit values of the strings at each clock step. For example, comparing only
83 time steps of the hyperspace signals at Alice’s and Bob’s side provide an error
probability of less than 10�25, i.e., a value of the order of the error rate of regular
computer bits [3]. Therefore it is enough to create and communicate a small number
of signal bits through the information channel. It is important to note that this error
probability is independent of the length N of the bit string. Figure 3 shows the neural
circuitry to carry out this protocol.

Generalizing this method for the brain may show how intelligence makes
reasonable decisions based on a very limited amount of information. Furthermore,
our results provide a conceptual explanation why spike transfer via neurons is
usually statistical with less than 100 % success rate.
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Time-Dependent Approximate and Sample
Entropy Measures for Brain Death Diagnosis

Li Ni, Jianting Cao, and Rubin Wang

Abstract To give a more definite criterion using Electroencephalograph (EEG)
approach on brain death determination is vital for both reducing the risks and
preventing medical misdiagnosis. This paper presents several novel adaptive com-
putable entropy methods based on approximate entropy (ApEn) and sample entropy
(SampEn) to monitor the varying symptoms of patients, and to determine the
brain death. The proposed method is a dynamic extension of the standard ApEn
and SampEn by introducing a shifted time window. The main advantages of the
developed dynamic approximate entropy (DApEn) and dynamic sample entropy
(DSampEn) are for real-time computation and practical use. Results from the
analysis of 35 patients (63 recordings) show that the proposed methods can illustrate
effectiveness and well performance in evaluating the brain consciousness states.

Keywords EEG • Brain death • Entropy measures • Real-time computation
• Consciousness

1 Introduction

Brain death is defined as the complete, irreversible and permanent loss of all brain
and brainstem functions [1–4]. Under the definition, however, it’s hard to conduct
brain death judgement precisely for some clinical reasons. Traditional clinical tests
are expensive, time consuming, and even dangerous in some cases (e.g., apnea
test etc.). To avoid above disadvantages, we have proposed a EEG preliminary
examination procedure before the test of spontaneous respiration, which makes the
test easier, more effective and brings less risks [5]. To determine quasi brain death
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(QBD, where quasi- means that it’s a preliminary decision), EEG which is known
to us an important clinical tool for the observing brain signals, has been widely
available in many countries to evaluate the absence of cerebral cortex function [5–7].
Our research aim is to provide several signal processing tools to determine brain
death based on EEG analysis, and help clinicians conduct the diagnosis in the
practical operation.

The complexity of nonlinear physiologic signals has been wildly used in
evaluating the differences between health and disease states [8]. The information
of complexity contained by a physiologic time series directly reflect the state of
such physiologic system [9]. The concept of entropy has been extensively available
for complexity measures [10,11]. Approximate entropy (ApEn) and sample entropy
(SampEn) are effective approaches used in the complexity analysis, and help us
have a better understanding of biological system. Pincus first introduced ApEn [11],
a set of measures of system complexity closely related to entropy, which has well
performed to analyze clinical cardiovascular and other time series. One defect of
ApEn, however, is that its statistics lead to inconsistency. Therefore, Richman and
Moorman has developed SampEn [12] as an improvement, due to ApEn leads to bias
where SampEn does not, which is caused by self matches, so that SampEn agrees
with theory much more closely than ApEn over a broad range of conditions. In our
studies, we will further illustrate the improved accurracy of SampEn statistics for
brain death diagnosis.

This paper presents the time-dependent extensions of ApEn and SampEn, since
the static methods can only deal with a limited length of time series whereas the
analysis of the data of long recording length is common in a biological system. The
analysis on a small segment of the original data may probably cause a larger error
and even a fault (for example, the segment is seriously contaminated by noise),
causing misleadingness. So that the time-dependent method enables us to gain a
more comprehensive and global view into a complex system. On the other hand,
our time-dependent method can decrease the amount of calculation in a simulation
process and improve the efficiency for an analysis on a full data. As a result, the
analysis on the successively changing information contained by a total time series
is available for us.

2 Methods/Models

2.1 Approximate Entropy (ApEn)

For a limited time series of N points, U D Œu1; u2; : : :; uN � is formed by the
m-dimension vectorsXi D Œui ; uiC1; : : :; uiCm�1� andXj D Œuj ; ujC1; : : :; ujCm�1�,
where i; j 	 N �mC1. The max distance betweenXi andXj can be calculated by

dŒXi ; Xj � D maxkD1;2;:::;mŒjuiCk�1 � ujCk�1j�: (1)
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Given a threshold r and each i 	 N �mC 1, let Bm
i be the number of vectors

Xj within r of Xi , and we define

Cm
i .r/ D

Bm
i

N �mC 1 ; where i 	 N �mC 1; (2)

and �m.r/ as mean of Cm
i .r/

�m.r/ D 1

N �mC 1
N�mC1X

iD1
lnCm

i .r/: (3)

Equation (2) is mainly defined to calculate the possibility that for each Xi and Xj,
the two vectors are similar within the threshold r, while Eq. (3) is used to calculate
the average.

By finding �mC1.r/, ApEn.r;m;N / takes the form as

ApEn.m; r;N / D �m.r/ � �mC1.r/: (4)

This is how ApEn is defined to measure the self-similarity of the time series [11].

2.2 Sample Entropy (SampEn)

SampEn deals with same m-dimension vectors Xi and Xj as defined in ApEn. The
distance between two vectors is calculated by Eq. (1). In SampEn, let Ami denotes
the number of vectors Xj within r of Xi times .N � m/�1, for j ranges from 1 to
N �mC 1 and j ¤ i , excluding self-matches. We then define Am as mean of Ami ,
for all 1 	 i 	 N �mC 1, and takes the form as

Am D
N�mC1X

iD1

Ami
N �mC 1: (5)

By increasing the space dimension to mC 1, and also repeat the steps in Eqs. (1)
and (5), we can obtain AmC1. Then SampEn can be obtained by

SampEn.m; r;N/ D � ln

�
AmC1.r/
Am.r/

�
: (6)

This is how SampEn is defined to measure the self-similarity of the time series
[11, 12].
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2.3 Time-Dependent Extensions of ApEn and SampEn

The time-dependent ApEn (DApEn) and time-dependent SampEn (DSampEn) have
been proposed for the analyzing physiologic time series. The values of ApEn or
SampEn are calculated in a set of consecutive time windows marked with their
starting instant t with a length t 0 (selected manually for a sufficient data length and
acceptable consuming time) of the whole data with a length T , respectively. Here,
the expressions of DApEn and DSampEn are then obtained as ApEn.m; r;N /t and
SampEn.m; r;N /t , where the subscript t represents the time windows for ApEn
and SampEn computation. As a result, if the denoted variable t ranges, for example,
from t1 to t2 with a step length 	 (set 	 D t 0), the values of ApEn or SampEn
are obtained respectively in several non-overlapping windows. Then DApEn is
defined by

ApEn.m; r;N /t D �mt .r/ � �mC1t .r/; (7)

while DSampEn is defined by

SampEn.m; r;N/t D � ln

 
AmC1t .r/

Amt .r/

!
: (8)

3 Experiment

In our present study, the EEG experimental protocols were executed in the ICUs
of a hospital. The EEG recording instrument was a portable NEUROSCAN ESI-32
amplifier associated with a note computer. During EEG recording, a total of nine
electrodes were placed on the forehead of the patients. Six channels were placed
at corresponding electrodes (Fp1, Fp2, F3, F4, F7, F8), two electrodes (A1, A2)
were placed on the ears as reference and an additional channel, GND, served as the
ground. Experimental data were obtained from 35 patients (19 male, 16 female) of
ages ranging from 17 to 85 years old; 19 of them were diagnosed to be comatose
and the left were brain deaths. The average length of the EEG recordings from these
patients was about 5 min.

3.1 Results for DApEn and DSampEn

For the real-time application such as monitoring a state of the patient, it is necessary
to introduce time-dependent-based analysis to explore the brain wave activity
changes of the patients over time. As shown in Fig. 1, over the time-coordinate
(0–800 s) of EEG signals, ApEn and SampEn in each second is calculated in a 5 s
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Fig. 1 time-dependent complexity measure for two different cases (a) vs. (b) and a patient has
two states (c)

non-overlapping moving time window. Results of DApEn and DSampEn for a coma
case (a), a quasi-brain-death case (b) and a case that the patient behaved from coma
to quasi-brain-death (c).

Under the same experimental environment, the results of DApEn and DSampEn
are obtained by Eqs. 7 and 8. To obtain a more smooth curve, the moving average
method is applied to decrease the high frequency part by calculating the average of
every ten points. For the same coma case, values of SampEn (green) remain low
over time, while values of ApEn (red) remain slightly higher than that of SampEn.
For the same quasi-brain-death case, SampEn assign a higher value (purple) than
ApEn (blue). This indicates a more powerful capability for DSampEn to classify the
two brain consciousness states than for ApEn. Around 750 s, the huge fluctuation
is caused by the serious contamination of noise. Moreover, the results of DApEn
and DSampEn of the certain patient whose coma state and brain death state are
both recorded are plotted in Fig. 1c. In this case, this patient’s two states are well
discernible because of a huge difference of the values of both DApEn and DSampEn,
however, the results of coma state are slightly different and several data segments
are under the influence of interfering noise.

From all the obtained results, we firmly believe that complexity of the coma
and the brain deaths can be well used for brain consciousness determination. The
plotted time-dependent ApEn or SampEn indicates the state of a patient and such
time-dependent methods also helps monitor the trend of a patient’s state, with which
clinic can carry out emergency medical care before danger. But in this paper the
methods applied to predict are beyond our scope. So, with the help of our time-
dependent algorithm, the on-line EEG preliminary brain death determination system
comes into reality.
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4 Conclusions/Discussions

The obtained results show that the states of coma and brain death are discernible
by calculating the values of ApEn and SampEn, and the proposed time-dependent
method illustrates a feasible solution for practical use of brain death diagnosis,
because our simulation is identical to the clinical results. These methods may be
applied to analysis of other physiologic time series as a reference.
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Preliminary Study on EEG-Based Analysis
of Discomfort Caused by Watching 3D Images

Jie Yin, Jingna Jin, Zhipeng Liu, and Tao Yin

Abstract The objective here is to investigate the effects of 3D images on viewers,
study the relationship between power spectrum features of EEG and discomfort
of the viewers, and try to figure out an objective index of discomfort caused by
watching 3D images. Ten volunteers were divided into two groups, and EEG were
recorded in both groups before and during the experiment of watching 3D and 2D
images. Power spectral density (PSD) and variance for repeated measures were
extracted to analyze the objective index of discomfort. There was an increase in EEG
power spectral density in the frontal and occipital areas during the experiment, and
especially the phenomena in 3D were more obvious than those in 2D. Meanwhile,
statistical methods showed a significant difference between the two experimental
groups. We conclude that the EEG power spectral density is strongly correlated
with visual discomfort. PSD increases while the visual discomfort aggravates. The
results of the EEG PSD are also consistent with the statistical results. Further, the
EEG power spectral density is expected to serve as the objective index for analyzing
the discomfort caused by watching 3D images.

Keywords 3D images • Discomfort • EEG analysis • Power spectral density

1 Introduction

The emergence of three-dimensional television (3D TV) brings the viewer a whole
new experience. This technology not only improves the image quality, but also
changes the figures in images [1]. 3D TV uses the angel difference while people
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observe objects with eyes to identify the distance of objects. Stereopsis is the
perception of depth that is constructed based on the difference between the left and
right retinal images. The brain fuses the two images and, from retinal disparity,
i.e., the distance between corresponding points in these images, the brain extracts
relative depth information. Hence, in comparison to 2D technologies, 3D TV
provides the user with more exact perception of depth and thus the operation can
be performed with higher accuracy and promptness.

Stereoscopic display technology has the strong advantages of stereo and immer-
sion, but if you watch the three-dimensional images for a long time (more than
30 min), some viewers will suffer the uncomfortable symptoms such as visual
fatigue, dizziness, which, to a certain extent, affects the popularity and development
of three-dimensional stereoscopic display technology. Health and safety are the
problems which need to be solved urgently in 3D stereoscopic display technology.
The viewers have to move their eyes and quickly adjust to the focus changes, thus,
this could cause viewers suffering from visual fatigue and other discomfort.

At present, methods to measure the discomfort caused by 3D images could
be clustered as explorative studies, psychophysical scaling, questionnaires, and
electrical signal measurement. Presently, most brain activity research in depth
perception concentrates on fundamental issues, such as identifying the specific
pathways for binocular vision [2, 3].

Explorative studies can be used in the context of stereoscopic displays to
make a fundamental evaluation [4]. Psychophysical scaling enables engineers to
enhance and optimize their systems based on quantified perceptual attributes such
as image quality and visual discomfort. Questionnaires have been widely applied
as a specific means to determine the degree of visual discomfort [5, 6]. In clinical
research, questionnaires are efficient to evaluate the degree of asthenopia due to
visual deficits. Li et al. [7] used background EEG (Electroencephalogram) and
ERP (event related potentials) to measure visual fatigue. The frequency spectrum
of the background EEG signals is known to analyze the state of stress; i.e., high
frequencies starting at˙12 Hz denote stressful situations. Though the P300 latency
of the event related potentials is delayed in stressful situations, they found that
the delay was much stronger for the P700 latency. Results concluded that the
power of the spectrum of the background EEG as well as the delay in the P700
latency depended on binocular parallax and viewing time, which was confirmed
by subjective assessments. Hence, delays in the transmission of visual information
measured with EEG seem to be an appropriate method for visual fatigue. The
measurements on discomfort such as visual fatigue caused by 3D images are still
preliminary.

In this study, we tried to compare the differences of the EEG in 2D and 3D
presenting situations in order to provide a viable method to measure the visual
discomfort. We collected the subjects’ EEG signals, analyzed power spectrum
density of the signals and try to discuss the specialty of EEG in 3D images on the
view of power.



Preliminary Study on EEG-Based Analysis of Discomfort Caused by Watching. . . 331

2 Procedure

2.1 Subjects and Facilities

The subjects participated in the research are ten graduates aged 20–30 years, with
normal vision and health. In order to make comparison, all subjects viewed the
images in 2D and 3D condition respectively.

In the experiment, the facilities are comprised of a 55-in. SAMSUNG 3D
TV 55C8000XF, Blu-ray DVD player, 3D active glasses and two 3D cartoons.
The equipment to collect the EEG is Neuroscan 64 channels platform, SynAmps
amplifier system. We set the sampling rate at 1,000 Hz. Electrode positions were a
subset of the international 10–20 system sites.

2.2 Design and Procedure of the Experiment

In the real experimental scene, we set the viewing distance as 3 m, as shown in
Fig. 1. The procedure of the experiment is following that: First, the experimenters
made introduction to subjects the specific steps and measurements. Second, we
positioned the electrodes on the subjects and collected the EEG signals before

Fig. 1 Real experimental scene of watching 3D images
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presentation, with the eye closed and opened 1 min respectively. Third, subjects
viewed the cartoons without unnecessary movements in 80 min. After the presenta-
tion, subjects could have a short rest for 15 min. Finally, we made a questionnaire
study for the subjects.

2.3 Math

We chose the Classical Power Spectral Density Estimation to analyze the signals
collected. On the MATLAB 2010b platform, we used the periodogram function to
calculate the mean power spectrum. Then, we calculated the percentages of each
band in the total power spectrum and fitted straight lines to search the trends totally.
Finally, both the power spectrum data and percentages are analyzed using ANOVA
(a repeated measures analysis of variance) on SPSS 18.0 platform.

3 Result

We set the EEG in terms of four frequency bands including delta (1–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz). Each band’s power spectrum was
analyzed. From the analysis, the subjects’ discomfort was obvious during the
50–60 min, as shown in Figs. 2, 3, and 4.

In Fig. 2, the PSD ratio of delta band in 3D condition (red line) ascends more
obviously than 2D condition (blue line). Since delta band denotes the excessive
fatigue and lethargy [8], the result concluded that the 3D condition could cause
more obvious discomfort in frontal region.

Fig. 2 Average of PSD ratio
of delta band in FP2 lead
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Fig. 3 Average power spectra of delta band in Oz lead, EEG signals were recorded during
watching 2D image and 3D image respectively

Fig. 4 Power spectra ratio of gamma band, EEG signals were recorded from two groups watching
2D image and 3D image respectively
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In Fig. 3, we segmented the viewing EEG for every 10 min and calculated the
mean power spectrum. Then, the analysis of variance of repeated measure was used
on the SPSS 18.0 platform. The points in horizontal axis (time) 1, 2, 3, 4, 5, 6, 7,
8, 9 represent 0, 10, 20, 30, 40, 50, 60, 70, 80 min respectively. In comparison, the
accelerating rate in 3D condition was more than 2D condition with the alpha band
data in Oz channel. Also, there is significant difference between the two conditions
(p< 0.05).

As shown in Fig. 4, the trends of the channels FPz and FP2 in frontal area are
consistent in 2D and 3D condition. Also, the channels POz, Oz, and O1 in occipital
area are consistent in two conditions, and the changes in 3D condition was more
obvious than 2D condition, both of which maximized after 50 min.

There is study showing that high frequency band such as beta frequencies
(i.e. frequencies between 12 Hz and 30 Hz) are observed in a stressful situation
while low band frequencies are observed when people rest or when they are attentive
[9]. The analysis in gamma band in Fig. 4 revealed that subjects felt physiological
tension and stress after viewing 3D images for a long time.

4 Conclusion

The results above revealed that subjects were likely to suffer fatigue when viewing
3D images for a long time. The difference in EEG between 2D and 3D condition
was more obvious in frontal and occipital areas. This paper concentrated on
the discussion about the ascending trends of alpha band in the FP2 channel
(representative of the frontal area). Besides, this study discussed the power spectral
density in Oz channel. Comparison between the two conditions showed that both the
PSD accelerated and the trend in 3D condition was more obvious than 2D condition.

Mental fatigue refers to people’s functional decline in the daily work or learning
process for a long time mental work [10, 11]. Several years study in mental fatigue
revealed that EEG become the most widespread measure to analyze the changes in
the central nervous system, hailed as the ‘gold standard’ to monitor fatigue.

Using EEG to measure the subjects’ discomfort caused by viewing 3D images
is a new approach, which needs more discussion and research. In this study,
the experimental condition needed to be improved and standardized. Also, the
design of the experiment needed to be further optimized and exclude the individual
differences. Besides, the data could be deeply analyze and process in order to obtain
an objective method to measure the discomfort caused by viewing 3D images. The
goal of the study was to provide some useful reference for measurement of the EEG-
based Analysis of Discomfort Caused by watching 3D images.
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EEG-EMG Analysis on Corticomuscular
Coherence of Middle Finger Flexion Tasks

Tianchen Zhai, Cheng Qi, Rui Xu, Anshuang Fu, Lixin Zhang, Xin Zhao,
Peng Zhou, Hongzhi Qi, Baikun Wan, Xiaoman Cheng, Weijie Wang,
and Dong Ming

Abstract Over the last few years much research has been devoted to investigate the
synchronization between cortical motor and neuromuscular activity as electroen-
cephalogram (EEG) and surface EMG (sEMG), which could elicit a new research
idea in the field of sports medicine and rehabilitation engineering. Corticomuscular
coherence (CMC) is a method combining the brain with muscles, which indicates
the coordination of motor control. In order to examine modulation of the CMC in
diverse motion modes, ten healthy young right-handed adults performed voluntary
finger flexion, simulated finger flexion and motor imagination tasks at short intervals
of 2 s. EEG and sEMG were recorded simultaneously from the primary motor cortex
and the musculusflexorperforatus, respectively. The extreme points of improved
cross-correlation coefficient, and partial directional coherent (PDC) algorithm were
used to compare and analyze the coherences under different motion tasks. We found
that the strongest coherence showed up during stimulation task. The results suggest
clinical reference to build rehabilitative treatment protocol in the future.
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1 Introduction

A groundbreaking research on monkeys found a contralateral synchronous phe-
nomenon of the cortical motor system [1]. The corticomuscular coherence (CMC)
in humans was first systematically studied in 1995. They interpreted that The
synchronized cortical activity is coupled with electromyographic (EEG) in beta rage
(15–30 Hz) for the implication of motor unit synchronization [2]. Since then, the
CMC analysis has been used not only in the function of cortical control of movement
in general population [3], but also in pathological analysis in corticomuscular
diseases [4, 5]. Magnetoencephalographic (MEG) and EEG are often adopted in
corticomuscular studies for their high time resolution. Through a power spectra
analysis, an increasing synchronization occurred in beta-range during the motor
imagery task [6]. Several corticomuscular coherence studies have focused on task-
dependent research. As revealed by Hashimoto, EEG and electromyography (EMG)
correlates strongly during the motor execution (ME) and motor imagery (MI)
tasks in a frequency band of 14–30 Hz [7]. Perez found that the corticomuscular
coherence can increase with a training session in beta frequency band [8]. Johnson
and Shinohara demonstrated that the corticomuscular coherence shows different
intensity in alpha- and beta- frequency rage for different age groups [9]. Another
research shows that concurrent tasks can cause a decreasing of beta band coherence,
which is most likely because of the distractions [10]. Some of the mechanisms
between central nervous system and motor system are as yet unknown.

Neuromuscular activities are always accompanied with the release of corre-
sponding electrophysiological signal. Accordingly, the method of analyzing electro-
physiological signals will be quite effective. In the pre-sent study, we try to reveal
the difference of corticomus-cular interaction during different states of people by
coherence analysis. To this aim, EEG data (C3, C4) and EMG data was sampled
during the subjects’ motor imagery, voluntary movement and stimulated movement
under short intervals.

2 Method

2.1 Subjects and Procedure

Subjects were ten right handed healthy volunteers (age range 23–27 years, mean
24.2˙ 0.8), all of whom were undergraduate and graduate students. All subjects
were free of neurological or psychiatric disorders or medications known to adversely
affect EEG and EMG recording. The purpose of the study and the procedure of
experiment were explained to each subject before preparation for recording. After
this, subjects were seated in a shielded room in a comfortable chair with a straight
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back. Each subject was asked to relax and attempt to achieve three tasks which
included the imagination (I), voluntary (V) and stimulation (S) of middle finger
flexion with a period of 2 s.

2.2 Data Collection

EEG data were recorded from bipolar electrodes placed on or near sites C3, C4
using the International 10–20 system of electrode placement. A ground electrode
was placed on site A1 on the left mastoid and reference electrode on A2 on the right
mastoid. The sampling rate was 16384 Hz. Two FES electrodes which attached
to the subject’s arm outputted pulses in the median nerve under short-interval
stimulated motion mode.

The EEG and sEMG signals were band-pass filtered (EEG: 5–45 Hz, sEMG: 5–
45 Hz). And data were down-sampled into 512 Hz. Additionally, stimulus pulses
generated during stimulation task were removed.

2.3 Preprocessing

Keeping a far distance between EMG collection electrodes and stimulating elec-
trodes can prevent EMG and stimulus signals from alias. Since the FES electrodes
were placed quite close to the data-collection electrodes, the amplitude of EMG can
be less than that of FES pulse with several orders of magnitude. A preprocessing
which can remove the large pulse noise from FES is essential. The two-stage
peak detection algorithm was adopted in the preprocessing of EMG generated
by stimulated movement to eliminate the strong stimulus artifact in the EMG
signal [11, 12].

The two-stage peak detection algorithm aims at wiping off the stimulus artifact
as well as keeps EMG signals intact. The positive and negative peaks of stimulus
signals were detected high level and low level of peaks which were set based on
absolute value of EMG data. Stimulating pulse is a huge wave with voltage spike;
the amplitude and pulse wide are under control of some factors which include output
current, amplifier settings, electrode placement, and stimulus patterns. As the FES
pulse will be removed when detected, the removal can be effective to both single
pulse and waves which meet a given phase relation (see Fig. 1).

2.4 Partial Directed Coherence

To represent the Granger causality on a frequency domain method, partial directed
coherence is proposed [13].
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Fig. 1 An example of the stimulus artifacts removal in a stimulation task. (a) The first figure
shows the communicated sEMG, and the other one is the filtered result. (b) In order to see this
result clearly, this is got from the part surrounded by the red rectangle maximized in (a)

Let xD (x(t))t2 z, when x(t)D (x1(t), � � � , xn(t))0 is a stable n-dimensional time
series that averages zero. Then a short p order VAR model as follows:
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The linear relationship between xj and xi are described at the by the coefficients
matrix Ak kth past lag, and the "(t) is a multivariate Gaussian white noise process.
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Do not like the original granger causality that is double variable time series, partial
directed coherence is based on the treatment of multivariable autoregressive time
series. To describe Granger causality relations, the concept of partial directed
coherence is introduced. So for the autoregressive process of order p partial directed
coherence are defined as follows:

ˇ̌
�i j .!/

ˇ̌ D
ˇ̌
Aij .!/

ˇ̌
rX

k

ˇ̌
Akj .!/

ˇ̌2
(5)

Condition (2) ensures that the denominator is always positive, so the equation can
well define directional coherent. As can be seen from the definition, if and only if
all the coefficients aij(r) are equal to zero, j� i j (!)j for all frequencies ! do not
exist, thus there is no Granger causal connection between xj and xi. This means that
the partial directional coherent j� i j (!)j delivered a measurement for the directed
linear influence in the frequency domain. Also, because Eq. 5 is a normalized form,
therefore partial directional coherent takes value in [0, 1]. It compared the influence
of the past for and the impact of the past with other variables, therefore, for a given
signal source, partial directional correlation analysis can be arranged according to
the intensity of the impact of variables.

3 Result

The result of improved coherence of one subject is showed in Fig. 2. It is difficult to
tell the difference among these three tasks. Then, we did some statistical analysis of
the significant coherence. The frequency bands of EEG signals are divided into three
typical bands: alpha bank (8–14 Hz), beta band (15–30 Hz), gamma (30–40 Hz), and
correlation coefficients in the top fifth percentile were defined as extreme points of
improved cross-correlation coefficient. Statistical analysis was performed to assess
the coherence between EEG and sEMG in different tasks. The number of extreme
points was calculated in each trial and then added across all trials, which could
indicate the coherency level. Figure 3a–c shows the statistical coherence in three
tasks from ten subjects. The histogram from Fig. 3d shows the average across
subjects in different frequency bands and tasks. The EEG-EMG correlation can
be measured through PDC. The EEG signal of C3 and C4 channels are the most
relevant to the hand motion.

EEG from Channel C4 to EMG (EEGC4-EMG) can be presented as the PDC
value, which helps us analyze the coherence between EEG and sEMG.
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Fig. 2 An example of improved coherence of one subject in the three tasks

Fig. 3 (a)–(c) are the mean of point number with significant coherence among ten subjects during
three tasks. (d) The mean of point number with significant coherence among ten subjects during
three tasks
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4 Conclusions

The stimulus removal result from Fig. 1 shows that the stimulus disturbance is large
relative to sEMG, which could damage the coherence result if not removed. The
EMG data without the stimulus disturbance could be seen clearly in maximized
part. In Fig. 2, there is no strong coherence found in Task imagery. The reason
may be that there is no actual movement during this task. So the EMG recorded
was resting EMG without any motor information. It can make sense that EMG was
not correlated with EEG during task I. The conclusion was similar with that found
in prior studies. Second, not every subject showed strong EEG-EMG coherence in
task V and S. This is also the bottleneck of the coherence problem. The selection of
subjects and proper training will be taken into consideration in the future to enlarge
and steady the coherence result.

From the result of Fig. 3d, it indicates the coherence is stronger in Task S than that
in Task V. This may because of the synchronization between EEG and EMG under
the electrical stimulation. But we can’t exclude the influence caused by the stimulus
disturbance that has not been removed overall. The remained stimulus in EEG and
EMG may lead to high EEG-EMG coherence for the sources of the signals which
are the same. Large standard deviation may come from the different degrees of this
stimulus removal. In addition, beta band is the main frequency band for EEG-EMG
coherence during this finger flexion movement because the number of significant
coherence dots is larger than that of alpha and gamma band in every task.

In sum, the experiment with three tasks was designed. Improved coherence
function and PDC was employed. At last, we found the strongest coherence showed
up during stimulation task. This proposed evidence for the therapy of paralysis with
functional electrical stimulation.
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Bursting in Two-Coupled Cells Network
in the Pre-Bötzinger Complex

Lixia Duan, Dandan Yuan, and Xi Chen

Abstract The persistent sodium play an important role in respiratory rhythm gen-
eration in neurons of the pre-Bötzinger complex. We study the bursting patterns and
transition mechanisms in a two-cell network model by both fast/slow decomposition
and two-parameter bifurcation analysis. The results show the transitions of different
types of bursting are not synchronized. This work provide a future understanding of
that how NaP current works in respiratory rhythm generation.

Keywords Respiratory rhythm generation • Pre-Bötzinger complex • Bursting
patterns • Two-cell network • Bifurcation analysis

1 Introduction

A network of oscillatory bursting neurons in the pre-Bötzinger complex (pre-BötC)
of the mammalian brain stem is closely related to inspiratory phase of the respiratory
rhythm generation [11]. Most of these neurons are endowed with a persistent sodium
(NaP) current and a calcium activated nonspecific cationic (CAN) current, which
have been shown potentially contribute to the generation of rhythmicity within the
pre-BötC [4, 9].

The anti-phase and in-phase oscillations are common seen when the coupling
is introduced. Some researches have shown that these multi-phase oscillations are
important rhythm in the pre-BötC [1], but how multi-phasic oscillations depend on
the persistent sodium currents in the pre-BötC is less investigated.

We have studied the pattern-dependent mechanisms with gNa and gK changing
in the two-cell network model in the pre-BötC [5]. In this paper, we investigate the
effects of gNaP on bursting patterns and transition mechanisms. This paper is divided
in four sections. The model is described in Sect. 2. In Sect. 3, the dynamic range of
the firing patterns in two-parameter (gNaP, gCAN)-space is explored. The parameter
space can be divided into four regions according to multi-phasic oscillations.
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The bursting patterns and transition mechanisms between these regions with gNaP

varying are investigated. The conclusions are given in the last section. All the
bifurcation analyses in this paper are performed using XPPAUT [6].

2 Model Description

We use a two-cell network model which is a combination of the single-compartment
model developed by Park and Rubin [10], and Butera [2,3]. The model is described
as follows:

Pvi D .�INaP � ICAN � INa � IK � IL � Isyn�e/=C; (1)

Phi D ".h1.vi / � hi /=�h.vi /; (2)

Pni D .n1.vi / � ni /=�n.vi /; (3)

Psi D ˛s.1 � si /s1.vi / � si =�s; (4)

where i; j D 1; 2 and i ¤ j . C represents the whole cell capacitance. INa,IK and IL
are a fast NaC, delayed-rectifier KC, passive leakage current, respectively. Isyn�e
represents a excitatory synaptic input from other cell in the network. Specifically,
INaP D gNaPmp;1.vi /hi .vi � ENa/; INa D gNam

31.vi /.1 � ni /.vi � ENa/; IK D
gKn

4
i .vi � EK/; IL D gL.vi � EL/; Itonic�e D gtonic�e.vi � Esyn�e/; Isyn�e DP

i¤j
gsyn�esj .vi �Esyn�e/ and ICAN D gCANf .ŒCa�i /.vi � ENa/:

The activation of the CAN current by the calcium concentration is given as
f .ŒCa�i / D .1 C .KCAN=ŒCa�i /

nCAN /�1: The calcium dynamics is described as
dŒCa�i=dt D fm.JERIN � JEROUT /, dli=dt D AKd.1 � li / � AŒCa�i li , in

which JERIN D .LIP3 C PIP3 Œ
IP3ŒCa�i li

.IP3CKl/.ŒCa�iCKa/ �
3
/.ŒCa�ER � ŒCa�i /, JEROUT D

VSERCA
ŒCa�2i

K2
SERCACŒCa�2i and ŒCa�ER D ŒCa�Tot�ŒCa�i

�
: The meaning and values of other

parameters are same as that in [10].

3 Bursting and Pattern Transition Mechanisms

The activity patterns depending on parameters gNaP and gCAN are illustrated, as
shown in Fig. 1a, The horizontal axis represents gNaP and the vertical gCAN . Two-
coupled cells in the pre-BötC can generate two types of oscillations: the in-phase
and anti-phase oscillations [1], so the two-parameter space can be divided into four
regions: region I (silence), region II (in-phase bursting and anti-phase bursting),
region III (in-phase bursting and anti-phase spiking) and region IV (in-phase spiking
and anti-phase spiking). We chose gCAN D 0:7 nS as a representative and explore
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Fig. 1 (a) The firing patterns depending on two parameters gNaP and gCAN . The parameter space
is divided into four parts, that is, region I, region II, region III and region IV. (b) Two-parameter
bifurcation analysis of the fast subsystem .1/i, .3/i and .4/i (i = 1, 2) with h1 as a single slow
variable as gCAN D 0:7 nS. The black curves labeled with fi (i D 1; 2; 3; 4; 5) denote the fold
bifurcations and the purple curve labeled with l denotes saddle-node bifurcation on the limit cycle.
The solid green curve (subh1) and the red curve (subh2) represent the subcritical Andronov-
Hopf bifurcations respectively. The blue line-dot curve (homo) is constituted of the homoclinic
bifurcation pointsHC of limit cycle. The region �1 (in solid black line) and �2 (in solid red line)
represent the slow variable regions of in-phase bursting and anti-phase bursting, respectively

the bursting transition mechanisms between these regions with gNaP changing. The
systems yield a steady calcium concentration ŒCa�1 D ŒCa�2 D 0:02104057mV
with IP3 D 0:8 �M. h1 and h2 are almost equal when gsyn�e D 9 nS [1], we can
consider h1 and h2 as one single slow variable, h1. The two-parameter bifurcation
analysis is shown in Fig. 1b. As gNaP increases, the systems undergo regions I, II, III
and IV. The maximum and minimum values of limit cycles in the full system (1)–
(4), we named “the slow variable regions” �1 and �2 [8], are appended in Fig. 1b.
The bifurcation curves in regions �1 and �2 are different which play an important
role in determining which types of bursting or spiking can occur.

The fast/slow decompositions of fast systems .1/i, .3/i and .4/i (i = 1,2) in the
two-cell network model with gCAN D 0:7 nS are shown in Fig. 2a–d. As the cross
point of h-nullcline (the thick solid blue line) and “S -shaped” curves is under the
bifurcation point F1, the systems exhibit silence in region I, as shown in Fig. 2a.
When gNaP D 4 nS, the cross point exceeds the bifurcation pointF1 and the systems
exhibit bursting or spiking. The fast/slow decomposition of fast systems with respect
to the slow variable h1 is shown in Fig. 2b. The systems exhibit in-phase bursting
and anti-phase bursting in region II, as shown in Fig. 2e, f, respectively. The in-
phase bursting is the “fold/homoclinic” type due to the active state disappears via
homoclinic bifurcation; and the anti-phase bursting is the “fold/fold cycle” type due
to the active state disappears via the fold limit cycle bifurcation (LPC ) [7]. When
gNaP increases to 5 nS, the anti-phase bursting transit into anti-phase spiking but the
in-phase bursting does not, which form the firing patterns in region III. When gNaP

increases to 9 nS, both in-phase and anti-phase bursting transit into spiking, which
are shown in Fig. 2g, h respectively.
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Fig. 2 The fast/slow decompositions of the two-cell network model with different values of gNaP,
here gCAN D 0:7 nS. (a) gNaP D 1 nS, (b) gNaP D 4 nS, (c) gNaP D 5 nS, (d) gNaP D 9 nS. Fi (i D
1; 2; 3; 4; 5) represent the fold bifurcations, subH1 and subH2 two subcritical Andronov-Hopf
bifurcations, LPC the saddle-node bifurcation on the limit cycle, HC homoclinic bifurcation of
the limit cycle. The blue curve represents the h-nullcline. (e) “Fold/homoclinic” (in-phase) bursting
with gNaP D 4 nS. (f) “Fold/fold cycle” (anti-phase) bursting with gNaP D 4 nS. (g) In-phase
spiking with gNaP D 9 nS. (h) Antiphase spiking with gNaP D 9 nS

4 Conclusions

In this paper, the bursting and pattern transition mechanisms with gNaP varying
are concerned in a two-cell network model of the pre-BötC. The parameter space
(gNaP, gCAN) is divide into four regions according to the multi-phasic oscillations.
The “fold/homoclinic” type and “fold/fold cycle” type bursting emerge in two-
coupled cells and the transition mechanisms of these bursting with gNaP changing
are investigated. The results show that the transitions of these two types of bursting
are not synchronized with gNaP increasing. The asynchronism of firing patterns in
the two-cell network of pre-BötC indicaes that the selection of network, which is
important for the generation of respiratory rhythm. The study can also provide a
further understanding of how NaP current working in respiratory network.
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An Electrodiffusive Formalism for Ion
Concentration Dynamics in Excitable Cells
and the Extracellular Space Surrounding Them

Geir Halnes, Ivar Østby, Klas H. Pettersen, Stig W. Omholt,
and Gaute T. Einevoll

Abstract In processes where ionic concentrations vary significantly, the standard
cable equation fails to accurately predict the transmembrane potential. Such pro-
cesses call for a mathematical description able to account for the spatiotemporal
variations in ion concentrations as well as the subsequent effects of these variations
on the membrane potential. We here derive a general electrodiffusive formalism for
consistently modeling the dynamics of ion concentration and the transmembrane
potential in a one-dimensional geometry, including both the intra- and extracellular
domains. Unlike standard cable theory, the electrodiffusive formalism accounts
for diffusive currents and concentration-dependent variation of the longitudinal
resistivities.

Keywords Ion concentrations • Spatiotemporal variations • Membrane
potential • Electrodiffusive formalism • Two-domain model

1 Introduction

In standard cable theory, the effect of ionic diffusion on the net electrical currents is
neglected. Longitudinal resistivities, which in reality depend on ion concentrations,
are assumed to be constant [6,9,12]. These are typically good approximations when
modelling short-term electrical neural activity, as ion concentration typically vary
little at the relevant time scale (<100ms). However, in small intracellular volumes,
such as dendritic spines, the local ion concentration can change quite dramatically
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within a few milliseconds [11], and in slower, macroscopic transport processes,
concentration gradients may build up over time [2, 7]. For processes involving
significant ion concentration gradients, the cable model will fail to give accurate
predictions.

Qian and Sejnowski [11] have previously developed a consistent, electrodiffusive
scheme for modelling the dynamics on vM and ion concentrations [11]. Like the
standard cable model, the electrodiffusive model assumes that transport phenomena
are essentially one-dimensional. Unlike the standard cable model, the electrodiffu-
sive model derived vM from the ion concentration dynamics, accounting for all ionic
movements (membrane fluxes, longitudinal diffusion, and longitudinal electrical
migration), as well as for the concentration-dependent variation of the intracellular
resistivities. An important limitation with this model [11] is that it only includes
the dynamics in the intracellular space (ICS), whereas the extracellular space (ECS)
was assumed to be isopotential and with constant ion concentrations.

Here expand the electrodiffusive formalim [11] to explicitly include both the
ICS and the ECS. The result is a general mathematical framework for consistently
modelling the dynamics of the membrane potential and ion concentrations in the
intra- and extracellular domain. We believe that this framework will be of general
value for the field of neuroscience. In the discussion, we give a few examples of
processes that the formalism can be applied to.

2 Electrodiffusive Formalism

We seek a general mathematical framework for consistently modelling the dynamics
of the membrane potential (vM ) and the concentrations in the ICS (Œk�I ) and ECS
(Œk�E ) of a set (k) of ionic species in a geometry as that depicted in Fig. 1.

2.1 Particle Conservation

We consider the continuity equations for an ion species k with valence zk in domains
I and E:

@jkI .x; t/

@x
C OM

aI
jkM .x; t/C OM

aI
j inkI .x; t/C

@Œk�I .x; t/

@t
D 0 (1)

@jkE.x; t/

@x
� OM
aE

jkM .x; t/C OM

aE
j inkE.x; t/C

@Œk�E.x; t/

@t
D 0; (2)

with the sealed-end boundary conditions (n D I or E):

jkn.0; t/ D jkn.l; t/ D 0: (3)
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jkE (x)

jkl (x)jkl (x-Δx)
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[k]l (x)
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Fig. 1 A two domain-model for ion concentration dynamics in the intra- and extracellular
space. The ICS is represented as a cylindrical cable (I ), coated by ECS (E). The geometry is
specified by three parameters, where aI is the cross section area of the cable, aE is the cross
section area of the ECS and OM is the circumference of the cable. The concentration of ion
species k is denoted Œk�n where n represents domain I or E . Ionic movement is described by the
transmembrane flux density (jkM ) and the longitudinal flux densities due to electrical migration
(j fkn) and diffusion (j dkn)

Here aI and aE are the cross sections of the ICS and ECS, respectively, and OM is
the circumference of the membrane. The longitudinal flux densities are given by the
generalized Nernst-Planck equation (to keep notation short, we skip the functional
arguments .x; t/ from here on):

jkn D �Dk

	2n

@Œk�n

@x
� Dkzk
	2n 

Œk�n
@vn
@x
; (4)

where the first term on the right represents the diffusive flux density (j dkn) and the

last term is the flux density due to ionic migration in the electrical field (j fkn). The
effective diffusion constant D�k D Dk=	

2
n is composed of the diffusion constant

Dk in dilute solutions and the tortuosity factor 	n, which summarizes the hindrance
imposed by the cellular structures [2, 10]. We use  D RT=F , where R is the gas
constant, T the absolute temperature, and F is Faraday’s constant. The formalism
we derive is general to the transmembrane flux density (jkM ), as long as jkM is a
local function of vM , ionic concentrations in I and E , and possibly some additional
local state variables. The formalism can be combined with any external input (j inkn)
which fulfills the constraint:

X

k

zkj
in
kE D �

X

k

zkj
in
kI ; (5)

as we shall explain later.
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With N ion species, Eqs. 1 and 2 (with jkn, jkM and j inkn as described above)
represent a system of 2N C3 variables which are functions of x and t . These are the
2N concentration variables (Œk�n for k D 1; 2; : : :N and n D E; I ), and the three
additional variables (vM ; @vI =@x and @vE=@x) occurring in the expressions for the
flux densities. We now seek to express vM ; @vI =@x and @vE=@x as functions of ionic
concentrations, so that Eqs. 1 and 2 constitute a fully specified (and numerically
solvable) system of equations.

2.2 Voltage Expressions

To reduce the number of independent variables to the 2N state variables (Œk�n) we
use three additional constraints:

vM D aI

CMOM
�I (6)

aI

CMOM
�I D � aE

CMOM
�E: (7)

vM D vI � vE ) @vM
@x
D @vI
@x
� @vE
@x

(8)

Equation 6 is the assumption that the membrane is a parallel plate capacitor. Then
vM is determined by the density of charge on the inside of the membrane, which in
turn is determined by the ionic concentrations:

�n D F
X

k

zkŒk�n C �sn: (9)

For practical purposes, we have included a density of static charges (�sn) in
Eqs. 6 and 7, representing contributions from ions that are not considered in the
conservation equations. If the set Œk�n include all present species of ions, then
�sn D 0.

As a capacitor separates a charge Q from a charge �Q (equal in magnitude,
opposite in sign), the ECS charge density must be also consistent with vM . This is
the second constraint (Eq. 7). To our knowledge, we are the first to make use of it in
an electrodiffusive model. When using Eqs. 6 and 7, we implicitly assume that all
local net charge in the system is stuck on the capacitive membrane (in the Debye-
layers), and that the bulk solutions in the ICS and ECS are electroneutral [4, 8].
In order not to violate Eq. 7, the external input to the system must also be locally
electroneutral (cf. Eq. 5).
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We shall now use Eq. 7 together with the general definition of the transmembrane
potential (Eq. 8) to derive our expressions for @vI =@x and @vE=@x. We start by
summing the particle conservation laws (Eqs. 1 and 2) to obtain:

@jkI

@x
C @jkE

@x
C OM

aI
j inkI C

OM

aE
j inkE C

@Œk�I

@t
C @Œk�E

@t
D 0 (10)

If we multiply this by F zk and take the sum over all ion species, k, the terms
involving j inkn disappear due to Eq. 5 and the terms involving Œk�n disappear due
to Eqs. 7 and 9. We are left with:

aIF
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@jkI

@x
D �aEF
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! aIF
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k

zkjkI D �aEF
X

k

zkjkE:

(11)
The last implication follows from the sealed-end condition (Eq. 3). If the charge
symmetry condition is satisfied at a given time t D 0, Eq. 11 is the condition that it
remains satisfied at all times t .

The flux densities jkn are defined by Eq. 4. We note that Eq. 11 contains the sum
of jkn over all ionic species. These sums can be converted to current densities. For
convenience, we distinguish between the current densities due to diffusion (idn ) and
migration in the electrical field (ifn ), defined as [6]:

idn D �
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FDkzk
	2n 

@Œk�n
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; (12)

and
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X

k

FDkz2k
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@vn
@x
D � 1

rn

@vn
@x
; (13)

where rn denotes the resistivity [6]. With Eqs. 4, 12 and 13, Eq. 11 can be
rewritten as:
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�
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By combining Eq. 8 with Eq. 14 we may finally derive our expressions for the
voltage gradients:
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Here, rn is given by Eq. 13, idn by Eq. 12, and vM by Eqs. 6 and 9. All voltage
terms are thereby expressed in terms of ionic concentrations, and the conservation
equations (Eqs. 1 and 2) represent a fully specified system.

3 Discussion

We presented a one-dimensional, electrodiffusive framework for modeling the
dynamics of the membrane potential (vM ) and the ion concentrations .Œk�n/ of all
included ion species .k/ in an intra- and extracellular domain.

3.1 Implementation

A step-wise procedure of how to use this formalism is a follows:

1. Specify initial conditions for the membrane potential (vM0) and k ion concentra-
tions (Œk�n0) that is to be simulated. The main charge carriers are believed to be
Na+, K+ and Cl-, but other species can be included.

2. Specify the static charge density (�sn) so that Œk�n0 and vM0 are consistent
according to Eqs. 6 and 7.

3. Specify the membrane mechanisms (functions for jkM ) representing ion chan-
nels, ion pumps and other membrane mechanisms relevant for the cell type that
is to be modelled.

4. Specify an external input function that fulfills Eq. 5.
5. Solve the 2N conservation equations (Eqs. 1 and 2), with the boundary condition

in Eq. 3. This can be done numerically by using a spatial discretization method
(e.g., the Matlab-solver pdepe). For each time step, vM , @VI =@x and @VE=@x are
defined algebraically by Eqs. 8, 15 and 16.

3.2 Applications

In the most direct interpretation, the ICS in Fig. 1 represents a single neurite coated
with a thin sheath of ECS. For example, the ICS could represent an axon that
has been removed from the ionic solution and placed in air or oil, so that only
a thin layer of the ionic solution surrounds its membrane [12]. Alternatively, the
ICS could represent an individual axon in e.g., the optical nerve, where axons
are densely packed in bundles, and separated by constrained gaps of extracellular
space [1]. However, cases where it is biologically meaningful to consider the ECS
as a relatively thin coating faithfully following a single cell may be limited. For
most single cell processes, the assumption that aI 
 aE , and that conditions in
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the ECS are constant, may be more reasonable. In this limit the electrodiffusive
formalism reduces to the one-domain (ICS) model presented previously by Qian
and Sejnowski [11].

A geometrical simplification as that in Fig. 1 has also been justified for certain
macroscopic transport processes through a chunk of neural tissue [2,3,5]. Typically,
the ECS comprises about 20 % of the total neural tissue volume, while the remaining
80 % is the ICS of various cells [2]. Assuming that a large number of cells (e.g.,
all cells belonging to a specific species) participate in simultaneous ion exchange
with the ECS, the impact on the ion concentrations in the ICS and ECS may be of
the same order of magnitude. This calls for a two-domain formalism such as ours.
When addressing a macroscopic transport process, the ICS in Fig. 1 does not refer
to a single cell, but the total amount, within the chunk of tissue, of the participatory
cell type. Similarly, ECS refers to the total extracellular volume in the chunk. For the
geometrical parameters aE , aI and OM , one could then use, respectively, the ECS
volume per total tissue volume, the ICS volume per total tissue volume, and the
membrane surface area per total tissue volume. Such a macroscopic interpretation
of Fig. 1 allows for a broader range of applications.

We have previously presented the electrodiffusive formalism with the specific
application to a model of spatial potassium buffering by astrocytes [5]. We refer to
the previous work for a specific, illustrative implementation.
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Dispersion in Excitatory Synaptic Response

Francesco Ventriglia

Abstract Due to its extreme importance for brain activity, the function of the
excitatory synapse is the object of a huge amount of researches investigating the
specific contribution to the synaptic response of fairly all its structural elements.
Here, we utilized a model of hippocampal synapse to describe the random dispersion
of the response evaluated from the dispersion of the amplitude peak of the miniature
Excitatory Post-Synaptic Current (mEPSC). The model is based on time discretized
Langevin Equations which describe the Brownian motion of Glutamate molecules
released by a neurotransmitter vesicle within the synaptic cleft, their collisions
with the structural elements, their binding to post-synaptic receptors and their final
spillover. The value of the amplitude peak of the computed mEPSCs was put in
relationship with different binding probabilities and different number of AMPA
receptors. The dispersion has been used to compute an appropriate value of the
binding probability of Glutamate molecules to post-synaptic receptors.

Keywords Glutamate synapse response • Binding probability • EPSC peak
value • Synapse computer simulation

1 Introduction

Grasping what determines the time-course of the excitatory synapse response, its
variations and its random structure is of basic importance for the understanding
of the brain activity. Experimental data and modeling/computational investigations
made this field more and more clear, but the synaptic function still remains difficult
to understand [2, 3, 5]. In a series of articles (see references in [6]), we studied
a mathematical model of an (hippocampal) excitatory synapse. It is based on
the description of Brownian motion of Glutamate molecules (GLUTs) within the
synaptic cleft by a discrete-time Langevin equations, ruling their space position and
velocity, and of their interaction with the structural elements of the synapse. The
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model is simulated on a parallel computer by using an ultra-fast time scale. In fact,
an extremely short time step was chosen,�tD 40 � 10�15 s. This value permitted an
extremely accurate description of the collisions of GLUTs with synaptic elements.
Here, we will present, discuss and utilize the strange phenomenon of the peak
amplitude dispersion of the synaptic response, that has been brought to light by
the late simulations. This phenomenon occurs when, in a series of simulations in
which all the parameters of the synaptic model assume the same values and only
the seed for the initialization of the Random Number Generator (RNG) changes,
the miniature Excitatory Post-Synaptic Currents (mEPSCs) present amplitude peaks
having different values. We will show that the dispersion of the synaptic response is
reduced when the number of AMPARs is higher.

2 Model of Excitatory Synapse

The geometry of the synaptic cleft model was based on two (concentric) cylinders
with a common height of 20 nm. The entire synaptic cleft was represented by the
larger one, whereas the active synaptic space was simulated by the smaller cylinder,
having bases on the Active Zone (AZ) and on the Post-Synaptic Density (PSD).
Attacked on the top of AZ, a small sphere simulated a releasing neurotransmitter
vesicle. AMPA and NMDA receptors were modeled as small cylinders protruding
in the synaptic cleft from the PSD zone. Two small circles, having the diameter
of the cross-section of a GLUT and located randomly on the exposed face of the
receptor, simulated the binding sites for GLUTs. The annular space, external at the
AZ/PSD synaptic volume till to the boundary of the cleft, was filled with Filaments
[7]. We assumed that at the arrival of the Action Potential (AP), an expanding
fusion pore opened between the vesicle and the synaptic cleft. It was simulated as
a cylinder with a gradually increasing diameter and a fixed height of 12 nm. At the
starting computation time, tD 0, GLUTs contained in the vesicle were distributed
in space according an uniform distribution, and in velocity according to a Maxwell
distribution, and the diameter of the fusion pore was equal to the diameter of the
cross section of a GLUT.

The Brownian motion was described by the Langevin equations:

ri .t C�/ D ri .t/C vi .t/� (1)

vi .t C�/ D vi .t/ � � vi .t/
m

�C
p
2�"�

m
�i (2)

where i is the ith molecule (iD 1 : : : N; N being the total number of Glutamate
molecules), � (�t) is the time step and �i is a random vector with three com-
ponents, each having a Gaussian distribution with mean value �D 0 and standard
deviation ¢D 1. The other parameters are:
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m, the molecular mass; ”, a friction term, which depends on the absolute
temperature: ”D kB �T/D, where kB is the Boltzmann constant, T is the absolute
temperature in Kelvin degrees, and D is the diffusion coefficient of Glutamate;
"D kB �T.

Concerning the GLUT/AMPAR binding we note that the results in experimental
literature were obtained by imposing unrealistic conditions: stationarity of the
Glutamate concentration within the synaptic cleft and a long period, of the order
of milliseconds, for the exposition of receptors to Glutamate [2]. Conversely, when
the neurotransmitters are released by a docked vesicle, the flow of neurotransmitters
within the cleft is much faster and far from stationarity. In the lack of correct
experimental data for the binding rates, we attempted a computation of the binding
by using probabilistic arguments. We searched the unknown value of the binding
probability on the base of a geometrical reasoning and through comparisons of the
peak amplitudes between the computer simulated and the experimentally recorded
mEPSCs. The main hypothesis is based on the experimental observation that the
binding takes place when the GLUT presents a particular arrangement with respect
to the binding site: the ”-carboxyl group of GLUT is in front [1]. To compute
the binding probability we assumed an elongated shape for GLUT and we made
the hypothesis that GLUT binds to the site only when the directions of the long
axis belong to a restricted range of values. By considering a GLUT as a spindle
set at center of a unit sphere, we hypothesized that only the directions contained
within a (unknown) spherical cone, could produce the binding. Thus, the binding
probability was computed as the ratio between the volume of the spherical cone and
that of the unit sphere and, by varying the angle of the cone, we observed the effect
of different binding probabilities on the synaptic response. In all our simulations
only the AMPARs contributions have been considered for the computation of the
mEPSC, since under normal conditions the ionic channels of NMDARs cannot
convey currents. Thus, NMDARs were considered only as competitors of AMPARs
for GLUTs binding.

The discretized Langevin equations were implemented in a parallel FORTRAN
program by using MPI (message passing interface) routines. The paths of all the
GLUTs were computed up to the occurrence of one of the following events: a re-
uptake, a receptor binding or the spillover. The program was run on a computer
based on a cluster of workstations. Single and double binding times between GLUTs
and AMPARs/NMDARs were recorded in two matrices and used for the subsequent
computation of the mEPSC by a program which produced the random transitions
to/from open and close states and to the single binding states.

3 Simulation and Results

The new computer simulations investigated more thoroughly the phenomenon of
the dispersion of the synaptic response. We analyzed the results obtained with
three values for the binding probability, BP: 0.00496, 0.00874, 0.01360 (related to
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Table 1 The first column,
Case- with Low and High, is
related to the number of
AMPARs

Case Mean value Standard deviation CV

Low – 18ı �10.26 2.01 19.58
High – 18ı �18.09 3.68 20.35
Low – 24ı �17.92 1.79 10.01
High – 24ı �34.85 2.31 6.62
Low – 30ı �23.56 1.42 6.03
High – 30ı �46.47 1.07 2.31

Second column -Mean value- is related to the amplitude
peaks of the computed mEPSCs. Standard deviation and
CV constitute the next two columns

Spherical Segment Angle: 18ı, 24ı, 30ı, respectively), and, for each probability
value, two values for the number of AMPARs, one normal and the other very high:
(A) 55 and (B) 154. (The respective values for NMDARs were 13 and 18.) For each
couple (BP, AMPARs Number), six simulations with different GNR seeds were
accomplished, for a total of 36 computer simulations. In all these simulations the
vesicle was located at X0D 0 and released 775 GLUTs. The total height of AMPARs
(and NMDARs) was 17 nm, while the height of the portion of receptor protruding
in the synaptic cleft was 6 nm. The relevant statistical values of the amplitude peaks
of the computed mEPSCs are reported in Table 1.

4 Discussion

The phenomenon of the peak amplitude dispersion of the synaptic response shown
by some of our previous computer simulations has been analyzed in more detail in
this article to ascertain its origins. The main aim was to obtain information about the
binding probability value (of GLUTs to AMPA receptors) that better approximate
the biological reality. Several series of computer simulations have been carried out.
In each series all the parameters of the synaptic model remain fixed and only the
seed for the initialization of the RNG varied. From the results in Table 1 we could
note that the dispersion is more marked in series in which the model parameters
lead to amplitude peaks with a lower mean (absolute) value. The selection of a low
value for the binding probability seems to be the main cause of this phenomenon. In
some respects, also the presence of a lower number of AMPA receptors in the Post
Synaptic Density contributes to extend the dispersion. Hence, the large variation of
the mEPSC peak amplitude shown in these particular conditions is a symptom of
the instability of the synaptic response due to too low binding probability values.
We concluded that the best value for an estimate of the binding probability is that
related to the spherical cone angle of 30ı, i.e. BPD 0.01360, since it produced the
lower CV (dispersion: Standard deviation/Mean).

The relationship between the mEPSC peak amplitude and the synaptic dispersion
presents other more interesting aspects, inviting to theoretical speculations. In fact,
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when the binding probability value is high and the number of AMPARs is larger,
then the dispersion is reduced until to disappear. This fact induces to think to the
effects produced on the mEPSCs by the increasing of the AMPARs number that
occurs in consequence of the Long-Term Potentiation process [4]. If the reduction
of the dispersion in consequence of the increasing of the number of the AMPA
receptors is a true, physiological aspect of the synaptic response, then learning and
memory, which seem to be based on the LTP phenomenon, should be considered in
a different prospective.
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Research on the Neural Energy Coding

Rubin Wang and Ziyin Wang

Abstract In this paper, we investigated the energy distribution caused by neural
activity of the biological neural network and the neural energy coding expressed
by the network energy flow. The numerical results show that the energy coding
can reflect the continuous change of cerebral blood flow in the cerebral cortex,
and the positive and negative energy flow reflect the energy supply in cerebral
blood flow and the consumption of energy in the neuronal population. Since the
neuronal network is based on electrophysiological experiment, nervous energy
coding proposed is a novel neuronal coding in neural information processing, which
coding pattern cannot be reproduced by the existing neural model and neural coding
theory. There is a unique corresponding relation between synchronous oscillation
and energy flow in the neural network. Therefore, neuronal energy coding proposed
can provide the basis for the establishment and analysis of global neural coding in
the brain.

Keywords Neural energy • Biological neural networks • Cerebral blood flow •
Neural information processing • Synchronous oscillations

1 Instruction

Neural coding and decoding is the most challenging and important field in neuro-
science [1, 2]. However, there is no effective theory of neural coding and decoding
to investigate the global behavior of brain activity, many problems in Neural coding
and decoding are difficult to resolve [3, 4, 5, 6, 15]. The neural activity and
operations of the brain subordinated to the principle of depleting minimized energy
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and maximizing the efficiency of signal transmission [6]. Therefore, in neural
information processing, how nervous energy is transformed to control the operation
of the brain and information coding ? This is our motivation to explore nervous
energy.

However, up to now, the research on energy consumption in the nervous system
is mainly limited to the experimental data [7–12]. Hence to explore regular pattern
hided in the phenomenon, the quantitative relationship between the nerve signal
transmission and energy consumption is important.

In this paper, based on the above theoretical model and results, we investigate
the energy flow in the network composed of the neuronal populations subjected to
various stimulations, and the energy coding when the energy changes with respect
to time.

2 Neuronal Networks with Mutual Coupling

In order to simulate the energy neuron network coding, we adopt a novel biophysical
model of neuron proposed and researched in [13]. Thus a fully connected biological
neural network can be researched, shown in Fig. 1, where a neuron couple with all
other neurons. Therefore, The following neural network structure is strictly defined
in the basis of neurobiology [13, 14].

The global connected neural network is composed of 15 neurons in Fig. 1. To
understand the energy coding mode in the neural network subject to stimulation,
the global coupled neural network is only composed of 15 neurons in Fig. 3. The
neurons are coupled with bidirectional asymmetry coupling strengths. For example,
the 1th neuron is coupled to the 2th neuron with coupling strength 0.15, and the 2th

Fig. 1 Connection structure
of neural networks
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neuron is coupled to 1th neuron with coupling strength 0.22. A synaptic coupling
strength between neurons is uniformly distributed in the statistical sense [13], we
assume that a synaptic coupling strength is uniformly distributed in [0.1 0.3].

Let coupling strength matrix: wi,js coupling strength when the ith is coupled to
jth.

The network operate as follows:

Sj .t/ D W �Q.t � �/T (1)

Im;j .t/ D

8
ˆ̂̂
<

ˆ̂̂
:

im1 C
nX

jD1

�
i0m .j � 1/ sin

�
!m .j � 1/

�
tj � tj�1

��	

Ci0m.n/ sin .!m.n/ .t � tn// if Sj .t/ > th

im1 C i0m.n/ sin .!m.n/ .t � tn// if Sj .t/ < th

(2)

we treat Im,j(t) as the stimulation of the neuron, then we can obtain action potential
and power consumed during action potential from the model proposed by [18]

where Sj(t) is the sum of the stimulations for the jth neuron at time t;
Q(t� �)D [Q1(t� �), Q2(t� �), : : : , Qj(t� �), : : : Qn(t� �)] indicates firing states
of the neurons, which take value 0 at resting and 1 at firing.

3 Energy Coding Under Different Stimulus

3.1 Instantaneous Stimulus

We assume that Topological relationships between neurons are identical for a
network fully connected, stimulation the neurons receiving stimulation may be an
arbitrary position in the network. We assume that the 1th, 2th, 3th neurons stimu-
lated at the same time, set it the first neuronal group. Stimulating time is 0.1 ms,
stimulating voltage is 40 mV. Then, the stimulus is immediately disconnected.
The coupling strength between neurons is uniformly distributed in [0.1 0.3], the
transform delay is 2 ms, refractory period is set to 0.5 ms.

With the models and parameters mentioned above, the numerical simulation
result can be achieve. Figure 2 shows the power consumed by the overall neural
networked.

Figure 2 display that the transient response of energy network is 6 ms when the
first neuronal group subject to the initial stimulus, and then the total energy of the
neural network periodically change. This reflect the activity patterns of the neuronal
population. In other words, the potential variation of the neural network can be
estimated by using the total energy consumed.
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Fig. 2 The total power during the network operation

3.2 Intermittent Stimulation

Instantaneous stimulation is actually a special intermittent stimulation when inter-
mittent time is infinite length. Therefore, intermittent stimulation and transient
stimulation have the same regular pattern in some cases. Figure 3a display that the
total energy of the neural network subject to intermittent stimulation. The neuronal
network first operate at time 0, the 1th and 2th neurons are intermittently stimulated
every 30 s, the stimulation time is 0.1 ms, the stimulation intensity is 40 mV, the
intermittent time is 30 ms.

The flow of energy bring into a stable periodic stage after 10 ms (Fig. 3). An
instantaneous stimulus is applied to the 1th and 2th neurons in the network at the
time of 30 ms again, where the stimulation intensity and time are the same as the
first time. The energy flow changes pattern from a stable phase to another stable
periodic phase after the instantaneous phase.

According to Hebbian plasticity principle [16, 17], neurons will reduce sen-
sitivity to stimuli when the cortical neural network is repetitively subject to the
same stimulus, which result in the reduced demand of the cerebral blood flow.
Compared to the energy encoding 30 ms later, the energy encoding contain learning
information under the initial instantaneous stimulus, and the energy coding is
used to maintain and store the learning information after 30 ms. In other words,
the information of the initial transient stimulation is preserved by intermittent
stimulation, so it is a more stable learning process.
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4 Conclusions

We can conclude that energy neural coding possess five properties as follows:

1. Nervous energy coding based on a neuronal network has only correspondence
between the membrane potential with nervous energy. Therefore it is very
possible that the nervous energy can encode the neural information.

2. The nerve energy encoding can automatically assign the nervous energy corre-
sponding to each frequency of synchronous oscillations in accordance with the
allocation ratio in the total energy of the network, and separate each neuronal
group from the network.

3. The neural energy can be superimposed. This facilitates modeling and com-
putational analysis for high-dimensional nonlinear complex neural network
composed of the large-scale neurons.

4. The nervous energy can be a carrier relating neural information with cerebral
blood flow.

5. The neural energy coding theory can ignore the membrane potential of single
neuron, and determine the working status of the brain by the energy in the local
network.
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Neural Field Dynamics and the Development
of the Cerebral Cortex

J.J. Wright and P.D. Bourke

Abstract As neuron precursors divide and generate action potentials, they
concurrently undergo apoptosis. We propose that the ensemble of neurons
competitively selected is that which generates the maximum synchrony of action
potentials. Consequently, local intracortical neurons and patchy connections emerge
in “ultra-small” world configurations, forming clearly defined macrocolumns and
patch connections in hexagonal array where patch connections have relatively
long axons, and less defined structures elsewhere in the cortex. Extension of
the competitive principle to local synaptic level explains ante-natal organisation
of response properties in primary visual cortex, including effects of stimulus
orientation, angle relative to motion, length, and speed, on apparent orientation
preference. Post-natal Hebbian consolidation of connections leads to the mature
configuration. By implication, superimposed spatio-temporal images, rather than
categorical feature responses, form the substrate of cortical information processing.

Keywords Macrocolumns • Cortical patch connections • Cortical embryogenesis
• Cortical apoptosis • Synchronous oscillation • Neural small worlds
• V1 organization • Cortical visual responses • Cortical feature responses
• Spatio-temporal neural images

1 Introduction

During embryogenesis cells that become the neurons of the cerebral cortex divide
and migrate to their mature positions while undergoing apoptosis –the cell death
of a substantial fraction of their number – ultimately forming minicolumns in
their radial disposition, while in their surface disposition they are said to form
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Fig. 1 Left: idealized diagram of organization in V1 of OP, 0–180ı , about singularities, and with
marginal continuity, within an hexagonal framework composed of superficial patch connections.
Right: experimental data [18]. The black areas are patchy synaptic connections

macrocolumns – periodic structures that are most apparent in the primary visual
(V1) and some parts of somatosensory (S1) cortices, are each about 300 �m across,
and are roughly delineated by superficial patchy connections on the perimeter of
each column. Within each column, individual cells in V1 respond with an orientation
preference (OP) to visual lines of differing orientation [1]. The surface organization
of OP exhibits significant hexagonal rotational periodicity, in which each roughly
delineated macro- columnar unit exhibits all values of OP arrayed around a pin-
wheel [2, 3]. Varying chirality and orientation of the pinwheels achieves continuity
of OP at the columnar margins, and patchy connections link areas of similar OP
together, “like to like” (Fig. 1).

Hubel [4], in his Nobel address, hailed Mountcastle’s original proposal that
columns formed fundamental building blocks of cortex as “Surely the most
important contribution to understanding of cerebral cortex since Ramon y Cajal”.
Enthusiasm for the explanatory power of the concept has since waned. Horton and
Adams [5] described the cortical column as “a structure without a function”, and
terminology describing them has become confused [6].

Difficulties arise partly because columnar structure is not clearly apparent outside
V1 and S1, and because there is marked interspecies variation in definition of
columns even in V1, to the point of apparent absence in small animals. Attempts to
model the emergence of columnar organization of OP have also struck considerable
difficulty. In some species there is clear emergence of structure ante-natally, rather
than post-natally, yet models of the macrocolumn are generally dependent on
response to visual features [7]. Which “features” are regarded as fundamental is
also controversial, and how this relates to signal processing is problematic.
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We have proposed a theory of emergence of cortical columns and their functional
significance [8], which differs considerably from all other explanations. We base our
explanation on two findings: (1) in vitro, embryonic neurons fire synchronously and
self-organize into “small worlds” [9] and (2) synchronous firing of neurons prevents
their apoptosis [10].

We assume synchrony and cell survival are causally linked – perhaps because
some collective pumping action allows a synchronously coupled assembly of cells
to increase their uptake of one or more vital metabolic substances. Therefore the
emergent cell network would be that selection of cell types, and their arrangement,
that maximizes the amplitude of synchrony for a given limit of total metabolic
supply. The consequences of these assumptions are as follows.

2 Selection for “Small-World” Connectivity

Our arguments are based upon properties demonstrated in simulations of cortical
gamma synchrony, and travelling waves [11, 12]. Closely situated cells are able to
exchange synchronous pulses with smaller phase difference of afferent and efferent
pulses. Therefore minimization of the total axonal lengths of their interconnections
maximises synchrony magnitude (and uptake) while minimizing axonal metabolic
cost.

In the dilute network of neuronal connections, the metric distance of soma
separation is proportional to “degree of separation” in the topological sense.
Therefore maximization of synchrony, by minimizing axonal lengths, selects a
neural network with “ultra-small world” connectivity. This requires, in turn, that
the average density of synaptic connectivity decline with distance as a power
function [13].

A power function is the sum of exponential functions, and pre-synaptic densities
of cortical neurons decline roughly exponentially with distance from the cell body
[14]. Therefore small-world connectivity can be approximated from populations of
neurons with differing characteristic ranges.

3 Local Variability of Axonal Ranges in the Selected
Population

Equal approximations to a power function can be achieved by combining different
relative densities of a variety of cell types, each type characterised by axonal length.
Simplifying to only two types, Figures 2 and 3 show where long/short axon length is
large (	ˇ�	˛) approximation of a power curve requires the ratio of local neurons
to patch neurons be large (Nˇ�N˛).
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Fig. 2 Equal approximations to a power function can be achieved with a variety of combinations
of cell densities and axonal ranges. Colour margins show fit-residual isocontours

4 Resolution into Macrocolumns

It can be shown that, where J is the magnitude of synchronous oscillation, and q,r
are positions of excitatory neurons in the cortex,

J /
Z

q

Z

r

�
N˛	˛e

�	˛ j q�rj CNˇ	ˇe�	ˇj q�rj� dqdr

Therefore synchrony is maximized by selection of that ensemble of cells in which
the cells with relatively short but dense axons are closely situated to each other. Such
packing forces the cells with long-range axons to form connections at longer range,
enforcing a “patchy” connection system. Arrangement in an hexagonal patchwork
optimizes this synchrony-facilitating orderliness, but a clearly demarcated arrange-
ment of this type is only possible where
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Fig. 3 Cell densities and axonal ranges of local and patch neurons vary approximately inversely
for equivalent fits to a power function obtained along the lowest-residual iso-contour in Fig. 2.
Intersingularity distance (cp Fig. 4) is comparatively invariant over this range

local cells

local cells C patch cells
D Nˇ

N˛ CNˇ �
�

2
p
3

This follows simply from the ratio of area of a circle to a hexagon, when local
cells are enclosed within an hexagonal patch-connection frame. Therefore the
absence of a clearly columnar arrangement does not imply a loss of the small
world organization, nor does it deny that both short-range local connections, and
longer-range functional connections are present – the distinct types are merely more
entangled with each other (See Fig. 4).

Thus, variation of the clarity of demarcation of columns in differing cortical
areas, and between species, need not reflect major differences in function.

5 A Mobius Map Within Macrocolumns

Restated in physical terms, the maximization of J requires the populations of cells
of differing axonal range be geometrically arranged so as to permit maximum
resonance throughout the system. Since the amplitude of synchronous oscillation
declines with distance of separation of cell bodies, then the system of patch
connections and the local neurons within each macrocolumn must achieve a 1:1
connection system, promoting resonance between cells in each macrocolumn, and
the surrounding patch system, and thus forming an input map of the cortical
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Fig. 4 Variation of the structure of macrocolumns at extremes of the axonal lengths and cell
numbers in Fig. 3. Top: With large long/short axon length ratio, clearly resolved hexagonal
organization emerges, with long (red) patch connections linking “like to like”, and highly clustered
short intracortical axons (blue). Bottom: near-complete loss of resolution when long/short axon
ratio approaches 1

surround, projected onto each macrocolumn. If it is additionally assumed that the
competition for crucial resources is not simply between individual neurons, but
also between closely situated pre-synapses arising from the same cell, then “winner
take all” competition between closely situated synaptic connections would develop,
and at equilibrium each cell would then require high firing correlation with some
of its neighbors, and low firing correlation with other neighbors – and be corre-
spondingly strongly linked to some neighbors by “saturated” synapses, and weakly
to others by “sensitive” synapses. This intra-cellular constraint, along with the
requirement to form a 1:1 map of connections between each macrocolumn and its
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Fig. 5 Maximization of synchrony with local synaptic competition leads to Mobius ordering,
within macrocolumns. Left: Equilibrium disposition of saturated (solid) and sensitive (dashed)
synapses in the developing neocortex. Right: “Like to like” saturated patchy connections map
the same part of the surrounding cortical field onto homologous cell positions on the Möbius
configuration

patchy-connection surround, can be met if the connections within the macrocolumn
form a closed system analogous to a Mobius strip. Figure 5 (left) shows how a
dynamic equilibrium of synaptic connections can thus be struck. The mapping of
the patch system onto the macrocolumn can be expressed as

P
�ˇ̌

R � Cj

ˇ̌
; #
�! pŒ2�

�ˇ̌
r � Cj

ˇ̌
;˙# C '�

where P is the plane of the patchy connections, and R are cortical positions
with reference to these, while p and r are corresponding plane and positions
within a macrocolumn. The square bracketed superscript [2] indicates the map’s
resemblance, if viewed from a third dimension, to a 2:1 map formed by squaring
a complex vector. Cj is the origin of both P and p[2] for the j � th local map, and
corresponds to the position of the OP singularity in that macrocolumn. ª is the polar
angle of R, chirality of the local map is indicated by˙ª, and ® is the orientation of
the local map relative to the global map.

Figure 5 (right) shows further requirements for synchrony maximization. On
the input map, radial lines on the surrounding cortex must map about a centre,
analogous to an OP singularity. The Mobius strip-like folding of connections means
that “OP” from 0 to 180ı is mapped 0 to 360ı about the singularity – concealing
a superposition of diametrically opposite lines projected from the cortex to the
macrocolumn. To further increase resonance, patch connections must link “like to
like” OP in forming multiple 1:1 maps, and adjacent macrocolumns must also be so
arranged as to increase resonance by linking “like to like” map positions on adjacent
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macrocolumns, as closely as possible within a roughly hexagonal framework. Thus,
the properties of V1 sketched in Fig. 1 are reproduced.

These considerations apply to the development of the cortex prior to the
beginning of vision at birth.

6 Consequences of Eye-Opening and Development
of Responses to Stimuli

The dynamic equilibrium of synaptic activity described above presumably gives
rise to some persistence of the structure on Hebbian principles, but subsequent to
birth, inputs from the direct visual pathway must produce strong perturbations from
equilibrium, and overwriting of the Mobius structure by later learning.

To fire rapidly in the mature brain, individual neurons in V1 require direct visual
input from their receptive fields, in summation with “contextual” signals transferred
laterally by the patch system – and on firing, they give rise to further, laterally
spreading, contextual signals, forming travelling waves.

The transfer of these waves from the wider cortex to each macrocolumn,
considered as transfer to a Mobius-like map, is then a mapping with time lags of
an image, O, given by

O .P; t/! O

�
pŒ2�; t C jR � rj

�

�

where v is the wave speed.
This permits the simulation of V1 neuron responses to visual moving lines, by

calculating the corollary inputs reaching a macrocolumn at the time the direct visual
input reaches the same macrocolumn, as shown in Fig. 6.

The results match the experimental data of Basole et al. [15] – data considered
incompatible with earlier notions of V1 neuron OP specificity.

Fig. 6 In V1, lateral transmission via patchy connections, plus input from direct visual pathway,
summates above threshold for action potentials. Results for a line moving from left to right,
and oriented at 45ı to the line of passage, with stimulus speed/wave speed, left to right, 0.1, 0.5,
1.0, 1.5
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Fig. 7 Simulation results: change in apparent OP, and standard error of the estimate, as a function
of bar speed to wave speed, for lines at different orientations to their directions of motion. Bar
length 6 macrocolumn diameters

In the case of a visual line of given length, the selective neuron responses vary
not only with line orientation, but also with its inclination to the direction of travel,
and speed, as shown in Fig. 7. Notably, the “classic” property of elementary OP is
seen only for low stimulus speeds.

The results of Basole et al. have been otherwise explained by assuming V1 neu-
rons show specific tuning to combinations of object orientation, spatial frequency
and temporal frequency [16]. We have shown that Issa et al.’s description is
equivalent to the effect of Hebbian learning upon the properties demonstrated in
our simulation. Overwriting of the pre-natal Mobius maps by post-natal Hebbian
learning also explains the consolidation of “like to like” patchy connections, and
the continuity and completeness required by dimension-reduction models [7] of
response maps.
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Fig. 8 Inter-areal interactions. Right: a complex of macrocolumns in V1, three of which are
concurrently activated by a pair of moving visual lines. Left: A column in a higher visual area,
which is co-resonant at equilibrium with the lower-centre complex. Transient signals from the
lower to the higher system, result in superposition of signals representing different positions on,
and times of passage of, the moving lines

7 Interactions Between Cortical Areas

The same principles of self-organization should apply widely in the cortex. If so,
then cortical areas self-organized into patchy connections and macrocolumns could
also interact with other cortical areas via cortico-cortical fibers. Favorov and Kursun
[17] have demonstrated the potential of neocortical layer 4 to permit near-linear
superposition of impulses relayed via cortico-cortical fibers. Co-resonance among
sets of macrocolumns at multiple scales would thus be possible. With such an ante-
natal organization, after birth, signals from the environment could then produce
complex contextual superpositions of waves relayed between groups of Mobius
maps.

One such instance is modeled in Fig. 8, showing how neuron responses to com-
pound aspects of moving visual stimuli could arise. Similarly, return transmission
from higher to lower cortical areas might mediate some aspects of attention.

8 Conclusions

Our account emphasizes the importance of cooperative and competitive processes
in embryonic development, in addition to genetically programmed developmental
cascades. It explains diverse aspects of neural architecture and function in a
unified way, including the ante-natal emergence of functional structures in V1,
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the origin of macrocolumns and superficial patch connections, their tendency to
hexagonal periodicity, their interareal and interspecies variation, and the response
properties of V1 neurons, including the post-natal abnormalities produced by visual
deprivation. The model can also be combined with models utilizing Turing pattern
formation, to account for the origin of OD columns. The principles may (with
appropriate adjustment for local cell forms and the organization of input pathways)
be applicable to other sensory modes, and even motor cortex. At the time of writing
preliminary evidence has been obtained of the existence of Mobius-like organization
in macrocolumns of the sensorimotor cortex.

As well as the capacity to explain empirical data, there are interesting implica-
tions for theories of neural information processing. The ultra-small-world configura-
tion implies that the organization is near a maximum for speed and energy-efficiency
of processing. Synaptic storage capacity can reach theoretical maximum entropy,
under the assumption that available metabolic resources are sufficient to sustain
only 50 % of synapses at maximum saturation. The modular organization offers a
potential for the rapid expansion of the cerebral cortex seen in its evolution.

Perhaps most importantly, the model indicates that brain function may be built
upon a primary, ab initio, spatial organization that can act as a reference framework
for sensory inputs from the environment as well as for internal dynamics of the
Freeman type. Not abstract features, but superimposed spatio-temporal images, may
form the kernel of cerebral information processing.

Dedicated to Adrienne Edith Wright.
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Signal Processing by Ephaptic Coupling
of Hodgkin-Huxley Axons

Masashi Yamada, Hideaki Konno, and Nobuyuki Takahashi

Abstract We examined a signal processing on Hodgkin-Huxley model repeats
under ephaptic coupling resembling the early stage of axon bundles in auditory
nerve. We show impulse conduction synchronizations in axons partially myelinated
by an oligodendrocyte with propagation time difference has a potential to select
functionally maturating axons. We discuss the possible feedback process for
maintaining parallel-aligned axons corresponding to the signal flow.

Keywords Signal processing • Ephaptic coupling • Axon bundle • Hodgkin-
Huxley model • Impulse conduction • Myelinated axon • Functional maturation •
Auditory nerve

1 Introduction: Parallel Axons Myelination in Maturation
Process

Ephaptic coupling of parallel axons can underlie functional activity in the brain
through the synchronization of action potentials [1] with adjustment of signal
conduction [2]. Little evidence has been found for the ephaptic synchronization in
mammalian axons. However, the local field potential (LFP) provides shifts in the
timing of action potential generation [3]. We expect inevitable interaction between
the axons partially encapsulated in an oligodendrocyte, so that parallel alignment of
axons in auditory and optic nerve, for example, is maintained in the maturation
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process with precise relationships between soma positions and axon terminal
positions holding the sensory locational information. The process is believed to
progress depending on the signal flowing in the axon.

We examined a special signal processing on Hodgkin-Huxley (HH) model
repeats under ephaptic coupling corresponding to the early stage of axon bundles.
We show impulse synchronization similar to those found previously [1] in axons
partially myelinated by an oligodendrocyte with propagation time difference has a
potential to select functionally maturating axons. We discuss the possible feedback
process for maintaining parallel-aligned axons corresponding to the signal flow in
the maturation processes.

2 Target Material: Auditory Cochlear Axons

Auditory cochlear axons show loosely packed parallel alignment [4]. The auditory
nerve starting from the spiral ganglion changes its myelin from schwann cell to
oligodendrocyte at the schwann-glial border. The central axon bifurcates in the
cochlear nucleus to form an ascending branch to anteroventral cochlear nucleus
and a descending branch to dorsal cochlear nucleus [5]. We focus in the axon path
from the main branch point to the terminal in the anteroventral cochlear nucleus.
The length is approximately 2 mm.

Our discussion is limited to the prenatal period, in which the developments
in auditory systems are progressing but not completed [6]. We assume that
the myelin is partially constructed and the partial myelin is served by an
oligodendrocyte on the adjacent parallel axons.

3 Method/Models: Simulation of Electrostatic Coupled HH
Model Repeats

A ladder-like circuit consisting of tandem repeats of HH active nodes and intracel-
lular resistances was analyzed computational. The HH nodes represent the node of
Ranvier and or the partially myelinated part having HH activity. The intracellular
resistances are models of the myelinated axons between the active nodes. The
intracellular resistances were calculated as homogeneous cylindrical conductor of
the axon diameter with the internal resistivity 100� cm. Extra-cellular resistances
were set for the direct connecting points between HH nodes of adjacent axons A and
B interacting extracellular because of the partial myelination as partial encapsulation
for the both HH nodes of adjacent axons. The values of extracellular resistances are
chosen by trial. HH equations are same as the original [7] changed for the sign of the
membrane potential. HH parameters for giant nerve fiber [7] are scaled with a factor
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12 [8] for representing the short absolute refractory period �1 ms for mammalian
auditory nerve fibers. The number of HH nodes representing the partial myelin is 5
with node length 100 �m and internode length 50 �m, total 700 �m for each axon
(diameters daD 0.8 �m and dbD 2.0 �m).

4 Results: Impulse Propagation Synchronization in Adjacent
Axons

Synchronizations of action potentials in the interacting two axons were simulated
depending on the extracellular resistances through extracellular potential differences
between HH active nodes as same as the previous works [1, 2].

Figure 1 shows the synchronization of impulses between the parallel axons
of thin (0.8 �m) and thick (2.0 �m) diameters. The action potential peaks
show synchronization for HH nodes grounded with (a) 3 M ohm extracellular
resistances for the 1–3 nodes and grounded 0 and 4 nodes comparing with (b) zero
extracellular resistances for parallel axons of 0.8 �m and 2.0 �m diameters. This
type synchronization takes place only for the case action potentials in both axons
coincide to fire within the time window related with the width of the impulse.

Figure 2 shows extracellular resistance dependence of the time (ta4 and tb4) of
arrival of action potential peaks to the HH node 4 for the axon A of 0.8 �m and the
axon B of 2.0 �m diameters, respectively. The effect on the synchronization takes
place mainly for the conduction delay for the thick axon gradually depending on the
extracellular resistances.

Fig. 1 The action potential peaks show synchronization for HH nodes grounded with (a) 3 M ohm
extracellular resistances at nodes 1–3 compared with (b) zero extracellular resistances, for parallel
axons (diameters daD 0.8 �m and dbD 2.0 �m)
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Fig. 2 The action potential
peaks reach at node 4 at time
ta4 and tb4 with
synchronization depending on
the extracellular resistances
Re for parallel axons of
0.8 �m and 2.0 �m
diameters, respectively

5 Discussions and Conclusions

Figure 1 indicates that ephaptic current between the axons causes decrease of the
velocity of thick axon resulting the synchronized arrival of the action potentials
to the end node. Thin axon, which needs longer time to reach the end node
comparing with the thick axon without the ephaptic interaction, causes time-out
for synchronization with other neurons. The ephaptic interaction causes sending
signals within the time window of the coincident processing on next step. It is
effective to maintain functional roles of the thin axon and to provide growth factors
of myelination for thin axons in the maturation stages. The extracellular resistance
1 M ohm causes extracellular potential around �25 mV at peak. This high value of
extracellular potential is provided by the special structure like that assumed here for
the partial encapsulation of adjacent nodes of parallel axons.

The gradual change of synchronization depending on the extracellular resistivity
in Fig. 2 provides a possibility of signal conduction regulation by extracellular
resistance of glia contribution.

Here we showed that the ephaptic coupling causes (a) signal alignment with
adjustment of sending speed. The model also shows several signal processing, i.e.,
(b) new signal generation and (c) simultaneous signal sending back, and (d) the
shifts in the timing of the action potential generation. These processing transfer
signals between parallel axons. We did not examine here the three processing, (b),
(c) and (d), which will all be reported near future.

In summary, an ephaptic synchronization of impulse conduction is analyzed
computational for a ladder-like circuit consisting of tandem repeats of Hodgkin-
Huxley active nodes resembling prenatal auditory nerve. Possibility of signal
conduction regulation controlled by local field signal transfer between parallel axons
is indicated in the model. Adaptive switching of synchronized circuits based on the
“memory” in axons and glia without adaptation in synaptic connectivity is targeted
in future study.
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Quantum Cognition



Modeling Concept Combinations
in a Quantum-Theoretic Framework

Diederik Aerts and Sandro Sozzo

Abstract We present a modeling for conceptual combinations which uses the
mathematical formalism of quantum theory. Our model faithfully describes a large
amount of experimental data collected by different scholars on concept conjunctions
and disjunctions. Furthermore, our approach sheds a new light on long standing
drawbacks connected with vagueness, or fuzzyness, of concepts, and puts forward a
completely novel possible solution to the ‘combination problem’ in concept theory.
Additionally, we introduce an explanation for the occurrence of quantum structures
in the mechanisms and dynamics of concepts and, more generally, in cognitive
and decision processes, according to which human thought is a well structured
superposition of a ‘logical thought’ and a ‘conceptual thought’, and the latter usually
prevails over the former, at variance with some widespread beliefs.

Keywords Quantum theory • Combination problem • Decision processes •
Conceptual thought • Hilbert space

1 Conceptual Vagueness and the Combination Problem

According to the ‘classical view’, going back to Aristotle, a concept is considered
practically as a ‘container of its instantiations’. This view was already criticized by
Wittgenstein but definitely put at stake by Rosch’s work on color, which showed
that subjects rate concept membership of an instance as graded (or fuzzy, or
vague). Hence mathematical notions to model such conceptual fuzziness were put
forward. But, Osherson and Smith’s examples of concept conjunctions revealed
a fundamental difficulty of classical (fuzzy) set-theoretic approaches to model
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such conjunctions. These authors considered the concepts Pet and Fish and their
conjunction Pet-Fish, and observed that, while an exemplar such as Guppy is
a very typical example of Pet-Fish, it is neither a very typical example of Pet
nor of Fish. Hence, the typicality of a specific exemplar with respect to the
conjunction of concepts shows an unexpected behavior from the point of view of
classical set and probability theory. That the ‘Pet-Fish problem’ (also known as
‘Guppy effect’) indeed revealed a fundamental conflict with classical structures,
was confirmed in a crucial way by Hampton’s studies [1, 2], which measured
the deviation from classical set-theoretic membership weights of exemplars with
respect to pairs of concepts and their conjunction or disjunction. Hampton showed
that people estimate membership in such a way that the membership weight of
an exemplar of a conjunction (disjunction) of concepts is higher (lower) than the
membership weights of this exemplar for one or both of the constituent concepts.
This phenomenon is referred to as ‘overextension’ (‘underextension’). Several
experiments have since been performed and many elements have been taken into
consideration with respect to this ‘combination problem’ to provide a satisfactory
mathematical model of concept combinations. Notwithstanding this, a model that
represents the combination of two or more concepts from the models that represent
the individual concepts still does not exist.

Meanwhile, it has been shown that quantum structures are systematically present
in domains of the social sciences, e.g., in the modeling of cognitive and decision pro-
cesses [3–10]. As such, we have developed a specific quantum-theoretic approach
to model and represent concepts [3–5, 11–15]. This ‘quantum cognition approach’
was inspired by our research on the foundations of quantum theory, the origins
of quantum probability and the identification of genuine quantum aspects, such as
contextuality, emergence, entanglement, interference, superposition, in macroscopic
domains. A ‘SCoP formalism’ was worked out which relies on the interpretation of
a concept as an ‘entity in a specific state changing under the influence of a context’
rather than as a ‘container of instantiations’. This representation of a concept was
new with respect to traditional approaches and allowed us to elaborate a quantum
representation of the guppy effect explaining at the same time its occurrence
in terms of contextual influence. Successively, the mathematical formalism of
quantum theory was employed to model the overextension and underextension of
membership weights measured by Hampton [1, 2]. More specifically, the overex-
tension for conjunctions of concepts measured by Hampton [1] was described as
an effect of quantum emergence, interference and superposition, which also play
a fundamental role in the description of both overextension and underextension
for disjunctions of concepts [2]. Furthermore, a specific conceptual combination
experimentally revealed the presence of another genuine quantum effect, namely,
entanglement [11–13, 15]. In this paper, we present an elaborate and unified
quantum-mechanical representation of concept combinations in Fock space which
faithfully agrees with different sets of data collected on concept combinations. Our
modeling suggests an explanatory hypothesis according to which human thought
is a quantum superposition of an ‘emergent thought’ and a ‘logical thought’, and
that the quantum-theoretic approach in Fock space enables this approach to general
human thought, consisting of a superposition of these two modes, to be modeled.
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2 Quantum Modeling in Fock Space

Our quantum modeling approach for the combination of two concepts is set in a
Fock space F which consists of two sectors: ‘sector 1’ is a Hilbert space H , while
‘sector 2’ is a tensor product Hilbert space H ˝H .

Let us now consider the membership weights of exemplars of concepts and their
conjunctions/disjunctions measured by Hampton [1, 2]. He identified systematic
deviations from classical set (fuzzy set) conjunctions/disjunctions, an effect known
as ‘overextension’ or ‘underextension’.

Let us start from conjunctions. It can be shown that a large part of Hampton’s
data cannot be modeled in a classical probability space satisfying the axioms of
Kolmogorov [5]. Indeed, the membership weights 
x.A/; 
x.B/ and 
x.A and B/
of an exemplar x for the concepts A, B and ‘A and B’ can be represented in a
classical probability model if and only if the following two conditions are satisfied
(see [5] for a proof)

�c
x D 
x.A and B/ �min.
x.A/; 
x.B// 	 0 (1)

0 	 kcx D 1 � 
x.A/ � 
x.B/C 
x.A and B/ (2)

Let us consider a specific example. Hampton estimated the membership weight of
Mint with respect to the concepts Food, Plant and their conjunction Food and Plant
finding 
Mint.Food/ D 0:87, 
Mint.Plant/ D 0:81, 
Mint.Food and Plant/ D 0:9.
Thus, the exemplar Mint presents overextension with respect to the conjunction
Food and Plant of the concepts Food and Plant. We have in this case �c

x D 0:09 6	
0, hence no classical probability model exists for these data.

Let us now come to disjunctions. Also in this case, a large part of Hampton’s
data [2] cannot be modeled in a classical Kolmogorovian probability space, due to
the following theorem. The membership weights 
x.A/; 
x.B/ and 
x.A or B/ of
an exemplar x for the concepts A, B and ‘A or B’ can be represented in a classical
probability model if and only if the following two conditions are satisfied (see [5]
for a proof)

�d
x D max.
x.A/; 
.xB//� 
x.A or B/ 	 0 (3)

0 	 kdx D 
x.A/C 
x.B/ � 
x.A or B/ (4)

Let us again consider a specific example. Hampton estimated the membership
weight of Donkey with respect to the concepts Pet, Farmyard Animal and
their disjunction Pet or Farmyard Animal finding 
Donkey.Pet/ D 0:5,

Donkey.Farmyard Animal/ D 0:9, 
Donkey.Pet or Farmyard Animal/ D 0:7. Thus,
the exemplar Donkey presents underextension with respect to the disjunction Pet or
Farmyard Animal of the concepts Pet and Farmyard Animal. We have in this case
�d

x D 0:2 6	 0, hence no classical probability model exists for these data.
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It can be proved that a quantum probability model in Fock space exists for
Hampton’s data, as follows [5, 12, 13].

Let us start from the conjunction of two concepts. Let x be an exemplar and
let 
x.A/, 
x.B/, 
x.A and B/ and 
x.A or B/ be the membership weights of
x with respect to the concepts A, B , ‘A and B’ and ‘A or B’, respectively. Let
F DH ˚.H ˝H / be the Fock space where we represent the conceptual entities.
The concepts A, B and ‘A and B’ are represented by the unit vectors jAc.x/i,
jBc.x/i and j.A and B/c.x/i, respectively, where

j.A and B/c.x/i D mc.x/e
i	c.x/jAc.x/i ˝ jBc.x/i

Cnc.x/ei�c.x/ 1p
2
.jAc.x/i C jBc.x/i/ (5)

The numbers mc.x/ and nc.x/ are such that mc.x/; nc.x/ � 0 and m2
d .x/Cn2c

.x/ D 1. The decision measurement of a subject who estimates the membership
of the exemplar x with respect to the concept ‘A and B’ is represented by the
orthogonal projection operatorMc ˚ .Mc ˝Mc/ on F , whereMc is an orthogonal
projection operator on H . Hence, the membership weight of x with respect to
‘A and B’ is given by


x.A and B/ D h.A and B/c.x/jMc ˚ .Mc ˝Mc/j.A and B/c.x/i

D m2
c.x/
x.A/
x.B/C n2c.x/

�
x.A/C 
x.B/
2

C<hAc.x/jMcjBc.x/i
�

(6)

The term <hAc.x/jMcjBc.x/i is called ‘interference term’ in quantum theory,
since it is responsible of the deviations from classicality in the quantum double-
slit experiment. In [5, 13] we have proved that a solution is obtained in the Fock
space C3 ˚ .C3 ˝ C

3/ with the interference term given by

<hAc.x/jMcjBc.x/i D
p
1 � 
x.A/

p
1 � 
x.B/ cos �c.x/ (7)

with �c.x/ being the ‘interference angle for the conjunction’, and Mc D
j100ih100j C j010ih010j, where fj100i; j010i; j001ig is the canonical basis of
C
3. For example, in the case of Mint with respect to Food, Plant and Food and

Plant, we havem2
c.x/ D 0:3, n2c.x/ D 0:7 and �c.x/ D 50:21ı.

Let us come again to the disjunction of two concepts. The concepts A, B and
‘A or B’ are represented in the Fock space F by the unit vectors jAd.x/i, jBd .x/i
and j.A or B/d .x/i, respectively, where

j.A or B/d .x/i D md.x/e
i	d .x/jAd.x/i ˝ jBd.x/i

Cnd .x/ei�d .x/ 1p
2
.jAd.x/i C jBd.x/i/ (8)
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The numbers md.x/ and nd .x/ are such that md.x/; nd .x/ � 0 and m2
d .x/ C

n2d .x/ D 1. The decision measurement of a subject who estimates the membership
of the exemplar x with respect to the concept ‘A or B’ is represented by the
orthogonal projection operatorMd˚.Md˝�C�˝MdCMd˝Md/ on F , where
Md is an orthogonal projection operator on H . Hence, the membership weight of
x with respect to ‘A or B’ is given by


x.A or B/ D h.A or B/d .x/jMd ˚ .Md ˝ �C �˝Md CMd ˝Md/j
� .A or B/d .x/i

D m2
d.x/.
x.A/C 
x.B/ � 
x.A/
x.B//

Cn2d .x/
�
x.A/C 
x.B/

2
C<hAd.x/jMd jBd.x/i

�
(9)

The term <hAd.x/jMd jBd.x/i is the ‘interference term for the disjunction’. In
[5, 13] we have proved that a solution is obtained in the Fock space C3˚ .C3˝C

3/

with the interference term given by

<hAd.x/jMd jBd.x/i D
p
1 � 
x.A/

p
1 � 
x.B/ cos �d .x/ (10)

with �d .x/ being the ‘interference angle for the disjunction’. Concerning the Donkey
case, we havem2

d .x/ D 0:26, n2d .x/ D 0:74 and �d .x/ D 77:34ı.
By comparing Eqs. (6) and (9), we can see that the interference terms are

generally different. Indeed, the representation of the unit vectors jAc.x/i, jAd.x/i,
jBc.x/i and jBd.x/i generally depend on the exemplar x, on the membership
weights 
x.A/ and 
x.B/, and also on whether 
x.A or B/ or 
x.A and B/ is
measured, which results in different interferences angles �c.x/ and �d .x/.

3 Conclusions

The probabilistic expressions in the previous section allow the modeling of almost
all of Hampton’s data [1, 2], describing the deviations from classical logic and
probability theory in terms of genuine quantum aspects. Moreover, one of us
has recently shown [14] that our quantum approach successfully models the data
collected by Alxatib and Pelletier [16] on the so-called ‘borderline contradictions’,
and it can be further tested to model data coming from future cognitive tests.
One can then inquire into the existence of underlying mechanisms determining
these deviations from classicality and, conversely, the effectiveness of a quantum-
theoretic modeling. Our explanations is the following.

Whenever two concepts A and B are combined in human thought to form the
conjunction ‘A andB’, or the disjunction ‘A orB’, a new genuine effect comes into
play, namely emergence. More specifically, if a subject is asked to estimate whether
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a given exemplar x belongs to the vague concepts A, B , ‘A and B’ (‘A or B’),
two mechanisms act simultaneously and in superposition in the subject’s thought. A
‘quantum logical thought’, which is a probabilistic version of the classical logical
reasoning, where the subject considers two copies of exemplar x and estimates
whether the first copy belongs to A and (or) the second copy of x belongs to B .
But also a ‘quantum conceptual thought’ acts, where the subject estimates whether
the exemplar x belongs to the newly emergent concept ‘A and B’ (‘A or B’).
The place where these superposed processes can be suitably structured is the Fock
space. Sector 1 of Fock space hosts the latter process, while sector 2 hosts the
former, while the weightsm2

c.x/ (m2
d .x/) and n2c.x/ (n2d .x/) measure the amount of

‘participation’ of sectors 2 and 1 for the conjunction (disjunction), respectively. But,
what happens in human thought during a cognitive test is a quantum superposition of
both processes. The abundance of over- and under- extension effects is a significant
clue that the dominant dynamics in human thought is governed by emergence, and
that logical reasoning is only secondary, at variance with old established beliefs.

It is interesting to observe that similar deviations from logic and classical proba-
bility theory are observed in other areas of cognitive science, e.g., decision making
(‘prisoner’s dilemma’, ‘disjunction effect’, ‘conjunction fallcy’) and behavioral
economics (‘Allais, Ellsberg, Machina paradoxes’). In the above perspective, our
explanation for the appearence of these phenomena is that what has been identified
a fallacy, an effect or a deviation, is a consequence of the dominant dynamics
in human thought which is emergent in nature, while what has been typically
considered as a default to deviate from, namely logical reasoning, is a consequence
of a secondary dynamics within human thought, which is quantum logical in nature.
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Beyond the Quantum Formalism: Consequences
of a Neural-Oscillator Model to Quantum
Cognition

J. Acacio de Barros

Abstract In this paper we present a neural oscillator model of stimulus response
theory that exhibits quantum-like behavior. We then show that without adding any
additional assumptions, a quantum model constructed to fit observable pairwise
correlations has no predictive power over the unknown triple moment, obtainable
through the activation of multiple oscillators. We compare this with the results
obtained in reference (de Barros, J.A.: Decision making for inconsistent expert
judgments using negative probabilities. In: Quantum Interaction, Lecture Notes in
Computer Science. Springer Verlag, Berlin (2014)), where a criteria of rationality
gives optimal ranges for the triple moment.

Keywords Neural oscillator model • Stimulus response theory • Quantum cogni-
tion • Reinforcement learning • Hilbert space

1 Introduction

Recently, much attention has been paid to quantum-mechanical formalisms applied
to human cognition (see [6, 8, 9], and references therein). This comes from an
increasing set of empirical data better described by quantum models than classical
probabilistic ones (for an new effective classical approach, however, see [7], to
appear in this proceedings).

The underlying origins of such quantum-like features are not well understood, but
few researchers believe that actual quantum mechanical processes are responsible
(see [6] but also [10] for a different view). Instead, as argued in [4], what is behind
such features is a contextual influence. Interference-like effects in neuronal firings
in the brain lead to outcomes that are context dependent, similar to the two-slit
experiment in quantum mechanics, thus providing a possible explanation. In fact,
in [3] we showed how a simplified neural model with interference emerging from
the collective dynamics of coupled neurons gives origin to quantum-like effects.
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Such model was designed to be consistent with currently known neurophysiology
and to reproduce the behavioral stimulus-response theory [11]. Here, we discuss
the implications of such neural model to quantum cognition, and in particular to
the predictability power of the quantum-mechanical apparatus, as opposed to its
descriptive power.

2 Model and Main Results

Here we briefly present the main model shown in [3, 11], and the readers are
referred to them for details. For the simple case of a continuum of responses, we
start with representations of stimulus and response in terms of phase oscillators.
Such oscillators, made out of collections of neurons, are synaptically coupled,
and, depending on the coupling strength, may synchronize. Let s.t/ be the neural
oscillator representing the activation of a stimulus, and r1.t/ and r2.t/ the oscillators
for the two extremes in a continuum or responses. We focus on their phases, 's , 'r1 ,
and 'r1 , whose dynamics are given by

P'i D !i C
X

j¤i
kEi;j sin.'i � 'j /C

X

j¤i
kIi;j cos.'i � 'j /; (1)

where kEi;j and kIi;j are the overall excitatory and inhibitory couplings between
the neural oscillators. During reinforcement, the coupling strengths kEi;j and kIi;j
are changed in a Hebb-like fashion. This model can easily be extended to include
multiple stimulus and response oscillators. For instance, in [3] it was used with
two stimulus oscillators to obtain quantum-like effects. Such effects were the
consequence of couplings between the oscillators that were reinforced to respond
to two different stimuli corresponding to incompatible contexts. When both stimuli
were simultaneously activated, an interference effect was obtained.

Quantum-like models lead to contextual responses, in the sense that there exists
no joint probability distribution for the associated random variables. Let us look at
the particular example presented in reference [2] and expanded in another context
in [5]. Let X , Y , and Z be ˙1-valued random variables, and consider the neural
oscillator system represented in Fig. 1. For this system, the activation of one of
the three stimulus oscillators, C1, C2, or C3, leads to the corresponding responses
computed via phase differences. For example, if C1 is sampled, the oscillators’
dynamics, dictated by the specific values of inhibitory and excitatory couplings,
converge to a fixed point that may favor X D 1 (oscillator X ) instead of X D �1
(oscillator �X ), while at the same time favoring Y D �1, thus corresponding to
a negative correlation. With such oscillator system, it is possible in principle to
choose couplings such that the correlations between X , Y , and Z are too strong
for a joint probability distribution to exist. As a consequence, and because of the
pairwise commutativity of the set of quantum-mechanical observables OX , OY , and
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~z

~Y

~X

X

C1

C2

C3

Y z

Fig. 1 Layout of a neural-oscillator system exhibiting pairwise correlations between X , Y , and Z .
In this oscillator system, .XD 1/ and .YD �1/ corresponds to the synchronization with oscillator
C1 closer in phase to X and not to�X , while at the same time being closer to Y than to�Y

OZ corresponding to the random variables X , Y , and Z , it follows that there exists
no state j i in the Hilbert space H where such observables are defined and such
that the neural correlations hold [5]. However, even in such situations a quantum
model can be constructed [1], and in order to describe the correlations set by the
neural-oscillator model, we are forced to expand the Hilbert space to H0 ˝ H [5].
For instance, we can write a state vector

j i D cxy jAij xyi C cxzjBij xzi C cyzjC ij yzi; (2)

where jAi, jBi, and jC i are orthonormal vectors in H0, h xyj OX OY j xyi D �2=3,
h xzj OX OZj xzi D �1=2, h yzj OY OZj yzi D 0, and cxy , cxz, and cyz are such thatˇ̌
cxy
ˇ̌2 C jcxzj2 C

ˇ̌
cyz

ˇ̌2 D 1. Because each of the states j xyi, j xzi, and j yzi can
have arbitrary triple moments (they do not fix enough of the distribution) between
�1 and 1, it follows that (2) can describe the correlations but has no predictive power
with respect to the neural oscillator model or human decision making.

However, the couplings encoding different responses in the Kuramoto equations
do determine, within a certain range, values for the triple moment. The triple
moment would be the equivalent, following [3], of a simultaneous activation of all
stimulus oscillators. Thus, the neural model would provide a definite prediction, in
contrast with the quantum one.

3 Final Remarks

Quantum formalisms applied to human cognition have shown a great potential for
certain applications in the social sciences. However, one must ask how this is so,
and also how predictive they are. For instance, as showed above, it is possible to
devise an neural system whose quantum description has no predictive power. Thus,
we could in principle design an experiment to test this neural system, but not its
corresponding quantum description.
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Could there be some principle to be added to the quantum description that could
provide predictions for outcomes of the experiment proposed? For example, in [5]
we proposed a minimization principle as a normative decision for quantum-like
inconsistencies, which allowed signed probabilities to move from a descriptive to
a normative theory. Perhaps a principle of this type added to the quantum formalism
could be not only normative but predictive as well. However, if we think that
the underlying dynamics for quantum cognition is actually from the complex and
contextual interaction of neurons, perhaps some similar principle from it should be
added to the quantum description.

Finally, we would like to emphasize that the quantum approach has suggested
interesting experiments in psychology. As such, it is a promising field not only
because of its ability to describe experiments, but also for the intuitions it provides
for thinking about context-rich situations. Therefore, understanding its limitations
and perhaps extending it would be desirable.

Acknowledgements We thank Sandro Sozzo for pointing out reference [1], and him as well as
Gary Oas, Ehtibar Dzhafarov, Paavo Pilkkanen, and Sisir Roy for useful comments and discussions.
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Random Variables Recorded Under Mutually
Exclusive Conditions: Contextuality-by-Default

Ehtibar N. Dzhafarov and Janne V. Kujala

Abstract We present general principles underlying analysis of the dependence of
random variables (outputs) on deterministic conditions (inputs). Random outputs
recorded under mutually exclusive input values are labeled by these values and
considered stochastically unrelated, possessing no joint distribution. An input that
does not directly influence an output creates a context for the latter. Any constraint
imposed on the dependence of random outputs on inputs can be characterized by
considering all possible couplings (joint distributions) imposed on stochastically
unrelated outputs. The target application of these principles is a quantum mechanical
system of entangled particles, with directions of spin measurements chosen for each
particle being inputs and the spins recorded outputs. The sphere of applicability,
however, spans systems across physical, biological, and behavioral sciences.

Keywords Contextuality • Couplings • Joint distribution • Random outputs

1 Introduction

This paper pertains to any system, physical, biological, or behavioral, with random
outputs recorded under varying conditions (inputs). A target example for us is
a quantum mechanical system of two entangled particles, “Alice’s” and “Bob’s.”
Alice measures the spin of her particle in one of two directions, ˛1 or ˛2, and Bob
measures the spin of his particle in one of two directions, ˇ1 or ˇ2. Here, ˛ and
ˇ are inputs, and each trial is characterized by one of four possible input values�
˛i ; ˇj

�
. The spins recorded in each trial are realizations of random variables A

and B , which, in the simplest case, can attain two values each: a1 or a2 for A and
b1 or b2 for B . One can think of many examples in other domains with similar
formal structure, e.g., a psychophysical experiment with an observer responding
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to stimuli with varying characteristics ˛ (say, intensity) and ˇ (say, shape). These
characteristics then constitute inputs, while some characteristics of the responses,
such as response time A (with a continuum of values) and response correctness B
(with two possible values), are random outputs.

Accounts of the approach presented in this paper can be found in [5–7], but this
paper is the first one focusing entirely on its basic principles. The approach amounts
to philosophical rethinking (or at least conceptual tweaking) of the foundations of
probability, specifically, of random variables and their joint distributions. Here, it is
presented without technical details (that can be reconstructed from [3–6]).

2 Basic Principles

Let all or some of the random outputs of a system form a random variable X ,1

and the totality of all inputs be a variable �. In our target example, � D .˛; ˇ/ with
input values �1 D .˛1; ˇ1/, : : :, �4 D .˛2; ˇ2/, whereasX can be .A;B/with values
x1 D .a1; b1/, : : :, x4 D .a2; b2/, or A with values a1; a2, or B with values b1; b2.
If � itself is a random variable, so that �1; �2; : : : occur with some probabilities, we
ignore these probabilities and simply condition the recorded outputs X on values
of �. In other words, we have a distribution of X given that � D �1, a distribution
of X given that � D �2, etc., irrespective of whether we can control and predict
the values of �, or they occur randomly. Now, this conditioning upon input values
means that X is indexed by different values of �. We obtain thus, “automatically,”
a set of different random variables in place of what we previously called a random
variableX . We haveX�1 (orX1, if no confusion is likely) which isX when � D �1,
X�2 (or X2) which is X when � D �2, etc. Let us formulate this simple observation
as a formal principle.

Principle 1 Outputs recorded under different (hence mutually exclusive) input
values are labeled by these input values and considered different random variables.
These random variables are stochastically unrelated, i.e., they possess no joint
distribution.

Thus, in our target example, we have four random variables Aij , four random
variables Bij , and four random variables .A;B/ij D

�
Aij ; Bij

�
corresponding to

the four input values �k D
�
˛i ; ˇj

�
. The principle holds irrespective of how the

distribution of Xk depends on �k . Thus, the variables Ai1 and Ai2 remain different
even if their distributions are identical (as they should be if Bob’s choice cannot
influence Alice’s measurements). One must not assume that they are one and the
same random variable, Ai D Ai1 D Ai2. The latter would mean that Ai1 and Ai2
have a joint distribution, because of which the probabilities Pr ŒAi1 D Ai2� are well

1Random variables are understood in the broadest sense, so that a vector of random variables (or
any set thereof, or a random process) is a random variable too.
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defined, and that these probabilities equal 1. But Ai1 and Ai2 do not have a joint
distribution. Indeed, two random variables X and Y have a joint distribution only
if their values can be thought of as observed “in pairs,” i.e., if there is a scheme
of establishing correspondence x.i/ $ y.i/ between observations x.1/; x.2/; : : : of
X and y.1/; y.2/; : : : of Y . In our example, the correspondence is defined by the
two measurements being simultaneously performed on a given pair of entangled
particles. Each such a pair of measurements corresponds to a certain input value,
e.g., A21 and B21 correspond to � D .˛2; ˇ1/. Therefore, no measurement outputs
corresponding to different input values, such asAi1 andAi2, orAi1 andBi2 co-occur
in the same sense in which, say, Ai1 co-occurs with Bi1.

However, given any two random variables X and Y , one can impose on them a
joint distribution, and create thereby a random variable Z D .X; Y /, referred to as
a coupling for X and Y . By definition, the distribution of a coupling Z agrees with
the distributions of X and Y as its marginals.

Principle 2 Stochastically unrelated outputs recorded under mutually exclusive
input values can be coupled (imposed a joint distribution upon) arbitrarily. There
are no privileged couplings.

Thus, in our target example, the famous Bell-type theorems [1, 3, 8] implicitly
impose on .A11; B11/, : : :, .A22; B22/ a coupling with Ai1 D Ai2 and B1j D
B2j . This amounts to considering a random variable

�
A01; A02; B 01; B 02

�
such that�

A0i ; B 0j
�

is distributed as
�
Aij ; Bij

�
. The Bell-type theorems show that such a

coupling exists if and only if the distributions of the coupled pairs .A11; B11/, : : :,
.A22; B22/ satisfy certain constraints (Bell-type inequalities, known to be violated
in quantum mechanics). In our approach, however, except possibly for simplicity
considerations, this coupling has no privileged status among all possible coupling
for .A11; B11/, : : :, .A22; B22/. Thus, any distribution of spins satisfying Bell-type
inequalities is also compatible with the coupling in which .A11; B11/, : : :, .A22; B22/
are stochastically independent pairs of random variables, as well as with an infinity
of other couplings in which Pr ŒAi1 D Ai2� and Pr

�
B1j D B2j

	
may be different

from 1.
If the distributions of Ai1 and Ai2 are not the same for i D 1 or i D 2,

the situation is simple: the output A is influenced by both inputs ˛ and ˇ (and
analogously for B1j and B2j ). If, however, the distributions of Ai1 and Ai2 are
always the same, and if, moreover, substantive considerations (e.g., laws of special
relativity) prevent the possibility of interpreting ˇ as “directly” influencing A, then
we can say that ˇ forms a context for the dependence of A on ˛ (and analogously
for ˛ creating a context for the dependence of B on ˇ). Principle 1 ensures that this
contextuality is introduced “automatically,” by labeling all outputs by all conditions
under which they are recorded. The degree and form of contextuality in a given
system (e.g., those with constraints more relaxed than the Bell-type inequalities
[2, 9]) can be characterized by considering all possible probabilities Pr ŒAi1 D Ai2�
and Pr

�
B1j D B2j

	
, called connection probabilities in [5–7]. This approach allows
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one to embark on a deeper investigation of the relationship between the classical
probability theory and quantum mechanics than in the Bell-type theorems.

3 Apparent Problems with the Approach

Two objections can be raised against our approach. One is that it requires to label
random variables by circumstances that cannot possibly be relevant. If reaction
time X to a given stimulus is recorded in conjunction with measurements of the
temperature on Mars with the values �1 D low and �2 D high, would it be
meaningful to “automatically” split X into stochastically unrelatedXlow and Xhigh?
The answer is: it is meaningful. If the temperature on Mars affects the distribution
ofX , then consideringXlow andXhigh as different random variables is clearly useful
for understanding of X . If, as we suspect, the temperature on Mars does not affect
the distribution of X , then one can impose on

�
Xlow; Xhigh

�
an arbitrary coupling,

including one with Xlow D Xhigh D X . The latter choice amounts to ignoring the
temperature on Mars altogether.

The other objection is that if we apply Principle 1 systematically, we have to
consider different realizations of a random variable X as stochastically unrelated
random variables. X occurring in trial 1 as x.1/ is labeled X1 and considered
stochastically unrelated to X2 that occurs in trial 2 as x.2/, and so on. But this is
perfectly reasonable, and moreover, it is a standard issue in the probabilistic theory
of couplings [10]. Once a coupling (e.g., the commonly used iid one) is imposed
on X1;X2; : : :, it creates a new random variable Y D .X1;X2; : : :/, of which we
have a single realization y D �

x.1/; x.2/; : : :
�
. One can then investigate whether this

y is statistically plausible in view of the distribution of Y using standard statistical
reasoning.
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Weak vs. Strong Quantum Cognition

Paavo Pylkkänen

Abstract In recent decades some cognitive scientists have adopted a program of
quantum cognition. For example, Pothos and Busemeyer (PB) argue that there
are empirical results concerning human decision-making and judgment that can
be elegantly accounted for by quantum probability (QP) theory, while classical
(Bayesian) probability theory fails. They suggest that the reason why QP works
better is because some cognitive phenomena are analogous to quantum phenomena.
This naturally gives rise to a further question about why they are analogous. Is
this a pure coincidence, or is there a deeper reason? For example, could the neural
processes underlying cognition involve subtle quantum effects, thus explaining why
cognition obeys QP? PB are agnostic about this controversial issue, and thus their
kind of program could be labeled as “weak quantum cognition” (analogously to the
program of weak artificial intelligence as characterized by Searle). However, there
is a long tradition of speculating about the role of subtle quantum effects in the
neural correlates of cognition, constituting a program of “strong quantum cognition”
(SQC) or “quantum cognitive neuroscience”. This paper considers the prospects
of SQC, by briefly reviewing and commenting on some of the key proposals. In
particular, Bohm and Hiley’s active information program will be discussed.

Keywords Quantum cognition • Quantum probability • Analogy • Active
information • Implicate order • Mental causation • Representational content •
David Bohm • Basil Hiley
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1 Introduction

In their recent article “Can quantum probability provide a new direction for
cognitive modeling?” Pothos and Busemeyer (PB) (2013) make a convincing case
that there are empirical results concerning human decision making and judgment
that can be elegantly accounted for by quantum probability (QP) theory, while
classical (Bayesian) probability theory fails [15]. In particular, they point out that
human judgment and preference often display order and context effects, violations
of the law of total probability and failures of compositionality, and that in such cases
QP – with features such as superposition and entanglement – provides a natural
explanation of cognitive process. More generally, they suggest that QP is potentially
relevant in any behavioral situation that involves uncertainty.

Such success in modeling raises the question of how can it be that QP which
was developed to account for quantum physical phenomena could possibly be able
to account for cognitive phenomena. PB do not discuss this issue at great length,
but suggest that the reason is because some cognitive phenomena are analogous
to quantum phenomena. But this gives rise to a further question: why are these
phenomena analogous to each other? Is it a mere coincidence or is there some
deeper explanation? For example, might the neural processes underlying cognition
be quantum-like in some way? PB remain agnostic about this controversial issue,
and thus we might call their program an instance of “weak quantum cognition”
(somewhat analogously to the program of weak AI in artificial intelligence research;
cf. also the program of “weak quantum theory”, where one applies some, but
not all formal features of quantum theory to explain cognitive phenomena, see
Atmaspacher et al. 2002 [3]). However, there is a long tradition of speculating about
the role of subtle quantum effects in the neural correlates of cognition, constituting
a program of “strong quantum cognition” or “quantum cognitive neuroscience”.
While it may be a good research strategy in cognitive science to pursue weak
quantum cognition without worrying about the underlying reasons for why QP
works for cognition, it would clearly be a major scientific breakthrough if strong
quantum cognition would turn out to be correct. It is thus worth giving attention to
the current state-of-the-art in strong quantum cognition. The aim of this paper is to
briefly review and comment some major developments. In particular, I will consider
the prospects of Bohm and Hiley’s research program [8, 18].

2 Strong Quantum Cognition: Subtle Quantum Effects
in the Neural Correlates of Cognition?

There are various ways in which the neural processes underlying cognition could
be quantum-like. The strongest possibility is that they literally involve subtle
quantum effects. For example, following Niels Bohr, David Bohm speculated about
this possibility already in 1951 in his textbook Quantum theory [6]. Anticipating
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the current research on quantum cognition [1, 15], he drew attention to what he
considered to be remarkable point-by-point analogies between quantum processes
and thought. He added that it would provide a natural explanation of these
analogies if it turned out that some key neural processes (e.g. in synapses) were
subject to quantum-theoretical limitations (for a discussion of Bohm’s analogies
see Pylkkänen 2014 [17]).

Harald Atmanspacher (2011) has provided a useful overview of various programs
of what I have above call “strong quantum cognition” [2]. First of all, there
are approaches that stay within the usual interpretation of the quantum theory.
There is the von Neumann-Wigner line of thought that assumes that consciousness
plays a role in quantum state reductions; in Stapp’s later development of this
approach the neural correlates of conscious intentional acts are assumed to involve
quantum state reductions. There is the Ricciardi-Umezawa-Vitiello approach that
sees mental states, particularly memory states, as vacuum states of quantum fields
(this approach has been given an imaginative philosophical interpretation by Globus
2003 [10]). Finally, there is the Beck-Eccles approach, where it is assumed that due
to quantum mechanical processes the frequency of exocytosis at a synaptic cleft can
be controlled by mental intentions, without violating the conservation of energy (for
a discussion of this last approach see also Hiley and Pylkkänen 2005 [13]).

Atmanspacher also draws attention to programs of strong quantum cognition
that involve further extensions or generalizations of present-day quantum theory.
Most notably, there is Penrose’s proposal that human (say mathematical) insight
is non-computable and that the physiological correlates of such insight thus need
to involve non-computable physical processes. He thinks that such process might
well be related to quantum state reduction. However, Penrose is not satisfied
with quantum state reduction as this is characterized in the usual interpretation of
quantum theory. Instead, he proposes that gravity brings about the reduction under
certain circumstances, which allows the possibility of an orchestrated objective
reduction (Orch-OR) – the idea being that the reduction can take place without the
activity of a human conscious observer, and in an orchestrated way. This involves
an extension of current quantum theory, in which latter the state reductions obey
the usual laws of quantum probability. Together with Hameroff, Penrose proposed
that neural microtubules might provide a site where Orch-ORs could take place.
Their assumption is that Orch-ORs in neural microtubules, when suitably integrated,
constitute conscious moments. (So it is not that consciousness collapses the wave
function but rather that the collapses constitute consciousness.) The idea is similar
to Stapp’s later ideas, but one difference is that while Stapp stays within the usual
interpretation of quantum theory, Penrose’s approach involves going beyond it (in
that the reductions can be objective and orchestrated, and need not obey the usual
quantum laws). Hameroff and Penrose (2014) have recently published an extensive
review of their approach, with new features and, in the same journal, a reply to
various criticisms [12].

Those who advocate strong quantum cognition typically encounter the criticism
that quantum effects are washed out in the “warm, wet and noisy” conditions of
the macroscopic world and brains in particular (the “decoherence problem”). It is
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thus concluded that quantum theory is only relevant to physical processes in the
(sub)atomic domain and should be ignored in other physical domains. However,
there are many recent research developments suggesting that biological organisms
at ordinary temperatures exploit subtle quantum effects, and biological evolution
would thus have been able to solve the decoherence problem at least in some bio-
logical contexts (e.g. the studies on energy-harvesting in photosynthesis and avian
magnetoreception; for a short review, see Ball, P. (2011) [4]). As Atmanspacher
points out, it is however still a controversial issue whether subtle quantum processes
play a significant role in the neural correlates of cognition and consciousness.

Note that those researchers who accept that cognition is quantum-like and
seek to explain this in neural terms need not necessarily adopt the program of
strong quantum cognition. For there is also the possibility that the neural processes
underlying cognition involve no subtle quantum effects, but can nevertheless give
rise to quantum-like neural activity. Something like this is implied by Barros and
Suppes (2009) when they suggest that classical interference in the brain may lead to
contextual processes [5]. They refer to experimental work according to which corti-
cal oscillations may propagate in the cortex as if they were waves; and to simulations
of the mammalian brain which show the presence of interference in the cortex.

3 Bohm’s Active Information Program of Quantum
Cognition

We already mentioned briefly above that the physicist David Bohm speculated early
about strong quantum cognition in his 1951 textbook [6]. At that time he was
thinking within the usual interpretation of quantum theory, and the analogies he
drew attention to then reflect this. As is well known, Bohm’s key long-term aim
was to understand quantum theory better, and this led him to develop a number of
different alternative schemes. Given his early intuition that quantum processes and
thought are analogous, it is not surprising that he applied the new ideas arising from
his various quantum schemes to describing the mind.

In 1952 Bohm published two articles in Physical Review where he proposed
(similarly to deBroglie’s earlier ideas) that an electron is a particle guided by a
field. For example, according to this hypothesis, in the famous 2-slit experiment
the particle goes through one of the slits, while the field goes through both slits,
and guides the particle. (For a discussion of this approach, as well as its various
criticisms, see Goldstein 2009 [11].)

In later work with Basil Hiley, Bohm emphasized that this field does not push
and pull the particle mechanically but rather in-forms its energy (Bohm and Hiley
1993 [8]; see also Smith 2003 [21]; Pylkkänen 2007 [18]). It is the form of the
field (rather than its intensity) that determines the quantum potential acting upon the
particle. The form of the field, in turn, reflects the form of the entire experimental
arrangement – and thus the behavior of the particle depends on the whole situation.
Thus, Bohm and Hiley argued, the key new ontological feature of quantum theory
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is the existence of objective and active information at the quantum level (see also
Maroney 2002) [14]. Bohm (1990) extended this model to include higher levels
of information, so that cognitive informational processes could be connected to
quantum information, which in turn could control neurophysiological processes
in, say, synapses [7]. This line of research has been developed by e.g. Hiley
and Pylkkänen 2005 [13]; for an interesting recent related and critical discussion,
see Seager 2013 [19]. They propose that the approach enables new ways of
understanding such key philosophical problems as mental causation, intentionality
and even consciousness.

In Bohm’s active information scheme it is thus assumed that quantum theory
needs to be extended into a hierarchy of levels of active information, where the
human mind, for example, involves not only the lower levels, but also the more
subtle levels (Bohm claimed that such an extension of quantum theory is not
arbitrary, but “natural” from the physical and mathematical point of view). Some
of these levels are at the manifest, classical level while others are more “subtle”,
quantum-like. In perception, information encoded in manifest levels (e.g. in the
form of printed words) is carried toward the more subtle levels in the nervous
system, where the meaning of the information is apprehended. Such apprehension
of meaning is an activity, which crucially involves the organization of the lower
levels of information.

Consider, for example, a case where someone encounters shadows in a dark
night, while knowing there might be a dangerous assailant around. If a shadow is
interpreted as “the assailant” this means “danger” and typically results in a powerful
psycho-somatic (Bohm would say signa-somatic) response. Meaning, typically
assumed to be a “mental” quality, organizes the physiological state of the person.
With this example Bohm wants to illustrate that there is no strict ultimate division
between mind and matter, as information acts as a bridge at all levels.

There is here a two-way traffic between manifest and subtle levels (perception
carries information from the manifest toward subtle levels, while the perception of
meaning at subtle levels results in a physiological response). It is in this way that we
can understand how mind (understood as involving very subtle physical levels) can
influence the more manifest aspects of the physical domain (e.g. bodily movements).

One key idea thus is that the more subtle, physical (“mental”) levels are
influenced by and can also influence the lower, manifest levels. Mind is not floating
free from the quantum and classical levels, but can influence these latter, thus
providing a new way of understanding mental causation. The level of quantum
information is especially important in providing the missing link between the
traditional categories of physical and mental. Of course, it is a major unsolved
problem in the Bohm scheme what exactly is meant by the “subtle levels”. It seems
that Bohm meant both complex neurophysiological processes (already described
in cognitive neuroscience), and some subtle quantum and “super-quantum” effects
taking place in the brain but not yet discovered. Thus this is currently a heavily
speculative scheme that needs much further critical examination and development.
Yet, in my view, it has some advantages over the other schemes of strong quantum
cognition (see Hiley and Pylkkänen 2005) [13]. For one thing, it can be argued that
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the Bohm-Hiley ontological interpretation provides currently the best ontological
scheme for quantum theory, and we need a clear quantum ontology to tackle in a
quantum-theoretical way the mind-matter problem, often also characterized as the
ontological problem (e.g. Churchland 2013) [9].

The possibility that something like information plays such a fundamental role in
physical processes might throw new light upon some of the other perennial problems
in philosophy of mind and language. For example, in current consciousness studies
it is fairly popular to think consciousness in terms of representational content. To
borrow an example from Fred Dretske, suppose that you are dreaming about a blue
dog. Many would say that there is nothing blue nor dog-like in your brain when you
are so dreaming. But what, then, is the blue dog you apparently see? One suggestion
is that it is the representational content carried by your neural processes. Your neural
processes consist in various physiological activities, which constitute the vehicle for
your representational content.

This type of approach may sound reasonable, but we have (in my view)
currently no satisfactory theory about how representational content arises from,
say, neurophysiological vehicles. If I build (with currently available technology)
a robot that can receive visual (and other) information, store, process and make
use of it, most of us would assume that the robot experiences no representational
content. For example, it can react to wavelengths in an appropriate way, but
presumably it experiences no color. Now, the information in such a robot is typically
stored in the “classical” level (from the physics point of view). One speculative
possibility opened up by Bohm’s approach is that the kind of information we
meet at the quantum level can (at least in some situations) support or give rise
to genuine representational content. In the case of simple systems (e.g. electrons)
this is presumably very rudimentary “proto-content”. But in more complex settings
the quantum-like information might have the sort of representational content
we encounter in experience. Thus the reason why current robots lack genuine
representational content would be because they lack the quantum-like Bohmian
active information humans (and other suitably organized biological organisms) have
(cf. Pylkkänen 1995 [16], 2007 [18]). Such talk of “proto-content” connects with the
long tradition of panpsychism in Western history of philosophy. Panpsychism has in
recent years made a comeback in analytical philosophy and consciousness studies
(see Seager and Allen-Hermanson 2013, and the references therein) [20].

Of course, one challenge is then to show how such Bohmian quantum informa-
tion (and its higher-level analogues) would survive and operate in neurophysiologi-
cal processes. The work of Hameroff and Penrose (2014) contains many suggestions
about how the quantum wave function (and thus, in Bohmian terms, the quantum
active information) could survive in the warm, wet and noisy conditions of the brain,
albeit the issue is controversial [12]. Also, the application of Bohmian quantum
field theory (for the electromagnetic field) to dendritic fields might be an especially
fruitful area where to develop a more concrete model of quantum active information
in neural processes (Hiley, private communication).

The above is admittedly very speculative, but it is important to realize how poten-
tially radical Bohm’s suggestion about quantum theoretical active information is.
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Insofar as such information has mental (or proto-mental) aspects, Bohm’s sugges-
tion challenges many fundamental assumptions about the nature of the physical in
contemporary philosophy of mind.

4 A More General Scheme: The Implicate Order

In the early 1960s Bohm began to seek a more general scheme in which one
could bring quantum theory and relativity together. This framework became known
as the implicate order. The implicate order refers to holistic phenomena, where,
for example, information about the whole is enfolded in each region (as in the
movement of lights waves, which can be recorded in a hologram). Applied to the
universe, this suggests that the universe is a movement in which a holistic order,
the implicate order prevails – thus the universe is holomovement. At each moment
a three-dimensional explicate order unfolds from the holomovement, only to enfold
back in the next moment. This process of unfoldment and enfoldment takes place
so rapidly that we do not see it but instead typically perceive an enduring three-
dimensional reality of macroscopic objects.

Bohm proposed that the implicate order is fundamental and general, and also
prevails in biological and psychological phenomena. For example, the conscious
experience of listening to music can be understood in terms of the implicate order.
A symphony involves a movement in which a total order builds up and grows. At
each moment we are most explicitly aware of certain tones, while the previously
explicate tones are experienced as enfolded, actively transforming structures; our
experience also involves an anticipation the future tones. Bohm thus provided a
new way of thinking and modeling a central issue in phenomenology, namely time
consciousness. This has been discussed in some detail by Pylkkänen (2007, ch 5)
[18]. Such an application of the implicate order to describe phenomenal experience
can be seen as an instance of “weak quantum cognition”, as one is using a theoretical
scheme inspired by quantum theory while not claiming that phenomenal experience
is literally a quantum phenomenon.

5 Concluding Remarks

We have above briefly reviewed some programs of quantum cognition, focusing
upon Bohm’s active information program. Given the key unsolved problems in
philosophy of mind (mental causation, intentionality, consciousness), it seems
reasonable to explore quantum theoretical models that radically change our common
notion of the physical. The possibility that something like active information might
play a key role at the quantum level is particularly important, as it may help
to understand issues such as mental causation and even the origin of genuine
representational content.
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Quantum Ontology: A New Direction
for Cognitive Modeling

Sisir Roy

Abstract Human cognition is still a puzzling issue in research and its appropriate
modeling. It depends on how the brain behaves at that particular instance and
identifies and responds to a signal among myriads of noises that are present in the
surroundings (called external noise) as well as in the neurons themselves (called
internal noise). Thus it is not surprising to assume that the functionality consists of
various uncertainties, possibly a mixture of aleatory and epistemic uncertainties. It is
also possible that a complicated pathway consisting of both types of uncertainties in
continuum play a major role in human cognition. The ability to predict the outcome
of future events is, arguably, the most universal and significant of all global brain
functions. The ability to anticipate the outcome of a given action depends on sensory
stimuli from the outside world and previously learned experience or inherited
instincts. So, one needs to formulate a theory of inference using prior knowledge for
decision-making and judgment. Typically, Bayesian models of inference are used to
solve such problems involving probabilistic frameworks. However, recent empirical
findings in human judgment suggest that a reformulation of Hierarchical Bayesian
theory of inference under this set-up or a more general probabilistic framework
based approach like quantum probability would be more plausible than a Bayesian
model or the standard probability theory. However, as the framework of quantum
probability is an abstract one needs to study the context dependence so as understand
the new empirical evidences in cognitive domain.

Keywords Bayesian model • Quantum probability • Context dependence •
Internal noise • Brain function • Decision making

1 Introduction

For more than 200 years mathematicians and philosophers have been using
probability theory to describe human cognition. Recently through several
experiments with human subjects [1, 2], violation of traditional probability theory is
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clearly revealed in plenty of cases. Literature survey clearly suggests that classical
probability theory fails to model human cognition beyond a certain limit. While
Bayesian approach may seem to be a promising candidate to this problem, the
complete success story of Bayesian methodology is yet to be written. The major
problem seems to be the presence of epistemic uncertainty and its effect on cognition
at any time point. Moreover the stochasticity in the model arises due to the unknown
path or trajectory (definite state on mind at each time point) a person is following. To
this end a generalized version of probability theory borrowing idea from quantum
mechanics may be a plausible approach. Quantum theory allows a person to be
in an indefinite state (superposition state) at each moment of time. A person may
be in an indefinite state that allows all of these states to have potential (probability
amplitude) for being expressed at each moment [3]. Thus a superposition state seems
to provide a better representation of the conflict, ambiguity or uncertainty that a
person experiences at each moment [2]. Conte et al. [4] demonstrated that mental
states follow quantum mechanics during perception and cognition of ambiguous
figures.

These empirical evidences indicate the applicability of quantum probability
framework to the decision making in cognitive domain. However, the framework
of quantum probability is an abstract framework devoid of material content like
concept of elementary particle, the various fundamental constants like Planck
constant, speed of light and Gravitational constant in modern physics. So this
framework can be applied to any branch of science dealing with decision making
such as in Biology, Social science etc. The central issue is how to make this
framework context dependence so as to apply to a specific field. In this paper we
make an attempt to analyze the whole situation in a critical manner.

2 New Empirical Evidences and Inadequacy
of Classical Probability Theory

Various group of scientists [2] made attempts to explain some phenomena related
to cognitive modeling using the concept of quantum probability (which has a non-
Boolean structure). This cognition spectrum of human mind is usually classified as
in six categories as follows:

1. Disjunction effect
2. Categorization – decision interaction
3. Perception of ambiguous figures
4. Conjunction and Disjunction fallacies
5. Overextension of Category membership
6. Memory recognition over-distribution effect. Fallacies over-distribution Effect
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The data collected from various experiments related to these six categories
clearly indicate the inadequacy of classical probability theory. For example, let us
consider the first one i.e. Disjunction effect. Tversky and Shafir [5] discovered a
phenomenon called the disjunction effect in the process of testing a rational axiom
of decision theory called the sure thing principle [6]. According to the sure thing
principle, if under state of the world X you prefer action A over B, and if under
the complementary state of the world XC you also prefer action A over B, then you
should prefer action A over B even when you do not know the state of the world.
Tversky and Shafir experimentally tested this principle by presenting 98 students
with a two stage gamble that is a gamble which can be played twice. Classical
probability theory says P(A) > P(B) always. The data from 98 students say that
instead of definitely being in the win or loss state, the student enters a superposition
state that prevents finding a reason for choosing the gamble. In all these experiments
it is claimed that the simple additivity fails for probability law i.e. P(A C B) is not
equal to P(A) C P(B). However, they can be explained with the probability rule of
quantum framework i.e. P(A C B) D P(A) C P(B) C Interference term. This is a
clear indication of violation of classical probability theory.

3 Quantum Probability Theory and Modeling
in Cognitive Domain

In quantum theory, the famous double slit experiment clearly indicates the existence
of interference term which proves that the probability of union of two mutually
exclusive (complementary aspects) events like detection of particle and wave
aspect is not equal to the sum of probabilities of event A and probability of
the complementary events AC. This is a clear indication of violation of Boolean
structure. In 1932 John von Neumann published his pioneering book [7] where
he made a rigorous formulation of the above issue in the following manner. He
showed that projection operators in Hilbert space may be considered as elementary
“yes”–“no” propositions about measurable properties and he constructed the impor-
tant logical connectives “and”, “or”, and “not” in terms of projection operators.
Subsequently Birkoff and von Neumann [8] showed that the projection operators
and the corresponding propositions constitute an orthocomplemented “lattice” with
some additional properties. In contrast to the orthocomplemented and distributive
(Boolean) lattice of classical logic, the lattice of the “logic of quantum mechanics”
turned out to be much weaker than the Boolean lattice and to be neither distributive
nor modular. Initially the community of physicists and philosophers did not accept
the “logic of quantum mechanics” as a genuine logic in the strict sense in the
tradition of Aristotle, Thomas Aquinas and George Boole, which governs the rules
of our rational thinking and arguing.
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The main goal of quantum logic is the reconstruction of Hilbert lattices and
quantum mechanics in Hilbert space. Within the quantum logic approach quantum
mechanics in Hilbert space appears as an abstract and empty theory and presumably
universally valid. In this approach there is no classical world and hence no borders
between the two worlds from which we could read off Planck’s constant. Hence,
there is no hope to find the constant h. Here objects or particles can be compre-
hended if such abstract framework is endowed with notion like “localizability” and
“homogeneity” [9]. It raise an important issue how to make this abstract framework
of quantum probability can be made context dependence i.e. how Planck constant,
speed of light etc. can be embedded into the structure of a physical theory. Similar
arguments can be made how one applies this type of framework in the domain
of cognitive science. If we are to interpret quantum probability (QP) theory as a
mechanistic cognitive theory, there must be some method whereby the operations
postulated by QP are implemented within the human brain. We emphasize no special
quantum physics effects are needed in brain function. If we can show how neurons
can compute these operations, then we can interpret QP as making strong claims
about how brains reason, rather than merely acting as a novel behavioral description
of the results of cognitive processing.

For example, if there is one vector for HAPPY and another for UNHAPPY,
the current mental state representation might be 0.86HAPPY C 0.5UNHAPPY,
representing a state more similar to HAPPY than to UNHAPPY. This is similar to
the superposition principle in QP framework. In the above type of description, the
issue is what is meant by the unity of complementary aspects at the cellular level.
Can we think of any natural constant which gives rise to this kind of unit at the
cellular level? Essentially it is needed to construct a framework describing cellular
basis of cognition and its relevance to the shift of paradigm.

This type of issue has been debated in eastern philosophy specially in Buddhist
philosophy many centuries before. For example, the concept of “Neutral Mind”
and “Equanimity” have been described in Buddhist philosophy. In both the states
the state of mind is superposition of two complementary states like happiness
and unhappiness. However, there is subtle difference between neutral mind and
equanimity. In the state of neutral mind there is a scope of decision making where
as in the state of equanimity no such scope of decision making. Moreover, there
exists various states of equanimity which should be analyzed in the light of modern
neuroscience.
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Cue-Dependent Modulation of Synchrony
in Primates’ Medial Motor Areas

Haruka Arisawa, Ryosuke Hosaka, Keisetsu Shima, Hajime Mushiake,
and Toshi Nakajima

Abstract Although ˇ oscillations are the representative brain activity in
sensorimotor areas and the basal ganglia, how they coordinate activities of multiple
structures in the brain is poorly understood. To examine the coordination of the
activities of the pre-supplementary motor area (pre-SMA) and the SMA through
ˇ oscillations, we recorded local field potentials simultaneously in these areas
while monkeys performed a motor task. Examination of inter-area phase difference
revealed that the pre-SMA became phase-advanced in ˇ oscillations relative to
the SMA when a visual cue signaled initiation of a trial. The strength of phase
synchrony decreased markedly while the monkeys were visually instructed about
the movement to be performed and was strengthened when the monkeys repeated
the movements they had performed in the previous trial. These results suggest that
visual input initializes the dynamic state of the pre-SMA and SMA when a trial
starts. Additionally, sensory signals seem to be acquired and motor plans formed
via modulation of the strength of inter-area synchrony of ˇ oscillations.

Keywords Monkey • Premotor cortex • Field potential • Beta oscillation •
Synchrony

1 Introduction

ˇ oscillations are the representative brain activity observed in sensorimotor areas
and the basal ganglia [1]. Although it has been established that both the pre-
supplementary motor area (pre-SMA) and the SMA are crucially involved in the
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performance of memory-guided movements [2], few studies have addressed the
issue of the coordination of the activities of the two areas from the perspective
of synchronized ˇ oscillations. To investigate this issue, we made simultaneous
recordings of local field potentials (LFPs) in the pre-SMA and the SMA while
monkeys memorized and performed specific movements.

2 Methods

The experimental subjects were two Japanese monkeys (Macaca fuscata; one male
and one female; weight, 5.8–6.5 kg) cared for according to National Institutes of
Health guidelines. Our previous report [3] described in detail the experimental setup
and the methods used for animal surgery. During the experiment, each animal sat
in a primate chair holding a handle in each hand (Fig. 1a). For each trial of this
task, the animals were required to perform a motor sequence consisting of two
motor elements. The temporal order of the required motor sequence was selected
pseudo-randomly and altered in blocks of nine trials. The first three trials in a block
were performed under the guidance of two visually presented instructional cues
(visually guided trials; Fig. 1b). The color of the instructional cue indicated left
forearm supination (red) or pronation (blue) and right forearm pronation (yellow) or
supination (green). In the remaining six trials in the block, the animal performed
the movements specified in the previous visually guided trials with no visual
instructions (memory-guided trials). At the beginning of a trial, a central fixation
point (FP) was presented on the screen in front of the subject to serve as a cue to
initiate the trial. The monkey was required to maintain the handle placement and

Fig. 1 (a) Experimental setup (b) Task sequence (c) Schematic drawing of medial motor areas
(top view)
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eye fixation for 1.5 s, during which the instructional cue for the first movement was
presented for 0.5 s in the visually guided trials. Subsequently, the FP dimmed to
serve as the first-movement trigger signal. The animal was required to perform the
first movement and return the handle to the neutral position within the reaction-time
limit (1 s). After a delay period of 1 s, during which the instructional cue for the
second movement was presented for 0.5 s (in visually guided trials), the animal was
given the trigger signal for the second movement. A series of correct movements
without a fixation break was rewarded with the delivery of juice, followed by a
1.5-s intertrial interval (ITI).

After each animal became proficient in performing this behavioral task, an
acrylic recording chamber and head-fixation bolts were implanted on the animal’s
skull. After complete recovery from the surgery, we used glass-insulated Elgiloy
microelectrodes to make simultaneous recordings of LFPs for the SMA and pre-
SMA in one hemisphere while the subjects performed the task (Fig. 1c). Online data
collection was performed using a multichannel acquisition processor. Eye position
was monitored using an infrared corneal-reflection-monitoring system at 1 kHz
(Millennium G200, Matrox).

As a spectral measure of the correlation of the two signals across frequencies, we
calculated the coherence from the cross-spectral density between the two LFPs and
normalized it by the power spectral density of each [4] using the LFPs recorded in
visually guided trials. Coherence values range from 0 to 1. A value of 0 indicates
that the two signals were completely uncorrelated, whereas a value of 1 indicates
that the signals were completely correlated at frequency f. We defined the frequency
that yielded the greatest coherence in the ˇ band (15–40 Hz) as the frequency of
interest (f0) for further analysis.

Our main interest was the cue-dependent modulation of inter-area ˇ oscillations
during visually guided trials. We thus defined five consecutive analytic periods in
a visually guided trial, as shown at the bottom of Fig. 1b: intertrial period (IT),
trial-initiation period (INI), instruction-cue period (INST), motor-preparation period
(PREP), and motor-execution period (EXE). To extract the instantaneous phase for
the frequency f0, we applied a wavelet-based approach. The signal of the LFP was
convoluted by a complex Gabor’s wavelet w(f0, t):

w .f0; t/ D g.t/
n
exp .i2�f0t/ � exp

�
��2.2�f0/2

�o
;

where

g.t/ D
exp

�
� t 2

4�2

�

2�
p
�

; � D 5

2�f0
:
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The instantaneous phase difference between a pair of electrodes �'(f0, t) was
expressed as the relative phase of the signal recorded from the pre-SMA to that
from the SMA:

�' .f0; t/ D 'pre .f0; t/ � 'sma .f0; t/ :

To determine the strength of inter-hemispheric phase synchronization, we calcu-
lated a phase-synchronization index (PSI) for a given 500-ms analytic period in a
trial as the mean vector length of the angular dispersions of the phase differences
in the analytic period [5]. If the phase difference varies little in the analytic period,
the PSI is close to 1; otherwise, it is close to 0. To examine how the presentations
of the initiation cue and the motor instructional cue influenced the inter-area phase
relationship, we computed the mean phase difference�' for the IT, INI, and INST
periods in each recording session. �' was calculated as the angle of the circular
mean of the phase differences observed in the analytic period across trials.

3 Results

We performed a total of 30 paired recordings (15 sessions in each hemisphere) for
monkey M and 61 (29 and 32 sessions in the left and right hemisphere, respectively)
for monkey N. Coherence analysis revealed that f0 D 35 Hz for monkey M, and
f0 D 22 Hz for monkey N. The dynamics of the inter-area phase difference and the
strength of the phase synchronization between areas based on the analysis for the
frequency f0 are discussed in the next section.

3.1 Relative Phase Advance of Pre-SMA to SMA on Initiation
of a Typical Trial

Figure 2a shows an example of a pair of 35 Hz LFPs simultaneously recorded from
the pre-SMA (black trace) and SMA (gray) in monkey M during a 1,500-ms interval
including the IT, INI, and INST periods. The superimposed red trace represents the
time course of the phase difference (relative phase of the pre-SMA to that of the
SMA). To quantify the mean phase difference for each period, we computed the
circular mean of instantaneous phase differences (Fig. 2b; for display purposes, the
instantaneous phase difference is illustrated for every 50 ms) within each period.
The direction of the circular mean was defined as the mean phase difference in a
period (Fig. 2c, directions of red arrows). During the IT period in the trial, the SMA
was slightly phase advanced relative to the pre-SMA. In the INI period, the pre-SMA
often led the SMA in the ˇ-cycle. In the INST period, the pre-SMA became more
phase advanced relative to the SMA in terms of the mean phase difference. Because
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Fig. 2 Dynamics of inter-areal ˇ-synchrony and distribution of phase differences in an
example trial

Fig. 3 Distributions of mean phase differences �' and their grand means (ˆ)

the inter-area phase synchrony decayed toward motor onset (see next section), we
applied the analysis of the phase difference to only the IT, INI, and INST periods.

To characterize the dynamics of the inter-area phase difference across sessions,
we first confirmed that the mean phase difference

�
�'

�
computed for each of the

three periods was significant in all the sessions (Rayleigh test, p
 0.001). We then
performed a population analysis across sessions. Figure 3 shows distributions of
�' in circular histograms with arrows indicating grand mean directions (ˆ) across
sessions. We found that the relative phase of the pre-SMA in the INI period (middle
column) was significantly more advanced than it was in the IT period (left column)
in each trial for both monkeys (p < 0.05, Moore test for paired data on a circular
scale of measurement). The relative phase of the pre-SMA continued to be more
advanced in the INST period than in the IT period (left vs. right column), except in
the VIS-1 trial for monkey M.
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Fig. 4 (a, b) Time course of strength of phase synchrony for VIS-1 (red) and VIS-2/3 (blue) trials
(c) Model of coupling oscillators consisting of pre-SMA (orange) and SMA (purple)

3.2 Instructional-Cue Dependent Suppression
and Enhancement of Beta Synchrony During
Implementation of Motor Plan

In the example trial shown in Fig. 2, the PSI was near 1 in the IT period and
decreased in the INST period. According to our task design, the repetitive presenta-
tion of identical sets of instructional cues in a series of three visually guided trials
prompted implementation of the motor plan. To examine the effects of task events
and repetitive cue presentation on the inter-area phase synchrony, we computed the
median PSIs across all recording sessions for each monkey (Fig. 4a, b). In the first
visually guided trials (VIS-1; red trace), the PSI was higher during the IT and INI
periods and was considerably suppressed in the INST period. The PSI rebounded
in the PREP period and was lowest in the EXE period. Although the PSI exhibited
similar temporal dynamics in the remaining visually guided trials (VIS-2/3; blue
trace) to those in the VIS-1 trials, it was significantly greater in those trials than in
VIS-1 trials across all analytic periods (p< 0.05, Mann–Whitney U-test).

4 Conclusions

In the present study, we examined the cue-dependent modulation of inter-area
synchrony in ˇ-band LFPs recorded in the pre-SMA and SMA. We determined the
relative phase advance of the pre-SMA to the SMA on initiation of a trial. We also
found that phase synchrony was generally enhanced in parallel with the repetitive
performance of the identical motor sequence in a block. Moreover, we found that the
presentation of a visual instructional cue for the forthcoming movement attenuated
the degree of the inter-area phase synchrony, especially in VIS-1 trials.
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To interpret our results in terms of interacting oscillators, we constructed a
conceptual model (Fig. 4c). In this model, the pre-SMA and SMA are regarded
as a pair of functionally coupled oscillators. The relative phase advance of the pre-
SMA on trial initiation (orange arrows in the middle column) may be triggered
by presentation of the initiation cue. This view is supported by the finding that
neuronal activity in the pre-SMA often responds to visual stimuli [6] and that the
pre-SMA has access to visual input via projections from the inferior parietal lobule
[7]. This phase advance may, in turn, initialize the causal relationship between
the activities of the pre-SMA and those of the SMA, enabling the pre-SMA to
exert top-down control over the SMA. This view is supported by a simulation
study [8]. Additionally, the strength of phase synchrony is represented as the
thickness of a black connecting background in Fig. 4c. The remarkable reduction
in phase synchrony in response to the initial presentation of the motor instructional
cue (top row, right column) suggests that use of visual instructions leads to a
reduction in functional coupling between the two oscillators. The enhancement of
phase synchronization that accompanies repetition of the identical motor sequence
indicates that the functional coupling of the two oscillators is strengthened in
parallel with the implementation of a motor plan (bottom row, left and middle
column). Taken together, our results indicate that the dynamics of the inter-area
synchrony of ˇ oscillations may mediate the functional coupling between the pre-
SMA and the SMA, enabling the initialization of the dynamic state of the two areas,
the acquisition of sensory signals, and the implementation of a motor plan.
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Multisynaptic State Functions Characterizing
the Acquisition of New Motor and Cognitive
Skills

José M. Delgado-García, Raudel Sánchez-Campusano,
Alejandro Carretero-Guillén, Iván Fernández-Lamo, and Agnès Gruart

Abstract Learning and decisions are precise functional states of brain cortical
circuits that can only be approached by the use of multidisciplinary and complemen-
tary tools in behaving animals. The availability of genetically manipulated mice and
rats, of mathematical and computational neuroscience methods, and of advanced
electrophysiological techniques—susceptible of being applied in behaving animals
during the acquisition of different learning paradigms—has largely facilitated this
approach. Here, we have recorded activity-dependent changes in synaptic strength
in different synapses of hippocampal and prefrontal circuits during the acquisition
and storage of classical and instrumental conditioning paradigms. Furthermore, we
have developed a dynamic approach of multisynaptic state functions to characterize
the acquisition of new motor and/or cognitive skills. In our opinion, a synaptic state
function is analogous to a precise picture of synaptic weights while the behaving
animal learns the selected task. Therefore, the different state functions of large
cortical circuits during the very moment at which learning is taking place could be
specifically defined by 3D-arrays of synaptic sites, learning stages, and behaviors.
Couplings between the different synaptic state functions are determined by means of
weight functions that characterize the changes in synaptic strengths, the type (linear
or nonlinear) of interdependences among state functions, as well as the timing and
correlation relationships among them. The detailed analysis of the collected data
indicates that many synaptic sites within cortical circuits modulate their synaptic
strength across the successive stages of acquisition of associative learning tasks. The
expected main output of this type of experimental approach would be that learning is
the result of the activity of wide cortical and subcortical circuits activating particular
functional properties of involved synaptic nodes, and that we can quantify these
activation patterns by means of state and weight functions. In this regard, we expect
that a map of state functions relating the acquisition of new motor and cognitive
abilities and the underlying synaptic plastic changes will be offered in the near future
for different types of learning tasks and situations. This same optimized approach
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could be applied to the selective stimulation of synaptic nodes across the involved
circuits, in genetically modified animals, or in animals receiving selective injections
of si-RNA, and other molecular-disturbing procedures.

Keywords Synaptic strength • Hippocampus • Prefrontal cortex • Conditioning
• Associative learning • Cognition

1 Introduction

It is traditionally accepted that the study of the different neural sites and mechanisms
underlying learning and memory processes has to be approached with the help
of molecular, histological, and in vitro electrophysiological procedures. Although
these experimental approaches have rendered important insides with regard to brain
structural and functional properties, they have two important limitations: (i) they
use to generate profound alterations of the studied nervous system; and, (ii) they
do not report any information on events taking place during the very moment of
the acquisition process. In this regard, learning and related cognitive and motor
processes should be studied, at the end, at live [1, 2].

Taking into account that neurons are the basic functional elements characterizing
the nervous tissue, we would need to know the specific functional properties that the
different neural types present in cortical circuits and, very importantly, its functional
contribution, moment to moment, to the global process of learning, memory storage,
and recall. Thus, each neuronal type in a selected cortical circuit plays a specific role
that can only be determined by the use of experimental models allowing its study
in the best physiological conditions and during the acquisition of new motor or
cognitive abilities. We have developed the basic technology for the study of activity-
dependent changes in synaptic strength at a given relay site [1–4]. In this paper, we
have extended this information to many different synapses located in hippocampal
and prefrontal circuits (see Figs. 1 and 2) during the acquisition and storage of two
types of associative (Pavlovian and instrumental) learning tasks in behaving rabbits
and rats. We are also introducing here the mathematical tools that will be used
in order to obtain relevant data on neuronal network processing during associative
learning tasks.

2 Methods

In a first series of experiments, animals (rabbits) were prepared for the chronic
recording of the electromyographic activity of orbicularis oculi muscle and of
synaptic activity (field excitatory post-synaptic potentials, fEPSPs) evoked at the
intrinsic hippocampal circuit or by the stimulation of its main input, i.e., the
perforant pathway (Fig. 1). Rabbits were trained with a Pavlovian conditioning
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Fig. 1 A diagrammatic representation of synaptic weights present in the hippocampal circuit of
behaving rabbits during classical conditioning (b, session 1; c, session 8) of eyelid responses using
a delay conditioning paradigm. The color code is illustrated in (a). In brief, animals were implanted
with stimulating (St.) electrodes in the perforant pathway, the Schaffer collateral/commissural
pathway, or in the contralateral CA3 area, and with recording electrodes (Rec.) in the dentate
gyrus (DG), and the hippocampal CA3 and CA1 areas. Synaptic activation took place during the
CS (tone)—US (air puff) interval

protocol (i.e., a classical eyeblink conditioning). Field EPSPs were evoked in the
different hippocampal synapses at the interval between conditioned (a tone) and
unconditioned (an air puff presented to the cornea) stimulus presentations. The
simultaneous recording of synaptic activities at different neural sites offered a still
unknown picture of the specific functional states taking place at hippocampal during
the actual acquisition process.

In a second series of experiments, Wistar rats were implanted with stimulating
and recording electrodes in selected sites of the intrinsic hippocampal circuit and/or
in the perforant pathway. Rats were trained in a Skinner box to press a lever in order
to obtain a small piece of food. Animals were stimulated at different hippocampal
and prefrontal synapses during their performance in the Skinner box task (see
Fig. 2).

For analysis, we used here mathematical tools designed in our laboratory to
obtain the state functions characterizing the acquisition of new motor and/or cog-
nitive skills. The programs/scripts used here were developed by one of us (R.S.-C.)
with the help of MATLAB (The MathWorks, Natick, MA, USA) routines [3].

3 Results

A few years ago, we showed that the hippocampal CA3!CA1 synapse presents
a significant change in strength during the acquisition of a type of associative
learning task in alert behaving mice: i.e., the classical conditioning of eyelid
responses [1, 2]. It was also shown in this study that this learning-dependent
change in synaptic strength was linearly related with the rate of acquisition of the
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Fig. 2 An example of the quantitative analysis for changes in synaptic strength taking place in
different hippocampal and prefrontal synapses during the acquisition of an instrumental learning
task. (a) Experimental design. The selected synapses were activated when the animal approached
to the lever to press it, i.e., when crossing the indicated photoelectric cells. (b) Acquisition
curve. (c, d) Synaptic weights (fEPSP slopes) recorded during the first and the seventh training
sessions. Abbreviations: BLA basolateral amygdala, mPFC medial prefrontal cortex, NAC nucleus
accumbens septi, Sub subiculum

conditioned eyeblinks, suggesting a more-or-less direct relationship between the
acquisition process and the underlying synaptic plastic changes. At that moment,
it was assumed that other synapses present in the intrinsic hippocampal circuit and
the many other related to its main inputs (perforant pathway) and outputs (other
cortical structures) should present similar changes in synaptic strength [2]. Indeed,
we have addressed this question in a recently published study [4] and with different
ongoing experiments being carried out in our laboratory. As illustrated in Fig. 1,
the different hippocampal synapses present a complex evolution of their synaptic
strength across the successive conditioning sessions. Thus, it was clear that each
synapse in the hippocampal network contributes in a different way to the acquisition
process. In addition, we have carried out a similar classical eyeblink conditioning
in behaving mice, including the analysis of fEPSPs changes taking place in nine
different hippocampal synapses across conditioning (not illustrated). Here again,
changes in synaptic strength across conditioning indicated the presence of a timed
and specific plasticity pattern characterizing this type of associative learning.
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Fig. 3 Operational 3D-array of state functions. (a) Here, a synaptic state function is analogous
to a precise picture of a synaptic pathway while the behaving animal learns the task. Therefore,
the different sate functions of large cortical synaptic circuits during the very moment at which
learning is taken place could be specifically defined by 3D-arrays of synaptic sites, learning stages,
and behaviors. (b) Diagram of the matrices for the synaptic-learning (rth-behavior) and synaptic-
behavioral (qth-session) state functions analyses. Two examples of the state functions are presented
in the inset (e.g., [8, 4, r] for the rth-behavior; and [5, q, 4] for the qth-session). (c) Mathematical
formulation of the multisynaptic state functions for the rth-behavior or the qth-session

In Fig. 2 is illustrated a similar experimental approach for the study of synaptic
plasticity in behaving animals during another type of associative learning. In this
case, we studied changes in fEPSPs evoked at specific synapses connecting the
hippocampus, prefrontal cortex, accumbens septi, and the basolateral amygdala
(Fig. 2c, d) during the acquisition of an instrumental learning task, using a fixed ratio
(1:1) paradigm, i.e., the experimental animal received a small pellet of food every
time its pressed a lever (Fig. 2b). Electrical stimulation of the selected synapse was
carried out at the moment the rat approached to the lever (Fig. 2a). As illustrated in
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Fig. 2c, d, there are important changes in synaptic strength in the selected cortical
network from the initial conditioning session to the session when the designed task
is acquired by the animals.

Finally, in Fig. 3 we present the proposal of a 3D-array of synaptic-learning-
behavioral states (Fig. 3a) and the diagrammatic representation of the analytical
approach of multisynaptic state functions (Fig. 3b, c). According to this analytical
design, two types of matrix can be formed: (1) a matrix for the relationships between
different synaptic-learning states during the rth-behavior; and, (2) a matrix for the
relationships between different synaptic-behavioral states during the qth-session of
conditioning (Fig. 3b). The weight functions (Fig. 3c) determine the strength and
type of interdependences among states as well as the timing-causality relationships
between them. The prediction error (Fig. 3c) estimates the uncertainties associated
with the model and depends on the past values of all the synaptic-learning states.
Preliminary results obtained with the analytical procedure suggest the presence of
specific spatial-temporal patterns of synaptic weights characterizing each particular
learning situation.

4 Discussion

We hope that the present experimental approach will help to offer, in the near future
and for the very first time, a complete and quantifiable picture of synaptic events
taking place in cortical circuits directly involved in the acquisition, storage, and
retrieval of different types of associative learning tasks. Indeed, our experimental
approach is susceptible of being used in different types of associative learning as
classical and instrumental conditioning, as well in other types of non-associative
learning tasks as object recognition and spatial orientation [1–4].
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Visual Hallucinations in Dementia with Lewy
Bodies (I): A Hodological View

Hiroshi Fujii, Hiromichi Tsukada, Ichiro Tsuda, and Kazuyuki Aihara

Abstract Patients with dementia with Lewy bodies (DLB) frequently experi-
ence the phenomenon of visual hallucination (VH), which Collerton (2005) aptly
described as “people see things that are not there.” The possible involvement of
cholinergic deficiency in the VH seen in DLB have long been proposed, but the
precise neural mechanism to account for the particular phenomenology of VH is
not known. The aim of this work is to delineate the core mechanisms of VH based
on considerations of symptomatology and recent data on pathophysiology, viewed
from the structure of the brain’s cognitive system. The key may be in the prefrontal
top-down facilitations on the category of the “seen” object at the center of attention.
The prefrontal cortex (PFC: VLPFC/OFC) creates such a categorical “index” as
a bias for the inferior temporal (IT) cortex to reactivate a detailed image of the
object. In doing so, the PFC quickly receives information on a low spatial frequency
image (LFI) of the object via a cortical short-cut (the magnocellular pathway),
together with internal signals such as expectancy and emotion, and information on
the context and setting in which they appear. The VH may appear when a part of
this system breaks down. The PFC then creates a bias (index) for IT cortex that
is hallucinatory. This may happen when some conduction disturbances occur along
the short-cut pathway due to either cortical degenerations (e.g., loss of cortical pyra-
midal neurons/pre-synaptic axons), or loss of the ’7 subtype of nicotinic receptor
(’7-nAChR).
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1 Introduction

Patients with dementia with Lewy bodies (DLB) frequently experience the phe-
nomenon of visual hallucination (VH), which Collerton (2005) [1] aptly described
as “people see things that are not there.”

The possible involvement of cholinergic deficiency in the VH seen in DLB has
long been proposed, but its precise neural mechanism is not fully understood [1, 2].

2 Phenomenology

The phenomenology of VH symptoms associated with DLB shows a clear
contrast with psychedelic (serotonin-related) visual hallucinations in LSD use,
or schizophrenic VH. This phenomenology raises a number of important questions
related to VH in DLB: Why is hallucinatory images contain mostly single entities,
e.g., a vivid and colored human or animal appearing at the (foveal) center of
attention? Why is a hallucinatory figure pasted on a background scene that is
perfectly normal? Why does a figure appear irrespective of whether the eyes are
closed or open? Why does the imagery continue for a few minutes (not seconds,
nor hours). Moreover, why are the images generally consistent with the context
and setting in which they appear? This particular symptomatology may reflect the
internal mechanisms of VH associated with DLB.

The aim here is to delineate the root mechanisms of VH through considerations
of such phenomenology and the structure of the visual cognitive system together
with recent data on pathophysiology.

3 Role for Orbitofrontal Cortex in Cognitive System

Top-Down Facilitation The content and character of VH in DLB primarily reflects
the nature of visual processing [1], and VH is a consequence of a dysfunction of the
normal cognitive system.

The orbitofrontal cortex (OFC) and probably the ventrolateral prefrontal cortex
(VLPFC) are together involved in the categorical identification of the object at the
center of attention [3]. This information (“index”) is then sent back to the inferior
temporal (IT) cortex as a bias to form a detailed representation (Fig. 1).
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Fig. 1 Three pathways in normal scene and object perception. The stars (red) indicate possible
sites of conduction disturbance in VH. When disturbances occur, the PFC correctly receives
contextual data and emotion/expectancy as in normal cognitive processes, but the quickly arriving
short-cut data of an external object via Pathway I is missing. Bottom-up signals of external objects
via V4/V2 are also missing for IT, caused by the second disturbances

OFC receives, among others, at least three streams of projections important in
the present context: one is the low spatial frequency image (LFI) via a “cortical
shortcut”, i.e., the magnocellular pathway from secondary visual systems (such as
V2/V4) [3, 4]. The second and the third streams bring, respectively, “emotion and
expectancy” from the OFC-ITC-amygdala triad [5] and contextual information as
the “gist” of the scene, from the retrosplenial/parahippocampalcortices (RSC/PHC),
which contribute to OFC processing by providing context-based top-down facilita-
tion [4].

Hodological Dysfunction We hypothesize that a conduction disturbance
temporarily occurs somewhere along Pathway I. We postulate that this might be
caused primarily by the recently reported cortical degeneration of gray matter in the
PFC and IT in hallucinating DLB patients [7], or loss of the ’7 subtype of nicotinic
receptors [6]. Because of these disturbances the PFC’s decision on categorical
identity is made essentially on the basis of context and expectancy alone. Hence the
PFC creates and sends “hallucinating” indices to IT.

There is another site of pathology, i.e., the IT cortex [7, 8]. The possible
disconnection of IT from the secondary visual cortices V4/V2 due to conduction
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Fig. 2 PFC decision on top-down bias is based on three signals

disturbances as above could be the second causative factor for VH (Fig. 1). This
may block IT’s ability to compensate, based on detailed bottom-up data, potentially
hallucinatory images induced by PFC (Fig. 2).

The disconnections at the two sites could be regarded as an instance of
dynamically fluctuating, and unidirectional hodological1 deficiency [9].

4 Proposals: Root Cause for Visual Hallucinations
Associated with DLB

1. The root cause and the responsible areas: malfunction of PFC (VLPFC/OFC)
and IT cortex. PFC sends a “hallucinatory” index of categorical identity on the
basis of emotion-expectancy and the top-down context alone, ignoring external
but cursory information via Pathway I.

2. Possible pathophysiology may be conduction disturbances along Pathway I
conveying external LSI signals, and at the same time on the pathway from the
secondary visual system to IT. This is due to either [a] cortical degenerations as
loss of cortical pyramidal neurons/pre-synaptic axons [7], or [b] loss of the ’7
subtype of nicotinic receptor (’7-nAChR) [8].

1By “hodological” dysfunction we mean dysfunction related to connections between brain regions,
as compared with dysfunction localized to specific brain regions (topological) (Ffytche) [9].
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5 Discussions

In the companion paper [11], we discuss such problems as: (1) The structure of the
attractor space for an index in PFC and its dynamics. (2) How can the IT cortex
activate detailed images based on a PFC biasing signal? As illustrative examples
we show some of the results from our computational model that reproduced such a
phenomena with hallucinations.
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Dividing Roles and Ordering Information Flow
in the Formation of Communication Systems:
The Influence of Role Reversal Imitation

Takashi Hashimoto, Takeshi Konno, and Junya Morita

Abstract The process and mechanism behind the formation of symbolic
communication systems is studied in this paper by using human cognitive
experiments and the computer simulation of cognitive architecture. In the presented
experiment, pairs of participants carry out a coordination task repeatedly in which a
symbolic message is passed between them. Two-thirds of participant pairs (nD 14)
formed communication systems that could stably solve the coordination task by
establishing role division by utilizing the order of sending messages, namely turn-
taking. The behavioral strategy behind this role division is then analyzed by using
transfer entropy and simulating ACT-R to model participant behavior. The analysis
of the transitions of transfer entropy shows that successful pairs behave consistently
from the beginning of the experiment and begin to include their partners’ behavior
when deciding on role division. The comparison between human experiment and
ACT-R simulation data suggests that role reversal imitation, whereby participants
store partners’ behaviors and utilize them to decide on their own behavior, is
effective at establishing a communication system.

Keywords Communication systems • Role division • Imitation • Transfer
entropy • ACT-R

1 Introduction

Recent studies have used experimental semiotics in order to examine how symbolic
communication systems are formed [1, 2]. The quantitative analysis of the formation
process of symbolic communication systems shows that the formation process
comprises three scaffolding stages: establishing common ground, sharing the

T. Hashimoto (�) • T. Konno
Department of Knowledge Science, School of Knowledge Science, Japan Advanced Institute
of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
e-mail: hash@jaist.ac.jp

J. Morita
Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku,
Nagoya, Japan

© Springer Science+Business Media Dordrecht 2015
H. Liljenström (ed.), Advances in Cognitive Neurodynamics (IV),
Advances in Cognitive Neurodynamics, DOI 10.1007/978-94-017-9548-7_63

447

mailto:hash@jaist.ac.jp


448 T. Hashimoto et al.

symbol system, and dividing (communicative) roles by utilizing turn-taking, namely
the sending order of the symbolic messages between the first and second senders [3].
In this paper, we examine the causes of this role division in the formation process
by analyzing transfer entropy and using cognitive architecture modeling.

2 Experimental Method

A total of 21 pairs of human participants repeated a coordination task that comprised
several rounds by using computer terminals from different sites (Fig. 1). In each
round, a proxy marker for each participant was randomly allocated to a position
in a 2� 2 grid, with each partner unaware of the other’s position. Each participant
composed a symbolic message by combining two meaningless figures and sent it
to his/her partner. This message was then immediately displayed on the partner’s
terminal. On this basis, participants moved one step horizontally or vertically, or
stayed in the same position, in order to attempt to reach the same position as their
partners. After the movement phase, the initial and destination positions of both
participants were displayed. The pair gained two points each if they reached the
same position and lost one point each otherwise. The score started from zero points
and remained non-negative throughout the experiment. This process was repeated
until the score reached 50 points (“success”) or 1 h elapsed (“failure”). Fourteen
pairs of participants were successful, and seven pairs failed.

3 Results of the Transfer Entropy Analysis

Transfer entropy TI!J , a measure of information flow from a stochastic process I to
another process J, is defined by

TI!J D
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Fig. 1 Schematic view of the experimental setup
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first sender’s destination (right). The solid lines represent successful pairs and the dashed lines
failure pairs. The X-axis is the normalized round, since the number of rounds differ by pair

where xn and yn represent the stochastic sequence of processes I and J, respectively.
Here, we analyzed this value based on turn-taking, where the first sender attempts to
inform the initial position and the second sender attempts to indicate a destination
position that both can reach.

The transitions of transfer entropy are shown in Fig. 2. The left-hand graph
depicts transfer entropy for one participant, where I and J represent the sequences
of the first sender’s messages and his/her destinations, respectively. This value for
successful pairs (solid line in Fig. 2 left) stayed at a low level from the beginning of
the experiment, while that for the failure pairs (dashed line in Fig. 2 left) fluctuated
in the mid range. By contrast, transfer entropy between a pair of participants (solid
line in Fig. 2 right), where I is the sequence of the second sender’s messages and J
is that of the first sender’s destinations, began moderately and declined over time
for successful pairs, but did not decrease from this average level for the failure
pairs (dashed line in Fig. 2 right). Further, transfer entropy for the successful pairs
negatively correlated with the performance of the task.

These results imply that the correspondence between the messages and move-
ments of one participant for successful pairs was consistent from the beginning of
the experiment. Moreover, successful pairs could also make the information flow
between a pair of participants ordered (i.e., certain and predictable), which suggests
that they were able to incorporate their partners’ behavior adequately.

4 Simulation Analysis Using ACT-R

In the next step, the experiment was simulated by using the cognitive architecture
ACT-R (Adaptive Control of Thought-Rational) [4]. ACT-R makes a decision
according to IF-THEN-type production rules [5]. It thus integrates symbolic learn-
ing and sub-symbolic learning by reinforcing the usage of these rules. This feature
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Fig. 3 Comparison between the ACT-R simulation and human experiment data for performance
(left), transfer entropy for one participant (middle), and that for a pair of participants (right). The
rounds are divided into three parts (first, middle, and last 12 rounds) in order to make the number
of rounds uniform

is suitable to model our experiment, since both types of learning approaches are
used to establish common ground and symbol systems in communication formation
processes.

The participant model used herein stored successful decisions about messaging
and movements. We then compared two strategies that differed in terms of influence
over the decision-making process: Instance-Based (i.e., the use of one’s own
decisions) and Role Reversal Imitation (i.e., the use of the partner’s decisions by
reversing roles in addition to the first strategy). We introduced the imitation strategy
because successful pairs in the experiment tended to accept partner’s symbol use
in their making process of symbol systems. In acceptance of partner’s system,
participants recalled the partner’s behavior in the same situation and thereby took
the same decision.

Figure 3 compares the ACT-R simulation and human experiment data. We found
that the imitation strategy replicated the results of the human experiment in terms
of performance (i.e., based on the agreement rate of destinations in 12 rounds) as
well as transfer entropy for one participant and between a pair of participants. All
three indices (performance and transfer entropies) show that the imitation strategy
is more similar to the successful pairs than the instance-based strategy, which rather
resembles the failure pairs.

5 Discussion and Conclusion

Both the analyses presented in this paper suggest that a successful participant
behaves consistently from the initial stage by storing and utilizing his/her own
successful decisions as well as using his/her partner’s decisions (imitation) based on
adequately stored experiences. We showed that incorporating the partner’s behavior
through role reversal imitation facilitated the establishment of role division and
ordered the information flow between partners.

The higher performance and lower transfer entropy of human data compared with
the imitation strategy of ACT-R in the first stage suggest that human participants
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have an initial disposition (bias) in their behavior that contributes to establishing
common ground. The ACT-R simulation started by demonstrating random behavior
with no bias in the use of symbols and movement. However, the reinforcement of
successful rule selection in the imitation strategy led to the formation of shared
symbol systems.
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Optical Imaging of Plastic Changes Induced
by Fear Conditioning in Auditory, Visual,
and Somatosensory Cortices

Yoshinori Ide, Muneyoshi Takahashi, Johan Lauwereyns, Minoru Tsukada,
and Takeshi Aihara

Abstract Second-order conditioning using light, tone and foot-shock was carried
out, and conditioned responses to tone and light could be observed by monitoring the
cardiac pulse. Three sensory cortical areas including auditory, somatosensory, and
visual cortices in the same animal were simultaneously recorded by using optical
imaging with voltage sensitive dye, RH795. Cortical activities to each stimulus
including foot-shock, light, and tone were compared in naïve versus conditioned
animals. As a result, while only primary and secondary somatosensory cortices were
activated to foot-shock alone in a naïve animal, after the activation of primary and
secondary somatosensory cortices, neural activities were propagated to auditory and
visual cortices in conditioned animals. Our findings illustrate the integration of three
different modalities through second-order conditioning. Through this integration,
sensory stimulation in one modality can lead to the retrieval of associated, but
presently absent sensory information in two other modalities.

Keywords Auditory cortex • Visual cortex • Somatosensory cortex • Plasticity •
Second-order conditioning • Optical imaging • Voltage sensitive dye
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1 Introduction

Sensory cortices are defined by responses to physical stimuli in specific modalities.
Recently, however, human neuroimaging studies have shown auditory cortex activa-
tion without sound [1], and it has been reported that auditory cortical neurons can be
activated and/or modified by non-auditory stimuli [2, 3]. Little is known about how
the brain produces such activity. Here we study this topic with an entirely different
paradigm, based on fear conditioning, using optical imaging [3]. Our data shows
that foot shocks alone can activate the auditory and visual cortices of a guinea pig
through second-order conditioning.

2 Methods

The experiments were performed in accordance with the guidelines of the Animal
Experiments Committee of Tamagawa University. Three to four weeks old female
guinea pigs were used as experimental subjects. Two groups (conditioning and
naïve) were prepared. Second-order conditioning with light, tone, and foot-shock
was carried out while the animal was awake in the test cage, through a grid shock
floor. The conditioning protocols are shown in Fig. 1.

On day 1, pairing of tone (8 kHz, 5 s) and foot-shock (0.7 mA, 0.5 s) was
repeated five times. On day 2, pre-test for light was carried out; then, pairing of light
(white LED, 10 s) and tone (8 kHz, 5 s) was repeated five times. The conditioned
response to light was tested on day 3. In order to measure the conditioned response,
the cardiac pulse (blood flow) was recorded by using an ear sensor. Next, the
cortical activities in naïve and conditioned animals were recorded by using optical
imaging with a voltage sensitive dye, RH795. Responses from the left cortical
areas, including auditory, visual, and somatosensory cortices, were recorded in

Fig. 1 Protocol of second-order conditioning using light, tone and foot-shock
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three conditions: (1) presentation of a pure-tone (duration: 50 ms, frequency:
4–16 kHz, acoustic pressure: 65 dB SPL) to the right ear; (2) presentation of a
light stimulus (duration 5 ms, white LED) to the right eye; and (3) application of
an electric shock (duration: 0.2 s, current intensity: 0.5–1.5 mA) to the hind legs.

3 Results

Second-order conditioning using light, tone and foot-shock was carried out. On day
1, blood flow was monitored during the tone-shock conditioning; as a result, the
conditioned response was observed in the third to fifth trial. On day 2, pairing of
light and tone was repeated five times. Blood flow change to the light stimulus
was monitored in the pre-test (day-2) and test (day-3); as a result, the conditioned
response to light was observed after the light-tone conditioning, proving second-
order conditioning to be successful. Next, neural activities in the auditory, visual,
and somatosensory cortices were recorded by optical imaging. In order to identify
the location of these three cortical areas, cortical activities in the recording sites to
light, foot-shock, and tone stimuli were investigated. Figure 2a shows a schematic
diagram of cortical areas including visual, somatosensory and auditory cortices as

Fig. 2 (a) A schematic diagram of cortical areas including visual, somatosensory and auditory
cortices. The areas surrounded by red and blue dashed lines are visual (V1) and auditory (ACx)
cortices, respectively. The areas surrounded by pink dashed and solid lines are primary (S1) and
secondary (S2) somatosensory cortices corresponding to the hind legs, respectively. (b) Neuronal
activity in V1 to light stimulus. (c) Neuronal activity in S1 and S2 to foot-shock to hind legs. (d)
Neuronal activity in ACx to tone stimulus
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Fig. 3 Cortical activities in response to foot-shock alone in naïve and conditioned animals,
respectively. Foot-shock: electric shock to hind legs. S1, S2: primary and secondary somatosensory
cortex, V1: primary visual cortex, ACx: auditory cortex

reported by Woolsey and Van der Loos [4]. Figure 2b shows cortical activity to a
light stimulus, suggesting that the activated area is primary visual cortex.

Figure 2c shows cortical activity to a foot-shock to the hind legs, suggesting that
the activated areas are primary and secondary somatosensory cortices corresponding
to the hind legs. Figure 2d shows cortical activity to a tone stimulus, suggesting that
the activated area is primary auditory cortex. We confirmed that the configuration of
visual, somatosensory, and auditory cortices shown in Fig. 2b–d corresponds to that
in Fig. 2a. Finally, cortical activities to a foot-shock were compared in naïve versus
conditioned animals. Figure 3 shows cortical activities in response to a foot-shock
alone in naïve and conditioned animals, respectively. As a result, only S1 and S2
were activated to a foot-shock in naïve animals, without any propagation of neural
activity. However, in conditioned animals, after the activation of S1 and S2, neural
activities were propagated to the auditory (ACx) and visual (V1) cortices.
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Reward-Modulated Motor Information
in Dorsolateral Striatum Neurons

Yoshikazu Isomura

Abstract It is well known that dorsolateral striatum neurons participate in the direct
pathway (with dopamine D1 receptors) or the indirect pathway (without D1 recep-
tors) to control voluntary movements. Little is, however, known about functional
representation of motor information and its reward modulation in individual striatal
neurons. In our recent study, we analyzed spike activity of single dorsolateral striatal
neurons in head-fixed rats performing voluntary forelimb movement in a reward-
expectable manner. Some of them were identified morphologically by a juxtacellular
visualization combined with in situ hybridization for D1 mRNA. The striatal
neurons showed distinct functional activations before and during the forelimb
movement, regardless of the D1 mRNA expression. They were often modulated
only positively by their reward expectation for the correct motor response. Our
results suggest that the direct and indirect pathway neurons may play a cooperative
rather than antagonistic role in spatiotemporal control of voluntary movements in
the skeletomotor loop of the basal ganglia.

Keywords Striatum • Direct pathway • Dopamine receptor • Reward •
Voluntary movement

1 Introduction

The basal ganglia are composed of the dorsal and ventral striatum, globus pallidus
(external and internal segments), subthalamic nucleus, and substantia nigra. They
connect with the cerebral cortex and thalamus to organize parallel cortico-basal
ganglia thalamo-cortical loop circuits [1]. In rodents, the dorsolateral part of
striatum receiving excitatory inputs from the primary motor cortex participates in
the skeletomotor loop that contributes voluntary movements.

More than 90 % of striatal neurons are medium spiny neurons, which are
the only cell type of striatal projection neurons, receiving glutamatergic inputs
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from the cortex and sending GABAergic projections to other parts of the basal
ganglia [2]. The projection neurons in dorsolateral striatum participate in either
the direct pathway (expressing dopamine D1 receptors) or the indirect pathway
(D2 receptors), controlling voluntary movements in an antagonistic manner [2]. The
D1- and D2-expressing neurons are excited and inhibited, respectively, by dopamine
release from the substantia nigra neurons encoding a reward prediction error. People
believe that an activation of the direct pathway neurons results in an enhancement of
voluntary movements (like as a car accelerator), while an activation of the indirect
pathway neurons results in a depression of them (a brake). However, it remains
to be known how individual striatal neurons for the two pathways functionally
represent motor information and how their motor information is modulated by
reward expectation.

In our recent study [3], we juxtacellularly recorded the spike activity of single
neurons in the dorsolateral striatum while rats were performing voluntary forelimb
movements in a reward-expectable condition. We also recorded multi-neuronal
activity in the motor cortex during the voluntary movements for comparison.

2 Methods

All experiments were carried out in accordance with the Animal Experiment Plan
approved by the Animal Experiment Committee (RIKEN, Japan). Adult Long-
Evans rats (150–250 g, male) were first handled to adapt to the experimental
environments. A head-attachment was surgically attached to the skull under isoflu-
rane gas anesthesia. After recovery from the surgery, they were deprived of drinking
water in their home cages. Then, the rats were trained for 2 weeks, by an operant
learning, to perform an alternate-reward forelimb movement task under a head-fixed
condition, which was the same as used in the previous study [4, 5] except for an
alternation of reward and no reward delivery. Briefly, the head-fixed rats had to start
each trial by pushing a lever and hold it with the right forelimb for at least 1 s. After
the lever hold period, if they pulled the lever spontaneously (with no cue signal),
a high-tone sound was presented with a 0.2–0.8 s delay to notice that the response
was correct in the trial. A small amount (10 ul) of saccharin water as a reward
was or was not delivered alternately during the presentation of high-tone sound.
Thus, they learned to anticipate reward or no reward in each trial. Once the rats
completed the operant task learning, they were transferred to the recording set-up
for electrophysiology.

We obtained juxtacellular recordings through a glass electrode from single
neurons in the left dorsolateral striatum of individual rats performing the alternate-
reward forelimb movement task. In some of the recorded neurons, we tried to
electroporate Neurobiotin into them with positive current pulses typically for
15–20 min. The recorded neurons were visualized later for morphological iden-
tification in combination with in situ hybridization for D1 mRNA and immuno-
histochemistry for mu opioid receptor. We simultaneously recorded multi-neuronal
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activity in the forelimb area of the left motor cortex through a 16ch silicon probe.
The spike activity in striatum and motor cortex neurons was isolated and analyzed
offline by our spike-sorting soft-ware EToS [6, 7].

3 Results

In our experiments, most of the rats (ND 63 of 67 rats) learned to perform the
alternate-reward forelimb movement task well [3]. The onset of pull movements was
apparently earlier in the rewarded trials than in the non-rewarded trials. The velocity
of pull movements was not largely different in the rewarded and non-rewarded trials.
Thus, the behavioral observations suggest that the rats successfully understood the
alternate reward rule and anticipated the alternate delivery of reward and no reward
for their correct task response.

We obtained juxtacellular recordings from 84 neurons in the dorsolateral stria-
tum, while the rats were performing the alternate-reward forelimb movement task
[3]. Regarding task-related discharge activity, the striatal neurons were classified
into two major functional groups: Hold-type and Movement-type neurons showing
functional activations before and during the forelimb movement, respectively. The
Hold-type neurons (nD 21) showed lower spike rates during the push movement
than during the hold period, whereas the Movement-type neurons (nD 46) increased
spiking rates during both the push and the pull movements. We found the Hold-
and Movement-type activities were often augmented by the reward-anticipatory
condition (positive reward modulation). It is unlikely that the reward modulation
was simply due to the behavioral difference in forelimb movement.

After the juxtacellular recording, we visualized a part of the recorded striatal
neurons, and examined whether they expressed the mRNA for the dopamine D1
receptor by using a fluorescent in situ hybridization (Fig. 1). We attempted to
visualize 57 neurons morphologically out of the 84 juxtacellularly (electrically)

Fig. 1 A juxtacellularly recorded striatum neuron. (a) Fluorescent visualization for Neurobiotin-
loaded neuron. (b) In situ hybridization for dopamine D1 receptor mRNA. (c) Its re-stained
morphology
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recorded neurons, and we obtained 27 successfully visualized neurons in the
dorsolateral striatum where the FL area of the motor cortex densely innervates. We
obtained 10 D1-positive neurons (Hold-type nD 5, Movement-type nD 5) and 17
D1-negative neurons (Hold-type nD 3, Movement-type nD 7, and others). Thus,
the Hold- and Movement-type neurons were not specific to D1-negative or -positive
subpopulation, respectively. Furthermore, the reward modulation of Hold-type and
Movement-type neurons seemed independent of the expression of D1 mRNA.

Next, we examined whether the functional activity of motor cortex neurons was
affected by the reward alternation, because the striatal reward information may be
conveyed from the motor cortex rather than the substantia nigra. Using the multi-
neuronal recording, we obtained a total of 216 neurons (164 regular-spiking (RS)
and 52 fast-spiking (FS) neurons) in the FL area of the motor cortex during the
task performance (ND 24 rats) [3]. We found 46 Hold-type and 106 Movement-
type neurons in the motor cortex. Consistent with our previous study [4], many
of the FS neurons displayed the Movement-type activity (nD 37) rather than the
Hold-type activity (nD 1). Importantly, most of the motor cortex neurons were not
clearly modulated by the reward alternation. The cortico-striatal pyramidal cells are
located in the layers 5A and 5B of the rat motor cortex. We found no largely biased
distribution in the reward modulation of Movement-type activity in the superficial
(putatively layer 2/3), middle (layer 5), and deep (layer 6) layer subpopulations. It
suggests that most of motor cortex neurons appeared be specialized to process motor
information with no reward information, unlike the striatal neurons.

4 Discussion

As described above, we showed how motor information and reward information are
represented by individual neurons in the dorsolateral striatum and the motor cortex
of the skeletomotor loop in the rat. According to the classical basal ganglia model,
the excitation of striatal neurons for the direct and indirect pathways, respectively,
enhances and depresses the activity of motor cortical neurons antagonistically [1].
Recent studies using gene modification techniques certainly support this model
[8, 9]. Therefore, one may expect that the direct pathway neurons increase the spike
activity during voluntary movements, whereas the indirect pathway neurons do so
during no movements. However, no large difference was found between D1-positive
and -negative neurons in the dorsolateral striatum. Interestingly, Cui et al. (2013)
reported that these two pathways are concurrently and similarly activated during
voluntary movements [10]. Our results at a single-cell resolution level favor their
observations.

Thus, the antagonistic pathway system may be accomplished by a more complex
involvement of the two groups of striatal neurons. For example, for Hold-type activ-
ity, D1-positive (direct pathway) neurons may prepare for an intended movement
or just maintain overall muscle tone, while D1-negative (indirect pathway) neurons
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may suppress temporally incorrect expression of the movement. For Movement-type
activity, D1-negative neurons may suppress concurrent expression of antagonistic
muscular movements, while D1-positive neurons execute the intended movement.
Taken together, this simple movement may actually be composed of several
spatiotemporal motor components, and individual striatal neurons for both pathways
may antagonistically code subprograms for the motor components to complete the
whole movement coordinately.

The dorsal as well as ventral striatum is known to process reward-related
or motivational information [11, 12]. The dopamine neurons of substantia nigra
send reward prediction error signals to the striatal projection neurons. Dopamine
enhances the activation of D1- expressing (direct pathway) neurons and depresses
D2-expressing (indirect pathway) neurons. It is thus possible that the dopamine
signals carrying reward information affect motor information represented by these
projection neurons in the dorsal striatum. But our results showed a strong popu-
lational shift to the positive direction in the reward modulation of dorsal striatum
neurons. Accordingly, the dorsal striatum neurons may possibly receive synaptic
inputs carrying reward information from cortical (other than the motor cortex) or
subcortical (non-dopaminergic) neurons, as well as the substantia nigra dopamine
neurons, in the skeletomotor loop.

The two-pathway system of the basal ganglia is likely to work, not just antag-
onistically, but rather coordinately by various functional activations of individual
striatal neurons that contribute to an integration of motor and reward information.

5 Conclusions

We have shown the functional spike activity of identified dorsolateral striatum
neurons during voluntary movements and reward expectation.

1. Hold- and Movement-type neurons were not specific to D1-negative and -positive
subpopulation, respectively. Therefore, It is not a simple set of an accelerator and
a brake.

2. Reward modulation of Hold- and Movement-type activity seemed independent
of D1 receptor expression. It may be mediated through dopaminergic as well as
non-dopaminergic synaptic inputs.

Our findings will shed light on functional coordination of individual neurons in
basal ganglia-related networks to accomplish goal-oriented behaviors.
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Anxiolytic Drugs and Altered Hippocampal
Theta Rhythms: The Quantitative Systems
Pharmacological Approach

Tibin John, Tamás Kiss, Colin Lever, and Péter Érdi

Abstract The spirit of systems pharmacology was adopted to study the possible
mechanisms of anxiolytic drugs on hippocampal electric patterns. The purpose of
this study was to investigate the mechanisms by which anxiolytics characteristically
reduce the slope and/or intercept of the stimulus-frequency relationship of hip-
pocampal theta. A network of neuron populations that generates septo-hippocampal
theta rhythm was modeled using a compartmental modeling technique. The effects
of cellular and synaptic parameters were studied. Results show that halving the rate
of the rise and fall of pyramidal hyperpolarization-activated (Ih) conductance lowers
intercept of nPO elicited theta frequency relationship, that increasing the decay time
constant of inhibitory post-synaptic current can reduce the frequency of low nPO
stimulation elicited theta rhythm, and that maximal synaptic conductance of GABA-
mediated synapses has little effect on frequency within the septo-hippocampal CA1
network.

Keywords Systems pharmacology • Anxiolytic drugs • Hippocampus • Theta
rhythms • Population neural network
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1 Introduction

Our main aim here is driven by the repeated observation that anxiolytic drugs
disrupt hippocampal theta. It is now clear that a neurochemically very-wide range
of anxiolytic drugs reduce the frequency of reticular-elicited hippocampal theta
in the anaesthetised rat [1, 2]. Such theta-frequency reduction remains the best
preclinical (i.e. animal-based) test for predicting a clinically-efficacious anxiolytic
drug. Conversely, drugs which are antipsychotic or sedative but not anxiolytic do
not reduce reticular elicited theta frequency [1]. The utility of the theta-frequency
reduction assay in predicting clinical efficacy of anxiolytic drugs suggests to us the
importance of creating a quasi-realistic biophysical network modeling framework
within which to model changes in hippocampal theta frequency.

To model changes in hippocampal theta frequency resulting from changes in
conductance and decay time constants of specific currents, we extended our previous
computational model [3], which was constructed to to simulate the generation and
pharmacological control of septohippocampal theta rhythm. Our goals here were
(i) to simulate the effect of the stimulating current delivered to the nPO on the
frequency of hippocampal theta oscillation, (ii) to extend our previous model with
a more biologically realistic septal innervation where we account for tonic and
rhythmic cholinergic and glutamatergic, and rhythmic GABAergic inputs, and (iii)
to study how anxiolytic drugs of diverse chemical structure modify the synaptic
parameters in order to reduce theta frequency. The current paper describes our initial
results in meeting these aims.

2 Methods

A biophysically detailed compartmental modeling technique was adopted to build a
network of pyramidal cell and certain inhibitory cell populations.

Model specifications including parameter settings and full equation specifica-
tions are given at http://geza.kzoo.edu/theta/theta.html and are used without change
unless otherwise specified. In order to model the recently verified role of the
glutamatergic population of the medial septum in contributing to theta activity [4],
a rhythmic spike-based input modulated at theta frequency was implemented to rep-
resent the effect of this population within the septo-hippocampal system (Fig. 1). To
simulate an assay that reliably predicts the clinical efficacy of anxiolytics, electrical
stimulation to the nPO region of the brainstem was modeled as depolarizing current
to pyramidal, basket, and medial septal GABAergic (MS-GABA) neurons, as well
as by the frequency of the rate modulation of the medial septal glutamatergic (MS-
Glu) spiking object.

Septo-hippocampal theta rhythm was recorded as a population activity measured
as the extracellular field potential around pyramidal cells, the most abundant
neurons in the relevant neural tissue. The mean theta-range frequency of the LFP

http://geza.kzoo.edu/theta/theta.html
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Fig. 1 Structure of septo-hippocampal network model. Three hippocampal neuron populations
and one medial septal population are modeled explicitly. Two medial septal populations are
modeled indirectly by their rhythmic or tonic effects on the system (squares). Red symbols and
black circles indicate inhibitory populations and synapses, respectively; yellow symbols and open
triangles indicate excitatory populations and synapses

was determined as the frequency corresponding to the peak of the power spectrum
in the range 2–12 Hz. The time-dependence of synaptic conductances was modeled
as following first-order kinetics according to the equation

ds

dt
D ˛F �Vpre

�
.1 � s/� ˇs

with s representing the fraction of open synaptic channels at the post-synaptic
membrane, weighted by a maximal conductance gsyn to evaluate post-synaptic
current. The multiplicative inverse of the ˇ term in this synaptic model is referred
to as the decay time constant of the post-synaptic current, �syn [5].

See this webpage for the R, Octave, and GENESIS code used to generate
the simulation experiments and data analysis: http://geza.kzoo.edu/theta/thetaFreq.
html. ANCOVA followed by Tukey contrasts was used to compare the intercepts
of nPO stimulation elicited theta frequency-stimulus relationships before and after
potential anxiolytic effects were applied.

3 Results

The LFP generated by pyramidal neurons exhibited increasing frequency and
amplitude of oscillation in the 3–10 Hz theta range (Fig. 2a). The frequency of
synchronous firing amongst pyramidal cells also increased with increased nPO

http://geza.kzoo.edu/theta/thetaFreq.html
http://geza.kzoo.edu/theta/thetaFreq.html
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a

b c

Fig. 2 (a) Synthetic LFP recordings from pyramidal cells for increasing nPO stimulation in model.
(b) Representative power spectra of LFP in the theta band for increasing nPO stimulation. (c)
Representative firing histograms showing increasing frequency of synchronous firing in pyramidal
somata

stimulation (Fig. 2c). An approximately linear increase in mean theta frequency with
nPO stimulus level was observed (Fig. 3; black).

The decay time constant of all GABA-receptor mediated synapses was doubled
to test the effect on elicited theta frequency. A significant interaction effect between
nPO stimulus level and decay time constant of GABA synapses was observed
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Fig. 3 Modulation of synaptic dynamics affects frequency of nPO stimulation elicited theta
rhythm. Mean frequency and standard error are shown with default parameter settings (black)
and with GABA decay time constant doubled (blue). Slowing down pyramidal hyperpolarization-
activated (Ih) current dynamics slightly lowers intercept of nPO elicited theta frequency relation-
ship. Mean theta frequency and standard error are shown for a range of nPO stimulation levels with
default parameter settings (black) and with Ih conductance rise and fall rates cut in half (red). Both
assays were conducted for N D 12 runs of the simulation per point

(F D 11:80; df D 1; 188; p < 0:001, Fig. 3) suggesting an increased slope of the
stimulus-frequency relationship when the time constant was doubled. The intercept
of the regression line was also significantly reduced (t D �4:053; p < 0:0001) when
the decay time constant was doubled.

No significant difference in mean network frequency was detected between any
level of positive allosteric modulator action (F D 0:833; df D 7; 80; p D 0:563,
Fig. 4), suggesting that these drugs may operate outside the septo-hippocampal
system when modulating the frequency of septo-hippocampal theta rhythm.

When the rates at which Ih conductance rises and falls in the somata and
dendritic regions of pyramidal cells in the model were each halved, reduction in the
intercept of the stimulus-frequency relationship was observed, although this trend
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Fig. 4 Modulation of maximal synaptic conductance associated with GABA receptors within
septo-hippcampal system has negligible effect on theta frequency. Error bars indicate standard
error of the mean of N = 12 runs of the simulation Depolarizing currents of 600 nA, 1.4, and 2.2�A
to pyramidal somata, basket cells, and MS-GABA cells was used, respectively, with a MS-Glu
population firing rate modulation of 6 Hz

did not quite reach significance (t D �1:772; p D 0:078, Fig. 3). No significant
interaction between the categories and the level of nPO stimulation was observed
(F D 1:351; df D 1; 188; p D 0:247), suggesting no difference in slope between the
relationships.

4 Discussion

It has been demonstrated that the frequency of hippocampal theta rhythm can be
reduced by modulating synaptic and intrinsic cellular parameters in a biophysically
realistic model of the septo-hippocampal system. Research goals obtained include
modeling nPO stimulation assay with increasing depolarizing currents to evaluate
potential effects of anxiolytic drugs, expanding septo-hippocampal model to begin
to account for the role of medial septal glutamatergic population in hippocampal
theta production, and identifying potential effects of selective anxiolytics includ-
ing slowing the decay and onset of hyperpolarization-activated current in CA1
pyramidal neurons, producing intercept reduction. It is interesting to note that a
recent study showing that the blockade of the Ih channel resulted in slowing of
nPO stimulated hippocampal theta oscillation and also that this drug has anxiolytic
effects [6]. Similarly, our modeling results also suggest that decreasing the influence
of the Ih channel on the evolution of the membrane potential would result in lower
theta intercept. Increasing synaptic decay time constant of inhibition relative to
that of excitation lowers theta frequency at some stimulation levels and might be
combined with other mechanisms of frequency reduction to have more reliable
anxiolytic effects. This result is comparable to the effects of zolpidem, which
increases the synaptic time constant of GABAA receptors [7] and is known to have
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weak anxiolytic effects. Our model also predicts that the frequency-modulating
effects of positive allosteric modulators of GABAA receptors on hippocampal
theta is mediated by synapses outside of the septo-hippocampal system. This
prediction is consistent with evidence suggesting that the reduction of reticular-
elicited hippocampal theta by systemic benzodiazepine injection is largely or wholly
mediated by medial hypothalamic sites. For instance, chlordiazepoxide infusions
to the medial supramammillary nucleus mimic those of systemic injections of
chlordiazepoxide [8].
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Carbachol-Induced Neuronal Oscillation in Rat
Hippocampal Slices and Temperature

Itsuki Kageyama and Kiyohisa Natsume

Abstract ‚ and ˇ oscillations are functional and can be involved in the memory
and learning. Temperature affects the processing. It was reported that the spe-
cific temperature range is required for induction of theta oscillations. However,
affects of temperature on the other neural oscillations have not been clarified
so far. In the present study, we examined the impact of temperature on the
carbachol-induced oscillations. Carbachol-induced oscillations were observed at the
temperature 27–35 ıC. At 27 ıC, the frequency covered from � to ˇ range. From
29 to 35 ıC, the frequency was in the ˇ range. The frequency was significantly
increased with the temperature. It was correlated with the temperature. Above 35 ıC,
the oscillations were not observed. Instead, the epileptic discharges were induced.
Next, the spatio-temporal pattern of theta oscillation and epileptic discharges in the
slices was measured. The current-source density (CSD) analysis clarified that theta
oscillation and epileptic discharges had the different CSD patterns.

Keywords Neuronal oscillations • Memory and learning • Hippocampus •
Temperature dependence • Epileptic discharges

1 Introduction

The hippocampus of a rat in vivo has various oscillations, � , ˇ oscillation. These
oscillations are functional and can be involved in the memory procressing [1].
Theta (<12 Hz), ˇ (12–30 Hz) oscillations similar to the in vivo oscillations can be
induced in hippocampal slices with the application of a cholinergic agent carbachol
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[2]. Fluctuations in brain temperature affect on memory process [3]. It is reported
that the specific temperature range is required for the induction of � oscillation.
However, effects of temperature on the other neural oscillations have not been
clarified so far. In the present study, we examined the impact of temperature on
the carbachol-induced oscillations. In the recorded temperature range, carbachol-
induced � oscillation (CITO) was induced. We also recorded the spatio-temporal
pattern of the oscillation, CITO and picrotoxin-induced epileptic discharges (PIED),
using multi-electrode array about.

2 Matherials and Methods

2.1 Slice Preparation

Hippocampal slices were prepared from male Wistar rats (45–160 g) aged
3–6 weeks. The rats were anesthetized with isoflurane and then decapitated. Their
brains were removed quickly and cooled in artificial cerebrospinal fluid (ACSF)
solution at 0 ıC. Transverse hippocampal slices, which were 400–450�m thick,
were prepared using a tissue slicer. The slices were incubated in a preserving
chamber at 33˙ 1 ıC for an hour applying ACSF solution bubbled with 95 % O2

and 5 % CO2.

2.2 Recording Protocol

Neural oscillation was recorded from the stratum pyramidale to the stratum radia-
tum of the CA3 region using a glass microelectrode filled with 2 M NaCl (1–2 M�).
To induce neural oscillations, acetylcholine receptor agonist carbachol was applied.
After an hour, a hippocampal slice was transferred to the recording chamber, which
was set to a temperature of either 27˙ 1, 29˙ 1, 31˙ 1, 33˙ 1, 35˙ 1, 37˙ 1, or
39˙ 1 ıC. In order to make sure that the hippocampal slice temperature remained
constant, we measured the temperature of the slices continuously using the needle-
thermocouple probe and thermometer. Multi-electrode array system (MED64) of
Alpha MED Scientific Inc., Ltd. was used to record the spatio-temporal pattern
of field potential of CITO and PIED, which were induced by a acetylcholine receptor
agonist carbachol and a GABAA receptor antagonist picrotoxin.
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3 Result

3.1 Temperature Dependence of Carbachol-Induced Neuronal
Oscillations

The administration of carbachol to hippocampal slices, neuronal oscillations as
shown in Fig. 1 were induced in the recording at the temperature of 27–35 ıC. In
this ranges, the burst-like neuronal oscillations were induced. The frequency of the
oscillation in a burst ranged from 9.8 to 13.7 Hz at 27 ıC. It ranged from � to ˇ
frequency range. On the other hand, the frequencies in a burst were from 12.7 to
17.6 Hz at temperature of 29–35 ıC. The frequency was in ˇ frequency range. The
frequency was significantly increased with temperature (���p < 0:001; ANOVA
with Krusal-Wallis test). In addition, the duration and inter-burst interval (IBI) were
significantly decreased with temperature (���p < 0:001; ANOVA with Krusal-
Wallis test). The significant changes of the amplitude with temperature was not
observed.

3.2 Different Spatio-Temporal Patterns of CITO and PIED

CSD analysis was performed using the field potentials recorded from 64 electrodes
of MED64. During the generation of CITO, a cluster of a pair consisted of a source
and a sink made a line, and propagated from dentate gyrus to CA1 along the stratum

Fig. 1 Representatives of carbachol-induced neuronal oscillations at temperature of 27–35 ıC.
Perfusion of 30�M carbachol induced the bursts of the oscillation. The left trace reveals successive
bursts of neuronal oscillation with the regular burst duration (white arrow) and IBI (black arrow).
The right trace expands the asterisk portion of the left trace
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Fig. 2 The result of CSD analysis for CITO (left column) and PIED (right column). (a) The
pictures of the hippocampal slices on the MED probe. Black small points show electrodes. (b)
Typical field potential of CITO and PIED from an electrode of MED. CITO and PIED were
measured at white circles shown in (a). (c) A time course change of the spatio-temporal patterns of
sinks and sources in one cycle of a wave shown in (b). The time when the most negative potential
was induced is defined as 0 msec. Spatio-temporal patterns of sinks and sources are shown at the
time indicated at the tics shown in (b)

pyramidale, a pyramidal cell layer in CA3 (Fig. 2). The cluster diminished after the
propagation. Then the source covered the entire cell layer. On the other hand, in the
PIED, a larger cluster of a sink and source pair was induced suddenly, it propagated
faster than CITO, and it lasted for a longer time (Fig. 2).
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4 Discussion

There was difference in the spread of a cluster of sinks and sources between
CITO and PIED. In the case of CITO, that of sinks and sources started from the
neighborhood of dentate gyrus of hippocampal CA3, and it propagated along a
pyramidal cell layer. Afterwards, the source covered the whole pyramidal cell layer.
On the other hand, in the case of PIED, the small cluster of sinks and sources
were induced, it suddenly merged to propagate along the whole CA3 pyramidal cell
layer. Afterwards, the source covered the whole pyramidal cell layer for a long time.
After the source disappeared, the sink covered the same area for a long time. CITO
changed with temperature. Therefore, in the future, the spatio-temporal patterns of
sinks and sources will be recorded with different temperature.
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Associative Memory Network with Dynamic
Synapses

Yuichi Katori, Yosuke Otsubo, Masato Okada, and Kazuyuki Aihara

Abstract We investigate the dynamical properties of an associative memory
network with dynamic synapses whose connection strength changes with short-
term plasticity (STP) mechanism. We use a network model composed of stochastic
neurons and dynamic synapses and a corresponding mean field model. In the present
study, we focuses on influences of the facilitation synapses whose connection
strength is strengthened by the STP. We report that the facilitation synapses
contribute to the stabilization of memory association and that the bifurcation
analysis on the mean field model clarifies the stability in its macroscopic dynamics.
Furthermore, the synaptic facilitation causes several types of transitive dynamics
among multiple memory patterns.

Keywords Associative memory • Dynamic synapses • Short-term plasticity •
Stochastic neurons • Mean field model

1 Introduction

In an associative memory network composed of mutually connected neurons,
memory patterns are stored in their synaptic connections, and the network retrieves
a stored memory pattern according to its network dynamics [1]. In conventional
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associative memory model, the strength of the connections are assumed to be static.
However, recent physiological studies revealed that the strength of the synaptic
connections changes in a short period of time with short-term plasticity mecha-
nism; these synapses are called dynamic synapses [6]. The strength of synaptic
connection decreases (depression synapse) or increases (facilitation synapse). The
synaptic facilitation contributes flexible information representation in the prefrontal
cortex [2]. Dynamical properties of networks with stochastic neurons and dynamic
synapses have been intensively investigated [3–5]. The associative memory network
with the dynamic synapses shows variety of dynamical states including the memory
retrieved state and the transitive state between stored memory patterns [4]. In the
present study, we explore further detailed dynamical properties of the associative
memory network.

2 Model

The associative memory network we used here [4] is composed of N binary
neurons, and the neurons are connected via the dynamic synapses. The state of
the i th binary neuron is denoted by the variable si .t/ and takes an active state
[si .t/ D 1] or a resting state [si .t/ D 0]. Changes in the synaptic transmission
strength is determined by the fraction of releasable neurotransmitters xi .t/ and the
utilization parameter ui .t/ [6]. The state of the neuron and the dynamic synapses
changes according to the following equations [4]:

ProbŒsi .t C 1/ D 1� D 1

2
.1C tanhŒˇhi .t/�/ ; (1)

xi .t C 1/ D xi .t/C 1 � xi .t/
�R

� si .t/xi .t/ui .t/; (2)

ui .t C 1/ D ui .t/C Use � ui .t/

�F
C Use.1 � ui .t//si .t/; (3)

where hi.t/ DPN
j¤i Jij Œ2sj .t/xj .t/uj .t/=Use�1� represents the total input to the

i th neuron and 1=ˇ D T represents the noise intensity. The quantity Jij represents
the absolute strength of the connection from the j th to i th neuron; the memory
patterns are stored in this connections. Use represents the steady state value of the
variable ui .t/. The strength of synaptic transmission is given by the product of xj .t/
and uj .t/; the strength decreases (depression) or increases (facilitation) depending
on the parameters �R; �F , and Use.

The associative memory network is implemented with following absolute
strength of synaptic connection Jij D 1

N

Pp

D1 



i 



j where Jii D 0. The p

memory patterns 
 D .


1 ; � � � ; 
N /; 
 D 1; � � � ; p; 
1 2 f�1; 1g are given

by the following correlated patterns. Suppose that a parent memory pattern ,
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which satisfy ProbŒi D ˙1� D 1=2. The memory patterns 
 are given by
ProbŒ
i D ˙1� D .1 ˙ bi /=2, where b is the correlation level among memory
patterns and takes values in the interval Œ0; 1�.

To analyze the macroscopic properties of the associative memory network,
we consider the following macroscopic mean field model that captures overall
dynamical properties of the network [4].

m�.t C 1/ D gˇ

0

@
X

�0

p�0� � �0 �2m�0.t/X�0.t/U�0.t/=Use � 1
�
1

A ; (4)

X�.t C 1/ D X�.t/C 1 � X�.t/

�R
�m�.t/X�.t/U�.t/; (5)

U�.t C 1/ D U�.t/C Use � U�.t/

�F
C Use.1 � U�.t//m�.t/; (6)

where � indicates p-dimensional pattern vectors � D .�1; : : : ; �p/T 2 f�1; 1gp.
A set of neurons f1; : : : ; N g is divided into 2p groups on the basis of these pattern
vectors. Suppose that N� i D .1i ; : : : ; 

p
i /
T 2 f�1; 1gp, a sublattice is defined as a

set of neurons belonging to a given pattern vector. The sublattice belonging to the
pattern vector � is defined as I� D fi j N�i D �g. p� D jI�j=N denotes the relative
sublattice size.

3 Results

We analyze the dynamical properties of the associative memory network by
numerical simulations and the mean field model. In the present study, we commonly
use following parameter values: b D 0:2; Use D 0:1;N D 104; and p D 3.

Process of the memory retrieval can be characterized as a convergence of the
state of the network to an attractor. In the pseudo-constant range in which the effect
of STP quickly disappears (�R D 4), the state of the network tends to converges to a
steady state. As the effects of facilitation increases (as �F increases), the pseudo-
memory states appear, and then the memory retrieved states are stabilized. The
bifurcation analysis on the mean field model clarifies the qualitative changes in this
stability as shown in Fig. 1a.

In the depression-dominant range (�R D 7), the network tends to be unstable.
Increases in effects of facilitation (increases in �F ) causes variety of oscillatory
states (Fig. 1b–d) including the transitive state among the memory patterns. In the
mean field model, the transitive states appear as the pseudo-periodic orbit. The orbit
distributes on the several types of manifolds: circle, torus, and strange attractor like
structure.
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Fig. 1 (a) Bifurcation diagram in the pseudo-constant range. (b–d) Typical time courses of the
network response in the depression-dominant range. In the top row, dots indicate the active state of
the neuron. Remaining rows indicate the overlaps, which quantify the similarity between the state
of the network and the stored patterns in the stochastic model (second row) and in the mean field
model (third row and bottom)

4 Conclusions

The associative memory network with dynamic synapses exhibits a variety of
dynamical states: memory and pseudo-memory states, as well as transitive dynamics
among memory patterns. The facilitation synapses have significant influences on
the network dynamics. These results imply that the dynamic synapses potentially
contribute various brain functions, e.g. synaptic working memory and memory
retrieval including sequential memory association. These functional aspects of the
network dynamics should be investigated in the future.
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Neural Dynamics for a Sudden Change
in Other’s Behavioral Rhythm
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Abstract Our communication includes behavioral synchronization with sudden
changes of other’s rhythms. However, it is not clear about its neural mechanism.
Here, we compared the behaviors and brain activities between the normal and autism
spectrum disorder (ASD) subjects in an alternating tapping task which required
subjects to synchronize the tapping intervals with a virtual person (PC program)
who tapped at a constant interval or a variable interval. Behavioral results showed
no significant difference between the normal and ASD subjects under the constant-
interval condition. In contrast, the rates of synchronization of the normal subjects
were higher than those of the ASD subjects under the variable-interval condition.
EEG results showed alpha modulations (10–12 Hz) in the motor cortex were larger
for the normal subjects than the ASD subjects under the variable condition, whereas
there was no difference under the constant condition. Our results suggested that the
synchronization with other’s sudden variable rhythms would be associated with the
motor alpha modulations.
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1 Introduction

Our communication needs synchronization with other’s behavioral rhythms [1].
For example, for listening to music, hand clapping is spontaneously synchronized
among audiences. In another example, our speaking speeds often synchronized with
partners. Thus the behavioral rhythms of different individuals are well known to
be spontaneously synchronized through social interactions [2]. Moreover, recent
studies have identified the neural mechanisms (e.g. mirror neuron system [3],
mu-rhythm [4], and inter-brain synchronization [5, 6]) for the behavioral synchro-
nization with others in verbal and non-verbal communication.

Although such other’s behavioral rhythms sometimes include a sudden change,
its neural mechanisms remains unclear. To address the issue, it is useful to compare
the behaviors and brain activities between the normal and autism spectrum disorder
(ASD) subjects in coordinating with other’s behavioral rhythms. The latter group
of ASD is typically characterized by communication difficulties and stereotyped
behaviors [7]. Here, we conducted the alternating tapping task which required
subjects to synchronize the tapping intervals with a virtual person (PC program)
who tapped at a constant interval or a variable interval, and compared the behavioral
and electroencephalograph (EEG) rhythms between normal and ASD subjects.

2 Method/Models

Twenty-four normal subjects (12 females; 25.5˙ 6.7 years) and 24 ASD subjects
(ten females; 29.2˙ 7.2 years) took part in the tasks with their eyes closed. The
ASD was evaluated by the MSPA (Multi-dimensional scale for PDD and ADHD)
and ADOS (Autism Diagnostic Observation Schedule). The intelligence quotient
(IQ) which was evaluated by WAIS-III (Wechsler Adult Intelligence Scale), was not
different between control (111.00˙ 12.19) and ASD subjects (111.33˙ 11.21).

In the task, when one subject tapped key with right index finger, one sound
(“do” or “mi”) was presented as the subject’s tapping through both right and left
earphones (Fig. 1). After that, the other sound (“mi” or “do”) was presented as a
virtual person’s (PC’s) tapping. If a difference between time intervals of previous
PC’s tapping (from subject to PC) and current subject’s tapping (from PC to subject)
was small (threshold: 50 ms), one-octave high sound was presented. Subjects were
asked to tap the key with equal time interval of previous PC’s tapping whereas the
tapping rhythms were not instructed.
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Fig. 1 Schematic illustration of the alternate tapping task. Red-colored words mean one-octave
high sounds

Each subject completed 500 trials in two conditions; the constant condition
(the intervals from the subject’s tapping to the PC tapping were 600 ms) and the
variable condition (the intervals were from 400 to 800 ms in five steps every 100
trials; e.g. 600 ms-400 ms-600 ms-800 ms-600 ms).

The EEG was recorded with 27 active scalp electrodes and the BrainAmp ExG
MR equipment. The sampling rate was 1,000 Hz. Reference electrodes were placed
on the right and left ear lobes. The independent components analyses components
which were significantly correlated with the EOG were eliminated from the data
as the artifact involved in eye blinks and movements [8]. And further, to reduce
the effect of the spreading cortical currents due to volume conductance producing
voltage maps covering large scalp areas, current source density conversion was
performed. To identify the time-frequency amplitudes during the tasks, we applied
wavelet transforms assuming that Morlet’s wavelet function of 7-cycles length, with
frequency ranging from 1 to 40 Hz (1-Hz steps).

3 Results

According to behavioral results, both the normal and ASD subjects showed high
rates of synchronization with PC’s tapping intervals (i.e. number of presentation of
one octave high sound) under the constant condition. On the other hand, under the
variable condition, the rates of synchronization of the normal subjects were higher
than those of the ASD subjects (Fig. 2).

The EEG results showed the enhancements of alpha amplitudes (10–12 Hz) in
the left motor cortex at the subject’s tapping and the alpha decrements at the PC’s
tapping. Interestingly, the alpha modulations in the motor cortex were larger for the
normal subjects than the ASD subjects under the variable condition, whereas there
was no difference under the constant condition.



488 M. Kawasaki et al.

Fig. 2 Example tapping intervals under the variable condition (cyan healthy subject, magenta
ASD subject, black PC). Yellow dots indicate trials which different intervals are within thresholds
(50 ms)

4 Discussion

Along with the behavioral results, the brain activities were different between the
normal and ASD subjects when the PC’s rhythms were suddenly changed but
not when the rhythms were fixed. Our results suggested that the synchronization
with other’s sudden variable rhythms would be associated with the motor alpha
modulations. The motor alpha activities are known to be associated with the mirror
neuron system [4]. Future study should address the causal relationships between the
behavioral rhythms and the EEG rhythms in coordinating with sudden changes of
other’s rhythms.

Acknowledgments The research was supported by a Grant-in-Aid for Scientific Research on
Innovative areas (21120005 and 24120706 and 25119512), a Grant-in-Aid for Young Scientists
(B) (23700328) to MK. The authors would like to thank Tadao Mizutani and Miho Yoshizumi for
their support in data acquisition and Yohei Yamada for their support in data analyses.

References

1. Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge: MIT
Press (1995).

2. Hasson, U. et al. Intersubject synchronization of cortical activity during natural vision.
Science303, 1634 (2004).

3. Iacoboni, M., Woods, RP., Brass, M., Bekkering, H., Mazziotta, JC., Rizzolatti, G., Cortical
mechanisms of human imitation. Science 286, 2526–2528 (1999).

4. Tognoli, E., Lagarde, J., de Guzman, G. C. & Kelso, J. A. The phi complex as a neuromarker of
human social coordination. Proc. Natl. Acad. Sci. USA 104, 8190–8195 (2007).



Neural Dynamics for a Sudden Change in Other’s Behavioral Rhythm 489

5. Yun, K., Watanabe, K., Shimojo, S. Interpersonal body and neural synchronization as a marker
of implicit social interaction. Sci. Rep. 2:959 (2013).

6. Kawasaki, M. Yamada, Y., Ushiku, Y., Miyauchi, E., Yamaguchi, Y. Inter-brain synchronization
during coordination of speech rhythm in human-to-human social interaction. Sci. Rep. 2:959
(2013).

7. Funabiki Y, Kawagishi H, Uwatoko T, Yoshimura S, Murai T. Development of a multi-
dimensional scale for PDD and ADHD. Res Dev Disabil. 32(3):995–1003 (2011).

8. Kawasaki, M., Kitajo, K. & Yamaguchi, Y. Dynamic links between theta executive functions and
alpha storage buffers in auditory and visual working memory. Eur. J. Neurosci. 31, 1683–1689
(2010).



Active Behaviors in Odor Sampling Constrain
the Task for Cortical Processing
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Abstract Sensory perception is accomplished by means of active behaviors that
help to extract information from the external environment. These behaviors become
a part of the percept and also constrain the perceptual task. In olfactory perception,
sniffing is the means by which individuals acquire olfactory stimuli from the
environment. Rats sniff at 8–10 Hz during odor sampling, but each sniff has a
different and stereotyped pattern that serves to find needed information. Higher
flow sniffs are used to identify high sorption odors within mixtures, while lower
flow sniffs are used to find lower sorption odors. Extended sniffing bouts (mean of
300–600 ms) are also stereotyped and tuned by the context in which rats identify
odors. These sniffing bouts may be determined by the cognitive demands of the task
or by particularities associated with training.
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1 Introduction

Cortical sensory systems have been shown to employ various strategies to represent
and process sensory information. In many systems precise temporal structure
in neuronal firing patterns produce oscillations at the population level that occur in
the process of discriminating or recognizing stimuli. Neural oscillations have been
ascribed many functions by neuroscientists, from binding of diverse sensory features
to attention to pattern separation. In the rat olfactory system, neurons in the olfactory
bulb respond with a collective fast oscillation in the gamma frequency range (40–
100 Hz) when an individual sniffs an odor in many contexts [1]. We assume that all
the precision is accounted for by the neural activity in these systems, but we often
fail to acknowledge that animals in any waking behavioral state engage in volitional
and goal-directed behavior while actively seeking stimuli. These behaviors adjust
the incoming sensory information according to the animal’s behavioral or cognitive
goal, and they may be used to simplify or constrain the task for neurons in the
brain. Behavioral effects on stimulus acquisition are well established in the visual
arena, where investigators employ fixation strategies to normalize the sensory input.
Here we summarize recent studies that address sniffing strategies in rodents; instead
of normalizing out the sniff we describe emerging behavioral motifs for olfactory
discrimination behavior. We address dynamics in behavior at the level of the single
sniff and the sniffing bout. Single sniffs in the 7–10 Hz range have a period of
100–140 ms, while sniffing bouts composed of two to five sniffs generally range
from 200 to 700 ms. Characterizing these highly dynamic behaviors is essential for
understanding how odors are perceived.

2 Sorption and Sniffing Behavior

2.1 The Chromatographic Hypothesis

When odorant molecules pass over two media, such as air and mucus (as happens in
the nose), they distribute between them. The sorptiveness of an odorant, quantified
by the partition coefficient, describes this distribution. Besides this coefficient, the
airflow at which the odorant passes over the mucus also determines how much
odorant is absorbed. Faster flows cause fewer molecules to be absorbed compared
to slower flows. In addition, areas of the sensory nasal epithelium that normally
sustain lower airflows express a broad class of receptors that may bind low sorption
odorants [2, 3]. Work by Mozell and colleagues showed that the olfactory epithelium
functions as a kind of chromatograph, in which odorants strike preferentially at
different zones of the epithelium depending on their sorptiveness [4, 5]. Given the
abovementioned role of airflow in the odorant distribution, it has been suggested
that animals may manipulate airflow through changes in sniffing to direct odorants
to the epithelium zone where they are best detected [6].
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2.2 Testing the Hypothesis (Methods)

We tested the chromatographic hypothesis in an experiment designed to challenge
rats to identify an odorant within a binary mixture [7]. Because rats are extremely
good at detecting odors, we wanted to test two rat groups, where both had to
sniff the very same odor mixtures but each had to search within each mixture for
specific odorants (that we called targets) of different sorptiveness for each group. We
produced two sets of four monomolecular odorants, and in each set there were two
high sorption and two low sorption odorants. Two groups of eight rats were trained
to discriminate two novel training odors in a go/no-go task (sniff in a central odor
port, then perform a nose poke in a second port for one odor, withhold responding
for the other odor). After training, one rat group was assigned to find a high sorption
target odor in the six binary mixtures formed from the odor set, and the other rat
group was assigned to search for a low sorption odor in the same mixtures. They
learned the target odor at the beginning of the session, and then they responded to
randomly presented mixtures or the target odor. We repeated this for the second
set of four odors, but the rat groups had their targets reversed (low sorption for the
previously high sorption group, and vice versa). In addition to behavior, we also
recorded EMG activity from the diaphragm muscle for each rat. This allowed us to
estimate the relative airflow used for different sniffs, odors and days.

2.3 Testing the Hypothesis (Results)

We found that rats that sought the high sorption odor in either odor set learned
faster than those seeking the low sorption odor. The former group learned to identify
the mixtures containing that odor within the first or second session, while those
tracking the low sorption odor took three sessions to learn. In the third session,
when rat groups showed equal performance on the task, the group seeking the high
sorption target odor sniffed with higher flow rates than those seeking the mixtures
containing the low sorption target odor. The high and low flow rates were higher
and lower than the flow rates that the two groups used on the first day. These data
support the hypothesis that rats manipulate their sniff strategies to take advantage of
the chromatographic properties of the sensory organ [7]. Another laboratory tested
the hypothesis around the same time and produced opposite results [8]. The major
difference between the two studies was their use of monomolecular odorants and
our use of mixtures.

3 Sampling Bouts

While rats can identify an odor with information from a single sniff, they usually
use more than one sniff to perform an odor discrimination. Taking additional sniffs
may lead to better performance, but this result is subject to some controversy
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[7, 9–12]. We have found that rats do increase performance with more sniffs, but
there are bounds on this improvement. Two sniffs of the odor are better than one,
but beyond that, it depends on the odor target. For low sorption odors in binary
mixtures, there was an increase in performance (percent correct) even for the third
sniff [7]. This was not true for the high sorption odors in mixtures. However, rats in
different studies spent different amounts of time sniffing the odors, and there is near
consensus that, while rats (and mice) can sometimes do better by sampling longer,
they generally do not [7, 11–13].

The range of mean sampling times for odor discrimination is 250–600 ms, and
it is unclear why the means are so different for different studies and laboratories.
Within a laboratory, sampling times are relatively stable around a mean, but across
laboratories the sampling times vary widely. This leads us to conclude that factors
in training or the structure of the task encourage shorter or longer sampling times.
Sampling time measures include the time an odor takes to arrive at the animal’s
nose, which varies depending on the distance from the odor source to the sampling
port and the airflow in the olfactometer (usually 50–200 ms). Assessments of true
sampling times subtract this delay and estimate the number of sniffs that contain
odor. Most studies find that with one sniff of an odor rats and mice can perform
above chance with all but the most difficult odor discrimination problems, and
laboratories agree that with one more sniff performance can increase somewhat.
With sniffs averaging 7–10 Hz, and the first sniff not assumed to contain any odor,
then the minimum sampling time is approximately 200 ms, including the odor delay.
In our laboratory, sampling times are 300–700 ms, (means of 400–450 ms). We do
not restrict the amount of time that rats can sample odors, and we find that some
of them sample for many seconds on some trials. Other laboratories restrict the
maximum time of odor presentation to 1 or 2 s, and this factor might restrict the
amount of time that rats choose to spend sampling an odor [9–11].

With an odor sampling bout lasting a few 100 ms, the remaining question is
whether all sniffs are alike. We found that they are not alike. In the study in which
we examined the role of sorptiveness, we found that the first two sniffs were similar
to each other and much faster than later sniffs [7]. The first two sniffs could be as fast
as 10 Hz, while later sniffs could be as slow as 7 Hz. We also found that inhalation
times varied across sniffs, and exhalation times did not. So, rats played with their
inhalation durations across sniffs in a stereotyped fashion even as they adjusted the
sniff across sessions while learning to discern an odor within the mixtures.

4 Conclusion

Behavioral strategies constrain the type of information that the brain receives from
a sensory organ. In olfaction, stereotyped sampling strategies define a sniffing bout
for rats and mice. Fast sniffs predominate during odor sampling, but even within
bouts the shape and speed of sniffs vary. Sampling strategies are adjusted as subjects
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learn to detect odorants within a background. Thus, it is important to know the
behavioral parameters under which a stimulus is processed when hypothesizing
neural processing modes that may be used by an animal.
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Autonomous Situation Understanding
and Self-Referential Learning of Situation
Representations in a Brain-Inspired
Architecture

Edgar Koerner, Andreas Knoblauch, and Ursula Koerner

Abstract Making sense of a scene has been considered a problem of sensory
analysis traditionally. Prediction is used to cope with combinatorial explosion of
possible alternative interpretations of the sensory signals. However, high complexity
and variability of natural scenes limit the use of sensory appearance-based predic-
tion dramatically. Brains of living beings seem to use a different strategy. Evolution
discovered the power of storing an episode of successful behavior and re-using this
memorized experience in similar situations. Such episodes consisting of intended
behavior, its outcome, the spatial context, and relevant objects constitute situation
models which control the selective inspection of sensory input required for its
smooth execution. We argue that this behavior-based approach enables dynamically
composed situation models that make the world more regular than it is indeed, and
that can be learned autonomously.

Keywords Behavior-based situation models • Self-referential learning •
Dynamic composition of internal models • Rhythmic control of composition
process

1 The Challenge of Autonomous Situation Understanding

Situation understanding is a prerequisite for autonomous systems to behave properly
in real-world environments. For establishing that capability a sufficiently rich body
of knowledge on typical scenes and its constraints for behavior is required. However,
acquired knowledge is only useful to the extent that it allows using experience of
successful behavior in the past to select proper behavior in a similar situation, and to
predict what may happen in the future [1]. But future situations are not exact replicas
of past situations because of the high complexity and high variability of real-world
scenes. Moreover, the intended task changes the situation with respect to what
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are relevant and irrelevant aspects of the scene. This excludes appearance-based
templates of scenes from being useful for an effective representation. Therefore, the
required internal model for understanding situations must be dynamically composed
according to constructive principles integrating elements and gist from stored
experience that are relevant for the intended task.

How to control the composition of such a dynamic situation model? Which kind
of knowledge representation could serve as the framework for guiding the process
of composing a meaningful situation model for performing a certain task? For
different tasks, even in case of the same sensory description of the outside scene, the
situation may be different since it is the task which defines which objects and object
configurations are relevant for its successful execution. Thus, the task specifies the
demand on sensory analysis, providing a hypothesis of how the situation should
look like to start its execution. Scene analysis is reduced in this way to a hypothesis
guided sensory inspection of expected objects within expected configurations in the
scene. In this way, the task demand serves to dramatically reduce the complexity
of the scene, since it defines relevant objects and aspects while anything else is
considered irrelevant for the time being.

2 Brain-Inspired Approach to Situation Understanding

Brains are basically control systems for organizing behavior. Evolution discovered
the benefit of memorizing actions and its outcome and reusing this experience
in similar situations. A proper frame for such a memorized action is an episode
which consists of both the intended action itself, the spatial and behavioral context
in which the action was experienced, and object configurations which have been
relevant for successful execution of the intended task. The essential difference of
this task-based situation model to the sensory data only based computer vision
approach of scene analysis is in its capability to assign a value to an experienced
situation. Action provides semantics to sensory data which enables the system to
autonomously construct a consistent architecture of its knowledge representation
based on self-reference. Finally, the difference in expected and actually experienced
outcome provides the system with the capability to improve the situation models by
adaptation and learning. In this framework, sensory analysis is not for creating an
internal replica of outside world, but it is a directed search for those remembered
aspects which are required to control the action to verify and adapt the internal
model to the actual sensory situation.

For task-based episodes being an efficient situation model, similarity matching
between memorized and actual situations at different levels of granularity must be
possible, as well as autonomous learning to generalize and discriminate further
within the acquired knowledge. Based on considerations of the phylogenetic
development of cortex we hypothesize the following representational and control
architectures may have evolved to support this function.
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2.1 The Hub-Network as Top-Level Organization of Different
Representational Hierarchies

The storehouse of the brain, the cortex, developed in vertebrates starting from a
basic configuration comprising the hippocampus and a few old areas which served
to represent actions, the respective spatial context, relevant objects, and the outcome
of the action for later reuse in similar situations [2]. These phylogenetically oldest
areas of the cortex constitute the basic system for organization of behavior and
learning. At birth these heavily interconnected “old” subsystems are available and
basic long-range connections are predefined, also in humans. During phylogenetic
development, with increasing behavioral demand on fine-grained navigation and
manipulation, additional subsystems for more specific and detailed representation
emerged, which form hierarchic extensions of the concept representation beneath
the “old” structures outlined above. These “old” structures are still heavily inter-
connected to each other and to its respective representation hierarchy so that they
are referred to as “hubs” [3]. The hub network depicted in Fig. 1 may constitute the
basic representational and control architecture for dynamic composition of situation
models according to constructive principles.

The medial PFC selects basic actions (escape, fight, relax, consume, etc.) based
on task-demand driven situation understanding provided by inputs about relevant
current objects, their value, and the current spatial and behavioral context. The
outputs of the mPFC to subcortical autonomous centers enable the adaptation of
internal state of the body to the intended behavior. The hippocampus (HC) supports
fast learning between any content including object-context-action-outcome. By
activating such stored behavioral models we can construct a new scene with objects
and persons, imagine an action and outcome [4]. This basic hub network is activated

Fig. 1 Hub-network: Intensively communicating top-level systems of separate representation hier-
archies, and their proposed neural substrates in the brain. HC hippocampus; value – orbitofrontal
cortex codes value of objects and action outcomes; context – retrosplenial cortex and precuneus are
structures that represent concepts of spatial context for own behavior; object concepts – perirhinal
cortex represents object concepts; action choice – medial pre – frontal cortex (mPFC) selects basic
actions
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for any retrieval of self-related memory, as well as for planning and envisioning the
future [5, 6]. Separate representation hierarchies dynamically linked at its top levels
seem to be the key for that capability.

2.2 Rhythmic Control for Repetitive Composition of Dynamic
Situation Model

For keeping track with the rapidly changing real world environment, the situation
model must be updated with a sufficiently high frequency. Hence, to enable such
a recurrent iteration of the construction process of the situation model, the length
of the construction process must be limited. In the cortex, rhythmic modulation
of excitability is ubiquitous and provides a natural control for iteration processes.
Hippocampal nested theta and gamma rhythms may serve to link distributed sub-
systems of the different representational hierarchies (as outlined above) repetitively
into a dynamic situation model according to the changing interaction situation. Any
temporary stable composition can be learned with HC.

During slow-wave sleep so-called sharp-wave ripples (SW-R) transfer stored
knowledge from HC to the hub network and the neocortex for consolidation [7].
However, the synchronizing SW-Rs during awake state seem to be involved in
planning and decision making [8]. In the awake state a characteristic ripple-related
sequence of events is observed starting with restriction of ongoing sensory inputs
(extensive inhibition of subcortical structures), via activation of mPFC (action
choice) and finally generation of SW-Rs in the hippocampus that synchronize
respective sensory and motor areas for action realization [9].

It seems that this sequence of SW-R related activation reflects the generation of a
dynamic situation representation according to constructive principles, including the
dynamic allocation of the processing architecture for a planned action.

3 Conclusion

Self-referential learning is bound to a basic architecture that builds a “frame” of a
behavioral model consisting of context, item, value, action and outcome. Specific
representation hierarchies serve to extend the basic architecture on behavioral
demand, and provide the means for dynamic composition of situation models even
for scenes never experienced before. Task-demand based situation descriptions are
highly robust situation models that can be anchored to sensory signal description
of current physical environment by model guided sensory inspection and self-
referential learning.
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Metastable Activity Patterns in Cortical
Dynamics and the Illusion of Localized
Representations

Robert Kozma

Abstract This essay studies the relationship between recent advances in brain
monitoring and modeling techniques, with the promise of identifying neural cor-
relates of higher cognitive functions and consciousness. In this work we address
the issue of the interpretation of the corresponding results, with special emphasis
on the hypothesis of localized brain representations. We propose a dynamical
systems theory framework to resolve the apparent contradiction between localized
representations and large-scale, distributed (global) brain processing principles.
Our dynamic model is a manifestation of Dreyfus’ situated intelligence, following
the traditions of Merleau-Ponty. This approach finds its applications in embodied
intelligent systems and intentionality in animals and in man-made devices.

Keywords Transient dynamics • Phase transition • Metastability • Representa-
tionalism • Embodied intelligence.

1 Introduction

Advanced brain imaging techniques provide unprecedented insight into the oper-
ation of brains, which leads to approaches interpreting brain operation in the
framework of neural representations. Brain activity exists simultaneously at multiple
levels of a hierarchy. Based on the available experimental tools, the temporal
and spatial observation windows can be granulated into the following scales:
(i) microscopic level, which uses microelectrodes to measure synaptic and action
potentials at the micron scale; (ii) mesoscopic level, corresponding to mm in
space and tens of ms in time, measured by electrocorticograms (ECoG); and
(iii) macroscopic measurements in cm and s from scalp electroencephalograms
(EEG), magnetoencephalograms (MEG), and functional magnetic resonance imag-
ing (fMRI) reflecting levels of cerebral metabolism [2, 6].
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High spatial resolution images by fMRI [3] can be linked with high temporal
resolution EEG and MEG signatures by combining hemodynamic imaging with
EEG imaging [1]. Single neurons in human and animal neocortex have been
shown to generate spike trains during performance of precise cognitive tasks such,
for example, as face recognition [14]. These cells are called colloquially as grand-
mother cells [11]. There is an apparent contradiction between the experimentally
observed localized cognitive responses, and the general view of brains as massive
distributed organs processing information and knowledge.

In this work, we analyze the contradiction between localized representations
and embedded cognition principles [4]. Contrary to representationalist approaches
by Minsky and colleagues [12, 13], who view intelligent behavior as symbolic
manipulation of mental representations, Dreyfus assumes no symbolic representa-
tions in brains [4]. Following the embedded cognition approach by Dreyfus, we
describe the operation of brains through a sequence of metastable states [6, 10]
as brains interact with their environment. These metastable states may be viewed
as intermittent ‘symbols,’ however, they are transient and disintegrate soon after
they emerge [10]. Based on the concept of transient, metastable states, we outline
the principles of intentional neurodynamics and indicate their potential benefits in
practical implementations of intentional systems.

2 The Illusion of Cortical Representations

Representationalist models of brain dynamics and cognition have their roots in
symbolic approaches to intelligence in biological and artificial systems. Symbolic
models and knowledge-based systems proved to be powerful tools dominating the
field of artificial intelligence for about three decades (from 1960s through the 1980s)
[5, 12, 13]. In the representationalist point of view, external events and perceptions
are transformed into inner symbols to represent the state of the world.

Due to the success of symbolic approaches of artificial intelligence, it is
natural to see that neuroscientists try to identify “symbolic representations” in
brains. Representationalism seems to receive experimental support from intracranial
recordings in human and animal neocortex. Namely, single neuron recordings
indicate the presence of dedicated neurons responding to specific input stimuli
during cognitive tasks such, e.g., face recognition [14]. These and further similar
results in the literature have been used as supporting arguments for localized
representations and the concept of grandmother cells [11].

There is, however, a critical caveat in the representationalist interpretation of
these single neuron experiments. If grandmother neurons were randomly distributed
in the neocortex, the likelihood of finding any of them would be vanishingly small.
It would be practically impossible to identify the visual image,which would evoke
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a measurable response in a given probe by flashing even hundreds of visual images
in front of the patient. The fact that such responsive cells can be found at all
implies that they are concentrated in neural assemblies distributed in the neocortex.
Potential candidates are Hebbian cell assemblies that are formed by learning to
enact a designated task [6]. Once any component of a Hebbian cell assembly is
stimulated, the whole assembly responds, which may explain the experimentally
observed effect.

There are theoretical reasons for alternatives to symbolic approaches of intel-
ligence. The concept of situated intelligence by Dreyfus is a prominent example
of philosophical alternatives to symbolism. Dreyfus ascertains that intelligence is
defined in the context of the environment; therefore, a preset and fixed symbol
system cannot grasp the essence of intelligence [4]. Connectionism provides a useful
model of brains and cognition, which is in many ways complementary to symbolic
approaches. Pragmatic implementations of situated intelligence find their successful
applications in embodied intelligence and robotics [9]. In the next section, we
outline a neural network-based approach to interpret experimental finding of cortical
spatio-temporal dynamics.

3 Phase Transition Models of Metastable Cortical Patterns

Detailed studies of EEG and ECoG data reveal that the observed brain activity
patterns are intermittent both in time and space [5,10]. Metastable patterns exist for
relatively long time periods, while the transition from one state to the other is fast.
There are various models to describe the experimental findings, including chaotic
itinerancy [16], and the existence of transient heteroclinic channels [15]. Behavioral
manifestations of metastablity and the complementarity principle is described in [7].
Here we employ the cinematic theory of brain dynamics. According to the cinematic
theory [6], cognition is not a smooth, continuous process in time; rather it is a
sequence of metastable patterns (cinematic frames), interrupted from time to time
by discontinuities (acting as the shutter).

Intentional neurodynamics is a biologically motivated connectionist approach.
We employ neuropercolation model system to implement principles of intentional
neurodynamics using phase transitions [2,5]. The neuropercolation model describes
various dynamical properties of metastable activity patterns in the cortical neuropil.
The duration of the metastable patterns is much longer than the very rapid transition
from one pattern to the other. This is illustrated in Fig. 1, where the ensemble
average activity level is shown over two-dimensional neuroperolation lattices.
Rewiring is a critical control parameter, which is used for tuning the characteristic
length of the metastable states; for details, see [2, 8].
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Fig. 1 Illustration of the dynamics of the metastable states modeled by neuropercolation; red
marks show the start of the erosion of metastable states

4 Conclusion

In this work we discuss the question of localized representations in brain recordings.
We argue that metastable patterns may be perceived as localized representations
with specific meaning in the context of the state of the cortex and inputs. However,
such percepts are transitory illusions, and any specific pattern rapidly dissolves
(within a fraction of second) and new patterns emerge. Even if the internal and
external states of the system remain unchanged during such transitions, the new
patterns are different form the previous one due to the changed dynamic trajectory
of the brain as a dynamic system.

The proposed analysis may help to reconcile the contradictions inherent in
perceived mental representations and to establish a harmony between the everlasting
human desire to create tangible chunks of knowledge reflecting our limited grasp of
reality and the infinite complexity of the world where our body and brain reside.
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Memories as Bifurcations Shaped Through
Sequential Learning

Tomoki Kurikawa and Kunihiko Kaneko

Abstract Representation of memory in the neural system is one of central problems
in the neuroscience. We have proposed a novel memory viewpoint “memories-as-
bifurcations”, in contrast to the classical viewpoint “memoiries-as-attractors.” Here,
we analyze generalization of memory, based on this novel viewpoint and show that
such generalization is formed through a simple sequential learning process.

Keywords Memory • Bifurcations • Sequential learning • Rate-coding neurons •
Generalization

1 Introduction

How memory is represented in neural system is an important problem for
understanding cognitive function in our brain. Often, a memory is considered
as an attractor of neural circuit [1], where an initial state of the network is set by
an input and then the neural state converges to an attractor depending on the initial
state. There, spontaneous activity without external stimuli is not taken into account
seriously, while recent experimental studies have demonstrated that the spontaneous
activity plays a key role in the response to a stimulus [2, 3]. To better understand
this role, we have proposed a novel viewpoint [4], “memories-as-bifurcations”,
that differs from the traditional “memories-as-attractors” viewpoint. According to
this memories-as-bifurcations viewpoint, memory is recalled when the spontaneous
neural activity is changed to an appropriate output activity upon application of
an input, known as a bifurcation in dynamical systems theory, wherein the input
modifies the flow structure of the neural dynamics. Although we have exhibited
that memories are formed through a simple learning rule [5], generalization process
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in which a system retrieves an identical pattern by applying some inputs has not
been well studied yet. In this paper, we analyzed the generalization process formed
through the sequential learning process used in the previous study [5].

2 Model

We consider N rate-coding neurons that take continuous activity values xi , which
evolve as

Pxi D tanh .ˇ.
NX

j¤i
Jij xj C ��
i // � xi ; (1)

where Jij denotes a connection from the j -th to i -th neuron, ��� is an input pattern
�� of input strength � , and 
 is index of learned mappings. For a learned input
pattern �, we set a pattern � as a target (each pattern is a binary random pattern).
The synaptic connection Jij evolves according to

PJij D ˛.
i � xi /xj ; (2)

where ˛ > 0 is a learning parameter. We give a set of M random correlated input
and output patterns, whose correlation satisfies Œ����C1�=N D Œ����C1�=N D
C . Here, Œ� � � � means the average over random patterns of input and target. Every
mapping is learned in reverse numerical order from 
 D M � 1 to 
 D 0. Further,
a system learns the set iteratively in the same order.

3 Results

Through the learning process, the memories of mappings are embedded in the
system. First, in order to evaluate the response of the system to the learned input,
we measured the average overlap Œ< x��=N >� upon �
 as a function of 
 for
C D 0:9 and 0:1, shown in Fig. 1a, where � � �, < � � � > and Œ� � � � mean the average
over time, initial states of one network, and networks, respectively. Note that the
response is defined here as an activity in the presence of an input, not as an evoked
activity by a transient input used only for the initial condition as in the Hopfield
model. For C D 0:9 and 0:1, the average overlap with the latest learned target
(
 D 0) takes nearly unity and this target can be recalled perfectly. The average
overlap with the earlier learned target decreases rapidly and then, saturates at around
0.8 for C D 0:9, whereas the overlap keeps nearly unity for C D 0:1. Interestingly,
memory performance of the system that learns a set with lower correlation is greater
than that with a higher correlation.
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Fig. 1 (a) The average overlap Œ< x��=N >� in the presence of the input � is plotted for C D 0:1

and 0:9, where larger � represents earlier learned input. (b) The average overlap < x��=N > with
the target 
 in the presence of the input � is shown for (i) C D 0:9 and (ii) C D 0:1. (c) The basin
entropy †vi logvi is plotted as a function of C

To analyze the behavior in detail, we computed the temporal average of the
overlap with 
 upon �
. We calculated the average overlap< x��=N > upon �
 as
a function of 
 and �, plotted in Fig. 1b.1 For C D 0:9 (Fig. 1b(i)), different inputs
that are learned evoke an identical pattern, which is one of the targets corresponding
to the inputs. Different inputs are associated with the same target, and other targets
are not recalled precisely. This lowers the memory performance, but inputs are
categorized into a cluster. and some clusters are formed. For C D 0:1 (Fig. 1b(ii)),
in contrast, every evoked pattern is distinct depending on each input. Each target is
recalled correctly and higher memory capacity is achieved.

Depending on C, the behavior of evoked patterns is significantly changed. We
analyzed this change by measuring basin entropy S for different C, shown in Fig. 1c,
where S � �†ivoli logvoli , voli D †M�1
D0 vol
i =M . vol
i is basin volume of i -th
attractor upon �
. For large C , the entropy takes very small value, meaning that a
few large clusters are formed. With decreasing C, the entropy increases rapidly and
the number of the clusters also increases (data not shown). At around C D 0:7,

1In the following analysis, we focus on behavior of one network, but the qualitative behavior is
independent of networks.
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the entropy and the number of attractors take the maxima, where several attractors
coexist upon each of inputs. For much smaller C, the entropy value is closer to
3.689, which is value when only one different attractor exists corresponding to each
input.

So far we demonstrated that the similar learned inputs can evoke the identical
pattern. Now, we analyze the behavior when a novel input, which is similar to
one of the learned ones, is presented. For this purpose, we measured the average
overlap in the presence of the mixed input �1�1C�2�2 with changing �1 and �2 for
C D 0:1. As shown in Fig. 2a, in a regime with higher �1 and lower �2,< x�1=N >

takes nearly one. Upon an input in this regime of .�1; �2/, �1 is perfectly recalled.
Such input is novel for the present neural system, because the system has learned
inputs only with .�1; �2/ D .1; 0/ and .0; 1/. Thus, recognition of the novel
inputs as �1 implies the generalization. With decreasing �1 and increasing �2, there
occurs bifurcation from the stable fixed-point corresponding to �1 to the chaotic
behavior, as shown in Fig. 2b. With further decreasing �1 and increasing �2, �2 is
amplified and stabilized through another bifurcation. For the lower �1 and the higher

�2, there is a phase in which < x�2=N > takes nearly one, and generalization
to regard the input as �2 follows. These results demonstrate the parameter space
.�1; �2/ is divided to three phases; the phases in which �1 is recalled, �2 is recalled,
and the chaotic dynamics wandering between �1 and �1, i.e., wondering if the input
is regarded as �1 or �2.
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Fig. 2 Bifurcation diagrams through changing two input strengths. (a) The average overlap <

x�1=N > upon the input � D �1�1C �2�2 is plotted as a function of �1 and �2. (b) A bifurcation
diagram with changing � D ˛�2 C .1� ˛/�1 is shown
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4 Conclusions and Discussions

In this study, we analyzed the generalization of memory in memories-as-
bifurcations viewpoint, which has been proposed in [4]. We demonstrated that
after the simple learning, the system can retrieve a target pattern by applying not
only the learned input corresponding to this target but also different patterns whose
input strengths shape the distinct region in the parameter space, meaning that
the generalization of memory is achieved. The present study may provide a novel
viewpoint on generalization, as input-evoked bifurcation in neural activity dynamics
shaped by learning. Indeed, some experimental studies suggest such generalization
occurs in sensory system [6]. Although how the generalization is related to the
spontaneous activity needs to be clarified in future, the bifurcation-based viewpoint
will shed light on better understanding of the neural processing of memories.
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Behavioral Interactions of Two Individual Arm
Robots Using Independent Chaos in Recurrent
Neural Networks

S. Kuwada, T. Aota, K. Uehara, S. Hiraga, Y. Takamura, and Shigetoshi Nara

Abstract Based on a heuristic idea and by computer experiment, we show that
chaos introduced into a recurrent neural network model can enable “complex control
with simple rule(s)” under ill-posed situations. Furthermore, we show behavioral
interactions of two individual arm robots driven by independent chaos implemented
into each arm control system using recurrent neural networks.

Keywords Neuro-dynamics • Constrained chaos • Neural networks • Functional
experiments • Behavioral interactions • Inter-brain communications • Ill-posed
controls

1 Introduction

Since a few decades, brain science has been greatly developed, however,
the mechanisms of advanced functions of brain have been still beyond our
understanding. In these situations, there are people who think that recently
discovered chaos in brain or biological systems could play an important role in
their advanced functions [1–3]. Nara and Davis proposed that chaotic dynamics can
occur in a recurrent neural network model by changing a system parameter, and
they have studied that it can be applied to solving ill-posed problems, for example,
memory search or synthesis, to solve maze (labyrinth) with use of chaotic roving
robot, and so on [4–6]. In their opinion, chaotic dynamics with certain dynamical
structures plays an important role in complex functions. In this paper, based on
the same idea with them, and by computer experiment, we propose that chaos
introduced into a recurrent neural network model can enable “complex arm control
with simple rule(s)” under ill-posed situations [7, 8], and as an actual example, we
show that an arm robot without having advanced visual processing function (see
Figs. 1 and 2) can take an target object to a set position under ill-posed situations.
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Fig. 1 Our arm model in
Euler angle scheme

Fig. 2 Firing pattern of 400
neurons & sub-vectors’
codings which correspond to
incremental motions via
Euler angles

Furthermore, we show behavioral interactions of two individual arm robots driven
by independent chaos implemented into each arm control system using recurrent
neural networks.

2 Method and Model

Our study works with an interconnected recurrent neural network model (abbrevi-
ated as RNNM hereafter) consisting of N binary neurons, and the updating rule is
defined by

xi .t C 1/ D sgn

8
<

:

NX

j2Gi .r/
wij xj .t/

9
=

;

sgn.u/ D

 C1 u � 0
� 1 u < 0
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Fig. 3 The cycle attractor
patterns

where xi(t)D˙1 (i D1�N) is the firing state of a neuron specified by space site
index i at time t, and wij is connection weight from the neuron xj to the neuron
xi. wii is taken to be 0. r (0< r < N) is fan-in number for neuron xi, named
connectivity that is the most important system parameter in our work. Gi(r) is a
spatial configuration set of connectivity r for neuron xi., the number of which are
N�1Cr. Therefore, with full connectivity rDN � 1, determination of wij by means
of a kind of orthogonalized learning method enables us to embed a group of N
dimensional state patterns (vectors) as cycle memory attractors in N dimensional
state space. Let us employ our arm model as shown in Fig. 1, and introduce coding
of sub-vectors of neuron firing pattern (vector) as increment of the Euler angles in
arm motion. In our neural model system, attractor patterns consists of (K patterns
per cycle) � L cycles, and each patterns has N neurons. In this work, we take
KD 4, LD 8, and ND 400, where the firing states of ND 20� 20D 400 neurons
are represented by black pixel or white pixel (see Fig. 2). Long time updating makes
an initial pattern converge to one of the embedded cycle attractors.

Now, when we reduce connectivity r by blocking signal transfer from the
other neurons, then attractors gradually become unstable, and the network state
changes from attractor dynamics to chaotic dynamics, where we discard the detailed
description of the destabilizing processes [5]. Let us describe actual arm motions
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Fig. 4 The embedded four definite motions corresponding to the Fig. 3

and neural firing patterns (vectors). In the full connection state, when one of the
embedded cycle attractors appears, then, at each time step, decoded quantities
following the corresponding relations shown in Fig. 2 stationary give incremental
Euler angles, so the generated motion by them is one of the definite motions
shown in Fig. 4, whereas they are snap shots of the definite periodic motions of
arm. It should be noted that, to display the results of computer experiment, we
used the software “Insilico IDE” which is opened to the public on the web site
“Physiome Platform”. Once connectivity is reduced to one order of magnitude
smaller than full connection number, then dynamics of firing pattern becomes
chaotic. Correspondingly, decoded motions indicate chaotic behaviors, in which
fragmental motion of the embedded definite motions are coming out, vanishing,
coming out vanishing, and repeating them chaotically.

Now, we apply these two types of motions, definite motions and chaotic motions
to realizing (a) catching a target object, (b) catching a target and taking it back
to the set position, (c) catching a target and taking it back to the set position
under the existence of unknown obstacles, (d) competitive catching a target object
between two independent arm robots, where, in all cases, we assume that robot has
no advanced ability of visual information processing, and only adaptive switching
between attractor regime (full connection) and chaotic regime (small connection)
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Fig. 5 A schematic
description of the condition
about connectivity switching.
If the object is inside a
certain cone the axis of which
is an elongation of direction
from the position of arm edge
at time t-1 to the position of
arm edge at time t, then r D
N� 1, otherwise r D small.

Fig. 6 Control algorithm of
connectivity switching at
each time step, corresponding
to Fig. 5

depending on situations with including uncertainty (ill-posed situations) is used by
means of simple rule. Figure 5 shows a schematic description of switching condition
of connectivity and Fig. 6, the rough algorithm of this control system, where Figs. 7
and 8 are actual two examples of set situations (c) and (d) given above. All the
computer experiments are successfully done and only about the case of (d), the
result to evaluate the success rate with respect to connectivity is shown in Fig. 9.

One can recognize that chaos generated by rather small connectivity give better
results, which means that chaos with having strong ruin of embedded attractors
prevents the robots from generating various and/or adaptive motions in given
environments. So, chaos having certain weak dynamical structures could be useful,
however, optimization of dynamical structures is quite difficult problem and it would
be big issues including learning of chaos in this scheme.
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Fig. 7 Experiment of the
situation (c) given in the text

Fig. 8 Experiment of the
situation (d) given in the text

Fig. 9 Computer experiments of competitive taking of a target object between two arm robots,
where evaluated success rate depending on connectivity is shown.
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3 Concluding Remarks

1. Using Euler angle model of an arm robot having 6ı (angles) of freedom, we
made computer experiments to solve ill-posed problems using chaos in RNNM
installed into the control systems of the robot, where the robot can obtain
only information about target direction with uncertainty, and without any pre-
knowledge about configurations of obstacles.

2. By the computer experiments, we were able to show that chaos realize
autonomous and adaptive functions with use of simple rule(s)

3. The computer experiments in which the two robots competitively behave as
taking off and back a target, show that functional performance strongly depends
on dynamic structures of chaos generated by reducing connectivities in RNNM.
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Free Will and Spatiotemporal Neurodynamics

Hans Liljenström

Abstract It is widely assumed that neuroscience has shown that conscious will is
an illusion. Indeed, a number of experimental results seem to indicate that conscious
will is not causally related to the willed action, i.e., epiphenomenal. There are,
however, alternative ways of interpreting the results that these conclusions are based
on, and this paper examines the scientific arguments and experiments regarding con-
scious will. We argue that there is, as yet, no empirical support for epiphenomenal
conscious will, and that the alternative hypothesis, that conscious will is causative,
is also consistent with experimental data. We also use computational models and
simulations to demonstrate that local neural impulses may trigger global oscillatory
activity after a substantial delay period, supporting the idea that intentional impulses
may be part of a conscious will experience.

Keywords Free will • Intention • Consciousness • Neuronal causation • EEG •
fMRI • Brain stimulation • Cortical networks • Computer simulations

1 Introduction

The subjective experience of agency is so immediate that we consider it self-evident
that our actions are controlled by our free will. Yet, there is an increasing amount of
experiments that seem to indicate that free will is an illusion without causal effects
on the nervous system. In fact, it appears that our actions are governed by neural
events and processes prior to our experience of our free will. Experimental results
by e.g. Soon et al. [1] or Desmurget et al. [2] are taken as support for the dom-
inating paradigm of materialism, which excludes any mental-neural (downward)
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causation [2]. The issue of free will is of profound importance for understanding
human nature, and a careful examination of the experimental results and their
interpretations is therefore essential. Here, we consider free will as the conscious
intention to act, and we will refer to this as conscious will in the following, to
stress the close relation between free will and consciousness. While consciousness
is not yet understood, we assume there is a neural correlate of conscious will, and
that conscious will can be probed experimentally through the reports of human
subjects. In the following, we will briefly summarize the experiments that have been
interpreted as evidence for a non-causal, epiphenomenal conscious will.

2 Experimental Results as Evidence

A series of famous EEG experiments [3–7] (see [8] for a review) are often quoted as
evidence for an illusory free will. The EEG readiness potential (RP), apparent only
when averaged over a large number of trials, seems to precede the conscious will
for spontaneous voluntary movements. The RP precedes the conscious will by about
850 ms with admitted pre-planning, and by 350 ms without admitted pre-planning.
This demonstrates that the timing of the RP depends critically on pre-planning. (The
actual action occurs about 200 ms after the perceived impulse to act).

While EEG (and MEG) may elucidate temporal relationships in willed actions,
at time scales of seconds, or below, brain imaging techniques such as PET and
fMRI may provide better spatial information of which brain regions are involved,
at time scales of several seconds to minutes. An early study of regional cortical
blood flow (rCBF) during willed imagined and real motor acts was performed by
Ingvar and Philipson [9], where clear differences in the two cases were found.
These experiments, as well as subsequent rCBF studies by Frith et al. [10] point
at prefrontal cortex (PFC) as central in planning and choice of willed actions, but
also the supplementary motor area (SMA), parietal cortex and the basal ganglia
seem to be involved (see e.g., [11–13]).

Soon et al. [1] investigated timing correlations between subjective decisions
and brain events measured by fMRI. Subjects were asked to freely select between
pressing either of two buttons operated by the left and the right hand, respectively,
and to indicate the time when the decision was made. For some critical brain
regions, it was possible to predict the handedness (left or right) of the action with
at most about 60 % accuracy, where 50 % accuracy would indicate uninformed
plain guessing. It was found that fMRI maps from the frontopolar cortex acquired
10 s before the action carried information leading to an, on average, 60 % accurate
prediction. The frontopolar cortex is assumed [14] to be involved in reasoning or
evaluation of internally generated information. The timing of the action also seems
predictable with 60 % accuracy from fMRI data obtained from the SMA. The
precise role of SMA is not known, but it is typically assumed that it is involved
in planning learned sequences of movements.
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Fig. 1 Schematic description of some of the experimental loci discussed in the text. SMA
Supplementary motor area, PFC Prefrontal cortex, PMC Premotor cortex, SSC Somatosensory
cortex. L-S corresponds to Libet’s stimulation of the somatosensory brain area. L-R1 is the
recording of RP from SMA of Libet (and others). S-R1 and S-R2 correspond roughly to the brain
areas, where Soon et al. detected nerve signals 10s before the awareness of a willful act. D-S1 and
D-S2 correspond roughly to the areas stimulated by Desmurget et al. F-S is the stimulation to the
SMA by Fried et al.

Finally, brute manipulation e.g., by open brain electrical stimulation [2, 15, 16] or
transcranial magnetic stimulation [17, 18] can induce a wide range of experiences,
including conscious will [19]. Such artificially enforced conscious will may occa-
sionally be followed by appropriate motor actions or hallucinations of imaginary
actions. Electrical stimulation to the SMA can e.g., induce conscious will connected
to real or imagined motor actions [16] (Fig. 1).

3 Analysis and Computer Simulations

Experimental results, such as those briefly summarized above have been taken as
evidence that free will is an illusion, since a neural signal apparently associated with
the conscious will precedes it by a substantial time period. However, in a complex
system such as the human brain, constantly interacting with its environment and
with extensive feedback loops, it is difficult, if not impossible to determine any
causal chains. We are in a continuous perception-action cycle, where cause and
effect cannot easily be discerned. The situation is complicated by the different levels
of organization of our nervous systems, where there are not only loops between
different parts of the brain, but also between different levels (micro, meso, macro).
We may not be able to say with certainty whether neural events precede mental
events, or vice versa, or whether they are simultaneous.



526 H. Liljenström

Careful analysis of the experimental results above actually shows that
several alternative interpretations may be equally probable, including (uncon-
scious/unreported) pre-planning. Libet’s experiments demonstrate a strong
dependency on pre-planning, as discussed above. This means that the results in all
experiments of this type, including those by Soon et al. [1], may be compromised
by the presence of an unknown amount of pre-planning. In addition, when Soon
et al. find a 60 % correlation between the next decision and the state of the PFC
10 s before the action, could that reflect a correlation between the memory of
previous choices and the upcoming decision. It is conceivable that the next choice
in the series could have a 60 % correlation with the accumulated history of the
series, since humans are not very good at random number generation, which may
be sought (unconsciously) by the subjects in these experiments.

Libet concluded there was a subjective backward referral, explaining the (false)
sensation of a causative conscious will. Libet used, however, a threshold stimulus to
the cortex. The electrical current was set so that it was just above the limit where it
became noticeable. However, Pollen [20] showed that the 500 ms delay is an artifact
of using threshold stimuli. Repeating Libet’s threshold stimuli experiments on the
visual cortex of anesthetized cats, Pollen elucidated the mechanism for time-delay
of such inputs and found that neural inhibitions delays the expression of threshold
stimuli. Normal sensory stimuli are presumably well over threshold and enters
awareness much faster. The bulk of Libet’s observations is thus neatly explained
by Pollen, without revoking to the hypothesis of subjective backward referral.

Further, applying Bayesian network analysis to the Soon et al. [1] experiments,
where multivariate probabilities are discussed, demonstrate that the alternative inter-
pretation, that conscious will is causative, is also consistent with all experimental
and anatomical facts.

In order to investigate the spatiotemporal relations between local and global
events and processes in a cortical network, we have used computer simulations with
cortical network models [21–24]. In particular, a spontaneous pulse in one part of the
network may result in oscillatory (about 40 Hz) spatiotemporal patterns of activity in
the entire network half a second, or more, later (see Fig. 2). This could be interpreted
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Fig. 2 Simulation results of a pulse in a cortical network node resulting in a global oscillatory
dynamics of the entire network some 500 ms later. (The y-axis corresponds to EEG amplitude at
an arbitrary scale, the x-axis denotes time in milliseconds)
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as an intentional, spontaneous, impulse in one part of the brain that gives rise to an
extensive spatiotemporal activity pattern that would correspond to a conscious expe-
rience of the intentional impulse. In this particular case, the approximately 500 ms
delay between the impulse and the oscillatory pattern could correspond to the time
for a subjective experience to build up. Longer time delays could be modelled with
larger and more complex network models (which will be published elsewhere).

4 Discussion and Conclusions

In this paper we have focused on a series of neurophysical experiments, which has
been used in the debate as evidence for an epiphenomenal conscious will. Many of
these experiments are largely based on the findings that some “signal”, e.g., the so-
called readiness potential (RP), precedes a conscious will to perform a movement.

The general conclusion (e.g., [1, 25]), is that neuroscience finally has abolished
free will, by showing that real decisions are made subconsciously up to 10 s before
the illusory conscious act of will. A conservative interpretation of the same data is,
however, that there is a weak correlation between the brain state long before the
action and the experienced decision to act. This correlation could alternatively be
understood as an effect of occasional unreported pre-planning, a correlation between
the memory of the previous action and the next action, or a weak correlation between
unconscious precursor processes and a causally connected conscious will.

With computer simulations, we have also demonstrated that a spontaneously ini-
tiated pulse in a single network node can result in a coherent global network activity
much later. In reality, such an (intentional) impulse is not arising in a vacuum,
but is embedded in a continuous flow of neural activity in a complex network of
neurons and cortical subsystems, where the causal relationships are difficult, if not
impossible to follow. Nevertheless, it is conceivable that the intentional impulse is
part of a conscious experience, where the sense of a “self” acting needs time to
emerge. Intention may indeed precede attention, in the perpetual action-perception
cycle of consciousness exploring its environment [26].

In fact, when carefully examining the experimental procedures and results we
can find no convincing evidence that conscious will is epiphenomenal. Similar
conclusions have been made by others (e.g., [27–30]), including arguments from
animal behavior and clinical studies of mental malfunction. Batthyany [27] points at
the bias in interpretation of the experiments above, where the dominating philosoph-
ical preference suppresses alternative interpretations. The alternative hypothesis of
a causative conscious will cannot be falsified or confirmed by the evidence either.
In fact, it is not easy to design and perform experiments that could reveal the true
nature of willful acts, especially not in an artificial environment with non-ecological
tasks. One could argue that neither Libet nor Soon et al. test for free will at all, since
the subjects are only asked to perform an “action” when there is an urge to move,
and these movements can be said to be actions only in a very limited sense.

Indeed, the way we pose our questions, set up our experiments, and instruct
our subjects, is guided by our preconceived beliefs, and hence it seems almost
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impossible to get results that would contradict dominating paradigms. There is
a great need for refined experiments and an unbiased analysis of the empirical
evidence, which better can address the problem of conscious will in natural complex
situations. The field also urgently needs a more precise and consistent terminology
that avoids ambiguity and minimizes confusion. Such a terminology would facilitate
interpretation and communication of hypotheses and experimental results.
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High Frequency Oscillations for Behavioral
Stabilization During Spatial Alternation

Hiroshi Nishida, Muneyoshi Takahashi, A. David Redish,
and Johan Lauwereyns

Abstract It has been suggested that sharp-wave ripples (SWR) in the hippocampus
contribute to memory consolidation processes. Here, we investigated behavioral
performance and SWRs and gamma oscillations as rats performed a delayed spatial
alternation task. We observed that the rats’ behavior changed in the later trials
compared to the earlier trials; the number of premature fixation breaks (trials in
which the rat failed to fixate for 1 s) increased, and the duration from fixation onset
to nose-poking in the choice hole reduced. SWR and gamma oscillations occurred
during eating after correct choice trials. We found that the number of SWR events
and the power at wide frequency range during SWR events decreased in the later
trials as compared to the earlier trials. In addition, the correlation between SWR
and gamma oscillations just before SWR events was higher in the earlier trials than
in the later trials. Our findings support the notion that SWR serves to facilitate and
stabilize the task behavior and that the inputs from CA3 and entorhinal cortex play
a critical role for memory consolidation.

Keywords Hippocampus • Spatial alternation • Gamma oscillations • Sharp
wave ripple

1 Introduction

High frequency oscillation in the hippocampus, accompanied with large-amplitude
irregular activity, sharp-wave ripples (SWR), is thought to be involved in memory
consolidation processes [1, 2]. A recent study has reported that gamma oscillations
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co-occurred with SWR and might support the dynamic formation of coordinated
CA3 and CA1 cell assemblies [3]. However, it remains unclear how the current
information is reconstructed on the basis of memory, and how behavioral perfor-
mance becomes stabilized in a short period.

To investigate the underlying mechanisms, we trained rats to perform a memory-
guided spatial alternation task that included a 1-s fixation period and a 1.5-s delay
period [4], and analyzed the local field potentials (LFP) from the hippocampal CA1
when the animal was eating after successful trials. Although the rats were well
trained for the spatial choice on the alternation task, we expected that the rats’
behavior would change during the fixation and the delay period in a behavioral
session. In addition, if SWR and gamma oscillations contribute to memory con-
solidation or behavioral stabilization, these activities should show some transient
changes within sessions, relating to the behavioral transition.

2 Methods

2.1 Experimental Set-Up

Four male Wistar/ST rats (weighing 280–420 g; 16–24 weeks old at the beginning
of training; Japan SLC Inc., Hamamatsu, Japan) were used as subjects. The rats
were trained on a delayed spatial memory-guided alternation task that included a
1-s fixation period and a 1.5-s delay period [4]. All procedures were in accordance
with the U. S. National Institutes of Health guidelines for animal care and approved
by the Tamagawa University Animal Care and Use Committee.

2.2 Data Analysis

As behavioral measure, we used correct choice rate, duration from fixation onset to
choice response, and number of premature fixation breaks (trials in which the rat
failed to fixate for 1 s).

We analyzed the LFP for the 10-s ITI period after the rat chose the correct
hole, and while it remained in the half side of the box that included the reward
point. SWR events were detected when the 10-ms Gaussian filtered envelope of
the filtered LFP (150–250 Hz) exceeded the mean C 3SD for at least 15 ms.
For the purpose of analyzing SWR associated with eating, we eliminated the
data points for which the running speed was over 4 cm/s. We calculated SWR-
triggered spectrograms using MATLAB (MathWorks, Natick, MA) and Chronux
toolbox 2.00. The window width was set at 100-ms and moved with 10-ms steps.
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The power spectrogram was normalized at each frequency band by the mean and
standard deviation (i.e., Z-score) in each behavioral session. The frequency band of
low gamma, high gamma, and SWR were defined as 30–45 Hz, 60–90 Hz, and
150–250 Hz, respectively.

3 Results and Discussion

We collected data from 18 behavioral sessions (112.4 trials per session with a
standard deviation, SD, of 34.9). For the purpose of investigating within-session
dynamics of the rats’ behavior, we divided the data into two groups (the first ten
trials and the last ten trials in a session) and compared behavioral performance
between the earlier and the later trials. The rats’ behavior changed significantly in a
session even if the rats were well trained for spatial alternation. The correct choice
rate in later trials was higher than in earlier trials (p< 0.001) and the reaching time
to the choice hole reduced in later trials (p< 0.001). In addition, the number of
premature fixation breaks increased in later trials (p< 0.001). Thus the rats seemed
to perform the behavioral task more rapidly and to terminate the fixation nose-
poking depending on internal timing after adjusting during the session.

We next examined the neural activity obtained from 31 tetrodes located in
hippocampal CA1 area. First, to investigate high and low gamma oscillations during
SWR events, we extracted SWR events and then calculated the SWR-triggered
power spectrogram following the protocol by Carr et al. ([3]; Fig. 1a, b). Consistent
with their study, we observed that the power of the gamma oscillations increased
toward SWR events (Fig. 1b–d). Furthermore, we also found that low gamma
oscillation positively correlated with SWR, again similar to the previous study
(Fig. 1e). Subsequently, we investigated whether the neural oscillations during SWR
adapted to the behavioral transitions. As shown in Fig. 2a, SWR events occurred
more often in the earlier trials than in the later trials (p< 0.001). After computing the
power spectrogram in the earlier and later trials, we calculated the power difference
by subtracting the power in the later trials from that in the earlier trials. Figure 2b
shows that a large fraction of the power in the earlier trials after detecting SWR
events was significantly higher than that in the later trials, especially in SWR
frequency band.

SWR is thought to result from a synchronized burst in hippocampal CA3 region
[5]. However, some components of SWR might be caused by direct input from
entorhinal cortex (EC) or by intrinsic CA1 circuitry [6]. We observed decreasing
trends of power at wide frequency bands during SWR. Interpreting this result, the
input strength from EC and CA3 and the number of activated neurons in CA1 might
decrease. Consequently, the number of SWR to exceed threshold might reduce as
well. Furthermore, our results showed that the correlation between high gamma
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Fig. 1 (a) Examples of SWR; the upper signal was filtered between 150 and 250 Hz, the lower
signal was non-filtered (1–475 Hz). A vertical dashed line indicates SWR detection point. (b)
SWR-triggered power spectrogram. The right figures show the mean power of high gamma to SWR
range (upper) and low gamma range (lower) over 100 ms after SWR detection. (c, d) Mean power
of low gamma (c) and high gamma (d) in each 100-ms bin. (e) Correlation coefficient between
SWR and low gamma

(which reflects input from EC) and HFO (which might be lower frequency SWR)
changed in the earlier trials as compared to the later trials. Taken together, our
findings support the notion that SWR serves to facilitate and stabilize the task
behavior and that the inputs from CA3 and entorhinal cortex play a critical role
in memory consolidation.
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Fig. 2 (a) Number of SWR events per trial in earlier trial and later trials. (*** indicates p< 0.001
on Mann-Whitney U test). (b) The left figure shows the power difference between earlier and later
trials. A red color indicates that the power is higher in earlier trials than in later trials. The right
figure shows statistically significant results (p< 0.05) between earlier and later trials by Mann-
Whitney U test. A red color indicates that the power is significantly higher in earlier trials than in
later trials
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Planning Based on One’s Own Past and Other’s
Past During a Communication Task

Jiro Okuda, Maki Suzuki, Takeshi Konno, Junya Morita,
and Takashi Hashimoto

Abstract Recent behavioural and neuroimaging studies have suggested that con-
structing ideas about the future (prospection) is based on neural networks respon-
sible for remembering past experiences (episodic memory). On the other hand,
episodic memory involves variety of information that includes not only one’s own
past behaviours but also those by others. These two types of past information
may influence prospection and planning of our future behaviour, especially in a
social context involving communication with others. It has never been investigated,
however, how the information about one’s own past behaviour and those by others
contribute to planning of our future behavior. In the present study, we explored
evidence for differential planning processes based on one’s own past behavior and
that on other’s past behavior. For this purpose, we used a symbolic communication
task involving two subjects who sent and received arbitrary symbol messages to plan
for their behaviours in the task. Our results showed that subjects’ planning in the
task was influenced adaptively by one’s own past behaviour and those by the other
subject (i.e., a partner of the task). Particularly, the subjects’ behaviour favoured
their own past behaviour when they sent the same message to the partner as in
the previous trial, whereas their behaviour favoured the partner’s past behaviour
when they received the same message from the partner as in the previous trial.
We speculate that such an adaptive use of differential planning strategies might
contribute to successful development of an effective communication system across
self and others.
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Keywords Planning • Memory • Prospection • Past • Future • Communica-
tion • Language • Symbol • Co-creation • Self • Other

1 Introduction

Recent studies have clarified that imagining and planning future behaviours are
closely related to recalling past episodes [1, 2]. These studies have suggested
neuro-cognitive mechanisms for construction of prospective ideas by recombining
retrieved one’s own past experiences. On the other hand, our daily life involves
not only ourselves but also others surrounding us, whose past behaviours may
greatly influence our future planning. However, previous studies regarding the future
planning have never tried to investigate distinction between planning processes
based on one’s own past and those on other’s past behaviours.

In the present study, we developed a symbolic communication task involving
two persons who sent and received arbitrary symbol messages with each other
to decide their own trial response (spatial movement in a 2 by 2 grid). By using
this task, we tried to differentiate planning based on one’s own past behaviour
(movement in previous trials) and that on other’s past behaviour. Specifically,
we analysed how subjects’ planning of the movement was influenced by their
own and other’s movements in previous trials, in relation to messages they sent
and received. Through these analyses, we explored evidence for involvement of
differential planning processes during development of a symbolic communication
system across two persons.

2 Materials and Method

Twenty-four young healthy subjects (mean age 22.4 years old) were anonymously
paired into 12 pairs. Each pair of subjects simultaneously participated in one same
task, but in different rooms. They cooperated to perform a coordination task via a
game screen displayed on a computer monitor in front of each subject [3] (Fig. 1).

On the screen, each subject’s initial position in the 2 by 2 grid was displayed for
each subject (red or green circle). The subjects’ task was to move their own position
to the same position as the other subject (hereafter, ‘partner’) after the movement.
Since they did not know the partner’s initial position with each other, they were
allowed to create and send a message to the partner. Each subject was able to create
his/her own message as he/she liked, by choosing two symbol marks out of five
possibilities (•, �, ♦, C, and blank, see Fig. 1 for examples of the message). The
subjects tried to encode information about their initial position as well as intended
destination position by their own rule. They also tried to decode information about
the partner’s intention from the message. After the message exchange, the subjects
were asked to make their own movement, followed by a screen that displayed
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Subject1

Initial position Destination

Message
exchange

Subject2

Fig. 1 Schematic illustration of a sequence of one task trial

both subjects’ initial positions and destinations. Successful movement to the same
position was rewarded with 1 game point to both subjects. They repeated 24 trials
of this movement task. More detailed information about structure and rationale of
this task was reported elsewhere [3].

By using this task, we tried to examine how the subjects’ movement planning
in each trial was influenced by their own and partner’s past behaviours in a course
of trials during which a symbolic communication system across the two subjects
was gradually developed (see Konno et al. [3] for basic profiles of the development
of across-subject communication protocols during the task). For this purpose, we
analysed whether the subjects’ decision of their destination position in each trial
was the same as that by their own or the partner’s destination in the previous trial,
as a function of numbers of repetition of the same messages they sent or received.

Specifically, for each trial from the second to the 24th trial, we compared the
subjects’ destination position of that trial with their destination in the previous
trial where they created and sent exactly the same message to the partner as in
the current trial. We calculated percentages of trials in which they moved to the
same destination as their previous destination, as a function of repetition of trials
where they created and sent the same message to the partner. These data were used
to index planning based on information about one’s own past behaviour (planning
of a movement based on information of a past message and movement the subject
made). For a comparison measure to this index, we also calculated percentages of
trials in which the subjects moved to the same destination as the previous partner’s
destination when they sent the same message to the partner.

Conversely, to evaluate planning based on other’s past behaviour, we compared
the subjects’ destination position of each trial with the partner’s destination in the
previous trial where the subjects received exactly the same message from the partner
as in the current trial. We calculated percentages of trials where they moved to the
same destination as the partner’s past destination, as a function of repetition of
trials where the same message was received from the partner. This data indexed
planning of a movement based on information of a past message and movement that
the partner made. Again for a comparison measure to this index, we also calculated
percentages of trials in which the subjects moved to the same destination as the



540 J. Okuda et al.

previous self destination when they received the same message from the partner. By
these analyses, we tried to quantify the subjects’ tendencies of planning based on
the past task behaviour by themselves and that by others.

3 Results

In all the indices described above, the percentages of the same destination as the
previous (one’s own or partner’s) destination gradually increased as repetition of
the trials with the same message increased. In the trials where the subjects sent
the same message to the partner, a mean percentage (across all subjects) of the
same destination as previous own destination reached approximately 65 % at the
third and fourth repetitions of the same messages. In contrast, a mean percentage of
the same destination as previous partner’s destination was at the most 40 % at the
third repetition of the same messages. Analysis of variance (ANOVA) with factors
of self/other (movement to previous own or partner’s destination) and number of
repetition of the same message the subjects sent (2nd to 6th) revealed significant
main effects of the factors of self/other and repetition number (p< 0.001 for both
effects), with no significant interaction across the two factors.

On the other hand, in the trials where the subjects received the same message
from the partner, the percentages of the same destination as previous partner’s
destination were significantly higher than those of previous own destination. A
mean percentage of the same destination as previous partner’s destination reached
approximately 65 % at the fourth repetition of the same messages, whereas a mean
percentage of the same destination as previous own destination was at the most
50 % at the fifth repetition. Again, an ANOVA with factors of self/other and number
of repetition of the same message the subjects received revealed significant main
effects of the factors of self/other and repetition number (p< 0.05 for both effects),
with no significant interaction across the two factors.

In summary, the data indicated that the subjects’ planning of the movement
favoured their own past movement when they sent the same message to the partner,
whereas their planning favoured the partner’s past movement when they received
the same message from the partner.

4 Discussion

The present results showed that the subjects’ planning during the task was influ-
enced by information about one’s own past behaviour and that of other’s past
behaviour. Specifically, the subjects gradually developed strategies to choose the
same destination as the partner’s previous destination as well as their own previous
destination. Thus the data provide behavioural evidence for involvement of both
information about one’s own and other’s past behaviours in planning. Moreover,
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the present data suggested differential contributions of the planning based on one’s
own and other’s past behaviours, depending on messages the subjects sent and
received. That is, the planning based on one’s own past was predominant when the
subjects sent the same message to the partner, whereas the planning based on the
partner’s past movement was predominant when they received the same message
from the partner. These results suggest that the subjects spontaneously imitated the
partner’s past movement when necessary. We speculate that such an adaptive use
of the imitative planning strategy may play a pivotal role in establishment of an
effective communication system across humans [4].

Acknowledgments This study was supported by Grants-in-Aid for Scientific Research on
Innovative Areas (#21120007 to J.O. and #21120011 to T.H.), MEXT, Japan.

References

1. Okuda, J. et al. NeuroImage 19 (2003) 1369–1380.
2. Addis, D. R. & Schacter, D. L. Front. Hum. Neurosci. 5 (2011) 1–15.
3. Konno, T., Morita, J. & Hashimoto, T. Advances in Cognitive Neurodynamics (III) (2013),

Springer, pp. 453–460.
4. Morita, J., Konno, T. & Hashimoto, T. Proceedings of the 34th Annual Meeting of the Cognitive

Science Society (2012) 779–784.



Development of the Multimodal Integration
in the Superior Colliculus and Its Link
to Neonates Facial Preference

Alexandre Pitti, Yasuo Kuniyoshi, Mathias Quoy, and Philippe Gaussier

Abstract The question whether newborns possess inborn social skills is a long
debate in developmental psychology. Fetal behavioral and anatomical observations
show evidences for the control of eye movements and facial behaviors during the
third trimester of pregnancy whereas specific sub-cortical areas, like the superior
colliculus (SC) and the striatum appear to be functionally mature to support these
behaviors. These observations suggest that the newborn is potentially mature for
developing minimal social skills. In this talk, we propose that the mechanism of
sensory alignment observed in SC is particularly important for enabling the social
skills observed at birth such as facial preference and facial mimicry.

In a computational simulation of the maturing superior colliculus connected
to a simulated facial tissue that replicate some attributes of the bio-mechanical
properties of the fetus’ face, we model how the incoming tactile information is used
to direct visual attention toward faces. We suggest that the unisensory superficial
visual layer (eye-centered) in SC and the deep somatopic layer (face-centered) in
SC are combined into an intermediate layer for vision-tactile integration and that
multi-modal alignment in this third layer allows newborns to detect faces and to
mimic them. After we complete the learning stage within each map through Hebbian
reinforcement learning, we show that the intermediate layer develops vision-tactile
sensory alignment which respects the topology of the visuotopic map and of the
facial map. We observe emergent properties of the global network such as sensitivity
to the orientation of face-like patterns and detection of facial expressions.

Although neonate imitation is only a marker that disappears after 2–3 months
in human and lets place to whole body imitation starting in human 9–12 months,
we propose that the superior colliculus plays a key role in the perinatal period to
bootstrap the immature cortex to develop its social abilities.

Keywords Sensory Alignment • Multimodal integration • Superior colliculus •
Face modeling • Face detection • Social development • Topographic maps •
Spiking networks
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1 Introduction

Neonatal imitation is perhaps the phenomenon that crystallizes the most the nature
versus nurture debate. It questions us whether or not newborns possess inborn social
skills, which is a radical leap out against Pagietian development that considers
social cognition as the latest stage of cognitive development. Nonetheless, several
evidences taken from pre-natal observations permit to infer an intermediate scenario
in which sensorimotor learning at the fetal stage may give the background for a
minimal social brain [1]. For instance, fetal behavioral and anatomical observations
show evidences for the control of eye movements and of facial behaviors during the
third trimester of pregnancy whereas specific sub-cortical areas, like the superior
colliculus (SC) and the striatum appear to be functionally mature to support these
behaviors [2]. These observations suggest that the newborn is potentially mature for
developing minimal social skills. In this short paper, we propose that the mechanism
of sensory alignment observed in SC is particularly important for enabling the social
skills observed at birth such as facial preference and facial mimicry [3].

The superior colliculus has a particular neural architecture that may ease
multimodal integration for simple social skills. For instance, each modality is
constructed into super-imposed topographical layers that converge unidirectionally
to an intermediate multimodal layer; that is there is no recurrent connections within
and between the maps [4]. First, the visual map is constructed into a retinotopic
layer whereas the somatotopic map is constructed into a head-centered reference
frame. Second, synaptic nerves/connections from each layer, see Fig. 1.

Fig. 1 Topological sensory alignment in the colliculus and its role for social development. We
hypothesize that the visual and the somatotopic topographical maps bind together
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2 Methods and Models

We make a computational simulation of the maturing superior colliculus connected
to a simulated facial tissue that replicates some attributes of the bio-mechanical
properties of the fetus’ face. We model how the incoming tactile information is used
to direct visual attention toward faces. We suggest that the unisensory superficial
visual layer (eye-centered) in SC and the deep somatopic layer (face-centered) in
SC are combined into an intermediate layer for visuo-tactile integration and that
multimodal alignment in this third layer allows newborns to detect faces and to
mimic them (see Fig. 1).

Neural populations are defined with integrate-and-fire neurons that capture
the spatio-temporal dynamics from the two sensory modalities. The detection of
structured patterns is an important attribute for preserving the topology of each
modality in each map. The neural populations works similarly to a Kohonen learning
systems except that we model the maturing period of SC. We add an activity-
dependent mechanism based on novelty detection in order to construct the topology
of the neural map by preserving at the same time the existing neurons’ topology and
by adding new neurons that refine it.

3 Results

After we complete the learning stage within each map through Hebbian reinforce-
ment learning, we show that each topology respects the retinotopic topography of
the eye and the somatotopic topography of the face, as seen in the SC. Then, we
merge the two unisensory layers into a common intermediate layer. The multimodal
layer develops synaptic links that align the visuo-tactile sensory information from
each other, into a mixed spatial representation based the eye-centered reference
frame and the face-centered reference frame.

As a result, when rotating a three-dots face-like pattern in front of the eye-field,
we observe sensitivity of the network for certain orientations only. That is, when the
three dots align well with the caricatural eyes and mouth configurational topology
(i.e., facial identification), see Fig. 2a. Second, the neural activity taken from the
intermediate visuo-tactile map during observation of certain facial expression like
surprise and stance triggers the neurons to the characteristic visual configurational
patterns of the face during rapid changes.

This situation occurs because of sensory alignment and of the high correlation
with the tactile distribution of its own face, see Fig. 2b. We can imagine then that
if the intermediate cells feed-forward this activity to the corresponding facial motor
activity, then imitation will occur.
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Fig. 2 Sensitivity of the multimodal topographic map to face-like visual inputs. (a) three dots
patterns aligned. (b) facial expressions

4 Conclusion

We have introduced a developmental model of the superior colliculus starting from
the fetal stage in the context of primitive social behaviors. In comparison to normal
stimuli, we propose that faces are particular information as the visual and somatic
maps in the superior colliculus are perfectly aligned topologically. We suggest that
multimodal alignment may influence neonates for social skills, to recognize faces
and to generate mimicry.
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Excitation-Inhibition Balance of Prefrontal
Neurons During the Execution
of a Path-Planning Task

Kazuhiro Sakamoto, Naohiro Saito, Shun Yoshida, and Hajime Mushiake

Abstract The balance between excitation and inhibition in the cortex is thought to
play a crucial role in the processing of information by neurons in the network. We
hypothesize that the excitation-inhibition balance contributes to flexible behavioral
planning in the lateral prefrontal cortex (lPFC). In this study, we analyzed the tem-
poral development of the relative activities of inhibitory interneurons (INs) against
excitatory pyramidal neurons (PNs) showing significant directional selectivity of
cursor-movement at each step of the execution period in the lPFC of monkeys
while they were engaged in a path-planning task. During the preparatory period, INs
transiently made a greater relative contribution before enhanced cursor-movement
selectivity. In contrast, no relative increase in IN activity was observed before the
corresponding enhanced selectivity during the execution period. These observations
suggest that the excitation-inhibition balance may contribute to planning and
execution in different ways in the lPFC network.

Keywords Monkey • Prefrontal cortex • Single unit • Excitatory neuron •
Inhibitory neuron

1 Introduction

Recently, the balance between excitation and inhibition in the cortex has become
an important research focus, since this balance is thought to play a crucial role in
the information processing of neuronal networks [1, 2]. However, the functional
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significance of this balance in flexible behavior is unclear. The lateral prefrontal
cortex (lPFC) is known to be involved in flexible behavioral planning [3, 4]. We
hypothesize that the excitation-inhibition balance contributes to flexible behavioral
planning in the lPFC. Here, we compared the relative activities of excitatory
pyramidal neurons (PNs) and inhibitory interneurons (INs) in the lPFC of monkeys
while they were performing a path-planning task that required them to plan multiple
cursor movements to attain a final goal in a maze on a screen (Fig. 1). In particular,
we focused on the neuron types that showed selective modulation of the firing rate
(FR) for cursor directions at each step of the execution period [5].

2 Methods

The details of the experimental procedures have been previously described [5–7].
Two Japanese monkeys were trained to perform a path-planning task that required
step-by-step cursor movements, controlled with the manipulanda, to reach a goal in
a checkerboard-like maze. Supination and pronation of each forearm was assigned
to move the cursor in four directions. We recorded the single-unit activities in the
lPFC of these monkeys.

Putative PNs and INs were classified based on their action potential waveform
[8–10]. Spike-width was defined as:

p
.peak� trough/2 C .zero_cross #1 � zero_cross #2/2:

An obvious distribution with two peaks was observed: putative PNs were defined
as neurons with a spike-width of >0.8 ms, while INs had a spike-width of <0.8 ms.
The index of the inhibition-excitation balance at each time was calculated using the
following equation:

average FR of INs - average FR of PNs

average FR of INsC average FR of PNs

Fig. 1 The event sequence in
the path-planning task. Green,
red and yellow squares
denote the cursor, final-goal,
and GO signals, respectively
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In addition, we used the inhibition/excitation ratio (average FR of INs / average FR
of PNs) to evaluate the IN-PN balance. Statistical significance was assessed using
the bootstrapping method (10,000 times).

3 Results

Of 299 neurons, 54 were classified as INs, and 245 as PNs. For the first cursor
movements, 26 INs and 89 PNs showed significant selectivity during the execution
period, 28 INs and 87 PNs for the second, and 25 INs and 84 PNs showed selectivity
for the third.

Figure 2 shows examples of simultaneously recorded third cursor movement-
selective IN (Fig. 2a) and PN (Fig. 2b). Both neurons had enhanced firing rates
during the preparatory and execution periods in the trials when the monkey made
leftward cursor movements at the third step. It should be noted, however, that these
neurons also showed gradually elevated activity before block-onset, with slightly
higher elevation detected in IN.

The relationship between the excitation-inhibition balance and third cursor-
movement selectivity of the neurons (from Fig. 2) is shown in Fig. 3a–f. The mean
selectivity was enhanced after block-onset in the preparatory period (Fig. 3a).
Interestingly, the relative contribution of interneuronal activity is transiently

500ms

10
 s

/s

Preparatory Period

a b

Execution Period

Movement onBlock on

Interneuron Pyramidal neuron

Preparatory Period Execution Period

Movement onBlock on

Fig. 2 An example of simultaneously recorded third cursor movement-selectivity in the neuronal
pair. Activities during trials in which the monkey made leftward (upper row of a and b) and
rightward (lower row) cursor movements at the third step are shown. Left and right columns
represent preparatory and execution activities, respectively. (a) A putative inhibitory interneuron.
(b) An excitatory pyramidal neuron
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Fig. 3 Relationship between cursor-movement selectivity and excitation-inhibition balance (a–f).
The neuronal pair, based on the data shown in Fig. 2. (a) Enhancement of selectivity after block-
onset in the preparatory period. (b, c) Enhanced contributions of interneurons prior to cursor-
movement selectivity. (b) The index of inhibition-excitation balance. (c) The inhibition-excitation
ratio. d Enhanced selectivity after the onset of the third movement in the execution period. (e, f)
Absence of enhanced contribution of interneurons. (g–l) The neuronal populations. Green and red
indicate the second and third cursor-movement selective populations, respectively. (g) Enhanced
selectivity after block-onset in the preparatory period. (h, i) Increased contributions of interneurons
prior to the enhancement of cursor-movement selectivity. (h) The index of the inhibition-excitation
balance. (i) The inhibition-excitation ratio. (j) Increased selectivity after the onset of movement in
the execution period. (k, l) No increase in the contributions of interneurons

increased prior to enhanced selectivity (Fig. 3b, c). In contrast, the relative increase
in interneuron activity was not observed at the onset of third cursor-movement
(Fig. 3e, f), while third cursor-movement selectivity was enhanced (Fig. 3d).

We also carried out population analysis during the time course of the excitation-
inhibition balance, and directional selectivity. Although directional selectivity
was enhanced during both the preparatory and execution periods (Fig. 3g, j),
the excitation-inhibition balance was transiently shifted to an inhibition-dominant
state, but only in the preparatory period (Fig. 3h–l). During the execution period,
the relationship between excitation and inhibition was balanced, with moderate
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variability. This dynamic change of excitation- inhibition balance was consistent
between the first (data not shown), second (green in Fig. 3) and third (red) cursor-
movement selective populations.

4 Discussion

We analyzed the temporal development of the balance between inhibition and
excitation in neuronal populations, and revealed significant cursor movement
selectivity for each step of the execution period. In each population, INs made a
greater relative contribution before enhanced cursor- movement selectivity in the
preparatory period. In contrast, no relative increase in IN contribution was seen
before the corresponding enhanced selectivity during the execution period.

lPFC is thought to play a crucial role in planning goal-oriented behavior and the
monitoring of consequences [3–5]. Our findings suggest that, during the planning
phase, enhanced inhibitory activity in the lPFC may be involved in shaping the top-
down signals for downstream motor-related cortical areas. In contrast, a moderate
excitation-inhibition balance may contribute to the maintenance of planned actions
while monitoring their consequences during the execution period.
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Simultaneous Multichannel Communication
Using Chaos in a Recurrent Neural Network

Ken-ichiro Soma, Ryota Mori, and Shigetoshi Nara

Abstract Based on a heuristic idea and by computer experiment, we show that
chaos introduced into a recurrent neural network model can enable simultaneous
multichannel signal transfer as a metaphor of intra-brain communications which
are experimentally observed such as certain distant fields in brain show multi
synchronizations or simultaneous multi activation of neurons associated with
functioning, but in intermediate regions between them, the physical channels of
signal or information transfer are not observed, instead, only chaotic activities do
exist.

Keywords Neuro-dynamics • Constrained chaos • Neural networks • Functional
experiments • Multichannel communications • Intra-brain communications •
Neural synchronization

1 Introduction

Nowadays, chaos have been observed in various fields. Their deterministic but
unstable dynamics have been showing us interesting phenomena and attracting
great interest of a large number of scientists. Since chaotic phenomena were
recently discovered in living systems, in particular discovered in brain [1–3], an
idea that chaos would play important roles in complex information processing in
brain, and in biological systems as well, was proposed [4, 5]. In this paper, based
on the same idea, a heuristic model of intra-brain communications is proposed
which are experimentally observed such as certain distant fields in brain show
multi synchronizations or simultaneous multi activations of neurons associated with
functioning [6, 7], whereas, in intermediate regions between them, the physical
channels of signal transfer or information transfer are not observed, instead, only
chaotic activities do exist. In our model, chaotic dynamics introduced into a
recurrent neural network model is used as signal transfer medium to enable us to

K. Soma • R. Mori • S. Nara (�)
Electrical and Electronic Engineering Department, Graduate School of Natural Science and
Technology, Okayama University, Tsushima-naka 3-1-1, Kita-ku, Okayama 700-8530, Japan
e-mail: nara@ec.okayama-u.ac.jp

© Springer Science+Business Media Dordrecht 2015
H. Liljenström (ed.), Advances in Cognitive Neurodynamics (IV),
Advances in Cognitive Neurodynamics, DOI 10.1007/978-94-017-9548-7_80

553

mailto:nara@ec.okayama-u.ac.jp


554 K. Soma et al.

realize simultaneous multi-channel communications, such as occurring in brain.
As prototype of such communication between distant neuron groups resulting from
certain learning in neural network, two or three cycle attractors are embedded in our
recurrent neural network model, each of which consists of 20� 20D 400 neurons’
firing pattern sequences that have specified periods. Each firing pattern of 400
neurons includes two 3� 3D 9 (always) firing neurons and the others of random
firing, where the two (always firing) 9-neuron groups correspond to a sender neuron
group and a receiver neuron group, respectively. It means that they are regarded as
two synchronized local neuron groups in brain which are communicating each other
in some on-going function. The other 382 neurons are regarded as inter-neurons to
support synchronization with the use of giant redundancy. Once chaotic dynamics
is introduced by reducing connectivity to one order of magnitude smaller than full
connection state, then the correlation between any two neuron’s pair is almost lost.
However, when we apply a rather strong signal to one of the two nine neurons group
which belongs to the synchronized neuron group in the embedded attractors, then
without collapsing global chaos, the other (receiver) nine neurons synchronize with
the sender neurons, whereas the correlations between the other neurons except the
receiver and the sender, indicate still no-correlation. These results are kept same,
even two or three independent inputs are applied simultaneously to two or three
neuron groups belonging to the different two or three cycle attractors, respectively.

2 Method and Model

Our study works with an interconnected recurrent neural network model
(abbreviated as RNNM hereafter) consisting of N binary neurons, and the updating
rule is defined by

xi .t C 1/ D sgn

8
<

:

NX

j�Gi .r/

wij xj .t/

9
=

;

sgn.u/ D

 C1 u � 0
� 1 u < 0

where xi(t)D˙1(i D1�N) is the firing state of a neuron specified by index i at
time t, wij is connection weight from the neuron xj to the neuron xi. wii is taken to
be 0. r (0< r<N) is fan-in number for neuron xi, named connectivity that is the
most important system parameter in our work. Gi(r) is a spatial configuration set of
connectivity r for neuron xi,, the number of which are N-1Cr. Therefore, with full
connectivity rDN � 1, determination of wij by means of a kind of orthogonalized
learning method enables us to embed a group of N dimensional state patterns as
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cyclic memory attractors. In our works, attractor patterns consists of (K patterns
per cycle)�L cycles, and each patterns has N neurons. In this work, we take
KD 15, LD 2 (see Fig. 1), or KD 10, LD 3 (see Fig. 4), and ND 400, where
the firing states of ND 20� 20D 400 neurons are represented by black pixel or
white pixel as shown in Fig. 1. Long time updating makes an initial pattern
converge into one of embedded cycle attractors. Now, when we reduce connectivity
r by blocking signal transfer from other neurons, then attractors gradually become
unstable, and the network state changes from the embedded patterns and chaotically
wanders in the state space [8, 9]. In our computer experiments, we take the
connectivity to be rD 6, and, in chaotic state, apply two external inputs as (Fig. 2)
[
P

wijxj(t)C˛i cos (2�t/S(A,B))i2C]to the two 3� 3D 9 firing neurons set on the
two corners (A, B), where the two periods S(A,B) are 137 and 181, respectively. The
correlation between a sending neuron and a target (receiving) neuron are calculated
as shown in Fig. 3. The correlation between the sending neuron and the other
neurons are calculated and shown in Fig. 3 as well.

Fig. 1 The embedded two cycle attractors

Fig. 2 Signal transfer
through chaos
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Fig. 3 The correlation function in log-log plotting

Fig. 4 The attractor patterns of three channel signal transfer

3 Results and Discussion

Let us consider more in detail about Fig. 3, the values of correlation functions
between the sending neuron A(B) and the target A’(B’) and the intermediate neurons
as well. One can observe that the crosstalk is negligible, when we consider [log]
scale in the figs. to represent correlation function fij vs. £, where the figs. are shown
using the absolute value of,

fij .£/ D
˝
xi .t/xj .t C �/

˛
t

�
i; j D A.0/; B.0/ or the others

�

They suggest that simultaneous multi-channel communications are realized in our
heuristic model systems inspired by the phenomena observed in brain dynamics.
Once a fragment of learned stimulation (memorized stimuration) would be applied
to the sensory neuron group, it could make the chaos constrain in the region of state
space including the corresponding learned firing state (one of the learned attractors).
The response of chaos to the fragmental input of the learned stimulation is quite
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Fig. 5 A trial of simultaneous three channel signal transfer

Fig. 6 A display of neuron connectivity configuration at rD 6

quick (sensitive), and enough to take similar or adaptively responding behaviors
corresponding to learned stimulations (Figs. 5, 6 and 7).

Figure 8 shows the results of calculating the correlation functions with respect
to the three pairs of the neurons corresponding to sender and receiver. One can
recognize that good signal transfer without cross talk is realized in simultaneous
three channel signal transfer.
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Fig. 7 The same with Fig. 6 to show the correspondences in Fig. 8. It is possible to obtain the
same results in the case of simultaneous three channel signal transfer, which are shown in Fig. 4,
5 and 6

Fig. 8 (a) A-A is the auto-correlation. A-A0 corresponds to the signal transfer from A to A0 (b)
B-B is the auto-correlation. B-B0 corresponds to the signal transfer from B to B0 (c) C-C is the
auto-correlation. C-C0 corresponds to the signal transfer from C to C0
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Self-Reflective Mind in a Machine: Neural
Correlates for Multidimensional Mind
Perception

Hideyuki Takahashi and Takashi Omori

Abstract From three different studies, we could find the entropy in Matching
Pennies Game (MPG) increasing, owing to the mind perception of the game
opponent. Further, we found two components of mind perception: “mind reader”
and “mind holder”. We also found neural correlates related to each component
in MPG. The series of our studies shed a light on the neural function of mind
perception in social interaction.

Keywords Perception • Matching pennies game • Neural correlates • Social
interaction • Robots

1 Introduction

We sometimes attribute a mental state to a non-animate object, such as a
communication robot. Neuroimaging studies have explored neural correlates for
the mind perception and these studies found that specific brain regions, such as
medial prefrontal cortex, tempora-parietal junction and superior temporal sulcus,
function in the mind perception [1]. Further, these brain regions are known to be
activated even in the mind perception for a non-animate object, such as a human-like
robot [2].

Recently, the mind perception is thought to follow multi-dimensional scales.
For example, Gray and his collages proposed two dimensional scales for the mind
perception, “agency” and “experience”, on a basis of large-scale questionnaire
surveys [3]. However, the mind perception has been dealt as a one-dimensional
psychological scale in most of previous neuroimaging studies. Further there are few
studies that revealed how each scale of the mind perception affects our cognition
and behavior.
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In this paper, we introduce our three studies using matching pennies game (MPG)
for investigating how multiple aspects of mind perception affect behavior and brain
activities during the game playing.

2 About Matching Pennies Game (MPG)

MPG is a simple, zero-sum, competitive game played by two players. In this
game, each player selects one decision from two options, “L” or “R,” in each trial;
winning/losing outcomes for each player are determined by a combination of the
decisions of the two players. If both players select the same choice, one player is the
winner and the other is the loser. If not, the identities of the winner and the loser are
reversed. The winner receives a fixed reward, and the loser loses the same amount,
in each trial. Participants played this game across multiple trials and were asked to
increase their accumulated rewards as much as possible. MPG is a symmetrical,
zero-sum game, and the required strategy is completely equal between the two
players. Participants were required to predict the opponent’s next behavior and to
avoid the risk of having their behavior predicted by the opponent. In our experiment,
the opponent was always a computer program, regardless of the instructions given
to participants, and the program always selected each option with equal probability.
Hence, the expected wining ratio was always 0.5, regardless of the participant’s
decision.

3 Behavioral Analysis in MPG

In MPG, generating random decisions is efficient in order for game players to
avoid prediction of their next decision by their opponent: randomness of decision
making is an important behavioral index in MPG. We quantified the randomness
of decision making during each session of a matching pennies game as entropy
H, which was calculated from the conditional frequency p(djc) of decision d (L
or R) selected in current game context c (the recent choices for participants and
opponents). Entropy H indicates how decision d is generated independently from
the current game context, and the value of H positively correlates with the degree of
randomness of decision making in a matching pennies game (see detail in [4]).

4 Study 1: Matching Pennies Game with a Human Opponent

In this experiment, we investigated how the participant’s belief that his/her opponent
was a human (i.e. mind holder) affects the behavior in MPG [4]. There were two
conditions: the human opponent condition (HO condition), in which participants
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were instructed that the opponent was a human player, and the computer opponent
condition (CO condition), in which participants were instructed that the opponent
was a computer program. In the HO condition, participants were instructed that their
opponent was a human player without being given any extra information (e.g., how
the opponent played the game). In the CO condition, participants were instructed
that the opponent was a computer program.

We compared both acquired reward and behavioral entropy between the HO and
CO conditions. There was no significant difference in the acquired reward between
the HO and CO conditions. However, the mean of entropy in the HO condition
was significantly higher than that in the CO condition. The instruction that the
game opponent was a human player thus improves the randomness of participants’
decision making in MPG regardless of actual game performance, and our results
suggested that entropy is an efficient behavioral index for investigating the affection
of mind perception in MPG.

5 Study 2: Matching Pennies Game with a Robot Opponent

In this experiment, we tried to investigate a precise factor of mind perception that
affected in MPG [5]. We used a humanoid robot named “PoCoBot” as the opponent
in MPG. Participants sat at a table facing the front of the robot (the distance between
the participants and the robot was about 1 m). Participants were given two cards;
one had “Left” and the other had “Right” printed on one side of each card. In each
trial, participants selected one of these two cards and placed the selected card face
down on the table. Then, the robot indicated one direction, either left or right, with
gestures. Participants played MPG for 20 trials with the robot in each session. Before
the session, participants had a short conversation with the robot (i.e., greeting), and
the robot suddenly turned its head during the conversation. We checked whether
participants followed the robot’s gaze direction with their own gaze just after the
robot turned its head. Participants were also asked to rate the human-likeness of the
robot on a seven-point scale in each session.

We investigated whether the participant’s behavior of following the gaze of the
robot related to the subjective human-likeness of the robot or to the entropy of the
participant’s responses. We compared the means of the subjective human-likeness of
the robot between sessions when the participant exhibited gaze-following behavior
and sessions when the participant did not follow the robot’s gaze. We did not find
a significant difference between trials with and without gaze-following behavior.
Next, we compared the means of the entropy of participant decision sequences
between sessions with gaze-following behavior and sessions without it. We found
that the mean of entropy in sessions with gaze following was significantly higher
than that in sessions without gaze following. These results suggested that the entropy
of participants’ decision sequences tended to be high when they followed the robot’s
gaze regardless of the subjective human-likeness of the robot.
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6 Study 3: Neural Correlates of Multiple Mind Perception
in MPG

In this study, we explored the neural correlates for the multidimensional mind
perception in a human-robot (or human-human) competitive game (Takahashi
et al. in press). We prepared five kinds of opponents (Human, Android, Infanoid,
Keepon, computer) for this study. Participants had a short conversation with each
of opponents before the game and rated the impression of each opponent by a
questionnaire after the conversation. After rating, participants played the matching
pennies game (simple zero-sum game) with each opponent in MRI scanner. The
opponent of participants was always the common computer program that selected
its decision randomly regardless of the action of the participants.

From questionnaire’s results, we found two psychological components related
to mind perception, “mind reader” and “mind holder”, by principle component
analysis. We explored brain regions correlated with each of the components during
the game play and found brain activities of temporal pole and the inferior part of
temporal-parietal junction correlated with the degree of “mind reader” and those
of medial prefrontal cortex, posterior cingulate and the superior part of temporal-
parietal junction correlated with the degree of “mind reader”. Further we also found
that the perception of “mind reader” enhanced the entropy in MPG.

7 Conclusions

From above mentioned three studies, we could find the entropy in MPG increased
owing to mind perception to the game opponent. Further, we found two components
of mind perception “mind reader” and “mind holder” from questionnaire’s results
and the perception of the former affected the entropy in MPG. We also found neural
correlates related to each component in MPG. The series of our studies shed a light
on the neural function of mind perception in social interaction.
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Formation of Pyramidal Cell Clusters Under
Neocortical Balanced Competitive Learning

Amir Tal and Hava Siegelmann

Abstract Staggeringly complex, cortical inner-circuitry remains largely a mystery
to this day. Recently, a clustered pattern has been discovered in layer 5 pyramidal
cell connectivity. Distinct clusters appear at highly predictable traits across neonatal
animals, implying fundamental role and perhaps a DNA-prescribed design. In this
research we demonstrate natural formation of such patterns under inclusion of the
two major forms of inhibition existent in neocortical layer 5, those of large basket
cells and Martinotti cells. We therefore offer a simple developmental account of
this seemingly innate complex structure, along with a useful biologically prevalent
micro-circuit capable of complex development and learning.

Keywords Competitive learning • Brain development • Brain connectivity • Cell
assemblies

1 Introduction

Standard contemporary scientific thought attributes neuronal network connectivity
a pivotal role in who we are and how we function. The underlying architecture
of this network is, however, still largely at debate. While connection specificity
is evident on a large scale – ascribing different regions and layers of the brain
unique functionality, it is still rather unclear whether single cell connectivity is
predetermined or not [1, 2].

Recent studies have revealed repeating predictable sub-circuit patterns of
connectivity in neocortical layer 5 network [3, 4]. Groups of pyramidal cells (PC)
appear to cluster together at consistently high connectivity ratios and strengths
compared to the network surrounding them, conforming to simple common
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organizational guidelines. Recurrence of such structures cross-animal at a very
young age led researchers to postulate an innate tendency for it, that these structures
constitute a basic building block of the neuronal network regardless of unique
individual experience. This description begs the question of these clusters’ origin –
are they predetermined, perhaps DNA prescribed?

Apart from PCs, 20–30 % of the mammalian neocortex is made of interneurons
of numerous types. In the fifth layer, two types constitute the vast majority of these
cells: large basket cells (LBC) and Martinotti cells (MC) [5, 6].

LBCs are known to be the most common lateral inhibition neurons of the
neocortex, extending expansive lateral axonal arborizations to neighboring and
distant columns within their layer [7]. For this reason, they are frequently attributed
imposing Mexican hat shaped inhibition in the neocortex [8], dynamics which are
prominent in neural network literature [9].

MCs, in contrast, are characterized by their long ascending axon to layer 1, which
primarily targets thick tufted PC dendrites [5]. Electrophysiological study revealed
MC mediate a unique inhibitory pathway of sub-columnar dimensions. MCs provide
prolonged feedback to excitatory PC neighborhoods which stirred it to action, within
a distinct delay from activity onset [10–12].

Putting together PC, LBC and MC neurons, a comprehensive simulation of
neocortical layer 5 circuitry is possible. Under synaptic spike-timing-dependent
plasticity rules (STDP) [13] we have found this circuitry inevitably develops
clustered connectivity patterns in an excitatory PC network, bearing similar traits
to those empirically found. MC inhibition with its unique spatial and temporal
traits constitutes a substantial addition to classic local-excitation lateral-inhibition
connectivity, forming a useful competitive circuit computationally analogous to self-
organizing maps [14].

2 Results

2.1 Cluster Characteristics

A neural network simulation was developed to model layer 5 PC, LBC and MC
connectivity. Leaky integrate-and-fire model was chosen as the neuronal model and
connection probabilities and strengths were initialized based on electrophysiological
data [1, 15]. On initialization, network is connected at 12.22˙ 0.31 % based
on somatic distance-dependant connection probabilities. Simulation causes a drop
of this rate to 7.77˙ 0.24 % on average, however leaving PC-PC connectivity
probability distance-dependent. When applying Affinity Propagation algorithm [16]
to this network at the same configuration used in Perin et al. [3], 40.4˙ 1.71 clusters
are detected, at an average size of 24.8˙ 1.06 members per cluster. For comparison,
a rerun of the original simulation by Perin et al. for 1,000 neurons results in clusters
of 31.58˙ 2.29 members.
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Clusters yielded an average connectivity ratio of 30.06˙ 0.86 %, almost four
times higher than the overall network connectivity ratio. This is significantly
higher than the simulation outcome of Perin et al. [3], where clusters of a few
dozen neurons were connected at an average 16 % alone. However, according to
electrophysiological data reported in the paper, connectivity ratio seems to rise with
group size, already peaking at 12.5 % (7 out of 56) in groups of eight neurons. This
may imply higher connectivity in larger clusters such as ours, but is unfortunately
unverifiable as groups were restricted to 12 neurons in the original study.

In terms of synaptic strength, we compared mean synaptic strength of synapses
bridging different clusters with those connecting neurons of the same cluster. While
the amount of the first kind reaches even ten times the amount of inner-cluster
synapses, synaptic strength tends to distribute rather similarly in the two groups,
with tremendous variance in both (Fig. 1). This bimodal distribution of synaptic
weights is common in naïve forms of STDP learning, and may be balanced using
additional parameters to plasticity [17], a complexity we thought unnecessary for
our model. Despite this large variability, strong synapses constitute a significantly
higher percentage of inner-synapses than outer-synapses. Synaptic strength inside
clusters is on average 3.43˙ 0.31 mV (in EPSP), while the average synapse outside
clusters is of 2.29˙ 0.18 mV EPSP strength.

Fig. 1 Synaptic strength distribution. Histogram of outer-cluster synapses (shown in blue)
compared with inner-cluster (red) on a log scale displays the bimodal distribution all synapses
demonstrate, as well as the difference in volume between both types. Strong synapses constitute a
larger fraction of inner-cluster synapses than outer-cluster synapses. STD bars shown in black
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2.2 Common Neighbor Rule

Number of common neighbors (NCN), which is the principle guideline for cluster
identification in this paradigm, therefore proves to be a good predictor of synaptic
strength and connection probability. In consistence with what has been reported in
Perin et al.[3], the more common neighbors two neurons share, the more likely they
are to be connected, and the stronger the connection between them tends to be.
Compliance to NCN is especially noteworthy as our networks stem from random
distance dependent connectivity and Hebbian principles alone. NCN is used only as
a retrospect analysis tool, in contrast to the work done by Perin et al., where it was
also used as the guideline for network wiring.

2.3 Network Topology

Networks which underwent simulation are left with a degree distribution which is
binomial looking with a positive skew. Median falls very close to the mean value,
but right tail is evidently longer than left one (Fig. 2). Further classification of
the network based on clustering coefficient and average shortest path as described
in Watts and Strogatz [18], reveals that traits resemble those of a small-world

Fig. 2 Avg. network degree distribution. – medianD 151.7˙ 4.8 – meanD 155.3˙ 4.7 – skew-
nessD 0.24˙ 0.1
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Table 1 Comparison of network clustering coefficient and average shortest path with two
networks bearing same number of edges – a completely regular network on one hand and a
completely random one on the other. Our network falls in the characteristics of a small-world
network due to a high clustering coefficient relative to its short average path

Clustering coefficient Avg. shortest path

Regular network 0.74 7.08
Random network 0.07 1.92
Our network 0.13 1.97

network (Table 1). While the average shortest path of our network is almost the same
as in a completely random network, clustering coefficient is almost twice that of a
random network. Small-world network topology is found in abundance in nature. It
indicates the network has a small degree of separation within it, but still connectivity
is not random. Nodes connect to each other based on some logic, and the resulting
clustering coefficient is higher than would be expected by chance.

2.4 Effect of Martinotti Inhibition

Isolating MC inhibition from simulation, it seems the chief influence of this pathway
is the regulation of neuron activity in one area over the other. While BC inhibition
is the core cause of lateral competition and local clustering, simulations lacking MC
inhibition result in a highly uneven network. Without this type of inhibition, selected
areas of the network grow constantly stronger with less and less competition.
Lacking MC inhibition, an average of three clusters (7 %) account for over half
of the spikes produced by the network, one of them over 25 % by itself (Fig. 3).
This cluster reigns supreme over an obvious hierarchy shaped within the network,
in terms of firing volume and average synaptic strength alike.

3 Discussion

3.1 LBC-MC Circuitry

The dual inhibition described in this research accounts for clustering of Pyramidal
Cell neurons, due to dynamics of competitive activity which it promotes. Regions
rival each other over different input via LBC lateral inhibition, earning input
selectivity in a manner reminiscent of Self Organizing Maps. MC inhibition steps
into this competitive scheme to restrict “winning” regions for a certain amount of
time after they have been active. This self inhibition is crucial for an equal spread of
activation in the network. Without it, most network connectivity will degenerate and
the network will be deprived of input selectivity. MC behavior seems to be solving



572 A. Tal and H. Siegelmann

Fig. 3 Effect of MC pathway. Sorting clusters by spike volume reveals that lack of MC (blue
bars) results in a much less even distribution of activity between clusters. One cluster produced
over 25 % of network activity alone, compared to the avg. 10 % maximum clusters reach in normal
simulations (black line. STD bars drawn vertically). Red numbers indicate average cluster synaptic
strength (in mV EPSP), which rises dramatically in correlation with firing volume

the AI learning problem of “dead units”. Dead units are a problem suffered by hard
competitive learning algorithms in which computational units may be neglected and
not used in the final outcome of learning. MC seems to be analogous to a learning
“conscience”, restricting overly-successful regions to make competitive learning
“fair” [19].

In this light, PC-BC-MC wiring may be a connectivity pattern selected through-
out evolution to give neuronal networks an intrinsic inclination to learn and
accommodate themselves to incoming dynamic patterns. Each neuron can poten-
tially be a cluster center to begin with. It is the unique stimulus history which
will form certain clusters and not others in different networks following different
experiences, but in agreement with the insight also given in Perin et al. [3], a
clustered layout seems to be inevitable under these dynamics.

3.2 Clustered Network Topology

Simulated networks show traits most similar to small-world networks, maintaining
an average short path between any two nodes under a relatively clustered layout.
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This structure seems to afford quite an optimal balance between network transmis-
sion speed and local connectivity.

As the speed in which neuronal commands may be transmitted is bounded first
and foremost by chemical synaptic transmission speed, short paths are a significant
advantage in a living neural network. Achieving such connectivity with a binomial
degree distribution means the network does so without the usage of global hubs,
which is critical both for parallel processing, but moreover for robustness – as the
network is not dependent upon any single neuron.

When considering high clustering, the most immediate advantage seems to be,
like in the hub-free rational, network robustness. If we regard clusters as basic
unified units, the system becomes resilient to single neuronal failures thanks to
redundant connectivity. However, another attractive possibility might be drawn
from the social network metaphor – an additional type of transmission speed.
According to a study of epidemic processes in clustered networks, increase in
network clustering coefficient leads to a decrease of epidemic threshold [20].
Clusters make it easier for information to percolate in the network, reaching new
nodes significantly quicker and easier. In neural networks this would mean requiring
weaker stimuli to recruit neurons to fire, so being more sensitive to input.
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Systems Biopsychiatry: The Cognitive
Neurodynamics of Schizophrenia
in an Integrated Systemic View

Felix Tretter

Abstract The atomistic research program in biological psychiatry has to admit
increasingly that only a systemic re-construction of the brain might help to
understand mental functions and dysfunctions (“Computational Systems Biopsy-
chiatry”). New technologies that record multiple units by complex data analyses
implicate multiple network concepts of brain structures and functions (e.g. graph
theoretical models). However, these descriptive quantitative models are not suffi-
cient to “explain” complex mental disorders such as schizophrenia. For this reason
computer-based process models are necessary. A sketch of this multi-level mod-
elling task is given by referring to “dysconnectivity hypothesis” of schizophrenia.

Keywords Biological psychiatry • Schizophrenia • Dysconnectivity hypothesis •
Multi-level modelling • Brain-mind problem

1 Introduction

According to WHO, mental disorders (e.g. depression and schizophrenia) are the
leading diseases that have a high socioeconomic impact on society [1]: For this
reason, progress in psychiatric research resulting in effective medications with
high efficacy, a low rate of side effects and low costs is very important. These
psychopharmaceuticals should be based on comprehensive knowledge of brain
function and dysfunction. Still, we are far away from such a conceptual framework
of understanding mental disorders in the context of biological psychiatry. Therefore,
it could be useful to develop a systemic multi-level view of the brain that integrates
different segments of knowledge and that is based on applications of mathematical
tools in data analysis and computerized modelling.
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2 Methods

In psychiatric research today, two main methodological approaches are dominating:
functional and structural imaging studies of the macro-anatomical circuitry and
molecular biological research of the brain with emphasis on “omics” studies
(genomics, proteomics, metabolomics etc.; Fig. 1). These high-throughput tech-
nologies generate extremely large data sets. For this reason, new mathematical tools
that complement multivariate statistical methods must be applied and developed. As
complexity of the brain mechanisms and their dynamics challenge human reasoning,
the computational systems modelling approach seems to be unavoidable [2].

Additionally, neuropsychiatry also has to tackle the basic problem to relate
mental phenomena to brain mechanisms (brain-mind problem). Also behaviouristic
psychopathology still has to admit that subjective experience is the essential basis
of mental disorders: In various stages of mental illness, the patients report strange
experiences that in many cases cannot be proved by objective tests (e.g. stupor in
depression and schizophrenia). Regarding this, mental disorders roughly can be
characterized as an imbalance or dissociation of conscious experience regarding
states and processes of cognition and emotion and their subfunctions.

Fig. 1 The multi-level
approach in systemic
neuropsychiatry – top-down
deconstructing analysis by
biotechnologies and
bottom-up reconstructing
synthesis by computer-based
modelling and simulations
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2.1 Schizophrenia as a Systemic Mental Disorder

Schizophrenia is characterized by a complex symptomatology with a high variation
of the clinical manifestation in each individual patient [3]. For instance, symptoms
like dysfunctions of perception (hallucinations), thought disorders and delusions
are very significant. Additionally, ambivalence, autism and affective disorders
are observed. All these symptoms are dissociated, which is a basic feature of
schizophrenic information processing [4].

Regarding this complexity of symptoms, a systemic approach of modelling
psychopathology should focus on a few symptoms, and should not claim to describe
the whole disease [5]. In line with this, multi-level modelling of neurobiological data
on deficiencies of working memory functions is a fruitful example [6, 7].

For our aim to understand psychiatric illnesses by a system theoretic framework,
it is important to transform the symptoms into a quantitative time-related language
of functions and dysfunctions so that it is possible to match this type of charac-
terization of the symptomatology of schizophrenia to the activity patterns that are
obtained by neurobiological methods: For instance, a hallucination can be defined
as a stimulus-free perception that is uncoupled from a sensory system. In this case,
a hyperreactivity to sensory stimuli can be observed objectively (reduced prepulse
inhibition;[8]). In neurobiological terms this function corresponds to a spontaneous
activity or a hyperreactivity of a local perceptual network (e.g. temporal cortex) that
exhibits a too strong self-activation compared to the strength of the self-inhibition.
Also thought disorders can be understood as a “too many” or “too few” branches
of the sequence of the thoughts. Also a too weak or too strong and too short or too
long persistence of information in the working memory buffer can be the basis of a
dysfunctional working memory function [6, 7; comp. 9].

At present, there is no complete transformation of psychopathological terms
into some sort of a functionalistic systemic language as it was demonstrated
here. However, this reconceptualization of basic categories of psychopathology
and also the construction of a systemic concept of mental functions could be
one way for theoretical psychiatry to provide a better match with neurobiological
data (isomorphic relation), at least on a micro-anatomical level. Mental functions
correspond to local and total brain functions and not only to functions of single
neurons or to gene functions.

2.2 Schizophrenia as a Neural Network Disorder

Here we start with a vague concept of the global brain as a neural network, assuming
that nearly every macroanatomically defined brain area is directly connected with
each other. In this view, we focus on 11 components that are frequently mentioned
in publications about relevant schizophrenic symptoms. Here we represent some
of their relevant connections (Fig. 2). Although the Human Connectome Project
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Fig. 2 Hypothetical brain networks of schizophrenia: squared red subnetwork VTA/SN-STRIA-
THAL-SC-STRIA proposed by Carlsson [11, 12], lined blue subnetwork VTA/SN-STRIA-PFC-
VTA/SN proposed by Weinberger and Winterer [13]. Abbreviations: OFC orbitofrontal cortex,
PFC präfrontal cortex, PC parietal cortex, SC sensory cortex, THAL thalamus, STRIA striatum,
VTA ventral tegmental area, HIP hippocampus, NAC nucleus accumbens, AMY amygdala, ACC
anterior cingulate cortex Red higher activation, blue lower activation comp. to healthy subjects

is recording the connectivity of the whole brain [10], we reduce this complexity
in order to demonstrate some conceptual and methodological issues: In this global
framework some essential models of the schizophrenic brain circuitry are integrated
and can be seen as models of subsystems of the whole network of supraregional
circuits (Fig. 2). For instance, in the history of neurobiological explanation of
schizophrenia one of the first successful hypothetical models was proposed by
Arvid Carlsson [11, 12]. In this model, Carlsson proposed a circular dopamine-
driven dysfunction: a hyperactivity of the dopamine system that starts in the brain
stem (substanzia nigra, SN and ventral tegmental area, VTA) and very strongly
inhibits the “striatal complex” (here: STRIA) via inhibiting D2 receptor activation.
From here, GABA-based inhibitory projections start to the thalamus (THAL) that
provides input for the sensory (visual and auditory) cortices (SC). These (and other)
cortical areas exhibit activating projections back to the striatal complexes. In case
of schizophrenia, the striatal inhibitory output is weak so that thalamus is hyperac-
tively driving the sensory cortices (Fig. 2a). Several years later a “corticocentric”
conception of the neural sources of schizophrenic symptoms was proposed by
Daniel Weinberger and his co-workers [13]: Functionally weak prefrontal cortical
projections down to the brain stem would not be able to inhibit the up-stream
dopaminergic projections to the striatum and also to prefrontal cortex so that these
projections exhibit a hyperactivation of the D2 receptors. In prefrontal cortex a
pathological functional dominance of D2 receptors in relation to D1 receptors
could evoke a weak working memory function (too much distraction). Additionally,
imaging studies using path analysis found that a weak connectivity between frontal
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Fig. 3 Core circuit as can be
seen in models proposed by
Grace and coworkers ([19]
for Hippocampus and by
Lewis et al. [15] for Cortex.
Abbreviations: Glu
glutamate, GABA
gamma-amino-acid, DA
dopamine, NA
norepinephrine, 5HT
serotonin

Glu

INPC
GABA
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DA,
NA,5HT

brain areas and temporal brain areas are typical for schizophrenia and could explain
other cognitive impairments (not depicted in Fig. 2; [14]). Reviewing such articles
in detail, a realistic picture of all peculiarities of the “dysfunctionally connected”
schizophrenic brain network could be constructed.

On a micro-level, the corticocentric concept of schizophrenia was affirmed by the
latest finding that in the prefrontal cortex a insufficient local circuitry consisting of
pyramidal cells and inhibitory neurons could be the cause of a weak activity of this
cortical area [15]. The core circuit of this micro-model is based on a two-component
model of reciprocal connectivity consisting of an activating unit and an inhibiting
unit (Fig. 3). The activity of such modules easily can oscillate [16]. Therefore this
concept is in line with the finding of reduced gamma-activity in cognitive tasks in
schizophrenic patients [17, 18].

Looking one level deeper, considering the genetic level, pathological properties
were found for synaptic mechanisms such as degrading enzymes, e.g. a weak
COMT by gene 22q11 with a Val and Met polymorphism in case of the Met
allele implicates a weak COMT enzyme and in consequence a high dopamine
concentration (comp.[20]). Also genes like neuregulin, dysbindin, DISC1, RGS4,
GRM3 and G72 are susceptibility genes for schizophrenia.

From a molecular biological point of view the intracellular molecular signaling
network in schizophrenia is still not completely understood. Simply speaking
we would expect “schizophrenic neurons” but only in the sense of a certain
intrinsic dynamic imbalance of activating and inhibiting mechanisms that generate
pathological hypo- or hyperactivity of the neurons.

Summing up, a bottom-up view arises that many genes act on different levels of
the morphological formation of connections between brain cells and areas leading
to an insufficient macro-anatomic network that processes information in a highly
pathological way (“dysconnectivity” hypothesis; [21]). Still a lot of gaps must be
filled by data and by concept formation. This would be a task of a (Computational)
“Systems Neuropsychiatry” because computer models and simulations seem to be
necessary for deeper understanding of that issues of neurodynamics [2].

Already integrating current biochemical hypotheses for schizophrenia cannot be
understood intuitively: A hyperfunction of dopamine transmission, a hyperfunction
of serotonergic transmission (and also a hyperfunction of norepinephrine) related
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to a hypofunction of glutamate and GABA transmission (and also of acetylcholine
transmission) can be integrated in the concept of a “neurochemical mobile” that
could be the basis of a computer-based exploration of neurodynamics [22].

3 Conclusions

Progress in understanding and explaining mental disorders on a neurobiologi-
cal basis needs systemic conceptions and methodologies to analyze data and
to construct computational models. This new research program could be called
“Computational Systems Neuropsychiatry”.
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Modeling the Genesis of Components in the
Networks of Interacting Units

Ichiro Tsuda, Yutaka Yamaguti, and Hiroshi Watanabe

Abstract From the viewpoint of system development, we investigate how
components emerge in a network system consisting of interacting units. We
propose two mathematical models with ‘variational’ principles: one treats the
emergence of neuron-like components from interacting maps, and the other one
treats the emergence of hierarchical module-like components from interacting
neuron-like units. In both models, maximum transmission of information was used
as a ‘variational’ principle. This type of mathematical model provides a basis for
consideration of the mechanism of cell differentiation in embryos and stem cells,
and of functional differentiation in the brain.

Keywords Functional differentiation • Chaos • Variational principle
• Components

1 Introduction

In conventional mathematical models of biological systems, coupled dynamical
systems such as coupled-map and coupled-oscillator systems have been adopted
widely and investigated in detail. A coupled system can be recognized as providing
a good model for the emergence of varieties of spatiotemporal patterns over various
hierarchies from the microscopic to the macroscopic level. In this type of model,
the presence of the element itself and its function are presupposed. This is true, for
example, for chemical reactions, where starting chemical materials are given, they
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begin to interact with each other, and the reactions develop, forming products of the
system. Different processes operate in differentiation, such as cell differentiation
in embryos, and functional differentiation in the brain because the interacting
components cannot be determined before the system development starts. Rather, the
components are produced by a certain constraint, which acts on the whole system
[1, 2]. We model this process, adopting a certain ‘variational’ principle.

2 Method/Models

Using a certain genetic algorithm, we calculated the development of the interactions
and the states of the dynamical systems. In the genetic algorithm, we applied a
constraint of maximum transmission of information as a ‘variational’ principle
to drive the system development: mutual information in the study of a genesis
of neuron-like components and transfer information in the study of a genesis of
module-like components. Because transfer entropy is equivalent to conditional
mutual information, we describe a ‘variational’ principle in terms of a maximization
of mutual information as a typical example. Mutual information is defined in the
following way.

I.f / D
Z
p .xt / lnp.xt /

�1dxt �
Z
p .xt / p .xt 0=xt / lnp.xt 0=xt /�1dxt (1)

One may view the transition probability as a function of a state variable x and its
time derivative x’, that is,

p .xt 0=xt /! p .x0t ; xt / (2)

The dynamical systems law is written by

dx

dt
D f .x/ (3)

Then, one has the following formula.

I.x/ D
Z t2

t1

F
�
x; x0

�
dt (4)

F
�
x; x0

� D f .x/p.x/ lnp.x/�1 � f .x/p.x/p �x0; x� lnp.x0; x/�1 (5)

The first and the second terms on the right hand side of Eq. 5 may correspond to the
potential energy-like and the kinetic energy-like terms, respectively.
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Here, -F(x, x0) is a Lagrangean-like function, which implies local information
flow in the present case. Therefore, the ‘variational’ principle is provided by the
following formula.

ıI D 0) d

dt

@F

@x0
� @F
@x
D 0 (6)

3 Results

We report the results of the simulations for the genesis of heterogeneously inter-
acting modules from homogeneously interacting modules and the results for the
genesis of a neuronal unit. For the former model [3], we found the development of
heterogeneous interactions between presumed modules that consist of homogeneous
interactions among units (Fig. 1). The development of the dynamics was obtained
under the constraint of maximum transmission of information measured by the
product of transfer entropies from module I to II and module II to I. We used
the networks of the Weyl transformations with noise, which are coupled randomly
via sinusoidal transformations of those variables. Using the genetic algorithm, the
networks developed from homogeneous couplings to heterogeneous couplings. We
observed the following spontaneous symmetry breaking: In one module, say module
I, in-phase couplings were dominant, but other types of couplings also survived.
In the other module (module II), only in-phase couplings survived. The couplings
from module I to II developed to become in-phase couplings only, while those from
module II to I developed to become anti-phase couplings only.

Fig. 1 Genesis of a heterogeneous network from a homogeneous network under the constraint
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For the latter model [4], we found the development of neuron-like units from a
set of various dynamical systems, whose units exhibit an excitable or an oscillatory
behavior. This development was obtained under the constraint of maximum trans-
mission of mutual information in the network of dynamical systems. We adopted a
set of one-dimensional maps described by the following equation.

z .t C 1/ D tanh .�1 .z.t/ � ˛1//� ! tanh .�2 .z.t/ � ˛2//C J (7)

By changing the parameters in the right hand side of Eq. 7, we obtained constant
functions, monotonic functions, and unimodal and bimodal functions. The network
consisting of the same maps with a given strength of couplings was developed by a
certain genetic algorithm, where the global constraint was a maximum transmission
of information from external inputs measured by the mutual information between
the input time series and the time series of each elementary individual map. In
the case of strong couplings, a constant function survived, which means that any
external input is transmitted on the network without any deformation. In the case
of intermediate strengths of couplings, excitable maps survived (see Fig. 2). Three
fixed points appear in the map. The leftmost one may represent equilibrium and
a resting potential, and the middle one indicates a threshold. When the initial
state is set below the threshold, the dynamical orbit monotonously relaxes to the
equilibrium state. Whereas, when the initial state is set beyond the threshold, the
dynamical orbit experiences a large excursion surrounding the third fixed point,
which is unstable, overshoots the equilibrium state indicating hyper-polarization,
and finally relaxes to the equilibrium state. The nature of these behaviors is similar to
that of the excitability of neurons. Finally, in the case of weak couplings, oscillatory
maps survived, and these may indicate the appearance of oscillatory neurons.

Fig. 2 Genesis of excitable
map. Abscissa denotes x(t)
and ordinate x(tC 1) x(t)0

x(t+1)
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4 Conclusion

We found curious behaviors in the development of dynamical systems under
constraints, where the constraints provided the influential factor for a whole system
through a ‘variational’ principle. Recently, several features of dynamic behaviors
in neural systems with respect to functional differentiation have been observed in
various network systems. The characteristic dynamics in the system development
we found here may be related to those findings.
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Visual Hallucinations in Dementia with Lewy
Bodies (II): Computational Aspects

Hiromichi Tsukada, Hiroshi Fujii, Ichiro Tsuda, and Kazuyuki Aihara

Abstract The aim of this study is, together with a companion paper, to present
a hypothetical description of the core mechanisms of recurrent complex visual
hallucinations (RCVH) associated with dementia with Lewy bodies (DLB). This
paper focusses on giving some illustrative numerical examples on how the brain
hallucinates, and to see whether mathematical models can describe our proposals of
the root cause of these hallucinations.

Keywords DLB • RCVH • Dementia • Attention • Visual hallucinations •
Attractor network

1 Introduction

Dementia with Lewy bodies (DLB) is the second most prevalent dementia, and
patients with DLB frequently experience the psychic symptom of recurrent complex
visual hallucinations (RCVH). The possible involvement of cholinergic deficiency
in DLB has long been argued, but the precise neuropathological mechanisms are not
fully understood [1, 2].
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In the companion paper [3], we presented the following as the potential root
cause of RCVH in DLB (hereafter referred to as VH).

1. Malfunctions in the prefrontal cortex (PFC: VLPFC/OFC) and the inferior
temporal (IT) cortex are responsible for VH.

2. In normal situations, the PFC quickly creates, to identify an external object
at the center of attention, bias signals (“index”) on its categorical identity to
facilitate image reactivation in the IT. This PFC function is executed based
on information arriving from three pathways: contextual data (as “gist”) via
Pathway III [4], emotion-expectancy (Pathway II), and external but cursory (low
frequency) images (LFI) via Pathway I – a cortical shortcut [5].

3. In a hallucinating brain, the possible pathophysiology may involve conduc-
tion disturbances somewhere along Pathway I. Hence, the PFC decision on a
top-down “index” is made on the basis of only emotion-expectancy and the
contextual information, ignoring the external LFI via Pathway I. At the same
time, a similar disturbance may occur in the pathway linking visual systems to
the IT (V-IT Pathway).

These disturbances may arise from either (a) cortical degenerations as loss of
cortical pyramidal neurons/ pre-synaptic axons [6], or (b) loss of the ’7 subtype of
nicotinic receptor (’7-nAChR) [7, 8].

In the following discussion, we will focus on two points:

1. The structure of the attractor space for an index in the PFC, and its dynamics.
2. How can the IT cortex activate detailed images based on the PFC biasing signal

(“index”)?

2 Models

2.1 Attractor Structure of the PFC Index Space

Let us consider first a situation in which the signals via Pathway I are blocked
because of conduction disturbances. What would be the PFC’s decision on the
“should exist” object? A key may lie in the structure of attractor space for indices
(“index space”). We assume that the index space is the product of three “property
spaces”, i.e., LFI images (Pathway I), emotion and expectancy (Pathway II), and
contextual association between objects and scenes (Pathway III) [4] (see Fig. 1).

In the following, the two streams from Pathways II and III are considered as
a single context-expectancy variable (the “top-down” stream), and the external
image (the “bottom-up” stream) for simplicity. Thus the representation in the index
space would be expressed by a concatenation [EXm, Cn], (mD 1,..,M; nD 1,..,N),
where EXm and Cn, are respectively the m-th external image and the n-th context-
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Fig. 1 A schematic diagram of PFC network architecture

expectancy expressed by a simple pattern of 0 and 1 binary sequences. (MD 2,
ND 2 for the simplest case). The model is designed so that each concatenated vector
[EXm, Cn] defines an attractor in the index space (see Fig. 1). This index network is
tuned so that it exhibits a dynamics spontaneously itinerant among those (“quasi”)
attractors [9] in default states, i.e., with no inputs.

The question is, if only a top-down “variable” (e.g., C1) is assigned (with no
information on EX’s), then how would PFC behave? Possible states would be [C1,
EX1] or [C1, EX2], both being C1 internal context-related. In fact, under such a
situation, the index dynamics exhibits a transitory behavior among these C1-related
states. That is, the network organizes a context-dependent itinerancy under such
conditions. The staying time in a particular attractor would depend on the situation
(see Fig. 2).

2.2 IT Model

The IT network receives a “categorical index” from the PFC, and this biasing
signal could activate the object representation even without inputs from the visual
cortices [10, 11]. This is the situation that we postulate as the one that occur in
DLB hallucinators. We emphasize that IT neurons are activated by top-down signals
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Fig. 2 Effect of conduction disturbances. (Top) Spike rasterplot of pyramidal neurons in the PFC
network. Different colors indicate a different cell assembly (blue: C1; red: C2; green: EX1; black:
EX2). (Bottom) Overlapping between spike patterns of neurons in the PFC network and stored
attractor patterns

without bottom-up sensory input [10]. Moreover, attentional biasing signals can also
be generated in the absence of any visual stimulation whatsoever [11]. The basic
question is how the IT can activate a relevant object representation solely from a
top-down index from the PFC. We propose the following two scenarios.

Scenario I. Attentional Phasic Cholinergic Projections onto the IT Phasic
(transient) acetylcholine (ACh) projections from the nucleus basalis of Meynert [12]
help the IT network state to make a transition from a transitory (quasi-attractor) state
to an attractor state. Top-down attention may help the IT dynamics to transit to the
attractor regime while the “categorical index” from the PFC contributes to jump in
to the specified attractor [9, 13]. However, whether phasic cholinergic projections
from the NBM takes place [12] in the case of visual hallucinator, is not known, since
attentional deficiency is known as one of the principal symptoms of DLB.

Scenario II. Cognitive “Perseveration” in PFC A long-lasting signal from the
PFC with a proper firing rate can sustain an image representation in the IT even
without cholinergic projections.

3 Results

3.1 Hallucinatory Index (Bias)

We examined the effect of conduction disturbances in the PFC network. During
the first 750 ms, the PFC network functioned correctly with external object EX1
and internal context C1. Then EX1 was turned off (but the internal context C1
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remained) at tD 750 ms. Subsequently, the activation pattern of EX1 suddenly
disappeared, and another alternative subjective guess EX2 was activated (see Fig. 2).
This guessed object has nothing in common with the correct object EX1 except that
they are both imaginable from, and consistent with, the internal context C1.

3.2 Attentional Phasic Cholinergic Projections onto the IT
(Scenario I) and Cognitive “Perseveration” in the PFC
(Scenario II)

Our simulation tested the above two IT scenarios. In Scenario I, under the condition
of continuing ACh projections, attractor 1 remained activated while ACh was
effective even when the PFC input was turned off (see Fig. 3a). However, when
the ACh projections were turned off, the activation of attractor 1 could not be
remained. In Scenario II, A long-lasting signal from the PFC could sustain image
representation in the IT even with no cholinergic projections (see Fig. 3b). However,
attractor 1 could not maintain activation without Glu spike volleys from the PFC.

4 Discussions

In our simulation, we observed that some characteristics of VH symptoms could
be reproduced in our conceptual model. The PFC model provided a subjectively
correct, i.e., consistent with context, but objectively wrong, index to the IT on the
nature of the “seen” object. In the IT model, the activation of IT representation
continued under the conditions of our two scenarios.

However, there are some additional considerations, such as the configuration of
the attractor space and interactions between the PFC and IT. In addition, there are
many remaining questions on the mechanisms of “perseveration” that continues for
a few minutes with the occurrence of hallucinations. Experimental studies of the
pathophysiology underlying our hypothesis are required.
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Kingdom for valuable discussions. This work was partially supported by a Grant-in-Aid for
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Fig. 3 (a) Attentional phasic cholinergic projections onto the IT (Scenario I). (b) Cognitive
perseveration in the PFC (Scenario II)
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Neural Dynamics Associated to Preferred Firing
Sequences

Alessandro E.P. Villa, Alessandra Lintas, and Jérémie Cabessa

Abstract In a distributed recurrent neural network equivalent changes at one
synapse might correspond to different patterns of activity and changes in strength
at particular links between two cells may become meaningless.The information is
not necessarily resident in the links among the units, but is likely to be provided by
the activity organized in a highly precise temporal mode. Precise spatio-temporal
firing sequences and attractor dynamics may be strongly associated, such that the
detection of spatio-temporal firing patterns may reveal the existence of underlying
modes of activity controlled by few parameters in deterministic chaotic dynamics.

Keywords Recurrent neural networks • Activity patterns • Spatio-temporal
firing • Attractor dynamics • Chaos

1 Spatio–Temporal Firing Patterns

The majority of neural circuits of the forebrain, i.e. the basal ganglia thalamocortical
circuit, are formed by highly interconnected networks of neurons in which the
activity of each cell is necessarily related to the combined activity in the neurons
that are afferent to it. Reentrant activity through chains of neurons is likely
to occur due to the presence of recurrent connections at various levels of the
circuits. Developmental and/or learning processes determine the strengthening and
weakening of synaptic interactions between the neurons of selected pathways. In
cell assemblies interconnected in this way, some ordered, and precise (in the order
of few ms) interspike interval relationships referred to as spatio–temporal firing
patterns, may recur within spike trains of individual neurons, and across spike
trains recorded from different neurons. For this to be true, temporal firing patterns
must occur to a significant level above chance (Fig. 1). Then, whenever the same
information is presented in the network, the same cell assemblies will be activated
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Simultaneous recording of spike trains

A

a

b

c

B
C

Pattern 1

Pattern 2
time (ms)

Rasters of spikes aligned on pattern start

A

B

C

A C B

C

C C C

P
at

te
rn

 2
P

at
te

rn
 1

time (ms)

Detection of statistically significants patiot emporal firing patterns

<A,C,B; Δt´1,Δt´2> <C,C,C; Δt´1,Δt´2>

# B
# C

time (ms)

cell # A

t2t1

complexity c=3
repetition number r=3
patterns found  n=2

expected count N=0.04

significance of
the patterns excess
pr{2,0.04} 8·10-4 <10-3}

t1́
t2́

# C

Pattern 1 Pattern 2

Fig. 1 Outline of the general procedure for pattern detection. (a) Three cells, labeled A, B, and
C, participate to a patterned activity. Three occurrences of two precise patterns are detected. Each
occurrence of the first pattern has been labeled by a specific marker in order to help the reader
to identify the corresponding spikes. (b) Estimation of the statistical significance of the detected
patterns. Two patterns, n = 2, <A,C,B> and <C,C,C> were found. Each pattern was formed by
three neurons, c = 3, and was repeated three times, r = 3, in the analyzed record. The expected
number of patterns of this complexity and repetition number was N = 0.04. The probability to
observe 2 or more patterns when 0.04 patterns are expected is noted as pr{0.02, 4}. (c) Display of
the pattern occurrences as a raster plot aligned on the patterns’ start (Adapted from [19])
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and the same temporal pattern of firing will be observed. A remarkable invariance
in the firing times of the tested neurons, indicating a high degree of reliability of
their response and not a stochastic nature of the discharges, was experimentally
observed after complex patterns of stimulation [5,14]. Experimental evidence exists
that correlated firing between single neurons recorded simultaneously in the primate
frontal cortex may evolve within tens of milliseconds in systematic relation to
behavioral events without modulation of the firing rates [21, 26]. Precise firing
sequences have been described in relation to particular temporal relationships to
stimuli [23], or movement [1], or differentially during the delay period of a delayed
response task [16, 24, 27]. When a specific input pattern activates a cell assembly,
the neurons are activated following a certain mode. Then, a mode of activity defines
how an information is processed within a neural network and how it is associated
to the output pattern of activity that is generated. In this framework the state of the
neural network is defined by a set of parameters characterizing the neural network
at a certain time. Then, the state of the network at any given time is represented
by the values of these parameters and a network state were fully determined if all
parameters were known for each neuron.

2 Dynamical System Analysis

The brain is characterized by biochemical reactions whose energy requirement
is derived almost entirely from glucose consumption coupled with processes
intended to transmit and integrate the information carried by the spikes across
the neural networks. For sake of simplicity it is rationale to describe the activity
of the neural network with the spike trains of all its elements. Spike trains are
statistically expressed by point-like processes with the meaning that point process
system are systems whose input and output are point processes. In a dynamical
system the subsequent state of the system is determined by its present state.
The irreversible dissipative processes associated to brain metabolism introduce an
essential metastability of brain dynamics. A dynamical system in a whole is said to
be deterministic if it is possible to predict precisely the evolution of the system in
time if one knows exactly the initial conditions and the subsequent perturbations.
However, a slight change or incorrect measurement in these values results in a
seemingly unpredictable evolution of the system. A passage in time of a state
defines a process. Whenever a process is completely deterministic at each step of
its temporal evolution but unpredictable over the long term it is called a chaotic
process or simply chaos.

An equivalent definition of a process is a path over time, or trajectory, in the
space of states. The points approached by the trajectory as the time increases to
infinity are called fixed points and the set of these points forms an attractor. If the
evolution in time of the system is described by a trajectory forming a closed loop
also referred to as a periodic orbit then the system is said to have a limit cycle. It is
unlikely that the irreversible dissipative processes associated with brain dynamics



600 A.E.P. Villa et al.

produces always the same repeating sequence of states. However, this aperiodic
behavior is different from randomness, or stochastic process, because an iterated
value of the point process (all spike trains in the network) can only occur once in
the series, otherwise due to the deterministic dynamics of the system the next value
should also be a repetition and so on for all subsequent values. The perturbations
applied to any combination of the governing set of parameters move a dynamical
system characterized by fixed points away from the periodic orbits but with passing
of time the trajectory collapses asymptotically to the same attractor. If the system
is deterministic, yet sensitive to small perturbations, the trajectory defining its
dynamics is an aperiodic orbit, then the system is said to have a chaotic attractor,
often referred to as a strange attractor. Then, the set of all possible perturbations
define the inset of the attractor or its basin of attraction.

By extending this approach to the spike trains recorded from all elements of
the neural network it is theoretically possible to develop an acceptable model for
the identification of the system. Notice that the goodness of fit of a certain kernel
estimate as plausible is evaluated by means of a function f describing its mode
of activity–the mode of activity being defined by how an information is processed
within a neural network and how it is associated to the output pattern of activity
that is generated. In formal terms f is a probability function that describes how
a state x is mapped into the space of states. If the function is set by a control
parameter 
 we can write f
.x/ D f .
; x/. A dynamical system x0 is a subset
of the space of states and can be obtained by taking the gradient of the probability
function with respect to the state variable, that is x0 D rf
.x/. Mathematically
speaking, the space of states is a finite dimensional smooth manifold assuming that
f is continuously differentiable and the system has a finite number of degrees of
freedom [18].

If the activity is generated by chaotic attractors, whose trajectories are not
represented by a limit set either before or after the perturbations, the attracting
set may be viewed through the geometry of the topological manifold in which the
trajectories mix. It is likely that several attractors may appear, moving in space
and time across different areas of the network, in the dynamics of large neural
networks. Such complex spatio-temporal activity may be viewed more generally as
an attracting state, instead of simply an attractor [3]. In particular, simulation studies
demonstrated that a neural circuit activated by the same initial pattern tends to
stabilize into a timely organized mode or in a asynchronous mode if the excitability
of the circuit elements is adjusted to the first order kinetics of the postsynaptic
potentials [10, 22].

3 The Brain Catastrophe

Let us assume that the dynamical system is structurally stable. In terms of topology
structural stability means that for a dynamical system x0 it exists a neighborhood
N .x0/ in the space of states with the property that every Y 2 N .x0/ is
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Fig. 2 Topological
interpretation of neural
dynamics as a function of two
control parameters, the cell
excitability and the kinetics
of the postsynaptic potentials.
The equilibrium surface is
represented by a cusp
catastrophe where transitions
can occur either suddenly or
continuously between
temporally organized firing
patterns and asynchronous
activity
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topologically equivalent to x0. This assumption is extremely important because a
structurally stable dynamical system cannot degenerate. As a consequence, there is
no need to know the exact equations of the dynamical system because qualitative,
approximate equations, i.e. in the neighborhood, show the same qualitative behavior
[2]. In the case of two control parameters, x 2 R,
 2 R

2, the probability function f
is defined as the points 
 of R2 with a structurally stable dynamics of x0 D rf
.x/
[15]. That means the qualitative dynamics x0 is defined in a neighborhood of a
pair .x0; 
0/ at which f is in equilibrium (e.g. minima, maxima, saddle point).
With these assumptions, the equilibrium surface is geometrically equivalent to the
Riemann-Hugoniot or cusp catastrophe [20]. The cusp catastrophe is the universal
unfolding of the singularity f .x/ D x4 and the equilibrium surface is described by
the equation V.x; u; v/ D x4Cax2Cbx, where a and b are the control parameters.
We suggest that metastable modes of neural activity could lie in the equilibrium
surface with postsynaptic potential kinetics and membrane excitability as control
parameters (Fig. 2).

We assume that the same neural network may subserve several modes of activity
through modulation of its connectivity, e.g. according to learning or pathological
processes, or by modulation of its excitability, e.g. by modulation of the resting
potential or of the synaptic time constants. The state of a neural network being
defined by a set of characteristic control parameters at a certain time then, at
any given time, the state of the network is represented by the values of control
parameters and a network state is fully determined if all parameters were known for
each neuron. It is not possible to know all variables determining brain dynamics, yet
the analysis of experimental spike trains has confirmed the existence of deterministic
chaotic dynamics in neural networks [4, 8, 11].

The paths drawn on the cusp illustrate several types of transitions between
network states. In this framework at Point .a/ in Fig. 2 the network state is such
that an input pattern will evoke precisely time structured activity detectable by
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preferred firing sequences. This point corresponds to a high level of excitability
and a relatively long decay time of the postsynaptic potentials, e.g. 12 ms. This may
be associated to the tonic mode of firing described in the thalamo-cortical circuit,
where bistability of firing activity has been well established. Different firing patterns
might be evoked by the same input if the synaptic dynamics is changed within a
certain range of cellular excitability, as suggested for neuromodulatory mediators.
Also, different input patterns of activity may produce similar modes of activity,
somewhat like attractors. The transitions between these states are represented by
paths .a � b � a/, .a � e � a/ and .a � g � a/ in Fig. 2. Several types of neurons
tend to switch towards a rhythmic or bursty type of firing if the excitability is
decreased due to a hyperpolarization of the cell membrane or by modifying the
spike threshold level [9, 17]. In the former case a smooth passage between timely
structured activity and asynchronous firing is likely to occur, as suggested by path
.b�c�b/, especially if the synaptic decay is long. On the opposite, a sudden switch
from temporal patterns of firing to desynchronized activity will occur, as indicated
by paths .a � d/ and .e � f /, in the case of a fast synaptic decay and a modulatory
input modifying the threshold potential.

Complex spatio-temporal firing patterns may also occur with low levels of
excitability (point .e/ in Fig. 2), as suggested by cholinergic switching [25] and
control of synchronous activation within the basal ganglia thalamocortical circuit
[12, 13]. Point (e) on the equilibrium surface can be particularly unstable because a
further decrease in excitability, path .e � f /, but also an increase in synaptic decay,
path .e � d/, may provoke a sudden change in the mode of activity, as observed
in simulation studies [10]. During long lasting hyperpolarization the excitability is
low and the kinetics of the postsynaptic potential is often irrelevant with regarding
the input pattern such that the output activity would always tend to be organized in
rhythmic bursts. Conversely, an increase in excitability from point .f / with a fast
time constant of the synaptic decay, say 4–5 ms, the input patterns could turn on
either stable, path .f � g/, or unstable temporally organized modes of activity only
through sudden transitions, path .f � e/ [17].

4 Discussion

The detection of precise spatio-temporal firing patterns or attractors necessarily
requires the stability of the generating processes over a relatively long period of
time. Thus, precise spike patterns in single or across multiple neurons may be mostly
involved in long-term processes (e.g., memory traces, learned motor programs),
whereas the ensemble coding based on systematic firing rate modulations may be
related to short-term operational processes (e.g. motor action, attentional or feature-
binding). The research presented here is not discussing some questions that most
neurophysiologists usually ask: which is the most adequate stimulus for a given
neuron, how is the external world mapped in the cortex, what are precisely the
receptive fields of single units, etc : : :What is being discussed here is the association



Neural Dynamics Associated to Preferred Firing Sequences 603

of neural activity in distributed brain information processing with deterministic
chaotic dynamics. In the nervous system the problem of learning is crucial and can
hardly be approached without taking into account synaptic modification. However,
changes in strength at particular links between two cells may become meaningless
because in a distributed system equivalent changes at one synapse might correspond
to different patterns of activity. Therefore, the information is not necessarily resident
in the links among the units, but is likely to be provided by the activity organized in a
highly precise temporal mode (precise spatio-temporal firing patterns and attractors)
that is considered meaningful if it is associated to an outcome that is validated by
the re-entrant neural activity, or spurious otherwise [6, 7].
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Evolution of Heterogeneous Network Modules
via Maximization of Bidirectional Information
Transmission

Yutaka Yamaguti

Abstract In theoretical studies, it has been proposed that maximizing information
transmission between subsystems can be a principle for the development and
evolution of complex brain networks. In this article, we study how heteroge-
neous modules develop in coupled-map networks through evolutionary processes,
where selection pressure is to maximize bidirectional information transmission.
Emergence of heterogeneous structure is demonstrated, showing that maximization
of bidirectional information transmission between interacting modules can act as
selection pressure to enhance differentiation between interacting modules.

Keywords Bidirectional information transmission • Heterogenous network mod-
ules • Evolution • Selection pressure • Coupled oscillators

1 Introduction

Modular architecture is an important concept of neural organization. Understanding
the generation process of functionally differentiated modules in the brain is of great
interest in the field of neuroscience. In theoretical studies, it has been proposed that
maximizing information transmission between subsystems can be a principle for the
development and evolution of complex brain networks. In previous studies [1–3],
information transmission through successive layers of feed-forward networks, or
information preservation through time in recurrent networks, has been considered
a principle for designing functional neural networks. In this paper, we investigate a
mathematical mechanism of functional differentiation of network modules induced
by selection pressure for maximizing bidirectional information transmission. For
this purpose, we try to extract the essence of the evolutionary dynamics by
investigating a simple coupled-oscillator network model.
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2 Models and Methods

We consider heterogeneous coupled-map networks consisting of two sub-network
modules. Each module consists of N phase oscillators, which are discrete-time
versions of the Kuramoto model. The structure of the network is statistically
regulated by a set of parameters, pc; qc , and rc . The probability of existence of a
connection between two oscillators within a module (an intra-modular connection)
is given by 2pc.1 � qc/, while the probability of existence of a connection from an
oscillator in module 1 to an oscillator in module 2 or for a connection from module
2 to module 1 (an inter-modular connection), is given by 4pcqcrc or 4pcqc.1� rc/,
respectively. Here, pc regulates the total number of connections in the network,
qc controls the fraction of inter-modular connections among all connections in the
network, and rc controls the fraction of inter-modular connections from module
1 to 2 among all inter-modular connections. Four types of oscillator-to-oscillator
coupling are introduced to the network. These types of couplings lead to phase
locking with 0 (in-phase), �=2; � (anti-phase), or 3�=2 phase lag between the two
oscillators in a two-oscillator system.

The dynamics of the k-th oscillator in the i -th module (i D 1; 2; k D 1; : : : ; N )
is described by

�
.i;k/
tC1 D �.i;k/t C !.i;k/

C ˛

Npc

X

.j;l/2G.i;k/
sin
�
�
.j;l/
t � �.i;k/t �  ijkl

�
C ˇ.i;k/t ;

where !.i;k/ is a natural frequency, ˛ is a coupling strength, and ˇ.i;k/t represents
additive noise that affects each oscillator independently. G.i;k/ represents a set of
labels for those oscillators that connect to the oscillator .i; k/. Each  ijkl is randomly
assigned to one of four possible values .m � 1/�=2m D 1 : : : 4, according to
probabilities pijm . Note that pijm � 0 and

P4
mD1 p

ij
m D 1. In the case of a two-

oscillator system, these couplings lead to phase locking with 0 (in-phase), �=2;
� (anti-phase), or 3�=2 phase lag between the two oscillators. To characterize
the macroscopic states of the modules, we define a phase coherence R.i/.t/ and
a mean phase ‚.i/.t/ for each module as the absolute value and the argument of
.1=N /

PN
kD1 exp.

p�1�.i;k/.t//:

R.i/.t/ exp
�p�1‚.i/.t/

�
D 1

N

NX

kD1
exp.
p�1�.i;k/.t//: (1)

The phase difference between mean phases is denoted as ˆ.t/ D ‚.2/.t/�‚.1/.t/.
Transfer entropy (TE) [4], which measures directed information transfer between

two mean phases, was calculated in both directions for each network [5], and the
product of the TEs for the two directions was regarded as the fitness function
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of the network. TE can be represented by using conditional mutual information:
T1!2.�/ D I

�
‚.2/.t C �/I‚.1/.t/j‚.2/.t/

�
; where � is a time step for discretiza-

tion and I.X IY jZ/ denotes the mutual information between X and Y conditioned
by Z.

A standard genetic algorithm was used to develop the networks by gradually
improving the set of parameters. During the evolution, pc was fixed while a set
of other parameters, namely qc , rc , and pijm .m D 1 : : : 4; i; j D 1 or 2/, was
taken as a genetic representation to be modified to find the maximum of the fitness
function. The gene population consists of 48 genes. In each generation, networks
were generated from the genes and numerical simulations were performed. Then,
fitness was calculated for each network. The 10 networks with the best fitness
were selected for reproduction of the next generation. Exact copies of the selected
genes and their mutations were made for the next generation. These processes were
repeated for 2000 generations.

3 Results

The mean values of fitness of the selected networks were nearly saturated by
the end of the simulations. The connection parameters of evolved networks are
summarized in Fig. 1. In module 1, in-phase couplings are dominant in intra-
modular couplings, but other couplings remain in the module. On the other hand,
in module 2, more couplings became the in-phase type. In inter-modular couplings,
almost all couplings from module 1 to module 2 became the in-phase type, while
those in the opposite direction became the anti-phase type. Further, the number of
couplings was larger in the 1–2 direction than in the opposite direction. These results
indicate that symmetry between the two modules was broken and differentiations
were developed through the evolutionary process.

The dynamics of the coherence and the inter-modular phase difference in an
evolved network are depicted in Fig. 2. The phase difference as well as the intra-
modular coherence Ri.t/ exhibited slow, chaotic oscillations. The value of the
phase difference oscillated slowly between in-phase and anti-phase states. The slow

Fig. 1 Means of coupling
parameters of evolved
networks
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Fig. 2 Dynamics of the
phase difference ˆ (upper)
and intra-modular coherence
Ri (lower)
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oscillations of the coherences of two modules had a mutually anti-phase relation.
Reflecting the differentiated parameters of the intra-modular connections, their
mean amplitude values were also differentiated.

4 Conclusions and Discussion

Developments of two interacting network modules through an evolutionary process
that maximizes bidirectional information transmission were studied. Emergence of
heterogeneous structure was demonstrated. It was shown that maximization of bidi-
rectional information transmission between interacting modules can act as selection
pressure to enhance differentiation between interacting modules. Our results support
the hypothesis that maximization of bidirectional information exchange can serve as
a principle for development of heterogeneous structures in complex systems such as
the brain.
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Gamma-Band Shift in the Activity of Rat
Hippocampal CA1: A Comparison
of Memory-Guided and Visually-Cued Spatial
Choice

Noha Mohsen Zommara, Hiroshi Nishida, Muneyoshi Takahashi,
and Johan Lauwereyns

Abstract Recent studies have highlighted the contribution of theta-gamma
oscillations in hippocampus in memory and cognition. Here we adapted a nose-poke
paradigm in order to investigate the role of hippocampal theta-gamma oscillations
in a memory-guided behavior. We compared the local field potentials (LFPs) from
the hippocampal CA1 cell layer of the same rats in two tasks: a memory-guided
spatial alternation task and a visual-spatial discrimination task with random cues.
We noted theta-gamma band coupling during a critical fixation period, while the
rat was immobile but alert; high and low gamma components were highly phase-
locked to the ongoing theta oscillation in CA1 during the fixation period. These
modulations from high gamma (55–90) at the onset of the fixation to low gamma
(22–45) at the offset of the fixation occurred in both tasks, but were stronger in the
memory-guided alternation task. Thus, these data provide further evidence for the
role of hippocampus CA1 in mnemonic coding relating to spatial alternation.

Keywords Hippocampus • Spatial alternation • Visual discrimination • Theta-
gamma oscillations

1 Introduction

Hippocampus has a critical role in encoding the spatial representations in
sequence-dependent learning [1]. Previous studies have reported how gamma and
theta oscillations supported various forms of mnemonic coding [2]. Here, we follow
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up on this research by examining the dynamics of theta and gamma oscillations
in a comparison between an alternation task and a visually-cued task, particularly
during a carefully controlled delay period.

We concentrated on the role of hippocampal CA1 while the rats perform
two different tasks: a memory-guided task with spatial alternation and a visual
discrimination task with random cues. We used a nose-poke paradigm in which
rats had to remain for 1 s with their nose in the central hole. This fixation period is
crucial for recording the brain activity during an immobile but fully alert anticipation
period. We designed a delayed memory-guided task in which rats should memorize
the sequence of the trials to make the optimal choice. In the choice phase, both
implicated holes were illuminated simultaneously so that the rats could not depend
on any sensory cues to discriminate the alternation sequence. On the other hand, in
the visual discrimination task, rats were guided by the visual cues; here, each cue
was illuminated separately and randomly on a trial-by-trial basis.

2 Methods

Four male adult Wistar rats were used. All training and recording sessions, as well
as surgical procedures were approved by the Tamagawa University Animal Care and
Use Committee.

During a 1-day session we applied two different tasks in different blocks; a
memory-guided spatial alternation task and a visually-guided discrimination task. In
both tasks the trial started when the center hole was illuminated; rats were required
to make a nose-poke response and sustain it for 1 s. When the center light went
off, a delay period was introduced; following that, the left and right holes were
illuminated on the frontal wall. The nose poke was recorded through an infrared
photo-beam detector in each hole.

In the memory-guided alternation task both holes were illuminated simultane-
ously and rats were required to alternate between the right and left holes. On the
other hand, in the visual discrimination task, the holes were illuminated one-by-one
and not in a fixed sequence. Each correct response allowed the rats to obtain one
pellet as a reward. Following an erroneous response the lights were extinguished,
and the same trial was repeated. The inter-trial interval was 10 s, during which time
the rats had to wait until the start of the next trial.

The neural recording was conducted after the completion of behavioral training.
We recorded multi-unit activity and local field potentials (LFPs) in stratum pyrami-
dale of the right dorsal CA1 (AP -3.6, ML 2.2 mm) using a 14-tetrode hyperdrive
assembly during task performance.
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3 Results and Discussion

We found that the memory-guided task had a higher correct performance rate than
the visual discrimination task; the mean of correct trials were 90.1 % with SD
4.76 %, and 85.9 % with SD 9.58 %, respectively.

During the immobile period, while rats were waiting for the next event, different
trends of gamma waves appeared. The population analysis of the local field
potentials (LFPs) showed that gamma-band activity in CA1 shifted from high
frequency (55–90 Hz) at the beginning of the fixation to low frequency (22–45 Hz)
at the end of the fixation in both tasks during the 1 s fixation period (Fig. 1).

Our analysis showed that the shifts from high gamma at the onset of the fixation
to low gamma at the offset of the fixation occurred in both tasks; however, these
trends were more pronounced in the memory-guided task. The differential intensity
in the modes of information processing in CA1 likely reflects the necessary usage
of memory in the memory-guided alternation task; this information needed to be
suppressed in the visually guided random cue task.

Fig. 1 CA1 oscillation activity during the fixation period in both tasks. (a) High gamma
modulation around the onset of the fixation. (b) Low gamma modulation around the offset of
the fixation
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Gamma and theta oscillations had been observed previously in several regions
in the brain. In a previous study, theta activity had been seen in free moving rats
[3]. Here, we show gamma and theta association during a quiet immobile period
in CA1. Hippocampal areas CA1 and CA3 contribute to the retrieval of events in
memory-dependent tasks [4]. Learning and cognition, on the other hand, appear to
depend on the connectivity between CA1 and entorhinal cortex [5]. These different
roles in the hippocampus reflect the different manipulation of received information.
A recent study has reported that different waves of gamma were correlated with
input from different areas in the hippocampus, with fast gamma originating from
entorhinal cortex and slow gamma from CA3; these gamma oscillations occurred
during different phases of the theta rhythm in CA1 [6].

Here we find that theta and gamma coupling occurs during the fixation period
while rats are completely immobile and waiting for the next event to make
their choice. We noted that the activation of the low gamma band during the
memory-guided alternation task in CA1 was more pronounced than in the visual
discrimination task, providing further empirical support for the role of hippocampus
in sequence learning during memory-guided tasks.

Entorhinal cortex receives input from different reward-related areas in the brain
like amygdala, and conveys the information to hippocampus. These different manip-
ulations enable the extraction of contextual information and the translation of this
information to codes necessary for decision-making. Previous studies have shown
memory-guided sequence-dependent activity in hippocampus [7] and reported that
the theta phase in CA3 was modulated by the low gamma band when rats learned
to make associations in the spatial context [8]. In addition, type-two theta tended to
increase during the immobile period [9].

Taken together with our results, this research puts emphasis on the important
role of specific theta and gamma oscillations, and their coupling, during memory
processing.
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