
Chapter 7
Applications of Peptide Retention Time
in Proteomic Data Analysis

Chen Shao

Abstract In proteomic studies, liquid chromatography is commonly used to sep-
arate peptide mixtures prior to mass spectrometry (MS) detection. As an inde-
pendent dimension of information from the information provided by the MS,
peptide retention time information has been proven to be able to aid proteomic data
analysis in many aspects. So far, some popular software has offered options for this
information for MS data acquisition and analysis. This chapter is a brief review of
current methodologies of retention time prediction and application in proteomic
analysis.
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7.1 Retention Time Prediction

A peptide’s retention time (RT) is defined as the length of time elapsed from the
injection of a sample into the chromatography system to the detection of peak
maximum of a peptide. It depends on its chemical structures of peptides, along with
the interaction between the environment (mobile and stationary phase, temperature,
pH, etc.). Therefore, peptide RTs in a particular liquid chromatography (LC)
condition can be predicted based on chemical structure-related properties of pep-
tides, such as amino acid composition, sequence, hydrophobicity, and other
physicochemical properties [1].

The task of RT prediction is to calculate a retention scale for each peptide in the
given LC condition, e.g., to calculate the hydrophobicity scale in reverse-phase LC.
A simple idea is to measure or predict retention coefficients for individual amino
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acids, and then, the retention scale of a peptide is predicted as the sum of retention
coefficients of its constituent amino acids. The amino acid retention coefficients can
be predicted either by a set of synthetic peptides with residues substituted by each
of the twenty amino acids [9] or linear regression models based on peptides with
various amino acid compositions [2, 21, 22, 31].

In the recent years, prediction models were refined by employing peptide
sequence information and more intelligent computational algorithms, as well as large
size of datasets that could prevent the problem of overfitting in data training [16, 27].
N-terminal residues were found to be influence factors to peptides’ retention
behavior due to the ion-pairing retention mechanism [19]. Taking into account of
this effect, Krokhin et al. developed a widely used prediction model, sequence-
specific retention calculator (SSRCalc) [16]. This model added a series of sequence-
related correction factors to the previous model that predict peptide retention scales
by the summation of individual amino acid retention coefficients [9]. Besides three
of the N-terminal residues, these correction factors included C-terminal residues,
nearest-neighbor effect of charged side chains (Lys, Arg, and His), peptide length,
isoelectric point, hydrophobicity, propensity to form helical structures, etc. Another
comprehensive model was built by Petritis et al. [27] based on artificial neural
network. Similar to SSRCalc, their model embodied peptide properties such as
length, sequence, nearest-neighbor amino acids, hydrophobicity, and hydrophobic
moment, as well as predicted secondary structures as the input nodes of the neural
network. Some other prediction models were developed in similar idea, but with
different choices of peptide properties and statistical models [15, 29, 23].

The refined modes improved the prediction accuracy (R2) significantly from
approximately 0.91–0.92 to 0.96–0.98 [17]. However, these conclusions were based
on limited size of datasets and reported by the authors themselves. A blind comparison
of the most updated versions of prediction models would help greatly in the selection
of proper prediction model for practical use. Besides, considering that models based
on sequence information and intelligent computational algorithms often require a lot
of computational time and large size of training datasets, the simpler and linear
prediction models that provide less, but also sufficient prediction accuracy may be
selected in some cases, such as on-the-fly RT prediction and calibration [10].

7.2 Application of RT Information in Proteomic Analysis

7.2.1 Peptide Identification Based on LC-MS Data

Accurate mass and time tag (AMT tag) is a well-known strategy to identify peptide
sequences based on LC-MS data, which was firstly invented to identify the Dei-
nococcus radiodurans proteome [34, 38]. Given the fact that many possible peptide
species are unlikely to be detected in a particular biological system, this strategy
assumes that peptides that are detectable in a biological system can be separated by
a two-dimensional mass and RT vector [44]. Two main steps are included in this
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strategy. In the first step, an AMT database for a particular organism or type of
biological sample is constructed based on high-confident peptide identifications
from previous replicate LC-MS/MS analysis. Secondly, peptides are identified from
LC-MS experiments by matching measured mass and normalized elution time
(NET) features to the existing database.

There are similar methods that are also identify peptides based on the accurate
measurements of mass and RT [11, 24, 41]. These methods do not need to construct
a reference database prior to peptide identification. Instead, features are matched by
measured mass and RT between different LC-MS/MS runs. Then, peptide identi-
fications from MS/MS spectra can be transferred from one single run to the others.
In a study of urinary proteome [25], using “match between runs” option imple-
mented in MaxQuant software [3], the authors were able to increase number of
protein identifications from an average of 462 to 633 in a single run.

Saving the effort from MS/MS analysis, AMT tag and similar methods can
improve the efficiency and coverage of proteomic analysis. The success of these
methods depends on the complexity of biological system as well as the resolution of
both MS instruments and LC systems. False discovery rate (FDR) or confidence of
peptide identification can be estimated by decoy database searching (shifting
masses of all peptides in the AMT database by a certain value) [28] or statistical
models [20, 37, 43]. Study of computational simulation showed that for organisms
with relative small proteomes, such as Deinococcus radiodurans, modest mass and
RT accuracies were sufficient for confident peptide identifications by the AMT tag
strategy. For more complex proteome, such as human proteome, more strict criteria
should be used. The majority of proteins could be uniquely identified within the
tolerances of 1 ppm for mass and 0.01 for NET [26].

7.2.2 Peptide Identification from MS/MS Spectra

RT information has been used to improve peptide identification from MS/MS
spectra in several ways. One strategy is to incorporate RT information into a
discriminant function along with other peptide-spectrum matching parameters, such
as SEQUEST scores [39]. This discriminate function was trained based on data
from a known protein mixture. When applying to human plasma proteome analysis,
it achieved a 16 % increase of positive peptide identifications.

Predicted RT information can serve as a validation parameter for peptide
identification results generated by database searching programs. Kawakami et al.
[12] validated peptide identifications by the correlation between measured and
predicted RTs. Peptide identifications within a certain correlation tolerance were
accepted as high-confident identifications. Several studies reported that number of
true positive peptides increased significantly by the combination use of RT filter
and lower threshold of database searching score [15, 29, 33].

Besides the application of predicted RT information, Sun et al. built up an
empirical RT database based on high-confident peptide identifications from
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repeated LC-MS/MS runs of a urine sample [40]. This database was used to vali-
date MS/MS identifications for new urine samples. The bottleneck of the empirical
database method is that it can only be applied to peptides that were previously
detected in a particular proteome, whereas every peptide sequence can have a
predicted RT value. However, this method still has its value because it avoids the
problem of incorrect RT prediction, which is evitable due to the complex nature of
peptide retention behavior.

7.2.3 Post-translational Modification Identification

PTM on a peptide alters not only its molecular mass, but also its physicochemical
property (e.g., hydrophobicity), resulting in RT shifts. The RT difference between
modified and unmodified peptide (ΔRT) provides a new dimension of information
in additional to mass shift (ΔM) in PTM identification.

Previous studies reported lots of instances that peptides with different modifi-
cation types or different modification sites elute in different RTs [4, 13, 32, 42].
Zybailov et al. [45] depicted the ΔRT distributions of dozens of modification forms
detected in a plant proteome. They found that the direction of RT shifts correlated
well with the hydrophobicity shifts of the modified peptides for the majority of
modifications. Combination of ΔRT and ΔM constrains can efficiently reduce the
FDR in PTM identification [32], especially for studies on low-resolution mass
spectrometers. For example, deamidation of a peptide results in a mass shift of only
0.984 Da, which could not be accurately distinguished from its unmodified form by
a low-resolution LCQ mass analyzer. A study [4] based on synthetic peptide pairs
observed that deamidated peptides elute about 3 min later than the corresponding
unmodified forms in RPLC. Deamidation detection accuracy was improved from 42
to over 93 % by filtering original SEQUEST identifications by both ΔRT and ΔM
constrains.

ΔRT information was also used to improve the algorithms for fast search of
unrestricted modifications. The Delta Accurate Mass and Time (DeltAMT) algo-
rithm [7] calculates a two-dimensional delta vector (ΔM, ΔRT) for each pair of
spectra obtained in a LC-MS/MS run. The whole set of spectrum pairs are com-
posed of two classes, those from modified and unmodified forms of the same
peptide and those from two unrelated peptides. Thus, there are two classes of delta
vectors, modification-induced ones and random-induced ones. Bivariate Gaussian
mixture models are employed to discriminate modification-induced distributions
from random ones. Then, putative modifications could be identified and reported
with (ΔM, ΔRT) information as well as the putative modified and unmodified
spectrum pairs. Since this algorithm does not use any fragment ion information
from MS/MS spectra, it is able to find out high-confident modifications in a very
fast speed. However, this algorithm is limited to high abundant modifications, since
vector distributions of low abundant modifications are not usually distinguishable
from random ones.
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7.2.4 Time-scheduled Targeted Proteomic Analysis

Multiple reaction monitoring (MRM) is the method of choice in targeted proteo-
mics. It is a highly sensitive method for accurate quantitation of low abundance
proteins in complex protein mixtures. This method needs a sufficient dwell time for
each transition to maintain sensitivity and a reasonable cycle time to ensure accurate
quantitation. Thus, only a limited number of transitions can be measured in each
cycle, limiting its throughput [30]. Time-scheduled transition acquisition (tMRM)
offers a solution that can remarkably increase the throughput of traditional MRM
experiment without compromising its performance. In this method, the whole
gradient time is split into small time windows, and transitions are monitored only in
selected windows centered around the expected RT of peptides. Thus, with the
same dwell time setting and number of transitions monitored in each duty cycle,
tMRM is able to measure many times of transitions in the whole gradient time [36].

A key point to the success of tMRM is to define proper RT window that can
capture the entire peptide elution profile from baseline to baseline. This depends on
accurate prediction of peptide RTs for each injection. In spite of strict control of the
LC system, RT shifts between injections are inevitable, especially when experi-
ments lasting for days to weeks to analysis large amounts of samples. To fit in with
the RT shifts, predefined RT windows need to be regularly corrected or repredicted,
reducing the efficiency and robustness of tMRM experiment. To aid this situation,
on-the-fly RT calibration methods have been developed and integrated in the
instrument operating software [8, 14].

This method makes use of a set of well-characterized landmark peptides to
calibrate RTs of targeted peptides. Landmark peptides could be either spiked-in
synthetic peptides [6, 8] or endogenous peptides that distribute in a broad range of
the whole gradient. At any time point, RT windows of subsequent targeted peptides
are adjusted based on a local linear regression model generated by the last two
eluted landmark peptides. RT windows of peptides elute between the first and
second landmark peptides can be simply adjusted by RT shift of the first landmark
peptide to calibrate the difference in dead volume. Broad RT windows are set for all
landmark peptides as well as peptides elute before the third landmark peptide to
ensure that they can be captured without or with minimal calibration.

This method achieved over 90 % success rates on analyses of 180 targeted
peptides in a gradient from 0.5 to 2 % solvent B per minute, as well as a nonlinear
gradient [8]. It could also precisely correct RT shifts caused by other factors such as
change of loading amounts of samples [6] and different LC columns [14]. This
method significantly increases the robustness of the entire tMRM workflow by
compensating for several commonly occurred changes in experimental conditions,
reducing the requirement of LC reproducibility in analysis. Researchers can be
rescued from offline RT calibration of LC system and refinement of RT prediction
models, saving experimental time, and importantly, precious biological samples.
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7.3 Discussion and Perspective

It has been well proven that using RT information could benefit proteomic data
analysis. However, its application in practical proteomic analysis has so far been
restricted because RT information is of lower resolution compared to mass infor-
mation, and importantly, peptide RT alters in different LC conditions. Krokhin and
colleagues addressed this issue by optimizing their SSRCalc prediction model by
four popularly used LC conditions in proteomics. These LC conditions are 300 Å-
TFA, 100 Å-TFA, 100 Å-formic acid, and 100 Å-pH 10 [5, 16, 18]. However, since
there are hundreds of choices of mobile and stationary phases and other LC
parameters in practice, it is an impossible task to pretention retention scales for all
LC conditions. A more flexible solution is to train and test the prediction model in
the same LC run [15]. Theoretically, this solution is able to adapt all LC conditions.
The limitation of this solution is that it needs a sufficient set of high-confident
peptide identifications for model training, which is not always available in a single
LC run. Another prediction model, ELUDE, is the combination of the above two
solutions [23]. When sufficient data are available, ELUDE derives a new RT index
for the condition at hand; otherwise, it selects and calibrates a pretrained model
from a library of predictors. Model selection and calibration processes are per-
formed automatically by robust statistical methods in ELUDE, facilitating its
practical use. However, it should be noted that the accuracy and efficiency of all
prediction models are still needed to be tested blindly by datasets covering a great
variety of LC conditions.

LC alignment is another important technology in this field. Slight changes of LC
conditions and inevitable RT shifts between LC runs can be adjusted by this
technology [8]. A recent review of LC alignment methods can be found at [35]. A
good idea is to employ a set of spiked-in synthetic peptides as landmarks for LC
alignment or to correlate predicted retention scales and measured RTs for each run.
These peptides are designed to span a wide range of hydrophobicity, allowing
accurate alignment for the entire LC profile. For example, six synthetic peptides
were employed to optimize the SSRCalc model in different LC conditions (2009);
the eleven iRT standard peptides were used for on-the-fly RT calibration in tMRM
analysis [6].

To use RT information as a parameter in data analysis, a proper tolerance value
or window size should be set up firstly. This depends on the experimental repro-
ducibility heavily. The wider the RT window is, the more false positives would be
achieved. Therefore, there is also an urgent need to set up standards and quality
control methods for LC experiments. With the joint effort of bioinformaticists and
experimental biologists, RT information would be widely used in practical pro-
teomic analysis in the near future.
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