
Chapter 15
The Application of Urinary Proteomics
for the Detection of Biomarkers of Kidney
Diseases

Song Jiang, Yu Wang and Zhihong Liu

Abstract Urine is a biological material that can be easily obtained in the clinic. The
identification of proteins excreted in urine provides useful biological information about
the kidney as well as a unique opportunity to examine physiological and pathological
changes in the kidney in a noninvasive manner. Recent technological advances in
urinary proteomic profiling have provided the foundation for a number of urinary
proteomic studies directed at identifying markers of kidney disease diagnosis,
prognosis, or responsiveness to therapy. In this review, we describe the strengths of
different urinary proteomic methods for the discovery of potential biomarkers of
kidney diseases.We also highlight the limitations and future goals of these approaches.
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15.1 The Urinary Protein Profile

Under normal physiological conditions, a person’s daily urine output contains
<20 mg of albumin and <150 mg of total protein. Approximately 30 % of this protein
content is derived from plasma, whereas 70 % is produced by the kidney and the
lower urinary tract [32]. Normal urine contains at least 1,500 proteins, most of which
are extracellular and membrane bound [1]. To be present in the urine, proteins or
their fragments must pass through filters at the glomerulus and bypass or otherwise
avoid tubular reabsorption. Alternatively, proteins can be secreted by the kidney or
lower urinary tract directly into urine. During plasma filtration in the glomeruli, the
glomerular capillary walls discriminate among molecules of different sizes, charges,
and configurations. The glomerular basement membrane and the slit diaphragm of
the filtration barrier limit the passage of macromolecules containing negatively
charged glycosaminoglycans. Small, positively charged molecules could be filtrated
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in different ways. Typically, proteins <20 kDa can move freely, whereas proteins
>60 kDa are almost completely restricted in their movement between compartments.
Despite this filtering, the most abundant urine protein is albumin, a negatively
charged molecule with a molecular weight of approximately 66.4 kDa. The relative
abundance of albumin in the urine may be due to the presence of large pores through
which albumin, immunoglobulins, and other macromolecules can pass [11].

Injury to any of the filtration barrier structures results in the leakage of large,
negatively charged proteins, thereby increasing the presence of these proteins in
urine; for example, in diabetic nephropathy (DN) and focal and segmental glo-
merulosclerosis (FSGS) [39], tubules reabsorb most of the filtered proteins. Prox-
imal tubules also catabolize proteins and excrete the resulting peptides into the
urine. Tubules secrete proteins directly into urine during normal maintenance
processes or in response to injury. Tubular injury may result in the decreased
reabsorption or catabolism of the filtered proteins and in the secretion of tubular
proteins in response to the injury. In addition to soluble proteins and their peptides,
urine also contains exosomes, which are specialized vesicles that are shed by the
renal epithelia directly into the urine [21, 33]. The distal organs of the lower urinary
tract also contribute to the urinary proteome.

15.2 Urinary Proteomics Approaches

Typically, proteomic biomarker studies consist of 2 main stages: a discovery phase
and a validation phase. The discovery phase can be divided into 3 main steps:
(1) sample preparation, (2) mass spectrometry analysis, and (3) data analysis. In the
discovery phase, a variety of proteomic methods have been used to identify bio-
markers of kidney disease, including liquid chromatography mass spectrometry
(LC-MS), two-dimensional electrophoresis mass spectrometry (2DE-MS), surface-
enhanced laser desorption ionization mass spectrometry (SELDI-MS), and capillary
electrophoresis combined mass spectrometry (CE-MS) [14, 23, 34, 36]. Traditional
biochemical methods such as enzyme-linked immunosorbent assays (ELISAs) and
Western blotting (WB) are widely used in the validation stage.

15.3 The Study of Kidney Disease Through Urinary
Proteomics

15.3.1 Diabetic Nephropathy

DN is a complication of diabetes that affects up to 40 % of patients with diabetes. In
the Western world, DN is the leading cause of end-stage renal disease (ESRD) [37].
Given the increasing incidence of diabetes [50], DN has already become a major
cause of chronic kidney disease in China.
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Microalbuminuria (MA) was wildly used as an early diagnostic marker of DN.
However, long-term longitudinal studies have shown that only a subset of patients
with MA progress to proteinuria [13, 28, 29]; indeed, many individuals with Type 1
diabetes have already experienced early renal function decline before or coinci-
dental with the onset of MA [30, 31]. These data suggest that MA may be an
inadequate early diagnostic biomarker of DN, spurring an intense search for new
biomarkers of DN using proteomic techniques.

To identify more sensitive and specific biomarkers of DN Rossing et al. [38],
designed a proteomic panel capable of distinguishing diabetes from DN in 305
individuals using CE-MS. The sensitivity and specificity of this panel was 97 %.
Further study has shown that this panel has predictive value for the progression of
MA toward overt DN over a 3-year follow-up period. To validate this result, a
multicenter study involving 145 patients with Type 2 diabetes was initiated [2]. In
this independent cohort, the diagnostic panel for DN displayed 93.8 % sensitivity
and 91.4 % specificity, with an AUC of 0.948. Statistical analysis demonstrated that
the DN diagnostic model score was well correlated with clinical parameters such as
presence of albuminuria and the estimated glomerular filtration rate (GFR).

To further explore the underlying pathogenesis of renal function decline in DN
with MA proteinuria and to identify a discriminating biomarker, Merchant et al.
[23] used LC-MALDI-TOF-MS to analyze the urinary peptidome of a long-term
longitudinal DN cohort with MA. In the urine of patients with early renal function
decline, 3 peptides with decreased content and 3 peptides with increased content
were identified. Of the 3 peptides with increased content, high levels of 2 were
observed in renal biopsy tissue from Type I diabetes patients suffering from early
nephropathy. This result indicates that these peptides have potential for use as early
diagnostic biomarkers, although their sensitivity and specificity remain to be vali-
dated in clinical practice.

ITRAQ-labeled LC-MS has recently become a popular proteomic technology.
This method was used to identify urinary proteomic biomarkers that may enable the
diagnosis of DN in a group of Type 2 diabetes patients with or without MA [18].
Some differentially excreted proteins were verified by multi-reaction mass spec-
trometry (MRM) analysis of urine collected from 9 individual normoalbuminuric
and 14 individual microalbuminuric patients. α-1-Antitrypsin, α-1-acid glycopro-
tein 1, and prostate stem cell antigen all yielded excellent AUC values (0.849,
0.873, and 0.825, respectively).

15.3.2 IgA Nephropathy

IgA nephropathy (IgAN) is the most common glomerular disease worldwide. The
prevalence of this disease is highest in Asian populations, intermediate in European
populations, and lowest in African populations. The clinical presentation of IgAN is
variable and includes isolated hematuria, rapidly progressive loss of renal function,
or full nephrotic syndrome. Similarly, the histological features of IgAN range from
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mesangial proliferation to glomerular extracapillary proliferation with crescent
formation. In current clinical practice, the clinical and morphological features of
IgAN are inadequate to precisely classify its molecular mechanisms or predict the
disease outcome or responsiveness to therapeutic intervention.

Several studies have examined the urinary proteome to explore novel bio-
markers. He’s group identified a panel of 10 urinary proteins (of which 8 were
upregulated and 2 were downregulated); the expression of which differed in patients
with IgAN and healthy individuals. Moreover, this panel distinguished patients with
severe IgAN from those with mild IgAN with 90.48 % sensitivity and 96.77 %
specificity [15]. Brigitte et al. analyzed the urinary proteomes of patients with IgAN
and healthy individuals using 2 DE-MS and demonstrated that the laminin G-like 3
(LG3) fragment of endorepellin was decreased in the IgAN group [41]. This finding
was subsequently validated in 43 IgAN patients and their corresponding controls by
ELISA. Statistical analysis indicated a significant inverse correlation between LG3
levels and the glomerular filtration rate of IgAN that was not observed in 65 patients
with other glomerular diseases. These results suggest that the LG3 fragment of
endorepellin is a potential biomarker of IgAN severity.

Distinct urinary protein profiles distinguishing healthy individuals and patients
with IgAN have also been identified [27, 52], although these findings have not been
applied in a clinical setting to confirm the clinical utility of urinary protein profiling.

Urinary proteomic methods have also yielded potential predictive markers of the
response of IgAN to intervention. For example, the urinary proteomic profile of
patients with IgAN predicted their response to angiotensin-converting enzyme
(ACE) inhibitors and urine levels of kininogen-1, inter-α-trypsin inhibitor heavy
chain H4, and transthyretin differed significantly between ACE inhibitor therapy
responders and nonresponders [36]. Very low urinary levels of kininogen-1 were
correlated with a poor response to this treatment. Studies with large sample sizes
will be needed to evaluate the clinical applicability of these urinary protein markers.

15.3.3 Membranous Nephropathy

Membranous nephropathy (MN) is a common type of primary glomerulonephritis
in North America, Europe, and Asia. In severe cases, MN can produce ESRD [22].
This antibody-mediated autoimmune glomerular disease is characterized by the
presence of immune deposits on the epithelial side of the glomerular capillary wall.
Our understanding of the pathogenesis of membranous nephropathy is mostly
derived from studies in rats with passive Heymann nephritis (PHN), a glomerular
disease that closely resembles human membranous nephropathy. In rats, PHN can
be induced by a single injection of heterologous antiserum or IgG against renal
tubular cell antigens [19].

The discovery of the anti-phospholipase A2 receptor (PLA2R) antibody greatly
improved our understanding of the molecular mechanisms of MN. Serum levels of
the anti-PLA2R antibody are used to guide diagnosis, monitor disease activity, and
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assess the response to treatment in patients with membranous nephropathy [5, 6,
35]. However, PLA2R is inadequate for the management of these patients, and
nephrologists are seeking to identify additional biomarkers with clinical utility [8].

A serial analysis of the urinary proteomic profile of rats based on urine samples
collected at days 0, 10, 20, 30, 40, and 50 after PHN induction [26] revealed that 37
proteins were differentially expressed across these time points. The differentially
expressed proteins were classified into several categories: proteins that decreased
after PHN induction; proteins that increased after PHN induction; proteins that
increased during the early phases of PHN but returned to basal levels in later
phases; proteins that were undetectable during PHN; and proteins that were
detectable only during PHN. Most of the differentially expressed proteins are
related to signaling pathways, protein trafficking, and the regulation of glomerular
permeability.

Urinary proteomics studies addressing MN are rare due to limitations in the
technology used to detect protein profiles in mass proteinuria. However, kidney and
podocyte proteomic studies of human MN are ongoing [47]. Comparative studies of
kidney or podocyte proteomes and urinary proteomes will likely represent a
breakthrough in this field.

15.3.4 Focal Segmental Glomeruloscelerosis

Focal segmental glomeruloscelerosis (FSGS) is a major cause of proteinuria and
renal failure [20]. This disease comprises a number of clinical and pathological
syndromes that share a common glomerular lesion, including primary (or idio-
pathic) FSGS, secondary FSGS (mediated by glomerular hypertension and hyper-
filtration), and genetic, virus-associated, and drug-induced forms of the disease
[10]. Histologically, FSGS is classified into several subtypes, including tip variant,
perihilar variant, cellular variant, collapsing variant, and “not otherwise specified”
FSGS [9, 43].

The critical clinical feature of FSGS is proteinuria. To distinguish FSGS-induced
proteinuria from other proteinuria diseases based on proteins present in the urine,
Sanju et al. [44] used 2-DE to compare urine samples from 32 patients with pro-
teinuria-causing diseases including FSGS, lupus nephritis (LN), MN, and DN.
Differentiated spots from 16 patients were used to train an artificial neural network
to create a prediction model, which then was validated in the remaining 16 patients.
The model achieved sensitivities of between 75 and 86 % and specificities of
between 67 and 92 %.

Glucocorticoids are the main intervention for FSGS; however, not all patients
respond to glucocorticoid treatment. Nuntawan et al. compared the urinary proteomic
profile of steroid-resistant nephrotic syndrome (SRNS) with that of steroid-sensitive
nephrotic syndrome (SSNS) using SELDI-TOF-MS [34]. A 13.8-kDa-fragment of α-
1-β glycoprotein was significantly differentially excreted between these 2 groups.
The results of the validation study demonstrated that this peptide was present in 7 of
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the 19 SRNS patients but absent in all SSNS patients (n = 15) and controls (n = 10).
The detection of this small molecular fragment in the urine may help nephrologists
make better choices in the future treatment of FSGS patients.

15.3.5 Lupus Nephritis

LN is a common complication of systemic lupus erythematosus (SLE). In SLE,
renal involvement occurs in between 15 and 75 % of patients; histological evidence
of renal involvement is found in most biopsy specimens [7]. Proteomics approaches
have been employed to explore noninvasive predictors of the impending relapse,
relapse severity, and recovery from LN.

Zhang et al. [53] profiled the urinary proteome of LN patients in different stages
of relapse using a 30-kDa cutoff filter to focus on low molecular weight proteins.
Among the 27 proteins that were differentially expressed between flare intervals, 2
isoforms of hepcidin were able to predict flare onset and recovery. However, further
research indicated that hepcidin was not disease specific or associated with
inflammation. Somparn et al. [40] used 2-DE to profile urine samples from 5 active
and 5 inactive LN patients. Two differentially excreted proteins (ZA2G and PGDS)
were validated by ELISA in samples from an independent set of 78 subjects,
including 30 active LN cases, 26 inactive LN cases, and 14 non-LN glomerular
disease cases. ZA2G levels were elevated in the urine of patients with active LN
and non-LN glomerular diseases, whereas PGDS levels were elevated only in urine
from the active LN group. Urinary PGDS, not ZA2G, may thus serve as a bio-
marker for active LN.

In another study of the urinary proteome of children with LN [42], investigators
used SELDI-TOF-MS to identify 8 peaks that differentiated patients with active
nephritis from remitters and controls. These peaks had an area under the AUC of
≥0.9 for the diagnosis of active nephritis; thus, this approach appears promising for
this particular group of patients.

Wu et al. [48] screened the levels of *280 molecules in urine samples from 3
healthy individuals and 5 patients with SLE. Elevated angiostatin levels were
observed and validated in an independent cohort of SLE patients (n = 100) by
ELISA. Urine angiostatin was significantly increased in active SLE compared to
inactive SLE, as was further confirmed by an ROC curve analysis with an AUC
value of 0.83. However, correlation analysis of the urine angiostatin levels and renal
morphological changes indicated that urine angiostatin was strongly associated with
the renal pathology chronicity index but not with the activity index.

These urinary proteomics studies have revealed the potential of a urine protein
panel as a noninvasive biomarker panel for distinguishing the disease activity of
LN. However, the specificity and sensitivity of these markers remain inferior to that
of traditional markers (such as complementary levels) and require further study,
optimization, and modification.

Table 15.1 lists some urinary proteomics studies in chronic kidney diseases.
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15.3.6 Acute Kidney Injury

Acute kidney injury (AKI) represents a common and devastating problem in
clinical medicine. The incidence of AKI varies from 5 % of hospitalized patients to
30–50 % of patients in intensive care units. Despite significant improvements in
therapeutics, evidence suggests that the incidence of AKI is increasing at an
alarming rate, and the associated mortality and morbidity have remained high
despite improvements in clinical care [46, 49, 51]. A major reason for this high
mortality and morbidity is the lack of early biomarkers for AKI, resulting in an
unacceptable delay in the initiation of therapy. In addition, convenient biomarkers
are urgently needed to distinguish between the various etiologies of AKI and to
predict its clinical outcomes. Fortunately, the application of proteomics research to
human and animal models of AKI has uncovered several novel biomarkers.

Significant efforts have been made to develop an early diagnostic biomarker for
AKI in the hope that the early identification of renal injury will enable more
effective therapeutic interventions. Ho et al. [16] used SELDI-TOF/MA to deter-
mine urinary proteomic profiles at different time points following coronary artery
bypass grafting (CABG) operations. The active 25-amino acid form of hepcidin
(hepcidin-25) was found to be dominantly elevated in postoperative non-AKI urine
samples compared with AKI samples. This biomarker was further validated in an
independent cohort of 338 patients [17]. The log10 hepcidin-25/Cr ratio reached a
sensitivity of 68 % and a specificity of 68 %, with an AUC of 0.80 for the
avoidance of AKI and a negative predictive value 0.96. Areeger et al. [3] collected
urine samples from 36 patients after cardiopulmonary bypass surgery. They com-
pared the urinary proteomes of patients with and without AKI on the first post-
operative day. After the operation, inflammation-associated (zinc-α-2-glycoprotein,
leucine-rich α-2-glycoprotein, mannan-binding lectin serine protease 2, basement
membrane-specific heparan sulfate proteoglycan, and immunoglobulin kappa) or
tubular dysfunction-associated (retinol-binding protein, adrenomedullin-binding
protein, and uromodulin) proteins were found to be differentially regulated. Zinc-α-
2-glycoprotein and a fragment of adrenomedullin-binding protein were decreased in
patients with AKI. The decreased excretion of zinc-α-2-glycoprotein in patients
with AKI was confirmed by Western blot and ELISA in an independent cohort of
22 patients with and 46 patients without AKI. Zinc-α-2-glycoprotein is thus a
potentially useful predictive marker for AKI after cardiopulmonary bypass surgery.

In the last 10 years, urine neutrophil gelatinase-associated lipocalin (NGAL, also
known as lcn2) has become one of the most important predictive biomarkers of
AKI. NGAL is one of the earliest and most robustly induced proteins in the kidney
after ischemic or nephrotoxic AKI in animal models. Indeed, the NGAL protein is
easily detected in urine soon after AKI [24, 25, 45]. However, NGAL measure-
ments may be influenced by a number of coexisting variables, such as preexisting
renal disease and systemic or urinary tract infections [12]. Research to explore more
accurate AKI predictive biomarkers is ongoing. Areeger et al. [4] collected urine on
the first day of AKI in critically ill patients; 12 patients with an early recovery and
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12 matching patients with late/non-recovery were selected, and their proteomes
were analyzed by gel electrophoresis and mass spectrometry. A total of 8 prognostic
candidates were identified. Subsequent ELISA quantification demonstrated that
IGFBP-7 was the most potent predictor of renal recovery. IGFBP-7 and NGAL, a
traditional AKI biomarker, were chosen for further analyses in an independent
verification group of 28 patients with AKI and 12 control patients without AKI. The
comparative analysis indicated that IGFBP-7 and NGAL were significantly
upregulated in the urine of AKI patients, which in turn predicted the mortality
(IGFBP-7: AUC 0.68; NGAL: AUC 0.81), recovery (IGFBP-7: AUC 0.74; NGAL:
AUC 0.70), and severity (IGFBP-7: AUC 0.77; NGAL: AUC 0.69) of AKI. The
levels of these proteins were also associated with AKI duration. IGFBP-7 was a
more accurate predictor of renal outcome than NGAL. Thus, IGFBP-7 is a novel
prognostic urinary marker that warrants further investigation.

Urinary proteomics provide a novel method for identifying early diagnostic and
prognostic biomarkers of AKI. This technique can be integrated with and is com-
plementary to traditional hypothesis-driven approaches. Moreover, this technique
provides an additional armamentarium for discovery-based biomarker studies and
can provide novel insights into the underlying pathophysiology of AKI, which may
ultimately lead to the identification of novel therapeutic targets.

15.4 Limitations and Future Perspectives

Kidney disease has been the subject of a number of urinary proteomics studies. This
research has greatly improved our understanding of the mechanisms of various
kidney diseases and has provided alternative biomarkers for classification, diag-
nosis, and response prediction. However, several limitations have hampered the
development of this approach and the translation of results to clinical applications.

First, there are challenges in the standardization of urine collection, preparation,
and storage in urinary proteomics. The quality and quantity of urine proteins are
affected by diet and exercise, and thus, sample collection under stable conditions is
critical for the reliability and comparability of urinary proteomics results. Moreover,
the storage, preparation, and analysis of urine samples may also affect the profiling.
Standardization of these techniques is required to obtain more reliable proteomics
data. Although an international normal urine collection protocol has been developed
by the European Kidney and Urine Proteomics (EuroKUP) group and the Human
Kidney and Urine Proteome Project (HKUPP) (http://www.hkupp.org), there are still
no globally acceptable guidelines for urine sampling with mass proteinuria [23].

Second, compared with transcriptomic and genetic studies, urinary proteomic
data sets for kidney diseases, particularly for glomerular diseases, are scarce, pri-
marily due to the limited technology that is available for this type of study. Pro-
teinuria is a common clinical manifestation of many kidney diseases, but severely
high levels of urinary proteins complicate proteomic data collection. Thus, the
technology required for pre-MS handling of samples is much more important for
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proteinuria proteomics than for normal urine analysis. Unfortunately, the study of
pre-MS handling for proteinuria proteomics has received much less attention than
for serum proteomics. Strengthening efforts to improve pre-MS handling will
benefit future biomarker discovery for kidney diseases.

Third, a lack of knowledge about the molecular mechanisms of kidney diseases
poses a major challenge for detecting biomarkers through urinary proteomics. To
date, most kidney diseases have been diagnosed by histological changes. Many
kidney diseases, such as IgAN and FSGS, are molecularly heterogeneous diseases,
which complicates the analysis of the primary data in urinary proteomics studies.
Due to the biological variability and complex pathophysiology of kidney disease,
urinary proteomics studies that have attempted to identify a single biomarker for
kidney disease have all failed.

Furthermore, the sample size of most published studies has been small, which
limits the data interpretation and predisposes the analyses to multiple testing biases.
To organize a large-scale urinary proteomics study, the development of national and
international consortia is required to promote strict disease classification criteria,
clear criteria for the recruitment of patients into prospective cohorts, and stan-
dardized protocols for the collection of samples and detailed clinical data.

The ultimate aim of the field of urinary proteomics is to further characterize the
molecular mechanisms underlying kidney diseases and to facilitate the development
of improved biomarkers for the diagnosis and prediction of the therapeutic response
of various kidney diseases. This is a systemic approach, and the collaborative
efforts of a multidisciplinary team of physicians, molecular biologists, statisticians,
and systems biologists with computer science and mathematics backgrounds are
therefore needed.

There are >1,500 proteins in normal urine. Changes in these proteins reflect
physiological and pathological changes in the kidney. While nephrologists have
made excellent clinical diagnostic and prognostic use of albuminuria and many
other urinary proteins, it is now time to delve much deeper into the urinary pro-
teome to maximize its incredible diagnostic and prognostic potential.
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