
Chapter 13
Effects of Diuretics on Urinary Proteins

Xundou Li

Abstract Biomarker is the measurable change associated with a physiological or
pathophysiological process. Unlike blood which has mechanisms to keep the
internal environment homeostatic, urine is more likely to reflect changes of the
body. As a result, urine is likely to be a better biomarker source than blood.
However, since the urinary proteome is affected by many factors, including
diuretics, careful evaluation of those effects is necessary if urinary proteomics is
used for biomarker discovery. The human orthologs of most of these 14 proteins
affected are stable in the healthy human urinary proteome, and 10 of them are
reported as disease biomarkers. Thus, our results suggest that the effects of diuretics
deserve more attention in future urinary protein biomarker studies. Moreover, the
distinct effects of diuretics on the urinary proteome may provide clues to the
mechanisms of diuretics.
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Biomarker is the measurable change associated with a physiological or patho-
physiological process. Unlike blood is homeostatic, urine is more likely to reflect
changes of the body. In other words, urine is likely to be a better biomarker source
than blood [1]. Saving more urinary protein samples on the membrane can help to
speed up the biomarker research in urine proteome [2]. Furthermore, compared to
plasma, urine can be collected continuously and noninvasively. Second, the urinary
proteome directly reflects the conditions of the urinary system. Third, it can also
reflect the physiological status of the whole human body [3]. These advantages
make the urinary proteome a suitable source for disease biomarker discovery.

To date, many urinary biomarkers have been reported in a variety of diseases [3],
such as various chronic and acute renal injuries [4], bladder cancer [5], prostate
cancer [6] and coronary artery disease [7]. However, studies focusing on the urinary
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protein biomarker discovery still face certain challenges. A major issue is that the
urinary proteomic pattern of an individual may be affected by multiple factors, such
as gender, age, diet [8], medication, daily activities, exercises [9, 10], smoking [11],
stress, menstrual cycle, and other physiological variations. Environmental factors
including temperature and humidity may also affect the urinary proteome. There-
fore, these factors should be taken into consideration in the urinary biomarker
research.

Effects of some factors, such as gender, age, daily activity, and environmental
conditions, have been investigated previously [12–14]. However, effects of some
other factors, especially medication, are difficult to examine, since the regular
therapeutic process of patients should not be disturbed during the collection of
urine. Therefore, influences of medications on the urinary proteome should be taken
into account during data analysis and interpretation.

Diuretics are among the most commonly used medications. They are used to
induce negative fluid and sodium balances in a variety of clinical situations,
including hypertension, heart failure, renal failure, nephritic syndrome, and cir-
rhosis [15]. However, it remains unclear whether and how diuretics affect the
urinary proteome, which hampers the urinary biomarker discovery for those
diseases.

The effects of furosemide, hydrochlorothiazide, and spirolactone on the urinary
proteome were examined using label-free quantitative proteomics [16]. These drugs
represent thiazide diuretics, loop diuretics, and potassium-sparing diuretics,
respectively, which are the three types of commonly used diuretics with different
modes of action [17]. The rat urine samples were collected before and after the
diuretics were administered, digested using the filter aided proteome preparation
(FASP) method [18], and analyzed with a high-speed TripleTOF 5600 system.
Progenesis LC-MS was used to quantify the urinary proteins.

Urine samples from 15 rats were collected after each rat was given 1 ml saline by
intragastric administration for 24 h using metabolic cages, and these samples were
used as controls. Then, the rats were randomly divided into three groups with five
rats in each group. Each group of rats was given either 20 mg/(kg days) of furo-
semide, 20 mg/(kg days) of spirolactone, or 25 mg/(kg days) of hydrochlorothia-
zide, respectively. The dosing volumes of diuretics were adjusted to 1 ml. All rats
were given diuretics by intragastric administration for 5 days, and the rat urine
samples were collected on 1, 3, and 5 days after diuretics administration as
described above.

As shown in Table 13.1, the rat urinary volumes increased significantly (*2–3,
P < 0.05) after the administration of furosemide (F) and hydrochlorothiazide (H),
especially within the first 8 h after lavage. This period is the effective time of the
diuretics. However, there is no significant increase in urine output (P > 0.05) after
the rats were administered with spirolactone (S), probably due to the fact that
spirolactone is not an efficient diuretic on its own and usually is applied in com-
bination with other diuretics.

As a first step of the sample analysis, the urine samples collected on different
days were separated by SDS-PAGE. As shown in Fig. 13.1a, the protein patterns of
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the urine samples in the H group changed only modestly among those obtained
before and 1, 3, and 5 days after the diuretics administration. However, for the F
and S groups, there were some significant changes among samples obtained at
different time points, especially those on Day 3 after gavage for the F group
(Fig. 13.1b) and Day 1 for the S group (Fig. 13.1c). Therefore, normal urine
samples, Day 3 for the F and H groups and Day 1 for the S group, were further
analyzed using 1D-LC-MS/MS.

To investigate the changes of the urine proteome after diuretics administration, a
total of 18 LC-MS/MS runs of urine samples from three different rats in each
diuretic group were analyzed. The 18 datasets were analyzed using Progenesis LC-
MS, and Mascot Daemon. The false discovery rate (FDR) was adjusted to be less
than 1 %. As a result, there were 331, 302, and 325 proteins identified in the F, S,
and H group, respectively.

The coefficients of variation (CVs) for each of the three levels of sample vari-
ation before gavage, after gavage, and between these two conditions were calcu-
lated. As shown in Fig. 13.2, the CV values of the samples after gavage were
slightly higher than those before gavage (median CV values: F group 0.25 vs. 0.34;
S group 0.35 vs. 0.39; H group 0.28 vs. 0.31), possibly maybe because rats respond
differentially to the diuretics. In contrast, the CV values of the samples for between
before and after gavage and for after gavage (median CV of F group is 0.45; median
CV of S group is 0.55) are significantly higher (P < 0.05), suggesting that furo-
semide and spirolactone can change the urine proteome. However, the CV values of
H-diuretics (median CV is 0.33) were not changed significantly, indicating that
hydrochlorothiazide has no discernible effects on the rat urine proteome at this
dosage.

The CV values of proteins identified in each group before diuretics adminis-
tration, after and between these two states, were calculated using SPSS 13.0. Before
indicates the CV values of urine samples before diuretics administration in the F, S,
and H group, respectively; after indicates the CV values of urine samples after
diuretics administration in each group; between indicates the CV values of urine

Fig. 13.1 SDS-PAGE of the urine samples from rats treated by different diuretics [16]. Urine
protein samples were separated by SDS-PAGE and stained using Commassie blue brilliant for the
hydrochlorothiazide group (H, a), the furosemide group (F, b), and the spirolactone group (S, c),
M markers; B normal rat urine samples; A1, A3, and A5 urine samples obtained 1, 3, and 5 days
after the diuretics were administered
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samples between before and after diuretics administration in each group (n = 3; in F
and S group, P < 0.05).

Using the label-free quantification by the Progenesis LC-MS software, we
identified seven (five upregulated and two downregulated), five (one upregulated
and four downregulated), and two (one upregulated and one downregulated) pro-
teins which significantly changed in all three rats in the F, S, and H group,
respectively, according to the criteria: P ≤ 0.05, a fold change ≥2 and a spectral
count ≥5. As shown in Tables 13.2 and 13.3, five of the seven proteins in the F
group and all of the five proteins in the S group have been reported to be disease
biomarkers. For example, haptoglobin is a candidate biomarker for patients with
bladder cancers, acute kidney injury, or diabetic nephropathy. However, neither of
the two significantly changed proteins (beta-microseminoprotein and EGF-con-
taining fibulin-like extracellular matrix protein 1) has been reported as biomarkers
in hydrochlorothiazide group. Moreover, hydrochlorothiazide appears to have a
lower impact than furosemide and spirolactone at the dosages tested. Interestingly,
no significantly changed proteins are shared by any two groups, indicating the
distinct effects of the diuretics on the urinary proteome.

We next evaluated the relevance of our findings to the human disease bio-
markers. As it is typically assumed that orthologs (co-orthologs) retain similar
functions between species [19, 20], therefore we transformed the significantly
changed proteins after intragastric administration of diuretics to human orthologs.
Based on the 122.R_norvegicus.orthologues database and Ensembl Compare

Fig. 13.2 The CV values for each of the three levels of sample variation [16]
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database [21], eight of the 14 rat urinary proteins have human orthologs
(Table 13.4). By comparing the proteins with the human core urinary proteome, we
further found that seven human orthologs are relatively stable proteins in the normal
human urinary proteome [22, 23]. Therefore, such proteins could serve as potential
urinary biomarkers, since significant qualitative or quantitative changes of these
stable proteins may suggest some pathophysiological conditions [23].

However, some limitations of this study should be noted. First, the results need
to be verified on humans before we can generalize the conclusions. Second, it
would be ideal to validate our results in studies with a higher statistical power.
Furthermore, the effects of doses and durations of diuretics on the urinary proteome
should also be studied in the future.

In summary, we have shown for the first time through a proteomic approach that
some candidate urinary biomarkers may be affected by diuretics, suggesting that the

Table 13.2 Urinary proteins significantly changed after intragastric administration of furosemide
[16]

Accession Protein name Fold change Candidate
biomarkers

References

Rat
1

Rat
2

Rat
3

P02781 Prostatic steroid-bind-
ing protein C2

8.2↑ 6.3↑ 4.3↑ No

P07647 Submandibular glan-
dular kallikrein-9

3.5↑ 6.2↑ 5.2↑ Yes [24]

P02782 Prostatic steroid-bind-
ing protein C1

7.6↑ 5.7↑ 5.6↑ No

P02780 Secretoglobin family
2A member 2

9.6↑ 5.0↑ 6.2↑ Yes [24]

P22283 Cystatin-related pro-
tein 2

4.7↑ 3.7↑ 4.3↑ Yes [24]

P08721 Osteopontin 7.3↓ 7.4↓ 5.9↓ Yes [25–28]

Q01177 Plasminogen 2.1↓ 2.1↓ 3.0↓ Yes [29]

Table 13.3 Urinary proteins significantly changed after intragastric administration of spirolactone
[16]

Accession Protein name Fold change Candidate
biomarkers

References

Rat
1

Rat
2

Rat
3

P06866 Haptoglobin 5.0↑ 2.1↑ 2.2↑ Yes [30–35]

P81828 Urinary protein 2 3.6↓ 3.3↓ 3.9↓ Yes [24]

P81827 Urinary protein 1 7.3↓ 4.3↓ 4.4↓ Yes [24, 36]

P10960 Sulfated glycoprotein 1 4.0↓ 3.1↓ 2.4↓ Yes [24]

Q09030 Trefoil factor 2 8.5↓ 4.7↓ 4.2↓ Yes [37]
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effects of diuretics should be carefully evaluated in the future urinary protein
biomarker studies. The results obtained here could help minimize the interference
of diuretics with biomarker discovery using the urinary proteomics. In addition, the
significantly changed proteins may help the investigation of mechanisms of
diuretics as well as renal clearance of proteins. Other commonly used medications,
such as glucocorticoids and angiotensin-converting enzyme inhibitors (ACEIs),
may likewise affect the urinary proteome and should also be further studied.
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