
Chapter 8
Systems Approaches to Study Infectious Diseases
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Abstract Exposure to infectious agents can either lead to active disease or contain-
ment or killing of the pathogen. Outcome of an infectious disease is determined by
the complex interplay between the host and the pathogen. Therefore, understanding
the crosstalk between the host and the pathogen during infection is crucial to
identify molecules that are important for the spread or suppression of the disease
and for identification of drug targets. Both the host and the pathogen have several
mechanisms for countering each other thereby adding layers of complexity to the
host-pathogen interplay. Reconstructing mathematical models of complex processes
such as cell regulations, signal transductions and host-pathogen interactions provide
a detailed understanding of the various interactions and crosstalks occuring in
a biological system and thus form a platform to study the system as a whole.
Various experimental methods in functional genomics and proteomics as well as
computational approaches have been developed over the years that help in building
and modeling the biological systems. These approaches have proved quite helpful in
identifying drug targets, generating hypotheses rationalizing and finally predicting
the cause andfinal outcome of diseases.
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8.1 Introduction

Infectious diseases are directly responsible for about a third of all deaths occur-
ring worldwide. Tuberculosis, pneumonia, malaria, cholera are among the most
fatal infectious diseases, responsible for 58 % child mortality in developing nations
(WHO 2012). These infectious diseases can be categorized depending upon their
frequency of occurrence into sporadic, endemic, epidemic or pandemic diseases.
Although several anti-infective drugs are available for these diseases, they continue
to be a burden to human health, a problem further compounded by the emergence
of drug resistant varieties of the pathogens (Spellberg et al. 2008), (MacPherson
et al. 2009). Discovery of newer, safer and robust drugs require the formulation
of new strategies that involve innovative ways of tackling the diseases. It has now
become increasingly clear that strategies stemming from holistic system approaches
may hold the key for effective and sustained management of infectious diseases
(Aderem et al. 2011). A wealth of molecular level data has been gathered over the
years on several causative microorganisms, which has increased substantially due to
the advances in genomics and other high-throughput technologies. The scale and the
complexity of each piece of data, is indeed quite high and requires computational
analysis to help in comprehending and making useful inferences from it.

Systems biology is the study of large scale systems, reconstructed from many
small scale interactions. This approach is based on the premise that the ‘whole is
greater than the sum of its parts’ (Hood and Perlmutter 2004). It provides a holis-
tic understanding of the biological function from molecular and cellular level to
an entire organism and serves as a platform to study and correlate the processes
occurring in a complex living system at different scales to understand a biologi-
cal phenomenon. Application of such computational methods is evident in the field
of drug discovery. Simulations using reconstructed models further aid in knowl-
edge based drug target identification, discovery of biomarkers as well as for rational
design of vaccines. Overall, studying a system as a whole rather than individual
molecular characterizations performed in isolation would be required to understand
the phenotypic behaviour of a given system.

With advances in techniques such as high-throughput sequencing, microarrays,
nuclear magnetic resonance and mass spectrometry, it is now possible to get better
insights into the field of transcriptomics, proteomics and metabolomics, and the data
generated using these techniques serve as direct inputs into development of systems
level models. The large scale omics data are analyzed using computational methods
to derive essential molecular interactions. These molecular interactions are used to
build a detailed mathematical model to represent the biological system being studied.
Once validated, these models are used to simulate a range of scenarios to predict the
behaviour of the system under various conditions. The hypotheses generated can
be taken back to the bench again and validated using focused experimental studies
(Aderem et al. 2011; Vodovotz et al. 2008). Systems biology, thus, along with
different ‘omics’ studies is being increasingly used to identify pathways involved
in specific disease conditions, establish interconnectedness of different pathways
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and understand cellular responses to variouscertain conditions including physio-
logical stress and exposure to a pathogenicorganism (da Hora Junior et al. 2012;
Day et al. 2010; Kitano 2002; Weckwerth 2003; Weston and Hood 2004).

The study of host-pathogen interactions focuses upon the interactions between
microbial or viral pathogens and their plant or animal hosts. The interactions are
multi-faceted and form a complex network including moves and counter-moves from
both species leading to one of two broad outcomes, either clearance or proliferation of
bacteria (Forst 2006; Johanns et al. 2010). Using systems biology approaches it has
become feasible to study various phenomena such as recognition of the pathogen
by the host immune system, mechanism of virulence, pathogenesis, mechanisms
of antibiotic resistance, persistence of disease all as aspects of the complex host-
pathogen interplay, the knowledge ultimately useful for biomarker and drug target
identification (Weston and Hood 2004; Wang et al. 2010a). Systems biology as a
discipline, in fact utilizes both experimental and computational approaches to build
computationally amenable mathematical models of complex biological processes.
This chapter provides an overview of various systems biology approaches available
for studying causative organisms that cause infectious diseases and also the interplay
between host and pathogen. In particular, the chapter focuses on the various modeling
approaches that are available and being utilized for such studies and summarizes
various insights obtained for a few important infectious diseases.

8.2 Modeling Methods

Deciphering functions of individual components even at a genome scale is not
sufficient to understand the complexity of the organism or the complex interplay
between the host and pathogen. Availability of large scale genomics, proteomics and
metabolomics data have led to advances in obtaining pair-wise interactions between
pairs of molecules. Different pieces of data are required to be pooled together using
mathematical formalisms to build up a biological system, which can be used to ad-
dress various biological questions. This also provides a handle to the experimentalist
to prioritize the proteins for functional studies. Various modeling methods that are
commonly used in the field of systems biology are described briefly here and are also
depicted in Fig. 8.1. The models are ordered according to the level of granularity in
the figure.

8.2.1 Networks

The parts lists obtained from individual omics level experiments starting from the
genome sequencing are assembled based on various molecular interactions ob-
tained experimentally through a number of studies documented in literature. The
list of protein-protein interactions are augmented substantially through a variety of
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Fig. 8.1 The different modeling methods used in Systems biology. Methods are colour coded based
on granularity

knowledge-based predictions using methods based on Rosetta stone concept (Mar-
cotte et al. 1999), phylogenetic profiling (Pellegrini et al. 1999), gene-neighbourhood
and its conservation (Dandekar et al. 1998). The set of pair wise interactions and
genome-wide functional linkages (Strong et al. 2003) thus identified, ultimately lead
to network reconstructions. Databases such as STRING (Szklarczyk et al. 2011)infact
make this available to the community in a comprehensive manner.

Individual molecular constituents in the cell form nodes, while interactions be-
tween them form edges, put together forming large complex graphs. Graph theory
can then be used to understand and explore various aspects of the cell in different
conditions (Albert 2007). Depending on the system being reconstructed, directed
(eg. signalling networks), undirected (protein-protein interactions) or bipartite net-
works (metabolite-enzyme) can be generated. The edges can be further weighed
if appropriate experimental data is available. Protein-protein interaction networks
representing interactomes serve to understand the dynamics of a biological cell.
Shortest path analysis has been used to identify criticality of particular nodes in the
network (Ravasz et al. 2002). Through systematic knock-outs or node or edge dele-
tions, nodes leading to significant number of broken paths and hence their relative
importance in the network is assessed. These networks can be further divided into
sub networks based on the intra and inter connectivity and represent the different
functional modules present in the system.
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Although network analyses helps in identifying important and influential
molecules in a system and study the communication between the molecules in de-
tail, it is mostly static in nature and captures a single condition in most cases. Static
networks do not provide a complete understanding of the system, but reflect a sin-
gle snapshot of the numerous possible interactions that can occur as a result of the
various adaptive and environmental changes at that instant of time. One approach
to overcome this limitation is reported by Ideker et al., who integrated mRNA ex-
pression data into a yeast protein-protein and protein-DNA interaction network, to
identify subnetworks that were most active under different conditions (Ideker et al.
2002). Active sub networks were identified by calculating the significant fold change
of each gene in that subnetwork as a result of changing conditions. The high scoring
subnetworks correlated well with known regulatory mechanism. Such active subnet-
works that convey a systems response given an experimental condition are termed
as response networks (Forst 2006).

Reconstruction of signaling networks, where nodes are signaling components
and directional edges are the regulations, helps understand the signaling cascading
events taking place inside a cell. Interactions can be tagged as positive or negative
or stimulatory or inhibitory (Wang and Albert 2011). Importance of a node is deter-
mined by studying the effect of that node’s deletion on the propagation of the signal.
Minimal set of nodes that can perform signal transduction independently have also
been identified using this method.

Organism specific metabolic networks have been constructed and studied using
methods such as flux-balance analysis. This requires three basic types of data; (a)
enzyme, corresponding substrates and products, (b) stoichiometric matrix of all
reactions which gives the ratio in which the substrates and products participate in
the reaction and (c) cellular location of the reaction (Feist et al. 2008). Biochemical
pathways can be represented using different network types. In a metabolite network,
metabolites form nodes and two nodes are connected if they share a substrate-product
relationship. In a reaction network nodes represent reactions and two reactions are
connected if the product of one forms a substrate for the other. Bipartite networks are
useful representations to capture biochemical pathways. A bipartite network contains
two types of nodes and an edge can only be drawn between two different types of
nodes. In case of biochemical pathways, enzymes form one set of nodes, while
metabolites form another set of nodes and a connection can be made only between
an enzyme and a metabolite (Raman et al. 2006). Detailed networks can also be
built where kinetic information is incorporated as weights in the network. Metabolic
networks are analysed using the graph theory tools to identify hubs and cluster the
reactions based on their functions. Other tools such as Petri-nets (Pinney et al. 2003)
have also been used to study various properties of an organism. Cytoscape (Shannon
et al. 2003) is used widely to visualize as well as perform basic network analysis.
The Boost Graph Library (Siek et al. 2002) implementation of MATLAB is also
frequently used to perform network analysis.
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8.2.2 Constraint Based Modeling

Constraint based modeling approaches are being used widely for studying
metabolism in a cell. Metabolic reactions are represented using a stoichiometric
matrix of size m*n, where rows represent metabolites (m) and columns represent
all the reactions (n) present in an organism. Entries in the matrix represent the sto-
ichiometric coefficients of the metabolites in the reaction (Orth et al. 2010; Raman
and Chandra 2009). Given the stoichiometric matrix (S), FBA aims to calculate the
flux (v) through each reaction at steady state, such that S.v = 0. These models are
further constrained to mimic biological systems such that a unique flux distribution
for the organism is obtained using linear optimization. An interesting feature of FBA
is its ability to perform single and multiple gene deletion knockouts. This is done by
constraining the bounds of all the reactions coded by that gene to zero. This analysis
helps in identifying essential genes and drug targets (Raman et al. 2005). Effect of
inhibitors can also be studied by constraining the required reaction to a fraction of
the wild type bounds. Segre et al. developed a variant of FBA known as MoMA
(Segre et al. 2002), which unlike FBA is not solely based on optimizing the objective
function. The idea being that any genetically modified organism may not achieve
optimality since the mutant strains are not subjected to long term evolutionary pres-
sures and may perhaps attempt to attain biological function via minimal changes in
the flux distribution.

A major advantage of constraint based modeling is that they do not require a
detailed understanding of the reaction mechanism or other kinetic parameters to
perform in silico simulations. Many modifications to the original methods have been
reported to incorporate gene expression data (Colijn et al. 2009) and other omics data
(Schellenberger et al. 2011) to obtain a better mimic of the biological system under
investigation. Various tools such as FAME (Boele et al. 2012), FASIMU (Hoppe
et al. 2011), COBRA toolbox (Schellenberger et al. 2011), MetaFlux (Latendresse
et al. 2012) have been developed over the years to perform FBA and its variants
(Lakshmanan et al. 2012).

8.2.3 Kinetic Modeling Using Ordinary Differential Equations

Biochemical reactions have classically been represented as differential equations
that define the rate of consumption or production of metabolites. Given the kinetic
details of any set of reactions, one can build a mathematical model by forming a
system of ordinary differential equations (de Jong 2002). Simulations from ordinary
differential equations (ODEs) are much more reliable and precise as they are built
and analysed using detailed kinetic parameters. An obvious advantage of this method
over FBA is that the time evolution of the model can be studied to obtain a detailed
understanding of the system, instead of only analysing the steady state behaviour.
However, non-availability of kinetic data limits the broad applicability of this method.
MATLAB is widely used to solve the system of ODEs contained in these models.
Other software packages such as JDesigner (Sauro 2004), Cell Designer (Funahashi
et al. 2003), and Copasi (Hoops et al. 2006)are also commonly used for this purpose.
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8.2.4 Boolean Modeling

Boolean modeling also called as logic modeling is being used to model complex
biochemical systems and capture the qualitative behaviour of the biological system.
Each component in the model can exist in two states, either on or off. Transition from
one state to another is encoded using logical operators. One of the major advantages
of logic modeling is the ease with which complex molecular interactions can be repre-
sented and therefore these are widely used to model complex biological phenomenon
such as apoptosis (Schlatter et al. 2009) or host-pathogen interactions (Raman et al.
2010). New methodologies are being continually developed that transforms Boolean
models into a continuous model so as to study the time course evolution of a biolog-
ical system. State transition rates of each nodes are calculated using mathematical
tools such as Markov processes and multivariate polynomial interpolation (Wittmann
et al. 2009; Stoll et al. 2012).

8.2.5 Rule Based Modeling

In a rule based model, the biological system is defined using a set of rules. These
rules use the notation of a simple chemical reaction and describe the local events
taking place inside a cellular system that eventually leads to the emergence of a
global property. This method is based on the principle of Gillespie’s algorithm
(Gillespie 1977), according to which a cell is considered as a well-mixed system
and interaction between any two molecules in the cell is dependent on the rate of
interaction between the two and the abundances of each molecule interacting. This
method is particularly useful when modeling any regulatory system as these sys-
tems are inherently complex in nature and have the potential to generate a variety of
distinct species as a result of the cascading events that occur in such systems. For-
mally, due to combinatorial complexity arising from the set of possible interactions
in the system, a large number of distinct species are generated, which can all be
systematically studied and outcomes of specific scenarios predicted (Hlavacek and
Faeder 2009). Rule based methods are also being explored as tools for multi-level
modeling of biological systems (Maus et al. 2011). Software tools such as BioNetGen
(Blinov et al. 2004), Kappa (Danos et al. 2008), RuleMonkey (Colvin et al. 2010)
have been used for rule based modeling. These methods are generally stochastic in
nature; however the rules can be rewritten as ODEs to build deterministic models.

8.2.6 Models of Host–Pathogen Interactions

Understanding the outcome of an infectious disease not only requires a detailed study
of the host and pathogen system individually, but more importantly, the communi-
cation and the crosstalk that occurs between the two systems. Individual models of
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host and pathogens describing different biological processes are widely available and
can be easily manipulated to obtain a host-pathogen model. Such models provide a
detailed description of the crosstalk that exists between the two systems as well as the
individual processes. This provides a realistic picture of the biological phenomenon
being studied and also helps in extrapolating the influence of such crosstalk on host
and pathogen.

Host-pathogen interactions have been modeled using several approaches, ranging
from simpler models for the prediction of protein—protein interactions between the
host and pathogen, to complex models for the metabolic and signal transduction
networks. Kirschner and co-workers have developed a virtual model of the host
immune response to M.tb using agent-based modeling methods (Marino et al. 2011).
Numerous insights about critical factors and parameters governing host-pathogen
interactions can be obtained through these studies. Integrating the host and pathogen
FBA models and further modification of the optimization function have also been
used to study host-pathogen interactions(Bordbar et al. 2010).

Different types of approaches can be integrated each of which best describes
different aspects of a biological system to obtain overall mechanistic insights. For
example, FBA is used for studying metabolic networks while Boolean modeling is
used for regulatory networks and the approaches can be clubbed to obtain a metabolic
as well as a regulatory model. This is important because the different modules of a
biological system interact with each other and influences the functioning of the mod-
ules. Covert et al. (2008) have developed a method, iFBA, also known as integrative
FBA that integrates FBA with Boolean logic and ODEs to model the dynamics of
networks related to the carbohydrate uptake mechanism. They compared the predic-
tions of the integrated model with the individual model and showed that an integrated
model is a significant improvement over the individual models. The applications of
these methods are described using case studies of different infectious diseases and
are presented in the succeeding sections.

8.3 Tuberculosis

According to the sixteenth global report on tuberculosis (TB), published by WHO,
an estimated 8.5 – 9.2 million new cases of TB have emerged in the year 2010, while
0.9–1.2 million of the HIV-negative people have succumbed to the disease, and an
additional 0.35 million deaths have occurred from the HIV-associated TB cases.
Threat from this disease increases drastically with the advent of multidrug resistant
(MDR), extremely-drug resistant (XDR) and totally drug resistant (TDR) strains.
Unfortunately, no new drugs have come up in the last five decades and the drugs
available in the market have their inadequacies. It is thus important to think of newer
strategies and develop new classes of drugs to counter the spread of this disease.

The etiological agent of TB, Mycobacterium tuberculosis (M.tb), enters the host
primarily via aerosols containing the bacilli, and on reaching the lungs they are inter-
nalized by the alveolar macrophages and undergo phagocytosis. Pathogenesis starts
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after formation of the phagosome, wherein M.tb prevents maturation of the infected
macrophage and in this niche the pathogen is able to survive and reproduce. The
widespread nature of this disease depends upon its ability to spread easily by aerosol
transmission, which is further facilitated by immune-dependent tissue-damaging
inflammation (Pieters 2008).

Upon infection, a dynamic interplay occurs between the host and pathogen leading
to either of the four outcomes: (a) the initial host response may be completely effective
and kill the bacilli; (b) the organisms can grow and multiply immediately after infec-
tion resulting in active TB, (c) the bacilli may become dormant and never cause dis-
ease at all and (d) the latent bacilli can eventually become active and progress to dis-
ease condition (Schluger and Rom 1998). Needless to say, the difference between the
outcomes is enormous and results in extreme phenotypes between disease and health.
Various experimental as well as computational tools have been used to study the
pathogenesis of this disease and its interaction with the host, brieflysummarized here.

Deciphering the whole genome sequence of M.tb has been an important land-
mark in tuberculosis research (Cole et al. 1998). The genome sequence provided
a first comprehensive parts-list of the molecular constituents of the cell. This trig-
gered extensive amount of downstream research leading to detailed biochemical and
biophysical characterizations of a number proteins (Lew et al. 2011; Galagan et al.
2010). More importantly perhaps, it has provided an impetus for systems level stud-
ies. Genome sequence has helped tremendously in completing the gaps in knowledge
from decades of biochemical and molecular biology studies of individual molecules
in the organism. It has revealed complete lists of proteins belonging to many bio-
chemical pathways, transcription factors, two-component signalling systems (Tyagi
and Sharma 2004). It has led to comparative genomics studies through gene and
protein sequence comparisons and further to several functional genomics studies
(Tucker et al. 2007). Proteins responsible for cellular metabolism are identified com-
prehensively; indicating that, M.tb indeed has most of the standard pathways present
in other bacteria such as glycolysis, citric acid cycle, pyruvate, fatty acid, amino acid
metabolism to list a few (Cole et al. 1998). There are also interesting differences,
for example, presence of mycolic acid and arabinogalacatan pathways, the glyoxy-
late shunt and beta oxidation pathway for fatty acid metabolism. Identification of
such unique features has been useful to obtain direct explanations for phenotypic
characteristics of the organism such as the presence of a thick waxy outer cover.

Advances in high-throughput ‘omics’ technologies, that has resulted in a large
amount of omics data in the last few years, help significantly in functional char-
acterizations (Kirschner et al. 2010) of both host and pathogen’s genomes. Global
gene expression profiles of M.tb under different conditions are available. The set
of genes in M.tb required for optimal growth have been characterized by using the
transposon site hybridization (TraSH) method which provides a comprehensive idea
about functional significance and essentiality of each gene (Sassetti et al. 2003). The
proteome of M.tb has also been analyzed by 2D gel electrophoresis and mass spec-
trometry and also by the isotope-coded affinity tag reagent method coupled with mass
spectrometry (Schmidt et al. 2004). Using a guinea pig model of tuberculosis, the
bacterial proteome during the early and chronic stages of disease has been examined
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(Kruh et al. 2010) by liquid chromatography-mass spectrometry. The study identified
numerous M.tb proteins, from essential kinases to products involved in metal regu-
lation and cell wall remodeling, present throughout the course of infection. Cell wall
processes, intermediary metabolism and respiration were found to be major func-
tional classes of proteins represented in the infected lung. Recently, protein-protein
interactions in M.tb have been determined experimentally in a high-throughput
manner using a bacterial two-hybrid system (Wang et al. 2010a).

Genome scale studies are being carried out for the host systems as well. Several
gene expression profiles under different conditions of exposure to M.tb, disease and
treatment with anti-tuberculars have been obtained, which identify genes that show
maximal changes in their expression under different conditions (Boshoff et al. 2004).
siRNA screens have been used to systematically knock-out various genes and infer
their importance for survival, pathogenesis and stress response (Kumar et al. 2010).
Recently many techniques have been developed to visualize spatial features of such
interactions inside tissues, which include intravital multiphoton microscopy and four
dimensional FRET (Konjufca and Miller 2009; Hoppe et al. 2009). Although these
techniques are in their incipient stages of development, they offer promising results
and greater understanding of host–pathogen interactions.

The data thus obtained from the above described omics-data can be further used
to build computational models. One way of incorporating such large scale data
is to build a protein-protein interaction network. A comprehensive reconstruction
using crowd sourcing based curation from literature and available databases together,
capture as many as 71086 interactions in 3967 proteins (Vashisht et al. 2012) adding
substantially to the existing resources. Incorporating drug-specific gene-expression
fold changes in the network as node weights, Padiadpu et al. (2010) captured the
effect of drugs on M.tb interactome and the mechanism of triggering resistance.
Another study by Kauffman et al. (Rachman et al. 2006) identified genes that are
important for the survival and persistence of M.tb in a macrophage cell by using
a combination of approaches. Using a reconstructed protein—protein interaction
network and incorporating genome-wide DNA array into this network, pathways
such as iron metabolism, cell wall synthesis, DNA damage repair and fatty acid
degradation were identified as important to the pathogen (Rachman et al. 2006).

Yet another method of using experimental data to build computational models
is constraint based modeling. Details of this modeling method are provided in the
methods section. This method serves as an excellent tool to study genome scale
metabolic models. McFadden and co workers (Beste et al. 2007) reconstructed the
first genome scale metabolic model for M.tb, capturing all known biosynthetic path-
ways operational in a cell for synthesis of major macromolecular components. This
model was calibrated using data from chemostat cultivations of M.bovis BCG in
continuous culture and measurement of steady state growth parameters. Almost at
the same time, an independently reconstructed genome scale network model of M.tb
H37Rv named iNJ661 was reported by Palsson and coworkers (Jamshidi and Pals-
son 2007). The authors grew this bacterial model in silico on various media, and
observed that growth rates were comparable to experimental observations of dou-
bling times in the range of 12–24 h in different media. Using these models, reaction
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fluxes indicating substrate consumption rates were measured, which correlated well
with experimentally determined values. Raman et al. have identified putative drug
targets using in silico gene deletions for the mycolic acid pathway model in M.tb
(Raman et al. 2005).

Another classical method to study the dynamics of a cellular system is ordinary
differential Equations (ODE), wherein time courses of metabolic reactions are math-
ematically represented by ODEs. Singh et al. (Singh and Ghosh 2006) built a kinetic
model of the tricarboxylic acid cycle and the glycolytic pass of E.coli and M.tb to
compare the two systems and study the effect of enzyme inhibition and thus identify
potential drug targets. Kinetic modeling has also been carried out to study the host
immune system upon TB infection to reveal the existence of a non-infected steady
state and an endemically infected steady state, which can lead to latency or activation
of the disease (Ibargüen-Mondragón et al. 2011)

Signalling interactions in a cell can be easily represented by Boolean modeling,
also described in the methodology section. Raman et al. built a Boolean model of the
host—pathogen interactome (Raman et al. 2010), accounting for several mechanisms
of invasion by the pathogen, defense of the host, as well as the defense mechanisms of
the pathogen and was simulated under a variety of conditions. The model consisted of
75 nodes that represented the molecules involved in host and pathogen and different
states of the molecules and events were governed by logical operators or Boolean
rules. This provides a framework to understand the conditions and parameters that
favour clearance versus those that favour either active disease or contain the bacteria
in a dormant state.

Rule based modeling have also been used to represent signalling processes, espe-
cially for those events, wherein the molecule can take up different states depending
on its environment. Such models are known to best capture the environmental de-
pendencies. An et al. (An and Faeder 2009) built a rule based model of the Toll-like
receptor 4 signal transduction cascade. Simulation of the original model and ‘knock-
out’were performed to study the behaviour of the system. Ghosh et al., have reported
a rule based model to study host-pathogen interaction for TB infection and the role
of iron for both host and pathogen during the course of infection has been studied.
Regulating the concentration of mycobactin was discussed as one of the strategies
to control bacterial infection (Ghosh et al. 2011).

Boolean network models of immunological components of the interplay of vari-
ous mechanisms of attack and defense in the host and pathogen with respect to M.tb
have been developed and provides insights into the immune responses as well as the
different outcomes of M.tb infections under different conditions (Raman et al. 2010).
Kirschner and co-workers have worked on several mathematical models for the inter-
action of M.tb with the human immune system, some examples of which are a virtual
model of the immune response to M.tb that characterises the cytokine and cellular net-
work during infection, two compartmental models capturing the important processes
of cellular activation and priming capable of reproducing typical disease progres-
sion scenarios, agent-based models for simulating granuloma formation (Marino
et al. 2011) and a mathematical model describing macrophage biochemical pro-
cesses based on activation, killing and iron regulation. Host-pathogen FBA models
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enable studying the metabolic states of the system in an infected condition. Gene
essentiality studies were performed and the predictions were shown to be much more
accurate in the combined model. The models were further integrated with gene ex-
pression data for the different forms of the disease, such as latency, meningeal and
pulmonary tuberculosis, to study the subtle metabolic differences amongst the dif-
ferent forms and therefore to have much more accurate perturbation studies for the
different forms (Bordbar et al. 2010).

The above methodologies have helped in successfully identifying the different
aspects of M.tb infection. Protein-protein interactome analyses have helped in iden-
tifying highly influential proteins that can form potential drug targets (Padiadpu
et al. 2010). Metabolic reconstructions of the host and pathogen as well as the com-
bined models have provided useful insights into genes essential for the survival of
the pathogen using FBA (Jamshidi and Palsson 2007). Further, integrating host and
pathogen FBA models have provided useful insights into the metabolic changes that
occur in the host upon bacterial infection (Bordbar et al. 2010). Host-pathogen in-
teraction studies guide in identifying factors important for virulence, the different
immune responses and most importantly understanding the emergence of resistance
(Raman et al. 2010). A new concept of co-targets was proposed by Raman et al.
that inhibited two targets simultaneously to deal with resistance. All these analyses
have been integrated into a rational pipeline called targetTB to identify potential
drug targets for M.tb (Raman et al. 2008), which has yielded a list of about 450 high
confidence drug targets.

8.4 Malaria

Malaria caused by Plasmodium parasites, is transmitted through the bite of infected
Anopheles mosquito. In 2011, an estimated number of 216 million cases of malaria
were reported and 655000 deaths were caused by malaria in 2010 (World malaria
report 2011), indicating that it is one of the major contributors to global morbidity
and mortality rates. Although malaria is curable, it is still a life-threatening disease,
and with the emergence of antimalarial resistant strains it has become difficult to
tackle this disease efficiently.

Whole genome sequencing of Plasmodium falciparum was accomplished in 2002
(Gardner et al. 2002) and it has revealed that approximately 35 % of the proteins en-
coded have identifiable function and the remaining are uncharacterized. With the
availability of genomic sequence of P.falciparum it has become easier to identify
unique enzymes involved in pathways, which are different from the humans, such that
inhibitors can be synthesized against them, thus disrupting the pathway in pathogen.
Mass spectrometric studies have been performed in order to understand the mecha-
nism by which the parasite modulates the level of different metabolites taking part
in various metabolic processes of the host so as to survive inside the host cell and
proliferate (Olszewski et al. 2009). Due to the complex life cycle of the pathogen, it
becomes necessary to identify genes expressed at different stages of infection such
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that they can be used as targets (Winzeler 2005). A combination of genomics and pro-
teomics methods were employed by Hall et al. (2005) in order to identify a conserved
set of genes in Plasmodium spp. and also emphasize upon genes which have been cho-
sen under selective pressure at different stages of pathogenesis. Flux balance model
for P.falciparum was constructed in order to study the metabolic state of the pathogen
upon perturbation and also predict the essential genes which can also be used as tar-
gets (Plata et al. 2010). The model consisted of 1001 reactions and 616 metabolites,
of which enzyme-gene associations were reported for 366 genes and 75 % of the total
enzymatic reactions known. Models were enriched by incorporating gene-expression
data and also the accuracy of the predictions to experimental results was high indi-
cating that in silico models can be used for studying the complex pathogen. An open
access database called PlasmoDB has been developed which provides information
about the transcriptome and protein expression data of Plasmodium spp. at different
stages of their life cycle, which can be used to investigate the involvement of a gene
in a defined process by correlating with gene expression profiles or proteomics or
protein-protein interactions data of the species(Aurrecoechea et al. 2009).

Plasmodium spp. is capable of surviving inside the host by synthesizing different
chemical compounds during various stages of its life cycle. Although these com-
pounds have been used as targets for vaccine development, not much success has
been achieved in eradicating malaria. Due to the complex host-pathogen interaction
and prevalence of resistance to antimalarial drugs, efforts have been made to discover
newer drugs using a systems biology approach. The immune response of the host
plays a complicated role in malaria as it not only helps in evading the pathogen but
is also responsible for causing complications in the host (McNicholl et al. 2000).
Jomaa et al. reported a non-mevalonate pathway of isoprenoid biosynthesis, located
in the apicoplast region of Plasmodium, and the drugs effective against the metabo-
lites involved in this pathway as potent antimalarials (Jomaa et al. 1999). Reverse
vaccinology approach has been employed to search for antigens in Plasmodium spp.
which when targeted will appropriately, aid in vaccine development. Systems bi-
ology has been used to anticipate the immune response of the host cells upon the
interaction with the antigen and also understand the complex life cycle of the parasite
(Rappuoli and Aderem 2011). Bioinformatics approaches have been used to annotate
the genome of Plasmodium spp., majority of which is still uncharacterized. Fed into
systems biology models, simulations help in discovering newer therapies for malaria
as the parasite has acquired resistance against known drugs. Number of potent anti-
malarials (artimesinin and its derivatives) has been synthesized and systems biology
based approaches will aid in characterizing the mechanism of action of these newly
discovered antimalarial compounds (Dharia et al. 2010).

8.5 Cholera

Reports from WHO indicate that 3.5 million suffer from diarrhoeal infections, the
causative agent being Vibrio cholerae, capable of secreting the potent cholera toxin
(Nelson et al. 2009). This acute intestinal infection is transmitted through contami-
nated food and water and if left untreated can lead to death of the patients. Although it
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is curable if treated on time, severe symptoms are observed in immune-compromised
patients. The strains of V.cholerae have been classified either as classical or El Tor.
Two sero groups, V. cholerae O1 and V. cholerae O139, are mostly responsible for
the outbreak of cholera. Multidisciplinary approaches are being used to find new
drugs to reduce the number of deaths caused by cholera.

Top down approaches have been used to identify additional genes that are in-
volved in V.cholerae virulence and colonization inside host intestine (Kaper et al.
1995). Apart from the enterotoxin produced by V.cholerae, Asaduzzaman et al. have
also narrowed down on other essential virulence factors present in the bacterium
such as toxin-coregulated pilus that functions as a receptor for the bacteriophage
and encoding cholera toxin genes (Asaduzzaman et al. 2004). A regulator-centric
approach has been used to focus upon LysR-type transcriptional regulators (LTTRs),
one of the most diverse families of transcriptional factors in prokaryotes having role
in wide range of processes. A few LTTRs were found to be involved in intestinal col-
onization as well as metabolic regulation in vivo (Bogard et al. 2012). Mathematical
models have been developed to understand the dynamics of pathogen colonization
and indicate the contribution of host and pathogen towards bacterial gut density
(Spagnuolo et al. 2011). Such studies are essential to understand pathogenesis of the
disease. By performing a high-throughput phenotypic screen of 50,000-compound
small molecule library, Hung and coworkers tried to identify inhibitors of V.cholerae
virulence factor expression (Hung et al. 2005). The authors have reported a com-
pound named virstatin, which is capable of inhibiting virulence expression, ToxT
regulation (part of ToxR regulon, responsible for virulence) post-transcriptionally,
and also preventing colonization in the intestine of the animal model to an extent.

Although cholera is a re-emerging disease, till date no simple assay has been de-
veloped to diagnose this disease efficiently. Oral or IV rehydration are recommended
treatment and thus administering immediate oral rehydration therapy, rapid recovery
of the patients can be observed. Since the late nineteenth century till 1970s, injections
of inactivated whole bacteria were used as a vaccine. However, the limitation of these
is that they are effective only for short durations. Oral vaccines against cholera were
developed to overcome the shortcomings of parenteral vaccines. Till date two major
classes of oral cholera vaccines namely killed WC- based and genetically attenuated
live vaccines are used to treat cholera (Shin et al. 2011). Although newer vaccines
such as Dukoral and Shanchol have received WHO prequalification, these vaccines
also have their own limitations, thus keeping the problem of vaccine discovery as an
open challenge (WHO 2012).

Systems biology approaches have been used in order to analyze gene expression
of V.cholerae to identify virulence genes, which may provide a better insight to the
infectious process. Using gene-expression data, comparison of the dynamic tran-
scriptomes was carried out for the pathogen growing in different media at various
stages of growth. A set of regulatory interactions for genes involved in virulence
were identified (Kanjilal et al. 2010). Using information from different sources re-
garding the pathogen, gene response network has been constructed which is expected
to aid in design of biomarkers and therapeutics. A metabolomics approach has been
used to measure the extracellular changes in the flux of certain metabolites upon the
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administration of cholera toxin in cell lines, and this approach can be extended to
study spatial and temporal changes in the metabolites flux, thus providing a clear
picture of the metabolic activity in the cell in the presence of toxin (Eklund et al.
2006). Thus, using systems biology approaches it has become possible to identify
the genes involved in virulence, interaction of the pathogen with the host, discover
new biomarkers for the disease and also develop newer vaccines to overcome the
limitations of the already existing vaccines (Hill et al. 2006).

8.6 Staphylococcus aureus Infection

Staphylococcus aureus (S.aureus), causative agent of nosocomial infection, is a life
threatening pathogen to human population due to the wide range of diseases it causes,
especially hospital acquired infections. Apart from the number of infections that
this microbe is responsible for, it has also been observed that S.aureus is acquiring
resistance against multiple antibiotics (Kaatz et al. 2005). In some parts of the world,
methicillin resistant strains of S.aureus (MRSA) have been reported, which is posing
a major health problem. Thus, it has become essential to understand the mechanism
of pathogenesis of S.aureus and also its interaction with the host.

The global transcriptional profile of the pathogen aids in the study of regulatory
genes and also gives insight into the expression profile of the genes under different
conditions such as exposure to antibiotics (Kuroda et al. 2003) and stress (Anderson
et al. 2006). Plikat et al. have constructed a protein expression map to study proteomes
of S. aureus Mu50 and its mutants. Using GSEA (Gene set enrichment analysis), they
have carried out studies to determine the virulence factors and pathways affected in
mutants. Capsular polysaccharide of S.aureus had been earlier regarded as putative
protective antigen and hence as possible vaccine candidate. However, subsequent
studies noted that the clinical isolates lack a capsule, hence rendering the vaccine
ineffective in the clinical trials. They have also reported that multivalent-antigen
vaccine is capable of eliciting both cell-mediated and humoral immunity and in turn
induce protection against S.aureus thus preventing infections at various anatomical
sites (Plikat et al. 2007). Systems biology approaches have been used to identify
targets in order to develop multivalent-antigen vaccine and also determine host-
microbe interaction which helps in understanding the pathogenesis mechanism and
ultimately finding a solution for preventing as well as curing the disease.

8.7 Applications of Systems Biology in ‘Anti-Infective’
Drug Discovery

With the advent of large scale omics data and the development of various modeling
tools, it is possible to build large scale biological models. Although, the reductionist
approach provides detailed insights into the molecules responsible for a particular
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disease, inhibition of a given protein molecule in isolation is insufficient to pro-
vide insights into the effect of this inhibition on the system as a whole. Existence
of biologically feasible alternate paths may render this inhibition useless. Systems
biology provides a mathematical framework to understand the physiological effect
of inhibition in a network of interacting components. In the classical drug discovery
regime, a major part of it was a black box and a target was selected based on the
end result obtained. Mathematical models obtained can be used to study the effect
of inhibition of the targets or exposure of the system to the drug, so that a rational
behind the working of each drug is understood. TargetTb (Raman et al. 2008) is one
such attempt wherein a comprehensive target identification pipeline is developed for
M.tb. Many known targets were identified, thus validating the model and many more
new targets have been suggested. A total of 451 high confidence potential drug tar-
gets were listed. The success rates from such pipelines are likely to be high as target
selections are knowledge driven. Methods such as FBA have also been successful
in identifying set of essential enzymes in P.falciparum and form a starting point
for antimalarial drug targets (Huthmache 2010). Systems vaccinology is a branch of
systems biology that helps in predicting the efficacy of vaccines in a biological sys-
tem. It is also useful in studying the immunological responses after vaccinations thus
helping in vaccine development (Trautmann and Sekaly 2011). Figure 8.2 describes
the various applications of Systems biology.

8.8 Conclusion

Understanding a biological phenomenon involves studying the system as a whole
rather than as parts. Systems biology provides us with the tools to examine different
biological aspects, such as protein-protein interactions, protein-metabolites interac-
tions, regulatory mechanisms, signaling cascades using computational means. This is
crucial because a continuous interaction exists between different biological processes
and therefore studying these processes individually, as carried out in a reductionist
approach, do not provide a holistic view of the system under study. Over the years
many computational as well as experimental tools have been developed that help in
collation, reconstruction and analysis of large-scale data.

The scale at which various molecular level studies are currently being carried out,
is yielding genome-scale and systems level data on many fronts, leading to ready
reconstructions of large systems. These can then be integrated with the deep insights
already available about individual components. Although a complete systems view
of the disease has still not been deciphered, it seems that we have at the least a coarse
grained map of the pathogen in many of these cases, helpful for obtaining an aerial
view of the disease that can be used for addressing a variety of questions. The map
of course is sufficiently fine-grained in parts enabling a more detailed zoomed in
version in some pathways especially with respect to intermediary metabolism.

Reconstruction of large scale models encompassing various processes of the bac-
terium and simulation will be extremely valuable in identifying best strategies for
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Fig. 8.2 Various applications of systems biology

intervention. Methods to study biological systems at multiple scales and levels and
virtual cells are not as yet standardized. Nor are the methods required to gener-
ate comprehensive omics scale data from multiple perspectives, particularly when
it comes to quantitative profiling. Thus, reports in literature of such cellular level
models not only for M.tb, but in general for any organism are few and far between.
Nevertheless, it is quite clear that the virtual cell approach, especially when quanti-
tative aspects are incorporated, holds a lot of promise for picking an efficient or even
an optimal strategy for killing the pathogen.
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