
Chapter 7
Complex Networks and Systems Biology

Ushasi Roy, Rajdeep Kaur Grewal and Soumen Roy

Abstract Modern biology has decisively moved in a direction where we scrutinise
systems holistically rather than looking at entities in different levels discretely or
in isolation. Unlike previous reductionist approaches; in this new approach called
Systems Biology, networks play a crucial role in arriving at and summing up the
holistic picture and in understanding the emergent properties of the system. In this
chapter, we give an overview of how network approaches are useful at various levels
in biology. After a conceptual introduction to networks and various network met-
rics used to quantify networks; we discuss various concepts like network motifs and
random networks. We then examine at length about how networks shed insight at vir-
tually every layer of life like gene regulatory networks, networks involving proteins
and metabolic networks. We end the chapter with a discussion of the application of
networks to epidemiology.
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7.1 Introduction

7.1.1 Systems Biology

The study of biological systems has historically been a largely phenomenological or
observational science. However, in the last quarter of the twentieth century; in-depth
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quantitative studies of various biological phenomena started gaining momentum.
Over the course of the last decade and half, the advent of high-throughput technolo-
gies have only made the application of quantitative techniques imperative to biology.
They also inculcated the realisation that biological systems are far too complex to
be solved by classic reductionist approaches. It was becoming increasingly apparent
that the study of biological systems need an integrated, multidisciplinary approach
whose essence is underscored by an effective cycle of modelling and experimenta-
tion. “Systems” approaches are definitely poised to occupy mainstream biology over
the course of the next decade or so. These approaches examine the structure and dy-
namics of cellular and organismal function, contrary to the study of isolated parts of
cell or organism (Kitano 2002). Thus, “Systems Biology” is a new branch of science
which integrates techniques from Mathematics, Physics, Chemistry, Computer Sci-
ence, Engineering and Information theory to model various biological phenomena
from a holistic point of view.

Intrinsic to this development, is the concept of “emergent properties” which refer
to holistic properties at the system level, since the behaviour of the system as a whole
will not merely be an agglomeration of the properties of its segregated constituents.
For studying this composite system, consolidation of the diverse interactions among
various components of the system is required. The theory of networks which is based
on a well established graph-theoretic approach; enables us to do so efficiently (Albert
et al. 2002; Newman 2010).

7.1.2 Networks

From the perspective of Graph Theory, a network can be represented by a graph. A
graph is defined as G = {V , E} where V is the set of nodes (or vertices or simply
points) and E denotes the set of edges (or links or arcs or simply lines), which
establishes an interconnection among the nodes. A real complex system can be
mapped onto a network structure where one needs to identify the major components
of the system as the nodes and the interactions among them as the edges. This
concept has been illustrated below by two simple graphs. In Fig. 7.1a, the set of
nodes V = {a, b, c, d} and the set of edges is given by E = {(

e1 = (a, b)
)
,
(
e2 =

(b, c)
)
,
(
e3 = (a, c)

)
,
(
e4 = (c, d)

)}
. Similarly, V = {

v1, v2, v3, v4, v5
}

and E ={(
e1 = (

v1, v5
))

,
(
e2 = (

v2, v5
))

,
(
e3 = (

v2, v3
))

,
(
e4 = (

v3, v5
))

,
(
e5 = (

v4, v5
))}

correspond to the set of nodes and edges in Fig. 7.1b.

7.1.2.1 Subgraph

A subgraph G′ = {
v′, e′}, having v′ vertices and e′ edges is defined to be a subgraph

of G = {V , E} if v′ is a subset of V and e′ is a subset of E.
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Fig. 7.1 (a) and (b): Simple graphs

7.1.2.2 Directed Networks

In a directed network, the edges have a direction, i.e., identification of the “source”
and “sink” nodes for a particular connection is important. Thus, a particular node
will have both incoming and outgoing edges and will have different in and out
degree distributions. Many important networks, viz., World Wide Web (WWW) and
metabolic networks are directed in nature.

7.1.2.3 Weighted Networks

Generally we construct binary networks with the edge weights having two possible
values, 0 and 1; representing absence and presence of connections respectively. In
contrast, many real networks are weighted in nature. In these networks, in addition
to the binary values, edge weights can have any fractional values in between 0 and
1, depending on the strength of interactions. Here all the edges are not equally
important and the edge with higher edge weight will have a higher significance in
the network. Examples are social networks, internet and cellular networks as they
are characterized by the level of acquaintance between individuals, band widths and
reaction rates which may have different values (Fig. 7.3).

7.2 Network Metrics

Network metrics help in the characterisation of a given network—both quantitatively
and qualitatively. Their significance lies in analysing both the local property, i.e., the
individual behaviour of nodes or edges, as well as the global property of the whole
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Fig. 7.2 A simple directed
graph with node set
V = {

a, b, c, d
}

and the set of
directed edges E = {

(e1 =
(b, a)), (e2 = (b, c)), (e3 =
(c, a)), (e4 = (c, d))

}
where

the first node in the edge set
denotes origin while the
second one represents the end
of an edge

Fig. 7.3 A simple undirected
weighted graph with the set of
nodes defined as
V = {

a, b, c, d
}

and the set of
edges E = {

e1, e2, e3, e4
}

having edge weight
W = {

w1, w2, w3, w4
}

network. These structural network metrics may also serve as a great tool for exploring
the unified behaviour of the network.

7.2.1 Degree

A degree of a node is defined as the number of edges incident on that node. It signifies
the number of connections made by a node i with the remaining nodes in the network,
termed as neighbours of node i. The nodes which have comparatively much higher
degree than that of the other nodes in a network correspond to the hub.

For directed networks, degree of a node is specified using two distinct centrality
measures in-degree and out-degree. In a directed network, the number of edges
directing outward from the particular node is its out-degree and the number of nodes
directing towards it correspond to the in-degree of that node in a network. In Fig. 7.1a,
the degree of each of the nodes {a,b,c,d}in the graph G are {2,2,3,1} respectively. For
the directed graph H in Fig. 7.2 the in-degree and out-degree of the nodes {a,b,c,d}
are {2, 0, 1, 1} and {0, 2, 2, 0} respectively.

7.2.2 Degree Distribution

The degree distribution P(k), the probability that a randomly chosen node has degree
k or fraction of nodes in the network having degree k, of a network provides one
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of the basic topological characterisation of a network. Various types of networks
can sometimes be distinguished by their degree distribution. For instance, scale free
networks have a power law degree distribution,

P (k) ≈ k−γ (7.1)

and it has been claimed that when 2 ≤ γ ≤ 3; the hubs play a significant role
in the network (Barabasi and Oltvai 2004). In contrast, small random networks
follow Binomial distribution which in the limit of large N approaches the Poisson
distribution

P (k) ≈ e−〈k〉 〈k〉k
k! (7.2)

where 〈k〉 denotes the average degree of the graph. For directed networks, there might
be different distributions of in-degree, out-degree and total degree of the nodes in
the network.

7.2.3 Assortativity

Assortativity refers to the affinity of nodes in a network to become linked to other
nodes having similar degree distribution. This tendency of correlation among nodes
of similar degree is also sometimes called as assortative mixing. In contrast, some-
times high degree nodes are somewhat inclined towards low degree nodes. This kind
of dissimilar preferential attachment gives rise to a disassortative network. Most
biological and technological networks exhibit disassortative mixing while social net-
works belongs to the former class, i.e., they are assortative in nature. Mathematically,
assortativity of a complex network can be expressed as

r = 〈k1k2〉 − 〈k1〉〈k2〉
σ 2

k

(7.3)

where the averages are taken over all edges and σ 2
k is the variance of the node-degree

k. For all practical purposes, calculating assortativity of real world networks, the
above equation can be modified as (Newman 2002)

r = E−1∑
e jeke − [E−1∑

e
1
2

(
je + ke

)]2

E−1
∑

e
1
2

(
j 2
e + k2

e

)− [E−1
∑

e
1
2

(
je + ke

)]2 (7.4)

where je, ke are the degrees of the nodes at the ends of the eth edge, with e =
1, 2, . . ..., E.
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Fig. 7.4 A graph G with two disconnected components

7.2.4 Shortest Path Length

A path is an alternate sequence of nodes and edges, starting and ending with a node,
such that each edge in the sequence is incident on the node preceding and following it.
There is no repetitions of nodes and edges in a path. In Fig. 7.1a {a,e1,b,e2,c,e4,d}
represents a path connecting the nodes a and d. Shortest path between a pair of
vertices (i, j ), where i, j ∈ V ,in a graph is the geodesic distance (dij ) between them
i.e the minimum number of edges traversed while moving from node i to node j.

7.2.5 Connectedness

A graph is said to be connected if there exists at least a path between any pair of
nodes constituting the graph. It may so happen that there exits a pair of nodes in
a graph having no path connecting them. Such graphs are known as disconnected
graphs. For a disconnected graphs, each connected component is termed as a cluster.
Giant cluster in a network refers to the largest connected component of the network
(Fig. 7.4).

Directed graphs, in terms of connectedness, are defined to be strongly or weakly
connected graphs. If each pair of nodes in the directed graph has at least one directed
path (each edge in the sequence is incident out- and in- on the node preceding and
following it, respectively) between them, the graph is said to be strongly connected. If
the underlying undirected graph (graph obtained from the directed graph by removing
the directions of edges from it) of the directed graph is connected, we call it as weakly
connected graph. It is quite obvious that a strongly connected graph will definitely
be a weakly connected graph (Fig. 7.5).
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Fig. 7.5 An example of a
strongly connected graph:
Say, for example, the set of
directed paths P from node a

to the other three nodes is
given by
P = {(

a, e5, c, e4, d, e3, b
)
,(

a, e5, c
)
,
(
a, e5, c, e4, d

)}

The connection between a pair of nodes in a network is often represented by
adjacency matrix or connection matrix. The adjacency matrix of the graph in Fig. 7.1a
of N nodes and no parallel edges is an N by N symmetric binary matrix A = [

aij

]
,

where

xij = 1, if there is an edge between node i and j

= 0, if there is no edge between them

a b c d

A =

a

b

c

d

⎛

⎜⎜⎜⎜⎜
⎝

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

⎞

⎟⎟⎟⎟⎟
⎠

(7.5)

7.2.6 Average Shortest Path Length

Average Shortest Path Length (l) or the characteristic path length of a network is the
sum of all the shortest path lengths between each pair of nodes in a graph averaged
over all possible edges in a network.

L = 1

N (N − 1)

∑

i,j∈V ,i =j

dij (7.6)

The above definition, however, fails in case the network has more than one connected
component. One way of dealing with it is to restrict the sum over the nodes belonging
to the largest connected component of the network. Another approach is to assign
infinite distance between the pair of disconnected nodes or the pair of nodes having
no connected path, and then take the harmonic mean of the shortest path between
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the pair of nodes in the network. The latter gives a quantitative measure, called the
Efficiency of the network, which is defined as follows

E = 1

N (N − 1)

∑

i,j∈V ,i =j

1

dij

(7.7)

7.2.7 Eccentricity

Eccentricity E(i) of a node i in a graph G is the maximum value of all the geodesic
distances calculated from that particular node i to all other nodes j in the network.

E(i) = max
i∈V

d(i, j ) (7.8)

The eccentricity of a node i represents how close or distant is i from the farthest
node of the network. The node with minimum eccentricity in graph G is called the
centre of G.

7.2.8 Diameter

The diameter of a graph refers to the maximal distance between any pair of its
nodes. The diameter of a disconnected network, composed of more than one isolated
components or clusters, is infinite. So, for practical purposes, in such cases, it may
be defined as the maximum diameter of its components.

7.2.9 Closeness Centrality

The closeness centrality C of a node ni is the inverse of the sum of its distances to
all other nodes, nj . Mathematically, it is defined as

C(ni) = N − 1
g∑

j=1

d
(
ni , nj

)
(7.9)

Closeness of a node signifies the efficiency of a node to convey information within
the network. For example, consider a star graph as shown in Fig. 7.6. In this graph the
node i is the most centrally located node in the graph. Thus, it spreads information
much faster than any other node in the network can.
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Fig. 7.6 Star graph

Fig. 7.7 In this figure, the
node having highest
betweenness is i

7.2.10 Betweenness Centrality

The betweenness centrality of a node measures the node’s involvement in the
communication paths of other nodes in the network.

B(v) =
∑

s =v =t

σst (v)

σst

(7.10)

where σst is the total number of shortest paths from node s to node t and σst (v) is the
number of those paths that pass through v (Freeman 1977).

For better understanding of this centrality, consider the graph shown in Fig. 7.7.
Here, nodes in the graph can be divided into two groups. These two group of nodes
are connected by a single node i. Hence the betweenness centrality value of node i

is the highest among others. If one wants to travel from one node lying in one cluster
to another in the other cluster, then the path passing through node i is the only way.
Another important realisation of this centrality can be gained while analysing this
graph. If the node i from the network is removed (along with the edges incident on
it), the graph becomes disconnected, with two connected components. Removal of
the high betweenness nodes will result in either of the two following consequences.
In one case, the communication among different clusters may get completely lost,
as in the above mentioned example. In the other one, the cost of traveling may
get enhanced since the path will comprise of more edges than before. These high
betweenness nodes are often called as bottlenecks of the network.

7.2.11 Clustering Coefficient

It is a measure which accounts for the tendency of a node in a network to cluster
together. This behaviour is commonly observed in most real world networks, in
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particular social networks. Clustering can either be global or local, depending on the
overall clustering of nodes in the whole network or the property of the single node.
The definition of Global Clustering Coefficient (GCC) is based on the concept of
triples of nodes. A triple consists of three nodes which remain connected by either
three (closed triple) or two (open triple) undirected edges. GCC is the ratio of the
number of triangles to the number of connected triples.

C ′ = 3 × Number of triangles

Number of connected triples
(7.11)

The Local Clustering Coefficient (LCC) of a node in a graph gives a quantification
of the proximity of its neighbours from becoming a completely connected graph.
It can be defined in the following way. A node, i with ki neighbours, can have, at

most, ki C2 = ki(ki−1)
2 number of possible edges in its neighbourhood. Suppose, the

neighbours of node i are connected by ei edges, then the LCC of that node is defined as

ci = 2ei

ki

(
ki − 1

) (7.12)

Therefore the Clustering Coefficient of the whole graph can be obtained by taking
average of ci over all the nodes in G:

C = 〈c〉 = 1

N

∑

i∈N

ci (7.13)

7.2.12 Cliques and Community Structure

In a complex network having large number of nodes and edges, a k-Clique is defined
as a completely connected subgraph having a set of k nodes in which each node is
connected to every other node by an edge in that subgraph. Two k-cliques will belong
to the same community when they share k − 1 nodes.

7.2.13 Modularity

A relatively independent unit, called modules (also called groups, clusters or commu-
nities), is often present in a complex network. Modularity is a quantitative measure
which describes the extent to which a system is divided into modules. A network
with high modularity value will be endowed with intense connections among nodes
within a module but sparse or minimal links to other modules in the network.
Mathematically, modularity is defined as

M =
m∑

i=1

=
[

ei

E
−
(

di

2E

)2
]

(7.14)
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Fig. 7.8 a 3-clique and b 4-clique

where E is the total number of edges in the network, ei is the number of edges within
module i, di is the sum of degrees of all the nodes of module i, and the summation
runs over total number of modules m in the network (Fig. 7.8).

7.2.14 k-Core (or k-Shell) Decomposition

K-core decomposition method provides us a hierarchical representation of the net-
work. A k-core of a graph G is a maximal subgraph of G in which each node is
connected to at least k other nodes in the subgraph. A node i belongs to a k-shell if
and only if it belongs to the kth-core but not to the k + 1th-core.

The k-core decomposition is based on sequential removal of nodes along with its
edges. Let us consider a connected graph G. At first, all nodes with degree d = 1 are
removed from the graph G. After their removal, new nodes with degree d = 1 may
appear in G. The pruning process is continued until all the nodes with degree d = 1
are removed. These nodes together with their incident edges forms the ks = 1 shell. In
a similar fashion the higher degree nodes are removed to obtain the ks = 2 shell and so
on. The process is repeated until all the nodes from the graph G have been removed.

The network topology plays a significant role in portraying the interactions within
the nodes. Such decomposition have been used by many researchers to analyse
the real world networks (Wuellner et al. 2010). The k-core decomposition of PPI
network of yeast has revealed that the proteins belonging to the innermost core have
higher probability of being both essential and evolutionary conserved (Wuchty et
al. 2005). Judicious introduction of new parameters like synthetic accessibility have
demonstrated sufficient promise in predicting the viability of knockout strains with
accuracy comparable to approaches using biochemical parameters (like FBA etc.)
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Fig. 7.9 k-core
decomposition of a simple
graph

Fig. 7.10 k-shells (ks ) of the graph G in Fig. 7.9. a ks = 1, b ks = 2 and c ks = 3

on large, unbiased mutant data sets (Wunderlich et al. 2006). Another recent topic
where network metrics are thought to play a significant role is the controllability of
biological networks (Banerjee et al. 2012; Fig. 7.10).

In this section we have hopefully presented an elaborate introduction to network
metrics. Recent research has however conclusively shown that instead of looking at
just one or two metrics, it is imperative that we look at multiple metrics in parallel
to get the most informative picture (Filkov et al. 2009; Roy 2012, 2014).

7.3 Random Graph Theory

7.3.1 Erdos-Renyi Graphs (ER Graphs)

Erdos-Renyi Graphs are random graphs where edges are constructed between all
pairs of nodes with some equal probability (say p), independent of one another. The
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Fig. 7.11 a Positive
autoregulation: activation of
gene A by its own product,
b Negative autoregulation:
deactivation/inhibition of
gene B by its own product

degree distribution profile of ER graphs shows Poisson distribution. The ER Graphs
have low clustering coefficients and the average path length are found to be smaller
compared to the real world networks.

7.3.2 Small World Networks

Networks having smaller average path length comparable to the ER graphs of similar
size and order but larger clustering coefficient than ER graphs are termed as small
world networks. The average shortest path length of the small world networks scale
as logarithm of the number of nodes in the network i.e.

L ∝ logN (7.15)

Most of the real networks exhibit small-wold property. The small world feature
is thus common to most biological networks such as neural network of C. elegans
and Food web.

7.4 Motifs in Network

Motifs in a network refer to a particular pattern of subgraphs that appear more
commonly than what is expected to occur in a random graph. Motifs are much more
abundantly present in biological networks than other type of networks. Self loops,
i.e., the edges which originate and terminate in the same node, can be thought of
as the simplest network motif. This will refer to autoregulation, or autogeneous
control, e.g., regulation of a gene by its own gene product, in a transcription network
(Fig. 7.11).
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Fig. 7.12 The 13 possible three-node directed subgraphs. Subgraph V, having annular nodes, is the
Feed Forward Loop (FFL), while subgraph IX, with striped nodes, is the Feed Back Loop (FBL)

Autoregulatory network may be positive or negative. For instance, in the former
case, the genes activate their own transcription, while in the latter, the genes act as
repressors. Negative autoregulation has many advantages. It speeds up the response
time of gene circuits. Also, it promotes robustness of the steady-state expression
level to fluctuations in production rate. In contrast, positive autoregulation slows
down responses. In addition, the system exhibits bistability when the rate of positive
autoregulation is strong compared to the degradation/dilution rate. The next interest-
ing step will be to look at three-node patterns. There are 13 such patterns, as shown in
Fig. 7.12. Out of these thirteen patterns, the only significant one is the Feed Forward
Loop (FFL), Fig. 7.12 (V), as found in the sensory transcription network of E. coli
and yeast (Lee et al. 2002; Milo et al. 2002). It is a strong network motif which
appears more often than its randomised version. A straight forward description of
a FFL would be as follows. It is composed of a transcription factor, say X, which
regulates a second transcription factor, Y, and both X and Y regulate gene Z. It has
two parallel paths of regulation, a direct path that goes from X to Z, consisting of a
single edge, and another indirect one via Y, having a cascade of two edges. A plus
sign or a minus sign is assigned to each of the edges corresponding to activation
and repression respectively. So there are 23 = 8 possibilities, out of which four are
coherent FFL and the rest four are incoherent. This grouping is based on the com-
parison between the signs of the direct and the indirect paths. If both comes out to
be the same, then we get coherent FFLs, and incoherent ones have opposite signs.
Incoherent FFLs have an odd number of minus signs and the two paths possess an
antagonistic effect. Among all the eight different types, Coherent Type-I, followed
by the Incoherent Type-I, are the two most abundant FFLs present across various
biological networks. Feedback Loops (FBL) (Fig. 7.13).
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Fig. 7.13 The eight possible Feed Forward Loops (FFLs). The upper four are the coherent FFLs,
while lower four are incoherent FFLs. ↓ denotes the activation (+ sign) and ⊥ denotes inhibition
(− sign)

7.5 Gene Regulatory Network (GRN)

Genes are fragments of DNA molecules which carry the genetic code in the form of
a sequence constituting four nucleotides, viz., adenine (A), thymine (T), guanine (G)
and cytosine (C). Each individual gene has its own characteristic genetic code and
genes are collectively responsible for various functions in a living organism. The two
step process in which at first the information encoded in the nucleotide sequence of a
DNA gets decoded to messenger RNA (mRNA) and then proteins are synthesised to
perform all the essential biochemical functions is called gene expression. The former
step is called Transcription while the latter is the Translation. A number of genes
act together to perform a definite biological function. To depict this, we can think of
an interactive network of fragments of DNA or mRNA (nodes) which governs the
rate of gene expression, i.e., the rate of protein synthesis, which is known as a Gene
Regulatory Network or GRN.
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7.6 Networks of Proteins

Protein, the most important biological macromolecule, which performs almost all
the essential functions in a living organism; is a polypeptide chain formed from 20
possible amino acids. To accomplish various biological functions, the protein folds
to attain a well defined three dimensional spatial conformation (often called as the
native state). This native state correspond to the global minima of the energy land-
scape. The protein folding is driven by a number of non covalent interactions, viz.,
hydrogen bonding, van der Waals force, ionic and hydrophobic interactions, among
its constituent amino acids. To visualise this interaction, one may take recourse to
networks. Proteins can be modelled into a network containing amino acid residues
as nodes and two of the residues are linked together if they interact.

7.6.1 Protein Structure Network (PSN)

Protein Structure Networks (PSN) are based on the geometrical distance between
different amino acids. Geometrical considerations provide deep insights to protein
folding. PSN’s identify the Cα atoms of the amino acid residues as nodes. Two
residues are said to interact with each other if the geodesic distance between their
Cα atoms is less than a fixed cut-off value like 8.5 Ao (Vendruscolo et al. 2002). Such
a representation mainly emphasises the backbone chain interactions of the proteins. A
few selected nodes (often called key residues), from these networks which have high
betweenness centrality; correspond to the previously known nucleation centres for
protein folding. The residues identified by such graphical properties are sometimes
investigated further for their role in providing unique structure to the protein native
structure. However such a formalism of PSN disregards the side chain interactions
of the amino acids within the polypeptide chain. Side chain interactions are essential
for maintaining the 3D structure of the protein. To encapsulate these interactions, a
different mechanism for designing PSN has been proposed. Instead of considering
the Cα atoms only, connections were established for any two atoms of the amino acid
residues whose distance falls within the fixed cut-off. Many such PSNs with varying
cut-off distances to probe the long-range and short-range interactions within a protein
have been explored (Greene et al. 2003). The short-range interactions networks
show small world property while single-scale behaviour in degree distribution was
observed for long-range interactions networks. The latter was thought to confer
robustness in the overall topology of the protein structure against random mutations.
An alternative study incorporated only the non-covalent side chain interactions of
the amino acid residues (Kannan et al. 1999). The interactions were defined on the
basis of specific minimum interaction strength. The cluster profile and hubs in these
networks were identified to play a significant role in secondary structural integration
in a tertiary structure of proteins. The hubs also play a crucial role in enhancing the
thermal stability of the thermophilic proteins when compared to their mesophilic
counterparts (Brinda et al. 2005).
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7.6.2 Protein Energy Network (PEN)

Thus, we have seen that PSNs can capture the atomic interactions of proteins at
geometric level very well. Though they overlook the the basic chemistry of bonded
and non-bonded interactions. The energies of these interactions result from various
types of interactions, e.g., hydrogen bonding, hydrophobic interactions, cation-pi
interactions etc. taking place within a protein. The networks, which account only non-
bonded interaction energies, viz., van der Waals interaction (vdW) and electrostatic
interaction energy of the side chain atoms of the amino acid residues, are termed as
Protein Energy Networks (PEN) (Vijayabaskar et al. 2010).

The various amino acid residues are the nodes of the network. Edges are defined
between the residues i and j , if the non-bonded interaction energy, Eij ; is less than a
cut-off energy e. Since interaction energies between different pairs vary, the resulting
PEN is an undirected weighted network. Vijayabaskar et al. had explored PEN for
six different proteins. The interaction energies were calculated from equilibrium
ensembles obtained by performing Molecular Dynamics (MD) simulations. They
observed that the networks are densely connected i.e they have more number of
interactions for small energy cut-off e (less negative, ∼ −5 kJ/mol). As the cut-off
interaction energy is increased to high negative values (∼ −25 kJ/mol) the network
becomes more sparsely connected i.e it has low number of interactions or edges
connecting the nodes. The fractional contribution of vdW and electrostatic energy to
the total energy was also analysed. The vdW interaction energy dominates the region
of low interaction energy (less negative values) and its value falls off to zero for
e ∼ −35 kJ/mol while reverse is the case for electrostatic interaction energy which
dominates high interaction energy region (high negative values). Another important
observation was that the PEN breaks down into small independent clusters within a
small window of e. For less negative values of e, a large cluster percolates within
the network which can be quantified by the tethering together of small independent
clusters within the PEN by weak vdW interactions; as the value of e is made to
have less negative values. This provides an evidence for weak interactions (rather
than strong interactions) holding together the 3D structure of a protein. The cluster
profile of the network helps in understanding the structural integrity of the proteins.

7.6.3 Allostery and Protein Energy Network

Recently allosteric mechanism has drawn much attention in the field of research.
Allostery can be defined as the control of protein structure, function and/or flexibility
induced by the binding of a ligand or another protein, which is called an effector, at
a site away from the active site (allosteric site) (Goodey et al. 2008)

Loosely speaking, allostery is a regulation between two distant sites of a protein
caused by binding of ligands. PEN serves as a useful tool to explore this mechanism
of communication within the proteins. The communication paths between the two
functional sites of a protein can be elucidated by tracking the shortest path in the
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weighted PEN (Bhattacharya et al. 2011). The shortest paths between a pair of
residues in these networks, from energy point of view, will be the ones which are
less costly or energetically more favourable. To achieve this weights assigned to the
edges have values proportional to the reciprocal of the interaction energy among
the pair of residues. The suboptimal paths of the network with reduced efficiency
were also explored by deleting all the edges incident on any one of the residues
belonging to the optimal paths (the shortest path). An interesting observation was
the presence of these suboptimal paths as the optimal paths in less frequently accessed
conformations during MD simulations and thus effectively act as alternate paths of
communication adapted due to mutation/ligand induced perturbations. Such insights
gained by analysing PENs support theoretical as well as experimental observations
of the concept of transmission of allosteric signals through multiple, preexisting
pathways (de sol et al. 2009).

7.6.4 Protein Protein Interaction Network (PPI Networks)

Most fundamental biological processes are carried out by proteins and their in-
teractions. Proteins usually execute their functions through interactions with other
biomolecular units, rather than acting in isolation. In this type of networks, proteins
are nodes and if there is an experimental verification regarding binding between two
proteins, then an edge is drawn between the two. Previous studies have discussed
whether PPI networks are scale-free in nature. Such a study of a PPI network for
yeast shows that its degree distribution follows a power law with an exponential
cut-off (Jeong et al. 2001). In scale-free protein networks, most proteins participate
in very few interactions, while few hubs are involved in most of the interactions.
Another characteristic property is that small-world effect is also present in PPI net-
works which indicates that any two proteins are connected by a short path of very
few links. These networks are disassortative in nature, i.e., highly connected nodes
are seldom connected among themselves. The elimination of a protein often causes
functional disruption of a module in a PPI network. Such proteins are termed as
lethal. Thus lethality of a protein is the decisive factor characterising the biological
indispensability of a protein.

7.6.5 Protein Folding Network

During folding, a protein takes up consecutive conformations. Distinct conforma-
tional states are represented by nodes in the network and two of them are linked by an
edge if one can be obtained from another by an elementary move. It has been studied
that the network formed by the various conformations of a 2D lattice polymer has
small world properties (Scala et al. 2001). The degree distribution has been found to
be consistent with a Gaussian (Amaral et al. 2000)
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7.7 Metabolic Networks

Metabolism, a set of biochemical reactions essential for sustaining life, is one of
the various life processes taking place within an organism. The metabolism of a
compound involves a sequence of reactions, termed metabolic pathway, in which
the initial compound is transformed into various other intermediary compounds to
get the product by the action of enzymes. The intermediaries and the products of
such chain reactions are termed as metabolites. It may happen that the product of
one pathway is served to initiate some other pathway.

In metabolic networks, the nodes correspond to the substrates (ADP, ATP, H2O)
and the edges represent the predominantly directed chemical reactions among these
substrates. For 43 organisms, these networks have been studied (Jeong et al. 2001)
and for all of them; the degree distribution of the incoming and outgoing links have
been claimed to follow a power law, with the exponent value in the range 2.0–2.4.
There have also been alternate representation of these networks: ATP, ADP, NADH
are included as nodes only if they directly take part in the reaction (Ma et al. 2003).
Such metabolites are called current metabolites and are ignored while measuring the
average path length of the network during their indirect participation in the reaction.

It was found that the path lengths of the metabolic networks in eukaryotes are
longer than that of bacteria. Small world property was found in E. coli by representing
metabolic networks as two complementary networks—substrate graph and reaction
graph. It was hypothesised that since metabolic networks respond to perturbations
(like changes in concentration of the metabolite or the enzyme), their function could
be optimised by the small-world behaviour of the network (Wagner et al. 2001).

7.8 Networks and Epidemiology

We can get deep insights into the dynamics of disease spreading in an interacting
population of species by applying network theory. Here, we briefly describe two
well known spreading models on networks and recent developments about influential
spreaders in networks.

7.8.1 Susceptible Infectious Recovered (SIR)

In a network of N nodes, initially we assume one node is in the infectious state (I)
and the rest in the susceptible state (S). This node, denoted by I , is the origin of
Infection. The infection gets propagated in successive time steps. In each time step,
nodes of type I infects neighbours, which are susceptible to infection, with some
probability β. They then enter the recovered state (R), where they cannot be infected
again, i.e., they achieve immunity against infection.
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7.8.2 Susceptible Infectious Susceptible (SIS)

Here the immunised or recovered state of the origin, just after infecting the neigh-
bours, is absent. Infected individuals still possess the capability of infecting their
neighbours with probability β. However, they may subsequently return to the
susceptible state with probabilityλ; thus remaining infectious with probability (1−λ).

7.8.3 Influential Spreaders in Networks

A common belief related to infection or disease spreading is that the best (efficient)
spreaders will correspond to a highly connected nodes (high degree) or to the
most central nodes (having high betweenness value). It has been argued that the
network topology should naturally play an important role in infection spreading
or information spread. The position of a node in the network serves as a deciding
factor for it to be the most influential spreader. The k-shell decomposition method
was performed on a set of eight real social networks and both SIS and SIR model
were studied (Kitsak et. al. 2010). The nodes in the innermost k-shell were claimed
to be the most efficient spreaders.

7.9 Conclusion

In this chapter, we have hopefully given an overview of how complex networks
are important at every level in biology. In Sect. 7.1, we mention how biology has
shifted from a reductionist approach to holistic approach. Hence deriving a network
picture is of immeasurable value because complex networks understandably play
an integral part in this new approach. We went on to introduce the very basics of a
network or graphical representation; namely nodes, edges, weighted networks etc. In
Sect. 7.2, we dwell in-depth on common network metrics like degree, shortest path
length, connectedness, giant clusters, cliques and community structure, eccentricity,
diameter, closeness and betweenness centralities, clustering coefficient, assortativity,
k-core and modularity. In the next section, we briefly discuss about small-world
properties and random networks which serve as a good reference points in networks.
We then discuss the concepts regarding motifs and their importance in biological
networks. In Sect. 7.5, we discuss about interactive Gene Regulatory Networks of
fragments of DNA or mRNA (nodes) which governs the rate of gene expression, i.e.,
the rate of protein synthesis. In Sect. 7.6, we discuss about networks of proteins:
protein structure networks, protein energy networks and protein-protein interaction
networks and protein folding networks. In Sect. 7.7, we discuss about metabolic
networks. Finally, in Sect. 7.8 we end this chapter with a discussion of concepts and
models which deal with spread of infection on networks. Thus, we have hopefully
been able to portray the importance of complex networks to understand processes at
virtually every level of life.
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