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Abstract Recent advances in theoretical methods based on quantum mechanics and
classical mechanics with visualization tools have played a very important role in
chemistry and biology. Further, computers have a profound influence on the way we
do science in the last few decades. The current chapter provides a preliminary expo-
sure to a range of molecular modeling approaches applicable to small to medium sized
molecules to proteins. Recent advances in the theoretical and computational method-
ologies which are aimed to treat large molecules are described. Emphasis is given on
methods of computer aided drug design. These are preceded by a simple introduc-
tion to quantum mechanics, classical mechanics and molecular dynamics. A major
area in modelling biomolecules is a proper quantitative treatment of non-bonded
interactions. The importance of understanding various non-bonded interactions is
highlighted. The role of these non-bonded interactions which determines the biolog-
ical structure and functions is described. Thus, the current chapter provides a brief
overview of computational methods applied to biomolecules.
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GFA Genetic function approximation
HTS High-throughput screening
Ki Inhibitory constant
LBVS Ligand-based virtual screening
MCSCF Multi-configurational self-consistent field
MD Molecular dynamics
MLR Multi-linear regression
MM Molecular mechanics
PCR Principal component regression
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QM Quantum mechanics
QM/MM Quantum mechanics/molecular mechanics
QSAR Quantity structure activity relationship
SBVS Structure-based virtual screening
SCF Self-consistent field
TI Thermodynamic integration
VS Virtual screening

6.1 Introduction

Models are essential to comprehend the incomprehensible reality. While biology
and chemistry are empirical sciences, which are largely based on observations and
observing, it has become necessary to develop the understanding at atomistic level.
Therefore, modeling molecules has become an indispensable tool to not only com-
plement the structural and spectroscopic attempts to characterise molecules, but also
to provide the basic tool for imaging molecular action. Thus, tools for molecular vi-
sualization on one hand and computational approaches based on rigorous theory have
occupied central stage in the computer age. When dealing with small molecules, the
objective has been to obtain highly reliable properties often comparable with those of
experiments. Quantum mechanical treatment of atoms and molecules thus provide
the most fundamental dimensions to treat small molecules (Cramer 2004; Leach
2001; Hinchliffe 2003). In natural sciences there are different kinds of theories.
While theory has been a strong and integral part of physics, the science of chemistry
has grown with experimentation and biology with observations. In addition to theory
and experiment, the entry of computations has provided another dimension to pur-
sue science. While the ab initio computational approaches have the ability to model
and obtain every possible experimental property, their applicability becomes very
limited as the size of the system increases. Consequently, for macro-molecules, the
application of quantum mechanical approaches is severely limited. When the time
dependency in solving the Schrödinger wave equation is considered, its application
is restricted still further. Also the time scales that can be probed using ab initio molec-
ular dynamics (MD) are very small. Thus application of quantum chemical methods
based on ab initio theory is practically limited to systems with very limited length and
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Fig. 6.1 Hierarchical order of molecular modeling approaches at different time and length scales.
The figure depicts typical systems and methods which can be useful for varying time and length
scales

time scales. Therefore, one needs to resort to methods based on classical mechanics
to employ computational methods with larger length and time scales (Fig. 6.1).

In addition to the quantitative theories, many qualitative theories have emerged out
of a large body of data obtained from experiments and observations. These methods
based on informatics have been extremely successful in analysing the massive data
of protein and nucleic acid sequences and thus ushering the area of bioinformatics.
Most of the data in the area of bioinformatics is experimental. However, in the area
of small molecules, computations have played a very important role and produced
a large body of data of high reliability obtained by employing computational tools.
Therefore, molecular modeling and computation have been complementary to the
experimental efforts as far as the small molecules are concerned.

In this chapter, we introduce various computational methods which may be applied
to molecular systems with varying length and time scales. Further, we discuss the
basic principles of structure and analogue based approaches briefly. Finally, a cursory
outlook on the application of these methods on biomolecules and materials has been
given.
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6.2 Quantum Mechanics

Computational chemistry is aimed at theoretically determining the properties of the
molecules based on quantum chemical or classical mechanical equations of mo-
tion. Quantum chemical approaches are needed to accurately model the systems at
atomistic scale and more importantly for obtaining electronic structure information.
According to quantum mechanics (QM), all possible information on a molecular
system can be obtained from a wavefunction, ψ which is obtained by solving the
Schrödinger wave equation. However, the Schrödinger wave equation can be solved
only for one electron systems thus rendering it unsolvable for many electron systems.
The Schrödinger equation is the fundamental equation in QM and provides the basis
for providing a complete description of the electronic structure of a molecule. Due to
the difficulty associated with solving the Schrödinger equation for many electronic
systems a large number of approximations were provided. There are excellent trea-
tises available in the literature on computational QM, which deals with electronic
structure calculations based on either ab initio molecular orbital theory or density
functional theory (Cramer 2004; Jensen 2007; Levine 2013). Thus, we refrain from
providing any further details on this section for two reasons. The first being the
limitation of the space and the second and most important one is the limitation of
the applicability of quantum chemical approaches to large biomolecules in general.
However, in the following sections we discuss about the hybrid methods and multi-
scale modelling approaches, which employ and also largely based on the principle
of quantum mechanics.

Herein we provide a cursory look at the various approximations that are being
employed to solve the Schrödinger wave equation for medium sized molecules. The
primary approximation for most of the electronic structure calculations is the Born-
Oppenheimer approximation which essentially decouples the nuclear and electronic
part of the kinetic energy operator. Following this variation theorem has become ex-
tremely effective for setting a lower bound for the energy. Such a condition has played
a very important role in getting a better wavefunction through iterative procedures.
The second important approximation is perturbation theory truncated to second, third
or higher orders. However, the most effective theory based on electronic structure
methods is ab initio self-consistent field (SCF) theory, where the fundamental level
of reference wavefunction for the single determinant wavefunction is obtained by
using the Hartree-Fock method. Electron correlation, which in principle may be di-
vided into static and dynamic, is one of the most important parameter which needs to
be included for the accurate description of the wavefunction. Thus, methods which
go beyond Hartree-Fock level were warranted to obtain reliable properties of the
molecular systems. The most popular variants of these methods, where a single
Slater determinant can reasonably describe the system, are based on Moller-Plesset
perturbation theory, configuration interaction and couple cluster methods. However,
for open shell systems, the non-dynamic electron correlation becomes important,
and one needs to have more than one Slater determinant for the reference wavefunc-
tions. In such conditions the multi-configurational self-consistent field (MCSCF)
procedures become imminent.
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Methods based on these approximations have become very popular and have con-
tributed greatly to the understanding of molecular structure, function and property
relationships. The most rigorous method among these is based on the ab initio molec-
ular orbital theory. One of the main bottlenecks in the application of the rigorous
ab intio calculations to large molecules is computational capacity. In order to over-
come that, several economical semiempirical SCF methods have emerged. However,
the recent advances in the density functional theory have become very effective in
dealing with the medium to large biomolecules.

6.3 Molecular Mechanics

Molecular mechanics (MM) applies Newtonian mechanics on a molecule or a molec-
ular system to model its detailed structure and physical properties by calculating the
energy of a molecule in terms of the bonded and non bonded interactions. MM is
useful to study a broad range of molecular systems starting from small molecules to
large biological systems or material assemblies with many thousands to millions of
atoms (Field et al. 2007). The atomistic MM methods treat molecules as balls joined
by springs wherein each atom is a single particle with an assigned radius (typically
the van der Waals radius), polarizability, constant net charge (generally derived from
quantum calculations and experiment). The bonded interactions are treated as springs
with an equilibrium distance equal to the experimental or calculated bond length.
All these bonded and non bonded terms all together are represented as a functional
abstraction or force field to calculate the potential energy of a molecular system in a
given conformation.

6.3.1 Energy of a Molecule

The steric energy of a molecule is the energy due to the geometry of a molecule.
By nature, a molecule always tends to be in its lowest energy conformation to attain
stability. As stated earlier, MM assumes the steric energy of a molecule to arise from
a few, specific interactions within a molecule. These interactions include the stretch-
ing or compressing of bonds beyond their equilibrium lengths and angles, torsional
effects of twisting about single bonds, the van der Waals attractions or repulsions
of atoms that come close together, and the electrostatic interactions between partial
charges in a molecule due to polar bonds (Hirschfelder 1954). To quantify the con-
tribution of each, these interactions can be modeled by a potential function that gives
the energy of the interaction as a function of distance, angle, or charge. The total
steric energy of a molecule can be written as a sum of the energies of the interactions:

E = Ebonded + Enon−bonded (6.1)

Ebonded = Estretch + Ebend + Estretch−bend + Edihedral + Eimproper (6.2)
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Table 6.1 Bonded and non-bonded energy components

S. No. Energy
component

Energy function Constants and
variables

Bonded

1 Stretch Estr (r) = ∑

bonds

1
2 kr (r − r0)2 kr = force constant

for the bond, r =
actual bond length
between the two
atoms defining the
bond and r0 =
equilibrium distance
for the bond

2 Bend Ebend (Θ) = ∑

angles

1
2 kΘ (Θ − Θ0)2 Θ = bond angle,

Θ0 = equilibrium
angle, kΘ = force
constant

3 Strech-bend Estr−bend

∑

bonds,angles

= 1
2 ksb (r − r0) (Θ − −Θ0) ksb= stretch-bend

force constant

4 Dihedral Edihedral = ∑

dihedrals

1
2 Vn[1 + cos (nϕ − δ)] n = periodicity of the

angle, δ = phase of
the angle, Vn = force
constant

5 Improper Eimproper (ω) = ∑

improper

1
2 kω(ω − ω0)2 kω and ω0 = force

constant

Non-bonded

6 Electrostatic Eelec = qi qj

rij
qi and qj = partial
atomic charges for
atoms i and j separated
by a distance rij

7 van der Waals ELJ = ∑ Aij

rij
12 − Bij

rij
6 Aij and Bij are

positive constants
whose values depend
on the depth of the
Lennard-Jones well
Ïµij

Enon−bonded = Eelectrostatic + Evan der Waals (6.3)

The bond stretching, bending, torsion and improper interactions are called bonded
interactions because the atoms involved must be directly bonded or bonded to a
common atom. The van der Waals and electrostatic interactions are between non-
bonded atoms (Table 6.1).

6.3.2 The Force Fields

Force field refer to a mathematical function with a set of parameters (obtained ex-
perimentally as well as theoretically from computer intensive quantum calculations)
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Fig. 6.2 Examples of various types of fields

to represent the potential energy of a molecular system. There are various types of
force fields depending upon the level of accuracy (Fig. 6.2). For example, the "coarse
grained" force fields which are used to simulate large proteins provide a crude rep-
resentation to save computational time, while the "all atom" force fields, although
computationally expensive, can accurately treat even the terminal hydrogen atoms
(Ponder 2003). The basic functional form of a typical force field is given by Eqs. 1–3
which has already been discussed. In this section we discuss the various classes of
force fields.

Apart from a representative function for the potential energy, each force field has
a set of parameters for each bonded and non-bonded terms. Also, each force field
has a particular atom typing. For example, the parameters for an oxygen atom in a
carbonyl group and in a hydroxyl group are given distinct parameters. The typical
parameter set includes values for atomic mass, van der Waals radii, and partial
charge for various atom types, and equilibrium values of bond lengths, bond angles,
dihedral angles, impropers and also the spring constants associated with them. The
parameters for given atom types are generally derived from observations on small
organic molecules that are more tractable for experimental studies and quantum
calculations and extrapolated for larger molecules like proteins and DNA.
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6.4 Molecular Dynamics

Biological processes are complex and involve a repertoire of atomic interactions.
Although experiments help to deduce the molecular level understanding of the bio-
logical processes, the atomic interactions need to be modelled computationally. Thus
MD simulations are used to estimate the microscopic properties and dynamic mo-
tions of assemblies of a biomolecular structure. MD simulations provide an access
to the thermally-accessible states and help to correlate them with the functions of
biomolecular systems (Frenkel and Smit 2002). It is thus a method, which integrates
the Newtonian equations of motion for ‘N’particles of a system over a period of time
resulting in a trajectory which is used for the calculation of the micro and macro-
scopic properties. The calculation of the MD trajectories is based on the principles
of statistical mechanics (Allen and Tildesley 1987). MD simulations calculate the
microscopic properties of the system such as position and velocities of each individ-
ual atom of the system. However, the properties that are of higher practical value are
the macroscopic properties such as number of particles (N), volume (V ), energy (E),
temperature (T ), pressure (P), chemical potential of particles μ (Rapaport 2004).
These bulk properties are used to gauge the thermodynamic modulation with time.

The positions and momenta of all the particles of a system define a microscopic
state. The positions and momenta of all the particles in the system are adjudicated as
coordinates of a 6N dimensional space also called as phase space. Thus at any given
time, the system corresponds to a point of the multidimensional space. The evolution
of a system with time therefore corresponds to a trajectory in the phase space and
can be determined by solving the equations of motion based on the potential energy
(PE). There are different ways to distribute the total energy among the N particles
of the system. An ensemble (EN) constitutes a collection of systems with similar
macroscopic properties wherein each system corresponds to a point in the phase
space. There are different types of ensembles based on the set of constant macroscopic
properties such as canonical (NVT ), the grand canonical (μVT ), microcanonical
(NVE) and the isothermal-isobaric (NPT ) ensemble.

The partition function as given in Table 6.2 defines the microscopic state of a
system explicitly. However due to the existence of large number of microscopic states
in a biomolecular system and their sampling according to Boltzmann distribution in
canonical ensemble, direct calculation of ZNVT is not feasible. A MD simulation is
initialized with the assignment of initial positions and velocities of all particles in
the system. The initial velocities are assigned to particles in such a way that the total
momentum is ensured to be zero, whereby the Maxwellian velocity distribution law
is obeyed (Zeigler et al. 2000).

ν2
α = κBT

m
(6.4)

With the initial velocities assigned, the next step is the calculation of potential energy
of the system using Eqs. (1–3). This is followed by deducing the force acting on
each particle of the system by differentiating the calculated energy with respect to
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Table 6.2 Types of statistical ensembles used in MD simulations

S. No. Ensemble Features Partition function Remarks

1 Microcanonical Constant number
of particles (N),
volume (V) and
energy (E).
Entropy of the
system increases
continuously

�(E) �(E) is the
number of
micro-states
corresponding to
the system’s
energy E

2 Canonical Number of parti-
cles (N), volume
(V) and tempera-
ture (T) are con-
stant

ZNV T =
jmax∑

j=1
e−βPE(x) β = 1

KB T
,

PE(x) = energy of
thexthmicrostate
of the system

3 Grand canonical Chemical poten-
tial or fugacity
(μ), volume (V)
and temperature
(T) are constant

ZμV T =∑
i

e
(Niμ− PE(x))�T KB β = 1

KB T
,

PE(x) = energy of
the xthmicrostate
of the system

Table 6.3 Mathematical functions used to generate velocity and position at each time step (�t)
with Verlet and Verlet-like integrators. (Frenkel and Smit 2002; Fermann and Valeev 1997)

S.
No.

Integrators Equation to update new position (x) Equation to update new velocity (v)

1 Verlet x(t + �t) = 2x(t) − x(t − �t) +
f(t)
m (�t)2

v(t) = x(t+�t)−x(t−�t)
2x(t) + O(�t)2

2 Velocity
Verlet

x(t+�t) = x(t)+v(t)�t+ f (t)
m

(�t)2 v(t + �t) = v(t) + f (t+�t)+f (t)
2m

�t

3 Leap-Frog x(t + �t) = x(t) − �tv
(
t + �t

2

)
v
(
t + �t

2

) = v
(
t − �t

2

)+ �t
f (t)
m

4 Velocity
corrected
Verlet

x(t + �t) = x(t) + v(t)�t

+ 4f (t)−f (t−�t)
6m

�t2

v(t + �t) = v(t)+
2f (t+�t)+5f (t)−f (t−�t)

6m
�t

the atomic positions (Fig. 6.3). After calculating the force on each particle, Newton’s
laws of motions are integrated to generate new positions and velocities for specified
time-steps (Table 6.3).

The behaviour of a system is determined by its thermodynamic properties such
as free energy, entropy and enthalpy. In a biomolecular system, the formation of a
protein-ligand complex involves a change in free energy (Reddy and Erion 2001).
The free energy determines the equilibrium properties of a system and is usually
considered as the Gibbs or Helmholtz free energy. The configurational Helmholtz
free energy (A) and can be represented as follows for a canonical ensemble:

A = −β−1lnZNV T (6.5)
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Fig. 6.3 Flow-chart depicting the general steps of a typical MD simulation

Calculation of absolute free energy is difficult due to inadequate sampling. There
is therefore a need for different methods to calculate free energy. The free energy
simulation techniques aim at computing ratios of partition functions using various
techniques. The most common methods include free energy perturbation, thermody-
namic integration, umbrella sampling and potential of mean force. The free energy
calculation methods thus calculate the ratio between the two partition functions Za1

and Za2 to obtain the difference in free energy (ΔA). The free energy is calculated
between two states. Thus the free energy differences between states ‘a1’ and ‘a2’
with partition functions Za1 and Za2 respectively can be calculated as:

�A = −β−1ln
Za2

Za1
(6.6)
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The ΔA thus obtained, is used to calculate the binding affinity of a protein-ligand
complex. The solvation-free energy or binding-free energy is usually calculated
through alchemical transformations through addition or removal of ligand related
energy terms from the total Hamiltonian. The calculation of free energy by two most
widely used methods namely free energy perturbation (FEP) and thermodynamic
integration (TI) have been described below.

Free energy is a state function therefore the difference in free energy in the two
states can be represented as:

�A = −β−1 ln 〈exp [ − β(Va2 − Va1)]〉a1 (6.7)

In the TI approach, the difference in free energy between two states is calculated by
integrating over enthalpy changes between the transition states. These states can be
described with a parameter λ wherein λ0 and λ1 represent states 0 and 1 respectively
(Wang and McCammon 2012). Thus the difference in free energy between the two
states 0 and 1 is (i.e. from λ0 to λ1) obtained by as

�A =
λ1∫

λ0

∂V

∂λ λ
(6.8)

6.5 Computer Aided Molecular Design

Computational approaches have become an integral and indispensable part of both
academia and industry. Deciphering of the human genome is one of the first defini-
tive accomplishments towards the molecular level understanding of biology. This
has provided a quantitative understanding of the structural and functional aspects of
biology unraveling a multitude of disease targets for drug discovery (Hopkins and
Groom 2002). New drugs are constantly required for improving the treatment of ex-
isting and the newly identified diseases, in addition to the production of safer drugs
by the reduction or removal of adverse side effects. Consequently huge investments
are being channeled from pharmaceutical industries in research and development
activities. The interdisciplinary nature of drug discovery warrants a fruitful collabo-
ration among chemists, biologists, pharmacologists, physicians, computational and
informatics scientists etc. New lead design is now more a strategic than a serendipity
driven process. Thus, in the last couple of decades, in silico approaches have become
an integral part of essentially all rational drug discovery programs. The rational ap-
proaches in drug discovery are traditionally classified as structure and analogue based
(Fig. 6.4).

Medicinal chemistry driven approaches for several decades have relayed on the
analogue based approaches wherein finding the quantity activity relationship was the
key. However the recent advances in structure and molecular biology have provided
more fundamental insights at molecular level. These approaches have been applied
to obtain insights on the binding characteristics of the drug with the target. A drug
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Fig. 6.4 A general work-flow of computer aided molecular design

contains various sub-units which contribute to the druglikeliness parameters such
as the ADMET, pK/pD, blood brain barrier, drug metabolism, human intestinal
absorption and permeability (Lipinski 1997). The long term use of a drug is however
restricted by a multitude of inter-related factors such as development of resistance due
to mutations, drug-drug interactions and most importantly target specificity. Rational
design of a target specific drug is capable of overriding the other restricting factors.
Specificity is of prime importance in the design of leads (Badrinarayan and Sastry
2013). There are different types of specificities such as target specificity, chemotype
specificity and sub-type specificity. The different kinds of enzyme specificity that
can be obtained by targeting different binding sites in a protein like the active site,
allosteric sites. An inhibitor scaffold constitutes several fragments or chemotypes
which individually can contribute to selectivity which can be used in the design of
inhibitor for the active site to obtain high efficacy. This can possibly be achieved
through molecule design or fragment based drug design (FBDD) using selectivity
rendering fragments (Ringe and Reynolds 2010). The difference in the shape and
constituency of the additional binding site called allosteric site can be exploited to
design selective inhibitors for targets which share the same active site. Most proteins
or enzymes exist in several isoforms which share high structural similarity among
themselves. In such cases, small binding pockets or sub-pockets can be detected
which are non-conserved and these can be used to obtain selectivity among the
various subtypes.

Quantum chemical calculations based on ab initio have been proved to be highly
reliable. However, the computational time rises exponentially as the number of
electrons in the system increases thereby precluding their practical application to
molecules with more than few dozens of atoms. Although it is possible to treat small
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ligand sized molecules quantum mechanically, it is expensive to apply them for
larger bimolecular systems like proteins and nucleic acids. Thus MM has become a
definitive choice of application for biomolecular targets. Computer aided drug de-
sign (CADD) focuses on understanding three essential factors for the design of drugs
namely the features which render a macromolecule druggable, the properties which
distinguish a drug from a small molecule and the interactions which facilitate an
optimal fit of a drug-like molecule into a druggable target. A disease target is one
which plays a pivotal role in the cause and expression of a disease phenotype and
can be modulated by a drug. The therapeutic targets are thus both disease modifying
and druggable. At present the currently approved drugs interact with only 2 % of
human proteins hence there still exists a repertoire of undiscovered targets (Hop-
kins and Groom 2002). CADD uses amalgamation of structure and analogue based
approaches. The structure based approaches include homology modeling, docking,
virtual screening (VS), MD, MM-PBSA/GBSA, free energy calculations (FEP, TI)
while the analogue based approaches include quantity structure activity relation-
ship (QSAR), pharmacophore mapping, toxicity prediction and chemoinformatics
methods.

6.5.1 Structure Based Drug Design

Advances in sophisticated large-scale automation were expected to generate an un-
precedented number of novel leads resulting in a substantial increase in novel drug
entities to be launched in market every year. This could not materialize as the dis-
covered hits failed to optimize into actual leads. Thus, the initial euphoria associated
with these approaches has subsided owing to the significantly high costs and dis-
appointingly low hit rates involved in high-throughput screening (HTS). This calls
for the rational application of drug design approaches such as virtual screening or
docking to obtain lead compounds, which can be optimized further as drugs.

6.5.1.1 Docking

Docking is carried out using an automated computer algorithm that determines the
binding of a compound to the active site of a protein (Stahl and Rarey 2001). This
includes determining the orientation of the compound, its conformational geome-
try, and the scoring. There are two key components of a docking program namely
the search algorithm and the scoring algorithm (Table 6.4). The search algorithm
positions molecules in a multitude of locations, orientations, and conformation
within the active site (Young 2009). The identified orientations are sampled fur-
ther through downhill minimization to obtain bioactive conformations. The choice
of the search algorithm determines the thoroughness of the program in checking the
possible positions of the molecule and time taken.
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Orientations with closely placed atoms are scored and others discarded. The ener-
getically favorable modes of binding of a ligand are stored as different poses. These
poses representing the protein-ligand interactions are scored in terms of binding
enthalpies or Gibbs free energies, or a qualitative numerical measure or from a po-
tential of mean force equation. This is concomitant to the inhibitory constant (Ki)
calculated experimentally. Most of the scoring functions correlate well with the Ki

values whereas others provide a qualitative ranking of the compounds tested. Some
programs retain all the poses generated whereas some provide a scrutinized list based
on the scores. Evaluation of closely placed atom pairs using full force field equations
consumes a lot of computer time (Table 6.5).

This is overcome by using a grid based algorithm wherein potential fields are
created which can be numerically evaluated over a grid generated over the active
site. At a given point, the value of the potential on the grid is equivalent to the energy
required for placing a unit charge at that point. Thus different types of scoring
functions such as knowledge based, empirical, force field and many more have
been developed to gauge the strength of interactions between the receptor and the
small molecules. Most of the components of these scoring functions predict the non-
covalent interactions and they are hardly any accounting for the covalent interactions
(Cross et al. 2009). Considering the lacuna in individual scoring functions, consensus
scoring is in vogue. Although all the small molecules undergo a conformational
change during docking, the protein is held rigid in a fixed geometry in majority of
the cases. Some programs facilitate alteration in the conformation of the active site
as in flexible docking. This takes a longer time therefore options such as side chain
repositioning and scaling are introduced which results in an induced fit approach so
as to mimic the physiological conditions as far as possible.

In addition to search algorithms, scoring functions and flexibility, solvation is a
major issue in defining the accuracy of results obtained as it has a direct impact on the
binding energies of dissimilar molecules. An algorithm deficient of a solvation term
results in identification of charged ligands which are large in size. The free energy
of interaction relative to the free energies in solution of two molecules determines
the binding affinity of the ligand for a particular receptor. FEP techniques accurately
calculate the relative free energy however these are time consuming and are biased
for similar set of molecules and are impractical for application for screening huge
datasets of relatively diverse molecules. Therefore, energy correction for the solvent
surrounding the protein needs to be included rather than considering only those
occupying the active site (Gohlke and Klebe 2002). This has made this method as
a protocol of choice in both academia and industry prediction of binding mode of a
ligand during lead optimization as well in the identification of the potent lead itself
through virtual screening.

6.5.1.2 Virtual Screening

Drug here is treated as a chemical substance that is used to prevent or cure diseases. In
ancient times, a wide range of natural products obtained from animal, vegetable and
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mineral sources were used for medicinal purposes but with the increase in knowledge
the focus is centered on the use of pharmaceutically active compounds as starting
point for the development of drugs. However, the increase in chemical space has
made the identification of lead a tedious and erudite process. Therefore computa-
tional based screening methods such as VS are used for the identification of these
pharmaceutically active compounds from a core set of molecules (Badrinarayan
and Sastry 2011; Reddy et al. 2007a). The approaches used can be classified as
ligand-based and structure-based methods. The availability of the physicochemical
information dictates what strategy is more likely to be applied. Existence of structural
data of the target protein calls for the application of structure-based virtual screen-
ing (SBVS) strategies. In the absence of structural information, ligand-based virtual
screening (LBVS) protocols are usually applied. Virtual screening is carried out in
concord with a number of different tools such as informatics (chemo and bio), dock-
ing, QSAR, pharmacophore mapping, machine learning tools (MLT), fingerprints,
quantum mechanics/molecular mechanics (QM/MM), QM etc.

LBVS functions on the similarity principle which considers that the molecules
which are structurally similar have similar biological activities. In the absence of
structural information, LBVS use similarity, QSAR and pharmacophore based meth-
ods to correlate the physiochemical properties of known ligands with their structural
characteristics and generate a query. LBVS methods look out for desired patterns
in molecules such as fragments, pharmacophore, and core scaffold through graph
theory like approaches or use molecular descriptors. Molecular fingerprints are how-
ever emerging as the most sought after options due to the ease of handling and speed.
Fingerprints can be formulated with both 2D and 3D features (Sastry et al. 2010).
The fingerprints are defined in the form of vectors which constitute bit strings of
ones and zeros or position vectors indicating the presence or absence of a particular
feature. A large part of the LBVS work being done is driven by informatics wherein
the similarity indices are used to scale the nature if identity between the query and
the database molecules.

With the increase in the repertoire of crystal structure data and the efficiency of
docking in deducing the binding modes of ligands, SBVS is still employed fervently.
Given a 3D structure, the SBVS approaches employ docking to generate the binding
modes of the database compounds which are then shortlisted based on their scores.
VS is a multi-step protocol and with the advent of multi-drug resistant strains and
cross-target reactions, each step of the screening process is embedded with filters
for druglikeness, Lipinski, target-selectivity, toxicity-ADME etc. in order to garner
the best of the lot at every step and curb the percentage of false positives (Klebe
2006). These filters vary in complexity and dimension (1D-3D). Time and precision
are the two endearing factors of VS. The time required depends on the type of query
used and the complexity of the databases (molecule or fragment) being screened.
The query used for screening can be simple 2D co-ordinates in the form of SMILES,
fingerprints, bit vectors or a complex 3D representation of the active site, ligand
template, pharmacophore or surface maps. The precision of the endeavor relies
greatly on the stringency of filters used. The query can be complex 3D active site,
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molecule, pharmacophore, surface-volume or simple 2D co-ordinates, and feature-
trees. SMILES, correlation vectors, bit strings and fingerprints are the simplest. The
discrepancies in scoring functions are being encountered through incorporation of
parameters extracted from MM-PBSA or QSAR calculations (Stahl and Bohm 1998).
Although such procedures increase the accuracy of the hits obtained they however
increase the overall time to get the desired outcome. The numbers of molecules that
can be screened with virtual screening are several orders of magnitude higher than
that of HTS. This number crunching ability of virtual screening and its inexpensive
execution makes it endearing. However the crux of the process lies in the development
of a screening strategy with efficient filters to obtain target specific leads.

We have developed a three step filtering strategy to identify target specific al-
losteric fragments for the inflammatory target p38 MAP kinase (Badrinarayan and
Sastry 2012; Badrinarayan and Sastry 2010). The study entails the design of two
target specific virtual screening filters based on docking score components and sub-
structure interaction fingerprints. The components of the scoring function of two
well-known docking protocols were evaluated to gauge their individual contribution
in identification of lead. Eight thresholds were identified for the active and inactive
conformations of kinase and were used in the identification of lead for the inac-
tive conformation of the target kinase. The fragments or chemotypes demonstrating
specific interactions with the study target were garnered from the known set of in-
hibitors. These interacting chemotypes were converted into substructure interaction
fingerprints. The filters were used to screen a database of 10 million compounds and
extract the interacting chemotypes from the identified leading hits. The extracted
allosteric fragments itself constitute a new library of target specific allosteric frag-
ments and are a good starting point for many lead design endeavors. Such protocols
can easily be extended for different druggable targets to ensure the retrieval of target
specific hits positively.

6.5.1.3 Fragment Based Methods

A drug or an inhibitor molecule constitutes a number of sub-parts called fragments
whose presence either enhances their efficacy or renders them synthetically feasible.
The action of drugs emancipate either from their physicochemical properties or from
their chemical structure. The former are non-specific, act in large doses by forming
a monomolecular layer over the entire cellular surface of an organism as in case
of general anaesthetics, hypnotics such as aliphatic alcohols, antiseptics and anti-
fungals (Lemke and Williams 2008). Those which are structure driven are specific
and act in small doses on specific protein molecules which are usually located in the
cell membrane to trigger a series of physiological and biochemical response. The
specific recognition of receptors is driven by a fragment called chemotype which
specifically endears the small molecule to that particular receptor (Badrinarayan and
Sastry 2010). Identification of specific low molecular weight fragments in a molecule
sets a stage for the stepwise design of new leads incorporating the identified chemo-
type. FBDD samples the chemical space to a greater extent than virtual screening of
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Table 6.6 Postulates for the design of drugs, leads, scaffolds and fragments

S. No. Properties Drug-like
(RO5)

Lead-like Scaffold-like Fragment-like
(RO3)

1 Hydrogen bond donors
(sum of -OH and -NH)

≤ 5 ≤ 5 ≤ 3 ≤ 3

2 Hydrogen bond
acceptors (sum of O and
N)

≤ 10 ≤ 8 ≤ 8 ≤ 3

3 Molecular weight
(daltons)

< 500 < 450 < 350 < 300

4 Lipophilicity (clog P) ≤ 5.0 −3.0 to 4.5 ≤ 2.2 ≤ 3.0

5 Number of rotatable
bonds (NROT)

– ≤ 9 ≤ 6 ≤ 3

6 Polar surface area (PSA)
Å2

– – – 60

molecules (Hajduk and Greer 2007). The fragments adhering to a set of properties as
specified by the ‘rule of three’ are used embellished, linked and then grown into new
leads. Identification of the right fragment through virtual screening or optimizing a
prioritized one is computationally complicated since the existing scoring functions
have been formulated for molecules and the cut offs prescribed do not suit the rule
of three (Table 6.6).

However, fragments are more rigid with lesser numbers of degrees of freedom
as compared to small molecule and are therefore can be easily docked. Majority of
the initial work in FBDD has been carried out for the kinase targets. The fragment
libraries are designed using reduced topological graph to compare the modes of the
feature tree as in LoFT (Fischer et al. 2010) or use a set of bond rules to model
ring substitution and cleavage sulphur groups as in BRICS (Degen et al. 2008).
Certain protocols such as BROOD identify the fragment similar to the query template
and design leads through bioisosteric replacements (Chen and Wang 2003). SeeDs
on the other hand use pharmacophore fingerprints to screen for fragments (Baurin
et al. 2004). The design of lead from fragments is usually carried out by linking
fragments that bind to different parts of the target active site through a linker. We have
developed a new fragment based lead design called ‘Fragment Tailoring Approach
(FTA)’based on similar principle wherein the existing set of kinase inhibitors binding
to its highly conserved ATP site is reengineered into a target specific inhibitor by
linking it with a chemotype which binds to its non-conserved allosteric site in the
inactive conformation. The newly designed leads thus acquire efficacy from the
ATP site fragment and specificity from the allosteric fragment (Badrinarayan and
Sastry 2010). Self binding fragments as in click-chemistry on the other hand need
no linker for connecting to each other and form a lead. The leads can also be derived
by embellishing an individual fragment with function groups complementing the
target active site. This has led to the development of different FBDD protocols
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such as BREED, LUDI, RECAP, ADAPT, LEA3D, LigBuilder based on genetic
algorithm and SKELGEN, SMoG, SPROUT based on Monte Carlo simulations.
FBDD has thus popularized the concept of ‘prioritized sub-structures’. FBDD has
resulted in the successful design of leads for several important diseases such as
BACE-1, Phosphodiesterase (PDE) 4, Bcl-XL, Urokinase, Thrombin and Aurora
kinase (Loving et al. 2010) to name a few.

6.5.2 Analogue Based Drug Design

Analogue based approaches for rational drug design have also emerged in parallel to
the structure based approaches. These approaches complement the structure based
approaches where the structure of the target is unknown, but the active inhibitors for
the target are known. The main concept of analogue based drug design is based on a
belief that chemical structure and biological activity of the analogues of a drug are
often similar to the lead drug. In the last few decades, computational methods have
significantly contributed to model new analogues for an existing drug as well as to
predict the activities of new analogues. These predictive models rapidly screen large
databases to identify new hit and lead molecules with improved biological activity
profile and greater potency, thus opening up the way to new types of structures
for drug research. QSAR modeling, pharmacophore modeling is some of the most
important methods in analogue based drug design.

6.5.2.1 QSAR

The QSAR modeling is one of the analogue based computational tools, which es-
tablishes a quantitative correlation between biological activity/toxicity/property of
a molecule and its structural features. In QSAR study, the variations of biological
activity/toxicity/property within a series of compounds are correlated with changes
in a group of computed features of the molecules referred to as descriptors.

QSAR method to predict a certain property of a molecule from its structure as a
mathematical expression in the form of

y = m1x1 + m2x2 + . . . + C (6.9)

Where, y is the predicted property (the dependent variable) and x1, x2, . . . are
the known molecular properties called descriptors. QSAR uses descriptors that
are a single number describing some aspect of the molecule, such as molecular
weight, number of atoms, topological indices etc. The coefficients m1, m2. . . in the
QSAR equation are weights of the descriptors obtained by using various curve fitting
methods.

The activities and properties being modeled by QSAR/QSPR are known as de-
pendent variables (y) of the QSAR model. A dependent variable can be a biological
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Fig. 6.5 Steps of QSAR modeling

property such as receptor binding, inhibition constant, permeability, pharmacokinet-
ics, biodegradation, carcinogenicity, drug metabolism and clearance, mutagenicity,
toxicity etc. or a chemical property such as boiling point, chromatographic retention
time, dielectric constant, diffusion coefficient, dissociation constant, melting point,
reactivity, solubility, stability, thermodynamic properties, viscosity etc. (Young
2009).

QSAR modeling typically describes molecular structures in terms of the descrip-
tors and then correlates these molecular descriptors with observed activities using
various statistical methods. The first step of QSAR modeling is preparation of a
dataset of molecules with their activities, which follow a uniform distribution and
calculation of descriptors. Molecular descriptors are chemical information that is
encoded within the molecular structures and are collectively responsible for a partic-
ular activity of the molecule (Todeschini and Consonni 2000). The descriptors serve
as the independent variables of a QSAR model. Various categories of descriptors
employed in QSAR (Katritzky et al. 1994; Karelson et al. 1996). Constitutional
descriptors are simple descriptors that represent only the molecular composition of
the compound independent of the geometry and electronic structure (Fig. 6.5).

Examples are number of atoms, number of bonds, molecular weight etc. Topolog-
ical descriptors/topological indices describe the atomic connectivity in the molecule.
Examples are Wiener index, Randic and Kier & Hall indices, Kier flexibility index,
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Information content index and its derivatives etc. (Katritzky et al. 1994). Geometrical
descriptors are dependent upon 3D-coordinates of the atoms in the given molecule.
For example, moments of inertia, shadow indices, molecular volume, molecular sur-
face area, gravitation indexes etc. Electrostatic descriptors are calculated based on
the charge distribution of the molecule. Examples are topological electronic index
and charged partial surface area descriptors. Quantum-chemical descriptors are cal-
culated from quantum chemical data at various levels of theory. For example Extreme
(maximum and minimum) values of the atomic nucleophilic (NA), electrophilic (EA)
and one-electron (RA) Fukui reactivity indices, εLUMO and εHOMO etc. (Karelson et al.
1996). Hydrophobicity descriptors such as log P, aqueous solubility and chromato-
graphic parameters are also very useful for QSAR studies (Helguera et al. 2008).
However, development of simple and new descriptors is still a topic of high inter-
est (Badrinarayan et al. 2011; Srivani et al. 2007). Among the new descriptors the
density function theory (DFT) based ones are extensively studied. In many studies
DFT based descriptors show good performance in predicting the biological activities
(Parr 1983; Singh et al. 2004; Wadehra and Gosh 2005; Srivastava and Sastry 2012).
Employment of docking scores as QSAR descriptors is one of the new approaches.
The free energies of binding calculated by MMPBSA/GBSA methods are also tested
in several studies and they show excellent correlation with the bioactivities (Srivas-
tava et al. 2012). Once descriptors are computed, it is very crucial to choose the
descriptors that should be included in the QSAR model. Preprocessing of the dataset
should also be performed carefully as anomalies, errors, missing/incomplete data
may lead to severe erroneous/misleading predictions. The data should also be nor-
malized or standardized where there is a large range of variability in the dataset.
Inter-correlated descriptors should be removed from the dataset before the model
construction. (Nantasenamat et al. 2009).

Various techniques based on the multi-linear regression (MLR) analysis are em-
ployed in order to achieve the QSAR equation. This equation essentially correlates
the variation of activities of the molecules as a function of the variations of the
molecular structures present in the molecular data set (Kubinyi 1993). MLR analysis
is usually used to correlate a given bioactivity with molecular descriptors. Different
statistical methods come into play for building a QSAR model. Depending on the
type of dataset and other parameters, however, it is possible to generate nonlinear
equations that contain exponents of best fit, logarithms of descriptors, etc. MLR,
principal component regression (PCR), partial least square, artificial neural network
(ANN), genetic function approximation (GFA), factor analysis, discriminant analy-
sis, cluster analysis are a few of the statistical methods that can be employed in the
QSAR modeling (Dehmer et al. 2012).

For the linear QSAR equations the correlation coefficient r2 gives a quantitative
measure of how well the descriptor describes the activity (Wold 1991). r2 is calculated
as follows

r2 = 1 −∑ (yobs − ycalc)2

∑
(yobs − ymean)2 (6.10)
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where, ycalc, yobs and ymean are predicted, actual, and mean values of the target
property respectively. Thus, the descriptors with the highest correlation coefficient
can be selected. The predictive power of a QSAR model can be verified through
statistical measures such as the correlation coefficient between actual and predicted
values. Various statistical parameters such as cross validated correlation coefficient,
Fisher statistic (F-value) values etc.

Crossvalidated r2, lso called as q2 signifies how best the model predicts. It is
calculated by omitting each compound once from the training set, then predicting
its activity using the model constructed from the remaining compounds. The model
thus built with the remaining molecules is used to predict the response of the deleted
compound/compounds. This cycle is repeated till all the molecules of the dataset
have been deleted once. The cross-validated squared correlation coefficient q2 is
calculated as follows

1 −
√∑

(yobs − ycalc)2

∑
(yobs − ymean)2 (6.11)

where, ycalc, yobs and ymean are predicted, actual, and mean values of the target prop-
erty respectively. F-value is also an important measure of the statistical significance
of the regression model, which is given by the following equation (Wold 1991).

F = r2

1 − r2
(6.12)

where r2 is the correlation coefficient. Also as an external validation, some of the
compounds with known results are left out of the training set to be used as a test of
the predictive ability of the QSAR model.

QSAR is a valuable tool for predicting molecular properties that cannot be com-
puted any other way. It is very useful or the prediction of a wide range of biological
properties, essential to identify potential leads (Nantasenamat et al. 2009). Although
it may not be a reliable tool to predict drug activity, pharmacokinetic properties,
such as blood–brain barrier permeability and passive intestinal absorption etc. can be
fairly predicted by QSAR method. Hence, QSAR models are of immense help to pre-
dict the properties of new and untested compounds possessing analogous molecular
structures as compounds used in the development of the models.

6.5.2.2 Pharmacophore Modeling

Pharmacophore modeling has gained immense importance as an analogue based ap-
proach in past few days because of its simplicity. According to IUPAC definition
(Wermuth et al. 1998), “A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supra-molecular interactions with
a specific biological target structure and to trigger (or to block) its biological re-
sponse.” However, different researchers define it through their own view glasses
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Fig. 6.6 Steps of pharmacophore modeling

depending on the suitability. A pharmacophore can be considered as the maximal
set of common features extracted from a group of molecules exhibiting a similar
pharmacological profile on a common target protein (Guner 2000).

A pharmacophore does not represent any real molecule, but represents the com-
mon interaction pattern of a group of compounds with their target (Wermuth 2006).
The chemical signatures identified in a molecule which are actually responsible for
making a certain type of non-covalent interaction with the receptor are called as
pharmacophore features (Fig. 6.6).

A few examples of such functional features are hydrogen bond donors, hydrogen
bond acceptors, aromatic rings (may be ring atoms, ring center, or normal to the
ring), hydrophobic centers (also called neutral centers), positive charge centers,
negative charge centers, acidic groups, basic groups, bulky groups engaged in steric
interactions, planar atoms, CO2 centroid (i.e., ester or carboxylic acid), metal (also
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called a metal ligator) and excluded volumes—forbidden regions, where the protein
is and the ligand cannot have functional groups (Dror et al. 2006). Pharmacophore
models provide a reasonable qualitative prediction of binding by modeling the spatial
arrangement of a small number of atoms or functional groups (Yang 2010; Ekins
et al. 2001). A detailed quantitative prediction of active molecules based upon the
binding pattern requires sophisticated computational techniques as well as lots of
computer time. Pharmacophore models are of immense use in analogue based virtual
screening. Its usefulness covers three major domains. The generation of a relevant
pharmacophore model, consistent with structure property relationship in a series of
molecules helps in design of optimal ligands. Scaffold hopping may be an important
implication of pharmacophore modeling, which consists in the design of functional
analogues by searching within large virtual compound libraries of structures with
similar activity profiles, but based on a different scaffold. New active compounds
can also be designed by combining the key pharmacophore features of two different
pharmacophore models (Langer and Hoffmann 2006; Wolber et al. 2008).

6.6 Modeling Large Molecular Systems

Large-scale biomolecular simulations are significantly important to study the
functionality of large biomolecular systems. MD simulations have substantially con-
tributed to the advancement of knowledge in biology, chemistry and material science.
Although the MD simulations are being conducted for systems with millions of atoms
and for millisecond timescale, the atomistic MD simulations fare to be too long and
large when studying a biological phenomenon. The functioning of the living cell is
a complex process, characterised by multiple interactions between macromolecules
that act across multiple levels of structural and functional organisation—from molec-
ular reactions to target-drug binding to protein-protein interactions. Since biological
systems are multiscale in nature, there should be efficient model building and biolog-
ical knowledge integration and prior data at all biological scales. Hence to explore
such multiscale systems quantitatively, one has to integrate several different simula-
tion techniques at different time and length scales. This calls for a paradigm shift in
the simulation techniques wherein the atomistic treatment of the large biomolecular
system as in MD simulations is replaced by the partitioning of the system. Such
approaches either partition the large systems based on the level of precision required
for its various components as in case of QM/MM wherein the protein is divided into
the active site region which is treated quantum mechanically and the non-active site
region which is treated with molecular mechanics. The other approaches include the
multiscale approach which constitutes a framework comprising of different levels ac-
curacy and couples them to enable a hierarchical handshake which leads to effective
transfer of information across the different scales. These approaches divergent from
the basic atomistic MD are useful in predicting the structure activity relationships
and provide a fundamental mechanistic understanding of biological process. This
facilitates efforts in predictive modeling and molecule design efforts.
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6.6.1 QM/MM

The QM methods are too complex to be applied on the large biomolecular systems
whereas MM methods fail to model the enzyme mediated reaction mechanisms.
Therefore considering the individual shortcomings of each of these methods, a hybrid
method such QM/MM employing their individual strengths is warranted (Ayton et al.
2007). The QM/MM partitions the biomolecular system into two regions. The active
site comprises the smaller region and is treated quantum mechanically while the rest
of the system is treated with the classical molecular mechanics force fields. There
are two schemes to calculate the total energy of the system namely the additive and
subtractive (Sherwood et al. 2008; Senn and thiel 2009; Sherwood et al. 2003). The
subtractive scheme consists of four components namely the total energy of the system
EQM/MM (system), EMM (system) the MM energy of the entire system, EQM (QM) the
QM energy of the QM region andEMM (QM) the MM energy of the QM region. The
equation used to calculate the energy of the system though the subtractive scheme is
represented as follows:

EQM/MM (system) = EMM (system) + EQM (QM) − EMM (QM) (6.13)

The scheme encounters shortcomings due to the treatment of interactions between
the QM and MM region only at MM level which is inaccurate. The scheme requires
MM parameters for the QM region. Parameters are not usually available for those
systems which are present in excited electronic states or contain transition metals. The
additive scheme has therefore gained popularly. In this scheme, the total energy of the
system EQM/MM (system) comprises of only three components viz., EMM (MM) the
MM energy of the MM region only, EQM (QM) the QM energy of the QM region and
the EQM−MM (QM, MM) a term which interfaces between the QM/MM through the
inclusion of bonded and non-bonded interactions. The bonded interactions account
for bond stretching, bending and torsion while the non-bonded account for the van
der Waals and electrostatic interactions.

EQM/MM (system) = EMM (MM) + EQM (QM) − EQM−MM (QM , MM)
(6.14)

The key to such QM/MM methods is the coupling between the electric field from
the surrounding and the QM Hamiltonian in the active-site region. This requires
careful treatment of the boundary between the QM and MM regions, either by using
hybrid orbitals for the connection or a linked atom approach. The calculation of free
energies from QM/MM simulations can be performed by averaging over the system’s
configurations via perturbations from a reference surface; however, such sampling
for accurate free energy evaluations as well as calculations of pKa values remain
challenging and form an active area of research.
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Fig. 6.7 Different types of
coarse grained models: the
low resolution model
constituting the major
functional domains as beads
and used to study molecular
level interactions, the high
resolution mesoscale model
clustering groups of amino
acid residues of the protein as
a bead. The third is the ultra
high resolution model
considering each amino acid
residue as a bead and used to
study atomistic level
interactions

6.6.2 Coarse Graining

MD simulations, scaling over longer timescales, work well with biomolecular sys-
tems such as proteins, lipids and nucleic acids however they fall short in investigating
complex phenomenon such as protein-protein assembly, vesicle diffusion, membrane
deformation, DNA super coiling, DNA packaging in bacteriophage, folding of RNA
in ribosome etc. Therefore, approaches such as coarse grained simulations are used
wherein the single complex system is divided in to a couple of systems by grouping
several atoms (Saunders and Voth 2013). Coarse graining clusters groups of atoms
into beads or sites. Based on the accuracy desired either one amino acid is defined
as a bead or a group of amino acids form a bead (Fig. 6.7).

These beads which are a kind of quasi-particles interact with each other. The
combination of these interactions and the reduce degrees of freedom help to span the
spatiotemporal scales. The accuracy and utility of a coarse grained model is largely
dependent on the force field parameterization which implicitly account for the en-
thalpic and entropic contributions of free energy. The key steps in coarse graining
include development of primary models based on experimental results followed by
large scale simulation and identification of interactions influencing the energetic of
the model system. Coarse graining retains the primary physical features of the system
thus distills the atomistic scale information into simplistic but low resolution models.
The final step therefore is to link with the molecular scale through all atom MD or
Monte Carlo simulations based on the previous coarse grained simulation results so
as to bridge the atomistic and mesoscopic scales. The precision in such cases can be
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obtained with multiple iterations of the entire protocol. Coarse grain simulations pro-
vide information on complex phenomenon such as biomolecular self-assembly at the
mesoscopic scale and with iterative information transfer guides leverage of the atom-
istic details of the studied phenomenon through MD and Monte Carlo simulations.
Thus the property or responses which are inaccessible at the atomistic or continuum
levels of theory can be effectively simulated through coarse grained approach.

There are two main approaches to coarse graining called the inversion approach
and the multiscale approach. The inversion approach employs thermodynamics,
structural and experimental properties to developed coarse grained models. There a
gamut of inverse coarse grained methods such as the Monte Carlo inverse Newton
method (Lyubartsev and Laaksonen 1995), direct Boltzmann inversion approach
(Tschop et al. 1998), iterative Boltzmann inversion method by Muller-Plathe
(Muller-Plathe 2002). Most of these methods use reduced statistical distributions
such as radial distribution instead of calculating the many body coarse grained po-
tential mean force functions and detect the most appropriate coarse grained potential
by inversing the data. The multiscale approach builds a hierarchical ladder to bridge
atomic interactions to the mesoscale coarse grained model. In this the basic func-
tions depicting the many body coarse grained potential mean force is mapped by
atomistic scale forces. One of the earliest contributions has been made by Levitt
& Warshel who identified the essential components contributing to the problem of
protein folding and constructed a coarse grained model (Levitt and Warshel 1975).
Gholke et al. have developed a three step multiscale coarse grained approach to
model the conformational changes in proteins (Kruger et al. 2012). A high resolu-
tion coarse grained model with multiple beads per amino acid residue in protein is
can effectively delineate the atomistic level interactions. However, to decipher the
molecular scale motions occurring at the cell level necessitates simulation of large
protein assemblies using the multiscale modeling approaches.

6.6.3 Multiscale Modeling

Biological systems are made up of several individual components or strata organised
in a hierarchical manner (Schnell et al. 2007). The transfer of information among
them leads to the functioning of the system as a whole. There are two different ways
to scale the biological systems namely the spatial and temporal scales. The spatial
scales hierarchically classify the biological processes based on the organization of
biological systems. These scales are called ‘levels of organization’ and range from
quantum, molecular, cellular, tissue, organ, organism to its ecosystem (Southern
et al. 2008). Associated with the spatial levels of organization are the temporal scales
of biological processes which range from microsecond for molecular interactions
to years for an average lifespan of human being (Walker and Southgate 2009). Ac-
cording to this theory, a cell is made up of millions of molecules, while a tissue is
made up of billions of cells and the number game thus augments. These key com-
ponents of the biological system have intra- and inter-connections (Twycross 2010).
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The diversity and connectivity among these scales increase the complexity of the
biological systems. It is therefore necessary to model the individual components at
multiple scales and integrate them to understand the impact of intra- and inter-scale
interactions on the system and its surrounding ecosystem (Noble 2002). The mul-
tiscale modeling is an integrated and iterative approach which couples information
obtained from various scales.

Mathematical representation of a complex system is termed as a ‘model’. Models
representing complex systems span a wide range of time and length scales and such
models are termed as ‘multiscale models’. The use of such multiscale models in
addition with experimental data to understand the functioning of a biological system
is termed as ‘systems biology’ while the engineering of these multiscale models
to construct an artificial biological system to study its functioning comes under the
preview of ‘synthetic biology’. The modeling of biological systems is associated with
different levels of complexity and therefore it requires a laddered approach instituting
simulations at various time and length scales using methods offering varied degrees
of precision and speed. Multiscale approaches thus encompass the combined use of
computations and mathematics to obtain a simulated representation of a physiological
system at different scales of time and biomolecular organization. This is an ingrained
concept in the areas of engineering, aerodynamics and fluids associated with physics
and material science however it is still comparatively raw to chemical and biological
science.

The multiscale approach in modeling biological systems integrates the well-
established disciplines like quantum chemistry, classical MD, systems biology,
pathway modeling, and bioinformatics. They lie at the crossroads of frontier research
areas in physics, biology, chemistry, and medicine. The multiscale models integrate
(QM), molecular mechanics (MM), hybrid QM/MM, MD (MD), coarse-grained
(CG), linear scaling and heuristic approaches. Multiscale modeling of biological
systems is thus a measure to understand various scales of life at different resolutions.
Each scale offers different features and therefore it is up to the discretion of the mod-
eller to choose the appropriate strategy for the maximum abstraction of data and to
bridge the gap between the various scales. There are two main approaches in multi-
scale modeling namely the ‘top-down approach’and ‘bottom-up approach’ (Qu et al.
2011). The top-down approach treats the system as an individual entity and studies
the macroscopic properties of the system. Hodgkin et al. created an action potential
model of the giant axion using this approach (Hodgkin and Huxley 1952). To do so
the individual ion-channels were overlooked and the voltage dependence of whole
currents was modelled based on experimental data. This simplified the process to a
great extent but they fail to account for the impact of individual components which
participate in the expression of studied phenomenon. The bottom-up approach on the
contrary simulates each individual component of a system and models their interac-
tions to understand the nature of the system as a whole. This approach is useful in
studying the behaviour of the interactive elements of a system and is therefore used
in the study of cell-transport, protein folding and working of ion-channels (Kamerlin
and Warshel 2011). The main aim of multiscale modeling is not only to model a
particular system at different scales but also to conserve the data accurately during
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its transit from a lower scale to a higher scale or vice-versa. It has been employed to
understand the functioning of important biological processes such as protein folding,
membrane remodeling, drug metabolism and nucleic acid packaging.

The main objectives of a multiscale protocol are the identification of the indi-
vidual processes constituting a complex system, the scales for modeling them and
development of a link to couple these individual processes. In a multiscale strat-
egy, the system is first decomposed into several sub-units. The temporal and spatial
scales are allocated to model each of these sub-units. For example if the diffusion
process is modelled then the temporal scale would define the rate of diffusion (Dada
and Mendes 2011). The coupling of the micro-, meso- and macro-level processes
leads to the development of multiscale model. Establishing coupling between scales
is an intricate process (Martins et al. 2010). Solutions like multiscale Simulation
Library and Environment (MUSCLE), Model Coupling Toolkit, XML based multi-
scale model management in systems biology have been developed to ensure smooth
coupling of the scaled models.

6.7 Non-covalent Interactions

The drug once taken, travels through the body and elicits a pharmacological response.
The site of drug action is the receptor while the pharmacodynamics is controlled by
the different forces of interaction which bind a drug to a specific receptor (Holtje et al.
2008). The drugs and receptors exist as an ensemble of conformers in solvent. Thus
to form a solvated complex with the receptor, the drug molecule needs to displace
the solvent molecules occupying the binding site of the receptor. This is possible
only when the interactions between the drugs and receptor are stronger than their
individual interactions with the solvent molecules (Bissantz et al. 2010). The com-
plex formation is entropically unfavorable and induces a loss in the conformational,
rotational and translational degrees of freedom of both the drug and the receptor.
The entropic loss is therefore expected to be compensated by favorable enthalpic
contacts i.e. interactions. The bonds are spontaneously formed between atoms with
a decrease in free energy (�G) i.e. when �G is negative. The activity of a small
molecule (drug) is initiated by its atomic level interaction with the macromolecule
(receptor or target). This association is stabilized by a plethora of intermolecular
drug-receptor interactions which are either covalent or non-covalent in nature. The
interaction of a drug with the binding site of a receptor depends on the complemen-
tarity of fit between the two molecules as stated in the Lock and Key Hypothesis
by Emil Fischer (Silverman 2004). The interactions comply with the law of mass
action. The binding of a drug to its receptor is therefore usually orchestrated though
a gamut of non-covalent interactions rather than the covalent ones.

One of the most important and exhaustively studied drug-receptor interactions
is the H-bond. Strong H-bonds like N-H. . . O, N-H. . . N and O-H. . . O are formed
by the Glu, Leu and His residues which interact with the donor atom of inhibitor
whereas the Leu and Gly residues interact with the acceptor atom (Sarkhel and
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Desiraju 2004). The linked heterocyclic systems of the inhibitors are stabilized by
the weak H-bonds such as C-H. . . N, C-H. . . O. Of the 20 amino acids comprising
the protein, Gly and Glu play a substantial role as H-bond donor and acceptor. The
propensity and strength to form H-bond varies with different functional groups.
Thus the constitution of protein’s active site has a substantial influence on the
desolvation effects and SAR (Foloppe et al. 2005). The ammonium groups found in
drug-receptor complexes are usually not permanently charged quaternary ions. This
leaves at least one proton on the nitrogen atom which can be used in binding. The
strength of the H-bond shows a dramatic increase when augmented with additional
H-bonds (Neela et al. 2010). The hydrophobic nature of the active site can be
attributed to a large extent to the side-chains of several aromatic residues which open
into it. The aromatic rings of Phe, Trp, Tyr, and His form cation-π interactions with
the cationic side-chains of Lys and Arg (Reddy and Sastry 2005). The cation-π in-
teractions in biological systems stem from the interaction of nitrogen, phosphorous,
oxygen and sulphur based onium ions (Mahadevi and Sastry 2013). The shape and
electronic properties of the aryl rings of the aromatic amino acids give rise to large
polarizabilities and a considerable quadrupole moment. The π-motifs engage in a
T-shaped edge-to-face and the parallel-displaced stacking arrangement and interact
with the heterocyclic rings of inhibitor. In proteins, the π-systems cluster into net-
works of various sizes. A database study by our group has shown that the CH-π and
π-π stacking interactions formed by the side-chains of the aromatic residues provide
stability to the protein hydrophobic pockets (Reddy et al. 2007b). The correlation
between π-π stacking and hydrogen bonding is a very well studied example, owing
to its relevance in nucleic acids (Vijay et al. 2008). The π-motifs form networks and
their influence manifest strongly on the nature of inhibitor binding (Chourasia et al.
2011). The binding and stabilization is also contributed by the alkyl-aryl interactions
as well. The aromatic π-motif forms one of the strongest non-covalent interactions
on interacting with a metal ion. Such an interaction is a key player in enzyme reg-
ulation, stabilization, and functioning of nucleic acids. A subtle competition is also
seen to exist between the π and σ- (in plane) approach of metal ion with the aromatic
motifs (Reddy et al. 2006). The non-covalent interactions either complement or
compete with each other in a cooperative or non-cooperative manner (Mahadevi and
Sastry 2013; Vijay and Sastry 2010). The cooperativity of non-covalent interactions
is an interesting phenomenon which is known to influence stability, conformational
transitions and allosteric interactions in addition to inhibitor binding. The array of
non-covalent interactions and their role in bio-macromolecules contribute to in the
drug-receptor interactions, stabilization, and functional reorganization necessitating
their consideration in design of leads (Fig. 6.8).

The non-covalent interactions engage in reversible binding are therefore preferred
in CNS drugs, depressants etc. where the pharmacological effect needs to be ter-
minated after some time. The role and relevance of non-covalent interactions in
biological systems and the ability of computational methods to model them makes
them a topic of high contemporary interest.
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Fig. 6.8 Non-covalent interactions at the interface of chemistry and biology

6.8 Outlook

Molecular modeling has occupied the central space in basic, applied and industrial
research. At the interface of chemistry, biology and material science, computational
modeling has played a pivotal role in understanding the structure function relation-
ships at atomistic levels. Although reliable and rigorous approaches have strong
limitations in their applicability as the size of the system increases, several practi-
cal alternatives have been steadily emerged. This chapter provides a brief overview
of the computational methods which can be applied to small and large molecules
particularly bio-molecules.
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