
Chapter 4
In silico Identification of Eukaryotic Promoters

Venkata Rajesh Yella and Manju Bansal

Abstract The identification of promoters is essential for complete annotation of
genomes and better understanding of gene regulatory networks. Experimental meth-
ods for promoter identification are costly, time-consuming and labor intensive.
Hence, in silico methods are an attractive alternative. Computational methods for pro-
moter prediction methods are easy, fast and can provide reliable results. A promoter
prediction algorithm identifies promoter regions based on the idea that, promoter
regions are different from other genomic regions in their features (sequence, context
and structure). Promoter prediction algorithms are broadly classified as ab initio,
hybrid and homology-based, depending on the information used for model design.
The different approaches used in promoter prediction are briefly described here.

Keywords Promoter prediction programs · FirstEF · CpGProD · Eponine ·
PromoterInspector · PromPredict · EP3 · PromH

4.1 Introduction

Recent advances in genome sequencing techniques have provided a wealth of base
sequence information, from which the coding and regulatory sequences need to be
identified. While experimental as well as in silico tools are available for identifying
coding sequences, locating regulatory sequences like promoters is a great challenge
and the currently available methods are not very efficient. Promoter identification is
essential for several reasons: annotating genomic regions for understanding genome
architecture and understanding gene regulatory networks. Promoters are identified
on the whole genome scale, using experimental techniques like binding assays, ChiP-
chip, ChiP-seq, etc, which are costly, labor intensive and time consuming. Hence,
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it may not be feasible to characterize all genomes in detail experimentally. Alterna-
tively, computational methods are available to identify promoters, as well as coding
regions. There are several Promoter Prediction Programs (PPPs) available, which
use different features or statistical models and identify either transcription start sites
(TSSs) or promoter regions. In this chapter, we briefly describe the architecture
of Eukaryotic promoters and the different kinds of promoter prediction algorithms
currently available.

4.2 Eukaryotic Promoter Architecture

A promoter region is generally defined as any genomic DNA where the transcrip-
tion machinery assembles and initiates transcription. The promoter region consists
of protein binding regions along with the transcription start site (TSS). Promoter
architecture in Prokaryotes and Eukaryotes differs in complexity. In Prokaryotes,
a single RNA polymerase transcribes all types of RNAs and the promoter regions
are characterized by the presence of −35 and −10 elements and in some cases the
UP element as well. Overall, in the Prokaryotes, the regulatory region is located
within 100 base pairs relative to the TSS. In Eukaryotes, promoter structure is more
complex, with the complexity increasing from single celled yeast to mammals. Eu-
karyotes have several different types of RNA polymerases (usually three), with each
one responsible for the production of different subsets of RNA. RNA polymerase II
is responsible for synthesis of all mRNAs and is well studied compared to other RNA
polymerases. Hence, only features corresponding to promoters of genes transcribed
by RNA polymerase II are discussed below.

In Eukaryotes, the promoter regions are broadly classified as core promoters,
proximal promoters and distal promoters. The core promoter region, where the actual
basal transcription machinery assembles, is 30–100 nucleotides in length. These
regions are characterized by the presence of sequence motifs such as the TATA box
and the Inr element. They may also contain downstream elements like DPE, MTE
(in humans) along with the associated TSS (Juven-Gershon et al. 2008; Thomas
and Chiang 2006). The proximal promoter regions are the sequences located within
500 base pairs relative to the TSS and contain certain proximal promoter elements,
which include the GC box, the CAAT box, cis-regulatory modules (CRM) (Lenhard
and Sandelin 2012), etc. Distal promoter elements include enhancers, insulators and
silencers. The distal promoter region does not have a well-defined length and can
extend up to 10 kb from the TSS in upstream as well as downstream regions. Distal
promoters interact with transcription activators to increase the rate of transcription. In
vertebrates, it is known that 5 % of the genes code for specific transcription activators,
which interact with proximal and distal promoter regions.

Along with the transcription factor binding elements, mammalian promoter re-
gions also contain CpG islands. In humans, it is known that 60 % of promoters belong
to the CpG island-containing class. Figure 4.1 shows a schematic representation of
different promoter elements and their activators in Eukaryotes. Recent studies have
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Fig. 4.1 A schematic representation of Eukaryotic RNA polymerase II promoter elements and basal
transcription machinery. Promoter regions are divided into three classes, namely, core promoters,
proximal promoters and distal promoters. Core promoter elements bind to basal transcription factors
like TFIID. Proximal and distal promoter elements bind to transcription activators and increase the
rate of transcription

shown that in Eukaryotes, especially in humans, each promoter is associated with
many TSSs, which are spread over 50–100 nucleotides (referred to as transcription-
ally active regions) (Carninci et al. 2006). Promoters can also be bidirectional (Xu
et al. 2009). For detailed reviews on Eukaryotic promoters refer to Juven-Gershon
et al. (2008), Lenhard and Sandelin (2012), Sandelin et al. (2007), Thomas and Chi-
ang (2006). Recent understanding of vertebrate promoters is that though promoters
differ in their motif content (with most of them lacking a consensus motifs), GC
content (with lower Eukaryotes being AT rich and mammals being GC rich), some
properties such as nucleosome free region and epigenetic features around TSSs are
quite common (Valen and Sandelin 2011).

4.3 Experimental Methods of Promoter Identification

Experimental methods for promoter identification and characterization generally
identify TSSs or DNA sequences that bind to proteins such as TFs and RNAPII
(Lenhard and Sandelin 2012; Sandelin et al. 2007). Earlier methods such as nuclease
protection and primer extension carry out promoter identification on a gene-by-gene
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basis and cannot be used for whole genome promoter identification. Current high-
throughput methods measure either products from transcription (mRNA) or promoter
activity in whole genome. They provide a snapshot of all transcribed regions or
DNA-protein interactions in the genome for given experimental conditions. Recent
advancements in promoter region identification consist of sequencing methods and
hybridization methods (Sandelin et al. 2007). Sequencing methods such as RACE,
5‘-tag sequencing and 5‘-3‘ paired-end sequencing provide information about the
mRNA or cDNA sequences. All these methods use reverse transcription to get cDNA.
Then the cDNA is fragmented and the fragments amplified and sequenced from the
5‘-end. The sequenced fragments are mapped to the genomic DNA sequence to
get information about TSS location. Hybridization methods, instead of sequencing,
use short oligonucleotides to hybridize with target DNA. Two widely used methods
are tiling arrays and ChiP-chip, which characterize TSSs and promoter elements
respectively. Oligonucleotide tiling arrays are designed with parts of contiguous
regions of sequenced genome or some times even whole genomes. They can provide
information about the whole transcriptome along with the location of TSSs. The
ChiP-chip method is an application of tiling arrays to identify protein bound regions
of genomic DNA. ChiP-chip method uses chromatin immunoprecipitation (ChiP) to
isolate DNA-bound promoter-associated proteins and then bound DNA is identified
using tiling arrays (Sandelin et al. 2007).

4.4 In silico Methods for Promoter Identification

The computational methods for identification of promoter regions are mostly based
on the basic premise that promoter regions have distinct sequences when compared
to other genomic regions. Promoter Prediction Programs (PPPs) use experimentally
identified promoter regions aligned with respect to TSSs, or transcription factor
binding site information from databases (TRANSFAC (Wingender et al. 2000), EPD
(Schmid et al. 2004) and DBTSS (Suzuki et al. 2002)) as a training dataset, to
derive principles that differentiate promoters from non-promoter regions. PPPs can
be broadly classified into three types based on the information used for promoter
characterization. They are ab initio, hybrid and homology based algorithms.

Ab initio or de novo methods use only DNA sequence information for promoter
identification. Ab initio methods are further classified (as shown in Fig. 4.2) as search-
by-signal, search-by-content and search-by-structure algorithms based on features
used for modeling (Zeng et al. 2009). Some current algorithms integrate two or more
features for efficient promoter prediction.

Hybrid methods use sequence information with other accessory information such
as epigenetic features, nucleosome occupancy and gene expression data. Homology
based PPPs use orthologous gene information to identify promoter elements. Here,
we will focus on ab initio PPPs in detail and also provide an introduction to other
methods. Detailed information on the history, feature selection, model design and
performance assessment of these PPPs is available in several excellent reviews (Abeel
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Fig. 4.2 Classification of Promoter Prediction Programs (PPPs) based on the information used for
prediction

et al. 2009; Bajic et al. 2004; Bajic et al. 2006; Fickett and Hatzigeorgiou 1997; Ohler
and Niemann 2001; Pedersen 1999; Zeng et al. 2009; Zeng 2011).

4.4.1 Ab initio Methods

Ab initio algorithms use only DNA sequence information to predict promoter regions.
They identify either putative TSSs or promoter regions or in some cases, both. Ab
initio methods may use three different kinds of features: biological signals such as
core promoter elements, TFBSs or sequence context information like oligonucleotide
composition or DNA structural features. Along with feature selection, they use differ-
ent statistical and machine learning methods such as weight matrices (Bucher 1990),
artificial neural networks (Reese 2001; Wang and Ungar 2007), Markov chains (Au-
dic and Claverie 1997), quadratic discriminant analysis (Davuluri and Grosse 2001),
genetic algorithms (Levitsky and Katokhin 2003), principle component analysis (Li
et al. 2008) and kernel methods which employ support vector machines (Abeel et al.
2008b; Gangal and Sharma 2005), etc.

These algorithms search for biological signal features of core promoter elements,
for example, the TATA box, initiator element (Inr), DPE (Downstream promoter
Element), specific TFBSs and CpG islands (in mammals). Generally, these algo-
rithms either predict core promoter elements or, in some cases, give the TSS position
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along with the distance between the binding site and the TSS. These models first
derive consensus signals from experimentally identified TSSs or promoter elements.
They then use different statistical methods like weight matrices, artificial neural
networks and discriminant models to discriminate between promoter regions and
their neighbouring sequences. Typical examples of this class of PPPs include PWMs
(Bucher 1990), NNPP (Reese 2001), CpGProD (Ponger and Mouchiroud 2002),
CpG-promoter (Ioshikhes and Zhang 2000), FirstEF (Davuluri and Grosse 2001)
and Eponine (Down and Hubbard 2002). Search-by-signal PPPs are considered to
be first generation methods. Earlier published PPPs did not use CpG-islands and
their prediction efficiency was low, where as recent improved algorithms to predict
promoters in mammalian genomes include use of CpG islands (Ioshikhes and Zhang
2000; Ponger and Mouchiroud 2002).

1. FirstEF: FirstEF (Davuluri and Grosse 2001), which uses CpG islands, is not
a pure promoter prediction program. It identifies first exons along with putative
promoter regions (Bucher 1990). The developers of this PPP observed that CpG
distribution in the vicinity of TSSs is bimodal, so there are two classes of first
exons that exist, such as CpG containing and non-CpG containing ones. It uses
a probabilistic model to identify potential first exons (splice donor sites) for
both classes of promoter regions. It considers upstream promoter region and
downstream splice donor sites (GT) and checks whether the intermediate region
is an exon or not. The algorithm is optimized to find potential first donor sites
along with CpG-related and non-CpG-related promoter regions.

2. CpGProD: CpGProD (CpG Island Promoter Detection) uses CpG islands to iden-
tify mammalian promoter regions in large genomic sequences (Pedersen 1998).
Although it is strictly dedicated to this particular promoter class, which cor-
responds to 50 % of the genes in humans, it exhibits a higher sensitivity and
specificity than the other tools used for promoter prediction.

3. Eponine: Eponine (Down and Hubbard 2002) is one of the best algorithms and
uses sequence motif signals for locating the TSS. It combines weight matrices
with discrete probability distributions of differently positioned constraints. The
Eponine DNA weight matrix model for any signal is represented by the following
equation.

φ(i; S) = log
+∞∑

j=−∞
P (j ).W (a + i + j ; S) (4.1)

P(j) is a discrete probability distribution; W(x;S) is the weight matrix score,
aligning the first column to position x on sequence S; a is the center position of
the distribution, relative to the TSS; and i is the position of the true TSS. These
PWM models were chosen for a set of four constraint elements in 599 mammalian
promoter regions. They are
i. a diffuse preference for CpG enrichment downstream of the TSS.
ii. a TATAAA motif with focused distribution centered at position− 30

relative to the TSS.
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Fig. 4.3 A schematic representation of the Eponine core promoter model, showing four constraint
element distributions, which were used for a weight-matrix consensus. (Down and Hubbard 2002)

iii & iv. two GC-rich matrices (GCGCG and GC) closely flanking the TATA
box and positioned upstream and downstream respectively (Fig. 4.3).

To derive an efficient model, the data was trained using a relevant vector machine
(RVM) algorithm with a Monte Carlo sampling process.

4.4.1.1 Search-by-content Algorithms

Search-by-content algorithms are considered to be more advanced compared to ear-
lier approaches, as they achieve greater sensitivity and specificity. These algorithms
are inspired by linguistics. The basic principle underlying all search-by-content
methods is that promoter and non-promoter regions differ in their grammar and
can be differentiated using certain threshold values. Context features are generally
oligonucleotides represented by a set of k-tuples (or k-mers). Promoters and non-
promoter regions are different in their tuple statistics. This characteristic statistical
property of oligonucleotide composition can be used to discriminate promoter from
non-promoter regions. Typical examples of PPPs, which use this feature, include
PromFind (Hutchinson 1996), Promoter2.0 (Knudsen 1999), PromoterInspector
(Scherf et al. 2000) and PCAHPR (Li et al. 2008). These classes of algorithms
were shown to be more discriminative compared to search by signal algorithms. All
these PPPs may differ in their statistical models but discriminate promoters from
non-promoters using k-mer (k = 2, 3, ..6) frequencies.

1. PromoterInspector: PromoterInspector uses discriminant functions to identify
promoters and was considered the best PPP at one time (Scherf et al. 2000).
This was trained using a brute-force algorithm to discover a set of sequence mo-
tifs overrepresented in promoter regions. Their models introduce IUPAC words
by incorporating wildcards in multiple positions of an oligomer, except at the
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start and end of words (AGCNGCA, AGCNNGCA). Using a certain threshold,
it classifies IUPAC words into promoter related and non-promoter related candi-
dates. From these pre-derived threshold values, PromoterInspector scans target
the genome through a sliding window to identify promoter regions. The predic-
tions are not strand-specific and do not provide information about the TSS. This
tool was developed for mammalian genomes.

4.4.1.2 Search-by-property Algorithms

It is known that DNA structural features play a role in DNA-protein recognition
(Pedersen 1998). The biological significance of different DNA structural properties
in promoter regions is described in the accompanying chapter 13. These structural
features are more conserved compared to sequence features. Search-by-property
based algorithms use DNA structural features such as flexibility/bendability, curva-
ture, base stacking and free energy to predict promoter regions. These algorithms are
more recent compared to the methods described above and are based on one or more
structural features to derive principles of learning. Generally, these kinds of models
use simple statistical methods (Abeel et al. 2009); Rangannan and Bansal 2010) or
advanced machine-learning approaches such as support vector machines (Abeel et al.
2008b) and are applicable across genomes, though genome based cut-offs may have
to be specified. McPromoter (Ohler 2000), Prostar (Goni et al. 2007), EP3 (Abeel
et al. 2008a), PromPredict (Rangannan and Bansal 2010) and ProSOM (Abeel et al.
2008b) are examples of these types of methods. Some of these algorithms (Abeel et
al. 2008b) cluster sequences using structural profiles and use these clusters to clas-
sify unknown sequence into different promoter classes. Others use derived threshold
property values to distinguish promoters from non-promoter regions (Abeel et al.
2009; Rangannan and Bansal 2010). If a given genomic sequence has a feature score
in a defined window which is greater or smaller (depending on the property) than the
pre-derived threshold, then it is classified as a promoter. These algorithms generally
identify promoter regions rather than giving TSS positions.

1. PromPredict: PromPredict (Rangannan and Bansal 2010) uses the dinucleotide
free energy values obtained from differential melting stability of DNA duplex as
a predictor of promoters (SantaLucia 1998). The idea behind using DNA duplex
stability is that promoter regions should be less stable than neighbouring regions
for easy melting at the time of transcription initiation. Compared to other structural
features, stability (or base stacking) is found to be the most prevalent feature in
the promoter region (Abeel et al. 2008a). Although it was developed for bacterial
promoter prediction, it also works well for Eukaryotes (Morey et al. 2011). The
program takes an input genome or a fragment of a sequence along with a defined
window (100 or 50) and gives the start and end of predicted promoter regions
as well as least stable nucleotide position. PromPredict can be applied to any
genome and also to fragments of genomic sequences, independent of their size
or GC composition.
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2. EP3:EP3 (Abeel et al. 2008a) is similar to PromPredict; it uses a base-stacking
property to distinguish promoter regions from other regions. For a given sequence
of DNA, it calculates inverted base-stacking values over a window size of 400
base pairs in non-overlapping fashion and calls a region as promoter when the
structural feature value crosses the threshold score, which is genome specific.

4.4.1.3 Integrated Algorithms

For ab initio promoter prediction, it is important to choose the most discriminatory
features along with the discriminative model (statistical model). Some programs
integrate different features to achieve better prediction (Zeng et al. 2010). ARTS
(Sonnenburg et al. 2006), CoreBoost (Zhao et al. 2007), PromoterExplorer (Xie et
al. 2006) and SCS (Zeng et al. 2010) are a few examples of such new-generation
algorithms. which use two or more features to predict promoters. PPPs, such as
MetaProm (Wang and Ungar 2007), integrate many algorithms to predict promoters.
The integrated algorithms are generally better discriminators of promoter regions,
compared to the algorithms described earlier.

4.4.2 Hybrid Methods

Hybrid PPPs have been developed very recently. Along with the intrinsic features of
promoter sequences, they use experimental information such as gene expression and
histone modification data (Wang et al. 2012). CoreBoost_HM (Wang et al. 2009)
and a method using ChIP-seq Pol-II enrichment data (Gupta et al. 2010) belong to
the class of hybrid PPPs. CoreBoost_HM integrates specific histone modification
profiles and DNA sequence features (core promoter elements, TFBSs, flexibility)
to predict human Pol II promoters. Similarly another recent method integrates gene
expression data from Chip-seq and CAGE methods (average and maximum tag counts
per million) as well as DNA sequence features (10 sequence composition variables
and 22 property variables) to predict promoter regions in humans. Both these methods
have outperformed earlier methods in terms of sensitivity and specificity.

4.4.3 Homology Based

The idea behind using DNA sequence homology for promoter prediction is that, like
coding regions, regulatory regions are also evolutionarily under selective pressure
and are free of mutations, whereas non-regulatory, non-coding regions can accumu-
late mutations. Phylogenetic foot printing (Fickett and Wasserman 2000) is one of
the methods used in this type of PPP. These methods are only applicable to identify
promoter regions of orthologous genes. PromH (Solovyev and Shahmuradov 2003)
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is one PPP which uses orthologous gene information to predict promoter regions.
PromH checks the conservation of TATA boxes in the upstream region, the conser-
vation of nucleotide sequences around the TSS and the conservation of regulatory
motifs in the upstream and downstream regions of the TSS and then uses a dis-
criminator function to identify conserved promoter regions in pairs of orthologous
genes. The program was developed specifically for testing human and rodent orthol-
ogous pairs. These kinds of algorithms are not applicable to whole genome promoter
identification.

4.5 Conclusions and Future Perspectives

In silico identification of promoters is a great challenge in computational biology.
A large number of promoter prediction programs are available and they differ in
terms of the feature used for discriminating promoter regions from the large mass of
genome sequence information. Search-by-structure or integrated algorithms appear
to be promising as they are applicable to different model systems, whereas hybrid al-
gorithms are generally efficient but are restricted to the systems for which accessory
experimental information is available (such as epigenetic features and CAGE tag
counts). With the rapid development of high-throughput technologies, which pro-
vide genome wide information about transcription, our understanding of promoter
features is changing.

Current notion about vertebrate promoters is that while promoter regions differ
in their GC and motif content, some common properties are present, such as the
nucleosome free region near the TSS and epigenetic features. So, future algorithms
can use this information along with other features to design new PPPs. There is
always scope for the development of better algorithms based on new features and
high throughput data. Most of the current PPPs are focused on promoter regions of
protein coding genes. Now, with the increasing importance of non-coding RNAs in
gene regulation, it is essential to analyze them. New algorithms are needed to identify
promoter regions of these non-coding genes. Promoter prediction is required even
if we have experimental promoter data, as we need statistical models to understand
and explain promoter architecture. Up and down regulation of genes and interaction
between genes is carried out through the inherent features of promoter regions. So,
promoter identification and its characterization as weak or strong can serve as an
important input for better understanding of systems biology of diverse organisms.
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