
Chapter 1
Introduction to Systems Biology

Bin Hu and Pawan K. Dhar

Abstract In the mid 1990s when Leroy Hood reintroduced the term “Systems Biol-
ogy”, the fusion of ideas gave rise to confusion to such an extent that there used to
be special talks on ‘what is systems biology’? Over the last decade, Systems Biology
has undergone directed evolution leading to the emergence of personalized versions
of this term. Irrespective of this, strong computational dependency and a significant
increase in the scale of investigation often appear as constant features in the systems
biology background. In our opinion, Systems Biology is an approach that involves
the following (a) experimental and computational studies describing collective be-
havior of molecules in relation to the pathway and networks, and with the higher-level
physiological outcome (b) new experimental and mathematical methods important
to study group behavior of interacting components. This chapter describes the origin
and evolution of systems biology, as a formal discipline, steps and challenges in
building models and their potential applications.

Keywords Modeling in Biology · Simulation · System · Biological complexity ·
Pathways · Networks

1.1 Introduction

The traditional approach of doing science has mainly centered around the twin strat-
egy of observation and classification i.e., observe some measurable quantity, say
flower color, height of plant and so on, collect data from a large number of plants
and try to find some non-obvious pattern. At least in biology, the role of analytical
techniques has rarely been pursued as a serious scientific discipline. This is due to the
fact that in the traditional setting biological data was easily countable and available
to human analysis and interpretation. The science of taxonomy was built upon the
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foundation of finding common patterns among a large number of samples and cate-
gorizing them hierarchically. The strategy was that a higher-level abstraction should
be shared by all the members of the group, which can be further sub-sorted into
various bins based on some additional parameter. Thus, you see kingdom, families,
genus and species as a top-down flow of information in taxonomy. Charles Darwin
stretched the idea of ‘finding patterns from external observations’ further, and ended
up his long and careful study by proposing the theory of Natural selection. Lamarck
and other scientists extended the story further and tried to make his story predictive.

However, in all these situations classifying organisms did not explain how they
worked. There was a need to adopt a different approach. Mendel made the first bold
attempts to look beyond a horizontal (population-based) plane of vision and vertically
move down from phenotype to causal elements. He assumed a linear correlation
between a causal element and a phenotypic observation. It was a groundbreaking
work. In absence of any high-resolution physical device, he could generate accurate
rules and predictions of inheritance simply by looking at the external phenotypes.

After Mendelian era, the science of biology got predominately biochemical and
microscopic. Technological developments helped scientists move from external phe-
notype to cell interiors. However, due to technical complexity and cost of data
generation, biological data was mostly qualitative, studied at the level of human
analysis and did not require special mathematical techniques and computational
infrastructure for interpretation.

As the technological tools got more sophisticated, scientists moved from external
observations to the study of cells, chromosomes, DNA, protein and so on. Hav-
ing seen so many parts co-existing in a small cellular space, there was a natural
curiosity—how are these parts created, used, retired, recycled. What is the role of
these parts in determining higher order behavior?

Two parallel efforts were aggressively pursued: (i) uncover as many parts and
modules (collection of parts employed for a single purpose) as possible, and (ii) find
the role of each part in determining a given phenotype. We call this strategy as ‘reduc-
tionist biology’i.e., reduce a system to a set of components and study each component
separately. The Human Genome Sequencing Project was started precisely keeping
the first aim of reductionist biology in mind i.e., if we know our genetic blueprint,
we will figure out everything about ourselves. In parallel to this, a large body of mu-
tations and chromosomal aberrations was collected from diseased tissue to correlate
abnormal physiological/morphological conditions with the underlying genetic cause.

However, soon people realized that reductionist approach was unhelpful beyond a
point. There were so many incidences where a visible genetic variation/mutation did
not lead to a corresponding change in the phenotype. Worse still, in many instances a
so-called important gene when knocked-out did not result in the expected outcome.
Organisms employed even unrelated genes take over the function of a missing one.
Thus, to learn biological decisions there was a need to invent a novel approach.

The trigger for paradigm shift came when microarray technology was invented in
the early 1990s. Suddenly huge real-time data was generated. There was no direct
way to understand this data, the underlying hidden patterns and correlations. In-
stead of focusing on one gene, people could now study hundreds of gene expression
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events together. The impact of even one gene knock-out could be studied in relation
to hundreds of unrelated genes. The point of focus moved from sequence level to
the expression level. From low throughput human readable data, the scientific com-
munity moved to automated, high throughput, machine analyzable data. This was
a real phase shift in biology. One could ask questions about the whole system and
not about just few parts. By mid 1990s, Systems Biology had truly arrived. This is
not to suggest that Systems Biology started in the mid 1990s. The original seeds of
thoughts were sown much earlier.

In 1944, Norbert Weiner foresaw the need for systems approach. Unfortunately,
the time was not ripe for Systems Level analysis due to data scarcity. Even if all
the data were available at that time, the lack of sufficient computational resources
would have still precluded scientists to make best use of it. The idea of systems
analysis slowly moved from theoretical to practical realm. In the mid 1960s and
1970s, metabolic control analysis gained prominence. The hope was to study the
flow of metabolites through the network and find steps that exerted maximal control
over metabolic flux in the network. This came to be known as Biochemical Systems
Theory. A number of key concepts we use today in flux and control analysis can be
traced back to the earlier work (on computational analysis of metabolic networks)
by Michael Savageau and co-workers.

Probably the situation wouldn’t have changed much, but for a new technology in-
vented in the early 1990s. Dr. Stephen Fodor (later Chairman and CEO ofAffymetrix)
and his colleagues published a ground-breaking work in Science in 1991. Biol-
ogy suddenly underwent a paradigm shift, from low-throughput to high-throughput
science. At the same time, computer technology got more advanced, the micropro-
cessors got faster and the storage got cheaper. Time was ripe to collect large amounts
of data and store it in computers for analysis.

In the background of technological developments, Leroy Hood formalized this
new integrated biology approach and called it ‘systems biology’. For several years
people were confused (and probably still are) about: what is systems biology? The
community has gone through significant brainstorming on how to define Systems
Biology? Though Leroy Hood projected it a specialized field of science, generally
people like to view Systems Biology as an “approach” than an independent discipline
(Hao et al. 2003). Given the existence of so many flavors of systems biology, probably
it is best to describe the properties of Systems Biology than to give it a rigid definition.

1.2 Systems Biology—A Primer

1.2.1 What Is Systems Biology?

First, we need to define the term ‘System’. A System is composed of several elements
and is defined by the scope of investigation. For example, to study photosynthesis as
a systems biology problem, one would need to describe all the genes and molecular
networks involved in the process of photosynthesis. It is not necessary for example
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to model lipid synthesis, if one is investigating photosynthesis as a systems biology
problem. Likewise, one can omit photosynthetic pathways if one is modeling lipid
metabolism. In other words, the boundary conditions of a system are determined by
the components that are directly involved in the process under study. This is not to say
that a system is a space constrained by rigid boundary conditions. In reality, a system
is a flexible term, described by the availability of data and by the kind of questions.

Systems Biology is a formal approach to understand higher-level behavior as a
result of group interaction of the constituent elementary components. As it involves
a large variety and scale of data, computational modeling and analysis is frequently
employed to store, understand and find meaningful correlations. Systems Biology
starts from experiments, goes through computational route and ends at experiments
i.e., experimental data → Statistical treatment and modeling → Correlations →
Predictions → Experiments. The key difference between systems biology and tradi-
tional biology is the focus on group behavior of molecules as against single molecular
correlation in the latter.

1.2.2 Why Is Systems Biology Necessary?

In physical sciences, modeling and simulation, in addition to theoretical and exper-
imental studies, is the third indispensable approach because not all hypotheses are
amenable for confirmation or rejection by experimental observations. In biology,
researchers are facing the same or maybe even worse situation. On one hand ex-
perimental study is unable to produce enough data for theoretical interpretation; on
the other hand, due to data insufficiency and inaccuracy, theoretical research cannot
provide substantial guidance and insights for experimentation. To meet this need,
computational modeling takes a more important role in biology.

1.2.3 What Is a Model?

A model is a formal or abstract representation of a system, usually in the form of a set
of objects and the relations between them. It is a skeleton of the real system but not a
replica, built with key components based on a combination of assumptions and exist-
ing knowledge. The key to modeling is the identification of elements that can reflect
key global properties with incomplete information. Modeling is an iterative process
that repeats until a model reaches its final stage and is validated by experiments. In
the process, different prototypes are often developed for validation. A model may
be formal, with mathematical representation, or conceptual, with diagrams or even
concepts only. It may be mechanistic (cause-effect relationship), or phenomenolog-
ical i.e., based upon a combination of observed phenomena and expert knowledge.
Mathematical models are commonly divided into deterministic (responses to given
inputs are predictable) and stochastic (responses are picked up based on probability
distribution), quantitative and qualitative, and linear and non-linear.
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1.2.4 Is Modeling in Biology New?

Biological modeling is both old and new. Originating from modeling concepts in
physical systems, it has a history of several decades. However, due to the distinctive
differences between biological systems and physical systems, biological modeling
presents itself with additional challenges and calls for new strategies and tools. To
model biological systems at various levels i.e., molecular, cell, tissue and organ
different strategies and techniques are needed.

Modeling and simulation appeared on the scientific horizon much before the emer-
gence of molecular and cellular biology. Early on the objective of modeling was to
explore the features of black boxes e.g., heart, brain, and circulation system, a con-
cept borrowed from physical systems. In such scenario, the main challenge was to
understand and predict the behavior of a system without knowing the microscopic
details. The strategy was to reproduce observed phenomena at high level with sim-
plified description of internal structures. Though inferring microscopic details was
necessarily a major goal, one needed to know how to understand the system as a
whole and utilize this understanding in clinical practice. The cases in point are: the
inverse modeling of cardioelectrical (Gulrajani et al. 1988) whose simulation results
were used to improve diagnosis of heart and brain diseases.

Two interesting methodological features emerged at this stage. First, since biolog-
ical systems were treated as physical systems or even structure-less systems, many
methods and tools were directly borrowed from engineering fields such as FEM
(finite element method) and BEM (boundary element method) to compute biologi-
cal systems (Bradley et al. 2001). Electrical activity of cardiac cells was abstracted
to dipoles with different moment and direction. The second feature was high-level
abstraction based on inverse approach. Cellular electrical activity was abstracted
as an attribute of dipoles [6]. Consequentially, complex numerical techniques for
ODE (ordinary differential equation) and PDE (partial differential equation) solu-
tion were developed. Both black box assumption and inverse modeling, though
suitable for modeling mechanical systems, suffer from major problems when applied
to biological systems. The first one is that many inverse problems are mathemati-
cally ill-posed. Even if the available data are adequate and precise, unique solution
is not always guaranteed and special techniques like regularization are employed
(Johnston and Gulrajani 1997). The second assumes that that the internal structure is
static, does hold true when a system evolves with time. Thus, this method cannot de-
scribe growth process with gene regulation, for the system undergoes state transition
while an inverse solution is searched for. Complex internal structure and evolution
are key features that differentiate biological systems from mechanical systems. The
top down approach doesn’t work very well in biological systems due to absence of
information at various levels. Even the bottom up approach (from molecular model-
ing to organs) encounters the same problem. The solution is to start at an information
level and expand vertically upwards/downwards.
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Fig. 1.1 Predominant computational approaches in biology

1.3 Modeling Pathways and Networks

Mendel used simple elementary mathematics of addition and division to obtain laws
of inheritance. However, with the arrival of large amount of biochemical and molec-
ular data, mathematical treatments and computer applications got more and more
sophisticated (Fig. 1.1). Currently, the predominant phase in biology is process anal-
ysis and systems engineering. Process analysis is what we know as Systems Biology
and Systems Engineering is commonly referred to as Synthetic Biology.

Table 1.1 describes some of the commonly used resources and tools in computa-
tional systems biology. Modeling is one of the activities in systems biology. It is easy
to understand why? Modeling helps address “what-if” questions, facilitate rejection
of false hypothesis, and predict future system state in response to a perturbation.
Good models are experimentally validated, analyzable and open for manipulation
and optimization.

1.4 Steps in Model Building

Step One Make a parts list (collect data from literature and experiments). Take into
consideration the measurements made, protocols followed, perturbations applied,
constraints during experiment and error bar. Was the data independently confirmed?
In case of conflicting results, pick up the data from the most reliable group and iterate
with the next.

Step Two Draw an interaction map. The pathway representation should be robust
and represent events like translocation, transformation and binding. A pathway map
typically consists of nodes (molecules) and edges (interactions). In a standard text-
book diagram all the interactions drawn on a uniform background canvas, may
(a) belong to different cellular compartments and also (b) occur at different time
points. Thus, in reality a standard metabolic/signaling map represents spatially and
temporally overlapped data.
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Table 1.1 Resources and Tools for Computational Systems Biology. (This list is not exhaustive.
We recommend readers to consult relevant scientific literature for more information)

Resource

For visualizing/construction

Pathfinder (online graphical representation of cell signaling pathways)
http://www.sigmaaldrich.com/life-science/cell-biology/learning-center/pathfinder.html

ArrayXPath (mapping and visualizing microarray gene-expression data)
http://www.snubi.org/software/ArrayXPath/

HighChem (a suite of interconnected modules containing tools for constructing, visualizing and
analyzing biochemical and metabolic pathways)
http://www.highchem.com/leading-edge-technologies/biochemical-pathways.html

Pre-constructed pathway maps

IUBMB-Nicholson minimaps
http://www.tcd.ie/Biochemistry/IUBMB-Nicholson/

Kyoto encyclopedia of genes and genomes
http://www.genome.ad.jp/kegg/

PUMA2 (High throughput comparative and evolutionary analysis of genomes and metabolic
networks with Grid computational backend)
http://compbio.mcs.anl.gov/puma2/

The seed (An annotation/analysis tool)
http://theseed.uchicago.edu/FIG/index.cgi

Biopathways consortium
http://www.biopathways.org

BioCyc (Collection of 507 Pathway/Genome Databases. Each database in the BioCyc collection
describes the genome and metabolic pathways of a single organism)
http://www.biocyc.org

BioCarta (Interactive graphic models of molecular and cellular pathways)
http://www.biocarta.com

Enzyme databases

BRENDA
http://www.brenda-enzymes.info/

ExPASy
http://www.expasy.ch/

Tools

170 modeling and simulation tools listed
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

Step Three Converting map into a model. Actually, map itself is a model—a
connectivity model. However, to understand dynamic nature of the system a connec-
tivity representation must be converted to a quantitative model. Gene expressions
are stochastic and may be modeled with stochastic equations. Metabolic pathways
are modeled with Ordinary Differential Equations. Even though Michaelis Menton
kinetics is the most accepted way of modeling metabolic events, the MM equation is
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Fig. 1.2 General modeling scheme

itself based on assumptions, some of them are not true e.g., well mixed reaction cham-
ber. Figure 1.2 describes a general modeling scheme. Based on the questions asked
and system under investigation, distinct modeling approaches are used (Table 1.2).

Step Four Animate the static model. A large number of tools developed for free are
available currently (http://www.sbml.org). Most of them offer exchange of results
based on the standard SBML output (SBML—Systems Biology Markup Language).

Some of the desirable features of an effective software tool for Systems Biology
from both computational and software viewpoints are presented below.

a. Algorithmic Support. Algorithms form the core of any tool. We have seen that
there are a number of formalisms and algorithms each with its own strengths
and weaknesses. Flexibility to quickly use different algorithms from the same
environment would be critical for reducing the cycle time of building large and
complex models. We further classify algorithmic support into three divisions:

b. Modeling and Simulation Support. Abstractions of different cellular processes
require different information about the target systems such as Gene Regulatory
Network, Signal Transduction Network or spatial diffusion. These are based
on system specific inputs and implementation of the underlying algorithms.
Table I lists details of some of the processes. The whole cell modeling tool must
eventually provide support for handling and processing this information.
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Table 1.2 Commonly used kinetic modeling formalisms

Process Input Mathematical formalism

Gene expression Quantitative time series data Stochastic equation

Metabolic reaction Concentrations, rate constants Ordinary differential equation

Gene regulatory
networks

Network topology, stoichiometry,
rate constants, number of particles,
rules, thresholds

Boolean, rule based, stochastic
master equation

Signaling networka Network topology, stoichiometry,
rate constants, number of particles,
rules, thresholds

Boolean, stochastic (gillespie,
stochsim, petrinets),

Metabolic pathway Network topology, stoichiometry,
kinetic rate laws, initial
concentrations, algebraic rules

Non linear ordinary differential
equations, s-systems

Membrane transport and
other spatial processes

Initial spatial concentrations,
diffusion constants

Reaction diffusion, deterministic
partial differential equations,
spatial stochastic master equation

aRecently rule based modeling approach has gained prominence. GetBonNie is a good tool for
building rule-based models of signaling networks (http://getbonnie.cs.unm.edu/GetBonNie/). This
is particularly useful since qualitative data are the most frequent/dependable form of data obtainable
from signaling networks. As an extension, I would strongly encourage readers to go through Dr.Eric
Davidson’s work on modeling embryonic development. (http://www.its.caltech.edu/ mirsky)

c. Analysis Support. An important aspect of a typical modeling project in Systems
Biology is analysis of the qualitative and quantitative features of the network.
Parameter estimation, network optimization, flux balance analysis, bifurcation
analysis, extreme pathways and metabolic control analysis are some of the strate-
gies being used currently. Figure 1.3 shows the kind of data used in quantitative
model. Parameter estimation algorithms are indispensable for complementing
the limited knowledge that can be obtained from experimentation. These algo-
rithms can be used for estimating the unknown rate constants for reproducing
an experimentally observed time series. Flux Balance Analysis and Metabolic
Control Analysis have a long history of application to metabolic networks. Stoi-
chiometric Network analysis and Extreme Pathways are used to extract qualitative
information about a network such as the critical paths.

d. Visualization. Powerful visualization tools are necessary for improving the effi-
ciency of the modeling process and understanding the output of the simulation.
Some of the desirable features of a visualization tool are:
– Graphical User Interface for constructing the network and entering various

input parameters. A text-based input does not give a good idea of the network
topology. Graphical interface becomes particularly desirable for representing
spatial features of a model such as compartmentalization and localization.
Visualization is required for monitoring the dynamics of a model such as
evolution of the network topology through a change in the network layout or
the relative concentration of the species through a color code.
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Fig. 1.3 shows typical quantities used in a kinetic model

– Powerful graph plotters. The outputs of most of the simulation algorithms are
some form of time series. As a result in-built support for powerful plotters is
very important for analysis of the output.

e. Software Architecture. Simulation and analysis of large-scale models are in-
variably computationally expensive and often need high performance distributed
computing.
Some tasks, amenable to and can benefit from distributed computing, are genetic
algorithms based parameter estimation, multiple simulations for parameter sweep
and parallel PDE solvers for spatial simulation.

f. Modeling Language. Model building is complex activity requiring collaboration
between various research groups, both experimentalists and theorists. Thus devel-
opment of a common language for smoother information exchange is imperative.
Some of the ongoing efforts in this direction are BioPAX, SBML and CellML.

1.4.1 Challenges in Building Reliable Models

• Lack of accurate and adequate biological data
• A general lack of quality control with respect to strain, culture conditions and

protocols
• A cell is a gel, shows gradients, non-uniform distribution of substances in

compartments. Frequently, a model does not consider these variables.
• Parameter values are often inaccurate or taken in special culture/harvesting condi-

tions. To fill in the gap, deterministic and stochastic parameter estimation methods
have been developed. However, none of the methods guarantees an accurate an-
swer. Also, given that good data is often less frequently available, the parameter
search space is almost always significantly large. The larger the search space, the
lesser the possibility of finding an accurate answer.
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• Unknown reaction kinetics
• Temporal inactivation/degradation of enzymes in generally left out during

modeling process
• Metabolic channeling effects
• Emergent phenomena

1.5 Capturing Biological Complexity

The grand challenge of twenty first century is to understand and model complexity
of biological systems. Though complexity has been extensively discussed subjects
at different levels (Lynch and Conery 2003; Yang et al. 2003), there is no oper-
ational definition of complexity for the biological systems (Adami 2002). Some
hallmarks of complexity, e.g., linearity and non-linearity, number of parameters, or-
der of equations and evolution of network, come into existence only when a system
is formalized in specific ways. Furthermore, from what has been clear, there are
two kinds of complexity in biological systems: functional and structural, or dynamic
and static; both encountered by modelers. The identification and measurement of
biological complexity is a very big task for experimental biologists.

As Adami pointed out, the popular measure of complexity for dynamical systems,
computational complexity (for example, the complexity of a sequence can be inferred
from what finite state machine can produce), is unsuitable for biological systems.
Even though it characterizes the amount of information necessary to predict the
future state of the machine it fails to address their meaning in a complex world. Yet
the meaning or semantics of molecular interaction really makes sense in signaling
processes. An alternative approach may be to think about the complexity issue at
higher level and in much larger scope. Recently, the complexity of networks has
attracted interests of researchers with different background (Bhalla and Iyenger 1999;
Strogatz 2001; Wagner and Fell 2001). Since the topological structure of molecular
network, consisting of active genes and proteins, undergoes significant evolution
within cells in biological development, to measure complexity of molecular systems,
both static and dynamic, according to such evolution may be a practical way, because
it is easier to identify and abstract information from it (Bornholdt 2001).

Features in topological structure are also helpful in identifying modularity of
molecular interaction. In a large, multicellular landscape, the speed and scope of
parallel network evolution in cells, if measured properly, can effectively reflect the
complexity of biological systems. Another widely used index of complexity in both
physical and biological systems is non-linearity, including parameter sensitivity and
initial value sensitivity (Savageau 1971). In evolvable systems, it often implicates
the speed of evolution and the appearance of emergent events. Last but not least,
the existence of stochasticity and noise increase the complexity of the system even
further by introducing issues of robustness, noise resonance and bi-model behaviour.
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1.5.1 Computational Challenges in Building Stochastic Models

Experiments have conclusively proved that molecular activity, including gene reg-
ulation, are stochastic (Elowitz 2002). The intrinsic stochasticity of biochemical
processes such as transcription and translation generated intrinsic noise; and the
fluctuations in the amounts or states of other cellular components lead indirectly to
variation in the expression of a particular gene and thus represented extrinsic noise
(Swain 2002). There are also opinions that the stochasticity contributes much to
system complexity.

To describe the stochasticity, intrinsic and/or extrinsic, two strategies have been
developed. The first is to design specific stochastic simulation algorithms that can cut
down the computational burden; the second is to use stochastic differential equations,
which are modified ODE with stochastic flavor. We first describe these two ap-
proaches, then, turn to methods of reducing time consumption of stochastic modeling.

The CME formalism employs an equation for every possible state transition and
solves all equations simultaneously. Generating one state transition trajectory is
straightforward. However, when the dimensionality of a system increases, the pos-
sible trajectories of the state transition, or the state space, explode combinatorially,
rendering the system intractable. In view of this serious limitation, Gillespie devised
a more efficient algorithm to generate all trajectories (Gillespie 1977). Instead of
writing all the master equations explicitly, he generated trajectories by picking up
reactions and time intervals according to correct probability distributions so that the
probability of generating a given trajectory is exactly the same as the solution of
the master equation. For a homogeneous, well-mixed chemical system, Gillespie
has proposed two exact Stochastic Simulation Algorithms (SSA), namely the Direct
Reaction Method and First Reaction Method to solve the chemical master equations.

Although Gillespie algorithm solves the master equation exactly, it requires sub-
stantial amount of computational effort to simulate even a small system. Each of
following three factors contributes to a considerable increase of time consumption:

• Increase in the number of reaction channel
• Increase in the number of molecules for the species
• Faster reaction rate of the reaction channels

These factors cause scalability problem, which is similar to the stiffness problem
in usual ODE description i.e., whenever reaction rates between different reaction
channels vary in magnitude, computation slows down considerably. In the stochastic
algorithms, whenever the complexity of a system increases through the augmentation
of any of the abovementioned factors, a smaller should be adopted to reflect the true
nature of the system, i.e., to maintain the exactness of simulation. The difference in
time scale between different reaction channels is a cause for its large computational
complexity.

In 1998, Morton-Firth and Bray developed Stochsim algorithm, treating bio- logi-
cal components, for examples, enzymes and proteins, as individual interactive objects
based on probability distribution derived from experimental data. In this scheme, in
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each round of computation, a pair of molecules is checked for potential reaction. Due
to the probabilistic treatment of interactions between molecules, Stochsim is capable
of reproducing realistic stochastic phenomena in biological systems. Though both
Gillespie algorithm and Stochsim algorithm are based on the identical, fundamental
physical assumptions, an important feature of the latter is the concept of “pseudo-
molecules”, which serves as a numerical treatment to maintain the accuracy of the
algorithm. Furthermore, in this algorithm, the number of pseudo-molecules can be
optimized to overcome the stiffness problem.

In contrast to the variable time step in Gillespie algorithm, Stochsim algorithm
uses fixed time step that can be optimized to the desired accuracy. However, the
convenience of this measure comes with an additional burden of using empty time
step i.e., a time step in which zero events occur. Another limitation of the Gillespie
algorithm is its computational infeasibility for multi-state molecules. For example,
a protein with ten binding sites will have a total of 210 states and it requires the
same amount of reaction channels to simulate this multi-state protein. Considering
the scaling feature of Gillespie algorithm with the number of reaction channels, it
is impossible to perform such a simulation on with available computational power.
Stochsim algorithm can be modified to overcome this problem by associating states
to molecules without introducing much computational burden.

Several strategies have been adopted to improve the efficiency of stochastic mod-
eling. Gillespie and Gibson (2001) were the first to modify the SSA to improve
efficiency of the algorithms.

Gibson proposed the Next Reaction Method as a revised approach to Gillespie’s
First Reaction Method for simulation efficiency. The algorithm has been applied
for simulation of the Bacteriophage Lambda model. In 2001, Gillespie presented
the Tau-Leap Method to produce significant gains in the computational speed with
acceptable loss in accuracy (Gillespie 2001). In the original version of Gillespie Al-
gorithm, master equations were solved exactly to produce precise temporal behavior
of systems by generating the exact timing of the firing of each reaction channel. How-
ever, it is sometimes unnecessary to obtain so much detail from simulation. Instead
of finding out which reaction happens at which time step, one may like to know, how
many of each reaction channels are fired at certain time intervals. If the time interval
is large enough for many reactions to happen, one can expect substantial gain in the
computational speed.

However, the method still possess the inherit disadvantages of supressing stochas-
ticity in fast reaction and the computational efficiency of Implicit Tau Leap method
is still unexamined for a large biological pathway model. Another way of improving
efficiency of SSA is to adopt multi-scale integration.

1.5.2 The Rise of Hybrid Modeling

Pure stochastic modeling deals with biological systems as physical systems without
biological semantics. Besides the huge burden of time consumption, specific seman-
tic of gene/protein interaction is often buried under low level biochemical reactions.
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Hybrid modeling can have multiple meanings. First of all, a model containing
metabolic and signaling networks is a hybrid model. Actually these two networks
are not independent of each other. For example, in Type II diabetes, the weakened
transduction of insulin signal and the changed metabolism activity in cells are
closely coupled. In such model, very often, different description methods should be
employed to disclose different aspects or parts of a biological system, because, when
ODEs are used to describe deterministic events, the basic assumption on continuity
and determinism in ODE methods hamper the true representation of noise and
stochastic events in cellular environment [64]. Finally, different cellular processes,
like gene expression and biochemical reaction and different biochemical reactions,
ask for description not only different in methods but also at different time-scales.
For a successful simulation, various techniques should be implemented to ensure the
feasibility of computation, including the multiple time-scale integration of different
equations like ODE, SSA, and SDE [62].

Biological systems in nature undeniably involve multi-scale activities. Algorithms
discussed earlier tackle the problem by obtaining solution for the scale of interest
while eliminating the other scales in the problem. However, these algorithms pro-
duce results of less fidelity in the situation when different scales are heavily coupled
together. Furthermore, these algorithms may not be computationally feasible for
the scenario as well. One of the methods to reduce simulation time of these algo-
rithms will be to combine different algorithms that handle different scales (Welnan
and Engquist ? ). The idea of mixing different algorithms to handle hybrid system
is not new and has been first adopted in ODE system of equations. Anders [66]
presents multi-adaptive-galerkin methods for solving stiff ODE system. The method
showcases the possibilty of applying different time-steps and algorithms for different
equations in the system and highlights the potential of hybrid methods. However, the
method is derived for solving ODE system only and therefore insufficient in tack-
ling the problem in computational cell biology. Recently, Haseltine and Rowlings
(2002) presented a method for performing mixed ODE/SSA calculation to approxi-
mate system dynamics. The approach are theoretically based on the the equivalence
of stochastic and deterministic assumption at the thermodynamic limits, where N
and V become infinite. The methods offer insight into integration of the mesoscopic
and macroscopic timescale but fail in providing a robust control mechanism and
exact mathematical solutions. In addition to that, the methods adopt switches to
partition the system into either stochastic or deterministic regime which resulted in
sharp transition of the dynamics. This is unnature and unrealistic as compared to
the dynamics in the cells which exhibit smooth transition of states from microscopic
scale to macroscopic scale.

Integration of diffusion and biochemical pathway has been attempted recentlym
(Stundzia and Lumsden 1996). The method derives the reaction-diffusion master
equation and simulate the system with SSA. These approaches produce interesting
insight about the dynamics between diffusion and chemical reactions. However,
the computational requirement is enormous and not feasible for realistic model.
Furthermore, the methods do not consider concentration gradient and therefore are
not accurate in simulating diffusion processes.
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A recent version of Stochsim algorithms includes a 2- dimensional lattice to model
the interaction among neighboring molecules. In this approach, spatial information
is added as an attribute of each molecular species. The algorithm has been applied for
studying the dynamics of signaling proteins associated with the chemotactic receptors
of coliform bacteria. MCell [59] has also introduced another way of simulating
stochastic diffusion by directly approximate the Brownian movement of individual
molecules. In MCell, random numbers are used to determine the motion and direction
of molecules during simulation. Due to the incorporation of Monte Carlo simulation
and the individual treatment of each molecular species, the results from MCell contain
realistic stochastic noise based on the spatial arrangement and number of participating
molecules.

Unlike metabolic networks, signaling networks can undergo significant tem-
porospatial changes in embryonic development to endow cells specific identities
and to fulfill particular functions within them. For example, a fly is different from
a mouse because the molecular interactions within cells of the former produce dif-
ferent signals from the molecular interactions within cells of the latter in body plan
development. Since recent progress in developmental biology has indicated that the
pathways controlling embryonic development are highly conserved in different an-
imals in both composition and function [82–85], to reveal how slightly different
pathways, following what rules, lead to distinctively dissimilar morphogenesis is
a great challenge. This, therefore, raises issues of modeling parallel, interactive
molecular networks. We list some, but not all, issues here.

First, signaling in a cell is not autonomous in cell fate determination. In develop-
ment, a cell does not know when to divide, when to die, and when to differentiate. It
also does not know, in the absence of environmental messages, whether to differen-
tiate into a myocyte or a neuron. Thus, single cell modeling may not be enough to
reveal what we want to know.

Second, various variations can occur, which can be normal and abnormal. In fact,
cancer has been seen as aberrant developmental events. To simulate only the normal
case is insufficient to understand the properties of signaling networks.

Third, relevant to but different from context dependency is gene function poly-
morphism. Not like enzymes in metabolic networks showing high specificity, genes
in signaling networks can produce and transfer different signals. These constitute ba-
sic features of tissue scope molecular level signaling modeling. Considering a small
100 × 100 × 100 tissue cube contains 1 million cells, these issues cannot readily
be solved by available modeling platforms.

1.5.3 Re-Programming Signaling Process in a Cell

One aspect that signaling modeling can make contribute to is the re-programmability
of molecular networks, which has been an important research topic (Tada et al.
2001; Hakelien 2002). Carina Dennis, Natures Australia correspondent, describes
the technique of turning an adult human cell back to an embryonic state as cellular
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alchemy [88]. Usually, from state A, an embryonic state, to state B, a state of a fully
differentiated myocyte, more than one network configurations mush be underwent.
Among explosive combinatorial conditions, how to find a feasible path, consisting
of a series of molecular switches, really make sense for experimenters. A wealth
of knowledge on dynamics of molecular interaction is very helpful for correct re-
programming.

1.6 Practical Applications of Systems Biology

Systems Biology offers possibility of creating new opportunities for drug target
selection based on predictive models. For example, pathway based disease models
can be very helpful at the preclinical stage to identify potential toxic effects of lead
compounds. If a compound targets network hub, the possibility that such a drug will
give rise to a number of side effects is quite high. However, if drug targets turn out
to be (a) non-hubs or (b) multiple weak binders in the network collectively bringing
about the effect, such lead compounds will be preferred over the rest. Also, the
disease and population based drug response models can help lower R&D costs. A
prior assessment of side effects/toxic effects can result in speeding up drug discovery,
leading to significant savings.

By producing detailed route maps of molecular circuitry in the cell, it is possible,
in theory, to develop smarter therapeutic strategies. However, the success of this
strategy depends upon completeness and accuracy of relevant data. Systems biology
approaches have played a key role in understanding AstraZeneca’s Iressa (gefitinib)
Lliver abnormalities were identified by Pfizer, and Johnson & Johnson identified
a kinase inhibitor mechanism (extracted from Rubenstein 2008). Dr.Rubenstein’s
recent book also includes examples describing nanosystems studies to construct a
predictive model for transcription control, ChIP-on-chip technology for global tran-
scription factor identification, and methylation-specific polymerase chain reaction
(PCR) for global DNA methylation detection as an entry point to epigenetics.

Identifying systems, building biologically accurate models, with appropriate pa-
rameters, performing sensitivity analysis provides a robust ecosystem for carrying
out drug development studies. In our experience, the community will increasingly
focus on building virtual cell (e.g., virtual E. coli, virtual Pseudomonas) and whole
organ (virtual heart, virtual multi-organ diabetic model) in the near future. Professor
Dennis Nobel’s group already has significant contribution in this direction. Prof.
Nobel is one of the pioneers of Systems Biology and developed the first viable math-
ematical model of the working heart in 1960. His research focuses on using computer
models of biological organs and organ systems to interpret function from the molec-
ular level to the whole organism. Together with international collaborators, his team
has used supercomputers to create the first virtual organ, the virtual heart.

The impact of systems biology is also visible through the work of Dr. Jasin
A. Papin of the University of Virginia. Recently, his group constructed the first
Leishmania major metabolic network that accounts for 560 genes, 1,112 reactions,
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Fig. 1.4 Different levels when connected give a reasonably accurate picture

1,101 metabolites, and eight unique subcellular localizations. Also, the same group
was involved in building a genome-scale constraint-based model of the Pseudomonas
aeruginosa strain PAO1, mapping 1,056 genes whose products correspond to 833
reactions and connect 879 cellular metabolites.

1.7 Conclusion

A system is not equal to the sum of its components. This is especially true of biological
systems that show robustness and emergent properties. Due to dynamic and complex
interaction among components within and between different levels (Fig. 1.4), the
biophysical and biochemical laws that describe these components cannot explain the
collective behavior of a system. A grand challenge in systems biology is to identify
these rules at the interface and expand in either direction. It is easy to model energy
transactions as the energy transfer reactions have been well studied in physical and
chemical systems. The more challenging task is to simulate collaborative interactions
among molecules that produce and transfer signals.

As always, new challenges demand new strategies. Signaling pathways, the most
difficult to model due to a heterogenous mix of activities involved, can be seen
as a kind of molecular body language. We argue that to simulate these molecular
activities using a language at a level that matches the molecular body language is a



20 B. Hu and P. K. Dhar

preferable approach. The language should have following minimum features: time-
dependent and molecular behavior features, a switchable link between molecules,
explicitly defined semantics of interaction, dynamic logging of molecular interaction,
hardwiring cellular events with molecular events, and an extension to multicellular
modeling capability. We are currently working on building such a language, though
its effectiveness hasn’t yet been determined.

One of the challenges in Systems Biology is to identify a complete parts list of
a cell and tie them by way of equations, conditional statements that are context de-
pendent. The purpose is to move from structural knowledge to functional knowledge
of the system. One of the unsolved mysteries of science is how does the behaviour
of a cell at different scales relate to the physiological phenomenon. Constructing a
cell from its bare components calls for excellent engineering knowledge, not only
for integrating small cell parts into pathways and networks, but also for reverse engi-
neering of the parts from experimental data. The construction of a detailed cell map
has to be aided by novel experimental and computational approaches. The future of
experimental system biology lies in the invention of novel approaches that generate
high throughput and noise free data. In addition, advancement of computational sys-
tems biology depends on invention of truly integrated algorithms that are adaptive,
robust and capable of simulating multi-scale system. The algorithms will fully in-
tegrate different levels of abstractions and reconcile the basic assumptions involved
in different timescale and time-span involved. Last but not least, algorithms should
also model the smooth transition of a model from mesoscopic to macroscopic scale.

Key: Terms Commonly Used in Systems Biology

Modules are subnetworks with a specific function and which connect with
other modules often only at one input node and one output node.
Robustness describes how a network is able to maintain its functionality de-
spite environmental perturbations that affect the components. Robustness also
reduces the range of network types that researchers must consider, because
only certain types of networks are robust.
Network motifs Patterns of subgraph that recur within a network more often
than expected at random.
Path An unbroken series of linear steps. A path has one entry (input) and one
exit (output) point.
Pathway A collection of convergent, divergent and cyclic paths. A pathway
may have one entry point and many side branches as exit points. The side
branches connect a pathway with other pathways. Often, energy-consuming
pathways are coupled to energy generating pathways to maintain the overall
energy budget.
Network. A set of interacting pathways. A network has multiple entries and
multiple exits. Traditionally, pathway was more used for describing metabolic
processes and network for gene regulation and signal transduction.Yet there can
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be metabolic networks, signaling networks, and hybrid networks comprising
both metabolic and signaling pathways. The topology of networks reflects
some fundamental properties of biological systems involved, and it can be
reprogrammed in cells in response to external signals.
Module. A module is a relatively independent functional unit in a cell, which
may comprise one or several cross-interacting pathways and autonomously
performs a specific function. A functional module can have different structural
organization in different cells and at different time, reflecting the substitutabil-
ity and overlap of gene function. Some biological activities like feedback and
amplifier can be explained better in terms of module rather than of pathways
or molecules.
Modularity describes the extent to which a system is divided into modules.
Complexity. Biological complexity can be gauged in different dimension.
It may cover structural and functional interaction among elements, and the
evolution of the systems and subsystem they create. Many mathematical con-
cepts and tools, such as self-organization theory, nonlinear equations, cellular
automata and chaos, are used to describe complex biological phenomena.
Robustness. The property of system which indicates the resistance to internal
errors and external perturbations
Model. A model is a formal or abstract representation of a system, usually in
the form of a set of objects and the relations between them.
System. Consisting of more than one component physically that can be sub
systems at lower level, a system possesses more attributes and behaves more
complex than any of its component.
Systems Biology. An approach to link the constituent elements of a system
with its higher level behavior.
Systems Engineering is a methodology developed in engineering areas but
applied in biological modeling to build complex systems from a raw material
of components.
Forward Engineering follows a bottom-up approach to model a system and
its functional process with known information about its elements.
Reverse engineering is a top-down process, inferring the internal structure and
components according to systems behavior.
Systems Theory is a mechanical understanding of system structure behavior.
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