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Abstract  Enterohemorrhagic Escherichia coli (EHEC) are a pathogenic subgroup 
of Shiga toxin-producing E. coli (STEC), and have demonstrated ability to cause 
severe intestinal disease and the hemolytic uremic syndrome (HUS). Cattle are 
the major reservoir of EHEC, where the bacteria can persist asymptomatically for 
years. Of particular concern are a small percentage of animals in herds that shed 
extremely high numbers of EHEC, termed ‘supershedders’, and are responsible 
for the majority of EHEC spread and contamination. Another transmission route 
is through the environment where EHEC can survive for weeks to many months, 
remaining viable in bovine feces, soil and water. EHEC contamination of meat dur-
ing slaughter or processing, or contamination of plants via EHEC-containing water 
or manure are major routes of entry into the food chain. Several hundred outbreaks 
caused by EHEC O157 as well as non-O157 strains have been identified in indus-
trialized countries worldwide. Current and future research efforts are focused on 
rapid outbreak identification, development of therapeutics, and implementation of 
preventative measures.

9.1 � Introduction

Most members of the species E. coli are part of the physiological flora in the gas-
trointestinal tracts of humans and animals. In addition to these commensal bacteria, 
there are pathogenic E. coli that cause extraintestinal and intestinal disease. Intesti-
nal pathogenic E. coli presently include seven pathogroups: enterotoxigenic E. coli 
(ETEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), entero-
pathogenic E. coli (EPEC), adherent invasive E. coli (AIEC), diffusely adherent  
E. coli (DAEC) and enterohemorrhagic E. coli (EHEC) (Croxen et al. 2013). Each 
pathotype is associated with unique epidemiology and specific pathological diseases 
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that cause significant morbidity and mortality. Zoonotic E. coli, of which EHEC are 
the prototype, pose many challenges to the food industry and public health and are 
intensively studied in human and veterinary medicine. Ongoing investigations are 
concerned with both ecology of EHEC in animals and persistence and survival in 
the environment, and how these factors affect entry into or dissemination along the 
food chain. Other areas of research are the epidemiology of EHEC infections in hu-
mans, diagnostics, pathogenic mechanisms of these bacteria and treatment as there 
is currently no specific therapy.

EHEC can cause a broad clinical spectrum of disease including watery or bloody 
diarrhea, and the hemolytic uremic syndrome (HUS), which is an important cause 
of acute renal failure in children (Tarr et al. 2005). Since the first isolation of an 
EHEC serotype O157:H7 outbreak strain in the USA in 1982 (Riley et al. 1983), 
and subsequent identification of involvement of this pathogen in outbreaks of hem-
orrhagic colitis and HUS (Wells et al. 1983), EHEC has emerged as an important 
public health concern worldwide. The large EHEC O104:H4 outbreak in Germany 
in 2011 with 3842 cases, 855 HUS patients and 53 deaths demonstrates the signifi-
cant impact of an EHEC outbreak on human health (RKI 2011).

9.2 � Expression of Shiga Toxins in EHEC

A key characteristic of the EHEC pathotype is the presence of Shiga toxins (Stx). 
Stx, also known as verocytotoxins (VTs), are members of a large family of cytotox-
ins that are characterized by a high degree of sequence diversity. The Stx family is 
divided into two major branches, Stx1 and Stx2, and many toxin subtypes and vari-
ants have been described in both branches (Karch et al. 2009; Bergan et al. 2012; 
Scheutz et al. 2012). Classification of Stx subtypes is used not only for taxonomic 
purposes, but also serves as an important predictor for the various clinically relevant 
Stxs found in strains associated with HUS versus other Stx subtypes that are carried 
by strains causing a milder course of disease (Scheutz et  al. 2012). A sequence-
based protocol for characterization of the Stx genes has been recently described 
(Scheutz et al. 2012), and includes three levels of classification: Types, subtypes 
and variants (see Table 9.1).

1.  �Types 
	 The two major branches Stx1 and Stx2 share structure and function but are not 

cross neutralized with heterologous antibodies. The terms Stx1 and Stx2 should 
only be used when the subtype is unknown.

2.  �Subtypes
	 Currently the antigenically related members of Stx1 (Stx1a, Stx1c, and Stx1d) 

and Stx2 (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f, and Stx2g) are distin-
guished.

3.  �Variants
	 Variants include the subtype-specific prototypic toxins or related toxins within 

a subtype (that differ by one or more amino acids from the prototype). The 
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variants are designated by toxin subtype, O-antigen group of the host E. coli 
strain, followed by the strain name or number from which that toxin was de-
scribed, e.g. Stx1a-O157-EDL933 or Stx2a-O104-G5506 (Scheutz et al. 2012, 
see Table 9.1). Nucleotide variants within a given Stx subtype are italicized.

All Stx consist of a single A and five B subunits. The A subunit represents the 
enzymatically active component. The Stx B pentamer binds to the high and less ef-
fective cellular ligand glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) 
and globotetraosylceramide (Gb4Cer), respectively (Müthing  et al. 2009). Stx1 and 
Stx2 share identical binding specificity (Müthing  et al. 2009). After binding to the 
cell surface, the AB5-Gb3Cer complex is internalized by various endocytic mecha-
nisms and routed from the early endosomes through the trans-Golgi-network and 
the Golgi stacks to the endoplasmic reticulum (Sandvig et al. 2010; Bauwens et al. 
2013). Moreover, evidence suggests that Stxs (like other ribosome-inactivating pro-
teins) remove adenine moieties not only from rRNA, but also efficiently depuri-
nate DNA. Stx genes are found within the genomes of temperate bacteriophages, 
which are mobile elements that can easily integrate at specific sites in the bacterial 
chromosome. In vitro and in vivo studies have demonstrated that most EHEC can 
lose the Stx-encoding gene by bacteriophage excision during infection, isolation, or 
subculture, resulting in stx-negative isolates (Mellmann et al. 2009).

9.3 � Epidemiology of EHEC in Animals

Several studies have demonstrated that cattle are the main reservoir of human 
pathogenic EHEC O157:H7, in addition to many pathogenic non-O157 EHEC se-
rotypes (Naylor et al. 2005a). These bacteria have adapted to an oral-fecal cycle in 
cattle, where EHEC colonization begins with ingestion and subsequent entrance to 
the rumen and gastrointestinal tract, but they generally do not have a pathogenic 
effect on adult animals. EHEC has been reported to cause disease in young calves, 
however, in particular certain non-O157 serogroups (O26, O111, O118) (Naylor 
et  al. 2005a). Prevalence among cattle varies widely, and may be due to several 

Table 9.1   Types, subtypes and variants of Shiga toxins according to Scheutz et al. (2012)
Types Subtypes Variants (examples)
Stx1 Stx1a Stx1a-O157-EDL933

Stx1c Stx1c-O174-DG131-3
Stx1d Stx1d-ONT-MHI813

Stx2 Stx2a Stx2a-O104-G5506
Stx2b Stx2b-O111-S-3
Stx2c Stx2c-O157-A75
Stx2d Stx2d-O91-B2F1
Stx2e Stx2e-O26-R107
Stx2f Stx2f-O128-T4-97
Stx2g Stx2g-O2-S86
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circumstances including the geographical region, animal age, or the specific farm 
conditions (Ferens and Hovde 2011). Published prevalence rates vary dramatically, 
from 0 to 36 % among animals studied in different countries and farm types (Naylor 
et al. 2005a). Studies have also shown that EHEC prevalence is related to the type 
of farm (e.g. beef, dairy) and may be influenced by factors such as cattle move-
ment, hygiene management, diet, and husbandry (Menrath et  al. 2010; Cobbaut 
et al. 2009; Ferens and Hovde 2011). While cattle are the major known reservoir of 
EHEC, other minor reservoirs include sheep, goats, pigs, horses, dogs, poultry, and 
deer (Naylor et al. 2005a).

The persistence of EHEC O157:H7 in cattle may be due to its ability to colonize 
a particular niche within the lower gastrointestinal tract (Grauke et al. 2002). Tissue 
tropism for the colon has been demonstrated by immunofluorescent detection of 
microcolonies at the lymphoid follicle-dense mucosa at the terminal rectum within 
3–5 cm proximal to the rectoanal junction (Grauke et al. 2002; Naylor et al. 2003, 
2005b). This rectoanal junction colonization is hypothesized to be responsible for 
a highlevel of EHEC O157:H7 shedding (104 CFU/g of feces) in a minor subset of 
cattle which are termed ‘supershedders’ and are thought to be responsible for most 
of the pathogen spread in a farm environment (Menrath et  al. 2010). In support 
of this theory, an association between rectoanal junction colonization and super-
shedding status has been described (Cobbold et al. 2007; Low 2005). Furthermore, 
EHEC O157 and non-O157 strains express several fimbrial and afimbrial proteins 
that likely play a role in ruminant reservoir persistence (Farfan and Torres 2012). In 
studies that used bovine terminal rectal primary epithelial cells, the H7 flagellum 
was demonstrated to act as an adhesin to bovine intestinal epithelium, supporting 
its involvement in the initiating step for colonization of the cattle reservoir (Maha-
jan 2009). Stx may also play a role in colonization and persistence by blocking the 
activation of bovine lymphocytes and thus supressing the bovine host’s immune 
response to the intestinal colonization (Moussay et al. 2006).

9.4 � EHEC in the Environment

EHEC can survive in bovine feces long-term, making this a likely vehicle for trans-
mission to cattle, food and the environment. Survival in feces can range from 1 to 
18 weeks depending on the temperature (5, 15 and 25 °C were tested) (Fukushima 
et al.1999). Entry of EHEC to the environment may occur through direct deposit 
of feces onto land or through drainage runoff of fecal material in soil, especially 
after heavy rainfalls (Thurston-Enriquez et al. 2005). Moreover, under experimental 
conditions, EHEC can survive for more than 1 year in various manure-amended 
soils at different temperatures (Fremaux et al. 2008). Long-term survival of EHEC 
in lake water (13 weeks) and in cold river water has also been demonstrated (Wang 
and Doyle 1998; Maule 2000). This extended persistence in the environment likely 
plays a significant role in the colonization of cattle and subsequent human infection 
(Fremaux et al. 2008).
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EHEC O157:H7 is also able to colonize various types of plants and fruits. For 
example, EHEC O157:H7 has been shown to form bacterial aggregates on apples 
(Janes et al. 2005) as well as on the surface of lettuce leaves (Seo and Frank 1999; 
Auty et al. 2005). Furthermore, studies have found EHEC in the internal inner tis-
sues of plants, including radishes, carrots and lettuce (Itoh et al. 1998; Solomon 
et  al. 2002). These subsurface localizations may be protective to the bacteria as 
they are inaccessible to other competitive bacteria as well as surface treatments and 
washing.

9.5 � EHEC Infections in Humans

After ingestion of EHEC, a 3–12 day incubation period is typically followed by 
development of watery diarrhea accompanied with abdominal cramping and pain. 
Most patients will subsequently suffer from bloody diarrhea. About 1 week after the 
initial onset of diarrhea, HUS develops in a variable proportion of cases, depending 
on the serotype of the causative EHEC strain and the Stx subtype (Tarr et al. 2005). 
HUS patients present with widespread thrombotic microvascular lesions in the kid-
neys, the gastrointestinal tract, and other organs (Richardson et  al. 1988). Since 
EHEC infections are rarely bacteremic, i.e. bacteria do not penetrate the circulatory 
system and are not found in patient blood cultures (Bielaszewska and Karch 2005), 
it is hypothesized that HUS results from vascular endothelial injury by circulat-
ing Stx. According to the generally accepted model of HUS pathogenesis, Stx is 
released by EHEC in the intestine, absorbed across the gut epithelium into the cir-
culation (Hurley et al. 2001; Müthing et al. 2009), and transported to small vessel 
endothelial cells.

HUS is the most common cause of acute renal failure in children. The mortality 
rate can be up to 3 % (Karch et al. 2005). While 70 % of EHEC-infected patients 
were fully recovered within 5 years after diagnosis, the remaining 30 % still ex-
perienced persistent hypertension (9 %), neurological symptoms (4 %), decreased 
glomerular filtration rate (7 %), and/or proteinuria (18 %) (Rosales et  al. 2012). 
There is currently no effective causative therapy, and antibiotic treatment appears 
to be ineffective if not harmful (Wong et al. 2000; Davis et al. 2013). In contrast to 
cattle, EHEC O157:H7 colonizes humans only for a limited time of about 4 weeks 
(Fig. 9.1; Karch et  al. 1995). Moreover, whereas in cattle many different EHEC 
O157:H7 PFGE subtypes can co-exist in a single animal (Jacob et al. 2011), human 
patients are infected mostly by a distinct O157:H7 PFGE subtype.

EHEC O157:H7 is the most prevalent EHEC serotype identified as a cause of 
sporadic HUS cases (Tarr et al. 2005; Karch et al. 2005). Still, non-O157:H7 EHEC 
(especially O26:H11, O103:H2, O111:H8, O145:H28/H25 and sorbitol-fermenting 
(SF) O157:H−) represent a significant portion of EHEC infections leading to HUS 
complications (Karch et al. 2005; Mellmann et al. 2008; Bielaszewska et al. 2013). 

9  Enterohemorrhagic E. coli (EHEC): Environmental-Vehicle-Human Interface
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Though EHEC strains are often considered as a pathogroup, there may be important 
differences between serotypes.

SF EHEC O157:H− represent a significant serotype in Europe which has not 
yet been detected in North America. These strains are characterized by a specific 
combination of their phenotypic and virulence characteristics that differentiates 
them from classical non-SF EHEC O157:H7 (Karch and Bielaszewska 2001). This 
combination includes the ability to ferment sorbitol overnight and to produce β-D-
glucuronidase. A gene cluster termed sfp, which encodes fimbriae and mediates 
mannose-resistant hemagglutination, has been identified on the large plasmid of SF 
STEC O157:H− (Brunder et al. 2001). Notably, Sfp-encoding genes are absent in 
EHEC O157:H7.

The minimum infectious dose of EHEC in humans is extremely low, with 
approximately 10–50 bacteria needed for colonization (Teunis et  al. 2004). In 
meat implicated as an outbreak source in the USA in 1993 there were less than 
700 EHEC O157:H7 bacterial cells per hamburger patty prior to cooking (Tuttle 
et  al. 1999). Moreover, a high degree of tolerance to acid and drying enables 
EHEC to survive in food items, the consumption of which had been previously 
considered safe with respect to the ability to cause foodborne illness (e.g., apple 
cider, semi-dry fermented sausage). Three principal routes of transmission of 
EHEC infection have been identified: (1) contaminated food and contaminated 
water used for drinking or swimming, (2) person-to-person transmission, and (3) 
animal contact, for example in petting zoos housing domesticated sheep, goats 
and other small animals or (occupational) farm exposure (Crump et  al. 2002; 
Karch et al. 2005).

Fig. 9.1   Schematic illustration of EHEC O157:H7 infection in cattle and humans. In contrast to 
cattle, EHEC O157:H7 colonizes humans only for a limited time of about 4 weeks. Moreover, 
whereas in cattle many different EHEC O157:H7 PFGE subtypes can co-exist in a single ani-
mal, human patients are infected mostly by a distinct O157:H7 PFGE subtype. Different EHEC 
O157:H7 PFGE subtypes are indicated by different colors
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9.6 � EHEC Outbreaks

EHEC is the cause of hundreds of outbreaks worldwide (Griffin et al. 1988; Michi-
no et  al. 1999; Karch et  al. 1999). Examples of large outbreaks, including clini-
cal impact and source, caused by EHEC O157:H7 and non-O157 are described in 
Tables 9.2 and 9.3, respectively. Consumption of raw or undercooked food items of 
bovine origin, particularly ground beef (hamburger), are common modes of EHEC 
O157:H7 transmission (Table 9.2). Moreover, contaminated radish sprouts, lettuce, 
spinach, strawberries, and contaminated water have been implicated in transmitting 
EHEC O157:H7 (Table 9.2).

One of the largest outbreaks to date occurred in Japan, in Sakai City, in 1996 
(Watanabe et al. 1996; Michino et al. 1999), where thousands were affected, mostly 
school children. White radish sprouts served during school lunches were the most 
probable vehicle of the infection. In the winter 1992–1993, the largest outbreak of 
EHEC O157:H7 infection in the United States affected 501 persons in four western 
states including Washington, Idaho, Nevada and California (Bell et al. 1994) where 
45 persons, mostly children, developed HUS and three children died. Hamburgers 
from a single fast-food restaurant chain were identified as the vehicle of the infec-
tion (Bell et al. 1994). The largest outbreak caused by contaminated drinking water 
occurred in Canada in 2000. Approximately 2300 people became seriously ill and 
seven died from exposure to drinking water contaminated with EHEC O157:H7. In 
Europe, a large EHEC O157:H7 outbreak occurred in Central Scotland in 1996; 345 
people contracted an infection after consuming meat from a single butcher’s shop, 
and 16 died (Dundas et al. 2001).

Table 9.3 describes several examples of large outbreaks caused by non-O157 
EHEC strains. These include a wide range of serotypes, with the largest non-O157 
outbreak occurring in Germany in 2011 associated with the contamination of fenu-
greek sprouts by EHEC O104:H4 (RKI 2011; Karch et al. 2012).

Table 9.2   Example of outbreaks caused by EHEC O157:H7
Year Country Cases/HUS/deathsa Source Reference
1982 USA 47/0/0 Hamburgerb Riley et al. 1983
1992–1993 USA 501/45/3 Hamburgerb Bell et al. 1994
1996 Scotland 345/34/16 Meatb Dundas et al. 2001
1996 Japan > 6000/n.a./2 Radish sprouts Watanabe et al. 1996
2000 Canada ~ 2300/28/7 Drinking waterb Hrudey et al. 2003
2005 Sweden 135/11/0 Lettuce Söderström et al. 2008
2006 USA 199/31/3 Spinachb CDC 2006
2006 USA 77/7/0 Iceberg lettuce Sodha et al. 2011
2011 USA 15/4/2 Strawberriesb Laidler et al. 2013
n.a. Not available
a number of persons involved in the outbreak/number of HUS cases/number of deaths
b Strain isolated from the source

9  Enterohemorrhagic E. coli (EHEC): Environmental-Vehicle-Human Interface
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9.7 � Future Strategies and Unresolved Issues

Advances in rapid alert systems for the early detection of EHEC outbreaks have cre-
ated greater awareness for both the public as well as the clinical community. More-
over, an increasing number of clinical microbiological laboratories routinely screen 
for EHEC by detection of Stx genes and/or toxin production. Diagnosed cases are 
now legally required to be reported in nearly every country. New high resolution 
techniques including next generation sequencing (NGS) are becoming more acces-
sible and widely used, which enable the rapid identification of outbreaks at the ear-
liest stages (Mellmann et al. 2011). In the future, databases and nationwide report-
ing systems could be in place to facilitate outbreak prevention and public health. 
The value of such strain linkage analysis is obvious. Common sources of infection 
can be identified accurately and rapidly. This is especially important considering 
the emerging epidemiology of foodborne infections. In particular, foodborne out-
breaks nowadays less frequently follow the “church picnic” model, in which small 
isolated clusters of illness can easily be identified with case interviews. Instead, cur-
rent outbreaks now more frequently result from the dissemination of vehicles that 
are contaminated by relatively low levels of pathogens. Such outbreaks can occur 
across state lines and international borders.

Another area where considerable efforts are being expended to bring improve-
ment are the farming practices and environmental factors that affect infection of 
animals with EHEC. EHEC transmits readily between ruminants in the farm setting 
and wild animals can represent important vectors. For many years, the cattle indus-
try and researchers have focused on improving the safety of meat products after 
slaughter. Postslaughter antimicrobial treatments of carcasses and HACCP policies 
in slaughter plants have been shown to significantly reduce meat contamination 
(Elder et al. 2000).

Due to the widespread distribution of EHEC O157 and non-O157 in farm cattle, 
its control will require intervention at the individual farm level. Recently, two vac-
cines against EHEC O157:H7 that are designed for use in cattle have been devel-
oped. While use of these vaccines could reduce the risk of EHEC in cattle by 50 %, 
which translates to approximately 85 % reduction in human cases, these vaccines 
have not yet been widely accepted by farmers due to several factors including bur-
den of responsibility and economic factors (Matthews et al. 2013). An alternative 
route for the control of EHEC in cattle may be the feeding of probiotic bacteria, 
which can compete and interfere with pathogenic strains by producing metabolites 
that are inhibitory to EHEC. Still, more research is needed to develop viable strat-
egies targeting the different levels (cattle, food, person-to-person spread, etc.) to 
control EHEC.

Further research is also needed to address effective therapies for humans after 
EHEC infection. Ongoing investigations are focused on topics such as toxin binders 
and Stx neutralizing immunoglobulin preparations.

9  Enterohemorrhagic E. coli (EHEC): Environmental-Vehicle-Human Interface
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