
Chapter 6
Spectral and Pseudospectral Methods
of Solution of the Fokker-Planck
and Schrödinger Equations

Abstract Spectral and pseudospectral methods based on classical and nonclassical
polynomial basis sets are used for the solution of the Fokker-Planck and Schrödinger
equations. Fokker-Planck equations describe many different processes in chemistry
and physics, and their study has attracted considerable attention by researchers in
many different fields including astrophysics, finance and biology. Pseudospectral
methods of solution of the Fokker-Planck equation are presented for several systems
such as the Ornstein-Uhlenbeck model for Brownian motion, electron thermaliza-
tion in atomic moderators, charged particle relaxation in plasmas and models for
chemical reactions based on Kramers’ equation. A Fokker-Planck equation can be
transformed to a Schrödinger equation with a potential that belongs to the class
of potentials in supersymmetric quantum mechanics and expressed in terms of the
superpotential. The quantum harmonic oscillator and the Morse potential belong
to this class of Schrödinger equations. The pseudospectral methods developed for
the solution of the Fokker-Planck equation based on nonclassical basis sets are also
applied to a large number of the Schrödinger equations including the Henon-Heles
potential. Fundamental aspects of different pseudospectral methods such as the Dis-
crete Variable Representation, the Quadrature Discretization method, the Lagrange
mesh method and Fourier grid methods are discussed.

6.1 The Fokker-Planck Equation in Chemistry, Physics,
Astrophysics and Other Fields

The Fokker-Planck equation is a partial differential equation for a probability density
function, P(v, r, t), analogous to a distribution function of kinetic theory discussed
in Chap. 5. The linear integral Boltzmann equation for a binary gas of test particles of
mass m dilutely dispersed in bath particles of mass M at Tb can be approximated by
Fokker-Planck equations in the disparate mass limits (γ = M/m → 0 or γ → ∞)
as a consequence of the small energy transfers in particle collisions (Andersen and
Shuler 1964). A similar approximation is used in plasma physics for which charged
particle Coulomb collisions involve predominantly large impact parameter grazing
collisions (Rosenbluth et al. 1957; Spitzer 1962; Mitchner and Kruger 1973; Hinton
1983). These approximations are examples of a large class of Master equations for
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332 6 Spectral and Pseudospectral Methods of Solution …

which a Fokker-Planck equation can be derived with the Kramers-Moyal expansion
(Gillespie 1980; Knessl et al. 1984; Kuczka et al. 1995; Risken 1996; Frank 2007;
van Kampen 2007).

An alternate derivation of the Fokker-Planck equation is based on stochastic dif-
ferential equations such as the Langevin equation to model “Brownian” motion
as discussed in the next section and in greater detail in several references (Chan-
drasekhar 1949; Risken 1996; Gardiner 2003; van Kampen 2007; Reif 2008; Paul
and Baschnagel 2013). For most of the applications in this chapter, we will consider a
Fokker-Planck equation in two variables and a probability density function, P(x, t),
where t is the time and x is an independent variable that represents the reduced speed
or energy of a particle, the particle position or some other independent variable.

The equation is named after Adrian Fokker1 and Max Planck.2 Fokker (1914)
studied the relationship between the fluctuations of the rotational motion of dipoles
in an electric field and the steady state probability density function. Planck (1917)
developed the time dependent equation and provided the relationship between the
drift and diffusion coefficients and the random fluctuations inherent in the system.

Fokker-Planck equations are used to model numerous systems in physics, astro-
physics, chemistry, biology, engineering, finance and other research fields. Fokker-
Planck equations have also been used to model processes in space science, notably
the solar and polar wind expansions (Lie-Svendsen and Rees 1996; Pierrard and
Lemaire 1998; Marsch 2006; Echim et al. 2011). A large number of chemically reac-
tive systems can be modelled with a Fokker-Planck equation proposed by Kramers
(1940). Many aspects of turbulence are modelled as stochastic processes leading
to a Fokker-Planck equation (Pope 2000). The applications of the Fokker-Planck
equation to stellar dynamics and astrophysics (Chandrasekhar 1942; Spitzer 1998;
Chavanis 2006; Binney and Tremaine 2008) overlap applications to plasma physics
(Rosenbluth et al. 1957; Spitzer 1962; Boyd and Sanderson 2003). The set of coupled
rate equations for the growth of a cluster in nucleation theory is often modelled with
a Fokker-Planck equation (Shizgal and Barrett 1989; Demeio and Shizgal 1993a).
The Black-Scholes model in mathematical finance (Black and Scholes 1973; Paul
and Baschnagel 2013) is based on a Fokker-Planck equation. These are just a few
examples of the many different Fokker-Planck equations that arise in diverse applica-
tions. Additional discussion of these topics can be found in several textbooks (Risken
1996; Gardiner 2003; Reif 2008) and review papers (Chandrasekhar 1949; Lightman
and Shapiro 1978).

1 Adrian Fokker (1887–1972) was a Dutch physicist who made contributions to relativity and
statistical mechanics in collaboration with Albert Einstein. The Fokker-Planck equation used to
model numerous processes in physics, astrophysics, chemistry, finance and biology bears his name.
He also made numerous contributions to music theory.
2 Max Planck (1858–1947) was a German physicist and the 1918 Nobel laureate for his contributions
to the explanation of the photoelectric effect, energy quantization and the introduction of the Planck
constant. The basis for this work was his doctoral work on thermodynamics as related to black body
radiation at equilibrium. Planck and Fokker independently derived the Fokker-Planck equation of
statistical physics.
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In Chap. 5, we expressed the solutions of the linearized and linear Boltzmann
equations in terms of the eigenvalues of the collision operators involved. For the
linearized collision operator and the linear collision operator with unit mass ratio
(γ = 1), the integral operator can be transformed to a Schrödinger equation (Kuščer
and Williams 1967; Bobylev and Mossberg 2008). The Fokker-Planck equations
discussed in the sections that follow can be transformed to Schrödinger equations
with well defined potential functions (Risken 1996). The potentials belong to the
class of Schrödinger equations in supersymmetric quantum mechanics (Bernstein
and Brown 1984; Comtet et al. 1985; Dutt et al. 1988; Cooper et al. 1995).

6.1.1 From the Langevin Equation to the Fokker-Planck
Equation; Brownian Motion

We begin the discussion with the classic treatment of Brownian motion. We consider a
subsystem of particles of mass m that interact solely with the particles of a background
medium at equilibrium at temperature Tb. The origin of this approach is the work of
the botanist Robert Brown3 who observed the random movement of a pollen grain in
a fluid at some temperature Tb. The movement of the so-called “Brownian” particle
is random owing to the multitude of collisions of the molecules of the background
fluid with the grain. Thus the scalar force, F(t), on the Brownian particle is random
in time. However, there is also a steady component that corresponds to the friction
involved in the steady movement of the Brownian particle through the fluid. Thus
we write F(t) = Fs(t) + Fr (t) where Fs(t) is the steady component related to the
viscosity of the fluid and Fr (t) is a largely unknown random or “stochastic” force.
The steady component of the force is Fs(t) = −αv(t) where v is the particle velocity
in one dimension and α is the friction coefficient that slows the particle as it moves
through the fluid. We write the “stochastic” differential equation of motion for the
Brownian particle as Newton’s law with a random force, that is,

m
dv

dt
= −αv(t) + Fr (t). (6.1)

Equation (6.1) is known as the Langevin4 equation for Brownian motion that was
treated previously by Einstein (1906). The main difficulty with Eq. (6.1) is that the
detailed time variation of Fr (t) is largely unknown. What is remarkable with this
approach is that the friction coefficient α in Eq. (6.1) is related to the properties of

3 Robert Brown (1773–1858) was a Scottish botanist who made important contributions to botany
and statistical physics from his use of a microscope to observe the random motion of pollen grains
which was later referred to as Brownian motion.
4 Paul Langevin (1872–1946) was a French physicist and doctoral student with J.J. Thompson at
the Cavendish Laboratory and Pierre Curie in Paris. He worked extensively on paramagnetism and
diamagnetism as well as in kinetic theory and theory of Brownian motion following on Einstein’s
work.

http://dx.doi.org/10.1007/978-94-017-9454-1_5


334 6 Spectral and Pseudospectral Methods of Solution …

Fr (t) (Reif 2008). Alternative methods are based on computer simulations that follow
the time history of the particle positions and velocities (Gunther and Weaver 1978;
Gillespie 1996). Monte Carlo simulations have become common in statistical physics
and chemistry for the study of multidimensional complex systems in equilibrium and
nonequilibrium situations (Bird 1994; Landau and Binder 2009).

An alternative approach to computer simulations is one based on the probability
density of the random variable leading to a deterministic Fokker-Planck equation.
The stochastic force, Fr (t), is assumed to satisfy two important relations, (1) that
the time (or “ensemble”) average is zero and (2) the correlation in time has a definite
strength, that is

Fr (t) = 0,

Fr (t)Fr (t ′) = 2αkB Tbδ(t − t ′), (6.2)

where kB is the Boltzmann constant and Tb is the temperature of the background.
The overbars indicate time or ensemble averages; see Sect. 15.5 in Reif (2008). In
addition to the textbooks referenced earlier, excellent discussions of the historical
development of stochastic processes are available (Uhlenbeck and Ornstein 1930;
Hänggi et al. 1990; Risken 1996; Abbott 2001; Gardiner 2003; van Kampen 2007;
Dunkel and Hänggi 2009; Paul and Baschnagel 2013).

Brownian motion and other stochastic processes are modelled with a probability
density, P(v, t), corresponding to the values of v(t) sampled in a sufficiently long
sequences of realizations of v(t). Thus P(v, t) is similar to the velocity distribution
function f (v, t) in kinetic theory in Chap. 5. It has been shown (Uhlenbeck and
Ornstein 1930; Chandrasekhar 1949; Reif 2008) that the Fokker-Planck equation
for the probability density (equivalently the velocity distribution) of the Brownian
particle is given by the Ornstein–Uhlenbeck equation,

∂P(v, t)

∂t
= ν

∂

∂v

[
vP(v, t) + kB Tb

m

∂P(v, t)

∂v

]
, v ∈ (−∞,∞), (6.3)

where the drift and diffusion coefficients, defined in what follows are νv and
νkB Tb/m, respectively, and ν = α/m is a collision frequency.

A stochastic process which includes multiplicative as well as additive noise
(Chandrasekhar 1949; Lax 1966; Brey et al. 1987; Gitterman 1999; Biró and Jakovác
2005) yields a Fokker-Planck equation with a velocity dependent diffusion coeffi-
cient. For this more general stochastic process we have the Langevin equation of the
form

dv

dt
= f (v) + g(v)ξ(t) + η(t), (6.4)

with f (v) and g(v) are known but unspecified functions. The additive and multi-
plicative Gaussian random variables, η(t) and ξ(t) have zero mean,

η(t) = 0 and ξ(t) = 0, (6.5)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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and correlations given by,

η(t)η(t ′) = 2Dδ(t − t ′) ξ(t)ξ(t ′) = 2βδ(t − t ′). (6.6)

The Fokker-Planck equation for P(v, t) corresponding to this stochastic process
is of the form

∂P(v, t)

∂t
= ∂

∂v

[
A(v)P(v, t) + ∂B(v)P(v, t)

∂v

]
, (6.7)

where A(v) and B(v) are the time-independent drift and diffusion coefficients,
respectively, given by,

A(v) = f (v) + βg(v)
dg(v)

dv
,

B(v) = D + βg2(v). (6.8)

where f (v), g(v), D and β are defined by Eqs. (6.4) and (6.6). Additional details of
this derivation are in the references cited.

Given some initial condition, P(v, 0), the distribution P(v, t) varies in time as
deduced with Eq. (6.7) and attains a steady distribution at infinite time for which
∂P(v, t)/∂t = 0 and denoted by P0(v). For most of the applications to be discussed,
the reduced speed, x = √

mv2/2kB Tb is used and generally x ∈ (−∞,∞). From
Eq. (6.7), this equilibrium probability density is

P0(v) = 1

B(v)
exp

⎛
⎝−

v∫
−∞

A(v′)
B(v′)

dv′
⎞
⎠ , (6.9)

and is not in general a Maxwellian.

6.1.2 Spectral Solution of the Ornstein-Uhlenbeck
Fokker-Planck Equation

The equilibrium distribution analogous to Eq. (6.9) for the Brownian motion Fokker-
Planck equation, Eq. (6.3), is defined by

[
vP0(v) + kB Tb

m

∂P0(v)

∂v

]
= 0,

and the steady state distribution of Eq. (6.3) is a Maxwellian,

P0(v) =
√

m

2πkB Tb
e−mv2/2kB Tb . (6.10)
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normalized such that

∞∫
−∞

P0(v)dv = 1.

We consider an initial condition whereby all the particles start with a specific speed
v0 that is

P(v, 0) = δ(v − v0). (6.11)

The solution of this Fokker-Planck equation is readily determined with the
transformation to a strict diffusion equation where the diffusion coefficient is
D = μkB Tb/m. We redefine the variables so as to remove the term in ∂P/∂v in
Eq. (6.3) in a manner analogous to the transformation of the Fokker-Planck equation
to a Schrödinger equation discussed in Sect. 6.3.2. We make the change of variable
u = veνt and set P(v, t) = eνt Q(u, t). With these substitutions, the Fokker-Planck
equation can be written in terms of Q(u, t), that is

∂Q(u, t)

∂t
= De2νt ∂

2 Q(u, t)

∂u2 . (6.12)

With the change in the time variable to τ = (e2νt − 1)/ν, we transform the Fokker-
Planck equation to the diffusion equation, that is

∂Q(u, τ )

∂τ
= D

∂2 Q(u, τ )

∂u2 . (6.13)

This equation could be considered as a Fokker-Planck equation without drift which
is referred to as a Weiner process (Risken 1996; Gillespie 1996).

We have solved the diffusion equation with a Fourier transform method in Chap. 4,
Sect. 4.6.5 and the solution of Eq. (6.13) is

Q(u, τ ) = 1√
4πDτ

e−(u−u0)2/4Dτ . (6.14)

With this result, the solution to the Ornstein–Uhlenbeck, Eq. (6.13), in the reduced
speed, x = √

mv2/2kB Tb, is

P(x, t) =
[

1

π(1 − e−2νt )

]1/2

exp

[
− (x − x0e−νt )2

(1 − e−2νt )

]
. (6.15)

A spectral solution of Eq. (6.3) can be expressed in Hermite polynomials in x by
substituting P(x, t) = e−x2

g(x, t) into Eq. (6.3) written in terms of x . The result is
the differential equation

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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∂g(x, t)

∂t
= νex2 ∂

∂x

[
e−x2 ∂g(x, t)

∂x

]
,

= ν

[
− 2x

∂g

∂x
+ ∂2g

∂x2

]
. (6.16)

With the expansion in Hermite polynomials

g(x, t) =
∞∑

n=0

cn(t)Hn(x), (6.17)

Eq. (6.16) can be written as

∞∑
n=0

Hn(x)
dcn

dt
= ν

∞∑
n=0

cn(t)

[
− 2x H ′

n(x) + H ′′
n (x)

]
. (6.18)

With the relation −2x H ′
n + H ′′

n = −2nHn , the time dependence of the coefficients
is given by

dcn(t)

dt
= −2nνcn(t). (6.19)

With the expansion of the initial condition in the Hermite polynomials, the spectral
solution is given by

P(x, t) = e−x2
∞∑

n=0

1

2nn!√π
Hn(x0)Hn(x)e−2nνt . (6.20)

Equations (6.15) and (6.20) can be used to study the rate of convergence of
the expansion in Hermite polynomials (Wei et al. 1997). A study of the use of
orthogonal expansions for the solution of Fokker-Planck equations was reported by
Cukier et al. (1973). An eigenfunction analysis of the three-dimensional Ornstein-
Uhlenbeck process with expansions in associated Laguerre polynomials and spheri-
cal harmonics was reported recently by Wilkinson and Pumir (2011).

6.1.3 Rayleigh and Lorentz Fokker-Planck Equations
from the Boltzmann Equation; The Kramers-Moyal
Expansion

In Chap. 3 (Eq. (3.49)) and Chap. 5 (Eq. (5.110)), we discussed the Wigner-Wilkins
kernel (Wigner 1943; Wigner and Wilkins 1944; Hoare and Kaplinsky 1970; Hoare
1971) for the linear Boltzmann integral operator for a hard sphere cross section. This

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Boltzmann equation models the relaxation of an ensemble of test particles of mass
m dilutely dispersed in a second gas of particles of mass M which is taken to be at
equilibrium with a Maxwellian distribution at temperature Tb.

The hard sphere collision operator in the Boltzmann equation for a binary gas
mixture can be approximated by Fokker-Planck equations in the mass ratio limits
γ = M/m → ∞ (the “Lorentz” limit) or γ → 0 (the “Rayleigh” limit), respectively
as shown by Andersen and Shuler (1964). The derivation is based on the expansion
of the kernel in the small energy transfer on collision for these disparate mass ratios.
The integral operator is expanded up to second order in the small energy transfer and
this transformation of the integral equation to a Fokker-Planck equation is known as
the Kramers-Moyal expansion (Risken 1996; Knessl et al. 1984; van Kampen 2007).

For the disparate mass ratio limit, γ → 0, the Rayleigh Fokker-Planck equation is

∂P(y, t)

∂t
= ∂

∂y

[
(y − 3)P(y, t) + ∂

∂y
[y P(y, t)]

]
, (6.21)

where y = mv2/kB Tb is the reduced energy and t is in units of τ given by
1/τ = K R = 16

3 Mmnbσ0
√

2kB Tb/πM . For γ → ∞, the Lorentz Fokker-Planck
equation is

∂P(x, t)

∂t
= 1

4

∂

∂x

[
(2x2 − 3)P(x, t) + ∂

∂x
[x P(x, t)]

]
, (6.22)

where x = √
mv2/2kB Tb is the reduced speed and 1/τ = KL = 2

√
m/Mnbσ0√

2kB Tb/M . The hard sphere cross section is denoted by σ0 and nb is the density
of the background gas. A spectral solution of the Rayleigh Fokker-Planck equa-
tion in terms of Hermite polynomials is described in the next section. There is no
known spectral solution of the Lorentz Fokker-Planck equation in terms of classical
polynomials.

6.1.4 Spectral Solution of the Rayleigh Fokker-Planck
Equation

We consider an analysis similar to the one in Sect. 6.1.2. If we set P(y, t) =
P0(y)g(y, t) where P0(y) = (2/

√
π)

√
ye−y in dimensionless units and we get

the differential equation

∂g(y, t)

∂t
= 1

P0(y)

∂

∂y

[
y P0(y)

∂g(y, t)

∂y

]
. (6.23)

The evaluation of the partial derivative in the square bracket gives

∂g(y, t)

∂t
= y

∂2g(y, t)

∂y2 + (
3

2
− y)

∂g(y, t)

∂y
. (6.24)
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The differential operator on the right hand side is related to the eigenvalue problem

for the associated Laguerre polynomials, L
( 1

2 )
n (y), that is

y
d2 L

( 1
2 )

n (y)

dy2 + (
3

2
− y)

d L
( 1

2 )
n (y)

dy
= −ny. (6.25)

Thus, the spectral solution is represented by the expansion in the associated Laguerre
polynomials

g(y, t) =
∞∑

n=0

cn L
( 1

2 )
n (y)e−nt , (6.26)

where the coefficients for a δ-function initial condition, P(y, 0) = δ(y − y0), are

cn = Γ (n + 1)

Γ (n + 3
2 )

L
( 1

2 )
n (y0). (6.27)

Analogous to the expansion of the Ornstein-Uhlenbeck Fokker-Planck equation in
Hermite polynomials, the solution of Eq. (6.21) can be expanded in Laguerre poly-
nomials, that is

P(y, t) = √
ye−y

∞∑
n=0

Γ (n + 1)

Γ (n + 3/2)
L

( 1
2 )

n (y0)L
( 1

2 )
n (y)e−nt . (6.28)

Andersen and Shuler (1964) summed this series and found the analytic result,

P(y, t) = et/2

2
√

πy0(1 − e−t )

{
exp

[
− (

√
y − √

y0e−t )2

1 − e−t

]

− exp

[
− (

√
y + √

y0e−t )2

1 − e−t

]}
, (6.29)

analogous to Eq. (6.15) for the Ornstein-Uhlenbeck equation. This provides another
opportunity to study the rate of convergence of the Laguerre expansions.

For an initial Maxwellian distribution at temperature T (0) > Tb, the expansion
in Laguerre polynomials can be summed in closed form (Andersen and Shuler 1964)
to give

P(y, t) = 2√
π

[
Tb

T (t)

]3/2 √
y exp[− Tb

T (t)
y], (6.30)

which is a Maxwellian distribution with the time dependent temperature T (t).
Equation (6.30) also defines the intial Maxwellian at T (0). An important property of
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this Fokker-Planck equation is that if the initial distribution function is a Maxwellian
at some temperature T (0) > Tb, the time dependent distribution remains Maxwellian
with a time dependent temperature. This property of the Rayleigh Fokker-Planck
equation is referred to as canonical invariance (Andersen et al. 1964; Andersen and
Shuler 1964). This is a consequence of the fact that for this Rayleigh Fokker-Planck
equation the moments of the distribution function in the Laguerre basis set are uncou-
pled and the temperature relaxation is a pure exponential given by

T (t) − Tb

T (0) − Tb
= e−t . (6.31)

6.2 Numerical Methods for the Solution
of the Fokker-Planck Equation

We have expressed the spectral solutions of the Ornstein-Uhlenbeck Fokker-Planck
equation in Hermite polynomials and of the Rayleigh Fokker-Planck equation in
Laguerre polynomials. Analogous pseudospectral solutions can also be derived
which provide identical numerical results. We present in the next section a for-
malism for the use of nonclassical basis functions for the solution of the general
Fokker-Planck equation in Eq. (6.7) with arbitrary drift and diffusion coefficients,
A(v) and B(v), respectively. In Sect. 6.2.2, an equivalent pseudospectral formalism
is presented.

6.2.1 Spectral Methods with Nonclassical Basis Functions

We consider a solution of the Fokker-Planck equation with a spectral method and
with a basis set analogous to the solution of the Ornstein-Uhlenbeck equation in
Sect. 6.1.2. The polynomial basis set is defined with the steady distribution P0(x) as
the weight function. If we set P(x, t) = P0(x)g(x, t) in the Fokker-Planck equation,
Eq. (6.7), where P0(x) is given by Eq. (6.9), then the equation for g(x, t) becomes

∂g(x, t)

∂t
= 1

P0(x)

∂

∂x

[
B(x)P0(x)

∂g(x, t)

∂x

]
, x ∈ [0,∞)

= −A(x)
∂g(x, t)

∂x
+ B(x)

∂2g(x, t)

∂x2 ,

= −Lg(x, t), (6.32)

where the definition of P0(x) has been used. The term in square brackets in Eq. (6.32)
can be considered as a flux. With the form of the operator, L , in the first line of
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Eq. (6.32), L is self-adjoint with respect to P0(x) as the weight function provided
that the zero flux boundary condition

P0(x)B(x)
∂g(x)

∂x

∣∣∣∣
∞

0
= 0, (6.33)

is imposed. The linear time dependent Fokker-Planck equation, Eq. (6.32), admits a
solution in terms of the eigenfunctions, ψn(x), and eigenvalues, λn , defined by

Lψn(x) = λnψn(x), (6.34)

and the solution can be written as

P(x, t) = P0(x)

∞∑
n=0

ane−λn tψn(x), (6.35)

where the an coefficients are determined from the initial distribution, P(x, 0). The
self-adjoint property of L can be verified by calculating the matrix element 〈φ1|L|φ2〉
with L defined as in Eq. (6.32). With an integration by parts, it is easily shown that
〈φ1|L|φ2〉 = 〈φ2|L|φ1〉 provided Eq. (6.33) is satisfied.

The eigenvalues and eigenfunctions are determined with a Galerkin spectral
method and nonclassical basis sets and we use the basis set {Sn(x)} orthonormal
with P0(x) as weight function, that is

∞∫
0

P0(x)Sn(x)Sm(x)dx = δnm . (6.36)

The set {Sn(x)}, introduced in this chapter, is used to denote a general basis set of
nonclassical polynomials orthonormal with respect to different equilibrium density
functions, P0(x), defined by a specific physical problem. The matrix elements of the
Fokker-Planck operator L in this basis set are given by

L(sp)
nm =

∞∫
0

P0(x)Sn(x)L Sm(x)dx

= −
∞∫

0

P0(x)Sn(x)
1

P0(x)

d

dx

[
P0(x)B(x)

d Sm(x)

dx

]
dx, (6.37)

where the superscript (sp) denotes the polynomial spectral representation. With an
integration by parts, we get the symmetric matrix representation of the Fokker-Planck
operator,
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L(sp)
nm = −

∞∫
0

P0(x)B(x)S′
n(x)S′

m(x)dx, (n, m) = 0, 1, . . . , N − 1 (6.38)

where zero flux boundary conditions are satisfied, Eq. (6.33). We highlight this impor-
tant result showing the self-adjoint property of the Fokker-Planck equation subject
to zero flux boundary conditions. The eigenvalues, λn , and eigenfunctions, ψn(x),
are determined with a numerical diagonalization of the matrix L(sp) of dimension N .
Although we have not demonstrated this explicitly here, the numerical results will
show that the coefficients of the expansion ψn(x) in the Sn(x) basis set are linear
variational parameters. Thus, the variational theorem is applicable and this spectral
method will provide an upper bound to the eigenvalues for each N and converge
from above. The time dependent solution of the Fokker-Planck equation is given by
Eq. (6.35).

We will use L to denote several different Fokker-Planck operators in the sections
that follow and each is defined at the outset. Otherwise the notation would become
excessive.

6.2.2 Pseudospectral Methods with Nonclassical
Quadratures

We introduce the basis set Rn(x) orthonormal with respect to w(x) defined by

Rn(x) =
√

P0(x)

w(x)
Sn(x), (6.39)

and evaluate the derivative S′(x) ≡ d S(x)/dx ,

S′
n(x) =

√
w

P0

(
w′

2w
− P ′

0

2P0

)
Rn(x) +

√
w

P0
R′

n(x). (6.40)

Thus, the matrix elements of the Fokker-Planck operator, Eq. (6.38), are given by

L(sp)
nm = −

∞∫
0

w(x)B(x)
[
R′

n(x) + h(x)Rn(x)
] [

R′
m(x) + h(x)Rm(x)

]
dx, (6.41)

where

h(x) = w′(x)

2w(x)
− P ′

0(x)

2P0(x)
, (6.42)
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and is a measure of the departure of w(x) from P0(x). This result is highlighted as
it shows that an optimal choice of weight function might be w(x) = P0(x) giving
h(x) = 0.

The matrix elements are evaluated with the quadrature based on the weight func-
tion w(x), that is

L(sp)
nm = −

N∑
k=1

wk B(xk)[R′
n(xk) + h(xk)Rn(xk)][R′

m(xk) + h(xk)Rm(xk)], (6.43)

where xk and wk are the quadrature points and weights associated with the polyno-
mials orthogonal with respect to the weight function, w(x) = P0(x). To express this
spectral representation in the equivalent physical space representation, we transform

L(ps)
i j =

N−1∑
m=0

N−1∑
n=0

Tin L(sp)
nm Tjm, (6.44)

where the superscript (ps) denotes the discrete pseudospectral representation and the
transformation matrix between physical and spectral space is defined as in Chap. 3,
namely

Tin = √
wi Rn(xi ).

We need only consider the first transformation with the sum over n as the second
over m is similar. With the definition of Tin , the term in Rn(xk) is transformed as

h(xk)

N−1∑
n=0

Tin Rn(xk) = h(xk)

N−1∑
n=0

√
wi Rn(xi )Rn(xk),

= h(xk)√
wk

δik . (6.45)

The transformation of R′
n(xk) employs the derivative matrix operator giving

N−1∑
n=0

Tin R′
n(xk) =

N−1∑
n=0

√
wi Rn(xi )

N∑
�=1

Dk�

√
w�

wk
Rn(x�),

=
N∑

�=1

Dk�

√
wiw�

wk

N−1∑
n=0

Rn(xi )Rn(x�),

=
N∑

�=1

Dk�

√
wiw�

wk

δi�

wi
,

= Dki√
wk

. (6.46)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The transformation with Tjm yields similar results and we find the discrete
pseudospectral representation

L(ps)
i j = −

N∑
k=1

B(xk)[Dki + h(xk)δki ][Dkj + h(xk)δk j ], (i, j) = 1, 2, . . . , N .

(6.47)

This result is also highlighted because for the quadrature defined with the stationary
distribution, w(x) = P0(x), for which h(xk) = 0, the representation of Li j has the
simpler form,

L(ps)
i j = −

N∑
k=1

B(xk)Dki Dkj . (6.48)

The representation of the Fokker-Planck operator given by Eq. (6.48) is straightfor-
ward to program in MATLAB for different choices of the basis set and associated
quadrature points and weights. The derivative matrix operator, Dki , is calculated as
discussed in Chap. 3, Eqs. (3.138) and (3.139).

The pseudospectral solution of the Ornstein–Uhlenbeck Fokker-Planck equa-
tion is equivalent to the solution of the Schrödinger equation for the quantum har-
monic oscillator. The drift coefficient, B(x) = 1, (Eq. 6.16), and P0(x) = w(x) =
e−x2

, x ∈ (−∞,∞), so that the derivative matrix operator, Dki , is defined in terms
of the Hermite polynomials as discussed in Chap. 4. The eigenvalues of the self-
adjoint representation of the Fokker-Planck operator L(ps) (Eq. 6.48) are λn = n and
the eigenfunctions are the Hermite polynomials.

For the Rayleigh Fokker-Planck equation B(y) = y, and with the Gauss Laguerre
quadrature weights and points defined with P0(y) = w(y) = √

ye−y, y ∈ [0,∞),
the eigenvalues of L(ps) are λn = n and the eigenfunctions are the Laguerre polyno-
mials. This is consistent with the spectral solutions given by Eqs. (6.20) and (6.28).

6.2.3 The Chang-Cooper Finite Difference Method
of Solution of the Fokker-Planck Equation

The finite difference algorithm by Chang and Cooper (1970) has found numerous
applications for the solution of the Fokker-Planck equation in many different appli-
cations (Larsen et al. 1985; Park and Petrosian 1996; Buet and Dellacherie 2010;
Abolhassani and Matte 2012).

The self-adjoint form of the Fokker-Planck equation, Eq. (6.32), was shown to be
consistent with zero flux at the boundaries, Eq. (6.33). This boundary condition is
also related to particle conservation

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_4


6.2 Numerical Methods for the Solution of the Fokker-Planck Equation 345

∂

∂t

∞∫
0

P0(x)g(x, t)dx = P0(x)B(x)
∂g(x, t)

∂x

∣∣∣∣
∞

x=0
= 0. (6.49)

Any useful discretization would have to ensure particle conservation which yields,
λ0 = 0.

We discretize the speed variable according to 0 = x1 < x2 < x3 · · · < xN = xmax

with xi+1 = xi +Δx , and Δx = xmax/(N −1) where xmax is the speed point chosen
large enough so that the flux boundary condition is satisfied. We also introduce
a shifted grid at the midpoint defined by xi+1/2 = xi + Δx/2. With a centered
difference for the derivative,

∂g(x, t)

∂x
|xi+1/2 ≈ g(xi+1, t) − g(xi , t)

Δx
, (6.50)

the finite difference representation of the eigenvalue problem is,

N∑
j=1

Li jφn(x j ) = λnφn(xi ), (6.51)

where

Łi i = 1

(Δx)2

x2
i P0(xi )Bi + x2

i+1 P0(xi+1)Bi+1

x2
i+1/2 P0(xi+1/2)

, i = 1, . . . , N , (6.52)

Łi,i−1 = − 1

(Δx)2

x2
i P0(xi )Bi

x2
i+1/2 P0(xi+1/2)

, i = 2, . . . , N , (6.53)

Łi,i+1 = − 1

(Δx)2

x2
i+1 P0(xi+1)Bi+1

x2
i+1/2 P0(xi+1/2)

, i = 1, . . . , N − 1, (6.54)

with the understanding that the first term in the fraction on the right hand side of
Eq. (6.52) vanishes for i = 1 and the second term vanishes for i = N in order to
enforce the boundary conditions.

We use a forward Euler difference algorithm for the time derivative, that is

∂g(xi , t)

∂t
= g(n+1)

i − g(n)
i

Δt
, (6.55)

where t = nΔt and g(n)
i = g(xi+1/2, nΔt). The Chang-Cooper finite difference

algorithm for the Fokker-Planck equation is
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g
(n+1)
i = g

(n)
i + Δt

x2
i+1 P0(xi+1)Bi+1[g(n+1)

i+1 − g(n+1)
i ] − x2

i P0(xi )Bi [g(n+1)
i − g(n+1)

i−1 ]
(Δx)2x2

i+1/2 P0(xi+1/2)
.

(6.56)

This result can be rewritten compactly as the matrix equation

N∑
j=1

Vi jg
(n+1)
j = g

(n)
i , (6.57)

where the matrix V is tridiagonal with elements

Vi,i = 1 + Δt Li,i , i = 1, . . . , N ,

Vi,i−1 = Δt Li,i−1, i = 2, . . . , N , (6.58)

Vi,i+1 = Δt Li,i+1, i = 1, . . . , N − 1

At each time step, the updated values g
(n+1)
i are obtained with the inversion of

Eq. (6.57).
The Chang-Cooper finite difference scheme, as a discrete representation of L ,

does not give rapidly convergent eigenvalues and eigenfunctions (Leung et al. 1998).
However, with the algorithm Eq. (6.56), the probability density function remains
positive, entropy increases with time and a Maxwellian is recovered at equilibrium
(Buet and Dellacherie 2010). We use this algorithm in Sect. 6.4.2 to solve the Fokker-
Planck equation for a model that involves heating of a plasma by wave-particle
interactions.

6.3 Electron Thermalization; The Lorentz Fokker-Planck
Equation Revisited

The degradation or thermalization of energetic electrons in atomic and molecular
moderators is an important aspect of radiation chemistry and physics (Mozumder
1999; Robson 2006), plasma processing of semiconductor devices (Petrović et al.
2009), the physics of the aurora (Stamnes 1980; Basu et al. 1993; Solomon 2001;
Shematovich et al. 2008) fundamental aspects of the approach to equilibrium (Trunec
et al. 2003; Sospedra-Alfonso and Shizgal 2011) and thermalization in condensed
matter (Sakai 2007; White et al. 2010).

The electron anisotropic nonequilibrium distribution functions are often expanded
in the direct product of the spherical harmonics in (θ,φ) and the Sonine–Laguerre
polynomials for the reduced speed or reduced energy dependence (Kumar et al. 1980;
Robson and Ness 1986; Robson 2006; White and Robson 2011; Abolhassani and
Matte 2012). This methodology requires the matrix elements of the collision operator
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in the Boltzmann equation as discussed in Chap. 5. There have also been solutions
of the electron Boltzmann equation with a B spline representation (Pitchford and
Phelps 1982) as well as with Monte Carlo methods (Koura 1983; Solomon 2001;
Shematovich et al. 2008).

For molecular moderators such as N2, O2 and CH4, inelastic collisions that involve
changes in the rotational and/or vibrational states of the moderator (Pitchford and
Phelps 1982; Kowari et al. 1992) and electron attachment to electronegative gases
such as SF6 and CCl4 must be included (Kowari and Shizgal 1996; Kowari et al.
1998).

The relaxation of electrons of moderate energy in atomic moderators for which
only elastic collisions need be included (Mozumder 1981; Knierim et al. 1982; Risken
and Voigtlaender 1984; McMahon and Shizgal 1985; Shizgal and McMahon 1985)
is presented in this section. In atomic moderators, there have been two notable phe-
nomena exhibited, namely the transient negative mobility (Shizgal and McMahon
1985; Dyatko et al. 2001; Dyatko 2007) and the negative differential conductivity
effect in gas mixtures (Shizgal 1990) previously thought to occur only for polyatomic
gases with internal degrees of freedom.

Owing to the small electron mass me to moderator mass M ratio, the Boltzmann
collision operator can be replaced by the Fokker-Planck operator corresponding to
the Lorentz limit discussed in Sect. (6.1.3). The Boltzmann equation or the Fokker-
Planck equation have been used in the study of electron thermalization in rare gases
(Lin et al. 1979; Knierim et al. 1982; McMahon and Shizgal 1985; Shizgal and
McMahon 1985). The physics of the problem is defined by the energy dependent
momentum transfer cross section σmt (v) for electron-atom collisions and the strength
of the applied electric field, E . The electric field results in a drift of the electrons
with a mobility determined by the electron-atom cross section.

To account for the electron drift in the applied electric field, there is a small
anisotropy of the electron velocity distribution function which is expressed by the
expansion in Legendre polynomials, that is,

f (v, t ′) =
∞∑

�=0

f�(v, t ′)P�(cos θ), (6.59)

where θ is the angle between v and the polar axis taken in the direction of the electric
field. Owing to the small mass ratio, me/M , the anisotropy of the distribution remains
small and only the terms in � = 0 and � = 1 in Eq. (6.59) need to be retained. This
is referred to as the “two-term” approximation (Hagelaar and Pitchford 2005). The
coupled equations for the first two terms, f0 and f1, are

∂ f0

∂t ′
+ eE

3me

(
∂

∂v
+ 2

v

)
f1 = me

Mv2

∂

∂v

[
v3γ(v)

(
1 + kB Tb

mev

∂

∂v

)]
f0,

∂ f1

∂t ′
+ eE

me

∂ f0

∂v
= −γ(v) f1, (6.60)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where γ(v) = Nbvσmt (v) and Nb is the density of the moderator. There is an initial
fast transient that we ignore and thus we set ∂ f1/∂t ′ = 0. This aspect of relaxation
in the Lorentz limit was illustrated in Chap. 3; see Fig. 5.15.

We also define the reduced speed x = v
√

me/2kB Ts with an arbitrary scaling
temperature Ts and dimensionless time t = t ′/τ where

τ =
[

nmeσ0

2M

√
2kB Tb

me

]−1

. (6.61)

A representative hard sphere cross section is denoted by σ0. We also consider a
scaling of the speed variable in anticipation of the use of a quadrature based solution
of the Fokker-Planck equation so that we define s2 = Ts/Tb. With these definitions
and the steady state value of f1 given by

f1 = − eE

γme

∂ f0

∂v
, (6.62)

we have the Fokker-Planck equation for f0, that is

∂ f0

∂t
= s

x2

∂

∂x

[
2x4σ̂(x) f0 + x2

s2 B(x)
∂ fo

∂x

]
, (6.63)

where

B(x) = x σ̂x) + (α/s)2

x σ̂(x)
, (6.64)

and the field strength parameter is

α2 = M

6me

[
eE

nσ0kB Tb

]2

. (6.65)

In Eq. (6.63), σ̂(x) = σmt (x)/σ0 is a dimensionless cross section written as a function
of reduced speed. The steady state distribution is from Eq. (6.63) given by

f0(x,∞) = D(x) = C exp

⎡
⎣−2s2

x∫
0

(x ′)2σ̂(x ′)
B(x ′)

dx ′
⎤
⎦ . (6.66)

The steady solution, D(x) given by Eq. (6.66), is precisely P0(x) in Sect. 6.2.1. The
distribution, D(x), is referred to as the Davydov distribution which reduces to a
Maxwellian in the absence of an electric field. If we set f (x, t) = D(x)g(x, t), the
equation for g(x, t) is given by

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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∂g

∂t
= s

D(x)x2

∂

∂x

[
x2

s
B(x)D(x)

∂g

∂x

]
= −Lg, x ∈ [0,∞). (6.67)

The linear operator on the right hand side of Eq. (6.67) that we have denoted by L is
self adjoint with D(x) as weight function with zero flux boundary conditions, that is,

x2 D(x)B(x)
∂g(x, t)

∂x

∣∣∣∣
x=∞

x=0
= 0. (6.68)

We are interested in the eigenvalue problem defined by

Lψn(x) = λnψn(x). (6.69)

6.3.1 Hard Sphere Cross Section and Zero Electric
Field, E = 0

If there is no external electric field and the cross section is a hard sphere σ(x) = σ0,
then B(x) = x and the equilibrium distribution is the Maxwellian P0(x) =
x2 exp(−x2). We consider a calculation of the eigenvalue spectrum of this Fokker-
Planck operator with the Maxwell polynomials orthonormal with respect to the
weight function w(x) = x2 exp(−x2). The “traditional” method of solution of
the Boltzmann equation involves the representation of the collision operator in the
Sonine-Laguerre polynomials (Knierim et al. 1982) denoted by L(SL)

nm .
The calculation of this matrix representation of the collision operator in the

Boltzmann equation defined by L(SL)
nm = 〈L

( 1
2 )

n |L|L( 1
2 )

m 〉 with weight function
w(y) = √

ye−y is straightforward but algebraically tedious (Shizgal and Fitzpatrick
1974) and the final expressions obtained can lead to considerable round-off errors in
the numerical calculation of the matrix elements. In the Lorentz limit, the result is
simpler and we have that

L(SL)
nm = −2

√
πA

me

M

√
m!n!

Γ (n + 3
2 )Γ (m + 3

2 )

min(n,m+1)∑
r=1

r(r + 1)N (n − r)N (m − r)

(6.70)

where N (�) = Γ (�− 1
2 )/(2�!√π) and A = 2nbπd2√2kB Tb/me. The matrix L(SL)

in the Sonine-Laguerre representation is a full matrix.
Our main objective is to compare the convergence of the eigenvalues of the Boltz-

mann collision operator as calculated with the representation given by Eq. (6.70)
and a pseudospectral method of solution based on the non-classical polynomials
orthogonal with respect to weight function w(x) = P0(x) = x2 exp(−x2).
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The matrix representation of the Lorentz Fokker-Planck operator in the Maxwell
polynomials, Mn(x), p = 2, orthonormal with respect to a weight function w(x) =
x2e−x2

is defined by L(M P)
nm = 〈Mn|L|Mm〉 where the scalar product is with respect

to w(x). Lo and Shizgal (2006) derived the explicit tridiagonal form of this spectral
representation as

L(M P)
mn =

⎧⎪⎪⎨
⎪⎪⎩

(n − 1)αn−1 + ∑n−2
k=0 αk, m = n > 1,

2(n − 1)
√

βn, m = n + 1,

2(m − 1)
√

βm, m = n − 1,

0, otherwise.

(6.71)

where αn and βn are the coefficients in the three term recurrence relation discussed
in Chap. 2. It should be clear that the transformation of L(M P)

nm with the transforma-
tion Tin = √

wi Mn(xi ), yields the discrete pseudospectral (ps) representation L(ps)
i j

given by

L(ps)
i j = −

N∑
k=1

xk Dki Dkj , (6.72)

where in Eq. (6.48), B(xk) = xk . An equivalent pseudospectral representation can
also be calculated for the Sonine-Laguerre quadratures.

A comparison of the convergence of the eigenvalues of the Fokker-Planck oper-
ator for a hard sphere cross section versus the size of the basis set N is shown in
Table 6.1. It is clear that the convergence of the eigenvalues is much faster with the
Maxwell polynomials as basis functions. The first nonzero eigenvalue, λ1, requires

Table 6.1 Convergence of the eigenvalues of the hard sphere Lorentz Fokker-Planck equation with
the Sonine-Laguerre polynomial basis set (left) in comparison with the Maxwell polynomial basis
set (right)

w(y) = √
ye−y (Laguerre) w(x) = x2e−x2

(Maxwell)

N λ1 λ2 λ3 λ5 N λ1 λ2 λ3 λ5

1 6.018 1 4.976

2 5.317 16.35 2 4.716 11.52

3 5.066 13.85 30.66 3 4.68704 10.40 19.84

5 4.872 12.10 23.61 68.94 4 4.68378 10.16 17.40

7 4.797 11.41 21.22 53.80 5 4.68343 10.121 16.68 41.28

10 4.748 10.91 19.56 45.96 6 4.68340 10.1137 16.485 35.55

20 4.7032 10.406 17.75 38.29 7 4.68340 10.1127 16.4401 33.11

30 4.6930 10.267 17.19 35.87 8 10.1125 16.4314 32.05

50 4.6871 10.178 16.79 33.94 9 10.1125 16.4300 31.64

75 4.6851 10.145 16.62 32.97 10 16.4297 31.512

100 4.6840 10.132 16.550 32.50 11 16.4297 31.4765

125 4.6840 10.125 16.512 32.231 12 31.4683

150 4.6839 10.122 16.490 32.056 13 31.4666

Reprinted from (Lo and Shizgal 2006) with permission from the American Institute of Physics

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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150 Laguerre polynomials for convergence to five significant figures whereas only
6 Maxwell polynomials are required. The higher eigenvalues also converge very
quickly with the Maxwell polynomial basis set.

Risken and Voigtlaender (1984) introduced the Maxwell polynomials in the trans-
formation of the Fokker-Planck eigenvalue problem to a Schrödinger equation pre-
sented in the following section. They studied the relaxation of neutrons in a heavy gas
moderator with the assumption that the Lorentz Fokker-Planck equation is applicable.
They report eigenvalues in agreement with the results listed in Table 6.1 calculated
with a continued fraction method (Risken and Till 1996).

The pseudospectral method of solution of the Lorentz Fokker-Planck equation
is applicable also to realistic energy dependent momentum transfer cross sections
(McMahon and Shizgal 1985) and also with a nonzero electric field (Shizgal and
McMahon 1985). In these applications, the nonclassical polynomial basis sets that
are used for the eigenvalue problem are orthonormal with respect to P0(x) para-
metrized by the momentum transfer cross section and the electric field strength,
Eq. (6.66). The method was also applied to the relaxation of positrons in He and Ne
(Shizgal and Ness 1987), for an oscillatory electric field (Viehland et al. 1988) and
in systems with an admixture of a strongly electron attaching gas such as SF6 and
CCl4 (Shizgal 1988). A review of this subject was presented by Shizgal et al. (1989).

6.3.2 Transformation of the Fokker-Planck Eigenvalue
Problem to a Schrödinger Equation; Supersymmetric
Quantum Mechanics

The eigenvalue problem of the Fokker-Planck equation is

A(x)
dψn

dx
− B(x)

d2ψn

dx2 = λnψn . (6.73)

We transform the independent variable x to a new variable z defined by

z =
x∫

1√
B(x ′)

dx ′,

so that

dz

dx
= 1√

B
and

d

dx
= 1√

B

d

dz
,

giving

A√
B

dψn

dz
− √

B

(
− B ′

2B3/2

dψn

dz
+ 1√

B

d2ψn

dz2

)
= λnψn .
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where the prime, (B ′ ≡ d B[x(z)]/dz), denotes differentiation with respect to z. The
eigenvalue equation in the new variable z is

− d2ψn

dz2 +
(

A√
B

+ B ′

2B

)
dψn

dz
= λnψn . (6.74)

A function C(z) is defined by

ψn(z) = eC(z)φn(z),

where the functions φn(z) will be shown to satisfy a Schrödinger equation. With
ψ′

n(z) ≡ dψn(z)/dz, we have that

ψ′
n = C ′eCφn + eCφ′

n,

and

ψ
′′
n = C

′′
eCφn + (C ′)2eCφn + 2C ′eCφ′

n + eCφ′′
n .

The Fokker-Planck eigenvalue equation, Eq. (6.74), is rewritten in terms of φn(z) as

−
[
C

′′
φn + (C ′)2φn + 2C ′φ′

n + φ
′′
n

]
+
(

A√
B

+ B ′

2B

)
(C ′φn+φ′

n) = λnφn . (6.75)

We set the coefficient of φ′
n to zero and get the defining equation for C(z), that is,

dC(z)

dz
= 1

2

(
A√
B

+ B ′

2B

)
, (6.76)

which when integrated gives

C(z) = 1

2

z∫
A(z′)√
B(z′)

dz′ + 1

4
ln B(z). (6.77)

With these definitions, the partial differential equation, Eq. (6.75), for φn(z) is the
Schrödinger equation

− d2φn

dz2 + V (z)φn(z) = λnφn(z), (6.78)

where Eq. (6.76) has been used and the coefficient of φn in Eq. (6.75) is the potential
V (z), given by

V (z) = (C ′(z))2 − C ′′(z). (6.79)
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The orthonormality of the eigenfunctions ψn(x) is defined in terms of P0(x) and
given by

∞∫
0

P0(x)ψn(x)ψm(x)dx = δnm,

∞∫
0

P0[x(z)]eC(z)φn(z)e
C(z)φm(z)

√
B(x(z))dz = δnm, (6.80)

which is consistent with the normalization

∞∫
0

φn(z)φm(z)dz = δnm, (6.81)

so that

P0[x(z)]e2C(z)
√

B[x(z)] = 1, (6.82)

which is consistent with the definition of C(z). Moreover, if we set W (z) = 2C ′(z)
we have that

V (z) = W (z)2

4
− W (z)′

2
, (6.83)

and

W (z) = A√
B

+ B ′

2B
. (6.84)

Thus the equilibrium solution of the Fokker-Planck equation can be expressed as

P0(x) = exp[−1

2

x∫
W [z(x ′)]dx ′], (6.85)

and is the ground state of the Fokker-Planck equation with λ0 = 0 as can be easily
verified by differentiating P0(x) twice.

The function W (z) is the “superpotential” of supersymmetric quantum mechanics.
We have derived the formal relationship between the Fokker-Planck equation and
the Schrödinger equation (Comtet et al. 1985; Cooper et al. 1995; Risken and Till
1996; Feizi et al. 2011). This close relationship between these two large classes of
problems has been exploited to advantage in the study of nucleation (Demeio and
Shizgal 1993a), electron relaxation in molecular gases (Demeio and Shizgal 1993b),
relaxation in plasmas (Shizgal 1992) and other applications (Gomez-Ullate et al.
2009).
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6.3.3 Pseudospectral Representation of the Schrödinger
Equation; Supersymmetric Quantum Mechanics

The spectral representation of the Hamiltonian in the Schrödinger equation, Eq.
(6.78), for a basis set {Sn(y)} orthonormal with unit weight function is

H (sp)
nm = −

∞∫
0

Sn(y)S
′′
m(y)dy +

∞∫
0

Sn(y)V (y)Sm(y)dy. (6.86)

We integrate the first integral by parts so that

H (sp)
nm =

∞∫
0

S
′
n(y)S

′
m(y)dy + Vnm, (6.87)

where the potential matrix element is Vnm = ∫
Sn(y)V (y)Sm(y)dy. Define a second

polynomial set {Fn} orthogonal with weight function w(y), that is,

Sn(y) = √
w(y)Fn(y), (6.88)

where the weight function is defined as w(y) = exp(− ∫
W (y′)dy′) analogous to the

equilibrium distribution for the Fokker-Planck equation, Eq. (6.85). Equation (6.87)
can then be rewritten as,

H (sp)
nm =

∫
w[F ′

m + w′

2w
Fm][F ′

n + w′

2w
Fn]dy + Vnm . (6.89)

If one of the cross terms, F
′
m Fn , in the integrand above is integrated by parts we find

that,

H (sp)
nm =

∫
wF ′

n F ′
mdy + [Vnm − Ṽnm], (6.90)

where Ṽnm are the matrix elements of the potential

Ṽ (y) = 1

4
W 2(y) − 1

2
W ′(y), (6.91)

defined in terms of the “superpotential”, W (y), in supersymmetric quantum mechan-
ics. We transform the spectral representation H (sp)

nm to the discrete representation with
the transformation T, that is,

H (ps)
i j =

N−1∑
n=0

N−1∑
m=0

Tin H (sp)
nm Tjm, (6.92)
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to give the final desired result, namely

H (ps)
i j =

N∑
k=1

Dki Dkj + [V (yi ) − Ṽ (yi )]δi j , (6.93)

If the potential of interest can be written as in Eq. (6.91), then a useful weight function
for the definition of the basis set is given by the equilibrium distribution function or
the ground state wave function, Eq. (6.85). For this choice, Ṽ (y) = V (y), and the
pseudospectral representation of the Hamiltonian reduces to

H (ps)
i j =

N∑
k=1

Dki Dkj . (6.94)

This approach has been described in detail by Shizgal and Chen (1996) and Lo and
Shizgal (2006).

6.4 Relaxation and Wave-Particle Heating in Space Plasmas

The Fokker-Planck equation plays a dominant role in plasma physics (Chandrasekhar
1942; Spitzer 1962; Hinton 1983; Shoub 1987) and stellar astrophysics (Spitzer and
Härm 1958; Binney and Tremaine 2008; Lemou and Chavanis 2010). We consider
as was done in Chap. 5, the kinetic theory of a test particle of mass m and charge Z
dilutely dispersed in a large excess of a second species of mass M and charge Zb at
equilibrium with temperature Tb and number density Nb. The Coulomb differential
scattering cross section for collisions between the charged particles interacting via a
Coulomb potential is given by

σ(g, θ) =
(

Zb Ze2

2μg2

)2 1

sin4(θ/2)
. (6.95)

The cross section varies inversely as the fourth power of the relative velocity, g, and
diverges for small scattering angle, θ.

The Coulomb Fokker-Planck equation finds numerous applications in space sci-
ence and in particular for the modelling of the solar and polar winds. The solar wind
consists primarily of protons and electrons that escape the solar gravitational field.
The polar wind (Lie-Svendsen and Rees 1996; Pierrard and Lemaire 1998) is analo-
gous to the solar wind (Parker 1965; Vocks 2002) and represents the escape of ions
from the ionosphere along open magnetic field lines at high latitudes (Marsch 2006;
Echim et al. 2011).

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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6.4.1 Pseudospectral Solution of the Coulomb Fokker-Planck
and Associated Schrödinger Equations; The Approach
to Equilibrium and the Continuous Spectrum

The Fokker-Planck equation for Coulomb collisions is derived from the Boltzmann
equation with the differential cross section, Eq. (6.95), with the assumption of small
energy transfers in individual binary collisions between charged particles. The small
energy transfer collisions are those with large impact parameters. Consistent with
this approximation, the small angle singularity in the momentum transfer differential
cross section is eliminated by restricting the scattering angle such that θ > θmin

where sin2(θmin/2) = [1 + Λ]−1, where Λ = λD/b0; λD is the Debye length and
b0 = Z Zbe2/2kB Tb, the impact parameter that corresponds to the scattering angle
θ = π/2 (Spitzer 1962; Mitchner and Kruger 1973; Hinton 1983).

The Fokker-Planck equation derived from the Boltzmann equation as discussed
in the previous paragraph is

∂ f (v, t ′)
∂t ′

= A

v2

∂

∂v

[
G(v)

(
1 + kTb

mv

∂

∂v

)]
f (v, t ′), (6.96)

where A = (4πNbe4 Z2 Z2
b/m M) ln Λ and the diffusion coefficient is

G(v) = erf(

√
Mv2

2kTb
) −

√
2Mv2

πkTb
exp(− Mv2

2kTb
), (6.97)

as discussed elsewhere (Karney 1986; Shizgal 2004; Chavanis 2006).
The steady state distribution from Eq. (6.96) is a Maxwellian. A dimensionless

time t ′ = t/τ is defined with τ = ([2A/3
√

π][M/2kB Tb]3/2)−1 and the reduced
speed x = v

√
m/2kB Ts where the temperature parameter Ts = s2Tb. The parameter

s is the quadrature scaling parameter introduced in Chap. 3. With these definitions,
the Fokker-Planck equation is

∂ f (x, t)

∂t
= 2

s3x2

∂

∂x

[
G1(sx)

(
1 + 1

2xs2

∂

∂x

)]
f (x, t), (6.98)

where G1(sx) = h(γ)G(v), γ = √
M/m and h(γ) = 3

√
π/4γ3/2.

If we set f (x, t) = e−s2x2
g(x, t), the Fokker-Planck equation is

∂g

∂t
= 1

s2

[
A(x)

∂g

∂x
− B(x)

∂2g

∂x2

]
= Lg, (6.99)

with B(x) = G1(sx)/(sx)3. The drift coefficient in terms of B(x) is

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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A(x) = 2s2x B(x) − 2B(x)

x
− d B(x)

dx
. (6.100)

We are concerned with the eigenvalue problem

Lψn(x) = −λnψn(x),

with L defined with Eq. (6.99). The physical space pseudospectral representation of
this Fokker-Planck operator is

L(ps)
i j = 1

s2

N∑
k=1

B(xk)[Dki + xk(s
2 − 1)δki ][Dkj + xk(s

2 − 1)δk j ]. (6.101)

If the scaling parameter, s = 1, Eq. (6.101) reduces to Eq. (6.48).
The eigenvalues are determined with the numerical diagonalization of the matrix

L(ps) of dimension N . The convergence of the lower order eigenvalues is shown in
Table 6.2 and the rapid convergence is clear.

We transform the Fokker-Planck eigenvalue equation to a Schrödinger equation
as discussed in Sect. 6.3.3 and derive, after some algebra, the potential in x , that is

V−(x) = G1(x)

x
(1− 9

16x4 )−3

[
1+ γ2

2
− 3

8x2

]
e−γ2x2 − 9x

16G1(x)
e−2γ2x2

. (6.102)

The potentials are shown in Fig. 6.1 for two mass ratios, M/m = 0.01 and 0.04,
and the eigenvalues (bound states) are indicated with the horizontal lines. There are
a finite number of discrete eigenvalues and the number of states diminishes with
increasing mass ratio. Since the potential barrier is finite, the eigenstates are not true
bound states (Corngold 1981) and could be referred to as “quasi-bound” states. The
only bound state is the ground state with λ0 = 0. However, it is readily verified that

Table 6.2 Convergence of the eigenvalues of the pseudospectral representation of the Coulomb
Fokker-Planck operator, Eq. (6.101), for mass ratio, γ = 0.3

N λ1 λ2 λ3 λ4 λ5 λ6 λ7

4 3.82049 7.522947 18.6937

6 3.82023 7.35052 10.7565 16.6796 47.3754

8 3.82023 7.34943 10.5866 13.7437 18.4730 30.7286 96.2670

10 7.34943 10.5828 13.5261 16.4786 20.7524 20.3964

20 13.5139 16.1314 18.4301 20.3807

30 13.5139 16.1341 18.4301 20.3897

40 18.4301 20.3807

SWKB 3.82031 7.34954 10.5831 13.5144 16.1348 18.4313 20.3829

WKB 3.82834 7.35710 10.5900 13.5208 16.1407 18.4366 20.3875

Reproduced from Shizgal (1992) with permission from Taylor and Francis
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Fig. 6.1 Potential, V−(y), in the Schrödinger equation corresponding to the Coulomb Fokker-
Planck equation for mass ratios M/m = 0.01 and 0.04. There are a finite number of eigenstates
which are strictly not discrete. Reproduced from Shizgal (1991) with permission from Beylich
A.E.: Rarefied gas dynamics. In: Proceedings of the 17th International Symposium on Rarefied Gas
Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

in the Rayleigh limit, γ = 0, V−(x) = x2 − 3 and the eigenvalues are all discrete
and given by λn = 4n, the harmonic oscillator eigenvalues.

The converged eigenvalues in the table are compared with the semiclassical
Wentzel-Kramers-Brillouin (WKB) eigenvalues (Miller and Good 1953), namely

x2∫
x1

√
λn − V−(x)dx =

(
n + 1

2

)
π, (6.103)

and the corresponding supersymmetric, SWKB, eigenvalues (Fricke et al. 1988)

x ′
2∫

x ′
1

√
λn − W 2(x)dx = nπ, (6.104)

where the integral limits are the classical turning points. The agreement with the
SWKB and WKB approximations is very good.

We expand the solution in the eigenfunctions of L and the time dependence of
the average energy is

E(t ′)
Eth

=
∞∑

k=0

cke−λk t ′ , (6.105)

where Eth = 3kB Tb/2 is the thermal energy and the coefficients are

ck = 2

3
s5ak

∞∫
0

e−s2x2
ψk(x)x4dx . (6.106)
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The coefficients ak are the expansion coefficients of the intial condition

g(x, 0) =
∞∑

k=0

akφk(x).

The 7 eigenvalues for γ = 0.3 are shown in Table 6.2 as the horizontal lines in the
potential functions V−(x) and W 2(x) in Fig. 6.2. The additional eigenvalue in V−(y)

is λ0 = 0. The eigenfunctions ψ4(x) and ψ6(x) are also shown in Fig. 6.2 with
the WKB eigenfunctions denoted with the symbols. Two examples of continuum
eiegenfunctions are shown in Fig. 6.3. The symbols that coincide with the solid
curves are the results with the WKB approximation. These numerical eigenfunctions
are L2 square integrable with the discrete quadrature (Reinhardt 1979) defining the
norm.

The relaxation of the temperature is given by T (t ′) = 2E(t ′)/3kB with E(t ′)
as in Eq. (6.105). The time variation of T (t ′)/Tb is shown in Fig. 6.4 for four mass
ratios includes the sum over discrete and continuous eigenvalues and is convergent.
For mass ratio M/m = 0.4, there are no bound states and the discrete sum is over
the continuous spectrum.

In Chap. 5, we discussed the properties of the discrete and continuous portions of
the eigenvalue spectra of the Boltzmann integral collision operators. It is these spec-
tral properties that determine the time dependent approach to equilibrium (Sospedra-
Alfonso and Shizgal 2013). For the Boltzmann equation, there is always a discrete

Fig. 6.2 (Left hand graphs) (A) The potential V−(y) in the Schrödinger potential; (B) The super
potential W 2(y) with a minimum value of 0. The bound states are shown with the dashed horizontal
lines. (Right hand graphs) Eigenfunctions of the Fokker-Planck equation (A) ψ4(x) and (B) ψ6(x).
The symbols are the WKB approximations (Miller and Good 1953). Reproduced from Shizgal
(1992) with permission from Taylor and Francis

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.3 The continuum eigenfunction of the Fokker-Planck collision operator for Coulomb
collisions (symbols) in comparison with the WKB approximation (solid curve) with Tb = 300 K,
s = 0.6042 and γ = 0.04; (A) λ = 5.855 and (B) λ = 7.603. Reproduced from Shizgal (1992) with
permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the 17th International Sympo-
sium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

Fig. 6.4 Temperature relaxation for T (0)/Tb = 24 and γ = a 0.2, b 0.3, c 0.4 and d 0.5. Reproduced
from Shizgal (1991) with permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the
17th International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co.
KGaA. pp. 22–29, (1991)

spectrum whereas for the Coulomb Fokker-Planck equation we have demonstrated
that the spectrum can be completely continuous, except for λ0 = 0. The approach
to equilibrium is an exponential if there is at least one discrete eigenvalue, that is
“the spectral gap” as discussed in Chap. 5. For mass ratios for which there are no
discrete “quasi-bound” states, the approach to equilibrium can be a complicated non-
exponential function of time (Corngold 1981). This may be the case for curve d in
Fig. 6.4.

We consider the variation of the energy coefficients in the energy relaxation,
Eq. (6.105), versus the numerical continuous eigenvalues. This variation of c(λ)

versus λ is shown in Fig. 6.5 for different scaling parameters. The discrete values
of λk and ck (or λ and c(λ)) in the continuum vary with a change in the scaling
parameter, s, or with a change in the number of quadrature points, N , but the variation
of c(λ) versus λ is on the same curve as shown in Fig. 6.5. As a consequence, the
pseudospectral solution of the Fokker-Planck equation provides a converged solution
even though the continuum has not been treated rigorously. However, the analytic
form of the time variation of the average energy, equivalently the temperature, very
close to equilibrium (Corngold 1981; Shizgal 1991) has not been confirmed.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.5 Variation of the coefficients, c(λ) (in units of 103) for the temperature relaxation versus
the continuous eigenvalue, λ. T (0)/Tb = 24. The symbols are the numerical results for 4 different
values of the scaling parameter. Reproduced from Shizgal (1991) with permission Beylich A.E.:
Rarefied gas dynamics. In: Proceedings of the 17th International Symposium on Rarefied Gas
Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

6.4.2 Fokker-Planck Equation for Wave Particle Heating
of Ions; Kappa Distributions, and Tsallis Nonextensive
Entropy

Tsallis (1995) derived the Kappa distribution

fκ(x) = Cκ

[
1

1 + x2

κ+1

]κ+1

, (6.107)

in the development of a new form of entropy functional for problems in statistical
mechanics. In Eq. (6.107), Cκ = 2πΓ (κ+1)/[√π(κ + 1)]3Γ (κ− 1

2 ) is a normaliza-
tion such that 4π

∫∞
0 fκ(x)x2dx = 1. In the limit, κ → ∞, the Kappa distribution

tends to a Maxwellian. The Tsallis nonextensive entropy formalism is a controversial
topic (Nauenberg 2003; Tsallis 2004; Lutsko and Boon 2011).

In Chap. 4, we discussed the expansion of the Kappa distribution function, in
Laguerre polynomials, Eq. (4.60). We demonstrated that the expansion in Laguerre
polynomials is a divergent asymptotic series as the decay of fκ(x) as x → ∞
is slower than that of the Laguerre weight function, w(x) = √

xe−x ; see Fig. 4.9
(Mintzer 1965; Leblanc and Hubert 1997). It is clear that the normalization Cκ does
not exist for κ → 1/2. The average kinetic energy, that is the average of mv2/2 with
fκ(x), defines the nonequilibrium “temperature”

Tκ

Tb
= κ + 1

κ − 3
2

, (6.108)

which also diverges for κ → 3/2. A nonphysical feature of the Kappa distribution
is that the nth moment diverges for κ → (n + 1)/2 (Treumann et al. 2004; Shizgal
2007). For this reason, Magnus and Pierrard (2008) could not generate the Gaussian
quadrature weights and points for the Kappa distribution and used instead modified
weight functions.

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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In space physics, the Kappa distribution has been employed to explain the
nature of energetic distributions in space physics (Meyer-Vernet 2001; Livadiotis
and McComas 2009), the heating of the solar chromosphere (Scudder 1994), the
escape of charged particles from the solar atmosphere and from the high latitude
terrestrial ionosphere known as the solar and polar winds, respectively (Pierrard et
al. 2004; Pierrard and Lazar 2010). There is an ongoing effort in space physics to
better understand the complex mechanism for the energization of ions and electrons
by plasma waves (Schulz and Lanzerotti 1974; Stix 1992; Gary 1993).

One approach is based on a Fokker-Planck equation where the wave-particle
interactions are modelled with a second diffusion operator (Nicholson 1983) that is

∂ f (x, t)

∂t
=

√
m

M

(
1

x2

∂

∂x

[
D1(vth x)(1 + 1

2x

∂

∂x
)

]
f (x, t)

+ αvth

2

1

x2

∂

∂x

[
x2 D2(vth x)

∂

∂x
f (x, t)

])
, (6.109)

where in the second differential operator term the parameter α is an adjustable
parameter that controls the strength of the wave-particle interactions relative to the
Coulomb collision rate. It is clear that for α = 0, the steady state distribution is a
Maxwellian. Equation (6.109) has been written in dimensionless time, t = t ′/t0,
where t0 = [2Nσe f f

√
2kTb/M]−1 and σe f f = [4πN Z2 Z2

be4 ln Λ]/(2kTb)
2.

The steady distribution obtained by setting ∂ f/∂t = 0 in Eq. (6.109) is given by

d fss(x)

fss(x)
= −

⎡
⎣ 2x

1 + αvth x3 D2(vth x)

D̂1(z)

⎤
⎦ dx, (6.110)

where

D̂1(z) = erf(z) − 2z√
π

e−z2
, (6.111)

with z = √
γx, γ = M/m. As a consequence of the wave-particle interaction diffu-

sion term, the steady state solution of Eq. (6.109), fss(v), is no longer a Maxwellian
and depends on the ratio of the strength of the wave-particle diffusion term relative to
the strength of Coulomb collisional relaxation, that is on α, as well as the mass ratio
M/m. The velocity dependence of this steady-state distribution function depends on
both D̂1(z) and D2(vth x).

The choice of the wave-particle diffusion coefficient has been discussed in the lit-
erature (Crew and Chang 1985; Stix 1992; Ma and Summers 1999; Vocks 2002;
Shizgal 2007). There is at present no theoretical model for the occurrence of a
Kappa distribution except for the works of Ma and Summers (1999) and Hasegawa
et al. (1985). We consider the wave-particle diffusion coefficient to be of the form
D2(vth x) = 1/(vth x) following on the work of Ma and Summers (1999). To repro-
duce the result obtained by them, one has to choose D2(vth x) = 1/(vth x) and
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v � vth , that is γ → ∞ in which case D̂1(z) → 1. Thus the mass dependence and
the behaviour D̂1(z) ≈ z−3 as z → 0 are not retained by setting D̂1(z) ≡ 1.

The steady state distribution function that is obtained in this limit is

d fκ(x)

fκ(x)
= −

[
2x

1 + αx2

]
dx, (6.112)

and when integrated leads to the Kappa distribution, Eq. (6.107). In this way, the
adjustable κ parameter in exospheric models is interpreted in terms of the strength
of wave-particle interactions and κ = (1 − α)/α.

The steady state distribution, fss(x), the Kappa distribution, fκ(x) and the
Maxwellian are compared in Fig. 6.6 for two mass ratios and the arbitrary choice
α = 1/8. The steady state distribution has a more extended high energy tail than
either the Kappa distribution or the Maxwellian. The mass ratios chosen correspond
to O+ and Fe+ in the solar atmosphere. For the larger mass ratio the tail of the steady
distribution is more extended than for the smaller mass consistent with the observed
heating of the heavy minor ions in the solar atmosphere.

For this application, we use the Chang-Cooper finite difference algorithm
described in Sect. 6.2.3 to integrate the Fokker-Planck equation given by Eq. (6.109)
with an initial Maxwellian distribution. With this numerical method, there is no ref-
erence to the eigenvalue spectrum of the operator in Eq. (6.109) as we have done for
all the other applications. The solutions converge provided that the grid spacing in
the finite difference reduced speed discretization and the time step are sufficiently
small. The evolution of the distribution functions showing the heating of the tail of
the distributions is shown in Fig. 6.7a, b for m/M = 16 and 55.85, respectively. The
increase in the temperature is shown in Fig. 6.7c for several heavy ions in the solar
atmosphere. This heating is consistent with observations that the temperature of the
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Fig. 6.6 Comparison of the Maxwellian (dotted curve), Kappa (dashed curve) and steady, fst (x)

(solid curve) distributions. The diffusion coefficient for wave-particle interactions is D̂2(x) = 1/x ,
the mass ratio m/M and α are (A) 16, 1/8 (B) 55.845, 1/8. For the Kappa distribution, κ = (1−α)/α.
Reprinted from Shizgal (2007) with permission from Springer
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Fig. 6.7 Approach to a steady state distribution, fss(x), with an initial Maxwellian and the inclusion
of wave-particle energization; α = 0.25 and D̂2(x) = 1/x . Successive distributions are at reduced
times equal to 0.4, 2, 6, 10 and 20 for m/M equal to (A) 16 and (B) 55.85. (C) The heating of the
gas is shown as T (t)/Tb and (D) the Kulback entropy increases with time. The mass ratio, m/M ,
is equal to (O) 16, (Mg) 24.3 and (Fe) 55.85. Reprinted from (Shizgal 2007) with permission from
Springer

minor ions in the solar atmosphere increases with mass (Pierrard et al. 2004).
In Fig. 6.7d, we show the monotonic increase in the Kullback–Leibler entropy

functional defined by

Σ(t) = 4π

∫
x2 f (x, t) ln

f (x, t)

fss(x)
dx . (6.113)

This final result demonstrates that the usual notions of entropy rationalizes the gen-
eration of a non-equilibrium distribution which is neither a Maxwellian nor a Kappa
distribution. The nonextensive entropy formalism of Tsallis (1995) is not required as
previously suggested (Collier 2004; Leubner and Vörös 2005) and references therein.
A pseudospectral solution of the Fokker–Planck operator equation, Eq. (6.109), is of
considerable interest, especially with concern to the properties of the eigenvalue
spectrum of the operator with wave-particle interactions (α �= 0).



6.5 Fokker-Planck or Smoluchowski Equation for Bistable Potentials 365

6.5 Fokker-Planck or Smoluchowski Equation
for Bistable Potentials

Potentials U (y), where y denotes a coordinate for internal rotation in a molecule
about some symmetry axis, are known for many molecules including for example
butane, C4H10, (Ryckaert and Bellemans 1978; Montgomery et al. 1979; Blackmore
and Shizgal 1985b; Pastor and Karplus 1989; Travis and Searles 2006), hydrogen
peroxide, HOOH, (Koput et al. 2001; Lin and Guo 2003; Lynch et al. 2004; Le et
al. 2009) and chlorine peroxide, ClOOCl (Gomes and Pacios 1996). The cis-trans
isomerization kinetics for such molecules can be modelled with a Fokker-Planck or
Smoluchowski5 equation of the form

∂P(y, t)

∂t
= ∂

∂y

[
U (y)P(y, t) + ∂B(y)P(y, t)

∂y

]
= L P(y, t), y ∈ (−∞,∞),

(6.114)

where y is a reaction coordinate.
A simple model for the isomerization kinetics used by many researchers

(Larson and Kostin 1978; Bernstein and Brown 1984; Voigtlaender and Risken 1985;
Blackmore and Shizgal 1985a, b; Cartling 1987; Drozdov 1999; Drozdov and Tucker
2001; Felderhof 2008) is defined with the drift and diffusion coefficients given by

U (y) = y3 − y, B(y) = ε. (6.115)

This model potential is bimodal with two minima at y = ±1. The steady distribu-
tion is

P0(y) = C exp[− y4

4ε
+ y2

2ε
], (6.116)

and has two sharp maxima at y = ±1, especially for ε small as shown in Fig. 6.8. The
constant C is a normalization. The model is also referred to as the quartic potential
because of the form of P0(y). This type of Fokker-Planck equation with two stable
states also has application to climate models (Nicolis and Nicolis 1981; Nicolis 1982;
Shizgal and Chen 1997) and laser physics (Blackmore et al. 1986; Shizgal and Chen
1997). The recent work by (Blaise et al. 2012) provides an extensive bibliography
on diffusion in a double well potential.

We study the time evolution of this system in terms of the eigenfunction expansion
discussed in Sect. 6.2. The eigenvalues and eigenfunctions can be calculated numer-
ically with the diagonalization of the spectral matrix representation of the linear

5 Marian Smoluchowski (1872–1917) was a Polish physicist who was responsible for the develop-
ment of fundamental concepts in statistical physics, kinetic theory and Brownian motion. His name
is associated with integral equations for coagulation and a Fokker-Planck equation for chemical
reactions.
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Fig. 6.8 Steady state bimodal distribution P0(x) = C exp[− 1
ε (x4/4 − x2/2)] for ε = 0.02 on the

left and ε = 0.005 on the right. The distribution of quadrature points with N = 20 is also shown

Fokker-Planck operator, L , defined by Eq. (6.114), that is

L(sp)
mn =

∞∫
−∞

w(y)Bn(y)L Bm(y)dy, (6.117)

where the nonclassical polynomials, Bn(y), are orthonormal with respect to the
weight function, w(y) = P0(y), that is

∞∫
−∞

exp

[
−1

ε

(
y4

4
− y2

2

)]
Bn(y)Bm(y)dx = δnm, (6.118)

as discussed in Chap. 2, Sect. 2.5.2.
Since w(y) is even and the integrals are evaluated over (−∞,∞), the recurrence

coefficients, αn = 0. The polynomials Bn(y) are even when n is an even number and
odd when n is an odd number. After some detailed algebraic manipulations presented
in Appendix B of Lo and Shizgal (2006), the symmetric matrix representation of the
Fokker-Planck operator is given by

L(sp)
mn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(β2 + β1 − 1), m = n = 2,

(n − 1)(βn + βn−1 − 1) + 2
∑n−2

k=1 βk, m = n > 2,

(n − 1)
√

βn+1βn, m = n + 2,

(m − 1)
√

βm+1βm, m = n − 2,

0 otherwise,

(6.119)

where βn are the recurrence coefficients in the three term recurrence relation dis-
cussed in Chap. 2. The eigenvalue problem is Lψn(y) = −λnψn(y), with L as
defined by Eq. (6.114).

This matrix representation of the Fokker-Planck operator for the bimodal model
is pentadiagonal where the off-diagonal elements for m �= n ± 2 are zero. As a

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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consequence, the eigenfunctions are odd or even and there is no coupling between
them. Thus, the matrix representation L(sp)

nm can be split into two separate matrices,
Leven with even n and m and Lodd with odd n and m. The spectrum of the
Fokker-Planck operator is composed of a set of singlet and nearly degenerate triplets.
With B(yi ) = ε, the pseudospectral discrete matrix representation of the Fokker-
Planck operator is given by Eq. (6.48)

L(ps)
i j = −ε

N∑
k=1

Dki Dkj , (6.120)

and yields the same eigenvalues and eigenfunctions as obtained with the spectral
representation. However, L(ps)

i j , is a full matrix and the symmetry properties of the

problem as determined from the structure of L(sp)
nm are not apparent. As demonstrated

in Chap. 2, the quadrature points are distributed nonuniformly within the domain, as
shown in Fig. 6.8 for two choices of ε. Therefore, the pseudospectral approach is more
flexible than the polynomial based spectral method as different weight functions can
be easily used to improve the convergence. The matrix elements for such nonclassical
basis functions may be difficult to calculate analytically as given by Eq. (6.119).

The convergence of the lower order eigenvalues for ε = 0.01 is shown in Table 6.3
versus the number of quadrature grid points, N , for three different grids as defined
by the weight functions shown in the table. As can be seen, the first nonzero eigen-
value λ1 is extremely small relative to the other eigenvalues. The reciprocal of this
eigenvalue represents the isomerization rate as discussed later. The three eigenvalues
λ3 − λ5 are nearly degenerate and converge at different rates. The first set of results
are obtained with the grid defined by wa(y) = P0(y), y ∈ (−∞,∞).

The convergence can be improved by taking advantage of the symmetry of the
eigenstates and calculating the even and odd eigenvalues with different weight func-
tions, w(e)

b (y) and w
(o)
b (y), y ∈ [0,∞), as shown in the middle of the table. The con-

vergence requires about half the number of quadrature points as with wa(y) = P0(y)

over the whole interval. The bottom portion of the table shows the convergence with
the uniform grid for the Sinc collocation method (SCM) (Wei 1999; Amore 2006)
as well as a comparison with the limited results by Dekker and van Kampen (1979).

The convergence of the eigenvalues for ε = 0.001 is shown in Table 6.4 and a third
weight function is chosen in order to accelerate the convergence. The weight function

is wc(y) = P0(y) + exp(− y2

2ε ) where the added exponential term yields quadrature
points in the middle of the interval near the origin. The convergence of the eigenval-
ues is extremely rapid relative to the Sinc collocation method with a uniform grid.

The distribution of quadrature points relative to the bimodal potential is shown
in Fig. 6.9 for three values of ε. The distribution of grid points is uniform for all
three values with the SCM. The quadrature points labelled QDM (a) are densely
distributed over the region of the outermost potential wells. The acronym QDM is
for the Quadrature Discretization Method which is the pseudspectral representation
given by Eq. (6.120). The quadrature points for QDM (b) are defined over the interval

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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x ∈ [0,∞) and are more densely distributed near the origin. The points for QDM (c)
are distributed densely about the origin. The rate of convergence of the eigenvalues
in Tables 6.3 and 6.4 is consistent with the distribution of the quadrature points for
these different weight functions.

The structure of the eigenvalue spectrum is made clearer by considering the trans-
formation to a Schrödinger equation and one finds the potential

V (y) = y2(y2 − 1)2

4ε
− 1

2
(3y2 − 1), (6.121)

which has three minima at

y0 = 0, y± = ±
√√√√

[
2

3
+

√
1

9
+ 2ε

]
. (6.122)

Table 6.3 Convergence of the eigenvalues of the Fokker-Planck operator with the bistable potential,
U (y) = y3 − y; ε = 0.01

N λ1 λ2 λ3 λ4 λ5

wa(y) = exp[−(
y4

4ε − y2

2ε )]/ exp(1/4ε); y ∈ (−∞,∞)

12 5.0833 (−8) 1.866176 1.865861

24 3.6651 (−11) 1.865757 1.865753

36 7.0354 (−12) 1.388230 1.865752 1.865758 2.664871

48 6.1809E-12 0.994289 1.865735 1.865754 1.956370

60 6.15499 (−12) 0.968472 1.865337 1.869329

72 6.15466 (−12) 0.967870 1.864560 1.866993

84 6.15465 (−12) 0.967865 1.864542 1.866975

w
(e)
b (y) = wa(y); w

(o)
b (y) = y2wa(y); y ∈ [0,∞)

12 6.4259 (−12) 1.256087 1.865747 1.865757 2.113341

15 6.1656 (−12) 0.990778 1.865720 1.865754 1.913825

18 6.1405 (−12) 0.969092 1.865601 1.875631

24 6.1424 (−12) 0.967879 1.864549 1.866982

27 6.1436 (−12) 0.967865 1.864542 1.866975

30 6.1427 (−12) 0.967864

Sinc collocation method xmax = 2.2

12 7.4085 (−1) 1.076821 3.336192 3.321671 1.574892

24 3.3865 (−3) 0.967915 1.931199 1.930972 1.865051

36 −4.8093 (−5) 0.967864 1.864066 1.864927 1.866629

48 1.7533 (−8) 1.864542 1.865754 1.866975

60 7.9956 (−12)

DvKa 0.968 1.862 1.867

Reprinted from Lo and Shizgal (2006) with permission of the American Institute of Physics
a Dekker and van Kampen (1979)



6.5 Fokker-Planck or Smoluchowski Equation for Bistable Potentials 369

Table 6.4 Convergence of the eigenvalues of the Fokker-Planck operator with the bistable potential,
U (x) = x3 − x ; ε = 0.001

N λ2 λ3 λ4 λ5

wc(y) = exp[−(
y4

4ε − y2

2ε )]/ exp( 1
4ε ) + exp(− y2

2ε )

6 0.9980526 2.0000470 2.0200067 2.0694590

12 0.9969809 1.9878205 1.9880010 1.9881554

18 0.9969817 1.9878873 1.9878903 1.9878937

24 1.9878896 1.9878896 1.9878893

30 1.9878896

Sinc collocation method xmax = 1.2

12 3.4140030 21.7611343 21.7517512 3.4979300

24 1.2875835 8.5716393 8.5704015 1.6476678

36 1.0279928 4.1568953 4.1569000 1.7776398

48 0.9984717 2.5344712 2.5345542 1.9649680

60 0.9970079 2.0928734 2.0928574 1.9872886

72 0.9969819 1.9995592 1.9995565 1.9878842

84 0.9969817 1.9884160 1.9884156 1.9878896

96 1.9878838 1.9878838

108 1.9878884 1.9878884

120 1.9878896 1.9878896

Reprinted from Lo and Shizgal (2006) with permission of the American Institute of Physics

In the limit ε → 0, the potential barriers between the two minima become larger and
the potentials near the minima are quadratic, that is,

lim
ε→0

V ±(y) → (y − y±)2

ε
− 1, y ≈ y±, (6.123)

lim
ε→0

V 0(y) → y2

4ε
+ 1

2
y ≈ 0.

and the corresponding eigenvalues are

lim
ε→0

λ±
k → 2k, k = 0, 1, 2, . . . (6.124)

lim
ε→0

λ0
k → k + 1, k = 0, 1, 2, . . .

Thus in the very small ε limit the eigenvalues approach integer values, the zero eigen-
value is doubly degenerate and the remaining even eigenvalues are triply degenerate.

The importance of the distribution of grid points is illustrated in Fig. 6.9 where the
grid points are shown in relation to the potentials in the Schrödinger equation. For
ε = 0.1 in Fig. 6.9a, the grid points are well distributed in the two wells of the poten-
tial. For ε = 0.01, the potential has a minimum near the origin and wa(y) = P0(y)

does not properly capture the eigenfunction in this region whereas the quadrature
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(A)

(B) (C)

Fig. 6.9 The bimodal potential, V (y), for ε equal to (A) 0.1, (B) 0.01 and (C) 0.001. The quadrature

points with weight functions wa(y) = exp[−(
y4

4ε − y2

2ε )]/ exp(1/4ε); y ∈ (−∞,∞), w
(e)
b (y) =

wa(y) y ∈ [0,∞); w
(o)
b (y) = y2wa(y); y ∈ [0,∞) and wc(y) = exp[−(

y4

4ε − y2

2ε ] exp( 1
4ε ) +

exp(− y2

2ε ) are shown. Reprinted from Lo and Shizgal (2006) with permission of the American
Institute of Physics

over the positive interval defined with wb(y), y ∈ [0,∞) has more quadrature
points close to the origin than does wa(y), y ∈ (−∞,∞). For ε = 0.001, we use a
weight function centred about the origin together with wa(y). These results illustrate
the flexibility of a pseudospectral method based on nonclassical weight functions
that accelerate the convergence.

The variation of the eigenvalues versus ε is shown in Fig. 6.10. The top graph illus-
trates the very rapid decrease of λ1 with decreasing ε. This eigenvalue represents the
slowest mode and the reciprocal can be identified with the long time isomerization
rate coefficient. The division of the other eigenvalues into singlet and triplet states
is shown in the bottom graph with the triplet states converging to integer values for
ε → 0. The objective of such modelling is to determine the nonequilibrium isomer-
ization rate coefficient.

The cis-trans isomerization of n-butane has been studied by numerous researchers
(Ryckaert and Bellemans 1978; Montgomery et al. 1979; Pastor and Karplus 1989;
Shizgal et al. 1991; Travis and Searles 2006) with a particular potential reported by
Montgomery et al. (1979) and also used by Marechal and Moreau (1984).
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Fig. 6.10 Eigenvalue spectrum of the Fokker-Planck operator for the bistable potential; (Top graph)
Variation of the smallest nonzero λ1 eigenvalue versus ε. (Bottom graph) Variation of the higher
eigenvalues showing the splitting into singlet and triplet states. Reprinted from Blackmore and
Shizgal (1985a); Copyright 1985 by the American Physical Society

The solution of the time dependent Fokker-Planck equation for an initial delta
function, δ(y − y0), with all of the particles in one well at y0 is given by

P(y, t) =
∞∑

n=0

ψn(y0)ψn(y)e−λn t , (6.125)

where λn are the eigenvalues of the Smoluchowski operator, L , in Eq. (6.114). The
eigenvalues are calculated with the pseudospectral method with quadrature points
and weights defined with the equilibrium density, P0(y) and the associated discrete
derivative operator in physical space (Blackmore and Shizgal 1985a).

The number density of isomers in the potential well on the right for y ∈ [0,∞)

is denoted by NA(t) and the isomerization rate equation is defined by

d NA(t)

dt
= −k(t)

[
N eq

A − NA(t)

]
. (6.126)
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where the nonequilibrium time dependent rate coefficient is determined from the
time dependent reactive flux over the barrier. From a correlation function formal-
ism (Montgomery et al. 1979; Marechal and Moreau 1984; Blackmore and Shizgal
1985a), the time dependent nonequilibrium rate coefficient can be written in the form

k(t) =
∞∑

n=0

Ane−λn t , (6.127)

with the An coefficients given by

An = λn

[ ∞∫
0

ψn(y)dy

]2

, (6.128)

and determined numerically with the nonclassical quadrature points. The details of
this calculation were provided by Blackmore and Shizgal (1985a).

The nonequilibrium rate coefficient is compared with the transition state theory
estimate given by

ktst = S(0)

√
kB Tb

2πm
, (6.129)

where

S(y) = e−U (y)/kB Tb∫∞
−∞ e−U (y)/kB Tb dy

.

The time dependent rate coefficient for butane isomerization in the potential
reported by Montgomery et al. (1979) is summarized in Fig. 6.11. The time depen-
dent rate coefficient given by Eq. (6.127) relative to the equilibrium transition state
theory (tst) rate coefficient, Eq. (6.129), is shown in the figure as the solid curves (a)
and (b). The curve labelled (b) is for the potential as reported and the one labelled
(a) is for an harmonic fit to this potential. The curve denoted by MM and MCB are
the results by Marechal and Moreau (1984) and the simulations by Montgomery et
al. (1979), respectively. There are many reactive systems and diffusion processes
that are modelled with the Smoluchowski equation (Szabo et al. 1980; Bagchi et al.
1983; Chavanis 2006; Felderhof 2008) including protein folding (Bicout and Szabo
2000), dielectric relaxation (Coffey et al. 2009) and a Smoluchowski equation with
a capture term (Spendier et al. 2013) that overlaps in some respects the studies of the
nonequilibrium reactive system in Sect. 5.4.4.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.11 The time dependent nonequilibrium rate coefficient for butane isomerization with the
potential reported by Montgomery et al. (1979) (b) and with an harmonic fit to the potential (a).
The dashed curve (MM) is the result by Marechal and Moreau (1984) and the dotted curve (MCB)
is the result by Montgomery et al. (1979). The collision frequency ν = 3 × 1012 sec−1. Reprinted
with permission from Blackmore and Shizgal (1985a); Copyright 1985 by the American Institute
of Physics

6.6 Kramers Equation and Nonequilibrium Chemical
Kinetics; A Spectral Solution

It has been long recognized that reactive processes for gaseous systems pro-
ceed with the perturbation of the species velocity distribution functions from
Maxwellian (Ross and Mazur 1961; Shizgal and Karplus 1970; Shizgal and Napier
1996; Kustova and Giordano 2011; Dziekan et al. 2012). These analyses of the depar-
ture from Maxwellian are based on the Boltzmann equation. The fundamental quan-
tities that define the Boltzmann equation are the cross sections for elastic and reactive
collisional processes. We considered spectral methods of solution of the chemical
kinetic Boltzmann equation in Chap. 5, Sect. 5.4.4. The theoretical description of the
kinetics of isomerization reactions presented in Sect. 6.5 based on the Fokker-Planck
or equivalently the Smoluchowski equation in position space assumed a Maxwellian
distribution function of the particles in velocity space.

The Kramers equation (Kramers 1940) for the distribution function, f (r, v, t), of
a test particle at position r and velocity v, at time t in the potential U (r) is given by

∂ f

∂t
− v

∂ f

∂r
− F

m

∂ f

∂v
= ν

∂

∂v

(
v + kB Tb

m

∂

∂v

)
f. (6.130)

The equation is comparable to the Boltzmann equation in Chap. 5, Eq. (5.30) with a
drift term on the left hand side and a collision term on the right hand side. The force
F = −∂U (r)/∂r is derivable from an internal potential U (r). The collision term
is a particular choice which can be recognized as the Ornstein-Uhlenbeck Fokker-
Planck operator in Sect. 6.1.2. The strength of the collision operator is denoted by the
collision frequency ν. Kramers equation is generally used to model isomerization
reactions in liquids for which the potential is the internal molecular torsional potential

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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about a symmetry axis in a molecule with cis-trans isomers. The frequency ν is
related to the viscosity of the background liquid in which the isomerization rate
is measured. There exists experimental data of the isomerization rates versus the
viscosity of the liquid. The magnitude of ν reflects the strength of the coupling of
the nonequilibrium system with the surroundings at equilibrium. When ν is large, the
coupling is strong and the velocity distribution function approaches the equilibrium
Maxwellian distribution at the heat bath temperature, Tb.

We continue the analogy of Kramers equation with the Boltzmann equation and
relate the problem to rarefied gas dynamical problems where instead of ν we have the
Knudsen number, 1/Kn, playing a similar role. In the small Kn collision dominated
regime, departures from equilibrium are small and pertubation type methods such as
the Chapman-Enskog method work remarkably well. The other extreme is the almost
fully collisionless situation when Kn is very large and the Boltzmann equation can
be solved with Liouville’s theorem. It is the intermediate situation when Kn ≈ 1 that
is the most difficult to treat theoretically.

A review of the many different applications of Kramers equation in chemistry and
physics is beyond the scope of this book. The reader is directed to the excellent review
by Hänggi et al. (1990) that provides a large bibliography up to about 1990. Another
good overview is the book by Risken and Till (1996). A more recent summary
was provided by Pollak and Talkner (2005). References 1–40 in the introduction
section of the paper by Voigtlaender and Risken (1985) refers to a large number of
applications of the Kramers equation. Numerical methods for the efficient solution
of the Kramers equation are of considerable importance (Berezhkovskii et al. 1996;
Bicout et al. 2001; Schindler et al. 2005; Bi and Chakraborty 2009; Coffey et al.
2009; Müller et al. 2012).

In this section we describe a particular pseudospectral method of solution of the
Kramers equation with the symmetric bistable double Morse potential introduced by
Garrity and Skinner (1983) given by

U (r) = Um

[1 − e−br0 ]4

[
1 − e−b(r0+r)

]2[
1 − e−b(r0−r)

]2

, (6.131)

where r is an internal spatial coordinate, r0 and −r0 are the positions of the minima
and br0 is a parameter which controls the width of the barrier of height Um that
separates cis-trans isomers, as in the previous section. The potential is shown for two
values of br0 in Fig. 6.12.

The “collision” operator on the right hand side of Eq. (6.130) that describes the
coupling of the system with the surrounding heat bath is the Ornstein-Uhlenbeck
Brownian motion Fokker-Planck operator discussed in Sect. 6.1.2. This is not the
only choice for the operator that couples the reactive system with the surrounding
heat bath. Garrity and Skinner (1983) used the Bhatnagar–Gross–Krook (Bhatnagar
et al. 1954) model of the Boltzmann collision operator. The correspondence between
the Boltzmann equation and the Kramers equation was made in the paper by Skinner
and Wolynes (1980) and they proposed alternate collision operators in the Kramers
equation that couple the reactive system with the heat bath.
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Fig. 6.12 The model bimodal double Morse potential (Garrity and Skinner 1983)

In the high collision frequency limit, ν → ∞, the Kramers equation can be
transformed to the Smoluchowski equation (Risken 1996; Gardiner 2003) for the
distribution in r . This transformation involves the integration over the Maxwellian
velocity distribution for the probability density in position (Blackmore 1985)

P(r, t) =
∞∫

−∞
f (r, v, t)dv, (6.132)

and the result is the Smoluchowski equation

∂P

∂t
= L S P, (6.133)

where L S is defined by,

L S P = 1

νm

∂U
′
(r)P

∂r
+ D

∂2 P

∂r2 , (6.134)

and D = kB Tb/mν is the diffusion coefficient as treated in the previous section.
The theoretical maximum reaction rate is the transition state theory (tst) estimate.

The extent of the nonequilibrium reactive effects is determined by the magnitude
of the coupling of the reactive system with the heat bath. If the coupling is strong,
the nonequilibrium effects are small and conversely if the coupling is weak, the
nonequilibrium effects can be large. This is similar to the treatment in Chap. 5 with
the chemical kinetic Boltzmann equation where the elastic cross section controls the
coupling with the heat bath.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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The collision frequency ν plays the same role in Kramers equation as does 1/Kn
in gas kinetic theory. We are interested in the solution of Kramers equation over the
whole range of friction coefficient. In the large collision frequency limit, the Kramers
equation is approximated by the Smoluchowski equation.

The Kramers equation in dimensionless variables, x = v
√

m/2kT , ρ = r/r0, and
t ′ = tν/2, is

∂P(x, ρ, t)

∂t ′
= ∂

∂x

[
∂

∂x
+ 2x

]
P(x, ρ, t) − 1

ν

[
2ν

∂

∂ρ
− V (ρ)

∂

∂x

]
P(x, ρ, t)

= L K P(x, ρ, t), (6.135)

where γ =
√

mr2
0 ν2/2kT is the friction coefficient and

V [ρ(r)] = − 1

kT

dU (r)

dr
. (6.136)

We expand the probability density in the eigenfunctions of the Kramers operator, L K .
The eigenfunctions and eigenvalues can be complex as the Kramers operator is not
Hermitian. We expand the eigenfunctions in Hermite polynomials in velocity v and
in the eigenfunctions of the Smoluchowski operator in the spatial coordinate ρ. The
Hermite polynomials are the eigenfunctions of the Ornstein-Uhlenbeck “collision”
operator as discussed in Sect. 6.1.2.

The system is initially prepared to be entirely in one of the potential wells, that is

P(x, ρ, 0) =
⎧⎨
⎩

P0(x, ρ), ρ > 0,

0, otherwise,
(6.137)

where the equilibrium distribution is

P0(x, ρ) = Ne−x2
exp(

ρ∫
V (ρ′)dρ′), (6.138)

and N is a normalization constant.
We expand P(x, ρ, t) in the eigenfunctions of L K ,

P(x, ρ, t ′) =
∞∑

n=0

ane−λn t ′Ψn(x, ρ), (6.139)

where

L K Ψn(x, ρ) = −λnΨn(x, ρ). (6.140)
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The expansion coefficients, an , are determined by the initial condition,

an =
∞∫

−∞

∞∫
−∞

P(x, ρ, 0)Ψ ∗
n (x, ρ)/P0(x, ρ)dxdρ,

=
∞∫

0

∞∫
−∞

Ψ ∗
n (x, ρ)dxdρ. (6.141)

With Eq. (6.139), it can be shown (Shizgal et al. 1991) that the time dependent
relaxation time is given by

τ−1(t ′) =
∞∑

n=0

An exp(−λr
nt ′)

[
λr

n cos(λi
nt ′) + |λi

n| sin(|λi
n|t ′)

]
, (6.142)

where λn = λr
n + iλi

n are the complex eigenvalues and

An = an

∞∫
−∞

∞∫
0

Pn(x, ρ)dxdρ.

For a sufficiently large barrier separating the two minima, λ1 will be much less than
the higher eigenvalues and the relaxation time will tend to the limiting value,

1

τ
→ λ1 A1, (6.143)

as t → ∞. This result also requires that A1 is of the order of unity and the remaining
coefficients An are very much smaller (Blackmore and Shizgal 1985b).

We compare the results obtained with Eq. (6.143) with the transition state theory
(tst) value of the relaxation time

1

τtst
= S(0)

√
kT/2πm, (6.144)

where

S(r) = e−U (r)/kT /

∞∫
−∞

exp[−U (r ′)/kT ]dr ′. (6.145)

It is important to note that this result is independent of ν.
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The eigenvalue equation for the Kramers operator, L K Ψn = −λnΨn , is written in
terms of the eigenfunctions, φn(x, ρ) = Ψn/P0 which satisfy the eigenvalue problem,

L̃ K φn = [ ∂

∂x
− 2x] ∂

∂x
φn − 1

γ
[2x

∂

∂ρ
− V (ρ)

∂

∂x
]φn = −λnφn . (6.146)

Since the first operator in x alone is diagonal in the Hermite polynomials, Hj (x)

(normalized to unity), we consider the expansion

φn(x, ρ) =
∞∑
j=0

c j (ρ)Hj (x), (6.147)

in Eq. (6.146) and find that the coefficients satisfy the set of operator equations
(Brinkmann 1956; Risken and Till 1996; Blackmore and Shizgal 1985b; Shizgal et
al. 1991),

∞∑
j=0

(
2 jδ jk +

√
2 j

γ

[
∂

∂x
δ j,k−1 + (

∂

∂ρ
− V (ρ))δ j,k+1

])
c j (ρ) = λnck(x).

(6.148)

Equation (6.148) is a tri-diagonal system of coupled differential operator equations
in the spatial variable (Brinkmann 1956; Risken and Till 1996).
The eigenfunctions, S�(x), of the Smoluchowski operator, L̃ S , defined by,

L̃ S S�(ρ) = − 1

γ2

[
φ(ρ) − ∂

∂ρ

]
∂

∂ρ
= −λS

� S�(ρ), (6.149)

are used as nonclassical basis functions to expand

c j (ρ) =
∞∑

�=0

d j�S�(ρ). (6.150)

The set of eigenvalue differential operator equations, Eq. (6.148), reduces to the
matrix eigenvalue equation

∞∑
k′=0

∞∑
�′=0

(
2kδk,k′δ�,�′ − √

2(k + 1)δk′,k+1G�′,�/γ + √
2kδk′,k−1G�,�′/γ

)
dk′,�′

= λdk,�. (6.151)
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The quantities

G�,�′ =
∞∫

−∞
v(ρ)S�(ρ)

d S�′(ρ)

dρ
dρ, (6.152)

are the matrix elements of the derivative operator over the spatial variable with
the eigenfunctions of the Smoluchowski operator, where the weight function is
v(ρ) = exp(− ∫ ρ V (ρ′)dρ′). These eigenfunctions form the nonclassical basis set
for the solution of the Kramers equation.

The eigenfunctions of the Smoluchowsi operator which define the G�,�′ matrix
elements are determined with the pseudospectral solution of the Smoluchowski equa-
tion as discussed in Sect. 6.5. This particular numerical approach permits the efficient
numerical evaluation of the derivative of the eigenfunctions with the derivative matrix
operator, D, and the evaluation of the matrix elements with the associated quadrature.
These matrix elements are evaluated with the derivative operator and quadrature as

G��′ =
M∑

m=1

wm
v(xm)

w(xm)
S�(xm)

M∑
m′=1

Dmm′ S�′(xm), (6.153)

where

w(x) = exp[−Um(x4 − 2x2)/(kB Tb)],

defines the quadrature points, xm and weights, wm . Thus we make use of both the
pseudospectral derivative evaluation and the Gaussian quadrature, both for the non-
classical Smoluchoski eigenfunctions as basis functions. It is useful to mention that
the matrix elements G��′ are the representations of the derivative operator in the basis
set of Smoluchowski eigenfunctions.

A detailed consideration of the form of Eq. (6.151) shows that the characteris-
tic polynomial which determines the eigenvalues factors into two polynomials, with
eigenvalues that correspond to even and odd eigenfunctions (Voigtlaender and Risken
1985), and the dimensionality of the eigenvalue problem is reduced. The reaction
rate, which is given by λ1, is of primary interest. Consequently, the eigenfunction cor-
responding to this eigenvalue must satisfy the conditions, P1(x,−ρ) = −P1(x, ρ)

and P1(−x, ρ) = P1(x, ρ). Since the overall parity is odd, the eigenvalue λ1 can be
determined by restricting the calculation to the space of odd eigenfunctions.

Table 6.5 shows the convergence of λ1 versus the number of Hermite polynomials
M and the number of Smoluchowski eigenfunctions N for br0 = 4. The convergence
of this eigenvalue is very rapid for large γ as expected in view of the use of the Smolu-
chowski eigenfunctions as basis functions. We show the results only for an even num-
ber of Smoluchoswki basis functions, N even. The results for N odd are nonphysical
as λ1 increases with N . This feature of the matrix representation of the Kramers
operator has been interpreted and discussed in detail by Shizgal et al. (1991).
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Table 6.5 Convergence of λ1 of the Kramers operator in units of 10−2 (
√

kB Tb/2m/r0); br0 = 4;
Um/kB Tb = 5

N/M 4 10 16 22

γ = 2

4 1.876

10 2.256 2.043

16 2.268 2.050 2.049

22 2.267 2.049

γ = 1

4 2.295 2.158

10 2.968 2.317 2.119

16 3.020 2.118 2.159 2.157

22 3.022 2.172 2.154 2.153

γ = 0.4

4 3.202 2.525

10 2.572 1.529 1.377 1.359

16 2.669 1.637 1.506 1.478

22 2.679 1.623 1.497 1.470

γ = 0.1

4 4.742 1.474

10 2.003 0.6823 0.470 0.448

16 2.099 0.828 0.665 0.599

22 2.110 0.790 0.634 0.574

Reproduced from (Shizgal et al. 1991) with permission Beylich A.E.: Rarefied gas dynamics. In:
Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag
GmbH and Co. KGaA. pp. 85–92, (1991)

The variation of the relaxation rate relative to the transition state estimate is shown
in Fig. 6.13 versus the friction coefficient. The present method of calculation of these
isomerization rates gives reliable estimates down to γ = 0.05 − 0.1. This variation
of the reaction rate with γ with a maximum at some intermediate γ is referred to as
the “turnover” problem that has been investigated experimentally and theoretically
since the publication of Kramers paper (Kramers 1940). It is the turnover of the graph
in the Figure that has been difficult to calculate. With increasing γ, the convergence
becomes more rapid.

There have been and continue to be many experimental studies of the isomeriza-
tion rates in different solvents with different viscosities. The viscosity is related to
the friction coefficient, γ, and thus the turnover in Fig. 6.13 has been verified exper-
imentally (Pollak et al. 1989; Anna and Kubarych 2010; Pollak and Ianconescu
2014).
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Fig. 6.13 The ratio τ−1/τ−1
T ST versus the friction coefficient γ demonstrates the classic “turnover

problem”. The value of br0 is equal to (a) 0, (b) 2, (c) 3 and (d) 4. Reproduced from (Shizgal
et al. 1991) with permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the 17th
International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA.
pp. 85–92, (1991)

6.7 Sturm-Liouville Problems and the Schrödinger Equation

The Sturm-Liouville problem (Pryce 1993; Al-Gwaiz 2008) refers to the solution,
either analytically or numerically, of the eigenvalue problem

Lψn(x) = λnw(x)ψn(x), (6.154)

where w(x) > 0 is a weight function and L is the second order differential operator,
defined by

L f (x) = d

dx

[
p(x)

d f (x)

dx

]
+ q(x) f (x). (6.155)

It is useful to notice that this operator is in the form of a diffusion equation where
p(x) is a diffusion coefficient in a Fokker-Planck equation and q(x) is a gain or loss
term. We assume that p(x) > 0, dp(x)/dx , q(x) and w(x) > 0 are real valued and
piecewise continuous. Any linear second order differential equation can be written
in this form. The eigenfunction, ψn(x), defined on the interval [a, b] is subject to
two homogeneous boundary conditions which are linear combinations of the value
of the function and derivative at the two interval end points and are of the form

A1ψn(a) + B1ψ
′
n(a) = 0,

A2ψn(b) + B2ψ
′
n(b) = 0, (6.156)

where for Ak = 0 we have a Neumann boundary condition and if Bk = 0 we have a
Dirichlet boundary condition.
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In Sect. 6.2.1 we demonstrated the self-adjoint property of the Fokker-Planck
operators subject to zero flux boundary conditions. The linear operator defined by
the Sturm-Liouville problem is self-adjoint with respect to the boundary conditions,
Eq. (6.156).

With the transformation of the independent variable from x to y,

y =
∫ √

w(x)/p(x)dx, (6.157)

and the transformation of the dependent variable ψn(x) to φn(y) of the form

ψn(x) = m(x)φn[y(x)], (6.158)

where m(x) = [p(x)w(x)]−1/4, the Sturm-Liouville equation can be written in so-
called Liouville normal form which is identical to a Schrödinger equation of the
form

− d2φn(y)

dy2 + V (y)φn(y) = λnφn(y), (6.159)

where the potential function V (y) is

V (y) = q[x(y)]
w[x(y)] + m[x(y)] d2

dy2 (
1

m[x(y)] ). (6.160)

as derived by Pryce (1993).

6.7.1 Classical Polynomials as Eigenfunctions
of the Sturm-Liouville and Schrödinger Equations

The classical polynomials discussed in this chapter (and other orthogonal poly-
nomials) satisfy a Sturm-Liouville eigenvalue problem related to an associated
Schrödinger equation. Many of the details of these relationships can be found in
standard textbooks so we here outline the main results and the reader is referred to
other references for a complete development. We presented a preliminary discussion
in Sect. 3.9.3.

6.7.2 Legendre Polynomials; Quantized Rotational States
of a Rigid Rotor

The rigid rotor model for a diatomic molecule has a fixed internuclear distance at re

and it is only the orientation of r = (re, θ,φ) in terms of the spherical coordinates

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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that is of concern. The dependence on the azimuthal angle φ does not influence the
rotational energy and thus only the dependence on θ is considered. The Schrödinger
equation is

− �
2

2I

[
1

sin θ

d

dθ
(sin θ

dψ(θ)

dθ
)

]
= Eψ(θ), (6.161)

where E is quantized, I is the moment of inertia and the differential operator in θ is
from the form of ∇2 in spherical polar coordinates. With the substitution x = cos θ,
Eq. (6.161) can be expressed as

Hψ�(x) = − d

dx

[
(1 − x2)

dψ�(x)

dx

]
= λ�ψ�(x), (6.162)

where H is the dimensionless Hamiltonian, E� = λ�
�2

2I is the energy eigenvalue and

λ� = �(� + 1). (6.163)

These rigid rotor energy eigenvalues are precisely the eigenvalues of the total angu-
lar momentum operator L2. There are two aspects that are important to note. The
differential operator in Eq. (6.163) is of the Sturm-Liouville type and the differential
operator on the left hand side is self-adjoint on the interval x ∈ [−1, 1]. The eigen-
value equation, Eq. (6.163), is the defining equation for the Legendre polynomials,
that is

d

dx

[
(1 − x2)

d P�(x)

dx

]
= −�(� + 1)P�(x). (6.164)

Thus, the solution of this problem is ψ�(x) ≡ P�(x). We have found the basis
for which the Hamiltonian is diagonal H�,�′ = �(� + 1)δ�,�′ . This is the physical
space representation. The discrete space representation can be obtained with the
transformation T�j defined in terms of the Legendre polynomials P�(x), that is

H (ps)
i j =

N−1∑
�=0

N−1∑
�′=0

Ti� H��′ T�′i . (6.165)

With the transformation, Ti� = √
wi P�(xi ), one can show that

H (ps)
i j =

N∑
k=1

(1 − x2
k )Dki Dkj , (6.166)

where D is the derivative matrix operator. The numerical diagonalization of this
discrete matrix representation of the Hamiltonian of order N gives N eigenvalues
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λ� = �(� + 1) exactly. This formalism was introduced in Chap. 3, Sect. 3.9.3, and
Fig. 3.26 shows the exact eigenfunction obtained with Eq. (6.166). For Legendre
polynomials, P�(x), defined in x ∈ [−1, 1] with w(x) = 1, p(x) = (1 − x2) and
q(x) = 0, we find easily from Eq. (6.155) that

− (1 − x2)P
′′
� (x) + 2x P

′
� = �(� + 1)P�(x) (6.167)

which is the defining differential equation for Legendre polynomials.

6.7.3 Hermite Polynomials; Quantum Harmonic Oscillator

The Hermite polynomials Hn(x) on x ∈ (−∞,∞), satisfy a Sturm-Liouville prob-
lem defined by w(x) = p(x) = e−x2

and q(x) = 0 in the general form Eq. (6.155).
With these definitions, Eq. (6.155) gives the differential equation

H
′′
n (x) − 2x H

′
n = −2nHn(x). (6.168)

This differential equation can be written as a Schrödinger equation in terms of
hn(x) = e−x2/2 Hn(x). Notice that where Hn(x) polynomials are orthogonal with
respect to w(x) = e−x2

, the basis functions hn(x) are orthogonal with unit weight
function. The defining Schrödinger differential equation for these functions from
Eq. (6.168) is

− h
′′
n(x) + x2hn = (2n + 1)hn(x), (6.169)

where the term in h
′
n(x) does not appear. This is precisely the dimensionless

Schrödinger equation for a quantum harmonic oscillator as a simple model for the
vibrational states of a non-rotating diatomic molecule.

If the interaction potential between the nuclei of a diatom is V (r) where r is
the internuclear separation, the harmonic oscillator model involves the quadratic
approximation of the potential at the minimum of the potential, that is,

V (r) ≈ V (re) + 1

2

d2V

dr2

∣∣∣∣
r=re

(r − re)
2. (6.170)

If we define the force constant as k = dV
dr |r=re and the displacement from re as

x = r − re, the one-dimensional Schrödinger equation is given by

− �
2

2μ
ψ

′′
n(x) + kx2

2
ψn(x) = Enψn(x), (6.171)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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where � is the Planck constant and μ = m1m2/(m1 + m2) is the reduced mass with
m1 and m2 the masses of the two nuclei. Comparing Eqs. (6.171) and (6.169), we
get the quantized vibrational states given by

En = (n + 1

2
)�ω, (6.172)

where ω = √
k/μ is the fundamental frequency of the oscillator.

The harmonic oscillator is a typical benchmark problem for which a variety of dif-
ferent discretizations are compared. One such method is based on the representation
of the second derivative operator on x ∈ (−∞,∞) with a uniform grid with spacing
Δx . The grid points are thus xi = iΔx, i = 0,±1,±2, . . . ,±N/2, on the finite
interval [−NΔx/2, NΔx/2]. This representation of the second derivative operator

D2
i j =

{
π3/3, i = j,
2(−1)(i− j)/(i − j)2, i �= j,

(6.173)

has been reported by Schwartz (1985); Colbert and Miller (1992); Mazziotti (1999);
Amore (2006); Baye (2006) and others. The Hamiltonian matrix for the dimension-
less quantum harmonic oscillator (Colbert and Miller 1992) is approximated by

Hi j = 1

2(Δx)2

{−π3/3, i = j,
−2(−1)(i− j)/(i − j)2, i �= j.

}
+ x2

i

2
δi j . (6.174)

The relative accuracy of the approximate harmonic oscillator eigenvalues deter-
mined with the diagonalization of the matrix Hi j of dimension N × N given by
Eq. (6.174) is shown in Fig. 6.14(A) versus the quantum number n. The lower order
eigenstates are well approximated but the error increases with increasing n. The size
of the matrix is increased by halving the step size and keeping the interval fixed as

0 5 10 15 20
−16

−12

−8

−4

0(A) (B)

−7 −5 −3 −1 1 3 5 7
−0.2

−0.1

0

0.1

0.2

Fig. 6.14 (A) Relative accuracy = 1 − λn/(n + 1/2) for eigenvalues of the quantum harmonic
oscillator versus the vibrational quantum number n obtained with the diagonalization of the Hi j
matrix (Eq. (6.174)) of dimension N ; x ∈ [−7, 7]. (B) The eigenfunction, ψ11(x), with the 10
Hermite quadrature points shown as the solid circles; N = 112
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shown in the figure and there is not much change for N = 56 to N = 224. Of interest
is the variation of ψ11(x) in Fig. 6.14(B) with N = 112. The filled circles are the
10 Hermite quadrature points which coincide rather well with the nodes of the wave
function. In order to get a good result for the higher eigenstates the interval has to
be made larger.

The optimal basis functions are the Hermite polynomials which are the eigen-
functions of the harmonic oscillator Hamiltonian and the matrix representation of
the Hamiltonian in this basis set is diagonal, 〈n|H |m〉 = (n +1/2)δnm , and provides
the exact result. This result can be derived with the recurrence relations for the Her-
mite polynomials. This is the spectral solution of this elementary problem.

Baye and Heenen (1986) use a pseudospectral method (a Lagrange mesh method)
based on the discrete physical space representation of the second derivative matrix
operator in the Hermite polynomial basis

Hi j =
⎧⎨
⎩

(4N − 1 − 2x2
i )/12, i = j,

(−1)(i− j)
[

1
(xi −x j )

2 − 1
4

]
i �= j.

⎫⎬
⎭ + x2

i

2
δi j . (6.175)

The diagonalization of this discrete matrix representation gives the eigenvalues λn =
n+1/2 to machine accuracy for all but one eigenvalue even though the basis functions
used are the exact eigenfunctions of the Hamiltonian. The results of this calculation
are summarized in Table 6.6. The four eigenvalues, λ0 to λ3, for N = 6 to 9 are
determined to machine accuracy, although only shown to three significant figures.
For each N there is a nonphysical eigenvalue referred to as a“ghost” level (Wei 1997;
Willner et al. 2004; Kallush and Kosloff 2006) that are framed in the table. For the
harmonic oscillator problem, λghost = (3N − 2)/4, and for N = 8 this coincides
with an eigenvalue so there are two degenerate eigenvalues. This pattern repeats for
N = 10 to 13, 14 to 18, etc.

Table 6.6 Ghost levels of the quantum harmonic oscillator determined with Eq. (6.175)

n λn = n + 1
2 N = 6 N = 7 N = 8 N = 9

01 0.50 0.50 0.50 0.50 0.50

1 1.50 1.50 1.50 1.50 1.50

2 2.50 2.50 2.50 2.50 2.50

3 3.50 3.50 3.50 3.50 3.50

4 4.50 4.00 4.50 4.50 4.50

5 5.50 4.50 4.75 5.50 5.50

6 6.50 5.50 5.50 6.25

7 7.50 6.50 6.50

8 8.70 7.50

The last eigenvalue is replaced with a nonphysical state highlighted by the framed numbers. For
N = 8, there is a degenerate pair of eigenvalues. λ5 = λ6 = 5.50
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The reason for the appearance of nonphysical eigenvalues is often attributed to
the inexact calculation of the matrix elements of the harmonic potential with the
quadrature of order N represented by the diagonal physical space matrix V (xi ) =
(x2

i /2)δi j . The potential energy matrix elements

Vnm = 1

2

∞∫
−∞

e−x2
Hn(x)x2 Hm(x)dx, (6.176)

evaluated with an N th order quadrature

V (N )
nm ≈ 1

2

N∑
i=1

wi Hn(xi )x2
i Hm(xi ), (6.177)

is not exact. For the element n = m = N , the integrand is a polynomial of degree
2N +2. The quadrature of order N is exact only for polynomials of order up to 2N +1.
We have considered this calculation in detail in Chap. 3, Sect. 3.7.2. The transfor-
mation to spectral space of the physical space representation of the multiplicative
potential operator with the diagonal matrix V (xi )δi j gives an inaccurate result for
the VN ,N matrix element. The result with a quadrature of order N in Eq. (6.177) is
not correct.

The physical space pseudospectral representation of the harmonic oscillator
Hamiltonian based on the Hermite polynomials is

H (ps)
i j = 1

2

N∑
k=1

Dki Dkj . (6.178)

where Dkj is given by Eq. (3.139). This representation does not have explicit ref-
erence to the harmonic potential as does Eq. (6.175). The usual concerns about the
accuracy of the quadrature evaluated matrix elements of the potential related to the
physical space representation as V (xi )δi j do not play a role (Harris et al. 1965; Dick-
inson and Certain 1968).

A short MATLAB code constructs the derivative matrix operator D for the Hermite
polynomials. The diagonalization of physical space matrix representation 1

2 Dt · D

gives exactly λn ≡ n relative to the ground state and ψn(xi ) ≡ Hn(xi )e−x2/2. The
solid curve in Fig. 6.15 shows the exact H12(x)e−x2/2. The corresponding eigenfunc-
tion, ψ12(xi ), from the diagonalization of 1

2 Dt · D with N = 12 is shown with the
symbols evaluated at the quadrature points. There is exact agreement between the
numerical and analytical result.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Fig. 6.15 The solid curve is the exact Hermite polynomial whereas the symbols represent the
values of the 12th eigenfunction of Dt · D calculated at 12 quadrature points defined by the Hermite
weight function, w(x) = e−x2

6.7.4 The Schrödinger Equation for the Electron Relaxation
Problem

We return to the electron relaxation problem discussed in Sect. 6.3 for the hard
sphere cross section, σ̂ = 1, and zero electrostaic field, α = 0. The Fokker-Planck
equation, Eq. (6.63), leads to the eigenvalue problem Eq. (6.73) with B(x) = x and
A(x) = 2x2−3 (Shizgal 1979). The transformation to the new variable z in Sect. 6.3.2
which is y in this section is defined by

y =
x∫

1√
B(x ′)

dx ′ = 2
√

x .

The coefficients in the Fokker-Planck eigenvalue problem are in terms of y,

A(y) = y4

2
− 3,

and

B(y) = y2

4
.

The superpotential given by Eq. (6.84) is

W (y) = y3

4
− 5

y
.

The potential V−(y) in the Schrödinger equation
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− d2ψn(y)

dy2 + V−(y)ψn(y) = λnψn(y), (6.179)

is defined in terms of W (y) in Eq. (6.83) and

V−(y) = y6

64
− y2 + 15

4y2 , y ∈ [0,∞). (6.180)

The notation V−(y) refers to one of the partner potentials in supersymmetric quantum
mechanics, the other being V+(y). We refer the reader to references (Comtet et al.
1985; Cooper et al. 1995, 1987) for further details.

The potential in Eq. (6.180) is shown in Fig. 6.16. The horizontal lines indicate the
positions of the eigenvalues calculated as discussed below. At first glance one might
consider the basis set of associated Laguerre polynomials or the discrete represen-
tation based on the Laguerre quadrature points. However, the optimal polynomial
basis set is defined with the weight function equal to the known ground state wave
function, that is

w(y) =

⎧⎪⎨
⎪⎩

exp [−
y∫ √

W (y′)dy′],

y5e−y4/16,

(6.181)

which gives V (y) = Ṽ (y) in Eq. (6.93) and the pseudospectral matrix representation
is as in Eq. (6.94) with the physical space derivative operator defined by the weight
function Eq. (6.181).

A MATLAB code provides the recurrence coefficients for the polynomials orthog-
onal with respect to this weight function and the physical space derivative operator.
The representation of the Hamitonian for this potential is H = Dt · D given by

Fig. 6.16 Supersymmetric potential V−(y), Eq. (6.180), in the Schrödinger equation corresponding
to the hard sphere Lorentz Fokker-Planck equation. The horizontal lines show the ordering of the
eigenvalues in the potential
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Table 6.7 Convergence of the eigenvalues of the Schrödinger equation with the potential,
Eq. (6.180), with the quadrature defined with the weight function w(y) = y5e−y4/16 and the
pseudospectral representation H = Dt · D, Eq. (6.94)

N λ1 λ2 λ3 λ6 λ10 λ15 λ20 λ30

4 4.68598 10.21673 16.86293

5 4.68346 10.13276 16.83567

6 4.68340 10.11291 16.48805

8 10.11257 16.43271 42.95019

10 10.11252 16.42971 40.95019

15 16.42968 40.05250 80.91828

20 40.05238 80.44866 148.9082

25 80.44794 142.5387 227.5833

30 142.4463 215.1651 453.450

40 215.1631 397.036

45 388.021

50 387.626

60 387.623

w(x) = 4.68340 10.11251 16.42968 40.05238 80.44794 142.44461 215.1631 387.623

x2e−x2

The results in the bottom row are the converged eigenvalues for the hard sphere Lorentz Fokker-
Planck equation computed with the quadrature defined by w(x) = x2e−x2

Eq. (6.94). With the use of this nonclassical basis set and associated quadrature the
matrix elements of the potential are not required as with other pseudospectral meth-
ods (Harris et al. 1965; Dickinson and Certain 1968).

The convergence of the eigenvalues calculated in this way versus the number of
quadrature points is shown in Table 6.7. The convergence is rapid and from above so
that the calculation is variational. At each order N an upper bound to the eigenvalue is
obtained. There is no occurrence of ghost levels. The bottom row of the table shows
the eigenvalues obtained with the solution of the Fokker-Planck eigenvalue prob-
lem in complete agreement with the calculations based on the Schrödinger equation.
The eigenfunctions corresponding to four eigenvalues are shown in Fig. 6.17. With
N = 80, the oscillations of these converged eigenfunctions are well resolved.

6.7.5 Quantum Mechanics for the Vibrational States
of a Diatomic Molecule; Morse Potential

The Morse interatomic potential for a diatomic molecule (Morse 1929) is given by

V (r) = De

[
1 − e−α(y−ye)

]2

, (6.182)
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Fig. 6.17 Eigenfunctions of the Schrödinger equation for the potential, V (y) = y6

64 − y2 + 15
y2

that arises from the transformation of the hard sphere Lorentz Fokker-Planck equation to the
Schrödinger equation. Eigenfunctions calculated with the diagonalization H = Dt · D with the
pseudospectral derivative matrix operator based on the quadrature defined with the weight function
w(y) = y5e−y4/16, N = 80

where De is the dissociation energy and α determines the spatial variation relative
to the equilibrium position ye. The exact vibrational eigenvalues with � = 1 and
reduced mass μ = 1 are

εn =
[

2α
√

De − α2
]

n − α2n2, n = 1, 2, . . . , nmax , (6.183)

relative to the ground state. There are a finite number of bound states denoted by
nmax . Table 6.8 lists several diatomic molecules that have been studied by researchers
to benchmark numerical methods of solution of the Schrödinger equation. For most
of these studies, the interatomic potential is approximated with a Morse potential
(Morse 1929). The numerical methods include finite difference methods, pseudospec-
tral methods, methods based on B splines, the Discrete Variable Representation, the
Lagrange mesh method, the Fourier grid method, the Sinc interpolation, and the
Quadrature Discretization Method. Each method is based on the physical space rep-
resentation of the derivative operator as determined with an interpolation. The meth-
ods are all variants of a pseudospectral method (Gottlieb and Orszag 1977; Francisco
1995; Fornberg 1996; Boyd 2001; Canuto et al. 2006b).

The numerical methods differ primarily with regards to the choice of the basis
functions and the application of boundary conditions. Fourier methods are applied on
a uniform grid and the number of grid points per wavelength of the eigenfunction is an
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Table 6.8 References to numerical solutions of the Schrödinger equation for the vibrational states
of diatomic molecules

Molecule References Numerical method

HF Light et al. (1985) Discrete variable representation

Hamilton and Light (1986) Discrete variable representation

Yang and Peet (1988) Collocation

Balint-Kurti and Pulay (1995) Fourier grid method

Shizgal and Chen (1996) Quadrature discretization method

Guantes and Farantos (1999) Finite difference

I2 Braun et al. (1996) Chebyshev Lanczos

Shizgal (1997) Quadrature discretization method

Wei et al. (1997) Lagrange interpolation

Baye and Vincke (1999) Lagrange mesh method

Mazziotti (1999) Spectral difference method

Wei (2000) Discrete singular convolution (Sinc)

Chen and Shizgal (2001) Quadrature discretization method

Lo and Shizgal (2008b) Quadrature discretization method

H2 Johnson (1977) Finite difference

Marston and Balint-Kurti (1989) Fourier grid method

Baye (1995) Lagrange mesh method

H+
2 ONeil and Reinhardt (1978) B-spline

Layton (1993) Fourier

Cs2 Kokoouline et al. (1999) Discrete variable representation

Willner et al. (2004) Mapped grid methods

Lo and Shizgal (2008a) Quadrature discretization method

Derevianko et al. (2009) B-spline

He2, Ne2, Ar2,
HeAr, HeNe, etc.

Shizgal (1997) Quadrature discretization method

He2, Ne2, Ar2 Lo and Shizgal (2006) Quadrature discretization method

important parameter (Colbert and Miller 1992). Associated with some of the methods
is a variational theorem so that the N th approximation represents an upper bound.
For some methods there are nonphysical eigenvalues calculated that are referred to
as “ghost” levels (Wei 1997; Kokoouline et al. 1999; Willner et al. 2004).

The Morse potential belongs to the class of potentials in supersymmetric quantum
mechanics (Dutt et al. 1988; Cooper et al. 1995). The basis set defined with the weight
function

w(x) = exp

[
− 2

√
De(x + e−αx

α
) + αx

]
, (6.184)

for which the ground state wavefunction is ψ0(x) = √
w(x) and V (x) = Ṽ (x). The

pseudospectral representation of the Hamiltonian, Eq. (6.93), reduces to Eq. (6.94).



6.7 Sturm-Liouville Problems and the Schrödinger Equation 393

Table 6.9 Convergence of the eigenvalues in cm−1 for the Morse oscillator for HF with De =
49383.407073 cm−1, β = 1.1741a−1

0 , xe = 1.7329a0 and μ = 1744.4453572532me

N ε2 ε8 ε14

4 9819.11761

6 9805.01756

8 9805.00714

10 33041.31574

12 29960.19345

14 29067.91526

16 28925.47987 62676.28749

18 28914.83536 53058.24677

20 28914.43671 48112.83259

25 28914.42738 43025.97932

30 41879.68669

35 41781.77734

40 41780.18827

45 41780.18145

Exact 9805.0714 28914.42738 41780.18143

The quadrature is defined in terms of the weight function, Eq. (6.184) and the eigenvalues determined
with the diagonalization of Dt · D, Eq. (6.94). Reprinted from (Shizgal 1997) with permission from
Elsevier

The diagonalization of Dt · D gives the eigenvalues and eigenfunctions.
The convergence of the vibrational energies ε2, ε8 and ε14 for the Morse potential

for HF calculated with the quadrature defined with w(x), Eq. (6.184), are shown in
Table 6.9 and the rapid convergence of the eigenvalues is evident. It is clear that there
is a variational theorem inherent in the method as the convergence of the eigenvalues
is from above. For each N , an upper bound to the vibrational state is obtained.

The convergence demonstrated here is faster than reported by other researchers
(Balint-Kurti and Pulay 1995; Braun et al. 1996; Hoffman et al. 1998; Baye and
Vincke 1999) with different numerical methods. The spectral convergence of the
eigenvalues is shown in Fig. 6.18 and several eigenfunctions are shown in Fig. 6.19.
Unlike Fourier methods, this high order pseudospectral method with the particular
basis set constructed with w(x) = ψ2

0(x), does not require a particularly dense
distribution of quadrature points to accurately calculate the higher order oscillatory
vibrational eigenfunctions (Gottlieb and Orszag 1977; Francisco 1995; Fornberg
1996; Boyd 2001; Canuto et al. 2006b).

An important aspect of these benchmark calculations is the total number of bound
states for the potential chosen. If the potential supports nmax states, the calculation of
the lower states up to vibrational quantum number n ≈ 3nmax/4 are relatively easy
to calculate in spite of the oscillatory form of the eigenfunctions. It is the vibrational
states close to the dissociation limit that are the most difficult to calculate.
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Fig. 6.18 The convergence of the lower order eigenvalues, λn , of the Morse potential with
diagonalization of Dt ·D; Morse potential for HF with De = 49383.407073 cm−1, β = 1.1741a−1

0 ,

xe = 1.7329a0 and μ = 1744.4453572532me; Accuracy = log10 |1 − λ
(N )
n /λ

(exact)
n |

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0 1 2 3
−0.4

−0.2

0

0.2

0.4

0 1 2 3 4
−0.4

−0.2

0

0.2

0.4

Fig. 6.19 Eigenfunctions determined from the diagonalization of Dt · D for selected vibrational
states of HF versus x in angstroms

We illustrate this feature with the model Morse potential employed by Pryce
(1993) and Weideman (1999)

V (x) = 9(1 − e−x )2 − 9,

which supports only three bound states,

λn = −n2 + 5n − 25

4
, n = 0, 1 and 2.
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Fig. 6.20 Variational approximation to the n = 19 vibrational eigenfunction of H+
2 with the

potential from Wind (1965) with 100 B splines (Shore 1973). Reproduced from ONeil and Reinhardt
(1978) with permission of the American Physical Society

The vibrational states are determined with the quadrature based on the weight
function

w(x) = exp(−5x + 6e−x )

for which V (x) = Ṽ (x) and pseudospectral representation of the Hamiltonian is
Dt · D. The convergence of the 3 states to 14 significant figures requires 2, 20 and 55
quadrature points (Chen and Shizgal 2001). The numerical difficulty in the accurate
calculation of the highest state with only two nodes is the diffuse nature of the
eigenfunction just below the dissociation limit. This is illustrated in Fig. 6.20 for
a higher order eigenfunction for H+

2 determined with 100 B splines (ONeil and
Reinhardt 1978). The numerical challenge is to capture both the oscillatory behaviour
at small internuclear distance as well as the variation on a much larger scale for larger
(r >20 a0) distances. This behaviour was also demonstrated in Fig. 1 of Meshkov et
al. (2008) for the eigenfunctions for a Lennard–Jones potential.

The diatoms, He2 and Ne2, with 1 and 3 bound states, respectively, illustrate
the same difficulty in the accurate representation of the highest bound state. The
potentials for He2 and Ne2 were reported by Aziz and Slaman (1991) and Tang and
Toennies (2003), respectively. A Morse potential that approximates the true potential
(Lo and Shizgal 2008a) is used to define a quadrature based on the weight function,
Eq. (6.184). For this realistic potential, V (y) �= Ṽ (y) and the pseudospectral repre-
sentation of the Hamiltonian given by Eq. (6.93) is diagonalized.

In addition, a mapping, u = ρ(x), is used to redistribute the points so as to best
capture the variation of the wave function. Two such mappings are
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Fig. 6.21 (Left hand panel) Single bound state eigenfunction, ψ0(x), for He2 with the Aziz and
Slaman (1991) interatomic potential. QDM is the quadrature discretization method with a nonclas-
sical weight function with the mapping, Eq. (6.186); Lag refers to the Lagrange mesh method with
the same map. (Right hand panel) The second excited state eigenfunction, ψ2(x), for Ne2 with
the Tang and Toennies (2003) potential determined with the QDM, with and without the mapping,
Eq. (6.185). Reproduced from Lo and Shizgal (2008a) with permission of the American Institute of
Physics

ρ(x) = s1 ln

(
x − b2

s2

)
(6.185)

ρ(x) = s1 sinh−1
(

x − b2

s2

)
+ b1, (6.186)

where s1, s2, b1 and b2 are adjustable parameters chosen empirically.
The single ground vibrational state for He2 and the second excited vibrational state

for Ne2 are shown in Fig. 6.21. The variation of the wave function of the one bound
state for He2 occurs on two different spatial scales. There is a rapid variation near
the origin and a very slow decay over a very large distance. The collocation points
shown in the figure are distributed nonuniformly on the large interval of interest.
The curves labelled QDM are calculated with the quadrature discretization method
(Lo and Shizgal 2008a) and the two mappings above. The curves labelled by “Lag”
refer to the Lagrange mesh method (Baye 2006).

Pseudospectral methods applied to the entire interval or in subdomains of
interest in which case it is referred to as a spectral element method (Deville et al.
2002; Pasquetti and Rapetti 2004) belong to that class of spectral and higher order
numerical methods (Azaez et al. 2012). In every application in chemistry, physics
and engineering, there are important applications to three and multidimensional prob-
lems. The extension from one-dimension to several dimensions generally involves
a direct product of several one-dimensional polynomial basis sets. The size of the
matrices for such problems increases dramatically with an increase with the num-
ber of degrees of freedom especially for the calculation of the rotational–vibrational
states of polyatomic molecules (Friesner et al. 1993; Littlejohn et al. 2002; Dawes
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and Carrington 2004, 2005; Cassam-Chenaï and Liévin 2012). The numerics is then
a problem in linear algebra to find the eigenvalues of a very large matrix.

A reduction in the dimensionality of the problem can be achieved by making use
of available symmetries and with other techniques. Also, with a judicious choice
of basis functions and/or grid points the number for each vibrational mode can
be significantly decreased so as to achieve computational economy. In their case
study of the vibrational states of methane, Mielke et al. (2013) introduce the use of
optimized vibrational quadratures for the efficient computation of one-dimensional
matrix elements. Any reduction in the number of grid points for each degree of free-
dom could dramatically decrease the dimension of the matrices resulting from the
direct product of the different spaces for multidimensional problems. There are ongo-
ing efforts to develop more efficient schemes for the development of sparse grids with
algorithms related to cubatures discussed in Chap. 2, Sect. 2.8 (Avila and Carrington
2013; Lauvergnat and Nauts 2014).

6.7.6 Pseudospectral Solution of the Two Dimensional
Schrödinger Equation for the Henon-Heles Potential;
Nonclassical Basis Sets

Quantum problems in two and higher dimensions are often solved with a direct prod-
uct of the basis sets for each one dimensional variable (Parrish and Hohenstein 2013)
(and references therein). The resulting matrix representation of the Hamiltonian for
a multidimensional system in either the spectral space or the physical space is the
product of matrix representations for each dimension. Consequently the size of the
matrices involved can increase very quickly if many basis functions or grid points
are required in each dimension. This becomes a computationally challenging prob-
lem in order to reduce the dimensionality of the matrices by applying symmetries
or particular numerical algorithms to reduce memory requirements and computa-
tional speed. The Milne problem (Lindenfeld and Shizgal 1983) and the associated
planetary escape problem (Shizgal and Blackmore 1986) discussed in Chap. 5 are
examples of problems in kinetic theory in three dimensions.

In this section, we consider the calculation of the eigenvalues of the two dimen-
sional Hamiltonian

− 1

2

[
∂2ψnm(x, y)

∂x2 + ∂2ψnm(x, y)

∂y2

]
+ V (x, y)ψnm(x, y) = λnmψnm(x, y),

(6.187)
where the potential is the Henon-Heles potential

V (x, y) = x2 + y2

2
− λx(

x3

3
− y2). (6.188)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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This potential was introduced by Henon and Heiles (1964) in their study of the
motion of a star in the potential of the galaxy and the determination of a third
conserved integral of the classical two dimensional motion with this Hamiltonian.
The potential, Eq. (6.188), was chosen for its analytic simplicity so as to make the
trajectory computations easy and to obtain interesting dynamical results. This system
has received considerable attention as a model for classical and quantum chaotic
behaviour. For λ = 0, the problem reduces to two uncoupled harmonic oscillators.

For the two dimensional Schrödinger equation, we choose basis functions

Xn(x) = √
u(x)Gn(x),

Yn(y) = √
v(y)Hm(y), (6.189)

where u(x) and v(y) are the weight functions and we denote the logarithmic deriv-
atives of the weight functions by

U (x) = −u′(x)

u(x)
,

V (x) = −v′(x)

v(x)
, (6.190)

We extend the pseudospectral analysis of the one-dimensional applications presented
in Sect. 6.3.3 to two dimensions by defining the spectral space representation of the
Hamiltonian as

Hn′m′,nm = δm′m

∫
u(x)G ′

n′(x)G ′
n(x)dx + δn′n∫

v(y)H ′
m′(y)H ′

m(y)dy + (Vn′m′,nm − Ṽn′m′,nm). (6.191)

The potential matrix elements are Vn′m′,nm = 〈Xn′Ym′ |V (x, y)|XnYm〉 and the matrix
elements of the reference potential are

Ṽn′m′,nm = δm′m

∫ (
U 2(x)

4
− U ′(x)

2

)
u(x)Gn′(x)Gn(x)dx

+ δn′n

∫ (
V 2(y)

4
− V ′(y)

2

)
v(y)Hm′(y)Hm(y)dy. (6.192)

We transform this spectral space representation with the appropriate transformation
matrices, Eq. (1.24), and obtain the discrete physical space representation

Hi j,k� = δk�

Nx∑
k′=0

Dk′i Dk′ j + δi j

Ny∑
k′=0

Dk′k Dk′� +
[

V (xi , y j )− Ṽ (xi , yk)

]
, (6.193)

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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where

Ṽ (x, y) =
(

U 2(x)

4
− U ′(x)

2

)
+

(
V 2(y)

4
− V ′(y)

2

)
. (6.194)

is the usual reference potential in two-dimensions. The pseudospectral representa-
tion, Eq. (6.193) is the two-dimensional analog of the one-dimensional representa-
tion, Eq. (6.93). The details are similar to the transformations for the Fokker-Planck
operator in Sect. 6.2.2.

Two sets of quadratures were used; (1) Hermite quadratures for both dimensions
and (2) a quadrature in x based on a nonclassical weight function, u(x) = exp[−x2+
2λx3/9], chosen empirically and Hermite quadratures in y. With the Hermite quadra-
ture in both dimensions, the lowest order eigenvalues required as few as 8 quadrature

Table 6.10 Eigenvalues of the Henon-Heles potential with λ = √
0.0125 with u(x) = exp[−x2 +

2λx3/9] and v(y) = exp(−y2); Nx = Ny = 32

n � Feit et al. (1982) Shizgal and Chen (1996) Echave and Clary (1992)

3 3 3.9825 3.982417

−3 3.9859 3.985761

5 3 5.8672 5.867 015

−3 5.8816 5.881 446

6 6 6.9991 6.998 932

−6 6.9996 6.999 387

7 3 7.6979 7.697 721

−3 7.7371 7.736 885

8 6 8.8116 8.811 327

−6 8.8154 8.815 188

9 3 9.4670 9.466 773

−3 9.5526 9.552 382

9 9 10.0356 10.035 413

−9 10.0359 10.035 592

10 6 10.5727 10.572 480

−6 10.5907 10.590 470

11 3 11.1603 11.160 259 11.160 258

−3 11.3253 11.325 231 11.325 231

11 9 11.7497 11.749 519 11.749 518

−9 11.7525 11.752 297 11.752 297

12 6 12.3335 12.333 786 12.333 780

−6 12.2771 12.277 192 12.277 192

12 12 12.7474 12.748 520 12.748 183

−12 13.0310 13.032 065 13.032 060

13 3 13.0868 13.086 873 13.086 873

−3 13.0800 13.081 199 13.081 191
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(A) (B)

(C) (D)

Fig. 6.22 Contour plots of the eigenfunctions of the Schrödinger equation for the Henon-Heles
potential with n and � equal to (A) 2, 0 (B) 6, 0 (C) 9, −9 and (D) 10, 6; Hermite quadratures were
used, Nx = Ny = 32; the vertical scale is y and the horizontal scale is x , both in the interval [−7,
7]. Reproduced from Shizgal and Chen (1997) with permission of the American Institute of Physics

points in each variable to get convergence to 5 significant figures and up to 50
quadrature points for the higher states to the same accuracy. The nonclassical weight
function provides faster convergence giving 8 significant figure accuracy with 32
quadrature points in each dimension.

The eigenvalues calculated in this way are listed in Table 6.10 in comparison with
the previous calculations. Echave and Clary (1992) used Fourier basis functions to
solve two one-dimensional reference problems and used the eigenfunctions of these
hamiltonians as basis functions for the two-dimensional Henon-Heiles potential.
They refer to this method that follows on the earlier work by Hamilton and Light
(1986) as the potential optimized discrete variable representation. The results listed
in the table are also in agreement with the results by Wei (1999) who used a col-
location method referred to as a discrete singular convolution analogous to a Sinc
interpolation as used by Amore (2006) and Amore et al. (2009). We discussed the
Sinc interpolation in Chap. 2. We list the eigenvalues in the same manner as done by
Noid and Marcus (1977). The results are in agreement to the accuracy in the table
except for the (12,12) state for which Wei (1999) reports the value of 12.748431.
The reason for this discrepancy is not known.

The contour plots of several eigenfunctions are shown in Fig. 6.22 and converged
with 50 Hermite basis functions in each variable. The C3v symmetry is evident from
the figure and several fine details of the eigenfunctions are recovered. It should be
mentioned that this model system with the small value of λ = √

0.0125 is very close
to two uncoupled harmonic oscillators in each variable. The convergence of the Her-
mite polynomial basis set for each dimension for the lower states works as well as it
does owing to the small value of λ. It would be of interest to consider larger values
and experiment with nonclassical basis sets that might provide faster convergence.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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