
Chapter 5
Integral Equations in the Kinetic Theory
of Gases and Related Topics

Abstract Integral equations occur in many areas of chemistry, physics and
engineering. We consider in this chapter the integral equations that arise in radiative
transfer theory and in the study of transport processes in dilute gasesmodeledwith the
Boltzmann equation. The first use of a collocation was the Gauss-Legendre quadra-
ture for the solution of the integro-differential isotropic radiative transfer equation.
The integral equations that are used to calculate the heat conductivity and viscos-
ity of a dilute monatomic gas are derived with the Chapman-Enskog method of
solution of the Boltzmann equation. The integral equations are solved with spectral
and pseudospectral methods. These numerical methods are also used to calculate the
eigenfunctions and eigenvalues for the linearized collision operator for a one compo-
nent gas as well as for the linear collision operator for a binary mixture. The solution
of the Boltzmann equation for many applications can be expressed in terms of the
eigenfunctions and eigenvalues of the collision operators that in general possess an
infinite number of discrete eigenvalues and a continuum. The eigenvalue spectra of
these operators are calculated and discussed. A pseudospectral method of solution
of the Boltzmann integral equation is used for the calculation of the nonequilibrium
reaction rate for a model reactive system. A pseudospectral method is also used to
solve the Chapman-Enskog integral equation that gives the viscosity of a dilute gas.
The relaxation to equilibrium of an initial anisotropic nonequilibrium distribution
for a binary gas mixture versus the mass ratio of the two components is studied. Also
presented are the spectral solutions of Boltzmann equation for the Milne problem of
rarefied gas dynamics, the escape of light atoms from a planetary atmosphere and
the calculation of ion mobilities. Pseudospectral methods with nonclassical weight
functions are used in some of these applications. The chapter concludes with the
study of the relaxation to equilibrium of a one component gas as described by the
nonlinear isotropic Boltzmann equation.

5.1 Introduction

Integral equations in which the desired function appears as an integrand in an integral
operator occur in diverse subjects in science and engineering, and include such fields
as radiative transfer theory (Chandrasekhar 1960), neutron transport (Kourganoff
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1963; Case and Zweifel 1967; Garcia 1999; Ganapol 2008), kinetic theory (Chapman
and Cowling 1970), electromagnetic theory (Volakis and Sertel 2012), geophysics
(Eskola 2012), quantum mechanics and scattering theory (Canto and Hussein 2013)
and many other applications. Many partial differential equations can be transformed
to integral equations with the appropriate Green’s functions that satisfy the boundary
conditions. There are several textbooks devoted to the solution of integral equations
(Tricomi 1985; Delves and Mohamed 1985; Jerri 1999; Kythe and Puri 2002).

In this chapter, spectral and pseudospectral methods are applied to the solution of
several different integral equations that arise in radiative transport and in kinetic the-
ory based on the Boltzmann equation. Quadratures are used to reduce a linear integral
equation to a set of coupled linear equations for the solution at the quadrature points.
The first use of a similar collocation based on Gauss-Legendre quadratures was
by Wick (1943) and Chandrasekhar (1944) for the solution of the radiative transfer
equation (Chandrasekhar 1960). The overlap of radiative transfer theorywith neutron
transport also based on the Boltzmann equation is described in the books by Case and
Zweifel (1967) and by Ganapol (2008). Recent historical reviews of these research
areas were presented by Peraiah (1996) and Shore (2002). An historical account of
the development of nuclear reactor theory based on the fundamental advances in
radiative transfer and neutron transport was presented byWilliams (2000). Although
kinetic theory (Chapman and Cowling 1970) and neutron transport theory (Ganapol
2008) are based on the Boltzmann equation, there is a considerable difference in the
notation employed. The book by Ganapol (2008) has an extensive bibliography to
research papers and monographs on neutron transport theory.

We illustrate the application of spectral and pseudospectralmethods to the solution
of the integral equations for the Boltzmann equation of kinetic theory. A summary
of the Chapman-Enskog method (Hirschfelder et al. 1954; Huang 1967; Chapman
and Cowling 1970; Ferziger and Kaper 1972) is presented. This method is a special
solution of the Boltzmann equation for a monatomic gas in the collision dominated
regime constructed specifically for the calculation of the transport coefficients for
diffusion, heat conduction and viscosity in terms of the differential cross sections
describing binary collisions between particles. This formalism yields integral equa-
tions whose solutions present interesting applications for spectral methods.

The Chapman-Enskog method of solution of the Boltzmann equation provides a
derivation of the hydrodynamic equations of fluid mechanics. This is an alternative
approach to the methods based on control volumes and conservation principles pre-
sented in books on fluid dynamics (Fletcher 1991; Kundu et al. 2012). In physical
situations where the gas density is very low and the mean free path, the average
distance travelled between particle collisions, is comparable to or greater than the
local scale length, the hydrodynamic equations are no longer valid and a kinetic
theory treatment is required. This is the subject of rarefied gas dynamics (Sone 2007;
Struchtrup 2005) and pertains to shock waves, aerodynamics, microfluidics (Gad-
el-Hak 1999) and the high altitude regions of planetary atmospheres from which
energetic atoms and ions can escape (Fahr and Shizgal 1983; Shizgal and Arkos
1996; Pierrard 2003; Echim et al. 2011). The direct simulation Monte Carlo method
(Bird 1994) is often used to study such rarefied gaseous systems.
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In this chapter, spectral and pseudospectral methods are used to study the spectral
properties of the linearized collision operator defined by Eq. (5.41) as well as the
analogous linear operator for a binary gas, Eq. (5.104). A spectral method is used to
calculate the nonequilibrium effects that occur in a simple reactive system (Shizgal
and Karplus 1970). The pseudospectral solutions of the Boltzmann equation for the
viscosity in a one component gas (Siewert 2002; Sharipov and Bertoldo 2009) and
the equilibration of nonequilibrium distributions in a binary gas are also described
(Shizgal and Blackmore 1983).

The departure of distribution functions from spherical symmetry are considered
in the applications to the Milne problem (Lindenfeld and Shizgal 1983) and for the
escape of light species from a planetary atmosphere (Shizgal and Blackmore 1986).
We review the development of spectralmethods used to solve theBoltzmann equation
for the drift of ions in a background gas under the influence of a uniform electrostatic
field (Viehland 1994). In the last section, the nonlinear isotropic Boltzmann equation
is used to study the approach to equilibrium of a one component gas and the rela-
tionship with the spectral properties of the linearized operator is discussed. A finite
difference method is used which requires a cubature for the evaluation of the integral
collision operator. A review of alternative methods based on spectral methods with
both polynomial basis functions (Weinert et al. 1980; Ender et al. 2011) as well as
Fourier methods (Filbet and Mouhot 2011; Wu et al. 2013) is presented.

5.2 Classes of Integral Equations and the
Use of Quadratures

Fredholm integral equations of the 1st and 2nd kind (Delves and Mohamed 1985;
Jerri 1999; Slevinsky and Safouhi 2008) are defined by

b∫

a

K (x, y) f (y)dy = S(x), (5.1)

and
b∫

a

K (x, y) f (y)dy − g(x) f (x) = S(x), (5.2)

respectively, where the kernel, K (x, y), and the functions g(x) and S(x) are known.
These integral equations can also be expressed as eigenvalue problems

b∫

a

K (x, y)φn(y)dy = λnφn(x), (5.3)
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and

b∫

a

K (x, y)φn(y)dy − g(x) f (x) = λnφn(x), (5.4)

respectively. Volterra integral equations, which we do not consider, are similar with
the upper boundary b = x .

The method of solution chosen for a particular problem depends on the behavior
of the kernel versus x and y. If the kernel is well behaved in both variables, the
solution can be easily computed. If there is a discontinuous lower order derivative
or a strong singularity, then the numerical method to be used should be adapted to
the particular behavior of the kernel. The types of singularities include a logarithmic
singularity for which K (x, y) = k(x, y) log |x − y| or an algebraic singularity for
which K (x, y) = k(x, y)/|x − y|. This aspect has been discussed by Atkinson and
Shampine (2008) and MATLAB codes for the numerical solution of a large class of
integral equations are readily available (Driscoll 2010).

Many current solution methods of integral equations involve the reduction of the
integral equation to a set of algebraic equations with a suitable quadrature procedure
with grid points {xi } and associated weights {wi } based on polynomials orthogonal
with respect to weight function w(x) on the interval [a, b]. With the use of a quadra-
ture to perform the integral over y in Eq. (5.2), the integral operator is reduced to the
sum over quadrature weights and points, that is

N∑
i=1

Wi K (x, xi ) f (xi ) − g(x) f (x) = S(x), (5.5)

where Wi = wi/w(xi ). If we evaluate this equation at the same set of grid points,
we have the system of linear algebraic equations,

N∑
i=1

Wi K (x j , xi ) f (xi ) − g(x j ) f (x j ) = S(x j ). (5.6)

Inversion of this set of linear equations gives the desired solution at the grid points.
This is the method often used to solve integral equations and referred to as the
Nyström method (Delves and Mohamed 1985; Kythe and Puri 2002). Obviously we
need to know further details of the behavior of the kernel in order to choose the
appropriate quadrature, and study the convergence of the solution.

To illustrate the method, this technique is used to solve the integral equation,

1∫

−1

sinh(x + y)φ(y)dy − φ(x) = −x2, (5.7)
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which is Example 2.2.2 from Kythe and Puri (2002). This equation has the exact
solution

φexact (x) = α sinh(x) + β cosh(x) + x2, (5.8)

whereα = 16e3(e2−5)/(1−34e4+e8),β = [1+ 1
4 (

1
e2

−e2)]α and e = 2.718282 . . .

Since the domain is x ∈ [−1, 1], we choose a Gauss-Legendre quadrature, for
which Wi = wi and reduce the integral equation to a coupled set of linear algebraic
equations for the solution evaluated at the quadrature points analogous to the linear
set of equations, Eq. (5.6). We have that

N∑
i=1

wi sinh(x j + xi )φ
(N )(xi ) − φ(N )(x j ) = −x2j , (5.9)

and the solution is represented by φ(N )(xi ) at the N quadrature points. We measure
the error of the numerical solution in comparison with the exact solution as given by
the L2 error

E (N )
2 =

√√√√ 1

N

N∑
n=1

[
φ(N )(xi ) − φexact(xi )

]2
. (5.10)

The numerical solution of Eq. (5.9) and the E (N )
2 error are computed with a MAT-

LAB code. The variation of log10[E (N )
2 ] versus N is shown in Fig. 5.1. The solution

converges to machine accuracy very quickly owing to the smooth, well behaved ker-
nel and inhomogeneous term. The variation of the exact solution given by Eq. (5.8)
is well approximated by a low order polynomial for x ∈ [−1, 1] which explains the
rapid convergence. There are numerous examples of such integral equations in Kythe
and Puri (2002).
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Fig. 5.1 Variation of the least squares error, log10 E
(N )
2 , for the integral equation, Eq. (5.7), versus

the number of Gauss-Legendre quadrature points, N
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5.3 Radiative Transfer and Neutron Transport Theory

The transfer of radiation in matter is an important aspect of atmospheric science and
climate (Stamnes et al. 1988; Peraiah 1996; Liou 2002; Thomas and Stamnes 2002),
astrophysics (Rybicki and Lightman 1979; Rybicki 1996), satellite remote sensing
(Liang 2005), medical physics (Kan et al. 2013), neutron transport (Siewert 2000;
Yilmazer and Kocar 2009) and other applications (Shore 2002). The propagation of
radiation through amedium involves both absorption and reemission of the radiation.
Radiative transfer theory is concerned with the variation of the radiative intensity
with position in the medium, the direction of propagation as well as the frequency.

We consider the radiative transfer equation in recognition that almost every
current publication in this field cites the original work by Chandrasekhar (1960).
The numerical treatment introduced by Wick (1943) and developed further by
Chandrasekhar (1960) is perhaps the first use of a quadrature, specifically the Gauss-
Legendre quadrature, to reduce the radiative trnasfer equation, Eq. (5.14) to discrete
form.

The system of interest is the plane-parallel atmosphere shown in Fig. 5.2. We
define the radiative intensity, I (z, θ), with assumed azimuthal symmetry, as the
energy contained in a pencil of radiation at position z moving in direction θ with
respect to the polar direction. The intensity of radiation directed along z changes
owing to the absorption of radiation by the medium, characterized by a mass attenu-
ation coefficient, κ, and density ρ(z). The change in incident intensity, I , directed at
an angle θ with the vertical direction on traversing a slab of the medium of vertical
thickness dz is

d I = −κρI dz/μ, (5.11)

where μ = cos θ. We now transform the vertical altitude, z, to optical depth, τ ,
defined by

dτ = −κρI dz, (5.12)

Fig. 5.2 Optical depth and radiative absorption
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or in integral form

τ (z) =
∞∫

z

κρdz. (5.13)

The integral of Eq. (5.11) in the absence of the emission of radiation from themedium
gives the Beer-Lambert law,

I (τ ,μ) = I (0)e−τ (z)/μ.

In general, there is stimulated radiation emitted from themedium and the radiative
intensity I (τ ,μ) is given by the radiative transfer equation,

μ
d I (τ ,μ)

dτ
= I (τ ,μ) − 1

2

1∫

−1

k(μ,μ′)I (τ ,μ′)dμ′, (5.14)

where the kernel, k(μ,μ′), accounts for the anisotropic absorption and reemission
of radiation induced by the incident radiation.

With the assumption of isotropic scattering, that is k(μ,μ′) = 1, we have the
radiative transfer equation in the form

μ
d I (τ ,μ)

dτ
= I (τ ,μ) − 1

2

1∫

−1

I (τ ,μ′)dμ′. (5.15)

This is the simplest integro-differential equation of radiative transfer theory and is
related to several other problems in rarefied gas dynamics. The radiative intensity,
I (τ ,μ), varies with position, τ , and also with direction through μ. A collocation
based on Gauss-Legendre quadratures is used to solve Eq. (5.15). The presentation
follows the work in Chandrasekhar (1960) with a change in notation.

We use the quadrature on the interval μ ∈ [−1, 1] with 2N quadrature points
μi , i = ±1,±2, . . . ,±N and corresponding weights wi . We note that since the
number of quadrature points is even, there is no point at μ = 0. The discretized
version of Eq. (5.14) is

μi
d Ii (τ )

dτ
= Ii (τ ) − 1

2

N∑
j=−N , j �=0

w j I j (τ ), (5.16)

where Ii (τ ) ≡ I (τ ,μi ). If the solution is assumed to be of the form, Ii (τ ) = ai e−λτ ,
then

ai (1 + μiλ) = 1

2

N∑
j=−N , j �=0

w j a j = C, (5.17)
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with

ai = C

1 + λμi
, (5.18)

which when substituted into Eq. (5.17) gives

1 = 1

2

N∑
j=−N , j �=0

w j

1 + λμ j
=

N∑
j=1

w j

1 − λ2μ2
j

. (5.19)

In the second equality we have usedw− j = w j and μ− j = −μ j . Because the sum of
the weights is normalized to unity,

∑N
j=1 w j = 1, λ2 = 0 satisfies Eq. (5.19), which

is the eigenvalue equation for the 2N − 2 eigenvalues and two zero eigenvalues. The
eigenvalues necessarily come in positive and negative pairs, ±λn, n = 1, 2, . . . ,
N − 1.

The roots of Eq. (5.19) each lie between the reciprocal of the quadrature points
[1/μi+1, 1/μi ]. A simple search combined with a bisection method gives the eigen-
values listed in Table5.1. Alternatively, one can rewrite Eq. (5.19) as a polynomial
of degree N and search for the roots of the polynomial (Kawabata et al. 1991). This
can be numerically unstable for higher orders. The entries up to N = 8 agree with
the limited results in Table VIII in Chandrasekhar (1960).

It is clear that the eigenvalues do not appear to converge to distinct values. The
reason for this is that the discrete spectrum of the radiative transfer equation consists
of only two zero eigenvalues. The remaining eigenvalues all lie in the continuum
and hence there is no convergence. The mathematical properties of the continuum
eigenfunctions have been the subject of considerable research (Case and Zweifel
1967; Liou 1973; McCormick and Kuščer 1973; Stamnes et al. 1988; Kuščer and
McCormick 1991; Ven Den Eynde et al. 2007) (and references therein). In Sects. 5.5
and 5.6, we compare this behaviour with the spectral properties of the Boltzmann
collision operators for a dilute monatomic gas that are characterized by an infinite
number of discrete eigenvalues and a continuum.

Table 5.1 Eigenvalues of the radiative transfer equation, Eq. (5.14)

N λ1 λ2 λ3 λ4 λ5 λ6 q

2 1.97203 0.6940

6 1.225211 3.202945 0.7039

8 1.103188 1.591779 4.458086 0.7069

10 1.059426 1.297814 1.987330 5.721175 0.7082

12 1.038632 1.183180 1.519150 2.394194 6.987899 0.7089

14 1.027106 1.125058 1.330224 1.752305 2.806740 8.256597 0.7094

Exacta 0.710446
a Loyalka and Naz (2008)
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We note that

Ii = b(τ + si ), (5.20)

is also a solution to the radiative transfer equation, Eq. (5.14), which leads to the
result

μi = si − 1

2

N∑
j=1

w j s j , (5.21)

and satisfied by

si = q + μi . (5.22)

To ensure that the solution remains finite for large τ , the terms with positive λi must
be eliminated from the solution. Thus the general solution is

Ii = b

[
N−1∑
n=1

cne−λnτ

1 + μiλn
+ τ + μi + q

]
. (5.23)

The constants cn (n = 1, 2, . . . , N − 1) and q are determined with the boundary
condition that there is no incident radiation at τ = 0, that is,

I (0,μ) = 0, −1 ≤ μ ≤ 0. (5.24)

With this boundary condition, c−n = 0 at τ = 0 and

N−1∑
n=1

cn

1 − λnμi
− μi + q = 0 (i = 1, 2, . . . , N ), (5.25)

which are N equations for the N − 1 constants, cn , and the extrapolation length, q.
The physical significance of the extrapolation length is discussed later.

The results for q in Table5.1 show that the convergence of the Gauss-Legendre
quadrature is slow. This arises because the numerical method cannot provide a good
fit to the boundary condition that requires that the radiative intensity vanishes on the
half space μ ∈ [−1, 0]. There have been many discussions and improvements and
in particular the use of half-range Legendre polynomials referred to as the “double
Gauss” method (Sykes 1951; Liou 1973; Stamnes et al. 1988; Ven Den Eynde et al.
2007).

Radiative transfer theory has its origins in astrophysics (Rybicki and Lightman
1979) and the interest to determine the intensity of the emergent radiation from a
star and the observation that it decreases from the centre of the disc to the limb, a
phenomenon known as limb darkening (Milne 1921). Thus, the radiative transfer
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problem is often referred to as a Milne problem which has many different variants.
We provide a very brief overview of the analysis and refer readers to the original
reference (Chandrasekhar 1960) for further details. It is useful to define twomoments
of the radiative intensity, namely

F = 2
N−1∑
i=1

wiμi Ii ,

K = 1

2

N−1∑
i=1

wiμ
2
i Ii , (5.26)

and one can show that F = 4b/3, where b is the multiplicative constant in Eq. (5.23).
We can also show that K = F(τ + q)/4. The emergent intensity is then

I (0,μ) = 3

4
F

N−1∑
k=1

ck

1 + λkμ
+ μ + q, (5.27)

which is one of the important results sought.
The emergent radiation can be related to the Chandrasekhar H(μ) function.

This requires several new definitions and considerable but straightforward algebra
(Chandrasekhar 1960). The result is the relation

I (0,μ) =
√
3

4
F H(μ), (5.28)

where the Chandrasekhar H function is the solution of the nonlinear integral equation

H(μ) = 1 + 1

2
aH(μ)

1∫

0

H(μ′)
μ + μ′ dμ′. (5.29)

Although the detailed derivations have not been provided, this nonlinear inte-
gral equation is of considerable interest as the object of several different numerical
solution methods. It has been solved with a Simpson’s rule (Hiroi 1994), ratio-
nal Chebyshev functions (Boyd 2005), analytic approximations (Davidović et al.
2008), polynomial approximations (Kawabata and Limaye 2011), integral represen-
tations (Jablonski 2013) and other approaches cited in these references. It is remark-
able that there is continued interest almost 70years after the original publication by
Chandrasekhar and Breen (1947).

In Sect. 5.7.2, we consider the Milne problem of rarefied gas dynamics (see
Fig. 5.16) for a binary hard sphere gas with a test particle ofmassm dilutely dispersed
in a background gas of mass M . The Milne problem reduces to the radiative transfer
equation for the Lorentz limit, that is M/m → ∞. We use a spectral method to
solve the Milne problem based on the concepts developed in this section. A similar
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Milne problem was studied with a Fokker-Planck equation for Coulomb collisions
(Barrett et al. 1992) as well as in the modeling of the sheath problem in plasma
physics (Vasenkov and Shizgal 2000). The Milne problem is the basis for a model of
the escape of light atoms from a planetary atmosphere presented in Sect. 5.7.3 (Fahr
and Shizgal 1983; Shizgal and Blackmore 1986).

Neutron transport theory is the study of the time and spatial dependence of the
neutron velocity distribution function in different materials or moderators given a
steady or pulsed source of neutrons. The theory is based on the Boltzmann equation
for neutrons analogous to dilute gases. It remains a very active area of research
for physicists, applied mathematicians and numerical analysts. Neutron transport
has developed alongside work in radiative transfer theory (Kourganoff 1963). The
distinction between the two fields is that in radiative transfer the photons move at
the speed of light and for neutrons there is a speed distribution to determine. Often
the radiative transfer problem noted in Eq. (5.14) is referred to as the “one speed”
problem. This implies that the neutrons all move at the same speed as do photons.
There are several standard references for both subjects (Davison 1957; Kourganoff
1963; Williams 1966; Case and Zweifel 1967; Thomas and Stamnes 2002). An
historical account of the development of the subject was provided by Shore (2002).

5.4 The Boltzmann Equation and Transport Theory

The central quantity of interest in the kinetic theory of gases is the distribution
function for a large collection or ensemble of particles without internal degrees of
freedom representing some species such as electrons, ions, neutrons, photons, atoms,
etc. At sufficiently low densities, the single particle distribution function, f(v, r,t), is
sufficient to describe the state of the system. The distribution function that depends
on the three dimensional velocity, v, the three dimensional position r, and the time,
t , is defined such that

f (v, r, t)dvdr = number of particles with velocity in [v, v + dv] and
position in [r, r + dr] at time t.

The Boltzmann equation is a seven dimensional nonlinear integro-differential equa-
tion for the one particle distribution function, f (v, r, t), given by

∂ f

∂t
+ v · ∇ f + F

m
· ∇v f =

∫ ∫
[ f ′ f ′

1 − f f1]gσ(g,Ω)dΩdv1, (5.30)

where the gradient operators are ∇ in r and ∇v in v.
The three terms on the left hand side of this equation are collectively referred to

as the drift term where F is an external force. The term on the right hand side is the
nonlinear collision term parameterized by the elastic collision cross section,σ(g,Ω),
where the relative velocity of a pair of particles is g = v1 − v and Ω is the scattering
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solid angle. The prime, f ′ ≡ f (v′), denotes the post-collisional velocity, v′, and is
expressed in terms of the pre-collisional velocity, v, as given by Eqs. (5.47)–(5.49).
The kinetic theory of gases is an integral part of theoretical chemistry and physics
(Hirschfelder et al. 1954; Liboff 2003; Kremer 2010).

A Boltzmann equation is used to model a large number of systems in astrophysics
(Spitzer and Härm 1958; Lightman and Shapiro 1978; Buhmann 2004; Binney and
Tremaine 2008), space science (Fahr and Shizgal 1983; Pierrard and Lazar 2010;
Khazanov 2011), semiconductor physics (Jüngel 2009), nuclear reactor technologies
(Hebert 2009), radiative transfer (Chandrasekhar 1960), radiotherapy (Kan et al.
2013) plasma physics (Boyd and Sanderson 2003), fusion machines (Atenzi and
Meyer-Ter-Vehn 2004) and many more. The different systems and processes that
can be studied with the Boltzmann equation or Boltzmann-like equations is truly
remarkable.

The main objective of this section is to apply spectral and pseudospectral methods
to the integral equations that arise in the application of the Boltzmann equation
to several physical problems. A brief overview of the derivation of these integral
equations in kinetic theory is provided in the sections that follow.

5.4.1 The Chapman-Enskog Method of Solution
of the Boltzmann Equation for Transport Coefficients

The Chapman-Enskog method of solution of the Boltzmann equation was developed
independently by Sydney Chapman1 and David Enskog2 for a particular purpose,
namely the calculation of transport coefficients for a dilute monatomic gas. The
transport coefficients are the diffusion coefficient, the viscosity and the heat con-
ductivity. They serve to relate fluxes of particles, momentum and energy with the
corresponding gradients. These relations between the fluxes and gradients such as
Fourier’s law for heat conduction (de Groot andMazur 1984) are referred to as linear
phenomenological laws. The Chapman-Enskog method provides a separate integral
equation for each transport process. The transport coefficients, such as the viscosity
discussed in Sect. 5.4.5, are expressed as integrals of the solution of a particular inte-
gral equation. The details of the Chapman-Enskog method are described in standard
texts (Huang 1967; Chapman and Cowling 1970; Ferziger and Kaper 1972; Kremer
2010). A concise overview of the methodology follows.

A small departure from a Maxwellian is assumed to occur owing to small
macroscopic drift velocity and/or temperature gradients. The distribution function is

1 Sydney Chapman (1888–1970) was a British mathematician and geophysicist who developed the
Chapman-Enksog method of solution of the Boltzmann equation and contributed to the theory of
stochastic processes. He also made several fundamental contributions to geophysics.
2 David Enskog (1884–1947) was a Swedish mathematical physicist who contributed to the kinetic
theory of gases with the method of solution of the Boltzmann equation developed with Chapman.
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written as a small perturbation of the “local” Maxwellian, F[v, n(r, t), T (r, t),
W (r, t)], parameterized by the particle density n(r, t), the temperature, T (r, t) and
the flow velocity of the gas, W (r, t); see Eq. (5.32). With the assumption that the
distribution is slightly perturbed from the local Maxwellian, F , we set

f (v, r, t) = F(v, n, T, W)

[
1 + εφ(v)

]
, (5.31)

where the parameter ε is taken to be very small and φ(v) is sought. Equation (5.31)
is often extended as a power series in ε as discussed later.

The Chapman-Enskog method proceeds as follows. With the substitution of
Eq. (5.31) in (5.30), the term zeroth order in ε is

∫ ∫
[F ′F ′

1 − F F1]gσ(g,Ω)dΩdv1 = 0,

and defines the local Maxwellian,

F(v, n, W, T ) = n(r, t)

[
m

2πkB T (r, t)

]3/2
exp

[−m(v − W(r, t))2

2kB T (r, t)

]
, (5.32)

where kB is the Boltzmann constant, m is the particle mass, and the number density,
n(r, t), is defined by,

n(r, t) =
∫

FL M (v, r, t)dv. (5.33)

The local Maxwellian, Eq. (5.32), supports a flux and the drift or flow velocity,
W(r, t), is

W(r, t) = 1

n(r, t)

∫
FL M (v, r, t)vdv. (5.34)

The temperature, T (r, t), is a measure of the average thermal energy of the gas and
is related to the diagonal element of the pressure tensor

P = m
∫

f (v, r, t)(v − W)(v − W)dv, (5.35)

and P(L M) = pI where I is the unit matrix and p = nkB T is the ideal gas law.
For nonequilibrium systems, there is a departure from the equilibrium Maxwell-

Boltzmann distribution and the pressure tensor is of the form

P = pI + �. (5.36)
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where� depends on the velocity gradients. If there is a temperature gradient present,
then there is a heat flux defined as

q = m

2

∫
f (v, r, t)(v − W)(v − W)2dv. (5.37)

The Boltzmann equation is rewritten with the collision term multiplied by the
factor 1/ε so as to explicitly take into account the assumption that the collision
operator is dominant relative to the drift term, that is

∂ f

∂t
+ v · ∇ f + F

m
· ∇v f = 1

ε

∫ ∫
[ f ′ f ′

1 − f f1]gσ(g,Ω)dΩdv1. (5.38)

The parameter ε is often identified as the Knudsen3 number, the ratio of the mean-
free-path, Lmfp, to some macroscopic length scale, H , that is K n = Lmfp/H . In the
collision dominated situation, K n � 1.

The equation of order ε is obtained with the drift term evaluated with f → F and
the collision operator linear in φ(v). To this order in ε, the derivatives in the drift term
on the left hand side of the Boltzmann equation are evaluated implicitly through the
r and t variation of n(r, t), T (r, t), W (r, t) in the local Maxwellian, and φ(v) does
not contribute.

In order to evaluate the left hand side of Eq. (5.30) in this way, we need the (r, t)
variation of n, W and T . These relations can be obtained by noting that the particle
number, momentum and energy are conserved in a binary elastic collision. Thus,
we multiply successively the Boltzmann equation by m, mv and mv2/2, known as
the “summational invariants”, and integrate over v. The integral over the collision
operator multiplied by these quantities gives zero owing to their conservation. The
details are provided in other texts (Hirschfelder et al. 1954; Chapman and Cowling
1970; Ferziger and Kaper 1972). The result of this calculation, after some algebra,
of the so-called “equations of change”, are the set of hydrodynamic, non-dissipative
fluid dynamic equations, referred to as the Euler equations, given by

∂ρ

∂t
+ ∇ · (ρW) = 0,

ρ
DW
Dt

+ ∇ p = ρF , (5.39)

nk
DT

Dt
+ 3T

2
(∇ · W) = 0,

where ρ(r, t) = mn(r, t) and

D

Dt
= ∂

∂t
+ W · ∇.

3 Martin Knudsen (1871–1949) was a Danish physicist known for his work on the kinetic theory
of gases and the Knudsen number which measures the degree of rarefaction of dilute gases.
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The term linear in ε which gives the integral equation for φ(v) involves the eval-
uation of the drift term with f replaced with F and the evaluation of the drift term
operator on F implicitly using the Euler fluid equations. The result, after considerable
tensorial algebra using the chain rule for the derivatives, is the integral equation

J (φ) = F

[
(x2 − 5/2)v · ∇ ln T + 2(vv − 1

3
v2I) : ∇W

]
, (5.40)

where x = v
√

m/2kB T is the reduced speed and the linearized collision operator is
given by

J (φ) =
∫ ∫

F1F

[
φ′
1 + φ′ − φ1 + φ

]
σ(g, θ)dΩdv1. (5.41)

It can be shown that J is a negative definite self-adjoint rotationally invariant oper-
ator. The matrix representation of J in Legendre polynomials is diagonal as previ-
ously noted in the discussion of the quadrature evaluation of the eigenvalues for the
Maxwell-molecule model in Chap.3.

We now write the solution of Eq. (5.40) in the form

φ = −A · ∇ ln T − B : ∇W, (5.42)

where the vector A and tensor B are written as

A = A(v)v,

B = B(v)vov, (5.43)

and vov = vv − 1
3v

2I is a traceless tensor. The functions A(v) and B(v) satisfy the
integral equations,

J [A(v)v] = (x2 − 5/2)vF, (5.44)

and

J [B(v)vov] = 2vovF. (5.45)

where x = v
√

m/2kB Tb is the reduced speed. The details of this calculation, which
involve considerable tensorial algebra, are straightforward and can be found in stan-
dard references (Huang 1967; Chapman and Cowling 1970; Ferziger and Kaper
1972). An important aspect of the Chapman-Enskog method is that the solutions
of the homogeneous equations corresponding to Eqs. (5.44) and (5.45), namely the
“summational invariants”, are orthogonal to the inhomogeneous functions in these
integral equations. This ensures the existence of solutions. We will discuss this again
in Sect. 5.4.4 for a simpler physical problem.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The solutions A(v) and B(v) are used to determine the temperature dependence
of the heat conductivity and viscosity for a dilute gas given the differential cross
section, σ(g,Ω), for binary particle collisions. The Sonine-Laguerre polynomials,
S(n)
α (x2), are the basis functions almost always used to solve these integral equations

with α = 3/2 for Eq. (5.44) and α = 5/2 for Eq. (5.45). This formalism forms the
basis for the determination of interatomic potentials frommeasurements of transport
coefficients (Hirschfelder et al. 1954; Pascal and Brun 1993; Oh 2013).

A different integral equation is solved for each transport process and the transport
processes of different tensorial order do not couple, consistent with the Curie princi-
ple of irreversible thermodynamics (de Groot and Mazur 1984); see also (Andersen
1969) and Appendix A of Shizgal and Karplus (1970) where chemical reactions
are included. Mixtures of gases can also be considered and the algebra becomes
more involved.We note that theoretical descriptions of transport phenomena in poly-
atomic gases are available (Wang-Chang andUhlenbeck 1951; Snider 1960;McCourt
et al. 1991; Singh et al. 1996; Brun 2009). Our primary interest is the spectral and
pseudospectral methods for the solution of the integral equations.

The Chapman-Enskog method provides to order ε the Navier-Stokes equations
of fluid mechanics by including the dissipative transport terms in the “equations of
change”. Themethod is usually presented as a power series expansion in εwith terms
of order ε2 and ε3 in addition to the term in ε in Eq. (5.31). This expansion is believed
to be a type of asymptotic expansion where perhaps only the first few terms have
physical meaning. At each level, the resulting hydrodynamic equations are modified,
that is the Euler equations for zero order in ε, the Navier-Stokes equations of order ε
and for higher orders in ε there are the Burnett and the Super-Burnett hydrodynamic
equations (Grad 1949;Cercignani 1988).A very good overviewof the effort to extend
the description of gaseous flows to the larger Knudsen number regime was provided
by Agarwal et al. (2001). This overlaps the approach developed by Grad (1949) and
referred to as the Grad 13-moment method (Struchtrup 2005).

The breakdown of hydrostatic equilibrium and the Chapman-Enskog approach
occurs in particular at high altitudes of the terrestrial atmopshere where collisions
are infrequent (Fahr and Shizgal 1983). This also applies to the solar atmosphere for
which there is a supersonic expansion of the stellar plasma, referred to as the solar
wind. There are both fluid models (Parker 1965) and kinetic theory models (Lemaire
and Scherer 1973) to describe the expansion of the solar atmosphere. This is another
example of the need for a kinetic theory in the K n ≈ 1 regime (Lemaire 2010; Echim
et al. 2011). The loss of ions from the terrestrial atmosphere at high latitudes along
open magnetic field lines, referred to as the polar wind (Lemaire and Scherer 1970;
Lie-Svendsen and Rees 1996; Pierrard and Lemaire 1998) is another example. There
is an ongoing discussion as to the relationship of both fluid and kinetic models for the
solar wind expansion (Parker 2010; Lemaire 2010) These discussions are important
to note but are beyond the scope of this book. However, there is some overlap with
the Milne problem in Sect. 5.7.2 and the escape of light atoms or ions from planetary
atmospheres in Sect. 5.7.3.
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5.4.2 The Linearized Collision Operator, J,
in the Boltzmann Equation

A fundamental problem in the kinetic theory of gases is the relaxation of an initial
nonequilibrium distribution to the equilibriumMaxwellian distribution.We consider
a one component spatially uniform gaseous system for which the linearized Boltz-
mann equation in the absence of external fields is the initial value problem of the
form

∂ f (v, t)

∂t
= J [ f (v, t)]. (5.46)

The kinematics of an elastic collision that relate the post-collisional (v′) and pre-
collisional (v) velocity variables in Eq. (5.41) are required to define the collision
operator, J , (Chapman and Cowling 1970; Cercignani 1988; Ferziger and Kaper
1972; Liboff 2003; Kremer 2010). In an elastic collision, depicted in Fig. 5.3, the
relative velocity vector, g, is rotated to the new orientation, g′, while the magnitudes
remain the same, that is |g′| = |g| owing to energy conservation. The vector k,
referred to as the “apse-line vector”, is the external bisector so that θ = π − 2χ.
Thus, we have the relation

g′ = g − 2(k · g)k. (5.47)

In terms of the centre of mass velocity

G = m1v1 + m2v2
m1 + m2

, (5.48)

we have that

v′
1 = g′ + m1 + m2

m1
G,

v′
2 = g′ − m1 + m2

m2
G. (5.49)

Fig. 5.3 Kinematics of an elastic collision; g and g′ are the relative velocities before and after a
collision, θ is the scattering angle, k is the external bisector of the angle between g and g′ defined
by χ
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The centre-of-mass velocity is conserved, so that,G
′ = G. For the one component

gas considered here, m1 = m2. The variables (v′
1, v′

2) are related to the pair (v1, v2)
with the substitution of g′ from Eq. (5.47) into (5.49).

The linearized integral collision operator in Eq. (5.41) can be written in terms of
a kernel so that we can recast Eq. (5.46) in the form,

∂ f (v, t)

∂t
=
∫

K J (v, u) f (u)du − Z(v) f (v, t), (5.50)

where the collision frequency is

Z(v) = f (v)

∫ ∫
f1(v1)σt (g)dv1. (5.51)

The kernel for the hard sphere cross section, σ(g,Ω) = d2/4, expressed in reduced
velocity variables, x = v

√
m/2kB T and y = u

√
m/2kB T , is

K J (x, y,μ) = Z(0)

π
√

π
e−x2

[
2√

x2 + y2 − 2xyμ
exp

[
x2y2(1 − μ2)

x2 + y2 − 2xyμ

]

−
√

x2 + y2 − 2xyμ

]
, (5.52)

where μ = cos θ′ and θ′ is the angle between x and y and Z(0) = nbπd2√2kB T/m.
The derivation of this kernel is lengthy but straightforward and is provided elsewhere
(Nielsen and Bak 1964; Monchick and Mason 1967; Chapman and Cowling 1970;
Ferziger and Kaper 1972; Williams 1976). For most of the applications presented
here, the hard sphere cross section is used, although the kernel in Eq. (5.50) can
be written for arbitrary differential scattering cross section (Kapral and Ross 1970;
Sospedra-Alfonso and Shizgal 2013).

As the kernel depends only on the angle between x and y, the operator J is rota-
tionally invariant and diagonal in the Legendre polynomial basis set. It is customary
in kinetic theory and radiative transfer theory to expand the kernel in Legendre poly-
nomials in μ, that is,

K J (x, y,μ) =
∞∑

�=0

k(�)
J (x, y)P�(μ), (5.53)

where the scalar kernels are

k(�)
J (x, y) = 2� + 1

2

1∫

−1

K J (x, y,μ)P�(μ)dμ. (5.54)
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In radiative transfer theory this is often referred to as a PN method with the kernel
replaced with an analogous photon scattering phase function (Liou 2002; Thomas
and Stamnes 2002; Ganapol 2008).

For the hard sphere cross section, the kernels, k(�)
J (x, y), are known analyti-

cally versus x and y for the lower order � values as provided in Sect. 4.2.1 in the
book by Williams (1971) and also by other researchers (Pekeris 1955; Pekeris and
Alterman 1957; Desai andNelkin 1966; Siewert 2002). The kernels can be calculated
numerically with a Gauss-Legendre quadrature in Eq. (5.54) (Shizgal 1981a).We use
the quadrature algorithms developed in Chap. 2 and discussed further in Chap. 3 to
solve the initial value problem, Eq. (5.46), (Hoare and Kaplinsky 1970; Shizgal and
Blackmore 1983; Shizgal 1984).

5.4.3 Matrix Representation of the Spherical Component
(� = 0) of J in Sonine-Laguerre Basis Functions

It has been traditional in kinetic theory to solve the integral equations for the transport
coefficients with the expansions in the direct product basis set of the Sonine-Laguerre
basis functions and the spherical harmonics or Legendre polynomials. The choice of
basis function is dictated in part by the fact that the Sonine-Laguerre polynomials
are the eigenfunctions of J for the Maxwell molecule collision model as discussed
in Sect. 3.6.4, although this is a not a sufficient reason for this choice. However, it
is useful to note that the inhomogeneous functions for the Chapman-Enskog inte-
gral equations for the transport coefficients, Eqs. (5.44) and (5.45), are low order
polynomials in x2. The resulting inhomogeneous vector of the linear algebraic equa-
tions that are inverted in the spectral solution for the viscosity has only one nonzero
component (Loyalka et al. 2007).

We restrict the discussion of the initial value problem,Eq. (5.46), to initial isotropic
distributions, so that the eigenvalues, λn , and eigenfunctions, ψn(x), are for � = 0
unless otherwise noted. We consider only the � = 0 component of the collision
operator and do not show this explicitly to simplify the notation, and write

∂ f (x, t)

∂t
= J [ f (x, t)]. (5.55)

We solve Eq. (5.55) with the expansion of the initial distribution function in the
eigenfunctions of J , that is

f (x, 0) =
N∑

n=0

cnψn(x2), (5.56)

where

J [ψn(x2)] = −λnψn(x2). (5.57)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3


266 5 Integral Equations in the Kinetic Theory of Gases and Related Topics

The solution of Eq. (5.55) can be written formally in terms of an evolution operator
similar to the time dependent Schrödinger equation, that is

f (x, t) = eJ t f (x, 0),

=
∞∑

n=2

cnψn(x2)e−λn t , (5.58)

where we have used

eJ tψn(x2) = e−λn tψn(x2). (5.59)

The evolution operator is defined in term of the expansion of the exponential,
eJ t = 1 + J t + J 2t2/2 + · · · analogous to the evolution operator in quantum
mechanics (Balint-Kurti 2008) discussed in Sect. 4.6.6. In the sections that follow,
we are interested in the eigenvalue problem, Eq. (5.57), expressed in terms of a varia-
tional theorem. This eigenvalue problem is a fundamental aspect of the kinetic theory
of gases, analogous to spectral theory in quantum mechanics.

Thematrix elements of the collision operator for isotropic problems are defined by

J (0)
nm =

∫ ∫ ∫
F1F2S(n)

1

[
S(m)′
1 + S(m)′

2 − S(m)
1 − S(m)

2

]
σgdΩdv1dv2, (5.60)

which can be shown to be symmetric, that is, J (0)
nm = J (0)

mn . We denote the Sonine-
Laguerre polynomials for � = 0 as S(n)(x2) given explicitly by

S(n)(x2) =
n∑

k=0

(−1)k Γ (n + 3/2)

Γ (k + 3/2)(n − k)k! x2k,

=
n∑

k=0

Snk x2k, (5.61)

and orthogonal in accordance with

∞∫

0

e−x2 S(n)(x2)S(m)(x2)xdx2 = Γ (n + 3/2)

n! δnm . (5.62)

We evaluate the matrix elements with the generating function for the Sonine-
Laguerre polynomials

G(t, x2) = exp[t x2/(t − 1)]
(1 − t)3/2

=
∞∑

k=0

S(k)(x2)tk, |t | < 1. (5.63)

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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The matrix elements J (0)
nm are evaluated with the one matrix element between two

generating functions, that is the element 〈Gt |J |Gs〉. This technique was first intro-
duced byMott-Smith (1954) and used subsequently by other researchers (Ford 1968;
Foch and Ford 1970; Shizgal and Karplus 1971; Shizgal and Fitzpatrick 1974; Gust
and Reichl 2009; Shizgal and Dridi 2010). The desired matrix element, J (0)

nm , is then
the coefficient of sntm of the expression below.

〈Gs |J |Gt 〉 = 2Z(0)√
π

s2t2

⎛
⎝
√
1 − 1

2 s − 1
2 t

(1 − st)2

⎞
⎠ ,

=
∞∑

n=2

∞∑
m=2

J (0)
nm sntm, (5.64)

Owing to particle number and energy conservation, J (0)
nm = 0 for (n, m) = (0, 1) and

consequently λ0 = 0 and λ1 = 0. The evaluation of the generating function matrix
element, Eq. (5.64), involves the kinematics of binary particle collisions, Eqs. (5.47)–
(5.49).

It has been shown (Ford 1968; Foch and Ford 1970; Lindenfeld and Shizgal 1979a;
Gust and Reichl 2009) that the matrix elements are given by

J (0)
nm = 2Z(0)√

π2n+m

√
n!m!

8Γ (n + 3
2 )Γ (n + 3

2 )

Nm∑
j=0

4 j B jΓ (n + m − 2 j − 1
2 )

(n − j)!(m − j)! , (5.65)

where B j = j − 1 + δ j0 and Nm = min(n, m). We use this representation of J in
the next section to analyze nonequilibrium effects for a model reactive system and
in Sect. 5.5.1 for variational estimates of the eigenvalues and eigenfunctions of the
operator.

It is useful to note that the matrix elements given by Eq. (5.65) involve both the
integral operator in Eq. (5.50) and the collision frequency, Z(x). For cross sections
determinedwith classicalmechanics, the integral operator and the collision frequency
are not defined owing to the divergence of the differential scattering cross section at
small scattering angles. By contrast, quantum cross sections are finite and the two
terms in the collision operator can be considered separately. The matrix elements
of the Hamiltonian for a problem in quantum mechanics is the sum of the matrix
elements of the kinetic energy operator and the matrix elements of the potential
often computed separately. The quadrature evaluations of the matrix elements of the
potential in a Schrödinger equation (Harris et al. 1965; Dickinson and Certain 1968)
are often cited as the origin of pseudospectral methods in quantum chemistry (Light
and Carrington Jr. 2000).
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5.4.4 Spectral Solution of the Boltzmann Equation
for the Departure from Maxwellian for an Elementary
Reaction in a Spatially Uniform System

It is well known that chemical reactions proceed with a concommitant departure of
the particle distribution functions from equilibrium. This subject has a long history
both for systemswith only translational energy (Prigogine andXhrouet 1949; Shizgal
and Karplus 1970; Shizgal and Fitzpatrick 1978; Ross and Mazur 1961; Alves et al.
2011; Kustova and Giordano 2011; Dziekan et al. 2012) as well as for molecular
systems with internal vibrational and rotational states (Shizgal 1972; Shizgal and
Lordet 1996; Pascal and Brun 1993; Brun 2009). The theoretical treatment of such
systems is based on a Boltzmann equation for the velocity distribution and in some
instances on aMaster equation for the distribution of vibrational and rotational states
(Kim and Boyd 2013).

In this section, we consider a one-component atomic system (without internal
degrees of freedom) and a single reactive process. We add a single reactive loss
term to the Boltzmann eqation, Eq. (5.55), to model the nonequilibrium effects that
arise from the reaction. An estimate of the departure from the equilibrium rate of
reaction is obtained with a Chapman-Enskog method similar to its application to
the calculation of transport coefficients discussed in Sect. 5.4.1. However, for this
uniform system the Chapman-Enskog method is more transparent. We also discuss a
nonlinear variational approach that provides a different approximate solution of the
Boltzmann equation (Present and Morris 1969).

We consider a one component system undergoing a reaction

A + A → products, (5.66)

with a total reactive cross section, σr (g), dependent on the relative speed, g, of the
reactants. The spatially homogeneous Boltzmann equation for the isotropic distrib-
ution function of A is

∂ f (v, t)

∂t
= J [ f (v, t)] − ε f (v, t)

∫
f (v1, t)gσr (g)dv1, (5.67)

where a reactive collision term corresponding to the loss of particles by reaction is
added to the right hand side of Eq. (5.46). The integral reactive term is the reactive
collision frequency, Eq. (3.35), of Sect. 3.6. The parameter ε, which is assumed small,
multiplies the reactive term and thus the reaction is considered as a small perturbation
of the elastic collision term, J . The parameter ε is defined in terms of the elastic and
reactive cross sections; see after Eq. (5.77).

The particle number is not conserved and we have on integration of Eq. (5.67)
that the rate of reaction is

dn

dt
= −ε

∫ ∫
f f1gσr (g)dv1dv. (5.68)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The local temperature also changes owing to the loss of energetic particles as
given by

dT

dt
= −ε

2T

3n

∫ ∫
f f1

[
mv2

2kB T
− 3

2

]
gσr (g)dv1dv. (5.69)

We employ a Chapman-Enskog approach to determine the departure of the distribu-
tion fromMaxwellian and the nonequilibrium reaction rate. Since the rate of reactive
collisions is much smaller than the rate of elastic collisions and the ratio of these
rates to be of the order of ε, we set

f (v, t) = F[v, n(t), T (t)]
[
1 + εφ(v)

]
, (5.70)

where the first term is the localMaxwellian which varies with time implicitly through
the time dependence of the density and temperature, that is

F[v, n(t), T (t)] = n(t)

(
m

2kB T (t)

)3/2

exp

(
− mv2

2kB T (t)

)
. (5.71)

Since the system is assumed to be spatially homogeneous and there is no bulk motion
of the gas, the formalism employed here is a simpler version of the Chapman-Enskog
method described in Sect. 5.4.1.

The time dependence of the distribution function is implicit through n(t) and
T (t), that is

∂ f

∂t
= ∂ f

∂n

dn

dt
+ ∂ f

∂T

dT

dt
. (5.72)

With these substitutions into the Boltzmann equation, Eq. (5.67), the term linear in ε
is the Chapman-Enskog integral equation

J [φ(v)] = F(v)H(v), (5.73)

where

H(v) = −A0
∂F

∂n
+ 2T A1

3n

∂F

∂T
+ F

∫
F1gσr (g)dv1, (5.74)

evaluated with the local Maxwellian, and

A0 =
∫ ∫

F F1gσr (g)dvdv1,

A1 = −
∫ ∫

F F1

[
x2 − 3

2

]
gσr (g)dvdv1. (5.75)
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A solution of the integral equation, Eq. (5.73), exists if the solutions of the homo-
geneous equation, namely J [ψ0] = 0 and J [ψ1] = 0, are orthogonal to the inho-
mogeneous term F(v)H(v). The “summational invariants” for this problem, namely
ψ0(v) = 1 and ψ1(v) = v2, are orthogonal to the inhomogeneous portion of the
Chapman-Enskog equation, Eq. (5.73), that is

∫
F(v)H(v)dv = 0,

and
∫

F(v)H(v)v2dv = 0.

These results are easily verified with the definitions of A0 and A1. These are referred
to as the auxiliary conditions and were previously discussed in connection with the
integral equations for heat conduction and viscosity, namely Eqs. (5.44) and (5.45).

Inspection of the terms in Eq. (5.73) reveals that all terms are of order ε. We
consider the hard sphere elastic cross section, πd2, and the line-of-centers reactive
cross section, given by

σr (E) =
{
0, E ≤ E∗,
πd2

r (1 − E∗
E ), E > E∗. (5.76)

The equilibrium rate coefficient is

keq(T ) = A0/n2 = 4πd2
r

√
kB T

πm
exp(−E∗/kB T ). (5.77)

The expansion parameter can be identified as ε = (dr/d)2 and thus we must
have that dr � d for the Chapman-Enskog perturbative method of solution to be
accurate. The inhomogeneous terms of the integral equations for transport processes
in Sect. 5.4.1 also satisfy these “auxiliary conditions”.

We expand the perturbation of the distribution function, φ(x), in Sonine-Laguerre
polynomials

φ(x) =
N∑

n=2

an S(n)
α (x2), (5.78)

withα = 1/2which is hereafter deleted. This expansion reduces the integral equation
to a set of linear equations,

N∑
n=2

J (0)
mn an = αm, (5.79)
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where

αm =
∫

F(v)H(v)S(m)(x2)dv,

= −A0δ0m − A1δ1m + Am, m ≥ 2, (5.80)

and

Am =
∫ ∫

F F1Sm(x2)gσr (g)dvdv1. (5.81)

It has been shown (Shizgal and Karplus 1970) that these moments of the reactive
collision frequency are given by

Am = 8

2m

√
πkB T

m

m∑
k=0

Smk Kk, (5.82)

where the Smk coefficients are defined by Eq. (5.61) and

Kk = 1

π

∞∫

0

e−ξ2ξ2k+3σr (g)dξ, (5.83)

and ξ = √
μg2/2kB T is the reduced relative speed. For the line of centers reactive

cross section, Eq. (5.76), the Kk integrals can be done iteratively with an integration
by parts and thus the Am integrals are known.

The main objective is to calculate with the distribution function, Eq. (5.70), the
departure of the nonequilibrium rate coefficient, kneq , Eq. (5.68), from the equilib-
rium rate coefficient, keq , that is

kneq = keq(1 − η), (5.84)

where the desired quantity is η given by

η = −2
N∑

n=0

an
Am

A0
. (5.85)

A MATLAB code is used to calculate the matrix elements, Eq. (5.65), and the αm

moments, Eq. (5.80). The code also solves the linear equations, Eq. (5.79), and cal-
culates η with Eq. (5.85).

The rapid convergence of η versus the number of basis functions, N , is shown in
Table5.2. The convergence of η versus N is frombelow so that each estimate provides
a lower bound indicative that a variational theorem is operative although we have
not made explicit use of the variational theorem. The extremely small correction for
E∗/kB T = 32 is converged to 5 significant figures with 10 basis functions.
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Table 5.2 Convergence of the nonequilibrium correction to the reaction rate coefficient for the
line-of-centers model cross section

E∗/kB T 8 16 32

N η × 102 η × 103 η × 106

1 3.2582 0.2021 0.0004

2 3.6496 0.5600 0.0046

3 3.6507 0.9019 0.0343

4 3.6569 1.0118 0.1581

5 3.6571 1.0167 0.4637

6 3.6571 1.0177 0.9056

7 1.0179 1.2633

8 1.0179 1.4072

9 1.4271

10 1.4271

Nonlinear variationala 3.6251 0.8924 0.7665
a Present and Morris (1969)

The variation of η with the reduced threshold energy E∗/kB T is shown by the
solid curve in Fig. 5.4(A). The unusual behavior with η decreasing for E∗/kB T < 5
in spite of the increase in the reaction rate has been explained (Shizgal and Karplus
1970) on the basis of the speed dependence of the reactive collision frequency.
The nonequilibrium effect vanishes for a reactive collision frequency that varies in
such a manner analogous to the way changes in density and temperature change the
distribution function. Thus, for a reactive cross section that varies as g or 1/g, η = 0.
This accounts for the minimum and maximum of η near the E∗/kB T origin.

It is useful to compare with the nonlinear variational solution of the chemical
kinetic Boltzmann equation introduced by Present and Morris (1969). They chose
a solution (their Eq. (33)) which is made to satisfy the two auxiliary conditions and
parameterized by the variational parameter s, that is

φ(x2) = C(s)

[
esx2 − sx2 + 1 − 5

2 s
5/2
√
1 − s

]
. (5.86)

Substitution of this form of the solution into Eq. (5.73) and taking the scalar product
withφ(x) gives an equation forC(s).We then calculate the rate of reaction and divide
by the equilibrium rate, Eq. (5.77). The correction to the rate of reaction parametrized
by the variational parameter s and q = E∗/kB T is given by,

η(q, s) = 2(1 − 2s)2e−q

s4
√
1 − s

[√
2 − s

2
exp

(
sq

2 − s

)
− 1 − 3

4 s + 1
2 sq√

1 − s

]
. (5.87)

The extremum value of η(q, s) versus s for fixed q can be determined with a short
MATLAB code.
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The symbols in Fig. 5.4 show the results with the nonlinear variational approach
(Present and Morris 1969) and appear indistinguishable from the spectral solution.
However, the comparison of the numerical values with the variational approach and
theSonine polynomial expansion shown inTable5.2 demonstrates that the variational
approach gives poor results for the larger E∗/kB T values.

The spectral convergence is also demonstrated with the decrease in the expan-
sion coefficients versus n in Fig. 5.4(B) and the accuracy of the expansion for η in
Fig. 5.4(C). The “exact” values for η are those calculated with the Sonine polyno-
mial expansion with a sufficient number of terms to get convergence to 16 significant
figures.

Explicit time dependent solutions of the Boltzmann equation were carried out
to determine the range of validity of the Chapman-Enskog approach for the one
component system treated here (Shizgal 1971) as well as for a binary system (Shiz-
gal 1974). These studies suggest that the value of ε must be of the order of 10−3

to 10−4 for the Chapman-Enskog values to be accurate. Shizgal (1981a) used a

(A)

(B) (C)

Fig. 5.4 (A) Variation of the nonequilibrium connection to the reaction rate, η, versus the reduced
activation energy, E∗/kB T , for the line-of-centers reactive cross section and hard sphere elastic
cross section; the solid symbols are the results with the variational solution. (B) Convergence of
the expansion coefficients of φ(x) versus n, with E∗/kB T = 10 (triangles), 20 (squares) and 30
(circles). (C) Accuracy = log10[1 − η/ηexact] where ηexact is determined to 16 significant figures
with N sufficiently large
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pseudospectral method based on Laguerre quadratures in reduced energy to solve
the chemical kinetic Boltzmann equation, Eq. (5.67), but for a binary gas with unit
mass ratio and the integral kernel operator, Eq. (5.110). This reactive system was
also the basis for the study of the nonequilibrium effects associated with the escape
of planetary atmospheres (Lindenfeld and Shizgal 1979b). The loss of atoms from
an atmosphere is in the first instance given by the well-known Jeans escape flux
(Fahr and Shizgal 1983) analogous to a chemical reaction where the reaction thresh-
old energy is replaced by the escape energy from the planet.

5.4.5 Pseudospectral Solution of the Boltzmann Equation
for Shear Viscosity with the Maxwell Quadrature

The Chapman-Enskog solution of the Boltzmann equation for the viscosity of a one
component gas was summarized in Sect. 5.4.1. The integral equation for the function
B(x), Eq. (5.45), for the hard sphere cross section is the solution of the linear integral
equation (Shizgal 2011; Siewert 2002)

∞∫

0

e−x2x2k(2)
J (x, y)B(x)dx − Z(y)B(y) = −y2, (5.88)

where the symmetric kernel, k(2)
J (x, y), is given by

k(2)
J (x, y) = −2Z(0)

x4y4

[
A(x, y) + C(x, y)

√
πex2erf(x)/2

]
, x < y, (5.89)

with

A(x, y) = 2

35
x7 − 3x3 + 18x − y2(

2

15
x5 − 3x),

C(x, y) = −6x4 + 15x2 − 18 + y2(2x2 − 3),

as discussed by Siewert (2002). The kernel k(2)
J (x, y) is the � = 2 component of

the expansion of the anisotropic kernel, Eq. (5.53). Equation (5.88) is equivalent to
Eq. (5.45). The function B(x) in this paper corresponds to x2b(x) in the papers by
Siewert (2002) and by Loyalka et al. (2007). The shear viscosity in reduced units is
given in terms of B(x), that is

ν = 16
√
2

15

∞∫

0

e−x2x4B(x)dx . (5.90)
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The details are provided elsewhere (Siewert 2002; Loyalka et al. 2007; Sharipov
and Bertoldo 2009). Our interest here is with the numerical solution of the integral
equation, Eq. (5.88) and the calculation of the viscosity, Eq. (5.90).

There have been several different methods used to get accurate solutions of
Eq. (5.88). Siewert (2002) used a B-spline technique analogous to a recent work
on time dependent solutions of the isotropic Boltzmann equation (Khurana and
Thachuk 2012). Sharipov and Bertoldo (2009) have employed a two-dimensional
mesh to discretize the Boltzmann integral equation, Eq. (5.45).

Loyalka et al. (2007) employed the expansion of the distribution function in the
Sonine-Laguerre polynomials with up to 150 terms to reduce Eq. (5.45) to a set of
linear algebraic equations. They usedMathematica to calculate thematrix representa-
tion of collision operator and invert the resulting set of linear equations algebraically
for the function B(x) in Eq. (5.90). This is the Galerkin solution of the integral
equation, Eq. (5.88) or equivalently Eq. (5.45). The use of Mathematica avoids the
round-off errors that would otherwise occur, and accurate converged solutions to the
Boltzmann equation were obtained. Their work serves as an excellent benchmark for
the solution of this integral equation and they report the viscosity to 34 significant
figures, that is ν = 0.4490278062878924346090494895346545.

We have noted in Sect. 3.6.3 that the integral for the dimensionless viscosity
converges very rapidly with respect to the number, N, of Gauss-Maxwell quadrature
points and weights with w(x) = x2e−x2 . Thus a solution of Eq. (5.88) based on
the Gauss-Maxwell quadrature points should converge quickly. With this quadrature
procedure, the solution of the integral equation, Eq. (5.88), is given by the inversion
of the set of linear algebraic equations

N∑
i=1

Wi e
−z2i z2i k(2)

J (zi , z j )B(zi ) − Z(z j )B(z j ) = −z2j , (5.91)

where Wi = swi/w(xi ), zi = sxi . The scaling parameter s is chosen so that the
quadrature points are in the interval x ∈ [0, 6] for which B(x) is known. The reduced
shear viscosity is then given by

ν = 16
√
2

15

N∑
i=1

Wi e
−z2i z4i B(zi ). (5.92)

The solution to Eq. (5.91), B(x), is shown in Fig. 5.5 and is a very slowly varying
function of x . It is not surprising that the convergence of the solution is rapid. A
graphically accurate solution is obtained with 16 quadrature points. The convergence
is slower for large x but there is a small contribution to ν for x > 6 owing to
the factor x4e−x2 in Eq. (5.90). The convergence of the solution of the Boltzmann
equation obtained with the scaledMaxwell quadrature points is shown in Table5.3 in
comparisonwith the solution reportedbySiewert (2002).Thepseudospectral solution
was spline fitted to the x values reported by Siewert (2002). The major contribution

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Fig. 5.5 The solution of the Boltzmann equation, Eq. (5.88), for the viscosity function, B(x), versus
the number of Maxwell quadrature points, N . The solid curve is the result by Loyalka et al. (2007)
considered exact

Table 5.3 Solution of the Boltzmann equation for shear viscosity with N speed quadrature points;
(−n) ≡ ×10−n

x Siewert 2002 N = 20 N = 30 N = 40 N = 60

x4e−x2 B(x)

0.3 0.40775 (−3) 0.40629 (−3) 0.40763 (−3) 0.40772 (−3) 0.40775 (−3)

0.4 0.21139 (−2) 0.21101 (−2) 0.21134 (−2) 0.21137 (−2) 0.21139 (−2)

0.5 0.72744 (−2) 0.72686 (−2) 0.72726 (−2) 0.72738 (−2) 0.72742 (−2)

1.0 0.20004 0.19983 0.20000 0.20003 0.20004

1.5 0.57830 0.57780 0.57820 0.57827 0.57829

2.0 0.49722 0.496901 0.49716 0.49720 0.49722

2.5 0.17667 0.17659 0.17665 0.17666 0.17667

3.0 0.30011 (−1) 0.30002 (−1) 0.30009 (−1) 0.30010 (−1) 0.30011 (−1)

3.5 0.26318 (−2) 0.26315 (−2) 0.26317 (−2) 0.26318 (−2) 0.26318 (−2)

4.0 0.12465 (−3) 0.12466 (−3) 0.12465 (−3) 0.12465 (−3) 0.12465 (−3)

ν 0.449027806 0.448816 0.448985 0.449014 0.449025

Reproduced in part from Shizgal (2011) with permission of the American Institute of Physics and
from Siewert (2002) with permission from Elsevier

to the integral is approximately in the interval x ∈ [0.4, 4.0]. The scaling of the
Gauss-Maxwell points with the parameter s is thus important so as to compute the
solution in the range of x that contributes to the viscosity.

Siewert (2002) employed 301 “knots” with theHermite cubic spline functions and
a 4th orderGauss-Legendre quadrature to calculate the integral over subintervals. The
final integral for the viscosity, Eq. (5.90), was computed with 100 Gauss-Legendre
quadrature points. Sharipov and Bertoldo (2009) solved the Boltzmann equation as
a two dimensional problem in two velocity coordinates and used 40 grid points in
each velocity direction and 200 points with a Simpson’s rule to evaluate ν to the
same precision as in Table2; that is 2

√
π × 0.126668 = 0.449028. The application

of the speed quadrature points and weights to this problem is very straightforward
and the convergence is rapid as seen in Table5.3 and Fig. 5.5.
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5.5 Spectral Theory for the Linearized Boltzmann
Collision Operator

The Boltzmann equation, Eq. (5.30), is the basis for modelling transport phenomena
in a one component gas. These transport processes include the classic rarefied gas
dynamical problems such as the Kramers problem, Poseuille and Couette flow and
other similar phenomena discussed elsewhere (Williams 1971; Cercignani 1988;
Sharipov and Seleznev 1998; Siewert 2003). These and many other rarefied gas
dynamical flows are described in detail in the book by Sone (2007). Spectral methods
are employed in the solution of the Boltzmann equation for such systems (Wu et al.
2013; Ghiroldi and Gibelli 2014). These problems are beyond the scope of this book
but in Sect. 5.7.2 we discuss the Milne problem for a binary gas that serves as an
example of a rarefied gas dynamical problem. The numerical approximation of the
linearized collision operator in the Boltzmann equation, J , is important in these
applications.

Studies of the mathematical properties of J has a very long history (Alterman
et al. 1962; Grad 1963; Foch and Ford 1970; Cercignani 1988) and is ongoing
(Mouhot 2007; Dudynski 2013). Some of the mathematical works are directed
towards constructive estimates of the first nonzero eigenvalue referred to as the
“spectral gap” (Baranger andMouhot 2005;Mouhot 2007). A comparison of the pre-
viously noted mathematical analyses and others (Alexandre 2009; Dudynski 2013)
with the numerical estimates (Shizgal 1984; Gust and Reichl 2009) has not been
made. The classical differential cross sections diverge at small scattering angle and
the total cross section is infinite, except for the hard sphere cross section. For other
than the hard sphere cross section, the mathematical treatments involve a cut-off of
the divergent classical differential cross section (Grad 1949; Baranger and Mouhot
2005; Mouhot 2007; Alexandre 2009). However, the correct treatment of the elastic
scattering is based on quantum theory for which the differential cross section at zero
scattering angle is finite as is the total cross section.

The quantum mechanical cross sections can be calculated for physically realistic
atomic potentials (Bernstein 1966; Child 1996; Canto and Hussein 2013) and cannot
in general be factored as a product of a function of g and a function of θ.Mathematical
treatments of the approach to equilibrium for the non-linear Boltzmann equation
(see Sect. 5.8) rely on the spectral properties of the linearized operator (Grad 1958;
Baranger and Mouhot 2005; Mouhot 2006; Alexandre 2009).

Realistic quantum cross sections have been used in the Boltzmann equation
for relaxation processes (Kharchenko et al. 1998; Kharchenko and Dalgarno 2004;
Sospedra-Alfonso and Shizgal 2013), in the study of gaseous transport coefficients
Zhang et al. (2013), and in modelling electron (Lin et al. 1979a; Pitchford and Phelps
1982; Hagelaar and Pitchford 2005; Robson et al. 2005) and ion transport (Mason
and McDaniel 1988; Viehland 1994; Danailov et al. 2008). These works are based
on the linear collision operator for binary systems discussed in Sect. 5.6.

We approximate the eigenvalues of the collision operator, J , with a spectral
approach in Sect. 5.5.1 and a pseudospectral method in Sect. 5.5.2. It is well known
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that the spectrum of the collision operator consists of an infinite number of discrete
eigenvalues and a continuum (Grad 1963; Kuščer and Williams 1967; Shizgal 1984;
Gust and Reichl 2009). For the Maxwell molecule model with a constant collision
frequency the spectrum is completely discrete as discussed in Sect. 3.6.4.

Our main interest in the sections that follow is the eigenvalue problem associated
with the initial value problem, Eq. (5.46). There are an infinite number of discrete
eigenvalues defined by

Jψn(x) = −λnψn(x), (5.93)

which satisfy 0 ≤ λn ≤ Z(0) and continuous eigenvalues, λ > Z(0), given by

Jψ(x,λ) = −λψ(x,λ), (5.94)

where Z(0) is the elastic collision frequenxy, Eq. (5.51) at zero reduced speed or
energy. This set of eigenstates (taken to be complete) can be used to represent a
function, φ(x), by writing the expansion of the function in terms of the discrete and
continuum eigenfunctions as given by,

φ(x) =
∞∑

n=0

cnψn(x) +
∞∫

Z(0)

C(λ)ψ(x,λ)dλ. (5.95)

This property of the eigenvalue spectrum has been discussed elsewhere (Grad 1963;
Cercignani 1988; Hoare 1971; Baranger and Mouhot 2005). In Chap.6, Sect. 6.4.1,
we compare this aspect of the spectrum of the Boltzmann equation with a similar
behaviour for the Fokker-Planck equation for Coulomb collisions.

5.5.1 Spectral Calculation of the Eigenvalue Spectrum of J

In this section, we describe the calculation of the eigenfunctions and eigenvalues of
J with a spectral method. The solution of the initial value problem, Eq. (5.46), is
not presented here. However, in Sect. 5.6 we consider the solution of an analogous
initial value problem for the equilibration of a binary mixture with energy exchange
between the components.

We estimate the eigenvalues and eigenfunctions of J with the expansion of
the eigenfunctions in the Sonine-Laguerre polynomials, S(k)

α (x2), with α = 1/2,
that is

ψn(x) =
N∑

k=0

a(n)
k S(k)(x2). (5.96)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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where we have deleted the dependence of S(k) on α to simplify the notation. Since
these basis functions are the eigenfunctions for the Maxwell molecule model, the
usual expectation is that it would be a good choice for other interaction potentials
(Phillips 1959; Tompson et al. 2010). However, there is no mathematical reasoning
for this supposition.

The expansion coefficients a(n)
k are considered as linear variation parameters.

The Rayleigh-Ritz variational approach was discussed in Chap.1, Sect. 1.2.5. Vari-
ational methods are perhaps more familiar in the quantum context (Amore 2006;
Balint-Kurti and Pulay 1995) than for kinetic theory problems. However, there has
been considerable use of the variational theorem in kinetic theory (Phillips 1959;
Cercignani 1969; Driessler 1981) based on maximum entropy principles (Snider
1964; Bobylev and Cercignani 1999).

We use the hard sphere differential cross section for which σ(g,Ω) = d2/4 and
πd2 is the total cross section. We use the expansion, Eq. (5.96), and thus the matrix
representation given by Eq. (5.65). The first two eigenvalues are λ0 = λ1 ≡ 0 since
particle number and energy are conserved, that is, J (0)

nm = 0 for (n, m) = 0 and 1.
The numerical diagonalization of the matrix J of dimension N defined by Eq. (5.65)
yields successive approximations to the nonzero eigenvalues.

The convergence of the lower order eigenvalues, λ2–λ7, in units of Z(0), is shown
in Table5.4 versus the number of basis functions, N . The convergence of each eigen-
value is from above consistent with a variational calculation. With 80 basis functions
there are only 3 discrete nonzero eigenvalues (λn < 1). The other eigenvalues remain
unconverged and lie in the continuum (Hoare and Kaplinsky 1970; Hoare 1971).
Although this is a spectral method, the convergence of the eigenvalues is very slow
with the Sonine-Laguerre basis set.

If we define the columns of the matrix U as the eigenvectors of the matrix J, then
U(−1) · J · U = �, where Λnm = λnδnm . The eigenfunctions can be written in terms
of their expansion in the orthonormal Sonine-Laguerre basis functions, that is

Table 5.4 Convergence of the eigenvalues, λn , in units of Z(0) of the linearized spherically sym-
metric (� = 0) Boltzmann equation with the Sonine-Laguerre basis functions

N λ2 λ3 λ4 λ5 λ6 λ7

4 0.67660 1.06192 1.58295 2.30219

6 0.67260 0.98776 1.35808 1.83700 2.41524 3.13509

8 0.67163 0.95494 1.24700 1.62541 2.06912 2.57270

10 0.67136 0.93797 1.18042 1.49760 1.86907 2.28307

20 0.67123 0.91513 1.05183 1.23130 1.45074 1.69800

30 0.67123 0.91226 1.01497 1.13918 1.29772 1.48081

40 0.91173 0.99982 1.09367 1.21770 1.36401

50 0.91161 0.99246 1.06723 1.16878 1.29073

60 0.91158 0.98848 1.05031 1.13600 1.24051

80 0.98477 1.03049 1.09529 1.17634

The eigenvalues, λn < 1, are in the discrete portion of the spectrum

http://dx.doi.org/10.1007/978-94-017-9454-1_1


280 5 Integral Equations in the Kinetic Theory of Gases and Related Topics

ψn(x) =
N∑

k=2

Unk Ŝ(k)(x2). (5.97)

where Ŝ(k)(x2) = S(k)(x2)/
√

Γ (n + 3/2)/n!. The orthogonality of the eigenfunc-
tions is given by

∞∫

0

w(x)ψn(x)ψm(x)dx =
N∑

k=2

N∑
�=2

UnkUm�

∞∫

0

w(x)Ŝ(k)(x2)Ŝ(�)(x2)dx,

=
N∑

k=2

UnkUmk = δnk, (5.98)

where Eq. (5.62) for the orthogonality of the Sonine-Laguerre polynomials has been
used. The result, Eq. (5.98), is a statement of the orthogonality of the eigenvectors,
U, of the symmetric matrix J. The eigenfunctions are all normalizable in L2 with
weight function w(x) = x2e−x2 whether they belong to the discrete spectrum or the
continuum. However, we must address the meaning of the discretized eigenfunctions
with λn > 1 as representing the continuum eigenfunctions in some approximate way
(Reinhardt 1979).

5.5.2 Pseudospectral Calculation of the Eigenvalue
Spectrum of J

We reconsider the eigenvalue problem of the previous section (for � = 0) defined by
the equivalent integral equation, that is

∞∫

0

e−x2x2k(0)
J (x, y)ψn(x)dx − Z(y)ψn(y) = λnψn(y), (5.99)

where the symmetric kernel, k(0)
J (x, y), is given by

k(0)
J (x, y) = Z(0)

⎧⎪⎪⎨
⎪⎪⎩

[
4ex2erf(x) − 4

√
π

3 (x2 + 3y2)]/y
]
, x < y

[
4ey2erf(y) − 4

√
π

3 (3x2 + y2)]/x
]
, x > y

and discussed by other researchers (Desai and Nelkin 1966; Kuščer and Williams
1967; Yan 1969; Williams 1971; Siewert 2002). The kernel is the � = 0 component
of the expansion Eq. (5.53).



5.5 Spectral Theory for the Linearized Boltzmann Collision Operator 281

The eigenfunctions are discretized on the grid defined by the Gauss-Maxwell
quadrature with p = 2 that is with w(x) = x2e−x2 . With this quadrature, the
discretized form of the integral eigenvalue problem is

N∑
j=1

w j k
(0)
J (x j , xi )ψn(x j ) − Z(xi )ψn(xi ) = λnψn(xi ). (5.100)

The matrix equation is symmetrized by setting ψ̂n(xi ) = √
wiψn(xi ) (Gust and

Reichl 2010).
The computation of thematrix, k(0)

J (x j , xi ), ismuch less prone to numerical round-
off errors than the matrix representation with polynomial basis functions, Sect. 5.4.3.
This pseudospectral method is more flexible as different quadratures associated with
different basis functions can be used with very little additional effort, including a
trapezoidal or Simpson rule. We can also scale the quadrature points and weights to
improve convergence.

In order to impose detailed balance, that is to ensure that λ0 = 0 to machine
accuracy, we use the numerical value of the collision frequency, Z(xi ), as determined
by the integral over the kernel as discussed in Chap. 3

Z(xi ) =
N∑

k=1

wkk(0)
J (xi , xk). (5.101)

The use of this approximate numerical result for Z(xi ) in Eq. (5.99), removes the
contribution from the cusp in the kernel and this method has been referred to as the
singularity subtraction technique (Loyalka and Naz 2008), and was also discussed
by Shizgal (1981a).

However, there is no constraint for λ1 to be zero. Alternatively, one could define
Z(xi ) to ensure that energy conservation is obtained to machine accuracy, that is
λ1 = 0, but we would then find that λ0 �= 0. In this way, one of the two zero
eigenvalues is of the order of 10−15 but not both. The other eigenvalue is much
larger of the order of 10−5. Recall that the spectral method gives trivially the two
zero eigenvalues.

The convergence of the lower order eigenvalues is shown in Table5.5 versus the
number of Gauss-Maxwell quadrature points. The approach of λ1 to zero is also
shown. It is clear that the convergence of the eigenvalues is much faster with the
Maxwell polynomials than with the Sonine-Laguerre polynomials except for λ1 and
λ2. All the eigenvalues shown in the table are in the discrete portion of the spectrum
and converged to five significant figures with 80 quadrature points.

There have been many qualitative discussions and diagrams of the approach of
the eigenvalues to the continuum boundary (Cercignani 1988; Baranger and Mouhot
2005). An accurate representation is shown in Fig. 5.6. The upper graph depicts the
value of each eigenvalue with a vertical line of unit length, the “spectral gap” being
λ1 = 0.67121. The density of eigenvalues increases very quickly near λn = 1;

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Table 5.5 Convergence of the eigenvalues, in units of Z(0), of the linearized spherically symmetric
(� = 0) Boltzmann collision operator, with the Maxwell (p = 2) quadrature points and weights;
quadrature points scaled so that xmax = 6

N λ1 λ2 λ3 λ4 λ5 λ6 λ7

10 −0.0182 0.63890 0.88444 0.95485 1.11878 1.48671 2.0014

20 −0.00121 0.66909 0.90988 0.98090 0.99541 1.0075 1.05629

30 −0.000243 0.67080 0.91123 0.98180 0.99673 0.99917 1.00288

40 −0.0000772 0.67120 0.91155 0.98199 0.99690 0.99949 0.99992

80 −0.0000316 0.67122 0.91157 0.98200 0.99691 0.99950 0.99993

BMa 0 0.671 0.912 0.982 0.997

Mouhotb 0 0.0047
a Bobylev and Mossberg (2008)
b The analytic bound reported by Mouhot (2007) with a constructive approach is 1/(96

√
2e)

Fig. 5.6 (Top graph) The
approach of the eigenvalues
in units of Z(0) of the
linearized spherically
symmetric (� = 0) collision
operator, J , to the continuum
boundary at λn = 1. (Bottom
graph) Distorted diagram so
as to decrease the density of
eigenvalues near the
continuum boundary
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see Table5.5. The lower graph is an artificial plot to spread out the eigenvalues
near the continuum boundary. It is clear that the density of discrete eigenvalues
near the boundary is very high. These discrete or “bound” eigenfunctions, ψn(x),
n = 0–5, are shown in Fig. 5.7 and exhibit (n − 1) nodes. Of particular interest is
the rapid variation of the higher eigenfunctions near the origin which explains the
slow convergence with the Sonine-Laguerre polynomials. A large number of Sonine-
Laguerre basis functions are required in order to accurately describe the behaviour
of the eigenfunctions near the origin. The pseudospectral method is more accurate
and flexible.

One can transform the integral equation to a differential equation, a procedure
which is the opposite to finding a Green function for a differential equation so as
to transform it to an integral equation. With this technique, originally developed by
Wigner and Wilkins (1944) and subsequently by several other workers (Williams
1966; Kuščer and Corngold 1965; Kuščer and Williams 1967; Hoare 1971; Bobylev
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Fig. 5.7 The eigenfunctions, ψn(x), of the linearized spherically symmetric (� = 0) Boltzmann
collision operator determined with the Gauss-Maxwell quadratures with w(x) = x2e−x2

Table 5.6 Convergence of the eigenvalues of the linearized spherically symmetric (� = 0) Boltz-
mann collision operator with the multidomain method; λn in units of Z(0)

n λn
1−λn

1−λn+1

2 0.67121 3.718

3 0.91156 4.913

4 0.98200 5.816

5 0.996904 6.149

6 0.9994966 6.231

7 0.9999192 6.247

8 0.9999871 6.247

9 0.99999793 6.247

10 0.999999667 6.212

WKB 6.253

Reprinted from Shizgal (1984) with permission from National Research Council Research Press

andMossberg 2008), the integral Boltzmann eigenvalue problem can be transformed
to a Schrödinger equation. The Schrödinger equation is of an unusual form in that
the potential is parameterized by the eigenvalue.

Bobylev and Mossberg (2008) solved the Schrödinger equation with a finite
difference method and obtained the eigenvalues with a root searching algorithm.
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Their results are shown in Table5.5 together with the results by Mouhot (2007) with
a constructive approach.

This Schrödinger equation in conjunction with a Wentzel-Kramers-Brillouin
(WKB) analysis provides an understanding of the nature of the approach of the
eigenvalues to the continuum boundary. A clear exposition was provided by Rahman
and Sundaresan (1968) with the result that for the linearized collision operator, the
eigenvalues obey the asymptotic result

1 − λn

1 − λn+1
≈ exp(

4π√
47

) ≈ 6.2526. (5.102)

In order to accurately verify the behavior of the eigenvalues in accordance with
Eq. (5.102), a multidomain spectral method is used (Shizgal 1984). This involves
subdividing the semi-infinite domain into many subintervals and the use of Gauss-
Mehler quadrature points in each subdomain. Scaled Laguerre quadrature points
are used in the last domain which extends to infinity. The division of the semi-
infinite interval into subdomains varies from eigenfunction to eigenfunction, with
a knowledge of the location of the nodes for each eigenfunction. The grid is thus
optimized for each eigenfunction separately. This permits an accurate calculation
of the discrete eigenvalues and the approach to the continuum boundary as shown
in Table5.6 in comparison with the WKB approximation. The asymptotic result,
Eq. (5.102), appears to be attained by λ7 or λ8 but as is clear from the results in the
table it is a numerical challenge to calculate accurate eigenvalues extremely close to 1.

5.6 Relaxation to Equilibrium in Binary Gas Mixtures

The approach to equilibrium of the distribution function of a minor constituent of
massm (sometimes referred to as a “test particle”) dilutely dispersed in a background
gas of mass M at equilibrium is a fundamental problem in kinetic theory (Kuščer
and Williams 1967; Yan 1969) with important applications to hot atom relaxation
(Park et al. 1989; Cline et al. 1990; Nan and Houston 1992; Matsumi et al. 1994;
Nakayama et al. 2005; Zhang et al. 2007; Bovino et al. 2011).

The time dependent Boltzmann equation for a spatially uniform system in the
absence of external forces is identical in form to Eq. (5.46) for the one-component
gas, that is

∂ f (v, t)

∂t
= L[ f (v, t)], (5.103)

with the linear operator, L , defined by

L( f ) =
∫ ∫

[F
′
1 f

′ − F1 f ]gσ(g, θ)dΩdv1, (5.104)

instead of Eq. (5.41) for the linearized collision operator.
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The Boltzmann integral equation for this binary gas is of the same form as in
Eq. (5.50) but with a different kernel that varies with the mass ratio, γ. In terms of
the reduced velocities x = u

√
m/2kB T and y = v

√
m/2kB T , and the cosine of the

angle between the velocity vectors, μ, the kernel is given by

KL(x, y,μ) = Z(0)(γ + 1)2

2πγ3/2

1√
x2 + y2 − 2xyμ

× exp

[
−x2 + γx2y2(1 − μ2)

x2 + y2 − 2xyμ
− (γ − 1)2(x2 + y2)

4γ

− (γ2 − 1)xyμ

2γ

]
, (5.105)

where γ = M/m is the mass ratio of the two components Shizgal and Blackmore
(1983). This result is derived with the definition, Eq. (5.103), and the kinematics of
an elastic collision, Fig. 5.3, and Eqs. (5.47)–(5.49) (Chapman and Cowling 1970;
Ferziger and Kaper 1972; Khurana and Thachuk 2013). In the sections that follow,
we consider spectral and pseudospectral calculations of the eigenvalue spectrum of
the integral operator, L , analogous to the results for J in the previous sections.

5.6.1 Spectral Calculation of the Eigenvalue Spectrum
of the Linear Collision Operator, L, for a Binary Gas

We proceed as we did in Sect. 5.4.3 for the linearized Boltzmann collision operator.
The matrix elements of L in the Sonine-Laguerre basis (for � = 0) are defined by

L(0)
nm =

∫ ∫ ∫
F1F2S(n)

1

[
S(m)′
1 − S(m)

1

]
σgdΩdv1dv2, (5.106)

evaluated as for the linearized case with the generating function for the basis func-
tions, Eq. (5.63) and we have that

〈Gs |L|Gt 〉 = 8

√
2πkB Tb

μ

M1M2st

(1 − st)2

(√
1 − M1(s + t) − [1 − 2M1]st

1 − [1 − 4M1M2]st

)
,

=
∞∑

n=0

∞∑
m=0

L(0)
nmsntm, (5.107)

where M1 = m1/(m1 + m2), M2 = m2/(m1 + m2) and μ = m1m2/(m1 + m2).
The matrix elements are evaluated as the coefficients of sntm in the power series
expansion of 〈Gs |L|Gt 〉 as in Sect. 5.4.3 for the linearized operator, J . A MAPLE
code (Shizgal and Dridi 2010) developed for arbitrary differential cross section can
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Table 5.7 Convergence of the eigenvalues, in units of Z(0), of the linear (γ = 1) spherically
symmetric (� = 0) Boltzmann collision operator with the Sonine-Laguerre basis functions

N λ1 λ2 λ3 λ4 λ5 λ6

4 0.83191 1.23300 1.80103 2.55781

6 0.82351 1.13057 1.53697 2.04776 2.64985 3.38573

8 0.82081 1.08006 1.40112 1.80739 2.27335 2.79345

10 0.81980 1.05092 1.31698 1.65904 2.05109 2.48123

20 0.81905 1.00022 1.14237 1.33917 1.57346 1.83352

30 0.81902 0.98819 1.08405 1.22258 1.39305 1.58660

40 0.98384 1.05604 1.16244 1.29671 1.45194

50 0.98192 1.04007 1.12607 1.23674 1.36656

60 0.98099 1.03005 1.10202 1.19613 1.30775

be used to extract the matrix elements based on Eq. (5.107) for the hard sphere cross
section. Lindenfeld and Shizgal (1983) also provided a closed form expression for
the matrix elements.

The numerical diagonalization of the matrix L of order N gives the eigenvalues
and eigenfunctions. The derivation of the expression for L(0)

nm for the hard sphere cross
section and arbitrary γ, which requires considerable algebra, is given by Eq. (28) and
Appendix A in Lindenfeld and Shizgal (1983).

For γ = 1, the convergence of the eigenvalues versus the number of basis func-
tions, N , is shown in Table5.7. The convergence of the eigenvalues is from above
consistent with a variational theorem. The smallest eigenvalue, λ0 = 0, is consistent
with particle conservation. With up to 60 basis functions, there are only two discrete
eigenvalues, λ1 and λ2, whereas the others shown are in the continuum. Only λ1 is
converged to five significant figures with 30 basis functions. The convergence of the
eigenvalues with the Sonine-Laguerre basis set is slow, similar to the results for J in
Table5.4.

5.6.2 Pseudospectral Calculation of Eigenvalue Spectrum
of the Linear Collision Operator, L, for a Binary Gas

The kernel in the Boltzmann equation for a binary gas mixture is given by Eq. (5.105)
and depends on μ and the mass ratio, γ = M/m. We expand the kernel in Legendre
polynomials in μ as given by Eq. (5.53) for the linearized operator. The scalar kernels
are denoted by k(�)

L (x, y) analogous to the k(�)
J (x, y) for the linearized collision

operator, J . The eigenvalues and eigenfunctions of the collision operator for given
� are defined by the set of integral equations

∞∫

0

k(�)
L (x, y)ψn,�(x)dx − Z(y)ψn,�(y) = −λn,�ψn,�(y). (5.108)
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The collision frequency, Z(x), in Eq. (5.108), is given by

Z(x) =
∞∫

0

k(0)
L (x, y)dy,

= A

2

[
e−γx2 +

[
2
√

γx + 1√
γx

] √
π

2
erf(

√
γx)

]
, (5.109)

where A = nbπd2√kB Tb/2m and Z(0) = 2A. The kernel k(0)
L (x, y) is the Wigner-

Wilkins kernel (Hoare and Kaplinsky 1970) given by

k(0)
L (x, y) = A

2
Q2√π

[
erf[Qy + Rx] + ex2−y2erf[Ry + Qx]

±
[
erf[Qy − Rx] + ex2−y2erf[Qy + Rx]

] ]
, (5.110)

where we have used reduced speeds (x, y) and the + in ± is for y < x and the
− is for y > x . The hard sphere cross section is πd2, Q = 1

2 [ 1√
γ + √

γ] and

R = 1
2 [ 1√

γ − √
γ].

The pseudospectral solution of the eigenvalue problem based on a quadrature
reduces Eq. (5.108) to the linear algebraic problem

N∑
j=1

W j x2j k(0)
L (x j , xi )ψn,�(x j ) − Ziψn,�(xi ) = −λn,�ψn,�(xi ). (5.111)

For the most part, ψn(x) and λn are for � = 0, unless otherwise noted. Since particle
number is conserved, there is one zero eigenvalue, λ0 = 0. The results for the
Gauss-Maxwell quadrature is shown in Table5.8. With 80 quadrature points, we
find four discrete eigenvalues converged to 4 significant figures. The results reported
by Bobylev and Mossberg (2008) are obtained from the solution of a Schrödinger
equation with a potential parametrized by the eigenvalue sought. As a consequence,
an iteration is required to converge to each eigenvalue as shown in Figs. 1 and 2
of their paper. The results in the table are also compared with the cubic B-spline
solution by Khurana and Thachuk (2012) for which only two discrete eigenvalues
are reported.

The study of the approach of the eigenvalues to the continuum boundary requires
a very fine grid defined with the subdivision of the semi-infinite interval into 12
sub-intervals with 8 Fejér quadrature points in each interval except the last where
a shifted Laguerre quadrature is used (Shizgal 1984). The interval boundaries are
chosen to approximately coincide with the roots of the highest bound eigenfunction
desired. We refer to this approach as the adaptive multidomain method.
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Table 5.8 Convergence of the eigenvalues in units of Z(0) of the linear (γ = 1) spherically
symmetric (� = 0) Boltzmann collision operator for Gauss-Maxwell quadrature points (p = 2)

N λ1 λ2 λ3 λ4 λ5 λ6

6 0.81359 0.97258 1.16137 1.55419 2.09752 0.00000

8 0.81616 0.97328 1.05678 1.29033 1.65256 2.11734

10 0.81736 0.97672 1.01756 1.15769 1.40627 1.74453

14 0.81831 0.97897 0.99904 1.04972 1.17109 1.36147

20 0.81874 0.97940 0.99772 1.00972 1.05415 1.13938

30 0.81893 0.97963 0.99829 1.00049 1.01072 1.03677

40 0.81898 0.97969 0.99834 0.99984 1.00274 1.01236

60 0.81901 0.97972 0.99838 0.99986 1.00025 1.00223

80 0.81902 0.97973 0.99838 0.99988 1.00001 1.00058

BMa 0.8190 0.9795 0.9985 0.9995
KTb 0.8190 0.9797
a Eigenvalues determined from the solution of the Schrödinger equation (Bobylev and Mossberg
2008)
b CubicB-spline solution of the integral eigenvalue problemwith 60 intervals (Khurana andThachuk
2012)

Table 5.9 Approach to the
continuum boundary of the
eigenvalues, in units of Z(0),
of the linear (γ = 1)
spherically symmetric
Boltzmann (� = 0) collision
operator with the
multidomain method

n λn
1−λn

1−λn+1

1 0.8190221

2 0.9797339 5.526

3 0.99838853 8.930

4 0.99988132 12.58

5 0.9999913460 13.58

6 0.99999936318 13.71

7 0.999999958353 13.59

8 0.9999999926736 15.29

WKB 13.74

The lower order eigenvalues calculated in this way are shown in Table5.9 in
comparison with the WKB asymptotic behaviour (Rahman and Sundaresan 1968)

1 − λn,�

1 − λn+1,�
≈ exp

⎡
⎣ 4π√

6(1 + 1
γ )2 − (2� + 1)2

⎤
⎦ , (5.112)

which appears to occur by λ6 or λ7. It is clear that the calculation of these eigenvalues
near to the continuum boundary is a challenging numerical exercise.

The eigenfunctions corresponding to these eigenvalues are shown in Fig. 5.8 and
the rapid variation near to the origin is clear. There are several nodes very close
to the origin and the others occur for much larger x . We contrast this behaviour
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Fig. 5.8 The eigenfunctions, ψn(x), of the linear Boltzmann collision operator (� = 0, γ = 1)
determined with the adaptive multidomain quadrature

Fig. 5.9 Eigenfunctions
of the linear (γ = 1/8)
Boltzmann collision operator
with the adaptive
multidomain method for
� = 3. The approach of the
eigenvalues, λn,3, to the
continuum boundary is
shown in Table5.10 in
comparison with the
asymptotic WKB result
(Rahman and Sundaresan
1968)
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with the eigenfunctions for � = 3 and γ = 1/8 in Fig. 5.9. Table5.10 lists the
corresponding eigenvalues and the WKB ratio and it is clear that these eigenvalues
below the continuum boundary can be more easily evaluated. The oscillations of the
eigenfunctions can be resolved over this larger domain than for the results in Fig. 5.8.
With the multidomain approach, the variational theorem is more difficult to verify as
the nodes and number of quadrature points between nodes is specific for a particular
eigenfunction.
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Table 5.10 Approach to the
continuum boundary of the
eigenvalues, in units of Z(0),
of the linear (γ = 1/8)
Boltzmann collision operator
with the adaptive
multidomain method for
� = 3

n λn,3
1−λn,3

1−λn+1,3

1 0.42888 1.4444

2 0.60461 1.4978

3 0.73602 1.5675

4 0.83159 1.6405

5 0.89734 1.6912

6 0.93930 1.7197

7 0.96470 1.7459

8 0.97978 1.7691

9 0.98857 1.7873

10 0.99361 1.8004

11 0.99645 1.8092

12 0.99804 1.8150

13 0.99892 1.8186

14 0.99941 1.8203

WKB 1.824

5.6.3 Spectral Method of Solution of the Linear Boltzmann
Equation with Quantum Cross Sections; Relaxation
to Equilibrium and the Kullback-Leibler Entropy

In this section,we consider the binary gasmixture defined in the previous sectionwith
the application to N-He and Xe-He mixtures for which accurate interatomic interac-
tion potentials are known and the corresponding quantum differential cross sections
can be calculated (Sospedra-Alfonso and Shizgal 2013). We write the spherically
symmetric distribution function (� = 0) as f (x, t) = F[1 + φ(x, t)] and expand
φ(x, t) in Sonine-Laguerre polynomials,

φ(x, t) =
N∑

n=1

an(t)S(n)(x2), (5.113)

and substitute f (x, t) into Eq. (5.103) that defines the initial value problem. With
the subsequent multiplication by S(m)(x2) and integration over v, the Boltzmann
equation is reduced to the set of linear ordinary differential equations

dâm(t)

dt
=

N∑
n=1

L̂(0)
mnân(t), (5.114)

where ân = √
Nnan such that L̂(0)

nm = L(0)
nm/

√
Nn Nm is symmetric, and Nn =

2Γ (n + 3/2)/(n!√π) is the normalization of the Sonine-Laguerre polynomials.
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The matrix elements, L(0)
nm were previously evaluated, Eq. (5.107), for the hard

sphere cross section using the generating function for the Sonine-Laguerre polyno-
mials. This methodology can also be used for realistic cross sections (Shizgal and
Dridi 2010) with the result that the matrix elements can be written in terms of the
classic Omega integrals of transport theory (Hirschfelder et al. 1954; Chapman and
Cowling 1970; Mason and McDaniel 1988) defined by

Ω(�)(k) = 2π

∞∫

0

π∫

0

e−z2 z2k+3(1 − cos� θ)σ(E, θ) sin θdθdz, (5.115)

where z = √
E/kB Tb and

L(0)
nm =

n∑
�=0

n+m−�∑
k=1

C�,kΩ
(�)(k). (5.116)

The coefficients, C�,k were determined with the generating function method and a
MAPLE code is available (Shizgal and Dridi 2010). The differential cross sections
vary rapidly with angle (see Fig. 3.19b) and a Simpson’s rule integration can be
used to accurately calculate the angular integral in Ω(�)(k) and a Gauss-Laguerre
quadrature for the reduced speed z. In this way, realistic cross sections can be used
in a spectral based solution of the Boltzmann equation.

The time dependent solution is expressed in terms of the discrete eigenvalues, λn ,
and eigenvectors, Ukm , of L, that is

N∑
k=1

LnkUkm = −λnUnm . (5.117)

We show in Fig. 5.10 the results of a Sonine-Laguerre spectral calculation of the
eigenvalue spectrum for the two gas mixtures, namely N in He and Xe in He with
realistic quantum cross sections that define the collision operator (Sospedra-Alfonso
and Shizgal 2013). The eigenvalues λn < Z(0) are in the discrete spectrumwhile the
eigenvalues λn > Z(0) are in the continuum. The comparison with the equivalent
hard sphere cross section shown in the figure demonstrates that the hard sphere cross
section is a good approximation. For the Xe-He system with the small mass ratio,
γ = 0.030, there are a large number of converged discrete eigenvalues whereas for
the N-He system with a larger mass ratio, γ = 0.29, there are much fewer converged
eigenvalues. The three discrete eigenvalues for N-He and the 9 discrete eigenvalues
for Xe-He are converged to three significant figures with N = 30 and N = 15,
respectively. This demonstrates the more rapid convergence of the Sonine-Laguerre
basis functions for the Xe-He system which is closer to the Rayleigh limit than
is N-He. In Chap.6, we discuss the Fokker-Planck equations in the Rayleigh and
Lorentz limits and the choice of basis functions.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Fig. 5.10 Eigenvalue spectrum of the Boltzmann collision operator for binary mixtures with He as
the background gas. The filled squares correspond to eigenvalues in the discrete spectrum and open
squares are unconverged eigenvalues in the continuum. HS denotes the results with the hard sphere
cross section, 18Å2 for N-He and 27Å2 for Xe-He. The other curves correspond to the results with
a realistic cross section for each pair. Thirty Sonine-Laguerre polynomials were used. Reprinted
from Sospedra-Alfonso and Shizgal (2013) with permission from the American Institute of Physics

The time dependent solution of the linear equations, Eq. (5.114), is

ân(t) =
N∑

k=1

ckUnke−λk t , (5.118)

and the expansion of φ(x, 0) defines ân(0). The expansion coefficients, ck , in
Eq. (5.118) are determined from the initial condition

ck =
N∑

n=1

Uknân(0). (5.119)

The eigenfunctions are given by the expansion in Sonine-Laguerre polynomials

ψn(x2) =
√

2√
π

N∑
k=1

Ukn
S(k)(x2)√

Nk
, (5.120)

and the time dependent distribution function is

f (x2, t) = 2√
π

x2e−x2
[
1 +

N∑
n=1

cne−λn tψn(x2)

]
. (5.121)

It is readily shown with the orthogonality of the Sonine-Laguerre polynomials
that the average energy of the energetic atoms is given exactly in terms of a1(t),
that is

E(t) = 3kB Tb

2
[1 − a1(t)]. (5.122)
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However, the average energy in terms ofa1(t) is coupled to the higher order expansion
coefficients, an(t) in Eq. (5.114), and the time dependence is multiexponential as
given by Eq. (5.118). If the set of moment equations, Eq. (5.114), is truncated at
a1(t), the resulting approximation to the energy relaxation is a pure exponential.
Alternatively, we can approximate the distribution function with a local Maxwellian
distribution function parametrized by the time dependent temperature (Mozumder
1981; Shizgal 1981b), that is

dT

dt
= −KLM[Teff(t)]

[
T (t) − Tb

]
, (5.123)

where Teff = [MT(t) + mTb]/(M + m) and

KLM(Teff) = 16

3π
M1M2

√
Teff

Tb

∞∫

0

z5e−z2σmt(z
2kB Teff)dz. (5.124)

The momentum transfer cross section in Eq. (5.124) is defined by

σmt(E) = 2π

π∫

0

(1 − cos θ)σ(E, θ) sin θdθ. (5.125)

We consider the approach to equilibrium with an initial test particle Gaussian
energy distribution of the form

f (E, 0) = C√
kB Tb

√
E exp

[
− α

√
E

kB Tb
− x0)

2
]
, (5.126)

where Tb = 300K and Nb = 3.27 × 1016 cm−3 consistent with experimental con-
ditions (Zhang et al. 2007). The parameters α = 5 and x0 = 2 are chosen, and C is a
normalization. A major difficulty can be the expansion of the initial distribution with
Eq. (5.113). The expansion of a Maxwellian at Tb in Sonine-Laguerre polynomials
is equivalent to the representation of the Sonine-Laguerre polynomials with the gen-
erating function defined by Eq. (4.54) in Sect. 4.5.1. The Sonine-Laguerre expansion
of many initial distribution functions, such as a Gaussian, that model energetic dis-
tributions with temperatures above the bath temperature will converge very slowly
if at all.

The time dependence of the distribution functions is shown in Fig. 5.11(A) for N
in He and in Fig. 5.11(B) for Xe in He for an initial energy of 0.12eV. A sufficient
number of basis functions are used so as to fit the initial distribution to three signif-
icant figures. Although there are only a few discrete eigenvalues in Eq. (5.121) that
converge with an increase in N , there a large number of eigenvalues, λn > Z(0) that
are in the continuum. Nevertheless, the summation in Eq. (5.121) that replaces the

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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(A) (B)

(C) (D)

Fig. 5.11 (Upper graphs) Energy distribution function for (A) N-He and (B) Xe-He for t/τ =
0.07, 0.16, 0.29, 0.51 and 0.29 where τ equals (A) 76ns and (B) 56ns; The initial distribution
function is a Gaussian with E(0) = 0.12eV; The dashed curves are the results with a Monte-Carlo
simulation. (Lower graphs) Time evolution of the temperature ratio for (C) N-He and (D) X-He
with an initial Gaussian with E(0) = 1.67 eV. The results are converged to three significant figures
with 30 Sonine-Laguerre polynomials. Reprinted from Sospedra-Alfonso and Shizgal (2013) with
permission from the American Institute of Physics

integral over the continuum eigenvalues, converges with an increase in N and thus
the solution converges even though λk and ck change with N . The dashed (noisy)
curves in the figures are the results of Monte Carlo simulations (Sospedra-Alfonso
and Shizgal 2013) that validate the results with the Sonine-Laguerre expansion.

The relaxation of the temperature is shown in Fig. 5.11(C), (D) for N-He and
Xe-He mixtures, respectively, with E(0) = 1.67eV. The curve identified as the
lowest order approximation with the one moment, a1(t), is a pure exponential while
the other results are multi-exponential curves. Amajor objective of the kinetic theory
is the approach to equilibrium (Ziff et al. 1981; Mouhot 2006). We use the Kullback-
Leibler entropy (Kullback and Leibler 1951;Mozumder 1981; Shizgal 2007) defined
by

ΣSS(t) = −4π
∫

v2 f (v, t) ln

[
f (v, t)

F(v, Tb)

]
dv, (5.127)

and another similar functional that is a measure of the departure of the distribution
function from the local Maxwellian FL M and given by
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ΣL M (t) = −4π
∫

v2 f (v, t) ln

[
f (v, t)

FL M (v, T (t))

]
dv. (5.128)

The local Maxwellian varies with T (t) and it is important to note that ΣL M (t) is not
an entropy. These are two examples of measures for the departure of one function
from another for which there are many choices especially in signal analysis (Cha
2007) analogous to the choice of least squares approximation used in Chap.4 to
analyze the convergence of different expansions.

The time dependence of both quantities is shown in Fig. 5.12 with ΣSS(t) as the
dashed curves and ΣL M (t) as the solid curves for three different initial energies.
ΣSS(t) is a monotonically increasing function of time consistent with an entropy
whereas ΣL M (t) can exhibit extremum values as a function of time. The relaxation
of the shape of the nonequilibrium distribution function can be determined experi-
mentally with Doppler spectroscopy (Nakayama et al. 2005; Zhang et al. 2007). The
translational energy relaxation can also be followed experimentally (Park et al. 1989).

The spectral method of solution of the Boltzmann equation with the Sonine-
Laguerre polynomials provides sufficiently converged solutions so as to permit a
useful comparison with experiment. The choice of the initial distribution is limited
by its expansion in this basis set. Round-off errors can also occur in the calculation
of the matrix elements if large basis sets are required.

A pseudospectral approach based on theGauss-Maxwell or some other quadrature
can also be employed with realistic quantum mechanical elastic scattering cross
sections. The details of these applications is beyond the scope of this book and
can be found elsewhere (Bovino et al. 2009, 2011; Sospedra-Alfonso and Shizgal
2012a), and references therein. The calculation of the spherically symmetric kernel
for realistic cross sections requires an integration over E and θ of the differential
cross section σ(E, θ) (see Fig. 3.19b). The cusp in the resulting kernel tend to be
extremely narrow and the accurate integration over the cusp in the kernel requires a
very fine grid (Kharchenko et al. 1998).

(A)

(a)
(a)

(b)

(c)

(b)

(c)
(b)

(c)

(B)

Fig. 5.12 Time evolution of the Kullback-Leibler relative entropies ΣSS(t) (dashed curve) and
ΣL M (t) (solid curve) for (A) N-He (τ = 76ns) and (B) Xe-He (τ = 56ns). Initial average energies
are (a) 0.12eV, (b) 0.94eV and (c) 1.67eV with an initial Gaussian distribution. Reprinted from
Sospedra-Alfonso and Shizgal (2013) with permission from the American Institute of Physics
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296 5 Integral Equations in the Kinetic Theory of Gases and Related Topics

In Chap.6, we report the eigenvalue spectrum of the Fokker-Planck equation with
the Coulomb cross section.We will show that the eigenvalue spectrum has an infinite
number of discrete eigenvalues and a continuum. However, in contrast to the behav-
iour with the Boltzmann equation, the spectrum becomes completely continuous for
a particular mass ratio (with the exclusion of λ0 = 0). The continuum eigenfunctions
are L2 square integrable discrete eigenfunctions as discussed by Reinhardt (1979)
for quantummechanical problems. In the absence of a single nonzero discrete eigen-
value, that is the “spectral gap”, the approach to equilibrium ceases to be a pure
exponential (Corngold 1981).

5.7 Two Dimensional Anisotropic Distributions

In the previous sections, we provided a description for the relaxation to equilibrium
of isotropic nonequilibrium distributions. In the sections that follow, we consider
several physical systems for which the distribution function of the energetic species
is anisotropic. Laser photofragmentation of molecules can produce energetic atoms
with anisotropic nonequilibrium distributions (Cline et al. 1990; Nicholson et al.
1996). The relaxation of the anisotropy can be followed with Doppler spectroscopy.
In Sect. 5.7.1, we consider a spectral solution of the Boltzmann equationwith amodel
initial anisotropic distribution. The decay of the anisotropy can be uncoupled from
the energy relaxation in the disparate mass ratio, γ = M/m, limits. This provides
the rationale for the use of the Fokker-Planck equation in the Rayleigh limit, γ → 0,
and Lorentz limit, γ → ∞, (Andersen and Shuler 1964) as discussed in Chap.6.

In Sect. 5.7.2, we treat the Milne problem for a two component system previously
considered in the context of the radiative transfer problem (the one-speed model)
in Sect. 5.3. This Milne problem also serves as a model for the escape of planetary
atmospheres (Fahr and Shizgal 1983). Both rarefied gas dynamical problems are in
three dimensions, namely position, speed and the anisotropy variable, μ = cos θ,
where θ denotes the orientation of the particle velocity relative to a polar axis.
A spectral method is used to solve the Boltzmann equation for the Milne prob-
lem whereas a combined spectral/pseudospectral method is used for the planetary
escape problem (Shizgal and Blackmore 1986).

5.7.1 Pseudospectral/Spectral Solution of the Boltzmann
Equation; Relaxation of Anisotropic Distributions
in a Binary Gas

A nonthermal anisotropic distribution function of atoms can be produced in the
laboratory by laser photolysis of a molecule producing an energetic atom.
The nascent distributions then relax by collisions with background inert gas atoms

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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and the approach to equilibrium is followed with Doppler spectroscopy (Park et al.
1989; Taatjes et al. 1990). The relaxation of anisotropic nonthermal distributions
of I∗ produced by photofragamentation of C3F7I has been studied experimentally
(Cline et al. 1990; Nicholson et al. 1996). It is possible to generate with linearly
polarized light an initial distribution that is a product of an isotropic distribution and
an anisotropy factor of the form

f (v,μ, 0) = f (v, 0)[1 + β(0)P2(μ)], (5.129)

where μ = cos θ and θ gives the orientation of the velocity vector, v, relative to some
polar axis. The parameter β(t) is the anisotropy parameter which can also depend
on the particle velocity. Matsumi et al. (1994) carried out similar studies of the
anisotropy and velocity relaxation of energetic O(1D) atoms in different moderators.

In this section, we consider a pseudospectral solution of the linear Boltzmann
equation with a hard sphere cross section and study the relaxation versus the mass
ratio γ = M/m, with m the test particle mass and M the mass of the background
species.We choose for convenience an initial anisotropic nonequilibriumdistribution
of the form

f (x,μ, 0) = C
(μ + 1)β

x
exp

[
− α(E0 − x2)2

]
, (5.130)

where α, β and E0 are constants to be specified and C is a normalization. The
constant β is generally a small integer in keeping with the experimentally generated
anisotropic distribution as a single Legendre polynomial, Eq. (5.129).

The Boltzmann equation for this spatially uniform system is given by Eq. (5.103)
with the collision operator defined by Eg. (5.104) or equivalently the kernel in
Eq. (5.105). The collision frequency is given by

Z(y) = 2π

∞∫

0

1∫

−1

KL(x, y,μ)x2dμdx, (5.131)

which is equivalent to Eq. (5.109). The Wigner-Wilkins kernel, Eq. (5.110), is the
spherical average of KL(x, y,μ). We expand the kernel, Eq. (5.105), in Legendre
polynomials, that is

KL(x, y,μ) =
∞∑

�=0

k(�)
L (x, y)P�(μ), (5.132)

where the expansion coefficients are the kernels

k(�)
L (x, y) = 2� + 1

2

1∫

−1

KL(x, y,μ)P�(μ). (5.133)
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Thus, the relaxation of the anisotropic distribution for the initial distribution given
by Eq. (5.130), is described with the set of uncoupled integral equations for each �,
that is

∂ f�(x, t)

∂t
=

∞∫

0

k(�)
L (x, y) f�(y, t)y2dy − Z(x) f�(x, t), (5.134)

where the initial distributions, f�(x, 0), is determined fromEq. (5.130). The spherical
components, f�(x, t), of the distribution function are defined as in Eq. (5.138). The
kernels, k(�)

L (x, y) can be accurately evaluated with a Gauss-Legendre quadrature for
the μ integration in Eq. (5.133).

The set of integral equations, Eq. (5.134), can be solved with theMaxwell quadra-
ture points, {xi }, and big weights, {Wi = wi/w(xi )}, based on the weight function
w(x) = x2e−x2 defined in Chap.3, Sect. 3.3. The discretized version is thus

∂ f�(xi , t)

∂t
=

N−1∑
j=1

Bij f�(xi , t), (5.135)

where the matrix B is defined by

Bi j = W j k�(xi , x j )x2j − Z(xi )δi j . (5.136)

As beforewe express the solution to each integral equation in terms of the eigenvalues
λ(�) and eigenfunctions U, that is

B · U = U · λ. (5.137)

The � dependence of the matrices in Eq. (5.137) is not shown explicitly. The ini-
tial values of f�(x, 0) are determined from the initial condition, Eq. (5.130). The
expansion of f (x,μ, t) is in Legendre polynomials in μ, that is

f (x,μ, t) =
√
2� + 1

2

∞∑
�

f�(x, t)P�(μ), (5.138)

so that

f�(x, t) =
√
2� + 1

2

1∫

−1

f (x,μ, t)P�(μ)dμ, (5.139)

which is evaluated with Gauss-Legendre quadrature points {μi } and weights {vi },
and written as the transform

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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f�(x, t) =
N∑

i=1

T (b)
�i f (x,μi , t), (5.140)

where the transformation matrix is

T (b)
�i =

√
2� + 1

2
vi P�(μi ). (5.141)

The inverse of this transformation is

f (x,μi , t) =
N−1∑
�=0

T ( f )
i� f�(x, t), (5.142)

where

T ( f )
i� =

√
2� + 1

2
P�(μi ), (5.143)

and T(b) · T( f ) = I.
The time dependent distribution is expressed in terms of the eigenvalues and

eigenfunctions of B, that is

f�(yi , t) =
N∑

j=0

U (�)
i j C (�)

j exp(−λ j�t), (5.144)

with the C (�)
j evaluated with the initial distributions

C (�)
j =

N−1∑
k=0

(
U−1

)
jk

f�(xk, 0). (5.145)

We choose β = 2 in the initial distribution and solve three integral equations,
Eq. (5.134), with � = 0, 1 and 2. For each, 60 Gauss-Maxwell quadrature points
were sufficient to give the convergent distributions shown in Figs. 5.13, 5.14 and 5.15.
For each �, the collision operator has a discrete and continuous eigenvalue spectrum.
The continuous eigenfunctions are square integrable in the discrete L2 space that
is used (Reinhardt 1979). This is another illustration that the discretization of the
continuum portion of the spectrum leads to numerically convergent solutions.

The relaxation of the anisotropic distribution is shown in Figs. 5.13, 5.14 and
5.15 for mass ratios γ = 1/16, 1 and 16, respectively, for the initial condition,
Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The results for the small mass
ratio approaching the Rayleigh limit are shown in Fig. 5.13. The anisotropy of the
distribution function is maintained while there is a relatively rapid energy exchange.
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Fig. 5.13 Time evolution of the anisotropic distribution for mass ratio M/m = 1/16. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from Shizgal and Blackmore (1983)
with permission from Elsevier

There is an efficient transfer of energy on collision relative to the randomization of
the particle direction. For the unit mass ratio case in Fig. 5.14, the anisotropy and
the energy relaxation appear to occur on the same time scale. In addition, since the
energy transfer for equal masses is very efficient; the energy relaxation is rapid as can
be seen by the growth of the peak in the distribution in the thermal energy regime.
This distribution function in this case is bimodal in speed with a peak at both high
and low speeds.

The results in Fig. 5.15 for the larger mass ratio approaching the Lorentz limit,
show an efficient change in direction of the light particle on collision. The anisotropy
of the distribution disappears quickly and the energy relaxation occurs on a longer
time scale. In the limit of very smallmass ratios, which is applicable for the relaxation
of electrons in atoms, the anisotropy decays many orders of magnitude faster than
the energy relaxation. Thus, for electron transport in the Lorentz limit it is often
sufficient to use the two-term approximation, that is with � = 0 and � = 1 (Pitchford
et al. 1981; Pitchford and Phelps 1982; Shizgal and McMahon 1985; Hagelaar and
Pitchford 2005); see Chap.6, Sect. 6.3.

The relaxation of nonthermal distributions for the small and large mass ratio
limits is well approximated by a Fokker-Planck equation (Andersen and Shuler
1964) as discussed in Chap.6, Sect. 6.1.3. The results shown, computed with a

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Fig. 5.14 Time evolution of the anisotropic distribution for mass ratio M/m = 1. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from Shizgal and Blackmore (1983)
with permission from Elsevier

spectral/pseudospectral method, provide useful graphically accurate depictions of
the different behaviour in these limits.

5.7.2 A Spectral Method of Solution of the Milne Problem

TheMilne problem, depicted in Fig. 5.16, refers to the diffusion of aminor constituent
of mass m in a background species of mass M considered to be at equilibrium at
temperature Tb (Lindenfeld and Shizgal 1983). The vertical line at r = 0 separates
the medium that occupies the right half-space, r > 0, from the vacuum that is in
the left half-space r < 0. A current density of magnitude j directed in the negative
r -direction exists in the medium. The problem consists of determining the steady
velocity distribution of the minor species within the half-space r > 0 and the angular
distribution of emerging particles at the boundary subject to the condition that there
are no particles incident from the left onto the medium. These boundary conditions
are the same as those used for the radiative transfer problem in Sect. 5.3. For γ → ∞,
we have the Lorentz limit and the one-speed radiative transfer problem. This system
is a typical rarefied gas dynamical half-space problem (Williams 1971; Cercignani
1988; Williams 2005).
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Fig. 5.15 Time evolution of the anisotropic distribution for mass ratio M/m = 16. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from (Shizgal and Blackmore 1983)
with permission from Elsevier

Fig. 5.16 The geometry of
the Milne problem; The
vertical line separates the
vacuum from the medium.
The orientation of the
particle velocity, v, relative
to the radial direction in
space, r, is θ. There is a
constant source of particles
of flux j at infinity

Far from the boundary, in the positive r -direction, hydrodynamic equations are
valid, which for the present model is the diffusion equation,

j = −D
dn(as)(r)

dr
. (5.146)

This is the usual diffusion equation in the collision dominated regime that relates
the flux j and the gradient of the asymptotic density profile, n(as)(r) and D is the
diffusion coefficient. One finds that the extrapolation of the linear asymptotic depen-
dence of the actual density profile intersects the r -axis at r = −q, where q is the
extrapolation length and is a measure of the departure from hydrodynamic behaviour
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near the boundary. The calculation of the density and temperature profiles and the
extrapolation length are the main objectives.

For steady-state conditions, the Boltzmann equation for the velocity distribution
function of test particles, f (r, v,μ), is

vμ
∂ f (r, v,μ)

∂r
= nb(r)L[ f (r, v,μ)], (5.147)

where μ = cos(θ) and θ is the angle between v and the positive r -axis as shown
in Fig. 5.16. In Eq. (5.147), nb(r) is the number density of the background medium
and the linear Boltzmann collision operator for atom-atom collisions is defined by
Eq. (5.104) except that the background density appears explicitly. We choose a hard
sphere cross section, σel = πd2, and rewrite the Boltzmann equation in dimension-
less form.

With the transformation to dimensionless spatial variable,

z = πd2

r∫

0

nb(r
′)dr ′, (5.148)

which is the “optical depth” of the medium, the Boltzmann equation can be
written as

xμ
∂ f (z, x,μ)

∂z
= nb(r)L[ f (z, x,μ)], (5.149)

where L = L/(πd2v0), f = f [v0/nb(r)πd2]3, v0 = √
2kB Tb/m and x = v/v0 is

the reduced speed.
We seek solutions of this equation subject to the boundary condition that no

particles in the positive μ region return to the medium, that is

f (0, x,μ) = 0, 0 < μ < 1. (5.150)

The general solution is written as the sum of a spatially transient part, f tr , and an
asymptotic part, f as , that is

f = f tr + f as . (5.151)

The transient solution dominates near the z = 0 boundary and it is anticipated that
it decays out in a distance of the order of a few mean free paths. The asymptotic
solution dominates at large distances where hydrodynamics is expected to be valid.

The transient solution is of the form,

f tr (z, x,μ) =
∞∑

k=1

akeλk z Rk(x,μ), (5.152)
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where λk and Rk(x,μ) are the spatial eigenvalues and eigenfunctions, respectively,
given by

L[Rk] = (zμ)λk Rk . (5.153)

We choose basis functions which are products of spherical harmonics and associated
Laguerre polynomials, L(�+1/2)

n (x), that is

φnl(x,μ) = Nn�L(�+1/2)
n (x)P�(μ), (5.154)

where Nn� =
√ √

πn!(2l+1)
2Γ (n+�+ 2

3 )
is the combined normalizations of the Sonine-Laguerre

and Legendre polynomials. The eigenfunctions and eigenvalues are determined with
the expansion of Rk(x,μ) in the basis functions φn�(x,μ)

Rk(x,μ) = exp(−x2)

π3/2

∞∑
n=0

∞∑
�=0

bk
n�φn�(x,μ). (5.155)

The eigenvalue problem is then converted to the finite set of linear equations,

N∑
n′=0

L∑
�′=0

(
L(�)

nn′δ��′ − λk Mn�,n′�′
)

bk
n′�′ = 0. (5.156)

The quantities L(�)

n,n′ and Mn�,n′�′ are the matrix elements of the collision operator
and of xμ in the drift term on the left hand side of Eq. (5.149), respectively. The
matrix elements are defined by

L(�)

nn′ = 〈ψn�|L(�)|ψn′�〉,
Mn�,n′�′ = 〈ψn�|xμ|ψn′�′ 〉. (5.157)

and Mn�,n′�′ is given by

Mn�,n′�′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l + 1)
√

(n + � + 3
2 )/(2l + 1)(2l + 3), n′ = n, l ′ = l + 1

−(� + 1)
√

n/(2� + 1)(2� + 3), n′ = n − 1, l ′ = � + 1

�

√
(n + � + 1

2 )/(4�
2 − 1), n′ = n, l ′ = � − 1

−�
√

(n + 1)/(4�2 − 1), n′ = n + 1, �′ = � + 1

0, otherwise.

and determined with the recurrence relations for the Legendre and associated
Laguerre polynomials, namely,



5.7 Two Dimensional Anisotropic Distributions 305

μP� = 1

2� + 1

[
(� + 1)P�(μ) + �P�−1

]
,

x L(�+1/2)
n−1 (x) = nL(�+1/2)

n−1 (x) − nL(�+1/2)
n (x) − (n + � − 1/2)L(�−1/2)

n−1 . (5.158)

Numerical diagonalization of the matrices in Eq. (5.156) with a QZ algorithm
(Golub and Van Loan 1996), also known as the Schur decomposition, gives approx-
imate eigenvalues and eigenfunctions to order K = (N + 1)(L + 1). The transient
solution is written as

f tr (z, x,μ) =
1
2 K−1∑
k=1

akeλk z Rk(x,μ). (5.159)

The spatial eigenvalues, λk , which includes the zero eigenvalue, occur in positive
and negative pairs so that the sum over k in Eq. (5.152) includes only nonzero neg-
ative λk (Lindenfeld and Shizgal 1983; Alterman et al. 1962). This is similar to the
radiative transfer problem in Sect. 5.3. If the positive eigenvalues are retained, the
solution diverges. Any discretization of the Boltzmann equation without eliminating
the positive spatial eigenvalues will lead to spurious results (Pierrard and Lemaire
1998).

The asymptotic solution is written in the form

f as(z, x,μ) = −( j/D) f M (x)[q + z − μU (p)], (5.160)

where the dimensionless flux and diffusion coefficient are given by j = j/v0
[n1(r)πd2]3 and D = D/[v0/n1(r)πd2], respectively. The function U (x) satisfies
the Chapman-Enskog equation for diffusion (Chapman and Cowling 1970), that is

L[μU (x)] = −xμ, (5.161)

and is solved with the expansion

μU (x) =
∞∑

n′=0

dn′ψn′1(x,μ). (5.162)

Consequently, the solution of Eq. (5.161) is given by

∞∑
n′=0

L(1)
n′,ndn′ = − 1√

2
δn,0 (5.163)

and the diffusion coefficient is

D = d0√
2
. (5.164)
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The advantage of the associated Laguerre basis functions is that the diffusion
coefficient is given in terms of the one expansion coefficient, d0. However, the matrix
equation, Eq. (5.163), must be inverted and the convergence of d0 verified.

The general solution of the Boltzmann equation is written as the sum of the
transient solution and the asymptotic solution, that is

f (z, x,μ) = F(x)

⎡
⎢⎣

1
2K −1∑
k=1

akeλk z
L∑

�=0

N∑
n=0

bk
n�ψn�(x,μ)

+ 1

D

(
q + z −

N∑
n=1

dnψn�(x,μ)

)]
. (5.165)

The coefficients bk
n� and λk are determined with the solution of the eigenvalue

problem, Eq. (5.156). The dk coefficients are calculated with the inversion of the
Chapman-Enskog equation, Eq. (5.163). The general solution is then completely
specified with the (K/2− 1) ak coefficients and the extrapolation length with appli-
cation of the boundary condition, Eq. (5.150).

However, it should be clear that the expansion Eq. (5.165) cannot satisfy exactly
this boundary condition for all x and μ. There are several different methods to use
to apply the boundary condition and no one method is a priori better than the others.
This is a limitation of a spectral method based on polynomial basis functions. We do
not provide the details of this aspect of the problem discussed elsewhere (Lindenfeld
and Shizgal 1983; Garcia and Siewert 1996; Ghosh 2014) and references therein. The
Marshak boundary condition (Davison 1957; Williams 1971) which sets moments
of the distribution function to zero at the boundary provides convergent results with
modest sized basis sets (N = 9 and L = 11).

One of the main objectives is the density profile of the test particle which is shown
in Fig. 5.17. The solid lines are the resultswith the solution of theBoltzmann equation
whereas the dashed lines represent the extrapolation of the asymptotic profiles for
large x . The intercept on the negative z axis is −q.

The extrapolation length, q, versusmass ratio is shown in Table5.11with a limited
basis set (N = 9, L = 11). The value of the extrapolation length in the one-speed
case (γ → ∞) is 0.7104 to four significant figures. A more precise value reported
by Loyalka and Naz (2008) is 0.710446089599.

The Milne problem was also considered with the Coulomb cross section for col-
lisions between charged particles (Barrett et al. 1992) for which the Boltzmann
collision operator is replaced with the Fokker-Planck differential operator. This has
been referred to as the Coulomb Milne problem (Lie-Svendsen and Rees 1996) and
as amodel for the outflow of light ions from the high latitude ionosphere and the solar
wind (Echim et al. 2011). The Fokker-Planck equation is also the basis for the study
of the plasma sheath problem. This is a Milne problem coupled to the Poisson equa-
tion which provides the electric field in the sheath near an electrode (Vasenkov and
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Fig. 5.17 The solid lines represent the density profile from the solution of the Boltzmann equation.
The dashed lines are the asymptotic linear variation extrapolated back to the negative z axis with
the intercept equal to −q. The mass ratios from top to bottom are γ = ∞ (the one-speed case),
10, 1 and 1/9, respectively. Reproduced from Lindenfeld and Shizgal (1983) with permission of the
American Physical Society

Table 5.11 The variation of the extrapolation length versus mass ratio γ with the solution of the
Boltzmann equation with N = 9 Sonine-Laguerre polynomials and L = 11 Legendre polynomials

γ = M/m q

1 0.9370

1.5 0.8564

2.333 0.7984

4 0.7569

9 0.7278

19 0.7170

39 0.7123

99 0.7097

∞ 0.7104

Reproduced in part fromLindenfeld andShizgal (1983)with permission from theAmericanPhysical
Society

Shizgal 2000, 2002) analogous to the recent treatment of the behaviour of electric
arcs (Lowke and Tanaka 2006).

The Boltzmann equation, Eq. (5.149), may appear similar to the initial value prob-
lem whereby z plays the role of t , but there is an important distinction owing to the
occurrence of μ on the left hand side. If one were to divide through by zμ and inte-
grate directly in z there would be spurious results as noted by Pierrard and Lemaire
(1998) in their modeling of the terrestrial polar wind.
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5.7.3 A Mixed Spectral/Pseudospectral Solution
of the Boltzmann Equation for the Escape
of Light Atoms from a Planetary Atmosphere

The Milne problem presented in Sect. 5.7.2 also serves as a model for the escape
of a minor species from a planetary atmosphere. For the terrestrial atmosphere, this
refers to the escape of atomic hydrogen and helium from the high altitude rarefied
region of the atmosphere referred to as the exosphere. The bottom of the exosphere
is the exobase where the mean free path of the major species, namely atomic oxygen,
is equal to the barometric scale height (Fahr and Shizgal 1983). If we assume that
the distribution function of escaping species is a Maxwellian, the equilibrium escape
flux from the exobase is the Jeans flux given by

FJ = 2π

∞∫

vesc

π/2∫

0

F(v)v cos θ sin θdθv2dv,

= nc

2

√
2kTc

m

(
1 + λesc

)
e−λesc , (5.166)

where λesc = mv2esc/2kB Tc is the escape parameter, vesc = 11.2km/s is the escape
speed andTc is the temperature at the exobase often referred to as the critical level. The
atmosphere above the exobase is assumed to be collisionless. The loss of energetic
particles from the atmosphere perturbs the distribution function from Maxwellian
such that the nonequilibrium escape flux, F , is less than the equilibrium Jeans escape
flux, FJ , and F/FJ < 1. This is analogous to the nonequilibrium effects in reactive
systems discussed in Sect. 5.4.4 except that in this application we are treating a
spatially nonuniform system.

We consider a slab of atmosphere so that a plane parallel model is sufficient. We
measure altitude in terms of the atmospheric “optical depth” that is

z = −
rtop∫

r

σtot nb(r
′)dr ′, (5.167)

where nb(r) is the density of the heavier background gas bound to the planet. The
Boltzmann equation for the distribution function of the minor escaping constituent,
with neglect of the gravitational force in the drift term (Shizgal andBlackmore 1986),
is Eq. (5.147) as in the Milne problem, that is,

xμ
∂ f

∂z
= J̃ [ f ], (5.168)

whereμ = cos θ and J̃ = √
m/2kB Tb J/nb(r)πd2. The physical situation is depicted

in Fig. 5.18 where the exobase is the dashed line at z = −1, where the mean free
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Fig. 5.18 Plane parallel
model of an atmosphere with
the critical level at z = −1
measured in terms of the
atmospheric optical depth.
The lower boundary at
z = −Δ is in the collision
dominated atmosphere
whereas the escape of atoms
is from the “top” of the
atmosphere at z = 0

path is equal to the atmospheric scale height. At the lower boundary in the collision
dominated region (the asymptotic condition in the Milne problem), the distribution
is assumed to be a Maxwellian modified with a drift to account for the flux of
particles from below. This is the Chapman-Enskog regime far from the top boundary.
Therefore, at z = −Δ, which is sufficiently deep within the collision dominated
region, we impose the boundary condition with an anisotropy linear in μ, that is

f (x < xesc,μ,−Δ) = F(x) + μU (x), (5.169)

where F(x) is the Maxwellian and U (x) is to be determined.
This is supplemented with boundary conditions at the top taking into account the

escape speed from the planet. Particles with less than the escape speed get reflected
back down so that

f (x < xesc,−μ, 0) = f (x < xesc,μ,−Δ), μ > 0, (5.170)

and there are no incoming particles in excess of the escape speed, so that

f (x > xesc,μ, 0) = 0, μ < 0. (5.171)

Shizgal and Blackmore (1986) used a mixed spectral/pseudospectral method of
solution of the Boltzmann equation expressed in terms of the expansion of the
anisotropy of the distribution function in Legendre polynomials

f (x,μ, z) =
L∑

�=0

f�(x, z)P�(μ) (5.172)

which yields the set of coupled integral equations

∂ f�(x, t)

∂t
+ x

(
a�

∂ f�−1(x, t)

∂z
+ a�+1

∂ f�+1(x, t)

∂z

)
=

∞∫

0

k(�)
L (x, y) f�(y, t)dy

− Z(x) f�(x, t), (5.173)
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where a� = �/
√

(2� − 1)(2� + 1) and the recurrence relation for the Legendre poly-
nomials has beenused.WediscretizeEq. (5.173)with theGauss-Maxwell quadrature.
However, in view of the boundary condition dependent on the reduced critical escape
speed, xesc = √

λesc, we divide the semi-infinite speed interval into two subinter-
vals, namely [0,√λesc] and [√λesc,∞] so as to apply the boundary condition. Two
sets of polynomials orthogonal with respect to w(x) = x2e−x2 separately on these
intervals, together with the associated quadratures are calculated with the methods
presented in Chap.2. This procedure can be compared to the “double Gauss” method
in radiative transfer (Sykes 1951; Stamnes et al. 1988) with the half-range Legendre
polynomials.

Although we have retained the time dependence in Eq. (5.173), we are interested
in the steady state problem. The Boltzmann equation is discretized with Gauss-
Legendre quadrature points in z with the transformation of the interval [−1, 1] to
[0,−Δ]with quadrature points at the interval boundarieswith the appropriate scaling.
The two interval Maxwell quadratures in reduced speed, x , are used to discretize the
kernels k(�)

L (x, y). The derivativewith respect to z is evaluatedwith the physical space
representation of the derivative operator with the transformed Legendre quadratures.
As the dimension of the resulting linear matrix equation is large, the time dependence
is retained and the steady solution determined with a time iteration. In this scheme
the ith iterate is given by

Δ f (�)
i (xn, zm) =

[ N∑
j=1

B(�)
nj f (�)

i (x j , zm)

+ xn

M∑
k=1

Dmk

(
a� f (�−1)

i (xn, zk) + a�+1 f (�+1)
i (xn, zk)

)

− S[ f (�)
i (xn, zm) − g(�)(xn, zm)]

]
Δt, (5.174)

where B(�)
nj is the physical space representation of the kernels and Dmk is the Gauss-

Legendre physical space matrix derivative operator in altitude, z.
An ansatz is made for the form of the initial distribution, given by

f (0)(x,μ, z) = F(x)

(
− z

Δ

[
1 + 3(1 + λ) exp(−λ)μ

2
√

π

]

+
[
1 + z

Δ

]
[H(xc)H(μ) + h(−μ)]

)
, (5.175)

where the Heaviside function is H(x) = 1 for x > 0 and H(x) = 0 for x < 0.
Equation (5.175) satisfies the boundary condition at the top (z = 0) and the initial
form of the anisotropy at the bottom (z = −Δ). The Legendre polynomial expansion
of Eq. (5.175) provides the initial Legendre coefficients, f (�)

0 (x, z).

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The term with S at the end of Eq. (5.174) is an added convergence term where at
t = 0, g(�) = f (�)

0 . At each time step, the boundary condition at the top (z = 0),

Eq. (5.170), is imposed by transforming f (�)
i (xn, 0) to fi (xn,μ, 0) and setting the

distribution function for incoming particles (μ < 0) to be equal to outgoing particles
(μ > 0) except for values of x >

√
λesc. Once the top boundary condition is

imposed, the distribution function is transformed back to the Legendre polynomial
basis. When the iterative scheme yields a converged solution g(�) = f (�)

i−1 and the
last term in small square brackets in Eq. (5.174) will be zero.

This iterative procedure is very similar to the one used by (Lie-Svendsen and
Rees 1996) concerning the escape of the minor ion, He+, in a background of O+
with the replacement of the integral Boltzmann collision operatorwith the differential
Fokker-Planck operator for Coulomb collisions. The authors refer to this problem as
the Coulomb Milne problem (Barrett et al. 1992). Thus the Milne problem serves as
the basis for several different physical systems in space and plasma physics.

The principal objective is to determine the reduction of the actual flux, F , from
the Jeans’ flux, FJ . The ratio F/FJ < 1 owing to the depletion of particles with
v > vesc in the tail of the Maxwellian. The ratio F/FJ is shown in Fig. 5.19 versus
Tc, the temperature at the exobase. The results of the formalism described here are
shown as the solid line with solid circles in comparison with two separate Monte
Carlo simulations (Chamberlain and Campbell 1967; Brinkman 1970) and from the
results reported by Pierrard (2003). The lower boundary condition in (Pierrard 2003)
is not the asymptotic Chapman-Enskog distribution for this collisionally dominated
regime. It is aMaxwellianwith only upwardmoving (μ > 0) particles. It is reasonable
to expect that if the lower boundary is sufficiently deep in the atmosphere, that within
a few mean free paths upwards from the lower boundary, the distribution function
would attain the same form, Eq. (5.169), used by Shizgal and Blackmore (1986), that

0.8 1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

Fig. 5.19 The variation of the nonequilibrium escape flux, F , relative to the equilibrium Jeans
flux, FJ versus the temperature at the exobase, Tc; the different results correspond to the work
of SB (Shizgal and Blackmore 1986), B (Brinkman 1970), CC (Chamberlain and Campbell 1967)
and P (Pierrard 2003). Reproduced from Shizgal and Blackmore (1986) and Pierrard (2003) with
permission from Elsevier
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is, a drifting Maxwellian. With increasing altitude, the distribution function will be
further modified owing to the escape of particles at the top.

5.7.4 Electric Field Induced Ion Drift in Buffer Gases;
Applications to Ionospheric and Space Physics

A classic problem in kinetic theory is the drift of ions of mass m dilutely dispersed
in a background atomic or molecular gas of mass M and density nb(r) under the
influence of an external spatially uniform and steady electrostatic field (Danailov et
al. 2008; Viehland and Chang 2012). The distribution function is non-Maxwellian
in speed, x , anisotropic in velocity and depends on the electrostatic field strength,
E , and the background density, nb(r). The steady state Boltzmann equation for a
gaseous ion in a background of a single atomic gas is

v · ∇ f + ZionE
m

· ∇v f = L f, (5.176)

where Zion is the ion charge, E is the electrostatic field directed along the polar
axis and L is the linear collision operator given by Eq. (5.104). The anisotropy of
the distribution function in velocity is expressed by the dependence on μ = cos θ
where θ is the angle between z and v. The Chapman-Enskog method discussed in
Sect. 5.4.1 can be used for small electrostatic field strengths to calculate the diffusion
coefficient D and the mobility K that appear in the expression for the ion flux

Fion = D∇nb(r) + nb(r)K E. (5.177)

The transport coefficients, D and K , are determinedwith the differential cross section
σ(g, θ) for a particular ion-atomsystem. In this small E limit, themobility is related to
the diffusion coefficient by theNernst-Townsend-Einstein relation K = Zion D/kB T
(McDaniel and Mason 1973) and derived also on the basis of Brownian motion
(Newburgh et al. 2006).

At higher electrostatic field strengths, the distribution function is more strongly
perturbed fromaMaxwellian in speed and anisotropy.We assume that the ions diffuse
with a spatially uniform distribution and the Boltzmann equation for the distribution
function, f (v), is given by

Zion

m
E · ∇v f = L f. (5.178)

The distribution function is expanded in the direct product of the Sonine-Laguerre
functions in x2 and Legendre polynomials in μ, that is

f (x,μ) = F(x)

∞∑
n=0

∞∑
�=0

fn,�x�S(�+1/2)
n (x2)P�(μ), (5.179)
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This procedure is very similar to the one used to treat theMilne problem in Sect. 5.7.2.
With the substitution of Eq. (5.179) into (5.178), multiplication by the basis functions
and integration over v, as we have done previously in other applications, we get the
following set of linear equations for the expansion coefficients (see Sect. 6-1-1 in
Mason and McDaniel (1988)),

Zion E

Nm

√
m

2kB T

[
�(� + 1

2
+ n) fn,�−1 − (� + 1) fn−1,�+1

]
= (� + 1

2
)
∑
k=0

L(�)
nk fn,�,

(5.180)

where the matrix elements of the linear collision operator, L(�)
nk , are given by Eq.

(6-1-19), and Table5-4-2 in McDaniel and Mason (1973). The collision operator
matrix elements are diagonal in � and the terms in � + 1 and � − 1 from the drift
term on the left hand side are coupled arising from the recurrence relations of the
Legendre polynomials. The recurrence relation for the Sonine-Laguerre polynomials
has also been used.

This is the spectral Galerkin solution of the Boltzmann equation with the Sonine-
Laguerre basis functions orthogonal with the Maxwellian weight function. The
mobility is given in terms of the single f0,1 coefficient which is coupled to all the
higher order coefficients. With increasing electric field strength, the anisotropy and
non-Maxwellian features of the distribution function increase and the convergence
for the mobility is slow and may even diverge.

To improve the convergence at higher electric field strengths, basis functions
orthogonal with a weight function that closely approximates the form of the antic-
ipated solution are preferable. In Chap.4, we demonstrated the use of the scal-
ing of the quadrature weights and points to improve the convergence of certain
test functions with a scaling factor s which we identified with a “scaling” tempera-
ture, that is s2 = Ts/T . In the ion-mobility literature (McDaniel and Mason 1973;
Lin et al. 1979b; Viehland and Lin 1979; Mason andMcDaniel 1988), this procedure
is referred to as the two-temperature method with the reduced speed defined with Ts

rather than with T . The matrix elements depend on T and Ts where Ts is varied to
accelerate the convergence much in the same way as quadrature points are scaled.

However, with further increase in the electric field strength, the two-temperature
method also fails to provide accurate results and a different set of basis func-
tions is constructed, motivated again by choosing a weight function that better
approximates the anisotropy of the anticipated distribution function. Thus, a drifting
bi-Maxwellian weight function in terms of parallel, v|| = vμ, and perpendicular,
v⊥ = v

√
1 − μ2, velocity components relative to the electric field direction are

used, that is,

f (v‖, v⊥) = 4π
√

m

2kB T‖

(
m

2kB T⊥

)
exp

(
− mv2⊥

2kB T⊥

)
exp

(
− m(v‖ − W )2

2kB T‖

)
.

(5.181)

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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with an unknown drift velocity W and unkown temperature parameters, T⊥ and
T‖. The expansion in terms of reduced energies, y⊥ = mv2⊥/2kB T and y‖ =
m(v‖ − W )2/2kB T , is

f (y‖, y⊥) = e−y2‖−y2⊥
∞∑

n=0

∞∑
m=0

cnm Hn(y‖)S(m)(y2⊥), (5.182)

with y‖ ∈ (−∞,∞) and y⊥ ∈ [0,∞]. This approach is referred to as the three-
temperature model as it depends on T‖, T⊥ and T . The basis functions used to model
ion velocity distributions in the high-latitude ionosphere (St.-Maurice and Schunk
1976, 1979) are also the classical Laguerre polynomials L(0)

n (y⊥) and Hermite poly-
nomials, Hn(y‖).

The basis set used by researchers in gaseous ion transport is the product of three
Hermite polynomials in the Cartesian velocity coordinates (Lin et al. 1979b; Mason
andMcDaniel 1988). The matrix elements of the collision operator can be calculated
but with greatly increased complexity; see the Appendix in Lin et al. (1979b). The
calculations are iterative in that an initial estimate of T⊥, T‖ and W must be made
and subsequently updated from the moment solution. Thus the calculation has two
convergence issues, namely (1) the convergence of the polynomial expansion and
(2) the convergence of the iteration.

Viehland (1994) used a Gram-Charlier approach (Blinnikov and Moessner 1998)
with a more flexible weight function with several unknown parameters that are
updated with an iterative solution of the Boltzmann equation. The parameters in
the weight function include as in the other methods W , T‖, T⊥ and Ts as well as the
skewness and the kurtoses parallel and perpendicular to the electrostatic field. There
are still other parameters related to energy and velocity correlations. The calculation
of the matrix representation of the collision operator in this basis set defined by this
weight function is more involved than for the two and three temperature models. The
details of these calculations can be found in the Appendix of Lin et al. (1979b) with
the matrix elements are expressed in terms of summations with 25 indices. With this
approach, it is possible to compute gaseous ion transport coefficients directly from
ab initio potential energy functions for atomic ions in atomic gases, with greater
precision and accuracy than they can be measured.

It is clear that the choice of weight function and associated basis functions is
crucial in the modelling of ion-mobilities as well as in other similar applications in
ionospheric and space science. In the terrestrial ionosphere there is a geomagnetic
field, B, perpendicular to the ionospheric electric field E. The use of different weight
functions and polynomial basis functions in ionospheric physics was reviewed by
St.-Maurice and Schunk (1979). The objective is to derive a small set of partial differ-
ential equations in the lower order moments. This approach is very similar to Grad’s
13-moment method (Grad 1949; Struchtrup 2005). Models with an increasingly
larger number of moments have been developed (Schunk 1977; Ma and St.-Maurice
2008).
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Themain thrust of the theoretical methods for the solution of the Boltzmann equa-
tion is to choose a weight function close to the anticipated solution. A non-classical
weight function in y⊥ is derived with the Bahatnager-Gross-Krook relaxation time
approximation to the collision operator (Bhatnagar et al. 1954) that yields an analytic
solution to the Boltzmann equation (St.-Maurice and Schunk 1974; Hubert 1983).
This nonclassical weight function is then used to define a set of polynomials that
provide a more rapid convergence than the expansions based on the Sonine-Laguerre
polynomials (Shizgal and Hubert 1989). This basis set has also been used to pro-
vide lower order approximations of the nonequilibrium speed distributions observed
in astrophysical winds (Leblanc and Hubert 1997). This subject is well beyond the
scope of this book but we emphasize the strong overlap between these research fields.

5.8 The Nonlinear Isotropic Boltzmann Equation

In Sect. 5.5, we determined the eigenvalue spectrum of the collision operator for the
linearized Boltzmann equation with expansions in the Sonine-Laguerre polynomi-
als as well as with a multidomain spectral element method. The time scale of the
approach to equilibrium for initial distributions close to the equilibriumMaxwellian
distribution is determined by the eigenvalues of the linearized collision operator.
In particular the lowest nonzero eigenvalue determines the final approach to equi-
librium. In this section, we are concerned with the approach to equilibrium of a one
component spatially uniform gas determined with the nonlinear Boltzmann equation
given by

∂ f (v, t)

∂t
=
∫ ∫ [

f1(v′
1) f (v′) − f1(v1) f (v)

]
gσ(g,Ω)dv1, (5.183)

analogous to Eq. (5.30) without the gradients in space and velocity in the drift term
on the left hand side. For this initial value problem, we assume that the distribution
function is isotropic.

This problem has been considered by many researchers since the time of Ludwig
Boltzmann and a complete review is a daunting task. We highlight here some of the
major advances and also provide the results of recent numerical simulations.

The interest in the time evolution of the nonlinear Boltzmann equation increased
dramatically with the discovery of an analytic solution for the Maxwell molecule
model with the isotropic cross section, σ(g,Ω) = κ/g. The result was originally
reported in the MSc thesis by Krupp (1967) and later published independently by
Krook and Wu (1976) and by Bobylev (1976, 1984). This explicit time dependent
solution is given by

fBK W (x, t) = 2x2e−x2/K (t)

√
πK (t)

[
5K (t) − 3

K (t)
+ 2(1 − K (t))

K 2(t)
x2
]
,
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where t is in units of 4πnκ and K (t) = 1 − 2
5e−t/6, analogous to a time dependent

temperature. This model system serves as a benchmark to test different numerical
methods for the solution of the nonlinear Boltzmann equation (Filbet et al. 2006;
Filbet and Mouhot 2011; Wu et al. 2013; Ghiroldi and Gibelli 2014). The early work
on the nonlinear Boltzmann equation was reviewed by Ernst (1981, 1984).

5.8.1 Finite Difference Method of Solution of the Nonlinear
Boltzmann Equation; Approach to Equilibrium

We restrict our attention to isotropic distributions and the hard sphere collision cross
section. Spectral methods with an expansion of the isotropic time dependent distri-
bution function in the Sonine-Laguerre polynomials were employed long ago (Abe
1971; Weinert et al. 1980). Additional results were reported in a series of papers by
Kügerl and Schürrer (1990) and by Ender et al. (2011).

The distribution function is expanded in the set of the Sonine-Laguerre polyno-
mials S(n)(x2), that is

f (x, t) = 4√
π

x2e−x2
∞∑

n=2

cn(t)S(n)(x2), (5.184)

where c0(t) = 0 and c1(t) = 0 owing to particle and energy conservation, respec-
tively. The expansion coefficients are given by

cn(t) =
√

π

2

n!
Γ (n + 3/2)

∞∫

0

f (x, t)S(n)(x2)dx . (5.185)

With theSonine-Laguerre expansion, the nonlinearBoltzmannequation is reduced
to an infinite set of coupled ordinary differential equations for time dependent c j (t)
coefficients. The substitution of Eq. (5.184) into (5.183) yields the system of nonlin-
ear ordinary differential equations

dcn(t)

dt
=

∞∑
k=2

Jnkck(t) +
∞∑

k=2

∞∑
�=2

N j,k�ck(t)c�(t), n ≥ 2 (5.186)

where the matrix elements of the linearized operator are denoted by Jnk ≡ 〈n|J |k〉
given by Eq. (5.65) and the nonlinear tensor, Nn,k�, is defined by

Nn,k� =
∫ ∫ ∫

F1F2S(n)
1

[
S(k)′
1 S(�)′

2 − S(k)
1 S(�)

2

]
σgdΩdv1v2, (5.187)

and evaluated as described elsewhere (Shizgal and Karplus 1970; Abe 1971; Shiz-
gal 1971; Kügerl and Schürrer 1990; Weinert et al. 1980). The Maxwellian weight
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function in Eq. (5.187) is denoted by F . The spectral method based on the set of
equations, Eq. (5.186) is analogous to the solution of the linearized Boltzmann equa-
tion in Sect. 5.4.3 with the added nonlinear terms.

The solution of the nonlinear Boltzmann equation is then obtained with the choice
of an initial distribution, which provides the initial values of the expansion coef-
ficients, cn(0), and the subsequent numerical integration of the set of equations,
Eq. (5.186). This method of solution is limited to initial distributions close to the
equilibrium Maxwellian owing to the difficulty of accurately calculating the non-
linear matrix elements Nn,k� as well as the convergence of the initial distribution in
the Sonine-Laguerre polynomials. The expansion in Sonine-Laguerre polynomials
can suffer from spurious oscillations and give distributions that become negative in
some regions. However, the method is attractive as the final approach to equilibrium
will be determined by the linear terms in Eq. (5.186) and thus the spectral properties
of J , discussed in Sect. 5.5.2. This spectral method of solution has been reported by
other researchers (Abe 1971; Weinert et al. 1980; Kügerl and Schürrer 1990; Ender
et al. 2011).

5.8.2 Finite Difference Discretization of the Nonlinear
Boltzmann Equation

We solve the nonlinear Boltzmann equation with a stable finite difference method
and determine the expansion coefficients, cn(t), with the numerical solution. For
the hard sphere cross section, we define a dimensionless time t in units of τ =√

m/πkB Tb/(4nd2) and the reduced speed y = √
2kB T/m. We rewrite the initial

value problem defined by the nonlinear Boltzmann equation in the equivalent form
(Kügerl and Schürrer 1990; Kabin and Shizgal 2003),

∂ f (y1, t)

∂t
= Fin(y1, t) − Fout (y1, t), (5.188)

where

Fout (y1, t) = f (y1, t)

∞∫

0

Sout (y1, y2) f (y2, t)dy2, (5.189)

and

Fin(y1, t) =
∞∫

0

∞∫

0

Sin(y′
1 → y1; y′

2) f (y′
1, t) f (y′

2, t)dy′
1dy′

2. (5.190)
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For hard spheres, the scattering kernels can be written as follows (Kügerl and
Schürrer 1990):

Sout (y1, y2) = 1

2

⎧⎪⎪⎨
⎪⎪⎩

y1

(
1 + y22

3y21

)
for y1 ≥ y2,

y2

(
1 + y21

3y22

)
for y1 ≤ y2,

Sin(y′
1 → y1, y′

2) = y1
y′
1y′

2
min(y1, y2, y′

1, y′
2)H(y22 ),

where H(x) is the Heaviside step function and from energy conservation we have
that y21 + y22 = y′2

1 + y′2
2 . Particle number conservation gives the out-scattering kernel

in terms of the in-scattering kernel by an integration, that is

Sout (y1, y2) =
∞∫

0

Sin(y1 → y′
1, y2)dy′

1.

We also have the detailed balance symmetry property

Sin(y′
1 → y1, y′

2) = Sin(y′
2 → y1, y′

1). (5.191)

We define the integral quantities

F1(y1, t) =
y1∫

0

f (y, t)dy,

F2(y1, t) =
∞∫

y1

f (y, t)

y
dy, (5.192)

so that Fin defined by the double integral (5.190) can be written as

Fin =
√

π

2

[
2v1F1(y1, t)F2(y1, t) + y21 F2

2 (y1, t) + I (y1, t)

]
,

where the last term is the integral

I (y1, t) =
∫ ∫

S0

y1y2
y′
1y′

2
f (y′

1, t) f (y′
2, t)dy′

1dy′
2. (5.193)

The two dimensional integral is evaluated over the area S0 defined by a circle
y′2
1 + y′2

2 = y21 and the straight lines y′
1 = y1 and y′

2 = y1. This is a significant
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simplification of the original expression (5.190) because we have reducedmost of the
double integrals to the products of single integrals.With the substitution, ξ1 = y′2

1 /y21
and ξ2 = y′2

2 /y21 , we get

I (y, t) = y21
4

∫ ∫

S1

√
ξ1 + ξ2 − 1

ξ1ξ2
f (y′

1, t) f (y′
2, t)dξ1dξ2. (5.194)

where S1 is a triangle with the vertices at (1, 0), (1, 1), and (0, 1). This integral can
be efficiently evaluated with the cubature rule for a simplex (Stroud 1971).

5.8.3 Time Dependent Solutions

The reduced speed variable, y, is discretized uniformly according to yi+1 = yi + h
on the finite interval [0, ymax ]. The time variable is also discretized according to
tn+1 = tn + Δt . We integrate the nonlinear Boltzmann equation, Eq. (5.188), in t
with an Euler integration algorithm so that the discretized version of the Boltzmann
equation is

f (n+1)(yi ) = f (n)(yi ) + Δt[F (n)
in (yi ) − F (n)

out (yi )]. (5.195)

The term Fn
out (yi ) is determined from Eq. (5.189) with a Simpson rule integration

over y2 on the uniform grid. The double integral over ξ1 and ξ2 in Eq. (5.194) over
the triangle S1 is evaluated by dividing the triangle into several smaller triangles.
The integral over each of these triangles is evaluated with a cubature for a triangle
(Stroud 1971). With this technique, we have simplified the discretization of the in-
scattering integralwhich presents themajor challenge for the solution of the nonlinear
Boltzmann equation.

Figure5.20 shows the time evolution of the distribution function with the initial

distributions (A) f (y, 0) = y2e−5y2 + e4(y−3)2 and (B) f (y, 0) = e−5
√

|y−1|2 +
e−5

√
|y−3|2 . The first has a large peak at y = 3 and a smaller peak at lower speeds.

The second has two large peaks at y = 1 and 3, respectively.We choose ymax = 8 and
500 grid points in y. The time step Δt is taken sufficiently small so that the number
density and temperature are conserved to 8 significant figures. The time dependent
distributions shown in Fig. 5.20 do not drift and the shape evolves to a Maxwellian
shown by the dashed curves.

Wealso consider an initial distribution function f (x, 0) = M(x)
(
5
2 − 2x2+ 4

5 x4
)

used previously (Kügerl and Schürrer 1990), which corresponds to c0(0) = 1,
c1(0) = 0 and cn(0) = 4

5δn2, n ≥ 2, in Eq. (5.185). The function f (x, 0) is a
bimodal distribution with a slightly populated tail. In Fig. 5.21(A), we show the
time dependent solution of the nonlinear Boltzmann equation with this initial condi-
tion. The dashed curve is the equilibrium Maxwellian. In Fig. 5.21(B), we show the
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Fig. 5.20 Time evolution of the distribution function for the dimensionless time in units of τ from
top to bottom equal to 0, 0.1, 0.4, 0.7 and 1.4; the dashed curves are the equilibrium distributions;
(A) initial distribution f (y, 0) = y2e−5y2 + e4(y−3)2 ; (B) f (y, 0) = e−5

√|y−1| + e−5
√|y−3|.

Reproduced fromKabin and Shizgal (2003) with permission from the American Institute of Physics

(A) (B)

Fig. 5.21 (A) Time evolution of the distribution function for f (x, 0) = M(x)
(
5
2 − 2x2 + 4

5 x4
)
;

The reduced times from top to bottom are 0.3, 1, 2 and 3. The dashed curve is the equilibrium
Maxwellian; (B) The time dependence of the time derivative of ln cn(t) showing that the approach
to equilibrium for all coefficients is given by the “spectral gap”, namely λ2. Reproduced from
Sospedra-Alfonso and Shizgal (2012b) with permission from the American Institute of Physics

time dependence of the time derivative of ln cn(t) where the expansion coefficients
are calculated with Eq. (5.185) and a Simpson rule integration over the distribution
function f (n)(yi ) determined with the finite difference solution. It is clear from these
results that the rate of approach to equilibrium is asymptotically the same for all
coefficients and determined by the “spectral gap”, namely λ2 = 0.67123 of the lin-
earized collision operator, J . We have used to advantage a finite difference algorithm
to calculate the coefficients in a spectral representation of the distribution function
without a direct solution of the nonlinear moment equations, Eq. (5.186). A primary
objective has been the demonstration of the approach to equilibrium as given by the
spectral gap.

The solution of the nonlinear Boltzmann equation for nonuniform systems
presents considerable challenges for the accurate representation of distribution
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functions that may vary rapidly in position and velocity. The direct simulationMonte
Carlo (DSMC) method (Bird 1994) has been used for several decades to study such
rarefied gas dynamical problems. The method has been used with success but is
not useful for systems approaching the small Knudsen number collision dominated
regime. Spectral methods, based on Fourier basis functions, for the nonlinear Boltz-
mann equation have been reported recently (Filbet et al. 2006; Heintz et al. 2008;
Filbet and Mouhot 2011; Wu et al. 2013). The method requires that the velocity and
spatial intervals are bounded. The Fourier transform in velocity

f (N )(v) =
N∑

k=−N

f̂kek·v, (5.196)

fk(t) = 1

(2π)3

∫
f (v)e−ik·vdv, (5.197)

is used to represent the distribution function much in the same way as other basis
sets are used. Filbet and Russo (2003) reduced the nonlinear spatially homogeneous
Boltzmann equation, Eq. (5.183), to Fourier form as given by

d f̂k

dt
=

min(N ,k+N )∑
m=max(−N ,k−N )

f̂k−m f̂m [B(k − m, m) − B(m, m)] (5.198)

where the “kernel modes”, B(n, m), are the Fourier transforms of the collision flux
B(g, θ) = gσ(g, θ) in the collision term. The structure of these moment equations
is similar to Eq. (5.186) except that in the former, the linear term has been retained.

An excellent review of current numerical methods for the study of rarefied gas
dynamical flows modelled with the nonlinear Boltzmann equation was presented by
Narayan andKlöckner (2009)where the details of the derivation of Eq. (5.198) can be
found. These authors have also provided a bibliography to the current numericalmod-
eling efforts in this research area which is developing rapidly. Other direct methods
of solution of the nonlinear homogeneous Boltzmann equation include the discon-
tinous Galerkin method (Aleekseenko and Josyula 2014) and the pseudo-spectral
method based on half-range Hermite polynomials (Ghiroldi and Gibelli 2014). A
complete discussion of these recent applications with comparisons would require
another chapter if not a separate volume.
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Davidović, D.M., Vukanić, J., Arsenović, D.: Two new analytic approximations of the Chan-
drasekhar’s H function. Icarus 194, 389–397 (2008)

Davison, B.: Neutron Transport. Oxford University Press, Oxford (1957)
de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984)
Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge Univer-
sity Press, Cambridge (1985)

Desai, R.C., Nelkin, M.: Atomic motions in a rigid sphere gas as a problem in neutron transport.
Nucl. Sci. Eng. 24, 142–152 (1966)

Dickinson, A.S., Certain, P.R.: Calculation of matrix elements for one-dimensional quantum-
mechanical problems. J. Chem. Phys. 49, 4209–4211 (1968)

Driessler, W.: On the spectrum of the Rayleigh piston. J. Stat. Phys. 24, 595–606 (1981)
Driscoll, T.A.: Automatic spectral collocation for integral, integro-differential and integrally refor-
mulated differential equations. J. Comput. Phys. 229, 5980–5998 (2010)

Dudynski, M.: Spectral properties of the linearized Boltzmann operator in Lp for 1 ≤ p ≤ ∞. J.
Stat. Phys. 153, 1084–1106 (2013)

Dziekan, P., Lemarchand, A., Nowakowski, B.: Master equation for a bistable chemical systemwith
perturbed particle velocity distribution function. Phys. Rev. E85, 021128 (2012)

Echim, M.M., Lemaire, J., Lie-Svendsen, O.: A review on solar wind modeling: kinetic and fluid
aspects. Surv. Geophys. 32, 1–70 (2011)

Ender, A.Ya., Ender, I.A., Bakaleinikov, L.A., Flegontova, E.Yu.: Matrix elements and kernels of
the collision integral in the Boltzmann equation. Tech. Phys. 56, 452–463 (2011)



324 5 Integral Equations in the Kinetic Theory of Gases and Related Topics

Ernst, M.H.: Nonlinear model Boltzmann equations and exact solutions. Phys. Rep. 78, 1–171
(1981)

Ernst, M.H.: Exact solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 34, 1001–1017
(1984)

Eskola, L.: Geophysical Interpretation Using Integral Equations. Springer, Netherlands (2012)
Fahr, F.J., Shizgal, B.: Modern exospheric theories and their observational relevance. Rev. Geophys.
Space Phys. 21, 75–124 (1983)

Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland,
Amsterdam (1972)

Filbet, F., Mouhot, C.: Analysis of spectral methods for the homogeneous Boltzmann equation.
Trans. Am. Math. Soc. 363, 1947–1980 (2011)

Filbet, F., Russo, G.: High order numerical methods for the space non-homogenous Boltzmann
equation. J. Comput. Phys. 186, 457–480 (2003)

Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in Nlog2N. SIAM J. Sci.
Comput. 28, 1029–1053 (2006)

Fletcher, A.A.J.: Computational Techniques for Fluid Flow. Springer, New York (1991)
Foch, J.D., Ford, G.W.: The linear Boltzmann equation. In: de Boer, J., Uhlenbeck, G.E. (eds.)
Studies in Statistical Mechanics, pp. 127–154. Elsevier, Holland (1970)

Ford, G.W.: Matrix elements of the linearized collision operator. Phys. Fluids 11, 515–521 (1968)
Gad-el-Hak, M.: The fluid mechanics of microdevices—the Freeman scholar lecture. J. Fluids Eng.

121, 5–33 (1999)
Ganapol, B.D.: Analytical Benchmarks for Nuclear Engineering Applications. Case Studies in
Neutron Transport Theory. Nuclear Energy Agency OECD Publications, Paris (2008)

Garcia, R.D.M., Siewert, C.E.: A stable shifted-Legendre projection scheme generating PN bound-
ary conditions. Am. Nucl. Energy 23, 321–332 (1996)

Garcia,R.D.M.:The applicationof non-classical orthogonal polynomials in particle transport theory.
Prog. Nucl. Energy 35, 249–273 (1999)

Ghiroldi, G.P., Gibelli, L.: A direct method for the Boltzmann equation based on a pseudo-spectral
velocity space discretization. J. Comput. Phys. 258, 568–584 (2014)

Ghosh, K.: Analytical benchmark for non-equilibrium radiation diffusion in finite size systems.
Ann. Nucl. Energy 63, 59–68 (2014)

Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore
(1996)

Grad, H.: Principles of the kinetic theory. In: Handbook of Physics, pp. 205–294. Springer, Berlin
(1958)

Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)
Grad, H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids 6, 147–181 (1963)
Gust, E.D., Reichl, L.E.: Molecular dynamics simulation of collision operator eigenvalues. Phys.
Rev. E 79, 031202 (2009)

Gust, E.D., Reichl, L.E.: Relaxation rates of the linearized Uehling-Uhlenbech equation for bosons.
Phys. Rev. E 81, 061202 (2010)

Hagelaar, G.J.M., Pitchford, L.C.: Solving the Boltzmann equation to obtain electron transport
coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14, 722–733
(2005)

Harris, D.O., Engerholm, G.G., Gwinn, W.D.: Calculation of matrix elements for one-dimensional
quantum-mechanical problems and the application to anharmonic oscillators. J. Chem. Phys. 43,
1515–1517 (1965)

Hebert, A.: Applied Reactor Physics. Presse Internationales Polytechnique, Montréal (2009)
Heintz, A., Kowalczyk, P., Grzhibovskis, R.: Fast numerical method for the Boltzmann equation on
non-uniform grids. J. Comput. Phys. 227, 6681–6695 (2008)

Hiroi, T.: Recalculation of the isotropic H functions. Icarus 109, 313–317 (1994)
Hirschfelder, J.O., Curtiss, C.F., Bird, B.: The Molecular Theory of Gases and Liquids. Wiley, New
York (1954)



References 325

Hoare, M.R.: The linear gas. Adv. Chem. Phys. 20, 135–214 (1971)
Hoare,M.R., Kaplinsky, C.H.: Linear hard sphere gas: variational eigenvalue spectrum of the energy
kernel. J. Chem. Phys. 52, 3336–3353 (1970)

Huang, K.: Statistical Mechanics. Wiley, New York (1967)
Hubert, D.: Auroral ion velocity distribution function: generalized polynomial solution of Boltz-
mann’s equation. Planet. Space Sci. 31, 119–127 (1983)

Jablonski, A.: Improved algorithm for calculating the Chandrasekhar function. Comput. Phys. Com-
mun. 184, 440–442 (2013)

Jerri, A.J.: Introduction to Integral Equations with Applications, 2nd edn. Wiley, New York (1999)
Jüngel, A.: Transport Equations for Semiconductors. Springer, New York (2009)
Kabin, K., Shizgal, B.D.: Exact evaluation of collision integrals for the nonlinear Boltzmann equa-
tion. AIP Conf. Proc. 663, 35–42 (2003)

Kan, M.W.K., Yu, P.K.N., Leung, L.H.T.: A review on the use of grid-based Boltzmann equation
solvers for dose calculation in external photon beam treatment planning. Biomed. Res. Int. 2013,
692874 (2013)

Kapral, R., Ross, J.: Relaxation in a dilute binary gas mixture. J. Chem. Phys. 52, 1238–1243 (1970)
Kawabata, K., Limaye, S.S.: Rational approximation formula for Chandrasekhar’s H-function for
isotropic scattering. Astrophys. Space Sci. 332, 365–371 (2011)

Kawabata, K., Satoh, T., Ueno, S.: A direct numerical approach to the Chandrasekhar’s H-function
for arbitrary characteristic functions. Astrophys. Space Sci. 182, 249–260 (1991)

Kharchenko, V., Dalgarno, A.: Thermalization of fast O(1D) atoms in the stratosphere and
mesosphere. J. Geophys. Res. 109, D18311 (2004)

Kharchenko, V., Balakrishnan, N., Dalgarno, A.: Thermalization of fast nitrogen atoms in elastic
and inelastic collisions with molecules of atmospheric gases. J. Atmos. Terr. Phys. 60, 95–106
(1998)

Khazanov, G.V.: Kinetic Theory of the Inner Magnetospheric Plasma. Springer, New York (2011)
Khurana, S., Thachuk, M.: A numerical solution of the linear Boltzmann equation using cubic
B-splines. J. Chem. Phys. 136, 094103 (2012)

Khurana, S., Thachuk, M.: Kernels of the linear Boltzmann equation for spherical particles and
rough hard sphere particles. J. Chem. Phys. 139, 164122 (2013)

Kim, J.G., Boyd, I.D.: State-resolved master equation analysis of thermochemical nonequilibrium
of nitrogen. Chem. Phys. 415, 237–246 (2013)

Kourganoff, V.: Basic Methods in Transfer Problems. Oxford University Press, Oxford (1963)
Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases.
Springer, New York (2010)

Krook, M., Wu, T.T.: Formation of Maxwellian tails. Phys. Rev. Lett. 36, 1107–1109 (1976)
Krupp, R.S.: A nonequilibrium solution of the Fourier transformedBoltzmann equation.MSc thesis,
MIT (1967)

Kügerl, G., Schürrer, F.: On the relaxation of binary hard-sphere gases. Phys. Fluids 2, 609–618
(1990)

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
Kundu, P., Cohen, I.M., Dowling, D.R.: FluidMechanics, 6th edn. Academic Press,Waltham (2012)
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Polyatomic Gases Volume 2: Cross Sections, Scattering, and Rarefied Gases. Oxford University
Press, Oxford (1991)

McDaniel, E.W., Mason, E.A.: The Mobility and Diffusion of Ions in Gases. Wiley, New York
(1973)

Milne, E.A.: Radiative equilibrium in the outer layers of a star; the temperature distribution and the
law of darkening. Mon. Not. R. Astron. Soc. 81, 361–375 (1921)

Monchick, L., Mason, E.A.: Free flight theory of gas mixtures. Phys. Fluids 10, 1377–1390 (1967)
Mott-Smith, H.M.: A new approach in the kinetic theory of gases. MIT Linc. Lab. V2, 1–1 (1954)
Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation
for hard potentials. Commun. Math. Phys. 261, 629–672 (2006)



References 327

Mouhot, C.: Quantitative linearized study of the Boltzmann collision operator and applications.
Commun. Math. Sci. 1, 73–86 (2007)

Mozumder, A.: Electron thermalization in gases. III epithermal electron scavenging in rare gases.
J. Chem. Phys. 74, 6911–6921 (1981)

Nakayama, T., Takahashi, K., Matsumi, Y.: Thermalization cross sections of suprathermal N(4S)
atoms in collisions with atmospheric molecules. Geophys. Res. Lett. 32, L24803 (2005)

Nan, G., Houston, P.L.: Velocity relaxation of S(1D) by rare gases measured by Doppler spec-
troscopy. J. Chem. Phys. 97, 7865–7872 (1992)

Narayan, A., Klöckner, A.: deterministic numerical schemes for the Boltzmann equation, 1–51
(2009) ArXiv e-prints

Newburgh, R., Peidle, J., Rueckner, W.: Einstein, Perrin, and the reality of atoms: 1905 revisited.
Am. J. Phys. 74, 478–481 (2006)

Nicholson, J.W., Rudolph, W., Hager, G.: Using laser pulse dynamics to probe velocity distribution
of excited iodine. J. Chem. Phys. 104, 3537–3545 (1996)

Nielsen, S.E., Bak, T.A.: Hard sphere model for the dissociation of diatomic molecules. J. Chem.
Phys. 41, 665–674 (1964)

Oh, S.-K.: Modified Lennard-Jones potentials with a reduced temperature-correction parameter for
calculating thermodynamic and transport properties: noble gases and their mixtures (He, Ne, Ar,
Kr, and Xe). J. Thermodyn. 2013, 828620 (2013)

Park, J., Shafer, N., Bersohn, R.: The time evolution of the velocity distribution of hydrogen atoms
in a bath gas. J. Chem. Phys. 91, 7861–7871 (1989)

Parker, E.N.: Dynamical theory of the solar wind. Space Sci. Rev. 4, 666–708 (1965)
Parker, E.N.: Kinetic and hydrodynamic representations of coronal expansion and the solar wind.
AIP Conf. Proc. 1216, 3–7 (2010)

Pascal, S., Brun, R.: Transport properties of nonequilibrium gas mixtures. Phys. Rev. E 47, 3251–
3267 (1993)

Pekeris, C.L.: Solution of the Boltzmann-Hilbert integral equation. Proc. Natl. Acad. Sci. 41, 661–
669 (1955)

Pekeris, C.L., Alterman, Z.: Solution of the Boltzmann-Hilbert integral equation II; the coefficients
of viscosity and heat transfer. Proc. Natl. Acad. Sci. 43, 998–1007 (1957)

Peraiah, A.: Radiative transfer—Chandrasekhar—and after. Bull. Astron. Soc. India 24, 397–536
(1996)

Phillips, N.J.: Collisional relaxation in gases. Proc. Phys. Soc. 73, 800–806 (1959)
Pierrard, V.: Evaporation of hydrogen and helium atoms from the atmospheres of Earth and Mars.
Planet. Space Sci. 51, 319–327 (2003)

Pierrard, V., Lazar, V.: Kappa distributions; theory and applications in space plasmas. Sol. Phys.
267, 153–174 (2010)

Pierrard, V., Lemaire, J.: A collisional model of the polar wind. J. Geophys. Res. 103, 11701–11709
(1998)

Pitchford, L.C., ONeil, S.V., Rumble Jr, J.R.: Extended Boltzmann analysis of electron swarm
experiments. Phys. Rev. A 23, 294–304 (1981)

Pitchford, L.C., Phelps, A.V.: Comparative calculations of electron-swarm properties in N2 at mod-
erate E/N values. Phys. Rev. A 25, 540–554 (1982)

Present, R.D., Morris, B.M.: Variational solution of the chemical kinetic Boltzmann equation. J.
Chem. Phys. 50, 151–160 (1969)

Prigogine, I., Xhrouet, E.: On the perturbation of Maxwell distribution function by chemical reac-
tions in gases. Physica 15, 913–932 (1949)

Rahman, M., Sundaresan, M.K.: Discrete relaxation modes for a hard sphere gas. Can. J. Phys. 46,
2463–2469 (1968)

Reinhardt,W.P.: L2 discretization of atomic andmolecular electronic continua: moment, quadrature
and J-matrix techniques. Comput. Phys. Commun. 17, 1–21 (1979)
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