
Chapter 3
Numerical Evaluation of Integrals
and Derivatives

Abstract The numerical evaluation of integrals referred to as a quadrature is an
important aspect of a large number of applied problems in science and engineer-
ing. In Chap.2, we derived several different methods for the numerical evaluation
of integrals. These include the trapezoidal and Simpson’s rules, the higher order
Newton-Cotes algorithms, the Clenshaw-Curtis scheme and the Gauss quadrature
methods based on classical and nonclassical polynomials. In this chapter, general
principles for the accurate and efficient numerical evaluation of integrals that occur
in the modeling of physical systems are provided. This is the basis for an efficient
numericalmethod of solution of integral equations discussed inChap. 5. The physical
systems considered vary considerably from section to section and a brief introduc-
tion is provided in each case with numerous references to textbooks and current
research publications. We consider radial integrals that occur in density functional
theory, integrals for chemical and nuclear fusion rate coefficients and also for the
solution of the Boltzmann equation. The numerical evaluation of matrix elements
in kinetic theory and quantum mechanics is also presented with important impli-
cations for pseudospectral methods. The latter section of the chapter is devoted to
the pseudospectral method for numerical differentiation based on the Lagrange and
Sinc interpolants. The numerical solution of Sturm-Liouville differential eigenvalue
problems for the classical polynomials is also presented.

3.1 Numerical Evaluation of Integrals

The integration of a smooth slowing varying integrand is generally not difficult.
With the speed of current personal computers, almost any one-dimensional inte-
gral can be evaluated to almost machine accuracy in a finite time. It is well known
that a specific numerical method might be efficient for a particular type of inte-
gral and not for others. One can always propose a method adapted to work very
well for a certain class of integrals but that performs poorly when applied to other
integrals.

There have been several discussions of automatic integrators (Davis and Rabi-
nowitz 1975; Lyness 1983) which evaluate one-dimensional integrals for a given
integrand, interval and accuracy desired. These automatic integrators have found
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110 3 Numerical Evaluation of Integrals and Derivatives

some success but are not flawless, as discussed by Lyness (1983). A comprehensive
presentation of computational methods for integration with a large number of exam-
ples was provided by Kythe and Schaferkotter (2004).

The main objective of this chapter is to present techniques for the evaluation of
integrals that arise in physical problems, The precision required will be high but not
necessarily of machine accuracy. Specific examples will include radial integrals that
arise in density functional theory, electron repulsion integrals in quantum chemistry,
integrals in kinetic theory applications and in the evaluation of chemical and nuclear
reaction rates, integrals for the efficient evaluation of semi-classical phase shifts in
atom-atom scattering and other applications. Often the integrals desired generally
have smooth well behaved integrands but in the simulations for which they are
required there are a large number of such integral evaluations and thus an efficient
scheme is desired.We emphasize the use ofGauss quadratures based on non-classical
polynomials.

In kinetic theory, the Boltzmann collision operator is the sum of an integral oper-
ator with a well-defined kernel and the collision frequency which is a multiplicative
operator. Similarly, the Hamiltonian in the Schrödinger equation is the sum of the
kinetic energy second derivative operator and a multiplicative potential function. We
consider the calculation of the spectral matrix representations of such multiplicative
operators, that is, matrix elements of functions that arise in kinetic theory (Hoare
and Kaplinsky 1970; Shizgal and Fitzpatrick 1974; Lindenfeld and Shizgal 1979;
Loyalka et al. 2007) and in quantum mechanics (Harris et al. 1965; Dickinson and
Certain 1968; Gallas 1980; Bordoni and Manini 2007).

An important example is the matrix representative of the coordinate operator
which is the Jacobi matrix, Eq. (2.71). The eigenvalues of this multiplicative operator
are the Gaussian quadrature points for the specified weight function and represent
the continuous spectrum of the coordinate operator on the specified interval. These
continuous eigenvalues do not converge to discrete values with an increase in the
number of quadrature points.

Thematrix elements of suchmultiplicative operators can sometimes be calculated
exactly in a particular basis set with algebraic methods or approximately by using
an appropriate Gaussian quadrature. Harris et al. (1965) and Dickinson and Certain
(1968) considered the quadrature evaluation of matrix elements of the potential in
the Schrödinger equation. The research lead to the development of a pseudospectral
method (Hamilton and Light 1986; Light and Carrington Jr. 2000) for the solution
of the Schrödinger equation, primarily for the calculation of the vibrational states of
polyatomic molecules.

In quantum chemistry, there is an ongoing interest in the efficient numerical eval-
uation of three-dimensional integrals over spherical coordinates, (r, θ,φ). The the-
oretical modelling of polyatomic molecules requires the accurate computation of
a very large number of similar integrals (Treutler and Ahlrichs 1995; Mura and
Knowles 1996; Lindh et al. 2001; Gill andChien 2003; El-Sherbiny and Poirier 2004;
Kakhiani et al. 2009; Mitani 2011). This is an important concern for researchers in
quantum chemistry involved with electronic structure calculations. The integration
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3.1 Numerical Evaluation of Integrals 111

over solid angle, (θ,φ), is generally considered with a cubature separately from the
integration over the radial variable, r. In Sect. 3.4.2, the details of the integration of
radial integrals is discussed with several examples.

The solution of the Boltzmann equation with a collocation method involves the
integral over a kernel which can have a sharp cusp (Gibble and Gallagher 1991;
Rogers and Berman 1991; Bovino et al. 2011; Kharchenko et al. 1998; Sospedra-
Alfonso and Shizgal 2012). We address the problem of the integration over the cusp
for the solution of the Boltzmann equation and similar integral equations discussed
in greater detail in Chap.5.We briefly discuss the challenges presented by oscillatory
integrals in physics as well as several integrals that are largely devoid of any physical
application (Bornemann et al. 2004).

Pseudospectral methods (Fornberg 1996; Canuto et al. 2006) applied to a mul-
titude of applied problems in diverse fields are defined in terms of global discrete
derivative matrix operators generally based on some interpolant. These methods
provide first and second order finite derivative matrix operators in physical space
and reduce partial differential equations to ordinary differential equations. We will
apply these matrix derivative operators to the solution of Sturm-Liouville eigenvalue
problems that define the classical polynomials. We also consider the application of
pseudospectral methods to the solution of the Fokker-Planck and Schrödinger equa-
tions in Chap.6. There are also finite difference methods (LeVeque 2007; Burden
and Faires 2011) that are local representations of the derivative.

3.2 Some General Principles for the Numerical
Evaluation of Integrals

We are concerned with the numerical evaluation of a one-dimensional integral of
the form

I =
b∫

a

f (x)dx, (3.1)

with the assumption that the antiderivative, F(x) defined by dF(x)/dx = f (x) is not
known analytically. If F(x) is known analytically, then the problem reduces to

I =
b∫

a

f (x)dx = F(b) − F(a). (3.2)

Since F(x) is generally not known, we consider a numerical approximation to the
integral I . In some cases, F(x) is known but expressed in terms of a very complicated
function, such as the hypergeometric function, whose evaluation is perhaps more
difficult than the numerical calculation of the integral.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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112 3 Numerical Evaluation of Integrals and Derivatives

For numerical integration, it is important to know in detail the behaviour of the
integrand f (x). Of primary interest is the smoothness of f (x) as governed by the
continuity of f (x) and its derivatives. If f (x) is continuous, but df (x)/dx is not, spe-
cial attention is required for the numerical evaluation of I to be accurate as we will
show. If x ∈ [0,∞) and f (x) decays too slowly as x → ∞, the numerical algo-
rithm chosen must be adapted to take this behaviour into account. Other examples
include an integrand that oscillates about zero as x → ∞ or perhaps as x → 0 and
the value of I is small. Other special cases include integrands that have singular-
ities in the domain of integration for which a Cauchy principal value is required.
For certain functions, a simple variable change x → y, referred to as a mapping,
can transform the integrand to a more manageable form suitable for a particular
quadrature.

3.3 Scaling Quadrature Points and Weights

For quadratures defined by polynomials on the infinite and semi-infinite intervals
such as the Laguerre, Hermite and Maxwell polynomials, an important mapping
is the scale change, z = sx, to redistribute the quadrature points so as to better
capture the integrand. The scaling of quadrature points on the semi-infinite inter-
val for Gauss-Maxwell quadrature with weight function w(x) = x2e−x2 often
involves this variable change, z = sx, and the integral is calculated with the
algorithm

I =
∞∫

0

G(z)dz = s

∞∫

0

G(sx)dx = s

∞∫

0

x2e−x2 G(sx)

x2e−x2
dx,

≈
N∑

i=1

swi

x2i e−x2i
G(sxi) =

N∑
i=1

WiG(sxi), (3.3)

where the “big” weights are given by Wi = swi/w(xi).
The variable z = √

mv2/2kBT in the Maxwell weight function is the reduced
particle speed with m the particle mass, kB the Boltzmann constant and T the tem-
perature of the gas. We interpret this mapping in terms of an arbitrary temperature,
Ts, different from T so that x = √

mv2/2kBTs where the scaling parameter is iden-
tified as s2 = Ts/T . This scaling technique has been used in the solution of the
Boltzmann equation (Shizgal 1981), the Schrödinger equation (Baye and Heenen
1986; Lo and Shizgal 2008), the Vlasov equation (Schumer and Holloway 1998;
Gibelli et al. 2010) and is the basis for the two-temperature model for the solution of
the Boltzmann equation for ion mobilities (Mason and McDaniel 1988) in ion-atom
binary gases. In the sections that follow, we apply this important technique (Holway
1967; Tang 1993; Holloway 1996; Ordzywolek 2011) to the calculation of radial
integrals in density functional theory and to several other applications.
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3.4 Integrals in Density Functional Theory

The efficient evaluation of integrals is particularly relevant to the calculation of the
electronic energy states of atoms and molecules. Electronic structure modeling in
quantum chemistry involves the solution of the Schrödinger equation for the elec-
tronic state of a many electron atom ormolecule.We provide a very brief overview of
this subject tomotivate the specific applications in subsequent sections and refer read-
ers to several texts (Karplus and Porter 1970; Szabo and Ostlund 1996; McQuarrie
and Simon 1997; Helgaker et al. 2000; Levine 2009; Tsuneda 2014) and research
papers (Rys et al. 1983; El-Sherbiny and Poirier 2004; Sandberg and Rinkevicius
2012; Reine et al. 2012; Becke 2014) for a more complete description of this subject
and the numerical challenges presented.

The Hamiltonian for the Schrödinger equation is the sum of the electron kinetic
energy operators, the electron-nuclei and the electron-electron Coulomb interac-
tions. The only systems for which exact results exist are the hydrogen atom, and
one-electron ions such as He+ (Drake 1999; Drake et al. 2002) and H+

2 (Cassar and
Drake 2004).

The quantum state of the hydrogen atom is represented by the wave functionψn�m

(r,Ω) in spherical polar coordinates (r,Ω), Ω = (θ,φ). We showed in Sect. 2.4.6
that the wavefunction for the H-atom separates into the spherical harmonic basis
functionsY�m(Ω) = Pm

� (cos θ)eimφ and the associatedLaguerre polynomials, so that,

ψn�m(ρ,Ω) = Nn� exp(−ρ/2)ρ�L(2�+1)
n−�−1(ρ)Y�m(Ω), (3.4)

where ρ = 2r/na0, a0 = �
2/meZ2

e is the Bohr1 radius and Nn� is a normalization
such that the wave functions are orthonormal,∫∫

ψ∗
nlmψn′l′m′r2drdΩ = δnn′δ��′δmm′ .

The spherical harmonic and Laguerre basis functions were discussed in Sects. 2.4.4
and2.4.5, respectively. In the absence of external fields and spin dependent interac-
tions, the electronic energy states depend only on the principal quantum number n,
and the energy is given by En = −e2/2a0n2.

The basis functions for the solution of the Schrödinger equation for many elec-
tron atoms and molecules are often derived from the eigenfunctions (“orbitals”) of
the H-atom. The basis functions chosen must be antisymmetric with respect to the
exchange of any pair of electrons in order to satisfy the symmetry properties of fermi-
ons. The representation of the Hamiltonian in these basis sets is then required and
the calculation of the electron-electron pair repulsion integrals presents an ongoing
numerical challenge as discussed in Sect. 3.8.1.

An important development in the field was the adoption of an approximate
formalism originally developed independently by Thomas (1927) and Fermi (1927)

1 Niels Henrik David Bohr (1885–1962) was a Danish physicist who made fundamental contribu-
tions to quantum theory and in particular to the Bohr model of the hydrogen atom. He received the
Nobel Prize in Physics in 1922.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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for the statistical mechanics of an electron gas and later applied to atomic structure
theory (Parr 1983; Parr and Gosh 1986). The electronic ground state is viewed as
dependent on the electron density, ρ(r), rather than on the multidimensional electron
wavefunction. For many electron systems, the electron density is formally expressed
by the integral of the square of the many electron wave function, that is,

ρ(r) =
∫

|Ψ (r1, r2, . . . , rn|2dr1r2 . . . rn−1. (3.5)

The electron-electron and electron-nuclei interactions are then expressed in terms of
the density. A variational formalism is applied to the Schrödinger equation written
in terms of the electron density appearing as a functional. The theoretical founda-
tions were established by Hohenberg and Kohn (1964) and Kohn and Sham (1965).
Excellent reviews of the Thomas-Fermi model and density functional theory are
available (Lieb 1981; Jones and Gunnarsson 1989; Morgan 1996) where the original
references can be found.

Density functional theory is now routinely employed in electronic structure sim-
ulations. The details of this theoretical approach are well beyond the scope of this
book. Amore complete exposition of this theoretical formalism is available in several
textbooks and reviews (Parr 1983; Jones and Gunnarsson 1989; Fiolhais et al. 2003;
Burke 2012).

3.4.1 Mapping the Semi-infinite Interval
r ∈ [0,∞) to x ∈ [−1, 1]

Much of the work on spectral methods (Fornberg 1996; Boyd 2001; Peyret 2002;
Canuto et al. 2006; Hesthaven et al. 2007) is based on Fourier series, Chebyshev and
Legendre polynomials. Chebyshev polynomials are very closely related to a Fourier
series and often referred to as a “Fourier series in disguise” as discussed in Chap.2.
In the next section, we review the evaluation of radial integrals that arise in density
functional theory applied to quantum chemistry. The integrals over the semi-infinite
domain are often mapped onto the finite interval [−1, 1] as summarized in Table3.1,
and Chebyshev or Legendre quadratures are then used.

Table 3.1 Different mappings of the semi-infinite interval r ∈ [0,∞) to x ∈ [−1, 1]
Reference Mapping

Boyd (1982), Treutler and Ahlrichs (1995) x = 1 − 2e−r/s

Murray et al. (1993) x = 2 m
√
1 − e−r/s − 1

Boyd (1987), Becke (1988) x = r−s
r+s

Mura and Knowles (1996) x = 2
√

r/(r − s − 1

Linear map x = 2r
rmax

− 1; r ∈ [0, rmax]
The parameter s is a scaling factor

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The accuracy of the different mappings can be tested with the numerical calcula-
tion of two integrals on the semi-infinite domain given by

∞∫

0

r2e−r2M2
5 (r)dr = 1,

∞∫

0

r2e−r2M4(r)M5(r)dr = 0, (3.6)

for which the integrands are shown in Fig. 3.1.
Figure3.1(A) shows the integrand for the normalization of the Maxwell polyno-

mial M5(r) with respect to the weight function, w(r) = r2e−r2 , r ∈ [0,∞). The
integral of this function is the norm which is unity. Figure3.1(B) shows the inte-
grand for the product of the polynomials M4(r) and M5(r) which are orthogonal and
the integral for this integrand is zero. We have changed notation from x (originally
reduced speed) to r (a radial coordinate) and in the current context we use x ∈ [−1, 1]
as the new variable obtained with variable change or mapping.

These two integrals, one of degree 10 and the other of degree 9, can be done
exactly to machine accuracy with the Maxwell (p = 2) quadrature points of order
6 shown by the symbols in the graphs. This is a remarkable demonstration of the
power of Gaussian quadratures albeit for polynomial integrands. This is no surprise.

This exact quadrature would not be obvious simply from the graphs of the
integrands. One could consider the numerical calculation of the integral in Fig. 3.1(A)
as the sum of six integrals, each evaluated with a quadrature between the zeros of
the function suitably transformed to [−1, 1]. The last interval would have to be trun-

(A) (B)

Fig. 3.1 (A) The variation of r2e−r2M2
5 (r) and (B) r2e−r2M4(r)M5(r) versus r. The polynomials

Mn(r) are orthogonal with the Gauss-Maxwell weight function w(r) = r2e−r2 , r ∈ [0,∞). The
integral of the function on the left is 1 and for the function on the right it is zero. The closed circles
are the quadrature points for the Gauss-Maxwell quadrature for which the integrals in Eq. (3.6) are
calculated to machine accuracy with N = 6
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Fig. 3.2 Different variable transformations or mappings from r ∈ [0,∞) to x ∈ [−1, 1] as summa-
rized in Table3.1. The dashed line is the linear map. The scale factor s is chosen such that rmax = 8
for which the integrands in Fig. 3.1 are considered to be very small

cated at some sufficiently large rmax. The integral of the function in Fig. 3.1(B) could
also be calculated by evaluating the ten integrals between nodes in the same way.
The integrals from node to node can be evaluated with a Chebyshev or Legendre
quadrature or a Simpson’s rule. This is a commonly used technique for oscillatory
integrals.

Five mappings that transform the radial variable r ∈ [0,∞) to x ∈ [−1, 1] are
listed in Table3.1 and shown in Fig. 3.2. A Gauss-Legendre quadrature is then used
to evaluate the integrals. These mappings are used in spectral methods (Boyd 1982,
1987) and in particular for the evaluation of integrals in density functional theory.
There have been several reviews with numerical comparisons (Lindh et al. 2001; Gill
and Chien 2003; El-Sherbiny and Poirier 2004).

The linear map (dashed line) with a truncation at r = 8 beyond which there is an
insignificant contribution to the integrals does not bias the distribution of quadrature
points other than the original clustering near the ends of the interval. An exponential
map (open circles) proposed independently byBoyd (1982) andTreutler andAhlrichs
(1995) distributes more quadrature points at small r than at large r. There could be
an additional flexibility in the mappings with the use of the scaling parameter which
has been chosen as s = 1. The main concern is the manner in which the mapping
distributes quadrature points and whether the details of the integrand have been
captured. A comparison of the distribution of quadrature points for the mappings in
Table3.1 was presented in Fig. 1 of Gill and Chien (2003).

We choose two test integrals of this type to study the different mappings from
[0,∞) to [−1, 1] that have been used as summarized in Table3.1, namely

〈M2
4 〉 =

∞∫

0

r2 exp(−r2)M2
4dr = 1,

〈M2
6 〉 =

∞∫

0

r2 exp(−r2)M2
6dr = 1. (3.7)
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Fig. 3.3 The variation of the relative error for the integrals 〈M2
n 〉 = ∫∞

0 r2e−r2M2
n (r) = 1 for

n = 4 and 6 with four different mappings. The relative error is shown versus the number of
Legendre quadrature points, N . The definitions of the mappings are given in Table3.1

Thevariation of the relative error for the numerical evaluation of these integrals versus
the number of quadrature points,N , is shown for severalmappings in Fig. 3.3. The rel-
ative error log10[1− Iapprox] for the linear map provides the most rapid convergence.
The error with the exponential map is comparable to that with the Boyd-Becke map.
The Mura-Knowles map provides the slowest convergence. The different conver-
gence rates depend on the distribution of quadrature points in the transformed interval
[−1, 1]. These normalization integrals can be evaluated exactly with the Gauss-
Maxwell quadrature (p = 2) with N = 5 and N = 7 quadrature points, respectively.

3.4.2 Radial Integrals in Density Functional Theory

Electron structure calculations in quantum chemistry and density functional theory
for polyatomic molecules require the calculation of a large number of three dimen-
sional integrals over a sphere of the form

I3D =
∫

F(r)dr, (3.8)
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where the vector r is defined in terms of the three spherical polar coordinates (r, θ,φ).
The three dimensional integral can be split into an angular integral

f (r) =
2π∫

0

π∫

0

F(r, θ,φ) sin θdθdφ, (3.9)

over θ and φ and the radial integral

Iradial =
∞∫

0

f (r)r2dr. (3.10)

The angular integral is often evaluated with an algorithm that reduces the two dimen-
sional integral to a single quadrature sum referred to as a cubature (Stroud and Secrest
1966; Lebedev 1977; Cools 2003; Haxton 2007) as discussed in Chap.2, Sect. 2.8.

There have been several numerical experiments of the calculation of Iradial with
f (r) approximated by a sum of Gaussians to model the radial variation of the electron
density in simple systems such as the inert gas atoms. Themappings from r ∈ [0,∞)

to x ∈ [−1, 1] in Table3.1 have been used (Becke 1988; Murray et al. 1993; Treutler
and Ahlrichs 1995; Mura and Knowles 1996; Lindh et al. 2001; Gill and Chien 2003;
El-Sherbiny and Poirier 2004; Kakhiani et al. 2009). These studies demonstrate
the intense interest in the development of efficient numerical algorithms for the
calculation of these three dimensional integrals, Eq. (3.8).

Lindh et al. (2001) considered the integral of a simple (normalized) Gaussian
given by,

2α(�+3)/2

Γ [(� + 3)/2]
∞∫

0

r�e−αr2r2dr = 1. (3.11)

They employed the mappings in Table3.1 and studied the calculation of this elemen-
tary integral for a range of values ofα and �versus the number of quadrature points,N .
For the integral of theGaussian inEq. (3.11), theGauss-Maxwell quadraturewith p =
2 provides an exact result for this integral (with � = 0) and a scale factor s = 1/

√
α.

We evaluate this integral with the Gauss-Maxwell quadrature and the scaling
procedure given by Eq. (3.3). The variation of the relative error, defined by

Relative Error =
∣∣∣∣1 − Iapprox

Iexact

∣∣∣∣, (3.12)

versus the scaling parameter s is shown in Fig. 3.4. The integral is evaluated to
machine accuracy for s = 1/

√
α which for α = 4 occurs at s = 0.5. For N = 2

and 4, the range of s values for which the integral is evaluated exactly (to machine
accuracy) in the vicinity of s = 0.5 is narrower than for the N = 8 and 10. It is clear
from the graph that there are values of s > 1/2, at the inverted cusps, for which the

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Fig. 3.4 The variation of the relative error for the integral of the Gaussian in Eq. (3.11) versus the
scale factor s with the number of Maxwell quadrature points equal to N . The integral is evaluated
to machine accuracy for s = 1/

√
α = 0.5 for which the quadrature is exact

integral is also evaluated exactly. This occurs because the error in the integration can
overestimate or underestimate the exact value and (Iapprox − Iexact) oscillates about
zero as s varies. It is difficult to determine a priori where these “roots” of Iapprox − I
versus s occur. We will demonstrate this behaviour versus the scaling parameter in
the evaluation of other integrals.

The variation of the relative error for the integral in Eq. (3.11) with the Maxwell
quadrature is shown in Fig. 3.5 versus N for s = 1/2, α = 4 and several values of �.
The integral is evaluated to machine accuracy for � = 6, 8, 10 and 14, with N = 4, 5,
6, and 8 quadrature points, respectively. This is not a surprising result as the Gauss-
Maxwell integration of a polynomial of degree 2N − 1 is exact with N quadrature
points. The Gaussian in Eq. (3.11) is essentially the Gauss-Maxwell weight function.

The functional forms chosen to simulate realistic radial integrands in Eq. (3.10)
include a simple Gaussian

f1(r) = e−ar2 , (3.13)

Fig. 3.5 The variation of the relative error for the Gaussian in Eq. (3.11) versus the number of
Maxwell quadrature pointsN for s = 1,α = 4 and several � values. For � = 6, 8, 10 and 14, the inte-
grals are evaluated to machine accuracy with N= 4, 5, 6, and 8 quadrature points, respectively. This
is consistent with the exactness of the Gauss-Maxwell quadrature for polynomials of order 2N − 1
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which is essentially Eq. (3.11). Also studied are the integrands which are the sum of
two Gaussians

f2(r) =
[
e−r2 + ae−ar2

]
, (3.14)

and the sum of three Gaussians

f3(r) =
[
e−r2 + ae−ar2 + be−br2

]
. (3.15)

Almost all of the algorithms proposed by different authors to date involve the
mapping of the semi-infinite interval, [0,∞) to the new integration variable x ∈
[−1, 1] and a quadrature appropriate for the new interval is chosen. These mappings
are summarized in Table3.1. These numerical experiments have been carried out
for a = 10 and b = 100. The quadratures chosen for x ∈ [−1, 1] are generally
Gauss-Legendre, Gauss-Chebyshev and Gauss-Jacobi quadratures.

The variation of the relative error versus the number ofGauss-Maxwell quadrature
points, N , for the evaluation of the integrand with a sum of two and three Gaussians,
Eqs. (3.14) and (3.15), are shown in Fig. 3.6(A), (B), respectively, for several values
of the scaling parameter, s. For the smaller values of s the variation of log10(Relative
Error) versus N is almost linear as shown by the dashed lines and also summarized
in Table3.2 for both integrands. The relative error oscillates with N and the linear
variation is not accurate for the larger s values.

A Laguerre quadrature which does not involve the mapping to [−1, 1] has also
been used as well as a nonclassical quadrature based on the weight function w(x) =
ln2 x for x ∈ [−1, 1] (Gill and Chien 2003). The quadrature points and weights for
this weight function are easily calculated with a MATLAB code. A comparison and
summary of the results of these studies were provided by Gill and Chien (2003) and
El-Sherbiny andPoirier (2004). The relative errors obtainedvary considerably and are
for the most part in the range −2 → −4 for N in the range 11 → 17. The accuracies

(A) (B)

Fig. 3.6 (A) The variation of the relative error versus the number of quadrature points N for the
integrand in Eq. (3.14) with a = 10 and several values of the scaling parameter s. (B) The variation
of the relative error versus the number of quadrature points N for the integrand in Eq. (3.15) with
a = 10 and b = 100 and several values of the scaling parameter s. The dashed lines are the linear
fits to the numerical result
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Table 3.2 Spectral fits to the
convergence of
log10[|1 − I(N)/Iexact |] =
A(s)N + B(s) and the scaling
parameter s

s A(s) B(s)

f2(r) = [e−r2 + 10e−10r2 ]
0.5 −0.2630 0.1471

0.6 −0.3996 0.1991

0.7 −0.4804 −0.2947

0.8 −0.4554 0.0915

f3(r) = [e−r2 + 10e−10r2 + 100e−100r2 ]
0.3 −0.08630 0.01899

0.4 −0.01643 0.01015

0.45 −0.02132 0.01369

of the quadratures proposed for the integration of the radial densities for the three
atoms mentioned are in the approximate range −5 → −8 with N up to 25.

In Table3.3, we compare the results with the Gauss-Maxwell quadrature with the
nonclassicalMultiexp quadrature ofGill andChien (2003). Both algorithms converge
quicklywith a small number of quadrature pointswith theGauss-Maxwell quadrature

Table 3.3 Convergence of the integration of f2(r) and f3(r), Eqs. (3.14) and (3.15)with theMaxwell
quadrature (p = 2) and the Multiexp nonclassical quadrature by Gill and Chien (2003) with weight
function w(x) = ln2(x), x ∈ [0, 1]
N I(N) (s=0.74) log10(Relative Error) I(N) log10(Relative Error)

w(r) = r2e−r2 ; r ∈ [0,∞) w(x) = ln2(x); x ∈ [−1, 1]
f2(r) = [e−r2 + 10e−10r2 ]
3 0.586161143 −2.30 0.586777664 −2.22

5 0.581900828 −2.64 0.585623383 −2.39

7 0.583287168 −4.08 0.585623383 −2.39

9 0.583232448 −5.00 0.583206200 −4.26

11 0.583238398 −6.58 0.583228705 −4.79

13 0.583238252 −7.81 0.583238660 −6.15

15 0.583238238 −8.09 0.583238152 −6.80

f3(r) = [e−r2 + 10e−10r2 + 100e−100r2 ]
3 0.471897196 −0.606 0.586885435 −1.19

5 0.578862504 −1.11 0.622404076 −2.09

7 0.622639519 −2.11 0.634521349 −1.95

9 0.624246729 −2.28 0.625215372 −2.43

11 0.625501911 −2.49 0.628005273 −3.14

13 0.627361813 −3.52 0.627477032 −3.94

15 0.627548579 −5.79 0.627559616 −4.80
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converging slightly faster. The value of s is optimized for the Gauss-Maxwell quadra-
ture. It appears that it is more efficient to develop quadratures on the semi-infinite
interval and avoid the mapping to the interval x ∈ [−1, 1].

3.5 Chemical and Nuclear Reaction Rate Coefficients

In this section, we consider integrals that arise in the calculation of equilibrium
reaction rates for chemical and nuclear fusion reactions. The theoretical calcula-
tion of reactive cross sections involves a classical or quantal treatment of the colli-
sion dynamics between the reactants with a specified interparticle interaction. The
macroscopic rate coefficient is then the average of the reactive cross section with
Maxwellian distributions for the colliding particles (Ross and Mazur 1961; Truhlar
andWyatt 1976; Chatfield et al. 1991). An important endeavor is the development of
efficient algorithms for the calculation of rate coefficients of chemical reactions for
numerous applications in shockwaves (Brun 2009), in atmospheric science (Seinfeld
and Pandis 2006), for nuclear fusion reactions in astrophysics (Clayton 1968) and
nuclear fusion machines (Atenzi and Meyer-Ter-Vehn 2004).

3.5.1 Equilibrium Rate Coefficient for Chemical Reactions

The temperature dependence of the binary reactive rate coefficient, k(T), for gas
phase chemical reactions as well as nuclear fusion reactions is given in terms of
the energy dependence of the total reactive cross section, σr(E), versus the relative
translational energy of the reactants E, and the equilibriumMaxwell-Boltzmann dis-
tribution functions of the colliding pair of particles, F1(v1) and F2(v2), respectively,
of the form

F(v) =
[

m

2πkBT

]3/2
e−mv2/2kBT , (3.16)

and normalized according to 4π
∫∞
0 F(v)v2dv = 1. In Eq. (3.16), the temperature

of the gas is T , kB is the Boltzmann constant and m = m1 or m = m2 for the particle
masses. The temperature dependence of the reactive rate coefficient is given by the
average of the reactive flux gσr(E) over all particle velocities weighted with the
distribution functions, that is,

k(T) =
∫∫

F1(v1)F2(v2)gσr(E)dv1dv2, (3.17)

where the relative velocity is g = v2 − v1. We transform to relative velocity, g, and
center of mass, G, that is,

g = v2 − v1,

G = m1v1 + m2v2
m1 + m2

. (3.18)
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The total kinetic energy can be expressed in terms of G and g given by

m1v
2
1 + m2v

2
2 = m0G2 + μg2, (3.19)

where m0 = m1 + m2 and the reduced mass is μ = m1m2/m0. The Jacobian of the
transformation is unity so that dv1dv2 = dGdg. The integral over G that results
from this transformation is

4π

∞∫

0

e−m0G2/kBT G2dG = 2π

[
2kBT

m0

]3/2
Γ ( 32 ), (3.20)

where Γ (α) = ∫∞
0 e−xxα−1dx is the Gamma function. Two useful identities for the

Gamma function are Γ (n + 1) = nΓ (n) = n! and Γ ( 12 ) = √
π.

With Eq. (3.20), Eq. (3.17) can be reduced to a single integral over g, that is

k(T) = 4π

(
μ

2πkBT

)3/2 ∞∫

0

e−μg2/2kBT σr(E)g3dg, (3.21)

or in terms of relative energy E = μg2/2,

k(T) =
√

8

πμ

1

(kBT)3/2

∞∫

0

e−E/kBT Eσr(E)dE. (3.22)

These are standard results that can be found in many texts on chemical kinetics and
kinetic theory (McQuarrie and Simon 1997; Gombosi 1994; Kremer 2010; Liboff
2003). The thermal average in Eq. (3.22) is the last step in a detailed theoretical
calculation that involves the interaction potential between the reactants followed by
the classical or quantal scattering calculation of the reactive cross section (Chatfield
et al. 1991).

The temperature dependence of k(T) is determined by the energy dependence of
the reactive cross section σr(E). In fact, one can view k(T) as the Laplace transform
of Eσr(E). There are many applications that we can consider each with a different
reactive cross section σr(E). We first consider a simple model system for reactions
with activation energy referred to as the line-of-centers reactive cross section given by

σr(E) =
{
0, E ≤ E∗,
σd(1 − E∗

E ), E > E∗. (3.23)

The activation energy is denoted by E∗ and there are no reactive collisions if E < E∗.
For this simple model, the integral in Eq. (3.17) can be done analytically and the
result is,

k(T) = σd

√
8kBTb

πμ
e−E∗/kBT , (3.24)

where σd is a hard sphere cross section.
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There is an ongoing effort to determine reactive cross sections experimentally
as well as theoretically for a large number of different systems for a wide range of
applications. We consider here just one such physically realistic process, namely the
collision dissociation reaction O + O2 with applications to planetary atmospheres
(Johnson and Tully 2002). The analytic fit to the theoretical scattering results is

σr(E) = σ0
(E − Et)

a

E0 + Eb
, (3.25)

where σ0 = 4.51, Et = 14.5eV, E0 = 0.21, a = 1.03 and b = 1.31. The cross
section is in 10−16 cm2 with E in eV. The variation with energy of this cross section
is shown in Fig. 3.7 in comparison with the line-of-centers cross section with the
threshold energy Et = 1.8eV in order to fit the cross sections near threshold.

For such reactions with activation energy, we transform the integral over energy in
Eq. (3.17) to an integration over reduced energy y = E/kBT from which the integral
is zero for y < yt = Et/kBT . With the additional transformation to z = y − yt

we get the rate coefficient in a form suitable for integration with Gauss-Laguerre
quadratures, that is,

k(T) =
√
8kBT

πμ

⎡
⎣yte

−yt

∞∫

0

e−zσ[(z + yt)kBT ]dz

+ e−yt

∞∫

0

ze−zσ[(z + yt)kBT ]dz

⎤
⎦ . (3.26)

The first integral suggests the use of Laguerre quadratures based on L(α)
n (z) with

α = 0 and the secondwithα = 1. Theweights and points for each can also be scaled.
In Table3.4, we show the convergence of the rate coefficient versus the number of

Gauss-Laguerre quadrature points for several different scale factors, s. Also shown

Fig. 3.7 (Left panel) Reactive cross section for collisional dissociation for O+O2, Eq. (3.25) (solid
line) in comparison with the line of centers cross section (dashed line; E∗ = Et, σd = 1.8Å2).
(Right panel) Integrand in Eq. (3.22) versus the reduced energy, y = E/kBT )
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Table 3.4 Convergence of the integration Eq. (3.26) for the O + O2 reactive cross section,
Eq. (3.25), for T = 6,000K with a Simpson’s rule (SR) integration and the Gauss-Laguerre quadra-
ture for three scalings, s

N SR N s = 1 s = 0.8 s = 0.5

20 1.243617 6 1.257290 1.257398 1.257416

40 1.257156 12 1.257497 1.257522 1.257546

60 1.257661 18 1.257533 1.257544 1.257555

80 1.257671 24 1.257546 1.257551 1.257557

120 1.257625 30 1.257551 1.257555 1.257559

200 1.257586 40 1.257556 1.257558 1.257560

300 1.257572 50 1.257558 1.257559 1.257560

The rate coefficient is in units of 10−12
√
8kBT/πμ

is the convergence with a Simpson’s rule. One difficulty with the Simpson’s rule
integration is the truncation of the grid at some sufficiently large zmax. There are
therefore two convergence parameters, the number of grid points, N and zmax .

The rate of convergence of the integrals is much slower with the Simpson’s rule
in comparison with the Gauss-Laguerre quadrature. The change with scale factor
improves the quadrature result for the smaller N values.

3.5.2 Rate Coefficients for Fusion Reactions;
Non-resonant Cross Sections

The accurate calculation of nuclear reaction rate coefficients is a very important
for solar and big bang nucleosynthesis (Clayton 1968; Angula 1999; Descouvemont
et al. 2004; Bertulani et al. 2013) as well as for nuclear fusionmachines (Haubold and
John 1981; Heidbrink and Sadler 1994; Atenzi and Meyer-Ter-Vehn 2004). There
is considerable research work on the accurate computation of nuclear reaction rates
versus the ambient temperature. For time dependent evolutionary simulations, the
rate coefficients need be evaluated numerous times as the temperature evolves with
time.

In this section, we consider nuclear fusion reactions for which the non-resonant
reactive cross sections are of the form

σr(E) = S(E)

E
e−B/

√
E, (3.27)

where B is a constant and S(E), often referred to as the astrophysical S-factor,
is a slowly varying function of E. There is another important resonant contribu-
tion to fusion reactions which we do not consider. The equilibrium rate coefficient
from the average of the reactive cross section with the Maxwellian distribution of
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relative energies is given by Eq. (3.22). With the reduced energy y = E/kBT , the
rate coefficient is given by

k(T) = S0

√
8

πμkBT
I, (3.28)

where S(E) is set to a constant, S0, and the energy average of the cross section can
be written in terms of the dimensionless integral

I =
∞∫

0

e−y−b/
√

ydy, (3.29)

with b = B/
√

kBT .
We are interested in the numerical evaluation of the integral in Eq. (3.29). The

S0 and B values of some representative nuclear fusion reactions in stellar interiors
are shown in Table3.5. The details of the integration in Eq. (3.29) are shown in
Fig. 3.8(A) as the product of the decreasing Maxwellian and the increasing cross
section. The integrand is shown as the Gaussian curve.

The integral in Eq. (3.29) is often approximated with the method of stationary
phase also referred to as the saddle-point method (Clayton 1968; Atenzi and Meyer-
Ter-Vehn 2004). This is the Gaussian approximation to the bell-shaped curves in
Fig. 3.8 which involves the Taylor expansion of the argument of the exponential in

Table 3.5 Representative nuclear fusion reactions (barn = 10−24 cm2)

Reaction S(0) (keV barn) B (
√
keV)

D + T → α + n 1.2× 104 34.38

T + T → α + 2n 138 38.45

p + p → D + e+ + ν 4.0× 10−22 22.20

(A) (B)

Fig. 3.8 (A) The product of decaying Maxwellian distribution and the rising nuclear cross section
for b = 20. The thermally averaged rate coefficient is the area under the Gaussian shaped curve.
(B) Integrands for Eq. (3.29) for b = 18, 20 and 22, from top curve to bottom curve. The dashed
curves are the Gaussian approximations to the actual integrands used in the approximate evaluation
of the integral with the saddle-point or stationary phase method as discussed in the text. The exact
integrands, Eq. (3.29), are shown by the solid curves
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Eq. (3.29) up to the quadratic term. The maximum of the function f (y) = y + b/
√

y

occurs at ym = 3
√

b2/4 and the second derivative is f ′′(ym) = 3
4b/y5/2m . With the

extension of the lower limit of the integral to −∞, the analytic evaluation of the
integral of the resulting Gaussian, gives the approximate result

Iapprox =
√

4π

3ym
e−ym−b

√
ym . (3.30)

The Gaussian approximations to the integrand for b = 18, 20 and 22 are shown by
the dashed curves in Fig. 3.8(B). The exact value of the integral can be determined
withMAPLE and a comparison of the exact valuewith the approximation, Eq. (3.30),
is shown in Table3.6 versus b. The Gaussian approximation is accurate to several
percent.

We use a Simpson’s rule integration to estimate the integral in Eq. (3.29). The
variation of the accuracy versus the number of integration points, N , is shown in
Fig. 3.9 for three different values of ymax that defines the integration interval [0, ymax].
Figure3.9(A) shows an oscillatory variation of the relative error versus N and there
are sharp minima at specific N values for each ymax .

Table 3.6 The error of the Gaussian approximation to the integral I = ∫∞
0 exp(−y − b/

√
y)dy,

Eq. (3.30), and the exact value computed with MAPLE

b Iexact Iapprox log10 |(Iexact − Iapprox)/Iexact

5 0.118541084561830544929940 (−1) 1.106 (−2) −1.18

10 0.567437038339189105890373 (−3) 5.425 (−4) −1.36

18 0.101229347024099882905469 (−4) 0.9815 (−5) −1.52

20 0.406891577852032546746999 (−5) 3.953 (−6) −1.55

22 0.168190705863960574567002 (−5) 1.637 (−6) −1.56

(A) (B)

Fig. 3.9 Variation of log10[relative error] versus the number of integration points, N , for the Simp-
son’s rule evaluation of the integral, Eq. (3.29) for b = 20. (A) Integration interval is [0, ymax],
(B) Integration intervals [0, 3

√
b2/4] and [ 3

√
b2/4, ymax] where the peak in the Gaussian approxima-

tion occurs at y0 = 3
√

b2/4 and N integration points in each interval
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Figure3.9(B) shows the results with a Simpson’s rule integration using two inter-
vals, namely [0, 3

√
b2/4] and [ 3

√
b2/4, ymax] where the peak in the Gaussian approx-

imation occurs at y0 = 3
√

b2/4. The relative error is comparable to that with the full
integral and half the number of points but the variation versus N appears monotonic.
For the smaller values ofN , the accuracy decreases with increasing ymax owing to the
larger step size. For ymax = 20, the accuracy attains an asymptotic value because the
“tail” of the integrand has not been sampled. This improves with the larger ymax val-
ues. This exercise illustrates the difficulties of the Simpson’s rule on the semi-infinite
axis requiring ymax to be specified.

We also carry out a comparison of the numerical evaluation of the integral in
Eq. (3.29) with a Laguerre quadrature defined byw(y) = e−y , and with a quadrature
based on the Maxwell weight with p = 1 that is, w(x) = xe−x2 with the change
of variable y = x2. An important aspect is the distribution of points within the
integrand shown in Fig. 3.8. Thus the quadrature points must be scaled so as to be
predominantly within the bell shaped curve of the integrand. The results with the
Gauss-Laguerre and Gauss-Maxwell quadratures shown in Fig. 3.10 converge much
faster versus N than the Simpson’s rule integration. The sharp minima in Fig. 3.10

(A) (B)

(C)
s

s s

s
(D)

Fig. 3.10 The variation of the log10[relative error] versus the scale factor s for the integral I = ∫∞
0

exp(−y − b/
√

y)dy: (A) and (C) Gauss-Maxwell quadrature; w(x) = x exp(−x2). (B) and (D)
Laguerre quadrature based on w(y) = exp(−y). The exact value of the integral is calculated with
MAPLE listed in Table3.6
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versus the scaling parameter s arise from the change in sign of Iapprox − Iexact . Thus,
there are several values of the scaling factor for which the numerical result is exact.

There have been several approximate analytical results for the energy integral with
the cross section Eq. (3.27) and an energy dependent S(E) which is often expanded
in a power series about E = 0, that is,

S(E) = S(0) +
N∑

n=1

1

n!
dS(E)

dE

∣∣∣∣
E=0

En. (3.31)

With Eq. (3.31), the reaction rate involves integrals of the form

In =
∞∫

0

yne−y−b̂/
√

ydy. (3.32)

This type of parametrization of the cross section and the subsequent analytical
approximation of the integrals was carried out by several groups (Haubold and John
1981; Hussein and Pato 1997; Ueda et al. 2000; Mathai and Haubold 2002). This
approach yields the integrals in terms of the Meijer G-function related to the hyper-
geometric function.

We do not pursue this approach here and consider an efficient quadrature evalu-
ation of the integral in Eq. (3.22) with an alternate fit to S(E) in the form of a Padé
approximant (Bosch and Hale 1992) of the form

S(E) = a1 + E(a2 + E(a3 + E(a4 + Ea5))))

1 + E(b1 + E(b2 + E(b3 + Eb4)))
. (3.33)

The cross section parameters for some of the more important fusion reactions are
provided in Table IV of the review paper by Bosch and Hale (1992). With the change
of variable x2 = E/kBT , the integral in Eq. (3.22) is appropriate for the Gauss-
Maxwell quadrature with p = 1.

In Table3.7 we show the rapid convergence of the rate coefficients, k(T), for
three nuclear fusion reactions with the Gauss-Maxwell (p = 1) quadrature. A small
number of quadrature points of the order of 10 yields more accurate results than the
corresponding empirical fits of the rate coefficients versus temperature by Bosch and
Hale (1992).

3.6 Integrals in Collision Theory and Kinetic Theory

The theoretical description of collisional processes represents an important research
effort in chemical physics. This includes the theoretical calculations of reactive
cross sections for chemical and nuclear reactions, photoionization, collisional energy
transfer and many other applications. In kinetic theory, the collision operator in the
Boltzmann equation for translational energy is defined by the differential collision
cross section for binary collisions for atom-atom, electron-atom and ion-atom pairs.
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Table 3.7 Convergence of the nuclear reaction rate coefficient, k(T) in cm3s−1 with the thermal
average of the cross section in Eq. (3.33) and the parameters in Table VII of Bosch and Hale (1992)

kBT(keV) N 3He(d, p)4He D(d, p)T D(d, n)3He

1 4 0.2353 (−26) 0.98921 (−22) 9.6908 (−23)

6 2.8176 (−26) 0.99971 (−22) 9.8165 (−23)

8 2.9488 (−26) 1.0015 (−22) 9.8340 (−23)

10 2.9571 (−26) 1.0013 (−22) 9.8328 (−23)

12 2.9575 (−26) 9.8326 (−23)

14 2.9576 (−26)

Bosch and Hale (1992) 3.057 (−26) 1.017 (−22) 9.933 (−23)

10 4 1.6792 (−19) 5.8566 (−19) 6.0804 (−19)

6 1.6301 (−19) 5.8523 (−19) 6.0798 (−19)

8 1.6286 (−19) 5.8486 (−19) 6.0766 (−19)

10 1.6288 (−19) 5.8492 (−19)

12 5.8491 (−19)

Bosch and Hale (1992) 2.126 (−19) 5.781 (−19) 6.023 (−19)

50 4 3.4347 (−17) 9.9370 (−18) 1.1349 (−17))

6 3.4255 (−17) 9.9725 (−18) 1.1378 (−17)

8 3.4241 (−17) 9.9668 (−18) 1.1373 (−17)

10 3.4244 (−17) 9.9678 (−18) 1.1374 (−17)

Bosch and Hale (1992) 5.554 (−17) 9.838 (−18) 1.133 (−17)

The Maxwell weight function w(x) = x exp(−x2) is used in the energy integration. The rate
coefficients quoted by Bosch and Hale (1992) are taken from their Table VIII

Inelastic collisions between molecules with internal energy transfer are also impor-
tant processes (McCourt et al. 1991; Brun 2009) as well as inelastic electron or ion
atom/molecule collisions (Burke and Joachain 1995; Burke 2011) but these topics
are beyond the scope of this book.

In the next five subsections, we consider the quadratures involved in the evaluation
of (1) the reactive and elastic collision frequencies, (2) the integration over the cusp in
the kernel of the Boltzmann equation, (3) the shear viscosity for a simple gas, (4) the
eigenvalues of the collision operator in the Boltzmann equation for the special model
referred to as Maxwell molecules and (5) the Jeffries-Wentzel-Brillouin-Kramers
(JWKB) approximation to the quantal phase shifts used in the calculation of atom-
atom collision cross sections. Some but not all of the physical results discussed
are derived in detail and the references provided should be consulted for a better
understanding of each topic.

3.6.1 The Reactive and Elastic Collision Frequencies

In the previous sections we showed the relationship between the energy dependence
of the reactive cross section and the temperature dependence of the reactive rate
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coefficient for reactions of chemical interest as well as for fusion reactions. In this
section, we express the reactive rate coefficient in terms of the speed dependence
of the reactive collision frequency by assuming that one reactant is distributed in
speed with aMaxwellian distribution whereas the distribution function of the second
component is not specified. We thus integrate over the velocity of the species m2
taken to be at equilibrium but we do not transform to centre of mass and relative
velocity coordinates as done in the previous section.

We write the reactive rate coefficient as

k(T) =
∫

f1(v1)R(v1)dv1, (3.34)

where the reactive collision frequency is defined by

R(v1) =
∫

F(v2)σr(E)gdv2. (3.35)

The analogous elastic collision frequency, Z(v1), is

Z(v1) =
∫

F(v2)σel(E)gdv2, (3.36)

with the total elastic cross section denoted by σel(E). This elastic collision frequency
occurs in the collision operator of the Boltzmann equation. The spectral properties of
the linear and linearized operators are considered in detail in Chap. 5, and the elastic
collision frequency plays an important role as demonstrated later.

The distribution function of reactant labeled 1, f1(v1), is unspecified whereas
F(v2) is a Maxwell-Boltzmann distribution function. We define reduced velocity
variables

z = g
√

μ

2kBT
, xi = vi

√
mi

2kBT
, i = 1, 2 (3.37)

so that

R(x1) = 1

π

√
2kBT

πμ

∫
e−x22σr(E)zdx2. (3.38)

With the change of variable in Eq. (3.38) from x to z where the reduced relative
velocity is z = √

M1x2 − √
M2x1 and the mass fractions are M1 = m1/(m1 + m2)

and M2 = m2(m1 + m2), we have that

R(x1) = 2

√
2kBT

πμ
M

− 3
2

1

∞∫

0

e−(z2+M2x21)/M1

⎡
⎣

1∫

−1

e−2
√

M2zx1μ̂/M1dμ̂

⎤
⎦σr(E)z3dz.

(3.39)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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The 2π factor results from the integration over the azimuthal angle of z relative to x1
as the polar axis and μ̂ = cos θ where θ is the angle between z and x1. The integration
over μ̂ is elementary and we find that,

R(x1) =
√
2kBT

πμ

1√
M1M2x1

[G(−x1) − G(x1)] , (3.40)

where

G(x1) =
∞∫

0

e−(z+√
M2x1)2/M1σr(E)z2dz. (3.41)

To evaluate R(x1), the energy dependence of the reactive cross section must be
specified and in the first instance we choose the line-of-centers model, Eq. (3.23),
for which we have

G(x1) = σd

√
M1

[
M1I2 − 2

√
M1M2I1 + (M2x1 − ε)I0

]
, (3.42)

where the In integrals are defined by

In =
∞∫

t0

e−t2 tndt, (3.43)

where t0 = (
√

ε + √
M2x1)/M1. These integrals are determined by iteration with

I0 =
√

π

2
erfc(t0),

and

In+1 = 1

2

[
e−t20 tn

0 + nIn−1

]
.

The variation of the reactive collision frequency for this line-of centers cross
section versus reduced energy, x21, for several mass ratios is shown in Fig. 3.11. The
mass ratio decreases from m1/m2 = 100 to m1/m2 = 10−4 as shown in the graph
and Table3.8. The reactive collision frequency changes form with mass ratio and the
numerical evaluation of the integral

k(T) =
∞∫

0

x2e−x2R(x)dx, (3.44)

for the rate coefficient must take this mass ratio variation into account. A straightfor-
ward application of the quadrature based on theMaxwellian weight,w(x) = x2e−x2 ,
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Fig. 3.11 The reactive collision frequency R(x) in units of
√
2kBT/πμ versus reduced energy, x2 ≡

x21 = mv21/2kBT for reduced threshold energy ε∗ = 5 for the line-of-centers cross section, Eq. (3.23),

and for several mass ratios m1/m2 (see Table3.8). For m1/m2 → 0, R(x) → 2e−x2σr(x2kBT) and
increases rapidly near the threshold energy for small mass ratios m1/m2

Table 3.8 The relative error of the Gauss-Maxwell quadrature approximation (w(x) = x2e−x2 ) to
the integral I = ∫∞

0 x2 exp(−x2)R(x)dx for the line-of-centers cross section, Eq. (3.23)

m1/m2 0.0001 0.05 1 10 100

N Accuracy = log[|1 − I(N)/Iexact |]
4 −0.300 −0.521 −4.34 −6.65 −10.5

6 −0.379 −0.731 −4.56 −10.3 −14.3

8 −0.552 −1.08 −6.17 −14.3

10 −0.806 −1.66 −7.88

12 −1.73 −1.98 −9.64

14 −0.878 −1.87 −11.5

16 −0.945 −2.69 −14.0

18 −1.01 −2.45 −14.9

20 −1.16 −3.14

The exact value is Iexact = e−ε∗ , ε∗ = 5; The integrals are in units of
√
2kBT/πμ

yields excellent results for the larger mass ratios but does not capture the integrand
for the small mass ratios as shown in Table3.8. The results for the two smallest mass
ratios in the table are very poor and understandably so. Much better results can be
obtained with the appropriate translation of the quadrature points so that the first
point is just below the threshold energy.

For ε∗ = 0, the reactive collision frequency reduces to the well-known elastic
collision frequency,

Z(x) = πd2

√
kBTb

2M

[
(2

√
γx + 1√

γx
)

√
π

2
erf(

√
γx) + e−γx

]
. (3.45)
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This collision frequency appears in the Boltzmann collision operator, Eq. (3.46),
and is in part the origin of the continuous portion of the eigenvalue spectrum of
the collision operator (Hoare and Kaplinsky 1970). In Sect. 3.9.2, we consider the
calculation of matrix elements of the multiplicative operator, Z(x). We compare the
matrix representation in Laguerre polynomials with the representation in Maxwell
polynomials. We compare the calculation of the matrix elements of the elastic col-
lision frequency with the calculation of the matrix elements of the potential in the
Schrödinger equation. The matrix elements of the coordinate operator (Harris et
al. 1965; Dickinson and Certain 1968) featured prominantly in the development of
pseudospectral methods in chemical physics (Light and Carrington Jr. 2000).

3.6.2 Integration Over a Cusp; the Boltzmann Equation

In Chap.5, we consider the solution of integral equations, in particular the Boltzmann
equation, with a kernel K(x, y) defined later. The kernel in this integral equation
exhibits a cusp for x = y with a derivative discontinuity at this point. We use a
pseudospectral or collocation method (Jerri 1999; Kythe and Puri 2002) to solve the
integral equation which requires the integration over the cusp with a chosen quadra-
ture. Other examples of this type of integral equation include Love’s integral equation
for a circular parallel plate capacitor (Love 1949; Bartlett and Corle 1985; Kumar
2010; Pastore 2011) and a weakly singular Volterra integral equation with sharp
gradients reported by Isaacson and Kirby (2011) as well as for quantum mechan-
ical modelling of crystalline solids (Pask et al. 2012). In this section, we consider
numerical experiments that involve the integration over the cusp in the kernel for the
Boltzmann equation.

We consider a two component system with one component of mass m dilutely
dispersed in a second component of mass M which is at equilibrium and at a constant
temperature, Tb. The nonequilibrium distribution function, f (v, t), in the absence of
external fields and spatial gradients is given by the linear Boltzmann equation

∂f (v, t)

∂t
=
∫

K(u, v)f (u, t)du − Z(|v|)f (v, t), (3.46)

where K(u, v) is a kernel that describes the change in the distribution function owing
to collisions between the two species (Chapman and Cowling 1970; Kapral and
Ross 1970; Ferziger and Kaper 1972; Kharchenko et al. 1997) and is known for
arbitrary differential cross section as given explicitly by Eq. (7) in Sospedra-Alfonso
and Shizgal (2012). The kernel depends on the mass ratio of the two components
defined by γ = M/m.

The distribution function can be anisotropic and it is often represented as an
expansion in Legendre polynomials, that is

f (v, t) =
∞∑

�=0

f�(v, t)P�(μ), (3.47)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where μ = cos θ and θ is the angle between v and the polar axis in velocity space.
We consider the relaxation of isotropic and anisotropic distributions in Chap.5,
Sects. 5.6.3 and5.7.1, respectively. In Chap.6, Sect. 6.3, we consider the relaxation
of electrons in inert gas atoms with the Fokker-Planck equation which is the limiting
form of the Boltzmann equation for γ → ∞. This mass ratio limit is referred to as the
Lorentz limit as discussed in detail later. The other mass ratio limit is the Rayleigh
limit, namely γ → 0.

If the distribution function of species m is assumed isotropic, only the spherically
symmetric component f0(v, t) in Eq. (3.47) is of concern. In terms of the reduced
energies x = mu2/2kBTb and y = mv2/2kBTb, respectively, the isotropic distribution
satisfies the Boltzmann equation,

∂f0(y, t)

∂t
=

∞∫

0

k0(x, y)f0(x, t)dx − Z(y)f0(y, t). (3.48)

The kernel k0(x, y) is the spherical component of K(u, v).
The kernel for the hard sphere differential cross section, σ = d2/4, is known as

the Wigner2-Wilkins3 kernel and was originally used to describe neutron slowing
down (Wigner andWilkins 1944). TheWigner-Wilkins kernel (Andersen and Shuler
1964; Hoare and Kaplinsky 1970; Hoare 1971) is given by

kww(x, y) = 1
2AQ2

√
π

x

[
erf(Q

√
y − R

√
x) + ex−yerf(R

√
y + Q

√
x)

±
(
erf(Q

√
y − R

√
x + ex−yerf(R

√
y − Q

√
x)

)]
, (3.49)

where A = πd2nb
√

kBTb/2M, Q = 1
2 (γ

−1/2 + γ1/2), R = 1
2 (γ

−1/2 − γ1/2) and nb
is the density of the background gas of particles of mass M. It is useful to note for
later reference that the corresponding kernel for realistic differential cross sections
is known and involves two integrations over the scattering angle and relative energy
(Kapral and Ross 1970; Sospedra-Alfonso and Shizgal 2012, 2013).

The steady state solution is the equilibrium Maxwellian distribution in dimen-
sionless energy units, (see Eq. (3.16)), that is

F̂(y) = 2√
π

√
ye−y .

There are two important physical principles that yield the dependence of the colli-
sion frequency, Z(y), versus the reduced energy, y, originally defined by Eq. (3.36).

2 Eugene Paul Wigner (1902–1995), was an Hungarian American theoretical physicist and math-
ematician who was awarded the Nobel Prize in Physics in 1963 for his fundamental work on the
quantum mechanics of elementary particles and symmetries.
3 Jesse Ernest Wilkins, Jr. (1923–2011) was an African American nuclear physicist and mathemati-
cian who contributed to the Manhattan project and nuclear fission reactions.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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The first is conservation of number density so that the integral of Eq. (3.48) gives
zero that is, ∂/∂t[∫∞

0 f0(y, t)
√

ydy] = 0, as f0(y, t) is normalized to unity, and we
have that,

Z(y) =
∞∫

0

k0(y, x)dx. (3.50)

The second principle is the detailed balance condition at equilibrium (Hoare and
Kaplinsky 1970) so that ∂f0/∂t = 0 for f0 = F̂, that is,

Z(y) = 1

F̂(y)

∞∫

0

k0(x, y)F̂(x)dx. (3.51)

The Maxwellian distributions in Eq. (3.51) symmetrize the kernel, that is

G0(x, y) = F̂(x)

F̂(y)
k0(x, y) = G0(y, x). (3.52)

The Wigner-Wilkins kernel for the special case of equal masses, γ = 1, is

kww(x, y) = 1
2AQ2

√
π

x
erf(

√
y), y < x,

= 1
2AQ2

√
π

x
ex−yerf(

√
x), y > x. (3.53)

The three dimensional plot of the symmetrized Wigner-Wilkins kernel for γ = 1 is
shown in Fig. 3.12 (top left graph). The variation of G(x, y0) versus x for y0 = 1, 2,
3, 4 and 5 for γ = 0.0001, 1 and 1,000 is shown in the other three graphs. For γ = 1,
the kernel versus x for each y0 is much wider than the very narrow cusps for the two
disparate mass ratios on the right hand graphs.

It is clear that the kernel is sharply peaked at the disparate mass limits, which
are referred to as the Lorentz and Rayleigh limits as discussed previously. This is a
result of the small energy transfers in a collision between particles of very different
mass. This property of the kernel concerning velocity changing collisions has been
reported frequently in the literature (Shizgal and Lindenfeld 1979; Liao et al. 1980;
Berman et al. 1986; Rogers and Berman 1991; Gibble and Gallagher 1991; Shapiro
2000; Belai et al. 2007; McGuyer et al. 2012) and impacts on many applications and
on Doppler spectroscopy in particular. Examples of a similar localized nature of the
kernel in the Boltzmann equation for realistic cross sections are shown in Fig. 4 of
Bovino et al. (2011) and Fig. 5 of Zhang et al. (2007).

Our interest in this section is the calculation of the collision frequency with
Eq. (3.51). It is clear that in the disparate mass limits a single quadrature for all
values of y0 would be inefficient if the integration algorithm does not take into
account the position and width of the cusp over a small interval [xmin, xmax].
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Fig. 3.12 (Upper left panel) The three dimensional surface of theWigner-Wilkins kernel, Eq. (3.53)
for equal masses, γ = 1. Variation of the kernel for fixed argument, y0 = 1, 2, 3, 4 and 5 versus x
for γ = 0.0001, 1 and 1,000

We consider the extreme mass ratio γ = 1,000, shown in Fig. 3.12 and choose a
Simpson rule quadrature to evaluate the integral. In view of the localized nature of
the kernel, we consider a narrow interval that brackets the cusp at y0.

In Fig. 3.13(A), we show for γ = 100, y0 = 1, the variation of the relative error
with a Simpson rule algorithm versus the number of grid points, N , xmin = 0 and
different values of xmax . The grid spacing is the same for all xmax and as expected the
number of integration points required to achieve convergence decreases with xmax .
The initial decrease in the relative error is rapid for small values of N for all values of
xmax . In spite of the localized nature of the kernel, the interval has to be sufficiently
wide to capture the “tails” on either side of the cusp.

In Fig. 3.13(B), we show for y0 = 5 the variation of the relative error versus the
number of grid points, N , for different values of xmax with xmin = 0 (dashed curves)
and xmin = 3 (solid curves). The smaller interval about y0 = 5 gives the more
rapid convergence as expected with also a rapid convergence even for small values
of N . For all the results shown in Fig. 3.13 there is a grid point at the cusp. The grid
spacing, h, is varied as given by h = 1/m, and m varies from 10 to 400 in increments
of 10. These aspects of the integration over the kernel are important with regard the
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(A) (B)

Fig. 3.13 Variation of log10[relative error] for the Simpson rule integration of the symmetrized
Wigner-Wilkins kernel G0(x, y0), Eq. (3.52) for γ = 1,000. (A) y0 = 1; integration is over the
interval x ∈ [0, xmax]; (B) y0 = 5; integration is over the interval x ∈ [3, xmax] (solid curve)
and x ∈ [0, xmax] (dashed curve). In each case, the grid spacing is given by h = 1/m with m =
[10:10:400]

solution of the time dependent Boltzmann equation, Eq. (3.48), discussed in Chap.5.
However, the choice γ = 1,000 is extreme.

We compare further the results just discussed with integrations that divide the
integration interval into two subintervals x ∈ [0, y0] and x ∈ [y0, xmax]. We use a
Simpson rule integration in both subdomains as well as a Legendre quadrature for
each subdomain with the appropriate change of variable. The results for the Simpson
rule integration are shown in Fig. 3.14(A) for y0 = 1 (solid curves) and the two
intervals [0, 3] and [0, 2] with convergence faster for the smaller interval. The results

(A) (B)

Fig. 3.14 Variation of log10[relative error] for the integration of the symmetrized Wigner-Wilkins
kernel G0(x, y0), Eq. (3.52) for γ = 1,000. (A) Simpson rule integration withN/2+1 points in each
of the intervals [0, y0] and [y0, xmax] for y0 = 1 (solid curves) and y0 = 5 (dashed curves). The
intervals used are shown next to the curves. (B) Legendre quadrature integration over the intervals
[xmin, y0] and [y0, xmax] for y0 = 1, 3 and 5 with N/2 points in the intervals [0, 2], [2, 5] and [3,
8], respectively, that bracket y0

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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for y0 = 5 (dashed curves) are very similar with the smaller interval providing faster
convergence. We notice an initial rapid convergence versus N with a small number
of quadrature points as also shown in Fig. 3.13. By contrast with Fig. 3.13, there are
N /2 points in each interval and many more points between the origin and y0. Also
the grid spacing changes with N as given by h = 1/m with m chosen as before.

In Fig. 3.14(B), the results the Gauss-Legendre quadrature in the two intervals
[xmin, y0] and [y0, xmax] with N/2 quadrature points in each interval are shown. It
is very clear that the Gauss-Legendre quadrature is far superior to the Simpson rule
algorithmwith results similar for all y0 provided that the integration domain brackets
the cusp. A similar comparison of Simpson and trapezoidal rules for integrations over
a cusp were discussed by Secrest and Johnson (1966) in their modelling of atom-
diatomic collisional energy transfer.

We consider the Gauss-Maxwell quadrature with w(x) = x2e−x2 where x =√
mv2/2kBTb is the reduced speed rather than the reduced energy.We calculate Z(xi)

where xi is the ith quadrature point of the quadrature of order N . This approach does
not take into account the cusp in the kernel and we cannot expect the convergence to
yield the very small relative errors as in Figs. 3.13 and 3.14. The collision frequency
at each xi calculated with the same set of N = 80 quadrature points is shown in
Fig. 3.15. The best agreement between the exact and numerical collision frequencies
is formass ratio unity. The departures for the larger and smallermass ratios arise from
themore narrow cusp. The errors are largest for the larger quadrature points as a small
number of quadrature points are distributed to the right of the cusp. The calculation
of Z(x80 = 14.012) does not include the contributions beyond x80. However, this
is precisely the approach used, with this or other quadratures, to reduce the integral
equation, Eq. (3.46) to a set of coupled ordinary differential equations as discussed
further in Chap. 5.

Fig. 3.15 Comparison of the exact hard sphere collision frequency, Z(x) (dashed curves) in units
of πd2√kBTb/2m, Eq. (3.45), with the numerical integration (solid curves) of the Wigner-Wilkins
kernel with the Gauss-Maxwell quadrature (p = 2, N = 80) for several mass ratios. The symbols
show each of the 80 quadrature points and x = √mv2/2kBTb is the reduced speed

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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3.6.3 Viscosity of a Simple Gas

The Chapman-Enskog method of solution of the Boltzmann equation for a one com-
ponent gas discussed in Chap.5 is the basis for the calculation of the transport coeffi-
cients (Hirschfelder et al. 1954; Huang 1967; Chapman and Cowling 1970; Ferziger
and Kaper 1972). For the calculation of the viscosity, the method assumes a small
departure of the velocity distribution function from a Maxwellian owing to a small
velocity gradient. This perturbation of the distribution function is given by the solu-
tion of the linearized Boltzmann equation, Eq. (5.45). The integral collision operator
in the Boltzmann equation is defined by the differential scattering cross section for
binary collisions of the gaseous particles. We assume that the particle collisions are
described by a hard sphere cross section and the integral Boltzmann equation is then
given by Eq. (5.88).

The shear viscosity of a simple gas in reduced units is given by

ν = 16
√
2

15

∞∫

0

e−x2x4B(x)dx, (3.54)

as defined in recent publications (Siewert 2002; Sharipov and Bertoldo 2009). We
direct our attention to the numerical integration of the integral in Eq. (3.54) given the
function B(x) which is determined with the solution of the Boltzmann equation for
viscosity (Loyalka et al. 2007).

Loyalka et al. (2007) employed an expansion of the distribution function in the
Laguerre (or Sonine) polynomials and used Mathematica to algebraically obtain
extremely accurate converged solutions to the Boltzmann equation with up to 150
terms and provided the function B(x) in Table5 of their paper. This is essentially
the Galerkin solution of the integral equation. Their work serves as an excel-
lent benchmark and they report the viscosity to 34 significant figures, that is
ν = 0.4490278062878924346090494895346545.

We use a spline fit of B(x) from the data provided in Table5 of Loyalka et al.
(2007) which has 44 data points for x ∈ [0, 6]. The values of B(x) are available
only up to x = 6, but beyond this point the integrand is less than 10−15. With the
weight factor w(x) = x2 exp(−x2) in the integrand, it would appear that an optimal
quadrature is the one based on the Maxwell polynomials with p = 2.

Thus we consider the integral in Eq. (3.54) with the quadratures based on the
Maxwell and Laguerre polynomials and we also include a Simpson’s rule for com-
parison. In this case since the data for B(x) is limited up to xmax = 6 the Simpson’s
rule is defined on the interval [0, 6]. Also, for the higher order quadratures, the
Laguerre quadrature points can be greater than 62 so that these have to be scaled
as in Eq. (3.3) such that the last point is at y = 36 which occurs for N >10. The
quadrature point xN for the Maxwell quadrature and yN for the Laguerre quadratures
for orders N = 3 to 10 are compared in Table3.9. The Laguerre quadrature points
are far more diffuse in reduced energy than theMaxwell quadrature in reduced speed
for the same N . A similar comparison was shown in Chap.2.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Table 3.9 The quadrature points, xN and yN , for the listed N th order Gaussian quadratures

N 3 4 5 6 7 8 9 10

Maxwell (p = 2) xN 2.220 2.640 3.014 3.356 3.671 3.967 4.245 4.509

Laguerre (α = 3/2) yN 8.471 11.71 15.05 18.46 21.92 25.43 28.98 32.55

The Laguerre quadrature points are far more diffuse than the Maxwell quadrature points with the
same N

(A) (B)

(C) (D)

Fig. 3.16 Convergence of the integral for the viscosity of a simple hard sphere gas, Eq. (3.54).
(A) Gauss-Maxwell quadrature with spline fit to the data in Table 5 of Loyalka et al. (2007); (B)
Gauss-Maxwell quadrature with a 16th order polynomial fit to the data in Table 5 of Loyalka et al.
(2007); dashed curve uses the “exact” value with the polynomial fit; (C) Gauss-Laguerre quadrature
(α = 3/2); (D) Simpson’s rule

A comparison of the convergence of the viscosity, given by Eq. (3.54) versus
the number of quadrature points for these three algorithms is shown in Fig. 3.16.
Figure3.16(A), (B) are the results for Gauss-Maxwell (p = 2) with a spline fit of the
data in Table 5 of Loyalka et al. (2007). For the dashed curve in Fig. 3.16(B), the exact
value from the polynomial fit is used so that machine accuracy obtained is expected.
The results with the Gauss-Laguerre quadrature in Fig. 3.16(C) are comparable to
those with the Gauss-Maxwell quadrature above. The moderately rapid convergence
of the relative errors for this integral for all quadratures are anticipated for this very
smooth integrand. In Chap.5, Sect. 5.4.5, we consider the solution of the Boltzmann
integral equation for B(x) and the calculation of the shear viscosity in comparison
with the spline method of solution used by Siewert (2002).

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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3.6.4 Eigenvalues of the Boltzmann Collision Operator
for Maxwell Molecules

In the kinetic theory of gases, the model system based on the atom-atom power
law repulsive interaction of the form VMM(r) = κ/r4, where r is the atom-atom
separation, is referred to as “Maxwell molecules” and κ determines the strength
of the interaction. The model was introduced by James Clerk Maxwell4 long ago
as reviewed by Santos (2009). This model is of major significance to the history
of the kinetic theory of gases. In spite of the nonphysical nature of this repul-
sive interaction potential, the model has been used over several decades in many
applications (St.-Maurice and Schunk 1976, 1979; Hubert 1983; Shizgal and Hubert
1989; Sabbane et al. 2003; Napier and Shizgal 2008; Santos 2009). The attractive
potential, V(r) = −κ/r4, is a model for the long range ion atom interaction poten-
tial that provides an estimate of ion mobilities in neutral gases with solutions of the
Boltzmann equation (McDaniel and Mason 1973; Mason and McDaniel 1988).

The eigenfunctions of the linearized one-component Boltzmann collision operator
for the repulsive Maxwell molecule interaction are the direct product of the Sonine-
Laguerre polynomials and the spherical harmonics. Thus, the Sonine-Laguerre poly-
nomials havebecome thebasis set of choice for kinetic theoryproblems.TheMaxwell
molecule model has also been employed in studies of the approach to equilibrium for
the non-linear Boltzmann equation (Krook andWu1976; Ernst 1981; Bobylev 1984).

For the interparticle potential, VMM(r), the two body classical scattering problem
can be solved exactly (Goldstein et al. 2000; Liboff 2003) and the dependence of the
differential cross section on the relative speed, g, and scattering angle, θ, is given by

σ(g, θ) = 2

√
κ

m

1

g
I4(θ). (3.55)

The dependence on the scattering angle is given by

I4(θ) = − 1

sin(θ)

d cot(2φ)

dθ
, (3.56)

with the scattering angle θ defined in terms of φ

θ = π − 2
√
cos(φ)K(sin2 φ), (3.57)

where

K(sin2 φ) =
π/2∫

0

1

[1 − sin2 φ sin2 α]dα, (3.58)

is the Elliptic integral.

4 James Clerk Maxwell (1831–1879) was a Scottish mathematical physicist who made a large
number of fundamental contributions to electromagnetic theory, kinetic theory and thermodynamics.
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It is very important to notice that for this interaction the product gσ(g, θ) is inde-
pendent of g (see Eq. (3.55)). An important consequence of this model is that the col-
lision frequency Z(v) that occurs in the collision operator in the Boltzmann equation
as given by Eq. (3.35) is independent of the particle speed. The collision operator is
greatly simplified and the eigenvalue spectrum of the operator is completely discrete.

It can be shown (Ford 1968; Foch and Ford 1970) that the eigenvalues, λn,�, of the
linearized one-component collision operator for this interaction are given explicitly
by the integral

λn,� = −4π

√
κ

m

π∫

0

I4(θ)

[
cos2n+�(

θ

2
)P�[cos(θ

2
)] + sin2n+�(

θ

2
)P�[sin(θ

2
) − 1]

− δn0δ�,0

]
sin θdθ. (3.59)

We find it convenient to transform the integration variable from θ to φ so that the
integral in Eq. (3.59) becomes

λn,� = 8π

√
κ

m

π/4∫

0

[
cos2n+�( θ

2 )P�[cos( θ
2 )] + sin2n+�( θ

2 )P�[sin( θ
2 ) − 1] − δn0δ�,0

sin2 2φ

]
dφ,

(3.60)

and the angle θ is determined from φ as given by Eq. (3.57). In Fig. 3.17(A) we show
the integrands of Eq. (3.60) versus φ for λn,0 with n = 4, 8, 12 and 16 and likewise
in Fig. 3.17(B) we show the integrands for λ0,� with � = 6, 10, 14 and 16. There is
a rapid variation near φ = π/4 shown in Fig. 3.17(B).

We choose a Gauss-Legendre quadrature to calculate λn,�. The convergence of
several eigenvalues versus the number of quadrature points increases with n and �

as shown in Tables3.10 and 3.11. The results in the tables are in agreement with

(A) (B)

Fig. 3.17 The φ variation of the integrand in Eq. (3.60) for the Maxwell molecule eigenvalues,
λn,�. (A) � = 0 and n from top to bottom is 16, 12, 8 and 4. (B) n = 0 and � from top to bottom
is 16, 14, 10 and 6
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Table 3.10 Convergence of the Maxwell molecule eigenvalues, λn,0 with Gauss-Legendre
quadratures

N λ4,0 λ8,0 λ12,0 λ16,0

4 7.2473049826 10.6815741779 12.6401640971 13.9560579506

8 7.1404138296 10.3355659392 12.2873384173 13.7368118926

12 7.1402976496 10.3296515433 12.2624669303 13.6902870561

16 7.1402976448 10.3296443968 12.2622077369 13.6886563346

20 7.1402976448 10.3296443951 12.2622072790 13.6886437782

24 10.3296443951 12.2622072788 13.6886437520

32 12.2622072788 13.6886437519

40 13.6886437520

Table 3.11 Convergence of the Maxwell molecule eigenvalues, λ0,� with Gauss-Legendre
quadratures

N λ0,6 λ0,10 λ0,14 λ0,18

4 15.0278419641 18.9389440371 21.4348909276 25.4697236812

8 14.2744916100 19.4726281411 23.4800390873 26.5094667009

12 14.2628153767 19.3091338846 23.3459851156 26.8105457092

16 14.2628093775 19.3059204404 23.2863701647 26.7017149499

20 14.2628093771 19.3059159880 23.2852977701 26.6815970246

24 19.3059159869 23.2852954023 26.6812438552

32 19.3059159868 23.2852954009 26.6812426849

40 23.2852954011 26.6812426851

50 26.6812426847

the large number of eigenvalues reported by Alterman et al. (1962) to the significant
figures shown and expressed in units of their A2 = 9.689818653

√
κ/m, that is

λ02 = 0.6× 9.689818653
√

κ/m = 5.8138911918
√

κ/m. The authors mention that
the integrands in their work were highly oscillatory. They calculated the eigenvalues
to 10 significant figures in triple precision with up to 96 Gauss-Legendre quadrature
points. The lower order eigenvalues reported recently (Sabbane et al. 2003; Santos
2009) are also in agreement with the results reported here.

3.6.5 The JWKB Phase Shifts and Quantum
Elastic Cross Sections

The calculation of the differential and total elastic cross sections for atom-atom colli-
sionswith a specified interatomicpotential is important for the calculationof transport
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coefficients for diffusion, viscosity, heat conduction and ion mobilities (Hirschfelder
et al. 1954; Chapman and Cowling 1970; Ferziger and Kaper 1972; Mason and
McDaniel 1988; Lemmon and Jacobsen 2004; Danailov et al. 2008; Oh 2013). Other
applications include the relaxation to equilibrium of an initial nonequilibrium dis-
tribution of energetic atoms by collisional energy transfer (Nan and Houston 1992;
Kharchenko and Dalgarno 2004; Zhang et al. 2007; Bovino et al. 2011; Sospedra-
Alfonso and Shizgal 2013). Binary collision theory is based on either classical
mechanics (Goldstein et al. 2000) or quantum mechanics (Child 1996; Burke 2011).

The quantum mechanical differential elastic cross section for binary collisions
between two structureless particles is given in terms of the square of the scattering
amplitude, f (E, θ), which depends on the center-of-mass relative energy, E, and the
scattering angle, θ, that is

σ(E, θ) = |f (E, θ)|2, (3.61)

where the scattering amplitude can be expressed in terms of the phase shifts, δ�(E),

f (E, θ) = 1

k

∞∑
�=0

(2� + 1)eiδ� sin(δ�)P�(cos θ), (3.62)

and P�(cos θ) is the Legendre polynomial. In Eq. (3.62), k = √2μE/�2 is the wave
number and μ is the reduced mass of the colliding pair. The phase shifts can be
determined from a solution of the radial Schrödinger equation

1

r2
d

dr

(
r2

duk,�(r)

dr

)
+ [k2 − U(r) − �(� + 1)

r2
]uk,�(r) = 0 (3.63)

whereU(r) = 2μV(r)/�
2, k2 = 2μE/�

2 and the interaction potential isV(r), where
r is the distance between the pair of particles considered. The Schrödinger equation
is solved for the continuum scattering states withE > 0 and the asymptotic boundary
condition on the radial wavefunction is

uk,�(r) ∼
r→∞ r

sin(kr − �π/2 − δ�)

kr
, (3.64)

which defines the phase shift δ�. A more detailed discussion of the theoretical
approach can be found in several references (Bernstein 1966; Child 1996; Burke
2011; Taylor 2012).

With the scattering amplitude expressed as in Eq. (3.62), the total cross section is
given by

σtotal(E) = 2π

π∫

0

σ(E, θ) sin θdθ = 4π

k2

∞∑
�=0

(2� + 1) sin2 δ�(k). (3.65)

For heavy particle collisions at high relative energies, many phase shifts contribute
to the total cross section, Eq. (3.65), and the time consuming numerical integration
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of the radial Shrödinger equation is not necessary in many situations. The Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) phase shift (Child 1996; Burke 2011) given by

δ� =
∞∫

r0

√√√√
[

k2 − (� + 1
2 )

2

r2
− U(r)

]
dr −

∞∫

r1

√
k2 − (� + 1

2 )

r2
dr, (3.66)

provides a very good approximation. In Eq. (3.66), r0 is the classical turning point
given by the root of the square bracket term in the first integral. Analogously, r1 =√

(� + 1
2 )

2/k2 and we have made the familiar Langer modification (Langer 1937)

by replacing �(� + 1) with (� + 1
2 )

2.
With this very brief overview of semiclassical scattering theory, we now direct

attention to our main concern here, namely the numerical evaluation of the phase
shift as defined by Eq. (3.66). As with the previous applications discussed in this
chapter, the nature of the integrand dictates the choice of numerical quadrature. In
this application, it is important to notice that the integral depends on the choice for
the potential, V(r), the relative energy as given by k2, the value of � and the classical
turning point, r0.

Wechoose thediatomO-Hwhich is important in the estimationof the escapeof ato-
mic species from planetary atmospheres (Shizgal 1999; Balakrishnan and Dalgarno
2003; Kharchenko and Dalgarno 2004; Jamieson et al. 2006) and in other applica-
tions (Wright and Donaldson 1985; Oneal and Neff 1997). The interaction potentials
and collision dynamics were reported in detail in these references. For the purpose of
the numerical comparisons presented here it is sufficient to choose the ground X2Π

state of OH to be the Morse potential reported by Wright and Donaldson (1985) and
given by

V(r) = De

[
1 − e−β(r−re)

]2
, (3.67)

where re = 1.821 au, De = 5.426eV and β = 1.189 (au)−1 where 1au = 0.52917Å
and 1Å = 10−8 cm. In Chap.6, we will also consider the bound vibrational states of
such diatomic molecules modelled with the Morse potential. There are many other
choices for the interatomic potentials including a Lennard-Jones potential (Sospedra-
Alfonso and Shizgal 2013) as well the results of quantum mechanical calculations
of the electronic structure (Jamieson et al. 2006) for which the potential is often
available in tabular rather than in analytic form (Shizgal 1999).

The methods that have been proposed to evaluate the integral in Eq. (3.66) include
a modified Clenshaw-Curtis quadrature (Kennedy and Smith 1967), a Gauss-Mehler
quadrature (Pack 1974), a Gauss-Legendre quadrature and a non-classical quadrature
proposed by Cohen (1978) based on the weight function w(x) = 1/

√
1 − x x ∈

[0, 1] (see Item 25.4.36 in Abramowitz and Stegun (1964)) with quadrature points
and weights related to the Gauss-Legendre quadrature.

A comparison of theGauss-Legendre andGauss-Mehler quadratures in the numer-
ical evaluation the integrals for δ� is presented. It is of interest to note that the use of the

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Clenshaw-Curtis quadrature in this application resulted in a study of the convergence
properties by O’Hara and Smith (1968) and later by Trefethen (2008).

A detailed comparison of different quadratures is made challenging owing to
the variation of the integrand in Eq. (3.66) versus x that depends on the interaction
potential, V(r), the energy E and the value of �. Except for the case of short ranged
nuclear interactions, a moderately large number of partial waves must be calculated
in order to get a converged cross section. Such cross sections for a variety of binary
atomic pairs are used in several studies of the approach to equilibrium based on the
Boltzmann equation (Bovino et al. 2009, 2011; Sospedra-Alfonso and Shizgal 2013)
that we consider in detail in Chap.5. There are also practical applications concerning
gaseous transport properties (Oh 2013; Lemmon and Jacobsen 2004) as well for ion
mobilities in gases (Mason andMcDaniel 1988;Viehland 1994;Danailov et al. 2008).

Thefirst step in the evaluation of the integral for the phase shift is the determination
of the classical turning point which can be done with a simple search to bracket the
root and then with a Newton-Raphson iteration to converge to the root. We show
in Fig. 3.18 the variation of the “effective” potential, Veff (r) = V(r) + (� + 1

2 )/r2

versus r for four values of � at E = 1.0eV. For the two lowest � values there is one
innermost turning point whereas for � = 60 there are three turning points and for
� = 62 there is one outermost turning point.We here only consider the one outermost
turning point but there is an error introduced (Munn et al. 1964; Viehland and Chang
2010) which is related to the classical orbiting problem when the relative energy
is close to the top of the centrifugal barrier depicted by the maximum in Veff (r) in
Fig. 3.18.

We make the change of variable x = r0/r and recognize the classical impact
parameter with b = (� + 1

2 )/k. A very important connection between the semiclas-
sical theory and the classical approach is the relationship between the variation of δ�

versus � and the scattering angle, χ(b) versus b, given by χ(b) = 2∂δ�/∂� (Child
1996; Viehland and Chang 2010). The phase shift in the new integration variable

Fig. 3.18 (Left hand side) The effective potential Veff (r) = V(r) + (�+1/2)2

r2
where � = 56, 58, 60

and 62 from bottom to top curves with E = 1.0eV as the dashed line. The three turning points are
clearly seen for � = 60. (Right hand side) The classical turning points, r0 versus �, for E = 0.5eV
(square symbols) and for E = 1.0eV. The symbols show the change in the classical turning from
the innermost root to the outermost root

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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appropriate for Gauss-Legendre (GL) quadratures is given by,

δ
(GL)
� = kr0

1∫

0

I(GL)
� (x)dx + π[(� + 1

2 ) − kr0]
2

, (3.68)

where

I(GL)
� (x) =

⎡
⎣
√
1 − (� + 1

2 )x
2

kr0
− U(r0/x)

k2
−
√
1 − x2

⎤
⎦ 1

x2
. (3.69)

Pack (1974) suggested the use of a Gauss-Mehler quadrature which is a Chebyshev
quadrature (w(x) = 1/

√
1 − x2)with only the positive quadrature points. TheGauss-

Mehler quadrature points and weights are given by

xi = cos(
iπ

2N + 1
), i = 1, . . . N

wi = (1 − x2i )π

2N + 1
. (3.70)

The algorithm is applied to the integral

δ
(GM)
� = kr0

1∫

0

1√
1 − x2

I(GM)
� (x)dx + π[(� + 1

2 ) − kr0]
2

, (3.71)

where

I(GM)
� (x) = (1 − x2)

⎡
⎣
√
1 − (� + 1

2 )x
2

kr0
− U(r0/x)

k2
− 1

⎤
⎦ 1

x2
. (3.72)

It is readily shown that the derivative of the integrand is singular at x = 1.
The phase shifts for a range of energies and � values were determined from the

integral in Eq. (3.68) with a Gauss-Legendre quadrature. It is instructive to first show
the energy dependence of the total cross section in Fig. 3.19(A). The actual value
of the cross section is somewhat larger than previously reported for more realistic
potentials for OH (Wright and Donaldson 1985; Shizgal 1999; Bovino et al. 2009,
2011). The differential cross section for E = 0.5eV is shown in Fig. 3.19(B). The
number of phase shifts required to get convergence of the cross sections increaseswith
E and for the energy range shown in the figure up to 400 phase shifts were required.
Thus a large number of phases shifts are required for the results shown in Fig. 3.19.

The details of the integrand in Eq. (3.68) vary considerably with E and � and of
course the choice of the potential. We choose two energies, E = 0.5 and 1.0eV and
four � values as shown in Fig. 3.20.
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(A) (B)

Fig. 3.19 (A) The total cross section in Å2 versus relative energy, E, for O-H; (B) The differential
cross section in Å2 versus scattering angle for E = 0.5eV

(A) (B)

Fig. 3.20 The integrand, I�(x) for E = 1.0eV for Gauss-Legendre quadrature (dashed line),
Eq. (3.69), and Gauss-Mehler quadrature (solid line), Eq. (3.72)

Table 3.12 Convergence of the Gauss-Legendre evaluation of the JWKB phase shifts, Eq. (3.66),
versus the number of quadrature points, N , at two energies

N E = 0.5eV E = 1.0eV

� = 20 � = 50 � = 80 � = 20 � = 50 � = 80

20 49.72877 1.73645 0.017339 41.81695 32.97958 0.37106

40 49.72806 1.73663 0.017342 41.81610 32.97880 0.36994

60 49.72799 1.73665 0.017342 41.81601 32.97871 0.36982

80 49.72797 1.73666 41.81599 32.97869 0.36979

100 41.81598 32.97868 0.36978

The convergence of the phase shifts with the Gauss-Legendre and Gauss-Mehler
quadratures are shown in Tables 3.12 and 3.13, respectively. It is clear that the Gauss-
Mehler quadrature outperforms the Gauss-Legendre quadrature. The convergence of
the smaller phase shifts for the larger � values is faster than for the larger phase
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Table 3.13 Convergence of the Gauss-Mehler evaluation of the JWKB phase shifts, δ�, Eq. (3.66),
versus the number of quadrature points, N , at two energies

N E = 0.5eV E = 1.0eV

� = 20 � = 50 � = 80 � = 20 � = 50 � = 80

6 49.72877 1.73645 0.017339 42.21144 32.94304 0.36977

8 49.72806 1.73663 0.017342 42.01845 32.97914 0.36977

12 49.72799 1.73665 0.017342 41.79747 32.97949

16 49.72797 1.73666 41.81488 32.97895

20 41.81665 32.97864

30 41.81595 32.97868

40 41.81597

shifts for smaller � values. The reason would appear to be the slower variation
of the integrands for the Gauss-Mehler quadrature than for the Gauss-Legendre
quadrature as seen in Fig. 3.20. This type of analysis was not considered in the
review of the different quadratures by Cohen (1978). A more detailed comparison
of the different quadrature procedures and for different potential forms would be
useful.

It is important to point out that the numerical calculation of the total cross section
with Eq. (3.65) as the integral of the differential cross section shown in Fig. 3.19
would require a very fine grid of points in order to capture the detailed structure. In
this case a Simpson’s rule would be the method of choice or an adaptive quadrature
with subdivision of the domain. This is also the case for the calculation of the elastic
collision frequency, Eq. (3.36) with the total cross section also shown in Fig. 3.19 in
order to capture the detailed oscillations that occur.

3.7 The Calculation of Matrix Elements
of Multiplicative Operators

The collision operator in the Boltzmann equation, Eq. (3.48), is the difference of
the integral collision operator and the elastic collision frequency, Z(y), defined by
Eq. (3.50). The eigenvalue spectrum of the collision operator has in general a discrete
set of eigenvalues as well as a continuum. Similarly, the Hamiltonian for a quantum
problem can have bound states of negative energy (discrete eigenvalues) as well
as scattering states of positive energy (continuum states). These eigenvalue spectra
can be modelled approximately from the matrix representatives of the respective
operators in suitable basis sets as discussed in the sections that follow.

InChap.1,we outlined the spectralGalerkin solution of differential and/or integral
equations based on the method of weighted residuals (Finlayson and Scriven 1966;
Finlayson 1972). The Boltzmann or Fokker-Planck equation for a spatially uniform

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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system in the absence of external forces is the time dependent equation of the form

∂f (x, t)

∂t
= Lf (x, t) x ∈ [a, b], (3.73)

where L is a linear self-adjoint operator and an initial condition, f (x, 0) = g(x), is
specified.

An approximate solution is given by the finite expansion in a set of orthonormal
basis functions Pn(x) where Pn(x) are classical or nonclassical polynomials and∫ b

a w(x)Pn(x)Pm(x)dx = δnm. We thus have the N th order approximation to f (x, t),

f (N)(x, t) =
N−1∑
n=0

cn(t)Pn(x). (3.74)

The initial values, cn(0), are provided by the expansion of the initial condition, that is,

g(x) =
N−1∑
n=0

cn(0)Pn(x). (3.75)

The departure of the approximate solution from the actual solution is measured by
the “residue” defined by

RN (x, t) = ∂f (N)(x, t)

∂t
− Lf (N)(x, t),

=
N−1∑
n=0

Pn(x)
dcn(t)

dt
−

N−1∑
n=0

cn(t)LPn(x). (3.76)

The method of weighted residuals (Finlayson and Scriven 1966; Finlayson 1972;
Shen et al. 2011) is a procedure to calculate cn(t) so as to minimize the residual
RN (x, t) in some average way. We impose the condition that the residue is mini-
mized subject to

b∫

a

t(x)RN (x, t)dx = 0, (3.77)

where we choose the “test function” as t(x) = w(x)Pm(x), m = 0, 1, . . .
(N −1). The partial differential equation is approximated by the set of N −1 coupled
ordinary differential equations with the Galerkin procedure, that is,

dcm(t)

dt
=

N−1∑
n=0

Lmncn(t) m = 0, 1, . . . , N − 1, (3.78)

where
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Lmn =
b∫

a

w(x)Pm(x)LPn(x)dx, (3.79)

is the matrix representative of the operator L in spectral space. An important con-
sideration is the condition number of the matrix Lmn which determines the stability
of the linear set of equations, Eq. (3.78), and their numerical time integration. The
preceding discussion follows closely the presentation in Sect. 1.3.

TheN th order transformation from spectral space, cn, to physical space, fi ≡ f (xi),
is given by

fi =
N−1∑
n=0

T (N)
in cn. (3.80)

The transformation matrix is defined by

T (N)
ni = √

wiPn(xi) i = 1, 2, . . . N; n = 0, 1, . . . (N − 1) (3.81)

and is symmetric at all orders N , that is

(
T(N)

)t · T(N) = I(N), (3.82)

where t denotes the transpose of the real matrix of order N . Equation (3.82) written
in component form is

N−1∑
n=0

T (N)
in T (N)

nj = √
wiwj

N−1∑
n=0

Pn(xi)Pn(xj)

= √
wiwj

δij√
wiwj

= δij. (3.83)

which is exact to any orderN . This is a direct consequence of the cardinality condition
for the underlying interpolation at any order N .

In the following sections, we direct our attention to the calculation of the matrix
elements of multiplicative operators denoted by G(x). The matrix representative in
some basis set is

Gmn =
b∫

a

w(x)Pm(x)G(x)Pn(x)dx. (3.84)

If this is approximated with the quadrature associated with the basis functions Pn(x),
then the N th order approximation is

G(N)
mn =

N∑
k=1

wkPm(xk)G(xk)Pn(xk). (3.85)

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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What is remarkable is that if we transform this (approximate) spectral space repre-
sentation, G(N)

nm , to the discrete space, Gij, we have that

Gij =
N−1∑
n=0

N−1∑
m=0

TinG(N)
nm Tmj,

=
N−1∑
n=0

N−1∑
m=0

√
wiPn(xi)

[
N∑

k=1

wkPm(xk)G(xk)Pn(xk)

]
√

wjPm(xj),

= √
wiwj

N∑
k=1

wkG(xk)[
N−1∑
n=0

Pn(xj)Pn(xk)][
N−1∑
m=0

Pm(xi)Pm(xk)],

= √
wiwj

N∑
k=1

wkG(xk)
δjk√
wjwk

δik√
wiwk

,

= G(xi)δij, (3.86)

where the definition of Tin was used in the 2nd line and the “finite completeness” of
the basis set in the 3rd line. The transform of the exact Gnm matrix elements would
not give a diagonal physical space representation of the multiplicative operator as
we demonstrate later.

For the Schrödinger equation, the multiplicative operator of interest is the poten-
tial, V(x), in a one-dimensional Hamiltonian. The approximate calculation of the
matrix elements of the potential function with a quadrature has served as the basis in
chemical physics (Harris et al. 1965; Dickinson and Certain 1968) for the develop-
ment of a pseudospectral or collocation solution of the Schrödinger equation (Light
et al. 1985; Light and Carrington Jr. 2000) referred to as the Discrete Variable Rep-
resentation (DVR).

An analogous procedure was developed by Shizgal (1981) and Shizgal and
Blackmore (1984) for the Boltzmann equation and later applied to the Fokker-
Planck and the Schrödinger equations (Shizgal and Chen 1996, 1997; Lo and Shizgal
2006, 2008). There is also the analogous Lagrange mesh method developed by Baye
(1994, 2006) and coworkers (Baye and Heenen 1986; Baye et al. 2002). These
methods of solution of the Schrödinger equation are studied in detail in Chap.6. The
objective in this section is to demonstrate the relationship of the spectral representa-
tion of multiplicative operators in an orthonormal basis set evaluated by quadrature
and the physical space representation as described in Eq. (3.85).

For the Boltzmann equation the multiplicative operator is the collision frequency,

Znm = 2√
π

∞∫

0

w(y)Pn(y)Z(y)Pm(y)dy, (3.87)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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which depends on the mass ratio, γ = M/m. We will compare these calculations
with similar calculations for the matrix elements of the potential in the Schrödinger
equation of the form

Vnm =
∞∫

0

w(x)Qn(x)V(x)Qm(x)dx, (3.88)

where Qn(x) are “appropriate” orthonormal basis functions. It should be clear that
the choice of basis functions in different applications is crucial so as to get the “best”
approximation to the operators. In Sect. 3.7.2, we consider the analogous calculation
of the matrix elements of the potential in the Schrödinger equation for the quantum
harmonic oscillator. It is the quadrature calculation of the matrix elements of the
potential in the Schrödinger equation (Harris et al. 1965; Dickinson and Certain
1968) that inspired the discrete variable representation pseudospectral method in
chemical physics (Light and Carrington Jr. 2000).

3.7.1 Matrix Representation of the Collision Frequency
in Laguerre and Maxwell Polynomials

The collision operator of the Boltzmann equation, Eq. (3.48), includes the sum of
the integral operator and the elastic collision frequency, Z(y), Eq. (3.50) which for
the hard sphere cross section is given by Eq. (3.45). The physical system of inter-
est is the binary system of a test particle of mass m dilutely dispersed in a back-
ground gas of particles of mass M at equilibrium at temperature Tb. The mass ratio is
γ = M/m.

We are interested in the analytic evaluation of the matrix elements of the collision
frequency, Z(y), for a binary gas with the hard sphere cross section. This calculation
illustrates some of the techniques used in kinetic theory with the so-called moment
method of solution which is a spectral solution of the Boltzmann equation with the
distribution expanded in a basis set of functions. The basis set that is commonly used
is the Sonine-Laguerre polynomials (Hoare and Kaplinsky 1970). The reason for this
choice is that for a particular collisional model, namely for “Maxwell molecules”,
particles that interact with an inverse power law potential, (V(r) ≈ r−4), the collision
frequency is a constant and the eigenvalue spectrum of the Boltzmann collision
operator is discrete. Further details are discussed in Chap.5.

The Sonine-Laguerre polynomials of order α = 1/2 can be defined by their
explicit polynomial representation,

L
( 12 )
n (y) =

n∑
k=0

Snk yk, (3.89)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where y = mv2/2kBTb is reduced energy and the coefficients are given by

Snk = (−1)kΓ (k + 3
2 )

Γ (n + 3
2 )(n − k)!k! yk . (3.90)

The L
( 12 )
n (y) basis functions are orthogonal as given by

∞∫

0

√
ye−yL

( 12 )
n (y)L

( 12 )
m (y)dy = Γ (n + 3

2 )

n! δnm. (3.91)

It is important to note that the coefficients in Eq. (3.90) alternate in sign owing to the
factor (−1)k .

With Eqs. (3.89) and (3.90), the matrix elements of the collision frequency, Z(x),
Eq. (3.45), are given by

Znm = A√
γ

n∑
k=0

m∑
�=0

SnkSm�

∞∫

0

√
ye−y y(k+�)

×
(

e−γy +
√

π

2

[
1√
γy

+ 2
√

γy

]
erf(

√
γy)

)
dy, (3.92)

with A = πd2√kBTb/2M. The integrals of powers of the collision frequency can be
evaluated exactly in terms of two sets of integrals, defined by,

I1(n) =
∞∫

0

yne−(γ+1)ydy = 1

(γ + 1)n+1Γ (n + 1), (3.93)

and

I2(n) =
∞∫

0

yne−yerf(
√

γy)dy, (3.94)

which satisfies the recurrence relation

I2(n) = nI2(n − 1) +
√

γ

π

Γ (n + 1)

(γ + 1)(n+1)
. (3.95)

The matrix elements can be written in terms of these integrals as given by

Znm = A√
γ

n∑
k=0

m∑
�=0

SnkSm�

[
I1(k + � + 1

2 ) + 1

2

√
π

γ
I2(k + �) + √

πγI2(k + � + 1)

]
.

(3.96)
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As noted earlier, the terms in the sum in Eq. (3.96) alternate in sign and we can expect
significant round-off errors for n and m of the order of 15–20. We only consider the
lower order matrix elements.

The matrix elements of the collision operator are calculated exactly with
Eqs. (3.93)–(3.96) and approximately by quadrature. An important consideration
is the mass dependence of the collision frequency that is shown in Table3.14.

The exact matrix elements for γ = 1 and order N = 5 in Table3.14 are calculated
withEq. (3.96). The approximate results evaluatedwith onlyN = 5 quadrature points
are shown in Table3.15. If Z(y) were unity, the matrix is diagonal with the diagonal
elements equal to the normalization of the Laguerre polynomials and would require
at least N = (n + 1)/2 quadrature points for their exact evaluation. Whereas the
lower order matrix elements are in agreement (to 4 significant figures), the higher
order matrix elements are not exact owing to the departure of Z(y) from a polynomial
of some finite order. The convergence of Z22 and Z44 is shown in Fig. 3.21 for much
large numbers of quadrature points.

If we transform the “approximate” matrix representative, Table3.15, to physical
spacewe recover a diagonalmatrixwith the diagonal elements equal toZij = Z(yi)δij

which for N = 5 is represented by the vector

A√
γ

[2.5681 3.3945 4.5452 5.9259 7.6095].

with the components equal to the “exact”Z(yi)values for thefiveLaguerre quadrature
points 0.43140, 1.75975, 4.10447, 7.74670, 13.45768, in accordance with Eq. (3.86).

Table 3.14 Exact matrix elements, Znm, in units of A/
√

γ for γ = M/m = 1, Eq. (3.96), of the
hard sphere collision frequency Z(x)

n/m 0 1 2 3 4

0 3.1915 −0.6515 −0.0728 −0.0169 −0.0050

1 −0.6515 4.1224 −0.9961 −0.1273 −0.0331

2 −0.0728 −0.9961 4.8688 −1.2693 −0.1755

3 −0.0169 −0.1273 −1.2693 5.5103 −1.5018

4 −0.0050 −0.0331 −0.1755 −1.5018 6.0819

Table 3.15 Approximate matrix elements of the hard sphere collision frequency, Z(x), in units of
A/

√
γ for γ = M/m = 1 evaluated with N = 5 Gauss-Laguerre quadrature points

n/m 0 1 2 3 4

0 3.1915 −0.6515 −0.0728 −0.0167 −0.0044

1 −0.6515 4.1225 −0.9958 −0.1261 −0.0292

2 −0.0728 −0.9958 4.8703 −1.2637 −0.1585

3 −0.0167 −0.1261 −1.2637 5.5297 −1.4388

4 −0.0044 −0.0292 −0.1585 −1.4388 6.3291
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Fig. 3.21 The convergence
of the diagonal matrix
elements Z22 and Z44 versus
the number of Laguerre
quadrature points, N . The
exact values are determined
as given by
Eqs. (3.93)–(3.96);
Accuracy= log10 |1 −
Z(N)

nn /Znn|

By contrast, the transform of the “exact” spectral space representation of Znm in
Table3.14 gives the “approximate” non-diagonal physical space representation,

T† · Z · T = A√
γ

⎛
⎜⎜⎜⎜⎝

2.5540 0.0243 −0.0296 0.0313 −0.0308
0.0243 3.3527 0.0512 −0.0544 0.0540

−0.0296 0.0512 4.4822 0.0675 −0.0676
0.0313 −0.0544 0.0675 5.8527 0.0742

−0.0308 0.0540 −0.0676 0.0742 7.5333

⎞
⎟⎟⎟⎟⎠ . (3.97)

This remarkable result between the exact and quadrature evaluated matrix elements
and the corresponding physical space representation might be unexpected, but it is
consistent with the analysis given by Eq. (3.85). The variation of the matrix rep-
resentation of the collision frequency with mass ratio is of interest and shown in
Tables3.16 and 3.17 for two different mass ratios.

ForM/m → 0, the Rayleigh limit, thematrix representative is becoming diagonal
in this basis set, whereas in the larger mass limit, M/m → ∞, the Lorentz limit, the
off-diagonal elements are increasing.

It is of interest to examine the reduced energy dependence of the collision fre-
quency in the Rayleigh limit for which γ → 0. With the Taylor series expansion of

Table 3.16 Exact matrix elements in units of A/
√

γ for γ = M/m = 0.1 with Eq. (3.96)

n/m 0 1 2 3 4

0 2.367 −0.088 −0.002 −0.000 −0.000

1 −0.088 2.507 −0.155 −0.004 −0.000

2 −0.002 −0.155 2.640 −0.217 −0.008

3 −0.000 −0.004 −0.217 2.767 −0.275

4 −0.000 −0.000 −0.008 −0.275 2.888
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Table 3.17 Exact matrix elements in units of A/
√

γ for γ = M/m = 100 with Eq. (3.96)

n/m 0 1 2 3 4

0 22.680 −9.167 −2.030 −0.930 −0.543

1 −9.167 33.945 −12.570 −2.693 −1.213

2 −2.030 −12.570 42.397 −15.191 −3.199

3 −0.930 −2.693 −15.191 49.443 −17.411

4 −0.543 −1.213 −3.199 −17.411 55.608

the exponential and error functions, we find that

Z(y)
γ→0≈ 2A√

γ

[
1 − 1

3
γy − 1

30
(γy)2 + 1

210
(γy)3 − · · ·

]
. (3.98)

Therefore in this mass ratio limit, the Laguerre basis set is a good choice for the
representation of Z(y) as the collision frequency is approaching a polynomial in
the reduced energy, y. In the Lorentz limit for which γ → ∞ we use erf(

√
γy) =

1 − erfc(
√

γy) and with the asymptotic expansion of the erfc(
√

γy), that is

erfc(y) = e−y2

y
√

π

(
1 − 1

2y2
+ 3

4y4
− 15

8y6
+ · · · + (−1)n (2n − 1)!!

(2y2)n
+ · · ·

)

(3.99)
we get

Z(y)
γ→∞≈ A

[√
πy(1 + 1

2γy
) − e−γy

2(γy)2

[
1 − 3

2γy
+ 15

4(γy)2
. . .

]]
. (3.100)

and the limiting dependence is
√

y with the resulting slow convergencewith Laguerre
polynomials. On the other hand, if Z(y) is expressed in reduced speed x = √

y, we
recognize that the expansion in Maxwell polynomials would be exact with N = 2.
This demonstrates the manner in which a particular problem dictates the optimal
choice of basis functions, namely Laguerre polynomials for the Rayleigh limit and
Maxwell polynomials for the Lorentz limit.

3.7.2 Matrix Representation of the Harmonic
Oscillator Potential in Hermite Polynomials

An instructive calculation of the pseudopsectral representation of the Hamiltonian
for the quantum harmonic potential is the evaluation of the matrix elements of the
harmonic potential, V(x) = x2 for the quantum harmonic oscillator problem, that is,

− d2ψn

dx2
+ x2ψn(x) = λnψn(x), (3.101)
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where λn = 2n + 1 in dimensionless units. The Hermite polynomials, Sect. 2.4.7,
(Liboff 2002) are the eigenfunctions of the Hamiltonian and are a logical choice
for the basis functions. The matrix representative of the potential in the set of basis
functions hn(x) = e−x2/2Hn(x)/

√
Mn, Mn = √

π2nn! is given by

Vnm =
∞∫

−∞
hn(x)x

2hm(x)dx =

⎧⎪⎨
⎪⎩

1
2 (2n + 1), n = m,

1
2

√
(n + 1)(n + 2), n = m ± 2,

0, otherwise

(3.102)

where we have used the recurrence relation

xHn(x) = 1

2
[Hn+1(x) + 2nHn−1(x)], (3.103)

twice. We use MN to denote the normalization factor of the Hermite polynomials to
distinguish it from N .

We are interested in the evaluation of these matrix elements with the Gauss-
Hermite quadrature, that is,

V (N)
nm = 1√

MnMn

N∑
i=1

wiHn(xi)x
2
i Hm(xi). (3.104)

The matrix Vnm without the term in x2 in the integral in Eq. (3.102) represents the
orthonormality of the basis functions.We can verify this result to orderN with exactly
N Gauss-Hermite quadrature points and weights since the largest element would be
a polynomial of order 2N and the use of N quadrature points would yield an exact
result. However, with the additional term in x2 in Eq. (3.102), the matrix element
V (N)

N−1,N−1 in the bottom rightmost corner of the matrix is not calculated accurately
with N quadrature weights and points. The error in this one matrix element can be
determined exactly.

The matrix element V (N)
N−1,N−1 of the potential for the harmonic oscilator is given

by Eq. (3.104)

V (N)
N−1,N−1 = 2

MN−1

N/2∑
i=1

wix
2
i H2

N−1(xi), (3.105)

and the quadrature sum is twice the sum over the positive quadrature points. With
MN−1 = √

π2N−1(N − 1)!, the use of the recurrence relation, Eq. (3.103) and
HN (xi) = 0 which defines the quadrature points, we get that,

V (N)
N−1,N−1 = 1

MN−1

N∑
i=1

wiH
2
N−2(xi),

= (N − 1)2
MN−2

MN−1
,

= N − 1

2
, (3.106)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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where the quadrature sum is the normalization of HN−2 which is “exact” with N
quadrature points. The approximate result, Eq. (3.106), should be compared with the
exact result given by Eq. (3.102), that is

VN−1,N−1 = 2N − 1

2
. (3.107)

The transform of the “approximate” quadrature evaluatedmatrix representative gives
the “exact” physical space representation of the potential as the diagonal matrix,

Vij =
N−1∑
m=0

N−1∑
n=0

TimV (N)
nm Tmj = x2i δij. (3.108)

This is expected as the transformation of the matrix representation of a multiplicative
operator evaluated with an N th order quadrature, namely G(N)

nm in Eq. (3.85) gives on
transformation to physical space the diagonal representation, G(xi)δij.

If the exact spectral representation of the harmonic oscillator potential is trans-
formed to physical space it gives an inexact result. This can be seen by considering
the transform of the difference of the two spectral space representations,

(ΔV)nm = N

2
δm,N−1δn,N−1, (3.109)

which is the null matrix except for the one element VN−1,N−1 = N/2. We transform
the matrix, Eq. (3.109) to physical space and recognize that it is the last row of T that
plays a role which is the vector with components

TN−1,j = (−1)N+j 1√
N

. (3.110)

Thus we have analogous to Eq. (3.108)

(ΔV)ij =
N−1∑
m=0

N−1∑
n=0

Tim(ΔV)nmTmj = N

2

N−1∑
n=0

N−1∑
m=0

TinTjmδm,N−1δn,N−1

= 1

2
(−1)i+j. (3.111)

where Eqs. (3.109) and (3.110) have been used. These results were noted by others
(Eq.4.1 in Baye and Heenen (1986) and Eq. (14) in Szalay (1993)) and are important
in connection with the convergence properties of pseudospectral methods in kinetic
theory and also in quantum mechanics (Szalay et al. 2003). The analysis in this
section explains in part the accuracyof pseudospectralmethods basedon approximate
quadrature evaluated matrix elements (Baye et al. 2002; Szalay et al. 2012). Further
details are presented in Sect. 6.7.3, in Chap.6.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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3.8 Challenging Integrals

We complete our discussion of the quadrature evaluation of integrals with a brief
summary of some challenging integrals, the majority of which are characterized
by integrands that oscillate and decay very slowly for x → ∞ on the semi-infinite
interval (Lyness 1985). Integrals with oscillatory integrands, especially those defined
on the infinite or semi-infinite domains abound in the physical sciences and engi-
neering (Safouhi 2001; Fornberg et al. 2002; Asheim et al. 2014). The use of the
Distorted Wave Born Approximation (DWBA) for quantum inelastic cross sections
(Rasch and Whelan 1997) leads to oscillatory integrands for the matrix elements
between continuum eigenstates. A good example is the calculation of the rate of
nuclear spin transitions in 3He-3He collisions (Shizgal 1973; Mullen and Richards
1990; Newbury et al. 1993). We also consider an integral from the SIAM 100-Digit
Challenge (Bornemann et al. 2004) that exhibits a similar behaviour.

The numerical evaluation of the six-dimensional electron repulsion integrals that
are required for molecular electronic structure calculations is summarized. In these
simulations, many integrals are required so as to estimate the electronic states of
atoms and molecules. There is a very large effort devoted to the efficient calculation
of such integrals. Our discussion in this section is an overview of current work
with emphasis on the choice of basis functions and the numerical calculation of the
integrals that occur for the different choices. The use of nonclassical Rys quadratures
is one of several different methods to calculate the integrals.

3.8.1 Molecular and Atomic Electronic Structure;
Electron Pair Repulsion Integrals

The description of the electronic energies of an atom or molecule is based on the
Schrödinger equation for the motion of the electrons and nuclei which interact via
Coulomb potentials. Owing to the much smaller mass of the electrons relative to the
nuclei, one can uncouple the electronic and nuclear motions in accordance with the
Born5-Oppenheimer6 approximation (Levine 2009; Szabo and Ostlund 1996). Thus
one can write the Schrödinger equation for the electronic motion with the nuclei
in fixed positions at Rn for the nucleus labelled by n. In this way, the Schrödinger
equation is the eigenvalue problem

(Hel + Vnn)ψ(r1, r2, . . . , rn) = Eel(Rn)ψ(r1, r2, . . . , rn), (3.112)

5 Max Born (1882–1970) was a German-British physicist and mathematician who made significant
contributions to quantum mechanics, solid-state physics and optics, and won the 1954 Nobel Prize
in Physics for the statistical interpretation of wavefunctions.
6 Julius Robert Oppenheimer (1904–1967) was an American theoretical physicist and played a
prominent role in the Manhattan Project for which he became known as the “father of the atomic
bomb”.
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where ri is the position vector of the ith electron. The electronic Hamiltonian is

Hel = − �
2

2me

∑
i

∇2
i −

∑
n

∑
i

Zne2

|Rn − ri| +
∑

i

∑
i>j

e2

|rj − ri| , (3.113)

where Zn is the charge of the nth nucleus and e is the charge of the electron. The first
term in Eq. (3.113) is the kinetic energy of the ith electron. The second term is the
Coulomb interaction with the ith electron and the nth nucleus and the last term is the
electron-electron repulsion between different electrons. The Rn positions relative to
some space fixed axes are considered known. The rotational and vibrational states are
the solution of the Schrödinger equation for the motion of the nuclei in the potential
Eel(Rn) considered separately in Chap.6.

The situation simplifies considerably if we consider atoms with one nucleus and
in particular atomic hydrogen with one electron moving about a proton for which
an analytic solution is known (Karplus and Porter 1970; Levine 2009; Liboff 2003).
The eigenfunctions of the H-atom are

ψn�m(r, θ,φ) = Rn�(r)Y
(m)
� (θ,φ), (3.114)

where Rn�(r) can be written in terms of the associated Laguerre polynomials as
discussed in Chap.2, Sect. 2.4.6. These atomic orbitals are often used as the basis
functions for larger molecular systems. Another one-electron system that can be
solved analytically is H+

2 (Wind 1965; Levine 2009; Liu and Zhao 2010). TheHelium
atom is the simplest two electron problem for which the Hamiltonian is,

H = − �
2

2me
∇2
1 − �

2

2me
∇2
2 − 2e2

r1
− 2e2

r2
+ e2

|r1 − r2| , (3.115)

where the last term is the electron repulsion potential. This is a prototypical quantum
system that provides some of the main concepts for quantum chemical problems
(Karplus and Porter 1970; Levine 2009).

Ourmain interest is with respect to the quadrature evaluation of electron repulsion
integrals which is central to quantum chemistry computer codes (Becke 1988; Lindh
et al. 2001; Gill and Chien 2003; El-Sherbiny and Poirier 2004; Kakhiani et al. 2009;
Mitani 2011). Any speed-up in the computational time of these integrals represents
an enormous advance toward the treatment of larger molecular systems. The subject
is very technical and it is not our intention to treat this in any detailed manner here.
It has become a very computationally intensive problem that occupies the interests
of a large number of computational theoretical chemists and physicists. Additional
presentations of the problemare in several textbooks (Karplus andPorter 1970; Szabo
and Ostlund 1996; Helgaker et al. 2000; Levine 2009; Tsuneda 2014) and review
papers (Gill 1994; Reine et al. 2012). The objective is to introduce the reader to the
ongoing efforts of many researchers in the development of efficient methods for the
evaluation of integrals over the basis functions of electrons in atoms and molecules.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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This subject area often involves very technical aspects of Fortran codes and the
nomenclature for the basis sets used can be found in Chap.3 in the book by Szabo
and Ostlund (1996). This brief summary will hopefully provide the reader with the
essential aspects as it relates to numerical quadratures and the evaluation of integrals.

The only exact solution of the Schrödinger equation is for the hydrogen atom
and other one-electron atoms such as He+, Li++, etc. with a Hamiltonian which is
separable and consequently with eigenfunctions that are expressed as a direct product
of the associated Laguerre polynomials and the spherical harmonics, Eq. (3.4). In
the absence of external fields, the allowed energy levels depend only on n. The
eigenfunctions ψnlm(r, θ,φ) are referred to as orbitals.

The Schrödinger equation for two-electron atoms such as He, is not separable in
the same way owing to the Coulomb electron-electron interaction dependent on the
distance, r12 = |r1 − r2| between the two electrons. There are several variational
treatments for He that provide useful analytical approximations to the electronic
ground eigenstate (Frankowski and Pekeris 1966; Levine 2009). The choice of basis
functions is a key element in current computational methods in atomic electronic
structure calculations. As always, the basis functions should be chosen so as to best
describe the anticipated behaviour of the eigenfunctions and at the same time provide
for an efficient numerical treatment.

For many electron atoms, one useful choice of basis functions or “orbitals” are
those that mimic the orbitals for the single electron for the H-atom and are the
product of a radial function Rn�(r) and the spherical harmonic Y�m(θ,φ). One such
basis function is the set of Slater7-type orbitals (STO) given by

φsto
n�m(r) = Nn�mrn−1e−αrY�m(θ,φ), (3.116)

where Nn�m is a normalization and α is a parameter. An added complexity is that
electrons are fermions with spin 1/2 states and the eigenfunctions must be made anti-
symmetric with respect to an exchange of the two electrons. In order to reduce the
Schrödinger equation for He to a set of matrix equations, a large number of matrix
elements of the Hamiltonian between basis functions must be evaluated. The situa-
tion for He has been considered by numerous researchers and exact numerical results
are known (Drake 1999; Drake et al. 2002) including the application of pseudospec-
tral methods (Cassar and Drake 2004; Grabowski and Chernoff 2011). Electronic
structure calculations for many electron atoms is an active area of research.

Another level of complexity occurs for diatomic molecules such as H2 with two
nuclei, that is “two centers”, as shown in Fig. 3.22. The protons are at a fixed sep-
aration R in keeping with the Born-Oppenheimer approximation and the relative
electron-electron distance is r12 = |r1 − r2|. The other solid lines are the four
electron-proton interactions. The two electrons can move in space and their posi-
tions specified with cartesian coordinates (x1, y1, z1) and (x2, y2, z2) or preferably in
terms of spherical polar coordinates which is made difficult owing to the two centers.

7 John Clarke Slater (1900–1976) was an American physicist who pioneered theoretical methods
in atomic and molecular electronic structure.
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Fig. 3.22 Electron-electron separation is denoted by r12 = |r1 − r2| and then fixed separation of
the protons by R. The other solid lines are the four electron-proton interactions

Thus, one of the main difficulties is the choice of coordinates and the basis functions
in which to express the three-dimensional eigenfunctions. The ground state eigenen-
ergy depends on the nuclear separation R and provides the potential V(R) for the
subsequent study of the nuclear motion or vibration. For H+

2 , with only one electron
and no electron-electron repulsion the problem is simplified (Wind 1965). Further
details of the theoretical treatment for this molecular ion can be found elsewhere
(Cassar and Drake 2004; Levine 2009).

For molecular systems, the evaluation of matrix elements between Slater type
orbitals is difficult and a better choice are the basis sets constructed from Gaussian
type orbitals,

φ
gto
n�m(r) = Nn�mr�e−αr2Y�m(θ,φ), (3.117)

where the main difference with Slater type orbitals is the exponential dependence on
r2 rather than r. The main advantage is that the product of two Gaussians is another
Gaussian which can be easily understood by completing the square of the argument
of the exponential. Another suggestion for basis function are those discussed by
Weniger (2009) referred to as B-functions with the radial portion expressed as a
Bessel function. In this approach, we once again encounter integrals with oscillating
integrands as discussed in Sect. 3.8.2 (Safouhi 2001). The importance of choosing
the appropriate basis functions is clear.

In either case, the problem reduces to an expansion of the multi-electron ground
state eigenfunction in these basis sets and the reduction of the Schrödinger equation
to a set of linear equations for the eigenvalues. This is easier said than done. In the
course of this calculation, the matrix elements of the kinetic energy operator and, in
particular, of the electron-electron Coulomb repulsion potential must be calculated.
These are integrals of the form

〈ij| 1

r12
|k�〉 =

∫∫
φi(r1)φj(r2)

1

r12
φk(r1)φ�(r1)dr2dr2. (3.118)

These are 6-dimensional integrals with the position, ri, of each basis function (or
orbital) with reference to the position of a particular nucleus. Even for diatomic
molecules, the numerical evaluation of these integrals is difficult and a large number
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are required in a simulation of the electronic structure. It might be of interest for
the reader to consult some original papers in which some of these integrals were
evaluated analytically (Shavitt and Karplus 1965; Kern and Karplus 1965).

3.8.2 Relaxation Times for 3He-3He Spin Exchange
Collisions—Oscillatory Integrands

The use of the distorted wave Born approximation to approximate transition proba-
bilities for inelastic collision processes (Child 1996; Canto and Hussein 2013) yields
integrals with oscillatory integrands. We choose to apply this theoretical approach
to the nuclear spin-exchange that accompanies 3He-3He collisions. The distorted
wave Born approximation applies to systems for which the interaction potential is
the sum of two distinct potentials, a spherical potential, V0(r), that defines the elastic
scattering of the He atoms and another much weaker spin dependent interaction,
V1(r; I1, I2) that is responsible for the changes in the 3He nuclear spin states, I1
and I2. With this assumption, the continuum scattering eigenfunctions are very well
approximated with the solution of the Schrödinger equation with only V0(r).

The integrals required in the distorted wave Born approximation are the diagonal
matrix elements between the radial wavefunctions uk,�(r), of the form

∫∞
0 u2k,�

/r8dr
or
∫∞
0 u2k,�

e−αr/r2dr for the spin dependent interactions (Shizgal 1973, 1974a). The
radial wavefunction, uk.�(r), are the solutions of Eq. (3.63). However, the continuum
radial eigenfunctions can also be approximated with the JWKB eigenfunctions. The
difficulty with the numerical evaluation of these integrals is that the integrands are
highly oscillatory and may decay slowly for r → ∞. Shizgal (1974b) evaluated
such integrals by searching for the roots of the integrands and evaluating the inte-
grals between successive roots with a Gauss-Mehler quadrature. This technique pro-
vides acceptable results but the convergence of the partial sums is slow. The results
compared favorably with the exact quantum results obtained with a direct numer-
ical integration of the radial Schrödinger equation. Dickinson and Shizgal (1975)
later employed a classical analogue to the JWKB approximation and found excellent
agreement with the semi-classical and quantal results.

We will not discuss the details of these calculations but instead consider analo-
gous integrals with the replacement of the radial wavefunctions with the plane wave
analogues so that uk,�(r) → j�(kr) where j�(kr) is the spherical Bessel function
(Abramowitz and Stegun 1964). A typical example is the integral

∞∫

0

j2�(x)

x
dx = 1

2�(� + 1)
, (3.119)

with the oscillatory integrand shown in Fig. 3.23. The partial sums of the integrals
between the successive zeros (with 8Gauss-Legendre quadrature points andweights)
for the integral in Eq. (3.119) with � = 5 are 0.01556, 0.01600, 0.01618, 0.01630,
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(A) (B)

Fig. 3.23 (A) Integrand for the integral in Eq. (3.119) for � = 5; (B) The integrand for the integral,
Eq. (3.120) in the SIAM 100-Digit Challenge (Gautschi 2008; Slevinsky and Safouhi 2008)

0.01637, 0.01643, etc. The exact value is 1/60 = 0.01666. More than 93% of the
contribution to the integral is from the first peak and the contributions from the
remaining intervals are much smaller and decrease very slowly. For physical appli-
cations such as this one, the required accuracy is of several significant figures. Similar
integrals involving the squares of Bessel functions occur in the reconstruction of tem-
perature multipole spectrum of cosmic microwave background from measured data
(Tomaschitz 2012, 2013) containing the squares of Bessel functions as in Eq. (3.119).
An exhaustive discussion of the work on oscillatory integrands is beyond the scope
of the book. The original treatment of quadratures for integrals of this type is Filon8’s
sine and cosine formulae discussed in Sect. 4.11 of the book by Lindfield and Penny
(2012).More advanced discussions can be found in recent papers (Iserles andNorsett
2005; Asheim et al. 2014).

3.8.3 The SIAM 100-Digit Challenge;
a “Twisted Tail” Integral

It is useful to compare the previous discussion with the integral

I =
∞∫

0

cos(x)

x + u(x)
dx (3.120)

arising from a change of variable from an original integral (Slevinsky and Safouhi
2008; Gautschi 2008) discussed by Laurie in Chap.1 in the SIAM 100-Digit

8 Louis Napoleon George Filon (1875–1937) was an Englishmathematician andworked in classical
mechanics, elasticity and continuous media.

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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Challenge (Bornemann et al. 2004). In Eq. (3.120), x = u(x) ln[u(x)]. The inte-
grand in Eq. (3.120) is shown in Fig. 3.23(B) and shares some of the features of
Fig. 3.23(A). The graph is drawn with the spline fit of a table of u(x) versus x.
Gautschi (2008) provides a numerical algorithm for the evaluation of this integral.
The infinite domain is divided into subdomains with the end points at the roots of
cos(x) that is xk = (2k + 1)π/2 so that the integral is represented as a sum over each
subdomain. The integral in each sub-domain is evaluated with a Gauss-Legendre
quadrature over the interval [−1, 1] with the appropriate change of variable as done
for the integral in Eq. (3.119). Gautschi also discusses the need to introduce a special
acceleration scheme in the summation over subintervals as this series converges very
slowly analogous to the results cited for Eq. (3.119).

Further details can be found in recent publications (Gautschi 2008; Slevinsky and
Safouhi 2008). In contrast to the applications to physical problems where the preci-
sion required is often less than machine accuracy, the “challenge” for this example
and others (Bornemann et al. 2004) is to evaluate the integral to 100 digits.

3.9 Numerical Evaluation of Derivatives

The numerical evaluation of the derivatives of a function is the basis of pseudospec-
tral methods of solution of partial differential equations such as the Schrödinger
equation and/or differential-integro equations such as the Boltzmann equation. The
earliest collocation appears to be the solution of the radiative transfer equation by
Wick (1943) and Chandrasekhar (1960). The technique of differential quadrature
was later introduced by Bellman (Bellman et al. 1972; Shu 2000) based on either
polynomials or Fourier basis sets. The monograph by Gottlieb and Orszag (1977)
established the use of spectral methods with a finite basis set expansion and the
relationship with a collocation.

Blackmore and Shizgal (1985) applied pseudospectral discretizations of deriv-
atives together with quadratures for integrals to reduce the Boltzmann equation to
linear algebraic form. The method was referred to as a discrete ordinate method anal-
ogous to the terminology in radiative and neutron transport (Chandrasekhar 1960;
Liou 1973) and in kinetic theory (Robson et al. 1991; Robson and Prytz 1993). These
discretization techniques were applied to the Schrödinger equation by Light and
coworkers (Hamilton and Light 1986; Bacic and Light 1986; Light and Carrington
Jr. 2000) and originated from considerations of the quadrature evaluation of matrix
elements (Harris et al. 1965; Dickinson and Certain 1968) discussed in Sect. 3.7. The
Lagrange mesh method developed by Baye (1994) and coworkers (Baye and Hee-
nen 1986; Baye and Vincke 1999) is based on Lagrange interpolation. A personal
chronology of the development of pseudospectral methods in chemistry and physics
was provided in Table1.1. The applications to the Boltzmann, Fokker-Planck and
Schrödinger equations are presented in Chaps. 5 and6.

http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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3.9.1 Finite Difference Formulas for Derivatives

Finite difference methods for the evaluation of derivatives are often used for the
solution of differential equations. We present a brief summary in comparison with
pseudospectral methods. The finite difference first derivative of a function is simply
an approximation to the definition of the derivative as the slope of the function at
some point. The method is considered local as the derivative is approximated by
neighbouring function values. Specifically, we evaluate the first derivative between
uniformly spaced grid points, xi and xi+1, with Δx = xi+1 − xi as

df

dx

∣∣∣∣
xi

≈ f (xi+1) − f (xi)

Δx
. (3.121)

Equation (3.121) is the forward finite difference whereas

df

dx

∣∣∣∣
xi

≈ f (xi) − f (xi−1)

Δx
, (3.122)

is the backward finite difference approximation to the first derivative. It is clear
that this is a local method as only neighbouring grid points are involved. The third
approximation is the centered difference formula given by,

df

dx

∣∣∣∣
xi

≈ f (xi+1) − f (xi−1)

2Δx
. (3.123)

The error in the above approximations to the first derivative is second order in Δx.
Higher order estimates can also be provided. Further details can be found in Chap.4
of Burden and Faires (2011) and Chap.7 of Cheney and Kincaid (2008).

The approximation to the second derivative is derived from the expressions above
and we have the second order estimate,

d2f

dx2

∣∣∣∣
xi

≈ f (xi+1) − 2f (xi) + f (xi−1)

(Δx)2
. (3.124)

The diffusion equation of the form

∂n(x, t)

∂t
= ∂2n(x, t)

∂x2
(3.125)

can be discretized with Eq. (3.121) on the right-hand side in x and with Eq. (3.124)
on the left hand side in t so that

ni(t + Δt) − ni(t)

Δt
= ni+1(t) − 2ni(t) + ni−1(t)

(Δx)2
. (3.126)
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where ni(t) ≡ n(xi, t). The solution can be advanced in timewith an Euler algorithm,
that is

ni(t + Δt) = ni(t) +
[

ni+1(t) − 2ni(t) + ni−1(t)

(Δx)2

]
Δt, (3.127)

which is initiated with the initial condition ni(0).
The differential operators in many different partial differential equations can be

discretized in this way and the equations reduced to ordinary differential equations
which are then advanced in time with an Euler scheme above or with higher order
methods such as a Runge-Kutta scheme (Cheney and Kincaid 2008). An important
aspect of these methods is the choice of the grid spacing in x and t, that is Δx and
Δt. Further details on finite difference methods can be found in several textbooks
(LeVeque 2007; Cheney and Kincaid 2008; Durran 2010). We use a finite difference
method for the solution of the nonlinear Boltzmann equation in Chap.5, Sect. 5.8
(Kabin and Shizgal 2003). We make use of the Chang and Cooper (1970) finite dif-
ference scheme for the solution of the Fokker-Planck equation in Chap.6, Sect. 6.2.3.

3.9.2 Interpolation and Differentiation

In Chap.2, Sect. 2.3.1, we discussed the role of interpolation in the development of
quadrature procedures. A Lagrange interpolation was defined for the set of N points
{xi} and the corresponding function values, yi = f (xi). The N th order Lagrange
interpolant is of the form

f (x) ≈ f (N)(x) =
N∑

i=1

f (xi)Ii(x), (3.128)

where the interpolation function, Ii(x), is constructed from orthogonal polynomials
that is

Ii(x) = wi

N−1∑
n=0

Pn(x)Pn(xi), (3.129)

and satisfy the Cardinality condition

Ii(xj) = δij. (3.130)

Thus the interpolation returns the exact values of the function values, f (xi), at each
point xi, as discussed in Sect. 2.3.1 and shown in Fig. 2.2.

It is clear that an approximation for the derivative of f (x) is given by

df (N)(x)

dx
=

N∑
i=1

f (xi)
dIi(x)

dx
. (3.131)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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We thus identify the derivative matrix operator used in pseudospectral methods for
the solution of differential equations as the derivative of the Lagrange interpolant,
that is,

D̂ij = dIj(x)

dx

∣∣∣∣
x=xi

= wj

N−1∑
n=0

P′
n(xi)Pn(xj). (3.132)

It is straightforward to construct the discrete derivative matrix operator for classi-
cal and nonclassical polynomials from the recurrence coefficients αn and βn. The
quadrature weights and points are calculated with the diagonalization of the Jacobi
matrix, Eq. (2.71). The polynomials,Pn(x), and the derivatives,P

′
n(x) are determined

by recurrence and the discrete derivative matrix operator is given by Eq. (3.132).
It follows that the second derivative matrix operator in physical space is given by

D̂(2)
ij = wj

N−1∑
n=0

P′′
n(xi)Pn(xj). (3.133)

With Eq. (3.132), the approximation to the second derivative that appears in
Eq. (3.133) is

P′′
n(xi) =

N∑
�=1

D̂i�P′
n(x�). (3.134)

We substitute Eq. (3.134) into (3.133) and get

D̂(2)
ij = wj

N∑
n=0

[ N∑
�=0

D̂i�P′
n(x�)

]
Pn(xj),

=
N∑

�=0

D̂i�wj

N∑
n=0

P′
n(x�)Pn(xj),

=
N∑

�=0

D̂i�D̂�j. (3.135)

Thus the second derivative matrix operator is the matrix product of the first order
derivative matrix operators.

We use nonclassical basis functions for themajority of the applications in Chaps. 5
and6 and use the definition Eq. (3.132) to construct the derivative matrix operator.
For some nonclassical weight functions it is possible to express the spectral space
matrix elements, dnm, in terms of the recurrence coefficients and then transform to

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Table 3.18 References to explicit first and second derivative matrix operators

Basis Quadrature Reference D(1) D(2)

Fourier Schwartz (1985) Eq. (2) Eq. (3)

Baye and Heenen (1986) Eq. (3.5)

Colbert and Miller (1992) Appendix

Kokoouline et al. (1999) Appendix

Shen et al. (2011) Eq. (2.34) Eq. (2.37)

Odd collocation Peyret (2002) Eq. (2.30) Eq. (2.31)

Even collocation Peyret (2002) Eq. (2.32) Eq. (2.33)

Chebyshev Gauss Funaro (1992) Eq. (7.2.14)

Gauss Shen et al. (2011) Eq. (3.231)

Lobatto Peyret (2002) Eq. (3.46) Eq. (3.47)

Lobatto Canuto et al. (2006) Eq. (2.4.33) Eq. (2.4.36)

Lobatto Shen et al. (2011) Eq. (3.228)

Radau Shen et al. (2011) Eq. (3.229)

Legendre Gauss Funaro (1992) Eq. (7.2.14)

Jacobi Gauss Shen et al. (2011) Eq. (3.164)

Gauss Funaro (1992) Eq. (7.2.12)

Lobatto Shen et al. (2011) Eq. (3.160)–(3.162)

Radau Shen et al. (2011) Eq. (3.163)

Laguerre Radau Funaro (1992) Eq. (7.2.15)

Gauss Baye and Heenen (1986) Eq. (3.17)

Hermite Gauss Baye and Heenen (1986) Eq. (3.14)

the physical space representation as done for Maxwell polynomials (Shizgal and
Blackmore 1984). In general, explicit expressions of the physical space deriva-
tive matrix operators, D̂ij and D̂(2)

ij , for nonclassical polynomials are not available.
Explicit expressions do exist for derivative operators for the classical polynomials and
Table3.18 provides a partial list to the references where these results can be found.

The Fourier basis is the basis set of choice especially for the second derivative
operator representing the kinetic energy in the Hamiltonian for quantum problems.
Other definitions of these derivative matrix operators were reported by Baye (1994),
Barkley (1995) and by Szalay (1993). There is considerable overlap of the results
reported in these references.

If the matrix elements of the derivative operator in spectral space

dnm =
b∫

a

w(x)Pn(x)
dPm(x)

dx
dx, (3.136)

is transformed to physical space with the transform, Tni, then the derivative matrix
operator in physical space is,
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Dij =
N−1∑
n=0

N−1∑
m=0

TindnmTmj,

=
N−1∑
n=0

N−1∑
m=0

[√
wiPn(xi)

] N∑
k=1

wkPn(xk)P
′
m(xk)

[√
wjPm(xj)

]
,

= √
wiwj

[ N∑
k=1

wk

N−1∑
n=0

Pn(xi)Pn(xk)

] N−1∑
m=0

P′
m(xk)Pm(xj),

= √
wiwj

[
Ik(xi)

] N−1∑
m=0

P′
m(xk)Pm(xj), (3.137)

where in the second line we have used the definitions of dnm and of Tin in the square
brackets. In the third line, we have collected the separate sums over n and m and we
recognize the interpolation function in square brackets as noted in the last line. Since
Ik(xi) = δki, we have that

Dij = √
wiwj

N−1∑
m=0

P′
m(xi)Pm(xj) . (3.138)

This is consistent with Eq. (3.132) since

D̂ij = Dij

√
wi

wj
. (3.139)

In the absence of explicit analytic expressions, we show the physical space first
and second derivative matrix operators for Maxwell polynomials, (w(x) = x2e−x2),
with N = 5 in Tables3.19 and 3.20. The main objective is to show the potential
round-off errors that can occur in the calculation of numerical derivatives with these
matrix operators. The matrix elements alternate in sign and increase rapidly with N ,
especially for D(2).

In Fig. 3.24, we show the first and second derivatives of f (x) = e−x4 and the
numerical values as symbols with N = 20 and a scale factor s = 0.3 so to as

Table 3.19 First derivative
operator, D, in physical space
for Maxwell Polynomials,
w(x) = x2e−x2

i/j 1 2 3 4 5

1 −3.8890 6.1977 −3.1580 0.9693 −0.1201

2 −0.6768 −0.8170 1.8841 −0.4389 0.0485

3 0.2644 −1.4443 0.5276 0.7112 −0.0588

4 −0.3160 1.3101 −2.7694 1.5640 0.2112

5 1.1631 −4.3053 6.8023 −6.2745 2.6143
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Table 3.20 Second
derivative operator, D(2), in
physical space for Maxwell
Polynomials, w(x) = x2e−x2

i/j 1 2 3 4 5

1 9.6484 −22.8180 18.7915 −6.4661 0.8442

2 3.8783 −7.0327 3.1378 0.0515 −0.0349

3 −0.2042 3.2413 −5.6473 2.7466 −0.1364

4 −0.6386 2.1113 −0.8897 −1.7295 1.1467

5 5.2122 −18.5745 26.9635 −18.3623 4.7611

Fig. 3.24 Numerical values
of f ′(x) (circles) and f ′′(x)
(squares) versus x for
f (x) = e−x4 with Maxwell
quadrature points with
scaling factor s = 0.3. The
solid lines are the exact
results

to shorten the effective interval. The effect of the roundoff error in the second
derivative is illustrated by the two quadrature points for n = 18 and n = 19 (solid
circles) that deviate significantly from the exact result (solid curve). In fact, the
error in the last point, n = 20, is too large to show on the graph. Similar round-off
errors for physical space derivative matrix operators for Chebyshev polynomials was
discussed in Sect. 3.3.4 in Peyret (2002). This was also discussed in greater detail
by Baltensperger and Trummer (2003) who provided methods to reduce the errors.
Additional detailed discussions of such errors were also reported in the solution of
Fisher’s equation (Olmos and Shizgal 2006). The errors for the pseudospectral meth-
ods based on the Maxwell polynomials in the semi-infinite axis are larger than for
Chebyshev pseudospectral methods.

Shizgal and Blackmore (1984) calculated Dkj for Legendre polynomials normal-
ized to unity with the transform of

dnm =
{√

(2n + 1)(2m + 1), m > n, m + n odd,
0 otherwise,

(3.140)

as given by the first line of Eq. (3.137). In Fig. 3.25, we show the variation of the
absolute error in the calculation of the first and second derivatives of the oscillatory
function

f (x) = sin
[
3(sinh(x) + (1 − x)2)

]
. (3.141)

The convergence is moderately fast for this non-polynomial function and slow at
the interval boundaries relative to the convergence in the middle part of the interval.
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Fig. 3.25 Variation of the absolute error versus x for the numerical first derivative f (1) = D · f and
numerical second derivative f (2) = D(2) · f for f (x) = sin[3(sinh(x) + (1+ x)2)] with N = 24, 30,
and 36 Legendre quadrature points

A comparison with a fourth order finite difference differentiation was shown by
Shizgal and Blackmore (1984).

3.9.3 Sturm-Liouville Eigenvalues Problems

The classical polynomials satisfy Sturm-Liouville eigenvalue problems and equiva-
lent Schrödinger equations. We provide a detailed discussion of these problems in
Chap.6. In this section, we introduce the subject so as to show that only the first
derivative matrix operator is required for such second order differential equations.
To illustrate this result, we note that the Sturm-Liouville equation for Legendre poly-
nomials is given by

− d

dx

[
(1 − x2)

dP�(x)

dx

]
= �(� + 1)P�(x), (3.142)

which is equivalent to the Schrödinger equation for a rigid rotor, that is

− �
2

2I

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψ�(θ) = E�ψ�(θ), (3.143)

where I is themoment of the inertia of the diatomicmolecule. The change of variable,
x = cos θ transforms Eq. (3.143) to Eq. (3.142) with E� = �(� + 1)�2

2I .
We wish to construct the physical space representation of the Sturm-Liouville

operator on the left hand side of Eq. (3.142). We begin with the spectral space
representation given by

L��′ = −
1∫

−1

P�

d

dx

[
(1 − x2)

dP�′(x)

dx

]
dx. (3.144)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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An integration by parts gives

L��′ =
1∫

−1

(1 − x2)P′
�(x)P

′
�′(x)dx,

≈
N∑

k=1

wk(1 − x2k )P′
�(xk)P

′
�′(xk),

=
N∑

k=1

wk(1 − x2k )

N∑
α=1

D̂kαP�(xα)

N∑
β=1

D̂kβP′
�(xβ), (3.145)

where the integral for thematrix elements is evaluated byquadrature in the second line
and the derivatives are evaluated with the derivative matrix operator in the third line.
The transformationofL��′ to physical spacewith the transformationTi� = √

wiP�(xi)

gives

Lij =
N−1∑
�=0

Ti�L��′T�′j,

=
N∑

k=1

wk(1 − x2k )

[
N−1∑
�=0

√
wiP�(xi)

N∑
α=1

D̂kαP�(xα)

]

×
⎡
⎣N−1∑

�′=0

√
wjP�′(xj)

N∑
β=1

D̂kβP�′(xβ)

⎤
⎦ . (3.146)

We now use the discrete “completeness” relation

N−1∑
�=0

P�(xi)P�(xα) = δiα

wi
, (3.147)

in each square bracket and the final result is

Lij =
N∑

k=1

(1 − x2k )DkiDkj, (3.148)

where the definition Eq. (3.139) has been used. The eigenfunctions of L given by
Eq. (3.148) for N = 6 calculated with a MATLAB code are shown by the solid
symbols in Fig. 3.26. These coincide exactly with the solid line which is P5(x). The
eigenvalues calculated in this way are “exactly” the rigid rotor eigenvalues, that is
λ� = �(� + 1).
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(A) (B)

Fig. 3.26 (A) Solid line is the exact result for the orthonormal Hermite polynomial H5(x)e−x2/2.
The eigenfunctions of Hij of Eq. (3.149) agree with the exact polynomial as shown by the solid
circles for N = 12 and by the squares for N = 6. (B) Solid line is the exact result for the
orthonormal Legendre polynomial P5(x). The eigenfunctions of Lij of Eq. (3.148) agree with the
exact polynomial as shown by solid circles for N = 6

Similarly, the eigenfunctions and eigenvalues for the harmonic oscillator are calcu-
latedwith the diagonalization of the pseudospectral representation of the Schrödinger
equation, that is

Hij =
N∑

k=1

DkiDkj (3.149)

with Gauss-Hermite quadratures.
This calculation provides N exact eigenvalues, λn = 2n, relative to the ground

state and eigenfunctions that coincide with the Hermite functions hn(x). In Fig. 3.26,
the symbols are the results obtained with the diagonalization of Eq. (3.149) and are
in exact agreement with the polynomial h5(x) = H5(x)e−x2/2 shown by the solid
lines for N = 6 and N = 12. This calculation for the quantum harmonic oscillator,
based on Eq. (3.149), does not involve the calculation of the matrix elements of the
harmonic potential (Colbert and Miller 1992; Baye and Heenen 1986).

The evaluation of the potential energy matrix elements by quadrature (Szalay
1993; Baye et al. 2002; Szalay et al. 2012) are of no concern with this pseudospec-
tral approach. Moreover, there is no occurrence of nonphysical “ghost levels” (Wei
1997; Willner et al. 2004; Kallush and Kosloff 2006) as discussed further in Chap.6,
Sect. 6.7.3.

3.9.4 Discrete Singular Convolution;
Whittaker’s Sinc Interpolation

Fourier basis functions are traditionally associated with pseudospectral methods for
the solution of partial differential equations, and the grids associated with Fourier
methods are uniform grids. In Sect. 2.6.1, we introduced the sinc function (Whittaker
1929a, b; Stenger 1993)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Sk(x) = sin[π
h (x − xk)]

π
h (x − xk)

, (3.150)

which satisfies the cardinality condition Sk(xj) = δjk . Thus we have the interpolation
on a uniform grid of N points xk = xmin + h(k − 1), defined for the finite interval
[xmin, xxmax] where the grid spacing is h = (xmax − xmin)/(N − 1), that is

fN (x) ≈
N∑

k=0

Sk(x)f (xk). (3.151)

From the explicit differentiation of Eq. (3.151), the representation of the second
derivative operator is,

D(2)
jk = S′′

k (xj) =
⎧⎨
⎩

− 2(−1)j−k

(j−k)2h2
, j �= k,

− π2

3h2
, j = k.

(3.152)

This representation of the second derivative operator has been used frequently for
the solution of the Schrödinger equation (Schwartz 1985; Colbert and Miller 1992;
Dulieu et al. 1997; Meijering et al. 1999; Boyd 2001; Wei 2000a, b; Amore 2006).
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