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Preface

Spectral and pseudospectral methods have become increasingly popular as higher
order methods for the solution of partial differential and integral equations (Azaïez
et al. 2013). A spectral method refers to the representation of the solution of some
problem in a basis set of orthogonal functions, whereas a pseudospectral approach,
sometimes referred to as a collocation, is based on the representation of the solution
with the function values at a set of discrete points. For the smooth solutions of
particular problems, these methods can provide exponential convergence of the
solutions versus the number of basis functions or the number of grid points retained.

Books devoted to these methods include the monographs by Shen et al. (2011),
Kopriva (2009), Hesthaven et al. (2007) and the new edition of the book by Canuto
et al. (2006). Other textbooks include those by Peyret (2002), Deville et al. (2002),
Boyd (2001), Trefethen (2000), Shu (2000), Fornberg (1996), Funaro (1992), Guo
(1998) and Gottlieb and Orszag (1977).

In view of the availability of texts on spectral/pseudospectral methods, it might
be appropriate to question whether another book on this subject is justfied. The
aforementioned books are devoted primarily to problems in fluid mechanics and to
the solutions of the Navier-Stokes, Helmholtz, Poisson equations and related
problems most often for bounded intervals. At the present time, a textbook that
covers the fundamental aspects of spectral and pseudospectral methods with
applications to problems in chemistry and physics does not exist.

The main objective is to provide the basic concepts of spectral and pseudo-
spectral methods to the solution of problems in diverse fields of interest to a wide
audience, and to demonstrate the improved convergence obtained with nonclassical
basis functions for certain problems. Perhaps the first application of a collocation
method in physics was the solution of the integro-differential radiative transfer
equation by Chandrasekhar (1944, 1960) based on Gauss-Legendre quadrature
points. There are many applied problems in chemistry, physics, astrophysics,
engineering, biology, economics and other fields for which spectral/pseudospectral
methods can be used to advantage.

The basic mathematics and numerical methods used in the book are presented in
Chaps. 1–4, whereas Chaps. 5 and 6 summarize the applications of spectral and
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pseudospectral methods to several specialized topics in nonequilibrium statistical
mechanics and quantum mechanics. A brief overview of the background physics is
provided for some of the topics.

Chapter 1 presents the basic concepts of spectral space and physical space for the
representations of functions and the unitary transformation between the two spaces.
A Hilbert space is defined as are hermitian operators, Sturm-Liouville eigenvalue
problems and the Rayleigh-Ritz variational theorem, which might also be referred
to as a method of weighted residuals or a Galerkin method. A personal historical
summary of the development of pseudospectral methods in chemistry and physics is
also presented with an overview of the topics in the book.

Chapter 2 provides the fundamental mathematics used throughout the book. The
construction of orthogonal polynomials in terms of the three term recurrence
relation is discussed. The numerical instability inherent in the Gram-Schmidt
orthogonalization to construct basis sets is demonstrated with applications to
Legendre, Hermite and the nonclassical Rys polynomials. Numerical round-off
errors in scientific computations can sometimes be very subtle as is demonstrated in
several applications. Lagrange interpolation is introduced as the basis for Newton-
Cotes integration algorithms and Gaussian quadrature. The Gaussian quadrature
points are the eigenvalues of the Jacobi matrix, the matrix representation of the
continuous multiplicative coordinate operator and defined in terms of the recurrence
coefficients in the three term recurrence relation. From a quantum mechanical
perspective, the Jacobi matrix is the discrete approximation to the continuous
eigenvalues of the coordinate operator. The quadrature weights are determined from
the eigenvectors of the Jacobi matrix.

In addition to a summary of the properties of the classical polynomials, several
nonclassical basis sets such as the Maxwell polynomials orthogonal with respect to
weight function wðxÞ ¼ xpe�x2 on the semi-infinite axis, the Rys polynomials with
wðxÞ ¼ e�cx2 on the interval [−1, 1] and bimodal polynomials with wðxÞ ¼
expð�ðx4=ð4εÞ � x2=ð2εÞÞÞ for both the infinite and semi-infinite axes are presented.
These polynomial basis sets and associated quadratures are used in kinetic theory,
quantummechanics and chemical kinetics. Alternate interpolation algorithms such as
the sinc function, B-splines and radial basis functions are also discussed.

In Chap. 3, the convergence of the integration algorithms of Chap. 2 versus the
number of quadrature points is compared for integrals that occur for several
physical systems. The systems include chemical and nuclear reaction rates, the
integral over the “cusp” in the Boltzmann integral collision operator as well as for
quantum mechanical scattering phase shifts. The calculation of matrix elements of
multiplicative operators, namely the collision frequency in the Boltzmann equation
and the interaction potential in the Schrödinger equation are compared. Several
challenging integrals such as integrals with oscillating integrands and electron
repulsion integrals in quantum chemistry are reviewed. The last section describes
the discrete matrix representation of derivative operators employed in pseudo-
spectral methods. The exact pseudospectral solutions of Sturm-Liouville eigenvalue
equations for the classical polynomials is demonstrated.
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Chapter 4 illustrates spectral convergence in the expansion of selected functions
in different basis sets. The expansions of simple Gaussians, as well as the Kappa
distribution of space physics, in Hermite and Laguerre polynomials are presented
with an analysis of the spectral convergence. Fourier series expansions are included
and applied to the construction of wave packets in quantum mechanics and the
resolution of a free induction decay curve typical in Fourier Transform spectros-
copy. Also presented is the resolution of the oscillations at a jump discontinuity,
known as the Gibbs phenomenon, that arise in the Fourier series representation of a
piecewise continuous function. A brief description of the Runge phenomenon is
also discussed.

In Chap. 5, the applications to the solution of integral equations with particular
emphasis on the Boltzmann equation of kinetic theory are presented. The use of
spectral and pseudospectral methods in the determination of the eigenvalue spectra
of the linearized (one component) and linear (two component) integral collision
operators is presented. The spectra of both operators consist of discrete and con-
tinuous eigenvalues as can also occur for the eigenvalue spectrum of the Hamil-
tonian in the Schrödinger equation for particular potentials. A brief summary is
provided of the Chapman-Enskog method of solution of the Boltzmann equation
that yields the integral equations that define the transport coefficients in a dilute gas.
The relaxation of initial nonequilibrium distributions, including anisotropic initial
distributions, is studied versus the mass ratio of the two components in a binary
gaseous mixture. The classic Milne problem of astrophysics and kinetic theory is
presented and applied to a study of the nonequilibrium effects associated with the
escape of light atoms from planetary atmospheres. As can be ascertained from this
overview, there are several different applications included and the presentation
shifts quickly from topic to topic.

Chapter 6 consists of applications of spectral and pseudospectral methods for the
solution of the Fokker-Planck equation (Risken and Till 1996) in nonequilibrium
statistical mechanics and the Schrödinger equation (Liboff 2002) in quantum
mechanics. Fokker-Planck equations can be transformed to Schrödinger equations
and the potentials that result belong to supersymmetric quantum mechanics (Comtet
et al. 1985; Dutt et al. 1988; Cooper et al. 1995). The nonclassical basis sets and
quadrature points are chosen based on the equilibrium probability density functions
for the Fokker-Planck equations. Fokker-Planck equations for Brownian motion, for
relaxation in the disparate mass limits of the linear Boltzmann equation known as the
Rayleigh and Lorentz limits and for models of cis-trans isomerization reactions are
solved with both spectral and pseudospectral methods. Pseudospectral methods are
used for the solution of Sturm-Liouville eigenvalue problems for simple systems.
With the appropriate choice of weight function, a quadrature can be constructed for
which the pseudospectral representation of the Hamiltonian in the Schrödinger
equation does not include an explicit reference to the potential. As is the case for
Chap. 5, the topics in this chapter also change quickly from topic to topic.

I have deliberately limited the use of acronyms as they are often not unique. A
good example is DFT which can be either Density Functional Theory or Discrete
Fourier Transform. In kinetic theory, BGK refers to the Bhatnager-Gross-Krook
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model of the Boltzmann collision operator, whereas in plasma physics it signifies
Bernstein-Green-Kruskal solitary waves. The subject matter of the book spans
several disciplines and the use of acronyms would defeat the purpose of reaching a
broad audience.

I have provided in footnotes very brief biographies of the scientists and math-
ematicians who have provided the mathematical and physical concepts upon which
much of the current research is based. As an example, Josiah Willard Gibbs (1839–
1903) is familiar to mathematicians for his contributions to the understanding of the
slow convergence of the Fourier series for functions with jump discontinuities
leading to oscillations referred to as the Gibbs phenomenon. Gibbs is very well
known to chemists and physicists as a thermodynamicist and his name is associated
with the Gibbs free energy and for his contributions to entropy concepts in physical
systems. The biography of Gibbs at aps.org mentions that, “When his publications
were read, they were considered too mathematically complex for most chemists and
too scientific for many mathematicians”. Much of the current applied work by
chemists and physicists could not be done without the mathematics developed by
mathematicians and scientists. More detailed and interesting discourses of the
contributions of many people and their personal careers can be found on the Internet
and published biographies.

MATLAB� codes are provided for many of the numerical results reported in the
book. These were developed on a 64 bit personal computer with an Intel i5 CPU at
2.50 GHz and 8 GB RAM. The computational time in most cases was of the order
of several seconds and usually less than one minute. The codes in some instances
are not completely vectorized and a few “for” loops remain. As a consequence, the
codes are hopefully more transparent to the user for a very small cost in the
computational time. Although several short MATLAB codes are listed in the text,
the vast majority of the codes were finalized after submission of the manuscript.
The codes and accompanying documentation are available at www.springer.com
and at spectralmethods.chem.ubc.ca.

The book is intended for use by upper year undergraduates, graduate students as
well as established researchers working on applied problems in chemistry, physics,
astrophysics, space science, plasma physics, biology, engineering and in other
related fields. The large bibliography provided is to current research in these diverse
fields. Although many mathematical results are proved and the fundamental prin-
ciples are illustrated with numerical examples, the presentation is utilitarian and not
meant to be mathematically rigorous. I provide references to textbooks and review
papers where more rigorous mathematical approaches are presented. I have also
included very brief derivations of the integral and/or differential equations defining
the physical problems considered with references to more detailed discussions. The
large bibliography provided is the evidence of the wide applicability of spectral/
pseudospectral methods in science and engineering.

This book is the result of 30 years of research employing spectral and
pseudospectral methods for the solution of a wide range of different physical
problems. I have not benefited from the opportunity to teach this material to several
cohorts of undergraduate and/or graduate students. However, I am indebted to
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numerous graduate students, postdoctoral fellows and other collaborators, who are
cited in the references provided, for their contributions to this research. I am also
very grateful to several colleagues who proofread portions of a preliminary version
of the book. The people involved are Patrick Casasm-Chenaï, Daniel Hubert,
Joseph Lemaire, Joseph Lo, Norman McCormick, Gren Patey, Viviane Pierrard,
Bob Snider and Larry Viehland. My heartfelt thanks are extended especially to
Daniel Baye, Livio Gibelli, Jae-Hun Jung, Konstantin Kabin and Mark Thachuk for
their conscientious reading of several chapters. The many constructive comments
of these people are very much appreciated and their contributions to the book
cannot be underestimated. However, I am solely responsible for any errors that
remain and I encourage readers of the book to report any further corrections to me
at shizgal@chem.ubc.ca. A list of errata and MATLAB codes will be posted
periodically at the websites provided. I thank Maria Bellantone and Mieke van der
Fluit at Springer for their advice and their extreme patience with this project. Very
special thanks to my wife, Judy, for putting up with my preoccupation with this
effort for several years.

Vancouver, Canada Bernard Shizgal
October 2014
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Chapter 1
Introduction to Spectral/Pseudospectral
Methods

Abstract This chapter introduces the basic principles of spectral/pseudospectral
methods for the solution of partial differential and/or integral equations that serve
to model a large number of physical processes in chemistry and physics. The first
part of the chapter defines the spectral space representation of functions and the
transformation to the physical space representation. A Hilbert space is defined as
well as the definition of self-adjoint operators that occur in quantum mechanics and
kinetic theory. The Rayleigh-Ritz variational principle and the method of weighted
residuals are discussed. An historical summary of the development of pseudospectral
methods in chemistry and physics is presented together with an outline of the book.
The science, the mathematical models and the computer algorithms are interrelated.

1.1 Introduction

This book describes current spectral and pseudospectral methods for the solution of
partial differential and/or integral equations thatmodel a large number of systems and
processes in chemistry and physics with many applications to biology, engineering,
astrophysics and space science. We consider physical systems and processes that
are modeled theoretically with the principles of quantum mechanics and kinetic
theory. This introduction provides an overview of several physical systems for which
spectral and pseudospectral methods are used to solve the differential and/or integral
equations that define the problems.

The basic mathematical tools are briefly presented in Sects. 1.2 and 1.3. A more
detailed presentation of the mathematics and numerical algorithms is presented in
Chap.2. There are also many comprehensive discussions of this material in the bib-
liography provided.

A personal historical summary of the development of pseudospectral methods
with applications to physical problems in chemistry, physics, biology and engineer-
ing is presented in Sect. 1.4. This is a very broad subject that cannot be covered
in detail in a single volume. The many references provided form a very impor-
tant additional resource to the material presented here. This large bibliography also
demonstrates the widespread use of the mathematical/numerical methods that are
described.

© Springer Science+Business Media Dordrecht 2015
B. Shizgal, Spectral Methods in Chemistry and Physics, Scientific Computation,
DOI 10.1007/978-94-017-9454-1_1
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2 1 Introduction to Spectral/Pseudospectral Methods

Quantum theory (Messiah 1961; Liboff 2002) based on the Schrödinger 1 equation
provides the theoretical description of numerous systems in chemistry and physics.
An important problem in quantum chemistry is the calculation of the electronic
energy states for a molecule taking into account the electron-nuclei and electron-
electron Coulombic interactions for fixed positions of the nuclei (Sherrill 2010).
This is referred to as electronic structure theory (Szabo and Ostlund 1996; Friesner
1991; Helgaker et al. 2000; Levine 2009) and includes density functional theory
(Jones and Gunnarsson 1989; Morgan 1996; Tsuneda 2014).

The potential from the solution of the electronic problem is used in theSchrödinger
equation for themotion of the nuclei and provides the rotational and vibrational states
of the molecule (Friesner et al. 1993; Light and Carrington 2000; Koput et al. 2001).
A complementary problem concerns the quantum description for the continuum or
scattered states that are of concern in collision theory (Child 1996; Taylor 2012) espe-
cially as applied to theoretical chemical kinetics andphotochemistry (Cassam-Chenaï
and Liévin 2012; Balint-Kurti 2008; Burke 2011). These applications and many oth-
ers (Hu et al. 2002; Baye et al. 2008; Amore et al. 2009; Heyl and Thirumalai 2010)
are active areas of research in chemistry and physics requiring efficient computational
algorithms.

Statistical mechanics can be divided into equilibrium and non-equilibrium sta-
tistical mechanics which includes kinetic theory. Kinetic theory is based on the
Boltzmann2 equation (Liboff 2003; Kremer 2010) or the Fokker3-Planck4 equation
(Chandrasekhar 1949; Risken and Till 1996) for the particle distribution functions
that define, for example, the transport coefficients in a dilute gas as well as chemical
reaction rates including nuclear reactions. For collision dominated gaseous systems,
the Chapman5-Enksog6 method (Chapman and Cowling 1970) of solution of the
Boltzmann equation yields the macroscopic equations of fluid mechanics and in

1 Erwin Schrödinger (1887–1961) was an Austrian physicist who worked on fundamental aspects
of quantum theory and developed the equation that bears his name. He also made important contri-
butions to statistical mechanics and thermodynamics and had an interest in biology and philosophy.
He was awarded the 1933 Nobel Prize for his development of wave mechanics in quantum theory.
2 Ludwig EduardBoltzmann (1844–1906)was anAustrian physicist whomade significant contribu-
tions to statistical mechanics and proposed the kinetic equation that bears his name. The equilibrium
particle distribution is the Maxwell-Boltzmann distribution.
3 Adrian Fokker (1887–1972) was a Dutch physicist and made contributions to relativity in addition
to statistical mechanics. The Fokker-Planck equation used to model numerous processes in physics,
astrophysics, chemistry, finance and biology bears his name. He also made numerous contributions
to music theory.
4 Max Planck (1858–1947) was a German physicist and was awarded the 1918 Nobel Physics Prize
for his contributions to quantum theory. Planck andFokker independently derived the Fokker-Planck
equation of statistical physics.
5 Sydney Chapman (1888–1970) was a British mathematician and geophysicist developed the
Chapman-Enksog method of solution of the Boltzmann equation and contributed to the theory of
stochastic processes. He also made many fundamental contributions to geophysics.
6 David Enskog (1884–1947) was a Swedish mathematical physicist who contributed to the kinetic
theory of gases with the method of solution developed with Chapman.
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particular the Navier7-Stokes8 equation. This complements the usual derivation of
the equations of fluid mechanics in terms of mass, momentum and energy conser-
vation (Kundu et al. 2012; Durran 2010). Spectral and pseudospectral methods have
been extensively applied to problems in fluid mechanics (Gottlieb and Orszag 1977;
Peyret 2002; Canuto et al. 2006b).

We consider a large number of systems that includes radiative and neutron trans-
port, astrophysics, plasma physics and space science that can be described with
kinetic theory. We do not consider applications of equilibrium statistical mechan-
ics to liquids and electrochemistry that are currently studied primarily with Monte
Carlo simulations (Car and Parrinello 1985; Landau and Binder 2009). The direct
simulation Monte Carlo method (Bird 1994) used for many rarefied gas dynamical
problems is not discussed.

The vast number of applications of kinetic theory in many different fields is truly
remarkable. If the particles of interest are photons, theBoltzmann equation is replaced
with a radiative transfer equation and we find applications to the transport of radia-
tion in atmospheric science (Liou 2002; Thomas and Stamnes 2002), radio therapy
(Gifford et al. 2006) and astrophysics (Chandrasekhar 1949). The evolution of stars
in globular clusters can be studiedwith the Fokker-Planck equationwith the interstel-
lar gravitational Coulomb interactions (Lightman and Shapiro 1978; Chavanis 2006;
Binney and Tremaine 2008) analogous to the use in plasma physics (Birdsall and
Langdon 2005; Anderson et al. 2004; Peeters and Strintzi 2008). The development of
nuclear reactors (Hebert 2009) requires kinetic theory to understand the thermaliza-
tion and transport of neutrons (Davison 1957; Williams 1966), and nuclear reaction
rates (Atenzi and Meyer-Ter-Vehn 2004).

There are also important applications to the escape of atoms from planetary
atmospheres (Fahr and Shizgal 1983; Shizgal and Arkos 1996) as well as the loss of
charged particles from the earth (Lie-Svendsen and Rees 1996; Pierrard and Lemaire
1998) and the sun (Echim et al. 2011). A complementary problem is the escape of
stars from a globular cluster (Spitzer and Härm 1958; Lemou and Chavanis 2010)
and relativistic astrophysics (Bonazzola et al. 1999; Grandclément and Novak 2009).
We will not be able to consider all of these applications. However, we will provide
some of the basic concepts with concern to the numerical modeling of particular
systems with spectral and pseudospectral methods.

In each application, the physical problem is approximated with a mathematical
modelwhich formost applications requires a numerical solution of partial differential
or integral equations. The objectives can be summarized in the flow chart in Fig. 1.1.
We consider a mathematical model which provides an approximate description of
the physical system. A numerical algorithm is developed to solve the differential
or integral equations for the model. The results are compared with observations

7 ClaudeLouisNavier (1785–1836)was aFrenchmathematicianwhoworked in engineering science
with emphasis on bridge building and also made basic contributions to fluid mechanics. He was a
student and colleague of Fourier.
8 Sir George Gabriel Stokes (1819–1903) was a Irish/English mathematical physicist and made
fundamental contributions to fluid dynamics including Stokes’ law and Navier-Stokes equation.
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Fig. 1.1 Flow diagram of the modelling of physical systems or processes

and revisions to the mathematical model are made as required. There are often more
rigorousmathematical treatments formuch simplifiedmodels of the physical system.
There are many discussions with concern to the numerical analysis of the algorithms
used. We will not consider in detail these theoretical aspects but we will provide
references to research papers that complement the presentation. The objective is to
provide a utilitarian approach for the use of spectral and pseudospectral methods.

Computer power has become readily available and inexpensive and fairly large
complex systems can be modeled numerically with ease. The advances made in this
area parallels advances made in the development of numerical methods and algo-
rithms for the numerical solution for a large number of applied problems. Our main
objective in this book is to demonstrate the ease of use of spectral and pseudospectral
methods in the efficient numerical modeling of many systems and processes.

1.2 Spectral and Pseudospectral Methods

We provide in this section a brief overview of spectral and pseudospectral meth-
ods. The origin of the terminology, “spectral” is not entirely clear but probably
arises from the original use of Fourier9 sines and cosines as basis functions (Gottlieb
and Orszag 1977; Brown and Churchill 1993) especially in connection with a time
series analysis and the fundamental frequencies of a process, namely the “spectrum”
(Shen et al. 2011).

9 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist best known
for the development of Fourier series and the solution of differential equations notably heat transfer.
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Spectral methods are generally based on the representation of a real, continuous,
“well-behaved” function, f (x), on some interval not necessarily bounded as an expan-
sion in an orthonormal set of functions, Pn(x), that is,

f (x) =
∞∑

n=0

anPn(x), x ∈ [a, b] (1.1)

where the polynomials are orthonormal

b∫

a

w(x)Pn(x)Pm(x)dx = δnm, (1.2)

with respect to some appropriate weight function, w(x), and the Kronecker10 delta
is defined by

δnm =
⎧
⎨

⎩

1, m = n

0, m �= m.

(1.3)

Examples of such polynomial basis sets are the well-known classical polynomi-
als listed in Chap.2, Table2.1 and several nonclassical polynomials in Table2.2.
Whereas the non-classical polynomials are constructed to be orthonormal as in
Eq. (1.2), the classical polynomials are generally not normalized to unity.

The term “pseudospectral” refers to the solution of the defining equations on a grid
of discrete points, {xi}, and the solution, f (xi), as determined at the grid points. This
is often referred to as a collocation. Pseudospectral methods are discussed further in
Sect. 1.4.

1.2.1 The Spectral Space Representation

We approximate the function of interest, f (x), with the finite sum

f (N)(x) =
N−1∑

n=0

anPn(x), x ∈ [a, b] (1.4)

where with the orthonormality condition, Eq. (1.2), the expansion coefficients are
given by

an =
b∫

a

w(x)Pn(x)f (x)dx, (1.5)

10 Leopold Kronecker (1823–1891) was a German mathematician who specialized in algebra and
number theory. His studies of mathematics was originally a hobby and he did not hold a university
position untill 1883 at the University of Berlin.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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and occasionally referred to as the generalized Fourier coefficients. The an

coefficients, Eq. (1.5), represent the “spectral space representation” of f (x). We
choose an appropriate basis set so that the series Eq. (1.1) provides an accurate
approximation of f (x) with a small number of terms. If the method is efficient, the
absolute values of the coefficients, |an|, should decrease rapidly with increasing n as
will be demonstrated for particular functions and basis sets in Chap.4.

An alternate choice of basis functions are the functions pn(x) = √
w(x)Pn(x),

orthonormal according to
b∫

a

pn(x)pm(x)dx = δnm. (1.6)

We have the alternate expansion

f (N)(x) =
N−1∑

n=0

bnpn(x), (1.7)

with the expansion coefficients,

bn =
b∫

a

f (x)pn(x)dx. (1.8)

We can also choose the expansion

f (N)(x) = w(x)
N−1∑

n=0

cnPn(x), (1.9)

for which the expansion coefficients are

cn =
b∫

a

f (x)Pn(x)dx.

The convergence of the expansions Eqs. (1.4), (1.7) and (1.9) (each designated with
the same f (N)(x)!) can be very different as dependent on the behaviour of f (x). Several
examples are presented in Chap.4. For basis sets with unit weight function such as
Legendre polynomials and Fourier sines and cosines, these expansions are identical.

The main concern regarding the approximations Eqs. (1.4), (1.7) and (1.9) is
whether the series converges and howquickly. Often these two concerns are unrelated
except when the series does not converge and then the rapidity of the convergence is
irrelevant. The knowledge that the series expansion is convergent does not provide the
practical information as to how many terms, N , are required for the approximation,
f (N)(x), to be a good approximation to the function, f (x).

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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There are many discussions of the mathematics concerning the convergence of
such expansions. The interested reader can consult several references (Cheney 1966;
Rivlin 1969; Trefethen 2013) for a more detailed mathematical treatment of this sub-
ject. A discussion of approximation theory from an historical perspective is provided
by Steffens (2006).

A very important aspect of approximation theory (Pinkus 2000) is how tomeasure
the difference between f (x) and f (N)(x).Wemeasure the error of the series expansion,
Eq. (1.4), with the least squares norm, that is,

E(N)
2 =

b∫

a

w(x)
[
f (x) − f (N)(x)

]2
dx. (1.10)

We write out the square in Eq. (1.10) and use Eq. (1.4) that is

E2(N) =
b∫

a

w(x)f 2(x)dx − 2
N−1∑

n=0

an

b∫

a

w(x)Pn(x)f (x)dx

+
N−1∑

n=0

N−1∑

m=0

anam

b∫

a

w(x)PnPmdx. (1.11)

With the orthonormality of the basis functions in the last term and the minimization
of E2(N) with respect to all an, that is

∂E(N)
2

∂an
= 0, (1.12)

give the same expansion coefficients as obtained using orthogonality, Eq. (1.5). With
Eq. (1.5) in (1.11)

E(N)
2 = ‖f ‖2 −

N−1∑

n=0

a2n, (1.13)

where the norm of the function is defined as

‖f ‖2 =
b∫

a

w(x)f 2(x)dx < ∞, (1.14)

and which must be finite. Since E(N)
2 ≥ 0, Bessel’s inequality follows as

N−1∑

n=0

a2n ≤ ‖f ‖. (1.15)
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For N → ∞, we have Parseval’s theorem

N−1∑

n=0

a2n = ‖f ‖2. (1.16)

A more detailed mathematical proof of the results, Eqs. (1.15) and (1.16), can be
found in the book by Brown and Churchill (1993) on Fourier series expansions.

Another important result is obtainedwith Eq. (1.8) substituted into Eq. (1.7) which
gives

f (x) =
b∫

a

f (x′)
∞∑

n=0

pn(x)pn(x
′)dx′, (1.17)

where ∞∑

n=0

pn(x)pn(x
′) = δ(x − x′), (1.18)

and δ(x − x′) is the Dirac delta function defined in terms of the integral

∞∫

0

f (x′)δ(x − x′)dx′ = f (x). (1.19)

The basis set {pn} is then considered to be “complete” and Eq. (1.18) is referred to
as the completeness relation.

1.2.2 The Physical Space Representation

We have referred to the set of expansion coefficients {an} in the expansion, Eq. (1.1),
as the spectral space representation of the function. The expansion coefficients
are determined from orthogonality, Eq. (1.5). In Chap.2, we introduce Gaussian11

quadratures for the efficient evaluation of integrals. This is the algorithm

b∫

a

w(x)F(x)dx ≈
N∑

i=1

wiF(xi), (1.20)

11 Carl Friedrich Gauss (1777–1855) was a German mathematician and physical scientist. He was
a child prodigy and made many fundamental contributions to geometry, number theory and algebra
at a very young age. He is also well known for his work on planetary science, geomagnetism and
Gaussian probability distributions.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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where the set of “quadrature points” {xi} are the roots PN (xi) = 0 and {wi} are the
corresponding set of “quadrature weights”. The polynomials that define the quadra-
ture are orthogonal with respect to w(x) as given by Eq. (1.2). With Eq. (1.20), in
(1.5), the Gaussian quadrature approximation of the {an} coefficients is

an =
N∑

i=1

wiPn(xi)f(xi). (1.21)

The set of function values, fi ≡ f (xi), is the representation of f (x) in the “physical
space representation” and can be written as

fi =
N−1∑

n=0

anPn(xi). (1.22)

We label the first grid point and the first expansion coefficient as x1 and a0, respec-
tively. Equations (1.21) and (1.22) are the transformations from physical space to
spectral space and from spectral space to physical space, respectively.

This transformation can by symmetrized with the definition f̂i = √
wifi and gives

f̂i =
N−1∑

n=0

an
√

wiPn(xi), i = 1, 2, . . . , N, (1.23)

an =
N∑

j=1

√
wjPn(xj)f̂j, n = 0, 1, . . . , N − 1.

The transformationmatrix between the spectral space representation an and the phys-
ical space representation f̂i is defined by

Tin = √
wiPn(xi), (1.24)

and we rewrite Eq. (1.23) as

f̂i =
N−1∑

n=0

Tinan,

an =
N∑

i=1

Tnif̂i. (1.25)

With the second of these equations for an substituted in the first, gives

f̂i =
N∑

j=1

(
N−1∑

n=0

TinTnj

)
f̂j. (1.26)
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The transformation matrix T is unitary, that is,

N−1∑

n=0

TinTnj = δij (1.27)

which is equivalent to

wi

N−1∑

n=0

P2
n(xi) = 1, i = j,

N−1∑

n=0

Pn(xj)Pn(xi) = 0, i �= j, (1.28)

valid for all N .
With the substitution of Eq. (1.21) into (1.4) and interchange of the summations,

we obtain the basic interpolation result

f (N)(x) =
N∑

i=1

Ii(x)f (xi), (1.29)

where the interpolation function is given by

I(N)
i (x) = wi

N−1∑

n=0

Pn(x)Pn(xi), (1.30)

which satisfies,
I(N)
i (xj) = δij, (1.31)

referred to as the “Cardinality” condition. What is remarkable is that this result is
satisfied for any N, consistent with Eq. (1.27). These interpolation functions play a
central role in pseudospectral methods of solution.

It is of interest to notice that the interpolation functions, Eq. (1.30), are orthogonal,
that is,

b∫

a

w(x)Ii(x)Ij(x)dx = wiwj

N−1∑

n=0

Pn(xi)Pn(xj), (1.32)

= δij,

where the orthonormality of the basis functions,Pn(x), has been used. The use of sim-
ilar basis function interpolants has been employed by Baye (2006) and co-workers
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(Baye andHeenen 1986; Baye andVincke 1999; Baye et al. 2002) in the development
of the Lagrange mesh method for the solution of differential equations, notably the
Schrödinger equation. A more detailed discussion is presented in Chap. 6 with com-
parisons made with other pseudospectral methods.

1.2.3 A Hilbert Space

In this section, we present a few elementary principles associated with the use of a
Hilbert space.We first make comparison with a real vector space defined by the set of
three mutually perpendicular unit cartesian vectors ex , ey and ez. We define a scalar
or dot product between these unit vectors as eα · eβ = δαβ , (α,β) ≡ (x, y, z). An
arbitrary vector can be represented by v = vxex + vyey + vzez where vx , vy and vz are
the cartesian components of v, given by vx = ex · v, by vy = ey · v and by vz = ez · v.
The scalar or dot product of two different vectors is u · v = uxvx + uyvy + uxvz and
is zero if the vectors are orthogonal. The length of a vector or the norm is defined in

terms of the scalar product ||v|| = √
v · v =

√
v2x + v2y + v2z ≥ 0 with the equality if

and only if v = 0. The distance between two vectors is simply the norm ||v − u||.
This cartesian space is said to be linear since u · (av1 + bv2) = au · v1 + bu · v2.
Moreover, we can define a linear operator R which transforms or maps one vector
into another, that is u = R · v. In the (ex, ey, ez) representation, the operator R is
the familiar three-dimensional rotation matrix. We consider this space as complete
as we can express any vector as a linear combination of the three unit vectors.

We consider a Hilbert12 space with the orthogonal basis functions pn(x), n =
0, 1, . . . ,∞ as unit vectors that are in general complex.We introduce theDirac13 bra,
〈n|, and ket, |n〉 notation (Messiah 1961) to make the connection with a vector space
clearer by associating the basis function, pn(x), with the symbolic vector |n〉. The
basis functions, pn(x), are in fact the components of the vector |n〉 in the coordinate
representation of basis vectors |x〉, such that

|n〉 =
∫

pn(x)|x〉dx. (1.33)

There is also the dual space of complex vectors written as 〈m| and the scalar product
satisfies, 〈m|n〉 = 〈n|m〉∗, where the asterisk denotes the complex conjugate. Thuswe

12 David Hilbert (1862–1943) was a German mathematician who worked on many fundamental
problems including functional analysis and integral equations with a deep interest in mathematical
physics.
13 Paul Adrien Maurice Dirac (1902–1984) was an English mathematical physicist who shared the
1933 Nobel Physics Prize with Irwin Schrödinger for their contributions to atomic theory. He made
seminal contributions to quantum mechanics and relativity.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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consider the representation of the function f (x) or the vector |f 〉 in terms of the basis
functions or unit vectors. We include N basis functions and obtain the approximation
|f (N)〉 given by,

|f (N)〉 =
N−1∑

n=0

cn|n〉, (1.34)

where the expansion coefficients are obtained from the projection of |n〉 onto |f 〉,
that is

cn = 〈n|f 〉 ≡
b∫

a

p∗
n(x)f (x)dx. (1.35)

Although we have written p∗
n(x) in Eq. (1.35), for most of the applications considered

the basis functions are real. We include linear differential operators denoted by L
and the eigenvalue problem of the form

L|ψn〉 = λn|ψn〉, (1.36)

where λn is the eigenvalue, assumed to be discrete. We will find it useful to also
denote the scalar product as

〈f |g〉 =
b∫

a

w(x)f ∗(x)g(x)dx, (1.37)

with the weight functionw(x). Thematrix element of some operator, L, is denoted by

〈f |Lg〉 =
b∫

a

w(x)f ∗(x)Lg(x)dx. (1.38)

For the scalar products, 〈f |g〉 and 〈f |Lg〉, the weight function is not shown explicitly
to simplify the notation. We summarize the properties of a Hilbert space for our
purposes as

1. 〈f |ag + bh〉 = a〈f |g〉 + b〈f |h〉, a and b are numbers,
2. 〈f |g〉 = 〈g|f 〉∗,
3. 〈f |f 〉 ≥ 0,
4. ||f || = 〈f |f 〉 = 0 if and only if f = 0.
5. L(|f 〉 + |g〉) = L|f 〉 + L|g〉, L is a linear operator.

More detailed discriptions of a Hilbert space are in the book by Helmberg (2008)
and especially Chap.6 in the book by Hunter and Nachtergaele (2001).
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1.2.4 Hermitian and Self-adjoint Operators:
The Sturm-Liouville Problem

Consider the eigenvalue problem

Lψn(x) = λnψn(x), (1.39)

where L is a linear operator which includes the Hamiltonian for a quantum problem
or the linear integral operator in the Boltzmann equation or the differential Fokker-
Planck operator. The eigenfunction, ψn(x), defined on the interval [a, b] is subject to
two homogeneous boundary conditions which are linear combinations of the value
of the function and derivative at the two interval end points and are of the form

A1ψn(a) + B1ψ
′
n(a) = 0,

A2ψn(b) + B2ψ
′
n(b) = 0, (1.40)

where for Ak = 0 we have a Neumann boundary condition and if Bk = 0 we have a
Dirichlet boundary condition.

The Hermitian conjugate or the adjoint of L denoted by L† is defined by the
eigenvalue problem

L†ψ∗
m(x) = λ∗

mψ∗
m(x). (1.41)

The Hermitian conjugate of the matrix representative of an operator with elements
Lnm is the complex conjugate of each element of the transpose matrix, that is L∗

mn.
We now show that for a self-adjoint operator, the eigenvalues, λn, are real and the

eigenfunctions, ψn(x), of different eigenvalues are orthogonal. Multiply Eq. (1.41)
by ψn(x) and Eq. (1.39) by ψ∗

m(x), subtract the two equations and integrate to get

b∫

a

[
ψn(x)L

†ψ∗
m(x) − ψ∗

m(x)Lψn(x)
]

dx = (λ∗
m − λn)

b∫

a

ψ∗
m(x)ψn(x)dx (1.42)

If L, is self-adjoint or Hermitian, the left hand side of Eq. (1.42) is zero. Thus the
right hand side of Eq. (1.42) is also zero. If m = n we have that λ∗

n = λn since the
integral is not zero. The eigenvalues of a self-adjoint operator are real. For n �= m
we have the orthogonality of the eigenfunctions, that is,

b∫

a

ψ∗
m(x)ψn(x)dx = γnδnm, (1.43)

where the norm is

γn = ||ψn||2 =
b∫

a

ψ2
n(x)dx. (1.44)
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The Sturm14-Liouville15 problem (Pryce 1993; Al-Gwaiz 2008) is the eigenvalue
problem defined by the differential equation

Lψn(x) = d

dx

[
p(x)

dψn(x)

dx

]
+ q(x)ψn(x) = λnw(x)ψn(x), (1.45)

where p(x), q(x) are real and w(x) > 0 is a real weight function. The interval may be
bounded, x ∈ [a, b], semi-infinite x ∈ [0,∞), or infinite x ∈ (−∞,∞). Any linear
second order differential equation can be written in this form. The classical polyno-
mials such as the Legendre, Hermite and Laguerre polynomials defined in Chap.2
satisfy Sturm-Liouville eigenvalue equations. These polynomials are often chosen
as the basis functions in spectral solutions of particular problems. Alternatively, the
quadrature weights and points associated with these classical polynomials are used
in pseudospectral solutions.

To show thatL defined byEq. (1.45) is self-adjoint, we consider thematrix element

〈φ|L|ψ〉 =
b∫

a

φ(x)
[
p(x)ψ′(x)

]′
dx +

b∫

a

q(x)φ(x)ψ(x)dx, (1.46)

and perform an integration by parts for the first integral on the right hand side. The
result is

〈φ|L|ψ〉 = p(x)ψ′(x)φ′(x)
∣∣∣∣
b

a
−

b∫

a

p(x)ψ′(x)φ′(x)dx +
b∫

a

q(x)φ(x)ψ(x)dx. (1.47)

The boundary term is zero owing to the chosen boundary conditions, Eqs. (1.40), and

〈φ|L|ψ〉 = 〈ψ|L|φ〉.

Thus the Sturm-Liouville operator, L, is self-adjoint, and the importance of the
specified boundary conditions is clear. The Schrödinger and the Fokker-Planck eigen-
value equations are Sturm-Liouville problems and considered in Chap. 6. In Chap.5,
we consider the eigenvalues of the integral collision operator of the Boltzmann
equation.

14 Jacques Charles François Sturm (1803–1855) was a French mathematician who made important
contributions to algebra and the numerical evaluation of the roots of polynomials. The differential
eigenvalue equation that bears his name defines the classical polynomials.
15 Joseph Liouville (1809–1882) was a Frenchmathematician whomade fundamental contributions
to complex analysis, algebra, mechanics, and many other topics. He is well known for Liouville’s
theorem in classical Hamiltonian mechanics.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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1.2.5 Rayleigh-Ritz Variational Theorem

We are interested in solving the operator eigenvalue problem

L|ψn〉 = λn|ψn〉, (1.48)

where L is a self-adjoint positive definite operator in a square integrable Hilbert
space of real functions. The Rayleigh16-Ritz17 variational approach is based on the
representation of the eigenvectors |ψn〉 in terms of N orthogonal vectors |k〉 each
weighted linearly with a variational parameter, ak . Thus we write,

|ψn〉 =
N−1∑

k=0

ak |k〉, (1.49)

where 〈k|�〉 = δk�. A functional dependent on the set of variational parameters, ak ,
is defined by

F({ak}) = 〈ψn|L|ψn〉 − λ〈ψn|ψn〉,

=
N−1∑

k=0

N−1∑

�=0

[
aka�Lk� − λa2k

]
, (1.50)

where Lk� = 〈k|L|�〉 are the matrix elements of the operator in the chosen basis
set. We determine the extremum of F({ak}) with respect to the set of expansion
coefficients {ak} by setting

∂F({ak})
∂ak

= 0. (1.51)

The result is the set of linear equations for the variational parameters, ak , that is,

N−1∑

k=0

ak

[
Lk� − λδk�

]
= 0, (1.52)

and the eigenvalues are the roots of the “secular” equation resulting from the require-
ment that the solution of homogeneous linear equations, Eq. (1.52), exists, that is

det

[
L(N) − Λ

]
= 0, (1.53)

16 JohnWilliam Strutt, third Baron Rayleigh (1842–1919) was an English physicist who discovered
argon for which he was awarded 1904 Nobel Physics Prize. His named is associated with kinetic
theory, electrodynamics, light scattering, sound propagation and other subjects.
17 Walther Ritz (1878–1909) was a Swiss theoretical physicist. His name is associated with the
Rydberg Ritz combination principle for atomic spectral lines and the Rayleigh-Ritz variational
method.
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where thematrixΛ is diagonal,Λk� = λkδk�. Equation (1.53) is the secular equation,
a polynomial of degree N in λ and the roots are λk .

A good overall discussion of the different approximationmethods for applications
in physics and engineering can be found in the book by Finlayson (1972). The review
paper by Finlayson and Scriven (1966) with 187 references provides an overview
of the development of these methods. A more rigrous mathematical discussion has
been presented by Hill (1985).

The Rayleigh-Ritz variational theorem has been applied extensively in numerous
fields includingquantummechanics (Bhattacharyya2009), kinetic theory (Cuperman
et al. 1982; Driessler 1981; Present and Morris 1969; Snider 1964; Shizgal and
Karplus 1971; Bobylev and Cercignani 1999), radio science (Sarkar 1983) and other
fields. The common aspect of all these applications is the approximate representation
of the solution of a differential equation in a set of orthogonal basis functions.

1.3 An Overview of Spectral Methods

In Chap.2, we develop the basic concepts of spectral and pseudospectral methods
with application to physical problems. In this section, we provide an overview of the
development of these methods which are discussed in greater detail in the chapters
that follow.

We consider the time dependent differential equation,

∂f (x, t)

∂t
= Lf (x, t) + S(x) x ∈ [a, b], (1.54)

where L is a linear operator and S(x) is a source term.We impose Dirichlet boundary
conditions, f (a, t) = 0, f (b, t) = 0 and provide an initial condition f (x, 0) = g(x).
The operator L could be the operator in the linear Boltzmann equation, Eq. (5.41), or
in a Fokker-Planck equation, Eq. (6.7). The eigenvalue problem Lψn(x) = λnψn(x)
is of interest for the time dependent solution of Eq. (1.54). We are also interested in
a similar eigenvalue problem for the Schrödinger equation, Eq. (6.78), defined with
a linear self-adjoint Hamiltonian operator H.

For these problems, we approximate the solution in terms of the finite expansion
in a set of orthonormal functions, pn(x) = √

w(x)Pn(x), Eq. (1.7), involving N terms
and we have the N th approximation to f (x, t), that is

f (N)(x, t) =
N−1∑

n=0

bn(t)pn(x). (1.55)

We discuss the choice of basis set from the large set of classical and nonclassical poly-
nomials in Chap.2. This choice determines the rate of convergence of the expansion,
Eq. (1.55).

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The initial values of the expansion coefficients are provided from the expansion
of the initial condition, that is,

g(x) =
N−1∑

n=0

bn(0)pn(x). (1.56)

With the substitution of Eq. (1.56) into (1.54), we have that

N−1∑

n=0

pn(x)
dbn(t)

dt
=

N−1∑

n=0

bn(t)Lpn(x) + S(x). (1.57)

The departure of the approximate solution from the actual solution is measured by
the “residue” defined by

RN (x, t) = ∂f (N)(x, t)

∂t
− Lf (N)(x, t) − S(x), (1.58)

=
N−1∑

n=0

pn(x)
dbn(t)

dt
−

N−1∑

n=0

bn(t)Lpn(x) − S(x).

The method of weighted residuals (Finlayson and Scriven 1966; Finlayson 1972)
is a procedure to calculate bn(t) so as to minimize the residual RN (x, t) in some
average way. We impose the condition that the residue is minimized subject to

b∫

a

t(x)RN (x, t)dx = 0, (1.59)

where there are several different choices for the “test” function t(x) and each
choice gives rise to a different approximation. If we choose t(x) = pn(x), n =
0, 1, . . . , N − 1, the partial differential equation is converted to a set of N coupled
ordinary differential equations, that is,

dbm(t)

dt
=

N−1∑

n=0

Lmnbn(t) + sm m = 0, 1, . . . , N − 1, (1.60)

where the matrix representation of L in this basis set is,

Lmn =
b∫

a

pm(x)Lpn(x)dx, (1.61)

and

sn =
b∫

a

pn(x)S(x)dx, (1.62)
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are the expansion coefficients for the source term, S(x). This approach is referred to
as a spectral or a “Galerkin”18 solution.

The set of coupled ordinary differential equations, Eq. (1.60), can be advanced in
time from the initial values, cn(0), with the appropriate time integration algorithm.
An important aspect regarding the stability of the direct time integration of the set of
equations, Eq. (1.60), is the eigenvalue spectrum of thematrix, Lmn, and the condition
number, κ(L) = λmax/λmin.

The condition number is also very important with regards to the inversion of the
steady state matrix equations

N−1∑

n=0

LnmCm = −sn m = 0, 1, . . . , N − 1, (1.63)

for the time independent coefficients denoted by Cm. If the condition number of the
matrix L is large, the inversion of Eq.(1.63) can be contaminated with numerical
errors. We can also consider the related eigenvalue problem

N−1∑

n=0

Lnmdm = λndn n = 0, 1, . . . , N, (1.64)

for the eigenvalues, λn, and eigenvector coefficients d with the proviso that the
eigenvalue spectrum of the operator L is discrete.

For theBoltzmann, Fokker-Planck andSchrödinger equations, the linear operators
involved can have discrete spectra, or a combination of a discrete spectrum plus a
continuum or just a continuum. We discuss these properties of eigenvalue problems
with specific applications in Chaps. 5 and 6 (Reinhardt 1979).

1.4 The Development of Pseudospectral Methods
in Chemistry and Physics: An Overview of the Book

A preliminary introduction to pseudospectral methods is provided by the eigenvalue
problem

b∫

a

k(x, y)ψn(y)dy = λnψn(x), (1.65)

where the integral operator on the left hand side is defined by the kernel, k(x, y),
which is assumed to be well behaved in both arguments. The integral equation

18 Boris Galerkin (1871–1945) was a Russian mathematician and developed the Galerkin method
for solving partial differential equations associated with problems in mechanical engineering.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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is reduced to a set of linear equations with the use of the appropriate quadrature.
Equation (1.20), defined with the quadrature points, {xi}. The result is

N∑

i=1

Wik(xj, xi)ψn(xi) = λnψn(xj), (1.66)

where Wi = wi/w(xi) and w(x) is the weight function that defines the polynomi-
als, Eq. (1.2). The eigenfunctions are evaluated at the set of quadrature points and
are represented by the physical space representation, ψn(xi). Extensive use of this
pseudospectral method is discussed in Chap. 5 for the solution of the Boltzmann
equation.

For differential equations, a derivative matrix operator is derived in Chap.2 in
terms of the interpolation function, Eq. (2.32),

Dij = dI(N)
i (x)

dx

∣∣∣∣
x=xi

, (1.67)

as well as an analogous matrix operator for the second derivative. Second order
differential equations such as the Fokker-Planck and Schrödinger equations can be
reduced to linear algebraic equations or time dependent ordinary differential equa-
tions. Pseudospectral methods are used extensively in Chaps. 5 and 6. The history of
the development of pseudospectral methods in chemistry, physics and other fields is
outlined in Table1.1. This chronology of events is a personal view and people with
different backgrounds may well have other interpretations.

As discussed in Chap. 5, the first use of a pseudospectral method appears
to be the work of Wick (1943) and Chandrasekhar (1944) in the solution of

Table 1.1 The development of pseudospectral methods in chemistry and physics

1943 Gaussian quadrature solution for Radiative Transfer Wick (1943)

1944 Gaussian quadrature solution for Radiative Transfer Chandrasekhar (1944)

1953 The Discrete Ordinate Method (DOM) in Neutron
Transport

Carlson (1955)

1972 Differential Quadrature (DQ) Bellman et al. (1972)

1973 Spline methods for the Schrödinger equation Shore (1973, 1975)

1977 Numerical Analysis of Spectral Methods Gottlieb and Orszag (1977)

1982 Nonclassical basis functions for the Boltzmann
equation

Shizgal (1981a)

1984 A DOM for the solution of differential equations Shizgal and Blackmore (1984)

1985 Pseudospectral methods for electronic structure Friesner (1985)

1985 Discrete Variable Representation (DVR) Light et al. (1985)

1985 Fourier techniques Schwartz (1985)

1986 Lagrange mesh method Baye and Heenen (1986)

1987 Spectral methods in fluid mechanics Canuto et al. (1998)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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the integro-differential radiative transfer equation (Chandrasekhar 1960). They
introduced Gauss-Legendre quadratures to reduce the radiative transfer equation
to a set of linear ordinary differential equations. The problem was originally consid-
ered by Milne19 (Milne 1930) as a problem in astrophysics as well as in rarefied gas
dynamics where it is referred to as a half-space problem (Williams 1971; Cercignani
1988). A spectral solution of the Milne problem based on the Boltzmann equation
is discussed in Chap.5 (Lindenfeld and Shizgal 1983) and a pseudospectral method
of solution for an electron Fokker-Planck equation was presented by Vasenkov and
Shizgal (2000).

The radiative transfer and neutron transport community exploited the pseudospec-
tral approach (Chandrasekhar 1960; Rybicki 1996) and it was referred to as the
Discrete Ordinate Method (DOM) (Carlson 1955). Other designations are the SN

(Lathrop 1992) and PN methods (Liou 2002; Thomas and Stamnes 2002). The SN

method appears to refer to the “segmentation” of the interval of interest with N
quadrature points and can be considered as a spectral element method (Deville et al.
2002) or a discontinuous Galerkin method (Cockburn et al. 2000) originally devel-
oped in neutron transport theory (Reed and Hill 1973). The PN method refers to a
spectral method with the expansion of the angular dependence of the velocity distri-
bution functions in Legendre polynomials (Liou 2002; Thomas and Stamnes 2002).
Similar Laguerre and Hermite expansions of functions that occur in kinetic theory
are presented in Chap. 4.

The pseudospectral solution of differential equations is based on the global
approximation of the derivative operator in terms of the function values on a grid.
Interpolation, Eq. (1.30), and the discrete matrix derivative operator, Eq. (1.67), are
the basis for the development of these collocation type solutions of differential equa-
tions. Bellman et al. (1972) developed the differential quadrature (DQ) method for
the solution of differential equations. This appears to be the first introduction of
pseudospectral methods applied primarily to problems in engineering (Shu 2000).
Pseudospectral methods based on the discrete physical space representation of deriv-
ative operators is presented in Chap.3, Sect. 3.9.2 and defined with the Lagrange
interpolation in Chap.2, Sect. 2.3.1.

The numerical methods of solution based on B-Splines (Shore 1973) also belong
to the class of collocation Galerkin type solutions for quantum problems (Bachau
et al. 2001) aswell as for theBoltzmann equation (Pitchford andPhelps 1982; Siewert
2002; Khurana and Thachuk 2012) and many other applications. The introduction
of spectral methods with Fourier and Chebyshev basis functions for fluid mechanics
problems was developed by Gottlieb and Orszag (1977).

Shizgal and Blackmore (1984) applied a combination of the Gaussian quadratures
for integrals, Eq. (1.20), and the discrete physical space matrix representations for
derivatives, Eq. (1.67), for the solutionof the integro-differentialBoltzmannequation,
presented in Chap.5. A nonclassical quadrature based on polynomials orthogonal
with weight function, w(x) = xpe−x2 , x ∈ [0,∞), was used (Shizgal 1981a). The

19 Edward Arthur Milne (1896–1950) was a British astrophysicist and mathematician who con-
tributed to stellar structure and the thermodynamics of stars.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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method of Gaussian quadrature for the evaluation of integrals is used to solve integral
equations (Delves and Mohamed 1985; Jerri 1999; Eskola 2012) and is referred to
as the Nyström method. Gaussian quadratures are developed in Chap. 2 and applied
to the numerical evaluation of integrals in Chap.3 and to the determination of the
eigenvalue spectra for the collision operators of the Boltzmann equation in Chap. 5.

Nonclassical polynomials and associated quadratures were subsequently applied
to the Fokker-Planck and Schrödinger equations and referred to as the quadrature
discretization method (Shizgal and Chen 1996, 1997; Lo and Shizgal 2006, 2008a).
The choice of basis functions arises from the transformation of the Fokker-Planck
equation to a Schrödinger equation with potentials that belong to the class of prob-
lems in supersymmetric quantum mechanics (Comtet et al. 1985; Dutt et al. 1988).
The pseudospectral algorithms discussed in Chap.6, Sect. 6.3.2, provide a represen-
tation of the Hamiltonian in the Schrödinger equation that is not contaminated by
nonphysical ghost levels (Wei 1997; Willner et al. 2004; Kallush and Kosloff 2006).

Friesner (1985) applied pseudospectral methods to the solution of the electronic
structure equations (the Schrödinger equation) for the electronic states of the neon
atom following on the pioneering work of Gottlieb and Orszag (1977) on spec-
tral methods for fluid mechanics. For the quantum chemistry community involved
with the calculation of the vibrational states of polyatomic molcules, pseudospectral
methods originated from the quadrature evaluation of matrix elements of a multi-
plicative operator, namely the potential in the Schrödinger equation (Harris et al.
1965; Dickinson and Certain 1968). Following on this work, Light and coworkers
(Hamilton and Light 1986; Bacic and Light 1989; Light and Carrington 2000) devel-
oped a pseudospectral method referred to as the Discrete Variable Representation
(DVR).

Baye (1995, 2006) and coworkers (Baye and Heenen 1986; Baye and Vincke
1999; Baye et al. 2002) developed the Lagrange mesh method for similar quantum
problems. Mention should be made of the work of Schwartz (1985) on Fourier meth-
ods. The second derivative operator representation in this paper was later reported
by Colbert and Miller (1992) and Amore (2006).

In Chap.3, we discuss the representations of multiplicative operators for both
kinetic theory as well as for quantum problems and the transformation between
spectral space and physical space, Eq. (1.25). This provides insight into the success
of pseudospectral methods from the inexact calculation of matrix elements of the
potentials in the Schrödinger equation (Baye et al. 2002; Szalay et al. 2012).

Fourier methods for quantum problems were developed by Balint-Kurti and
coworkers (Marston and Balint-Kurti 1989; Balint-Kurti and Pulay 1995; Stare and
Balint-Kurti 2003) and by Kosloff (Kosloff and Kosloff 1983; Kosloff 1993, 1994).
Mention should be made of the distributed approximating functional (DAF) method
of Hoffman et al. (1998) and the discrete singular convolution (DSC) method (Wei
2000a, b; Amore et al. 2009).

In Chap.5, we employ Gaussian quadratures for the representation of integral
operators such as in theBoltzmann equation (Shizgal andBlackmore 1983; Sospedra-
Alfonso and Shizgal 2012). Quadratures are used to reduce integral equations to
algebraic form. In Chap.6, interpolation serves to define a matrix derivative operator

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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to reduce differential equations such as the Fokker-Planck and Schrödinger equa-
tions to algebraic equations. In both situations, nonclassical basis functions are often
used. The original version of the book by Canuto et al. (1998), which has since been
republished in two volumes (Canuto et al. 2006a, b), is noted in the table as represen-
tative of the many textbooks on spectral methods in fluid dynamics that have been
referenced in the Preface.
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Chapter 2
Polynomial Basis Functions
and Quadratures

Abstract Spectral and pseudospectral methods in chemistry and physics are based
on classical and nonclassical orthogonal polynomials defined in terms of a three
term recurrence relation. The coefficients in the three term recurrence relations for
the nonclassical polynomials can be calculatedwith theGautschi-Stieltjes procedure.
The round-off errors that occur with the use of Gram-Schmidt orthogonalization pro-
cedure is demonstrated for both classical and nonclassical polynomials. The trape-
zoidal, Simpson’s and Newton-Cotes integration rules are derived as are the Fejér,
Clenshaw-Curtiss, Gauss-Lobatto and Gauss-Radau algorithms. Sinc interpolation
based on Fourier sine basis functions is compared with the Lagrange interpolation.
Nonclassical Maxwell and Bimodal polynomials orthogonal on the infinite domain
with respect to weight functionsw(x) = x2 exp(−x2) and x2 exp[−(x4/4ε−x2/2ε)],
respectively, are introduced for kinetic theory problems. The Gaussian quadrature
rule based on the nonclassical Rys polynomials orthogonal with respect to the weight
function w(x) = e−cx2 , x ∈ [−1, 1], used to evaluate integrals in molecular quan-
tum mechanics is presented. For c → 0 and c → ∞, the Rys polynomials are the
Legendre and scaled Hermite polynomials, respectively. Two dimensional quadra-
tures, such as the Lebedev cubature, are used to evaluate two dimensional integrals in
density functional theory for electronic structure calculations as well as for the non-
linear Boltzmann equation in kinetic theory. The Stieltjes moment problem is related
to the inversion of moment data in chemical physics to reconstruct photoelectron
cross sections.

2.1 Introduction

A spectral method of solution of partial differential and integral equations is based
on the expansion of the solution in a basis set of linearly independent functions. The
choice of basis set for a particular problem is dictated in part by both the interval of
interest and the anticipated behaviour of the solutions. Table2.1 lists several classical
polynomials orthogonalwith respect toweight functionw(x) on the specified interval
[a, b]. The Fourier sine and cosine basis functions are also included. The list in the
table is not exhaustive but it does summarize the most frequently used orthogonal
basis sets. Except for the sine and cosine basis sets and the Hermite functions, hn(x),
the other basis functions are all polynomials.

© Springer Science+Business Media Dordrecht 2015
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30 2 Polynomial Basis Functions and Quadratures

Table 2.1 Classical orthogonal basis functions

[a, b] w(x) Name Symbol Nn

[−1, 1] 1 Legendre Pn(x) 2/(2n + 1)

[−1, 1] 1/
√
1 − x2 Chebyshev Tn(x) π (n = m = 0)

π/2 (n = m �= 0)

[−1, 1] (1 − x2)λ− 1
2 Gegenbauer C(λ)

n (x) 21−2λπΓ (n+2λ)

n!(n+λ)Γ 2(λ)

[−1, 1] (1 − x)α(1 − x)β Jacobi P(α,β)
n (x) 2α+β+1

2n+α+β
Γ (n+α+1)Γ (n+β+1)

n!Γ (n+α+β+1)

[−1, 1] 1 Sine sin(nπx) 1

[−1, 1] 1 Cosine cos(nπx) 1

[−∞,∞] e−x2 Hermite Hn(x) 2n√πn!
[−∞,∞] 1 Hermite hn(x) = e−x2/2Hn(x) 2n√πn!
[0,∞] xαe−x Associated

Laguerre
L(α)

n (x) Γ (n+α+1)
n!

[0,∞] x2α+1e−x2 Sonine S(n)
α (x2) Γ (n+α+1)

2n!
Γ (α) = ∫∞

0 x(1−α)e−xdx is the Gamma function

A set of basis functions normalized to unity can be defined by dividing the basis
functions above by

√
Nn. These polynomials arise in the solution of a variety of phys-

ical problems, especially in kinetic theory and quantum mechanics. The Legendre1

polynomials are the eigenfunctions for the rotational states of a diatomic molecule
with a fixed interatomic distance, that is a rigid rotor. The Hermite2 polynomials are
the eigenfunctions for the quantum harmonic oscillator representing the vibrational
states of a diatomic molecule with a quadratic interatomic potential. The associated
Laguerre3 polynomials occur in the definition of the eigenfunctions of the radial
Schrödinger equation for the hydrogen atom.

The Sonine4 polynomials are used for the solution of the Boltzmann5 equation
and the calculation of the transport properties of a dilute gas (Chapman and Cowling
1970; Ferziger and Kaper 1972; Liboff 2003; Kremer 2010). For a repulsive pair
potential that varies as the inverse 4th power of the interparticle separation, the

1 Adrian Marie Legendre (1752–1833) studied mathematics and physics in France and is known
for the method of least squares for fitting data, the Legendre transform in classical mechanics.
2 Charles Hermite (1822–1901) was a French mathematician who contributed to number theory
and algebra and one of his students was Henri Poincaré.
3 EdmondNicolas Laguerre (1834–1886) was a Frenchmathematicianwho contributed to geometry
and complex analysis.
4 Nikolay Yakovlevich Sonin (1849–1915) was a Russian mathematician who made substantial
contributions to the theory of orthogonal polynomials and cylindrical functions.
5 Ludwig Eduard Boltzmann (1844–1906) was an Austrian theoretical physicist who made unique
contributions to kinetic theory, statisticalmechanics and radiationphysics.Hederived theBoltzmann
equation of kinetic theory and the H-theorem which is the basis for the use of entropy to explain
the approach to equilibrium.
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Sonine polynomials are the eigenfunctions of the linear collision operator of the
Boltzmann equation, as discussed in Chaps. 3 and 5. The product of the cross section
and the relative speed for this model is independent of the relative speed and the
collision operator is simplified as recognized byMaxwell6; hence the nameMaxwell
molecules for this model. In kinetic theory, the Sonine polynomials are functions of
the “reduced speed”, x = √

mv2/2kBT , wherem is themass of the gaseous particle, v
is the velocity, kB is the Boltzmann constant and T is the temperature. The Laguerre
polynomials, as used in kinetic theory, are very similar and are functions of the
“reduced energy” y = mv2/2kBT .

TheGegenbauer7 polynomials occur in potential theory andharmonic analysis and
also for the resolution of the Gibbs phenomenon (Gottlieb and Shu 1997; Shizgal and
Jung 2003) as discussed in Chap.4. The Gegenbauer polynomials are the Legendre
and Chebyshev8 polynomials for λ = 1

2 and λ = 0, respectively. The classical
orthogonal polynomials listed in Table2.1 are the eigenfunctions of second order
differential operators of the Sturm-Liouville type (Al-Gwaiz 2008) and also possess
many well known properties such as a generating function.

Table2.2 lists several non-classical polynomials for which a very limited set of
properties are known in stark contrastwith the classical polynomials.Gautschi (1994)
noted three decades ago that there has not beenwidespread use of nonclassical orthog-
onal polynomials and encouraged their use. Since then, there has been increased
research on the use of nonclassical polynomials for spectral and pseudospectral
solutions of differential and integral equations applied to many fields. The nonclas-
sical weight functions determine the distribution of the quadrature points within
the interval of interest which may resolve the pseudospectral solutions of particular
problems (Byrd and Galant 1970; Garcia 1999; Baye and Vincke 1999; Chen and
Shizgal 2001; Shizgal 2002). The table provides a brief but not exhaustive summary
of the research to date. A brief overview of recent works follows with more detailed
discussions and applications provided in Chaps. 3–6.

The Maxwell polynomials were introduced long ago for the solution of problems
in kinetic theory (Gross et al. 1957) and neutron transport (Desai and Nelkin 1966),
and subsequently considered independently by several researchers (Steen et al. 1969;
Galant 1969; Shizgal 1981; Gautschi 1984, 2009). These nonclassical polynomials
(for p = 0, 1 and 2) have found widespread use in numerous applications in kinetic
theory (Sospedra-Alfonso and Shizgal 2012a), Fokker-Planck transport (Blackmore
and Shizgal 1985a), polar wind modelling (Pierrard and Lemaire 1998), tethered

6 James Clerk Maxwell (1831–1879) was a Scottish mathematical physicist who made exceptional
contributions to kinetic theory, electromagnetism and optics. He was responsible for the Maxwell
equations which are the basis for the behavior of electric and magnetic fields in numerous physical
situations.
7 Leopold Bernhard Gegenbauer (1849–1903) was an Austrian mathematician who specialized
in algebra and made important contributions to function theory and developed the Gegenbauer
polynomials for his doctoral thesis.
8 PafnutyLvovichChebyshev (1821–1894)was aRussianmathematicianwhoworked in probability
and number theory, and developed the polynomials named after him while interested in linkages
that converted rotational motion into rectilinear motion in steam engines.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Table 2.2 Non-classical orthogonal basis functions

[a, b] w(x) Name Symbol Nn

[0,∞] xpe−x2 Maxwell M(p)
n (x) 1

[0,∞] e−x4 Druvesteyna Dn(x) 1

[0,∞] exp[−a(x − x0)2] Gaussian Gn(x) 1

[0,∞] exp[−5x + 6e−x] Morseb Mn(x) 1

[0,∞] x5e−x4/16 Schrödinger equationc None 1

[−∞,∞] e−(x4/4−x2/2)/ε Bimodald Bn(x) 1

[0,∞] x2e−(x4/4−x2/2)/ε Bimodal half-range B̂n(x) 1

[−1, 1] e−cx2 Ryse Jn(x, c) 1

[0, 1] e−cx2 Rys Rn(x, c) 1

[0, 1] ln2(x) Multi-Exponentialf En(x) 1

[0, 1] e−c/x Radiative Transferg Rn(x) 1

[0,∞]
(

x
ecx−1

)p
Bose-Einsteinh Ben(x) 1

[0,∞]
(

1
ecx+1

)p
Fermi-Dirach Fdn(x) 1

a See Sect. 3.7.5 in Liboff (2003), (Chen and Shizgal 2001)
b Model vibrational Morse potential V (x) = 9(e−2x − 2e−x) (Chen and Shizgal 2001)
c Potential is V (x) = x6

64 − x2 + 15
4x2

(Shizgal and Chen 1996)
d Blackmore and Shizgal (1985a), Shizgal and Chen (1997), Lo and Shizgal (2006)
e Dupuis et al. (1976), Rys et al. (1983)
f Gill and Chien (2003)
g Gander and Karp (2001)
h Gautschi (1993)

satellite analysis (Williams 2011), Fermi liquids (Warringa and Sedrakian 2011)
heat transfer (Graur and Polikarpov 2009), satellite re-entry, (Li and Zhang 2009)
and other applications. For p = 0, the Maxwell polynomials, often referred to as
the half-space Hermite polynomials, permit the efficient application of boundary
conditions for a rarefied gas dynamical problem (Gibelli 2012).

The Druvesteyn distribution function (see Liboff 2003, p. 236) is the steady distri-
bution for electrons in a background gas under the influence of a steady electrostatic
field with a hard sphere cross section for electron-atom collisions. For realistic cross
sections, the steady distribution function is the Davydov distribution function. These
distributions are displaced to higher energies with an increase in the electrostatic
field. These physical distribution functions are used as weight functions to define
nonclassical polynomials (Wannier 1971; Chen and Shizgal 1998, 2001) and asso-
ciated quadratures.

Gaussian weight functions, w(x) = exp[−a(x − x0)2], have been used to define
nonclassical quadratures for the solution of the electron Fokker-Planck equation and
the associated Schrödinger equation for a mixture of an inert gas and a strongly
attaching electron gas (Shizgal 1987). As a consequence of the attachment heating
of the electrons, the steady state distribution is non-Maxwellian and displaced to

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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higher energies. With the appropriate choice of parameters in the Gaussian weight
functions, quadrature points can be constructed to be densely distributed in some
interval of interest.

Gaussians have been used as basis functions for the solution of the vibrational
Schrödinger equation (Garashchuk and Light 2001; Karabulut and Kalay 2005). In
Chap.6, nonclassical basis functions defined by Morse potentials are used to solve
the Schrödinger equation for the vibrational energy states of diatomic molecules.
Extensive use is made of potentials, such as the Morse potential, that belong to the
class of potential functions in supersymmetric quantum mechanics (Comtet et al.
1985; Dutt et al. 1988; Cooper et al. 1995) which serve to define nonclassical weight
functions.

The bimodal polynomials have been used to solve the Fokker-Planck equation
which models a chemical reaction with a bistable potential separating reactants from
products (Blackmore and Shizgal 1985a; Shizgal and Chen 1997; Lo and Shizgal
2006) with a barrier height controlled by ε. The Rys polynomials (Dupuis et al. 1976;
King and Dupuis 1976; Rys et al. 1983) provide an efficient technique for electronic
structure calculations by providing a quadrature for integrals over Gaussian orbitals
(Dupuis and Marquez 2001; Schneider and Nygaard 2002). Gill and Chien (2003)
developed a nonclassical quadrature based on the weight function w(x) = ln2(x),
x ∈ [0, 1] for radial integrals that occur in density functional theory. Gander and
Karp (2001) developed a quadrature for use in radiative transfer theory and quad-
ratures for integrals with logarithmic singularities have been reported by Beebe and
Ball (2007).

For the most part, the use of nonclassical quadratures as discussed in the pre-
vious paragraphs has been very limited by comparison to the use of quadratures
based on the classical polynomials. We discuss in Chaps. 5 and 6 the applica-
tions of these quadrature rules to the solution of differential and integral equations
such as the Boltzmann, Fokker-Planck and Schrödinger equations (Blackmore and
Shizgal 1985a; Baye and Heenen 1986; Light and Carrington 2000; Baye 2006; Lo
and Shizgal 2008).

In Sect. 2.3.4, we present the basis for the Gaussian quadrature numerical evalu-
ation of integrals. Perhaps the first use of a quadrature rule after Gauss (1814) in a
pseudospectral application was by Wick (1943) and later by Chandrasekhar (1960)
in the solution of a radiative transfer equation discussed in Chap.5.

2.2 Gram-Schmidt Orthogonalization and Three
Term Recurrence Relations

Given a weight function, w(x), and an interval of interest, x ∈ [a, b], an
orthogonal polynomial basis can be constructed from the linearly independent set
of monomials, 1, x, x2, . . . , xn. The procedure, which is known as the Gram9-

9 Jorgen Pedersen Gram (1850–1916) was a Danish mathematician and number theorist.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Schmidt10 orthogonalization, is based on the monic polynomials

Qn(x) =
n−1∑

k=0

qnkxk + xn, (2.1)

for which the coefficient of xn is unity. Given Qn(x), the next member of the set
Qn+1(x) is determined by making it orthogonal to all the n lower order Qn(x) poly-
nomials and determining the normalization, γn

b∫

a

w(x)QnQmdx = γnδnm. (2.2)

The procedure begins with Q0(x) = 1 with the normalization γ0 = ∫ b
a w(x)dx. The

next member of the set is thenQ1(x) = q10+x. The requirement that it be orthogonal
to Q0 gives

q10 = − 1

γ0

b∫

a

w(x)xdx,

and the normalization is γ1 = ∫ b
a Q2

1(x)dx. The next polynomial in the set is Q2(x) =
q20 + q21x + x2. The requirement that this be orthogonal to Q0 and Q1 leads to two
equations for the two coefficients q20 and q21.

This procedure requires the moments of the weight function

μn =
b∫

a

w(x)xndx. (2.3)

We can continue this process to generate successively higher order polynomials and
the analogous set of orthonormal polynomials

Pn(x) = Qn(x)√
γn

, (2.4)

not to be confused with Legendre polynomials that we will later write as P�(x).
This approach is algebraically cumbersome and the more efficient approach is the

Gautschi-Stieltjes procedure discussed in Sect. 2.3.6. The Gram-Schmidt orthogo-
nalization method is described to illustrate an example of an algorithm that is numer-
ically ill-conditioned and unstable. The numerical algorithms used for scientific
applications can be seriously contaminated with round-off errors. It is important to

10 Erhard Schmidt (1876–1959) was aGermanmathematicianwhomade contributions to functional
analysis with his advisor David Hilbert.
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recognize the origin of such numerical instabilities and to develop well conditioned
algorithms (Quarteroni et al. 2010; Gautschi 2011).

Consider the monic polynomials up to Qn(x) with 〈Qm|Qn〉 = 0 for m < n. We
use the “bra” and “ket” notation introduced in Chap.1. It is understood that the scalar
product written in this way is defined with the weight function w(x) as in Eq. (2.2).
The next polynomial in the set, Qn+1(x), can be generated from xQn(x) and therefore
we write,

xQn(x) = Qn+1(x) +
n∑

k=0

cnkQk(x), (2.5)

where the coefficients are determined by taking the scalar product of Eq. (2.5) with
Qk(x), that is

cnk = 1

γn
〈Qn|x|Qk〉, (2.6)

where Eq. (2.2) has been used. Since xQk(x) is a polynomial of order k + 1, cnk = 0
for k = 0, 1, . . . (n − 2) and Eq. (2.5) can be rewritten as

xQn = Qn+1 + αnQn + βnQn−1, (2.7)

where the coefficients have been redefined, that is, cn,n = αn and cn,n−1 = βn. The
scalar product of this equation with Qn is

〈Qn|x|Qn〉 = αnγn, (2.8)

so that

αn = 〈Qn|x|Qn〉
γn

= 〈Pn|x|Pn〉. (2.9)

where Eq. (2.4) has been used. The scalar product of Eq. (2.7) with Qn−1 gives

〈Qn−1|x|Qn〉 = βnγn−1. (2.10)

Similarly, the scalar product of Qn(x) with Eq. (2.7) and n replaced with n − 1, gives

γn = 〈Qn|x|Qn−1〉, (2.11)

so that with Eq. (2.10)

βn = γn

γn−1
. (2.12)

Equation (2.7) can be rewritten as

Qn+1 = (x − αn)Qn − βnQn−1, (2.13)

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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or in terms of the polynomials normalized to unity,

xPn = √
βn+1Pn+1 + αnPn +√

βnPn−1, (2.14)

where the recurrence coefficients, αn and βn are given by Eqs. (2.9) and (2.12),
respectively.

Equations (2.13) and (2.14) together with the definitions of αn and βn are central
to the theoretical development of orthogonal polynomials. If the recurrence rela-
tion Eq. (2.14), is squared, multiplied by w(x) and integrated, we obtain another
recurrence relation that gives βn+1 in terms of the lower order coefficients, that is,

〈x2P2
n〉 = βn+1 + α2

n + βn. (2.15)

This relationship is used in an application later in this chapter.
We have an algorithm for the generation of a polynomial basis set defined by a

weight function and the interval of interest. We combine the Gram-Schmidt orthog-
onalization with the three term recurrence relation. With Q−1(x) = 0, Q0(x) = 1
and Q1(x) = x, we can evaluate γ0 = 〈Q0|Q0〉, γ1 = 〈Q1|Q1〉, α1 = 〈P1|x|P1〉 and
β1 = γ1/γ0. The next monic polynomial, Q2(x), can then be evaluated with the three
term recurrence relation, Eq. (2.13), as well as γ2,α2,β2 and hence Q3(x). Unfor-
tunately, this approach eventually breaks down for some n owing to large round-off
errors for both classical and nonclassical polynomials. This occurs in the calculation
of γn, the normalization of the monic polynomial, Qn, as shown later. However, the
calculation can be done algebraically withMAPLE.We adopt both approaches in the
construction of the classical Legendre andHermite polynomials, and the nonclassical
Rys polynomials.

2.2.1 Legendre and Hermite Polynomials

For polynomials over a symmetric interval, [−a, a], defined with an even weight
function, w(−x) = w(x), we have that αn = 〈xP2

n〉 = 0 and βn = γn/γn−1. Among
many different polynomial basis sets, this includes the Legendre polynomials, P� on
[−1, 1] with weight function w(x) = 1 and the Hermite polynomials on [−∞,∞]
with weight functions w(x) = exp[−x2]. We consider their construction based on
the Gram-Schmidt procedure so as to illustrate a numerical instability inherent in the
approach. A discussion of the bimodal polynomials for which αn = 0 is provided in
Sect. 2.5.2.

The Gram-Schmidt procedure involves writing the nth monic polynomial in terms
of the lower order orthogonal polynomials Qk, k = 0, 1, . . . (n − 1), that is,

Qn(x) =
n−1∑

k=0

cn,kPk(x) + xn. (2.16)
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The requirement that Qn be orthogonal to all the lower order Pk functions gives

cn,k = −〈xn|Pk〉, (2.17)

and the normalization can be written as

γn = μ2n −
n−1∑

k=0

c2n,k . (2.18)

The data required for the Gram-Schmidt procedure are the moments of the weight
function, Eq. (2.3). A numerical problem with the subtraction in Eq. (2.18) can be
anticipated as the two quantities on the right hand side can become large and nearly
equal.

The moments defined by Eq. (2.3) for the Legendre weight function are

μn =
1∫

−1

xndx =
{ 2

n+1 n even,
0 n odd.

(2.19)

For the Hermite weight function, the moments are

μn =
∞∫

−∞
e−x2xndx =

{
Γ (n + 1

2 ) n even,
0 n odd.

(2.20)

The lower order polynomials can be determined with these moments. Table2.3 sum-
marizes the procedure up to Q4. The monic polynomials are alternately odd and even
and thus cn,k �= 0 unless n and k are both even or odd. With the recurrence relation,
Eq. (2.14), and the definition Eq. (2.17) we have that

cn,k = √
βk+1cn−1,k+1 +√

βkcn−1,k−1. (2.21)

Table 2.3 Gram-Schmidt orthogonalization procedure

n Polynomial Coefficients γn Hermite Legendre

γn/
√

π γn

0 Q0 = 1; P0 = Q0/
√

γ0 μ0 1 2

1 Q1 = x; P1 = Q1/
√

γ1 μ2 1/2 2/3

2 Q2 = c2,0P0 + x2 c2,0 = −μ2/
√

μ0 μ4 − μ2
2/μ0 1/2 8/45

3 Q3 = c3,1P1 + x3 c3,1 = −μ4/
√

μ2 μ6 − μ2
4/μ2 3/4 8/175

4 Q4 = c4,0P0 c4,0 = −μ4/
√

μ0

+ c4,2P2 + x4

c4,2 = −(μ6μ0 − μ2μ4)/ μ8 − c24,0 − c24,2 3/2 128/11,025

μ0
√

μ2
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The lower order coefficients, cn,k , for a given n are easily calculated as shown in
Table2.3. The subsequent coefficients for k up to n − 1 are determined from the
recurrence relation, Eq. (2.21). Finally the normalization, γn, is determined with
Eq. (2.18). It is well known that the Gram-Schmidt procedure is numerically unstable
and the current approach will break down as a consequence of the computation of the
norm with Eq. (2.18). The polynomials are defined with the recurrence coefficient
βn as given by Eq. (2.12) in terms of the normalizations.

With a symbolic algebraic software such asMAPLE, the numerical instability can
be avoided. TheMAPLE code for Legendre polynomials is shown in Listing 2.1. The
numerical values of βn that result are shown in the second column of Table2.4 and
converted to rational form in the third column. By inspection, the numerical value of
the numerator varies as n2 and the denominator varies as 4n2−1. The normalizations,
γn, are listed in the fourth column and the rapid decrease with increasing n is evident.
These are also converted to rational form in the last column. We have thus generated
theLegendre polynomialswith themoment information and the three term recurrence
relation.

In Table2.4, we show the results of the numerical calculation of the normalizations
with Eq. (2.18) and the recurrence, Eq. (2.21). The first column lists the moments,
μ2n whereas the second the sum,

∑n−1
k=0 c2n,k , both of which become nearly equal

with increasing n. The ill-conditioned nature of the Gram-Schmidt procedure is self
evident by the round-off error that arises from the subtraction of these nearly equal
quantities to give the small norm. The underlined digits in bold for cn,k show the
significant figures that determine γn.

Listing 2.1 MAPLE code for Gram-Schmidt Generation of Legendre Polynomials

1 restart; Digits :=40; N:=8; wt :=1.0;

2 g[0]:= int(wt ,x= -1..1); beta [0]:=0;

3 Q[0]:=1; Q[1]:=x;

4 for i from 2 to 51 do

5 g[i-1]:= int(wt*Q[i-1]^2,x= -1..1); beta[i-1]:=g[i-1]/g[i-2];

6 convert(g[i-1],'rational ');

7 Q[i]:= simplify(x*Q[i-1] - beta[i-1]*Q[i-2]):

8 convert ((beta[i-1]) ,'rational '); end

A similar study for the Hermite polynomials is summarized in Tables2.6 and 2.7.
The exact lower order normalizations, γn (in units of

√
π), are shown in Table2.6

whereas the details of the iterative Gram-Schmidt construction is shown in Table2.7.
By contrast to the results for Legendre polynomials in Table2.5, in this case both
the moments of the weight function in the second column and

∑n−1
k=0 c2n,k in the third

column increase dramatically with n. The normalization, γn, is the difference of these
large quantities and although also large it is several orders of magnitude smaller and
round-off errors occur, albeit for somewhat largern than shown for theLegendre poly-
nomials inTable2.5. For theHermite polynomials, one can determine from the results
in Table2.6 that βn = n/2 consistent with the known recurrence relation Eq. (2.114).

The round-off errors that we have demonstrated arise from the finite arithmetic
precision of computers. This is a very important aspect of scientific computations and
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Table 2.4 Gram-Schmidt procedure for Legendre polynomials with MAPLE

n βn = n2

4n2−1
γn = βnγn−1

0 0 0 2 2

1 0.3333333333 1/3 0.2666666667 2/3

2 0.266666667 4/15 0.1777777778 8/45

3 0.2571428571 9/35 0.0457142857 8/175

4 0.2539682540 16/63 0.0116099773 128/11,025

5 0.2525252525 25/99 0.0029318125 128/43,659

6 0.2517482517 36/143 0.0007380787 512/693,693

7 0.2512820513 49/195 0.0001854659 512/2,760,615

8 0.2509803922 64/255 0.0000465483 32,768/703,956,825

9 0.2507739938 81/323 0.0000116731 32,768/2,807,136,475

10 0.2506265664 100/399 0.0000029256 131,072/44,801,898,141

Table 2.5 Iterative Gram-Schmidt procedure for Legendre polynomials

n μ2n
∑n−1

k=0 c2n,k γnumerical
n γnumerical

n /γexact
n

4 0.2222222222222222 0.2106122448979591 0.11609977 (−1) 1.0000000000

8 0.1176470588235294 0.1176005105142636 0.46548309 (−4) 1.0000000000

12 0.0800000000000000 0.0799998164533769 0.18354662 (−6) 0.9999999993

16 0.0606060606060606 0.0606060598856000 0.72046063 (−9) 0.9999987444

18 0.0540540540540541 0.0540540540089528 0.45101305 (−10) 0.9999705423

20 0.0487804878048780 0.0487804878020550 0.28230959 (−11) 1.0001642759

21 0.0465116279069767 0.0465116279062742 0.70253525 (−12) 0.9950102337

22 0.0444444444444444 0.0444444444442586 0.18589297 (−12) 1.0525869822

23 0.0425531914893617 0.0425531914893365 0.25202063 (−13) 0.5705396358

γnumerical
n = μ2n −∑n−1

k=0 c2n,k

Table 2.6 Gram-Schmidt
procedure for Hermite
polynomials with MAPLE

n [γn = βnγn−1]/√π

0 1 1

1 0.50000 1/2

2 0.50000 1/2

3 0.75000 3/4

4 1.50000 3/2

5 3.75000 15/4

6 11.2500 45/4

7 39.3750 315/8

8 157.500 315/2

9 708.750 2,835/4

10 3,543.75 14,175/4
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must be treated seriously. Round-off errors can quickly contaminate computations
in a more subtle manner than what we have demonstrated in these sections with the
user perhaps unaware of its occurrence. Excellent discussions of the finite precision
of computers and the potential deleterious effects on scientific computations have
been provided in Chap.1 of the book by Gautschi (2011) and in Sect. 1.2 in the book
by Quarteroni et al. (2010).

2.2.2 The Rys Polynomials

In molecular quantum chemistry computer codes (Reine et al. 2012; Helgaker et al.
2000), most of the computational time of the simulations is the numerical evalua-
tion of a very large number of integrals discussed in Chap.3. The integrals that are
calculated can be reduced to the form

In(c) =
1∫

0

Pn(x
2)e−cx2dx, (2.22)

where Pn(x2) is a polynomial in x2 of degree n, and n and c can vary considerably
for different integrals that occur in the calculations. The research activity in this field
to develop computationally efficient algorithms is intense (Rys et al. 1983; Becke
1988; Lindh et al. 2001; Chien and Gill 2006; Matsuyama and Koga 2010; Mitani
2011; Asadchev and Gordon 2012).

One approach for the numerical evaluation of such integrals is to consider a
quadrature based on the nonclassical Rys polynomials (Dupuis et al. 1976; King and
Dupuis 1976; Rys et al. 1983; Lindh et al. 1991) orthogonal according to

1∫

0

e−cx2Rn(x)Rm(x)dx = δnm. (2.23)

We refer to these polynomials as half-range owing to their definition on the interval
x ∈ [0, 1] as discussed in Sect. 2.5.3. Half-range Legendre polynomials discussed in
Sect. 2.4.2 are used in radiative transfer. Half-range Hermite polynomials x ∈ [0,∞)

are used in kinetic theory (Gibelli 2012; Ghiroldi and Gibelli 2014). The half-range
and full range Legendre polynomials are related by a simple variable transformation
owing to the unit weight function, w(x) = 1.

In this section,we are concernedwith the full-range nonclassicalRys polynomials,
Jn(x), orthogonal on [−1, 1], that is

1∫

−1

e−cx2Jn(x)Jm(x)dx = δnm. (2.24)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The recurrence coefficients αn = 0 owing to the definition of the polynomials over a
symmetric interval with even weight function. This is not the case for the half-range
Rys polynomials defined by Eq. (2.23) for which αn �= 0.

The Rys polynomials, Jn(x), approach the Legendre polynomials for c → 0.
Alternatively, if the substitution y = x

√
c is made, then the orthogonality relation,

Eq. (2.24), is equivalent to

1√
c

√
c∫

−√
c

e−y2Jn(y
√

c)Jm(y
√

c)dy = δnm, (2.25)

and the Rys polynomials approach the scaled Hermite polynomials as c → ∞.
We use the Gram-Schmidt procedure to construct these polynomials from the

moments of the weight function defined by

μn =
1∫

−1

e−cx2xndx, (2.26)

with the expectation that round-off error will contaminate the calculations. With an
integration by parts, one can show that the moments satisfy the recurrence relation

μn = n − 1

2c
μn−2 − 1

c
e−c, (2.27)

and can be calculated given the first member

μ0 =
√

π

c
erf(c). (2.28)

where the complementary error function is erf(x) = 1 − erf(x) and erf(x) =
(2/

√
π)
∫ x
0 exp(−t2)dt.

The recursion relation for the moments is unstable owing to the substraction that
occurs in Eq. (2.27). The roundoff error that occurs is subtle as there is a loss of almost
one digit with each iteration. The analytic results for lower order moments can be
obtained by hand from the recurrence relation or with a short MAPLE program. If
the recurrence relation is used successively such that the subtraction is left to the
end of the calculation, the roundoff error that occurs is more obvious as illustrated in
Table2.8. The result is that increased numerical precision is required to accurately
calculate the moments. The “exact” result in the table is determined with MAPLE.
This exact result for a higher ordermoment can be usedwithEq. (2.27) as a downward
recursion which is stable (King and Dupuis 1976; Sagar and Smith 1992).

With the moments of the weight function calculated in either of the methods
described above, the basis set cannot be constructed with the Gram-Schmidt proce-
dure owing to the round-off error that occurs with the calculation of the normaliza-
tion. Useful results (not shown) can be obtained only up to approximately n = 20.
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Table 2.8 Illustration of the round-off error in the recursive calculation of μn for the Rys polyno-
mials, Eq. (2.27) of the moments of the weight function exp(−cx2) with c = 1

Numerical Exact

μ10 = 9!!
25

√
π erf(1) − 1915

24e
44.10930034423397 −44.03057061520700 = 0.07872972902697 0.07872972902697

μ20 = 19!!
210

√
π erf(1) − 1329151345

29e
955014.5969999168 −955014.5586540446 = 0.0383458722 0.03834587218263

μ30 = 29!!
215

√
π erf(1) − 12566760954932644

214e
282168762050.6263 −282168762050.6010 = 0.0253 0.025259470041296

Table 2.9 Gram-Schmidt procedure for Rys polynomials; c = 1

n βn γn

1 0.2537041018 0.3789446916

2 0.2754960710 0.1043977737

3 0.2618831608 0.0273400189

4 0.2556247772 0.0069887863

5 0.2532295876 0.0017697675

6 0.2521168628 0.0004461882

7 0.2515016521 0.0001122171

8 0.2511224677 0.0000281802

9 0.2508714069 0.0000070696

10 0.2506963412 0.0000017723

(A) (B)

Fig. 2.1 (A) Variation ofβn versus n for Rys polynomials Jn(x) for c = 0, 4, 8, 12 and 16; Legendre
polynomials correspond to c = 0 and Hermite polynomials for c → ∞. (B) Variation of βn versus
c for Rys polynomials Jn(x) for n =1–5

The lower order values of βn and γn are shown in Table2.9 and the similarity with
the results for the Legendre polynomials in Table2.4 is clear.

The variation of βn versus n and c is shown in Fig. 2.1. For the larger values of c,
the variation of βn versus n is smooth and lim

n→∞βn → 1/4. This behavior suggests

that an efficient fitting procedure may be possible for βn versus n and c (Clarke
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and Shizgal 1993) that may prove useful in the construction of quadratures for the
evaluation of integrals, Eq. (2.22). We discuss in Sects. 2.5.3 and 3.8.1 the applica-
tion of Rys polynomials to the calculation of these integrals and their use in quantum
chemistry computer codes and for the evaluation of electron repulsion integrals.

The techniques discussed above are interesting but they are not generally applica-
ble to different classes of weight functions. Each weight function presents a new
problem that may not be amenable to a similar analysis and it is anticipated that the
results would also lead to unstable recurrence relations. The stable approach that
works for arbitrary weight function is the Gautschi-Stieltjes11 procedure described
in Sect. 2.3.6.

2.3 Numerical Integration Algorithms

The Lagrange interpolation, discussed in the section that follows, is the basis for
the construction of algorithms for numerical integration. It also provides the discrete
physical space representation of derivative operators used in pseudospectral applica-
tions discussed in Sect. 3.9.2. In Sect. 2.3.3, the derivation of the Newton12-Cotes13

integration rules which includes the trapezoidal and Simpson’s rules is provided.
Gaussian quadrature rules are derived and the Gautschi-Stieltjes procedure for the
calculation of the quadrature points and weights from the diagonalization of the
Jacobi matrix is presented. The Jacobi matrix is the matrix representation of the mul-
tiplicative coordinate operator.

2.3.1 Polynomial and Lagrange Interpolation

A common problem is the need to calculate the missing entries in a table of data of
some quantity yi versus xi. Suppose we have N function values, y1, y2, . . . , yN for
x1, x2, . . . xN .We are interested in interpolatingwithin the tabulated data to determine
missing values of y for specific values of x, and we assume that there is a functional
relationship giving y = f (x).

Spectral and pseudospectral methods are based on numerical interpolation (Davis
1963; Boyd 2001). Meijering (2002) has provided an excellent historical account
of the development of interpolation with particular application to image process-

11 Thomas Joannes Stieltjes (1856–1894) was a Dutch mathematician and contributed the mathe-
matics of continued fractions and the Stieltjes moment problem. He is also known for the Reimann-
Stieltjes integral.
12 Sir Isaac Newton (1642–1727) was an English physicist and mathematician that made original
contributions to classical mechanics, optics, calculus and to other fields.
13 Roger Cotes (1682–1716) was an English mathematician who worked closely with Isaac Newton
and developed the quadrature rules that bear their names.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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ing (Meijering et al. 1999; Thévenaz 2000). A short pedagogical discussion is also
presented by Prandoni and Vetterli (2009). The discussion in this section overlaps
the discussion of Sinc interpolation in Sect. 2.6.1.

A simple interpolation is to assume that the dependence of y = f (x) is linear
between successive entries in the table of data. This linear interpolation is given by

f (x) ≈ f1(x) = f (x1)
x − x2
x1 − x2

+ f (x2)
x − x1
x2 − x1

, x1 < x < x2. (2.29)

If x1 and x2 are a pair of successive entries in the table, then for x = x1 the second term
is zero and the coefficient of f (x1) is unity. Similarly, for x = x2, the coefficient of
f (x1) is zero and that of f (x2) is unity. The interpolation returns the tabulated entries
exactly. Equation (2.29) can be rewritten, after some algebra, as f1(x) = a1 + b1x.

The interpolation can be improved by increasing the degree of the interpolating
functions which are polynomials. The quadratic approximation is given by

f (x) ≈ f2(x) = f (x1)
(x − x3)(x − x2)

(x1 − x3)(x1 − x2)
+ f (x2)

(x − x3)(x − x1)

(x2 − x3)(x2 − x1)

+ f (x3)
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
. (2.30)

The coefficient of f (x1) is zero for x equal to x2 or x3, and unity for x = x1. A
similar behaviour is observed for the coefficients of f (x2) and f (x3) so that the
interpolation returns the tabulated values exactly. This interpolation can be written,
after some algebra, as a quadratic, that is, f2(x) = a2 + b2x + c2x2.

This can be generalized to an N th order interpolation by writing

f (x) ≈ fN (x) =
N∑

i=1

f (xi)�i(x), (2.31)

where the interpolating polynomials are defined by

�i(x) =
N∏

j=1,j �=i

x − xj

xi − xj
, (2.32)

and �i(x) depends on N . We do not show this dependence to keep the notation
simple. This polynomial interpolation is referred to the as Lagrange14 interpolation.
The interpolating polynomials have been constructed so that

�i(xj) = δij, (2.33)

14 Joseph-Louis Lagrange (1736–1813) was an Italian mathematician and astronomer and made
significant contributions to analysis, number theory, classical and celestial mechanics.
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(A) (B)

Fig. 2.2 The Lagrange interpolation functions �i(x) for (A) i = 7 and (B) i = 9 for a uniform grid
xj = −7+ j, j = 1, 2, . . . , 11. The solid symbols identify the grid points forwhich �i(xj) = 0, i �= j
and the vertical dashed line at xi for which �i(xi) = 1. The Sinc interpolation for the same grid is
shown in Fig. 2.10

known as the Cardinality condition and the functions �j(x) are referred to as Cardinal
functions. By construction, the interpolation gives the exact values of f (x) at the grid
points xi which need not be equidistant. The variation of the Lagrange interpolants,
�7(x) and �9(x), for a uniform grid of 11 points is shown in Fig. 2.2. The interpolant
has roots at all the grid points, xj �= xi, except for the one point xi = xj where it is unity.

The Lagrange polynomial, Eq. (2.32), is unique once the grid points are chosen. It
can be constructed in terms of orthogonal polynomials. If we choose the nonuniform
grid points, xi, corresponding to the quadrature points defined as the roots of the N th
order polynomial, PN (xi) = 0, that is

PN (x) =
N∏

j=1

(x − xj), (2.34)

the Lagrange interpolant can be written as

�i(x) = PN (x)

(x − xi)P′
N (xi)

. (2.35)

The term (x−xi) in the denominator of Eq. (2.35) deleted in the product in Eq. (2.32)
cancels with the corresponding term in PN (x) and the denominator in Eq. (2.32) is
precisely P′

N (xi); see Eq. (2.30) for an example.

2.3.2 Trapezoidal and Simpson’s Integration Rules

The interpolation introduced in the preceding section can be used to derive approx-
imate integration rules. We present here a synthesis of the discussions that can be
found elsewhere (Ralston and Rabinowitz 2001; Talman 2006; Cheney and Kincaid
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2008). These integration rules can in general be written in the form

b∫

a

f (x)dx ≈ IN =
N∑

i=1

wi f (xi), (2.36)

where xi ∈ [a, b] are a set of grid points in the interval of interest and wi are the
corresponding weights.

The function, f (x), can be approximated with Eq. (2.29) within the interval [a, b].
We choose a uniform grid of N points, that is, (x1, x1 + h, x1 + 2h, . . . , xN − h, xN ),
with spacing h = (b − a)/(N − 1), and a = x1 and b = xN . With the linear
interpolation given by Eq. (2.29), the integral

∫ x2
x1

f (x)dx is the sum of the two linear
interpolating polynomials, Eq. (2.29), over the interval of width h, and

x1+h∫

x1

�1(x)dx =
x1+h∫

x1

x − x2
x1 − x2

dx = h

2
,

x1+h∫

x1

�2(x)dx =
x1+h∫

x1

x − x1
x2 − x1

dx = h

2
. (2.37)

Thus the weights are the same for all intervals of the same length between adjacent
points of width h in the interval [x1, x2] as shown in Table2.10 for m = 1. We apply
this result to each interval, sum over the N intervals and get the trapezoidal rule,

IN = 1

h

[
f1
2

+
N−1∑

i=2

fi + fN

2

]
. (2.38)

The coefficient of the interior points is unity as there are two contributions to fi from
adjacent intervals whereas there is only one contribution from each of the interval
boundaries.

If we choose a quadratic fit to f (x) with three successive grid points (x1, x2, x3)
we then have to evaluate the integrals of the three quadratic interpolating polynomials

Table 2.10 Newton Cotes coefficients and the Lagrange interpolation of order m

m Integration rule Formula Error

1 Trapezoidal h
2 [ f1 + f2] h3

12 f (2)(ξ)

2 Simpson’s h
3 [ f1 + 4 f2 + f3] h5

90 f (4)(ξ)

3 Simpson’s 3/8 3h
8 [ f1 + 3 f2 + 3 f3 + f4] 3h5

80 f (4)(ξ)

4 Milne rule 2
45 [7 f1 + 32 f2 + 12 f3 + 32 f47 + f5] 8h7

945 f (6)(ξ)
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in Eq. (2.30) over an interval of length 2h, that is

x1+2h∫

x1

�1(x)dx =
x1+2h∫

x1

(x − x3)(x − x2)

(x1 − x3)(x1 − x2)
dx = h

3
,

x1+2h∫

x1

�2(x)dx =
x1+2h∫

x1

(x − x3)(x − x1)

(x3 − x2)(x1 − x2)
dx = 4h

3
,

x1+2h∫

x1

�3(x)dx =
x1+2h∫

x1

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
dx = h

3
. (2.39)

The integrals above are straightforward and provide theweights for each interval. The
integral over the entire interval [a, b] is evaluated by adding the contributions from
consecutive intervals of width 2h and the result is the Simpson’s15 integration rule

IN = h

3

[
f1 + 4 f2 + 2 f3 + · · · + 4 fN−2 + 2 fN−1 + fN

]
. (2.40)

The factor 2 arises because of the contributions from the 3rd point of one interval
and the 1st point from the following interval, except for the interval boundaries, and
N is odd. These integration rules for orders 1 and 2 are summarized in Table2.10
together with two other higher order methods discussed in the next section.

2.3.3 Newton-Cotes Integration Rules; Error Analysis

The approximation of integrals based on interpolating polynomials of order 3 and 4
yield the theSimpson’s 3/8 rule and theMilne rule. These higher order integrations are
collectively referred to as the Newton-Cotes integration rules. The integrals required
are similar to Eqs. (2.37) and (2.39) and can be done with a hand calculation. The
procedure is straightforward but the integrals required involve some algebra and a
short MAPLE code can be written to evaluate the integrals exactly. For interpolating
polynomials of degree n = 3 and 4, we obtain the Simpson’s 3/8 and Milne rules as
shown in Table2.10.

Error estimates for these integration algorithms can be determined. We consider
an elementary interval of m grid points with x ∈ [x1, xm] with uniform spacing h so
that xi = x1 + (i −1)h, i = 1, 2, . . . m. We seek the remainder, R(x), in the Lagrange
interpolation with m grid points and write Eq. (2.31) as

f (x) = fm(x) + R(x). (2.41)

15 Thomas Simpson (1710–1761) was a British mathematician and his name is associated with this
approximation of integrals. He was not the first to develop this algorithm.
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The function F(z), with z different from x, is defined as

F(z) = [ f (z) − fm(z)] − [ f (x) − fm(x)] Pm(z)

Pm(x)
. (2.42)

where Pm(x) is given by Eq. (2.34) with m = N . Since the Lagrange interpolation is
exact at the grid points, R(xi) = 0 and the roots of F(z) are z = x and z = xi, and
thus F(z) has m + 1 roots. If we differentiate F(z) m times with respect to z and set
f (m)(z) ≡ dm f (z)/dzm, we have that,

F(m)(z) = [ f (m)(z) − f (m)
m (z)] − [ f (x) − fm(x)]P(m)

m (z)

Pm(x)
, (2.43)

where f (m)
m (z) = 0 and P(m)

m (z) = m!. Thus, F(m)(z) has at least one root at z = ξ in
the interval [x1, xm]. With these results in Eq. (2.43) and R(xi) = 0, we have that

R(x) = f (m)(ξ)

m! Pm(x), x1 < ξ < xm. (2.44)

The main value of this result is that the error depends on f (m)(x) and the integration
rules are exact for functions of degree m − 1 or less. The error in the integration
algorithms is therefore

εm = f (m)(ξ)

m!
xm∫

x1

Pm(x)dx. (2.45)

We make the change of variable y = [x − (m − 1)h/2] so that the integration is over
the symmetric interval [−mh/2, mh/2]. With this change of variable, the lower order
polynomials are given by

Pm(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(y2 − h2
4 ), m = 2,

y(y2 − h2), m = 3,

(y2 − 9h2
4 )(y2 − h2

4 ), m = 4,

y(y2 − h2)(y2 − 4h2), m = 5,

(2.46)

and are either even or odd, that is, Pm(−y) = (−1)mPm(y) and the roots are sym-
metric about the midpoint of the interval. The integrals in Eq. (2.45) are elementary
and are explicitly given by

εm = f (m)(ξ)

m!

mh/2∫

−mh/2

Pm(y)dy =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h2
12 f (2), m = 2,

0, m = 3,

3h5
80 f (4), m = 4,

0, m = 5.

(2.47)
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A short MAPLE code can be used to perform the elementary integrations and obtain
the error estimates as given by Eq. (2.47) for arbitrary m. The surprising result is that
for Simpson’s rule with m = 3 (and for all odd m) the integrals of Pm(y) are zero.

This development gives the error estimates for m even and a separate treatment is
required for m odd. We calculate the error estimate for Simpson’s rule with m = 3
by first writing the algorithm,

x1+2h∫

x1

f (x)dx ≈ h

3
[ f (x1) + 4 f (x1 + h) + f (x1 + 2h)] . (2.48)

With the expansion of the last two terms on the right hand side with a Taylor series,
we get

x1+2h∫

x1

f (x)dx ≈ 2h f (x1) + 2h2 f
′
(x1) + 4

3
h3 f

′′
(x1)

+ 2

3
h4 f (3)(x1) + 100

3 × 5!h5 f (4)(x1) + · · · (2.49)

With the definition

G(x) =
x∫

x1

f (t)dt, (2.50)

where G
′
(x) = f (x), the expansion of G(x1 + 2h) gives

G(x1 + 2h) ≈ 2h f (x1) + 2h2 f
′
(x1) + 4

3
h3 f

′′
(x1) + 2

3
h4 f (3)(x1)

+ 32

5! h5 f (4)(x1) + · · · (2.51)

Equations (2.49) and (2.51) yield the result

ε2 =
[

100

3 × 5! − 32

5!
]

h5 f (4)(x1) = − 1

90h5
f (4)(x1). (2.52)

The procedure for developing higher order quadrature rules should be clear. The
algebra involved to evaluate the elementary integrations can be tedious. We summa-
rize the results in Table2.10. Also provided in the table are the error estimates which
depend on the interval width h and a bound on the mth order derivative evaluated
at some point ξ within the interval. The result that the error for the trapezoidal rule
depends on f (2) is reasonable, showing that this is exact for linear functions. How-
ever, it is surprising that the error for Simpson’s rule based on a quadratic approxima-
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tion shows that the error depends on f (4) and that it is exact for functions of order 3 as
is the next algorithm for Simpson’s 3/8 rule. The use of the results in the table requires
the analytic evaluation of a higher order derivative. The value of ξ in the interval is
not specified. The main interest in these results is that the errors depend on f (m), so
that the different integration rules are exact for functions of degree m − 1 or less.

2.3.4 Gaussian Quadrature

TheLagrange interpolation is the basis for a very efficient algorithm for the evaluation
of integrals as developed by Gauss (1814). The main difference with the Newton-
Cotes algorithms is that the grid points used are not uniform and the quadrature can
be exact for higher order polynomials. We consider the nodes, xi, as the roots of
the polynomial PN (x) of degree N from the set {Pn(x)} orthogonal with respect to
weight function w(x).

We consider a second polynomial, q(x), of degree equal to or less than 2N − 1
and the interpolant,

qN (x) =
N∑

i=1

�i(x)q(xi), (2.53)

where �i(x) is given by Eq. (2.35) and satisfies the Cardinality condition, Eq. (2.33).
The difference between the polynomial q(x) and the interpolant qN (x) is

E(x) = q(x) − qN (x), (2.54)

where E(xi) = 0 by construction. Since E(x) is a polynomial of degree less than or
equal to 2N − 1, we define

E(x) = dN−1(x)PN (x), (2.55)

where dN−1(x) is a polynomial of degree N − 1. Thus, the integral of the original
polynomial, q(x) = E(x) + qN (x), weighted by w(x) is

b∫

a

w(x)q(x)dx =
b∫

a

w(x)qN (x)dx +
b∫

a

w(x)dN−1(x)PN (x)dx. (2.56)

The second integral on the right vanishes owing to the orthogonality of PN (x) with
the polynomial dN−1(x) of degree N − 1 and with E(xi) = 0, the integral is

b∫

a

w(x)q(x)dx =
N∑

i=1

q(xi)

b∫

a

w(x)�i(x)dx. (2.57)
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This last result can be written as

b∫

a

w(x)q(x)dx =
N∑

i=1

wiq(xi), (2.58)

where the wi are the quadrature weights defined by

wi =
b∫

a

w(x)�i(x)dx. (2.59)

The error, E(x), in the Lagrange interpolation for a polynomial of degree no greater
than 2N −1 is orthogonal to PN (x) that defines the nodes xi. Therefore, this Gaussian
quadrature basedonN nodes is exact for polynomials of degree nogreater than2N−1.
We now require an explicit expression for the weights, wi, which is developed in the
next section.

2.3.5 The Christoffel-Darboux Relation
and Quadrature Weights

We need an important result, the Christoffel16-Darboux17 relation, so as to evaluate
the quadrature weights defined by Eq. (2.59) in amore explicit form. The Christoffel-
Darboux relation also serves to demonstrate several other relations discussed later.
The three term recurrence relation is rewritten as a function of x and again versus y

xPk(x) = √
βk+1Pk+1(x) + αkPk(x) +√

βkPk−1(x),

yPk(y) = √
βk+1Pk+1(y) + αkPk(y) +√

βkPk−1(y). (2.60)

Multiply the first by Pk(y) and the second by Pk(x) and then subtract the two equa-
tions. The terms in αk cancel and

(x − y)Pk(y)Pk(x) = √
βk+1

[
Pk(y)Pk+1(x) − Pk(x)Pk+1(y)

]

+√
βk
[
Pk(y)Pk−1(x) − Pk(x)Pk−1(y)

]
. (2.61)

16 Elwin Bruno Christoffel (1829–1900) was a German mathematician and physicist who made
important advances in differential geometry of surfaces, conformal maps, potential theory and
mathematical physics.
17 Jean-Gaston Darboux (1842–1917) was a French mathematician who worked primarily in geom-
etry, orthogonal surfaces and mathematical analysis.
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If both sides are summed from k = 0 to k = n, the two terms in square brackets
on the right hand side cancel except for the term with k = N , and the result is the
Christoffel-Darboux relation

N∑

k=0

Pk(y)Pk(x) =
√

βN+1

x − y
[PN (y)PN+1(x) − PN (x)PN+1(y)]. (2.62)

We use Eq. (2.62) to derive an expression for the weights, wi, in the quadrature
evaluation of integrals. If y = xi in Eq. (2.62) where xi are the quadrature nodes,
that is PN (xi) = 0, the sum on the left hand side terminates at k = N − 1. We then
multiply this equation by w(x)P0(x) and integrate over the interval. This procedure
projects out the term in k = 0 on the left hand side which is unity and

√
βN+1PN+1(xi)

b∫

a

w(x)PN (x)

x − xi
dx = −1. (2.63)

If the definition of the interpolating polynomial, Eq. (2.35), is used to express

PN (x)/(x − xi) = �i(x)P
′
N (xi),

then Eq. (2.63) can be rewritten as

√
βN+1PN+1(xi)P

′
N (xi)

b∫

a

w(x)�i(x)dx = −1, (2.64)

and with Eq. (2.59) we have the final desired result

wi = − 1√
βN+1PN+1(xi)P′

N (xi)
. (2.65)

This a very useful result for later discussions. If we set x = y and use l’Hopital’s
rule in Eq. (2.62), we get

N∑

k=0

P2
k (x) = √

βN+1[PN (x)P
′
N+1(x) − P

′
N (x)PN+1(x)]. (2.66)

If we now combine Eq. (2.66) with x = xi and Eq. (2.65), the weights are given by

wi = 1
∑N−1

k=0 Pk(xi)2
. (2.67)

The numerical evaluation of the quadrature points, xi, and weights, wi, is presented
in the next section.
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2.3.6 The Gautschi-Stieltjes Procedure, the Jacobi Matrix

The Gautchi-Stieltjes method was suggested by Golub andWelsch (1969) and devel-
oped further by Gautschi in a series of papers (Gautschi 1985, 1996, 2004, 2007)
and is applicable to almost any weight function. The development here parallels the
discussions in other references (Davis and Rabinowitz 1975; Gautschi 1981, 1994;
Kythe and Schaferkotter 2004; Canuto et al. 2006; Gil et al. 2007; Kopriva 2009).
The method is stable, efficient and based on the recurrence relation for the monic
polynomials defined by Eq. (2.1). The recurrence coefficient αn given by Eq. (2.9) is
rewritten explicitly as

αn =
∫ b

a w(x)xQ2
n(x)dx

∫ b
a w(x)Q2

n(x)dx
, (2.68)

and similarly the coefficient βn is,

βn =
∫ b

a w(x)Q2
n(x)dx

∫ b
a w(x)Q2

n−1(x)dx
= γn

γn−1
. (2.69)

The calculation begins with Q−1(x) = 0 and Q0(x) = 1 from which α0 is calculated
from Eq. (2.9). Equation (2.1) gives Q1(x) and α1 and β1 are evaluated with Eqs.
(2.68) and (2.69). The success of the method relies on the accurate evaluation of the
integrals in Eqs. (2.68) and (2.69) with very high precision. This is accomplished
with a higher order multidomain quadrature procedure and in each domain the Fejér
quadrature discussed in Sect. 2.4.10 is used.

The Jacobi matrix defined by Eq. (2.71) below plays a very important role in the
theory of orthogonal polynomials and it appears in almost all the papers on this
subject. It can be introduced in a variety of different ways. We here consider the
matrix representation of the multiplicative coordinate operator, x, as discussed in
quantum mechanics textbooks. This is given by the matrix elements 〈Pn|x|Pm〉 in
some basis set {Pn(x)} . If we employ the three term recursion relation, Eq. (2.14), it
is easy to see that

〈Pn|x|Pm〉 = √
βm+1δn,m+1 + αmδn,m +√

βmδn,m−1. (2.70)

These are the elements of the tridiagonal Jacobi matrix which is given by,

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0
√

β1 0 0 0 · · · 0√
β1 α1

√
β2 0 0 · · · 0

0
√

β2 α2
√

β3 0 · · · 0

0 0
√

β3 α3
√

β4 · · · 0
...

...
...

...
... · · · ...

0 0 0 0 0
√

βN αN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.71)
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We now show how the quadrature points and weights can be determined with the
numerical diagonalization of J as discussed by Davis and Rabinowitz (1975). If we
define the vectors

R(x) = [P0(x), P1(x), . . . PN−1(x)]t and e = [0, 0, . . . , 1]t, (2.72)

where t denotes the transpose, the three term recurrence relation, Eq. (2.14), can be
written in vector form as

xR(x) = J · R(x) + αN PN (x)e. (2.73)

With the definition of the quadrature points as the N roots, xi, given by PN (xi) = 0,
we have that

J · R(xi) = xiR(xi), (2.74)

and the quadrature points are the eigenvalues of the Jacobi matrix.
As for the weights, we first denote

U(xi) = √
wiR(xi) = [u0i, u1i, . . . , u(N−1)i]t,

as the normalized eigenvector of J where the first component of the ith eigenvector
is u0i. With Eq. (2.65), the result

wi

N−1∑

k=0

P2
k (xi) = √

wiRt(xi) · √
wiR(xi) = 1 (2.75)

represents the normalization of U. If we focus on the first component of the ith
eigenvector, u0i, for which P0(x) = 1/

√
γ0 and μ0 = γ0, we have the result

wi = μ0u2
0i. (2.76)

MATLAB codes to evaluate the quadrature points, xi, and weights, wi, for the
classical polynomials are very compact and fast (Gautschi 1985, 1994; Weideman
and Reddy 2000). An alternate efficient calculation of the quadrature weights is
given by Eq. (2.67). In the next section, we summarize the properties of the classical
orthogonal polynomials.

2.4 The Classical Polynomials; Recurrence
Coefficients and Quadratures

The numerous mathematical properties and relationships for the classical polynomi-
als are readily available in standard textbooks and tables such as the Handbook of
Mathematical Functions (Abramowitz and Stegun 1964).We present some properties
of the classical polynomials used in other sections of the book. In particular, we are
interested in the recurrence coefficients which define the Jacobi matrix, Eq. (2.71).
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Table 2.11 Recurrence coefficients for classical polynomials

Polynomial w(x) Interval αn βn

Legendre 1 [−1, 1] 0 n2

4n2−1

Associated Legendre 1 [−1, 1] 0 –

Hermite e−x2 (−∞,∞) 0 n
2

Laguerre e−x [0, ∞) 2n + 1 n2

Associated Laguerre xαe−x [0, ∞) 2n + α + 1 n(n + α)

Gegenbauer (1 − x2)λ− 1
2 [−1, 1] 0 n(n+2λ−1)

4(n+λ)(n+λ−1)

Jacobi (1 − x)α(1 + x)β [−1, 1] Eq. (2.77) Eq. (2.78)

Chebyshev
√
1 − x2 [−1, 1] 0 1

4

The diagonalization of the Jacobi matrix yields the quadrature points as the eigenval-
ues and the quadrature weights in terms of the first component of the ith eigenvector
as given by Eq. (2.76).

The recurrence coefficients for the classical polynomials are provided in
Table2.11. It is important to note that these recurrence coefficients are derived from
the recurrence relations for the classical polynomials normalized to unity in accor-
dance with Eq. (2.14). The parameters α and β in the weight functions for the asso-
ciated Legendre and Laguerre polynomials as well as for the Jacobi polynomials
should not be confused with the αn and βn recurrence coefficients.

The recurrence coefficients for the Jacobi polynomials are too long to fit in the
table and are given by,

αn = α2 − β2

(2n + α + β + 2)(2n + α + β)
, (2.77)

βn = 2

(2n + α + b)

√
n(n + α)(n + β)(n + α + β)

(2n + α + β + 1)(2n + α + β − 1)
, (2.78)

In the sections that follow, we list some of the lower order polynomials for each of
the commonly used classical polynomials, the recurrence relations and the Sturm-
Liouville equation, which can be written as a Schrödinger equation discussed in
Chap.6, Sect. 6.7.

2.4.1 Legendre Polynomials

The Legendre polynomials satisfy the orthogonality condition

1∫

−1

P�(x)P�′dx = 2

2� + 1
δ��′ . (2.79)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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The first few members of the set are

P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 − 1), P3(x) = 1

2
(5x3 − 3x),

P4(x) = 1

8
(35x4 − 30x2 + 3), P5(x) = 1

8
(63x5 − 70x3 + 15x), (2.80)

and the parity is even for � even and odd for � odd. The recurrence relation for the
Legendre polynomials normalized as in Eq. (2.79) is

xP�(x) = 1

2� + 1

[
(� + 1)P�+1(x) + �P�−1(x)

]
. (2.81)

This recurrence relation is often used to calculate the matrix elements of operators in
kinetic theory and quantum mechanics. The Gauss-Legendre quadrature points and
weights associated with these polynomials are easily evaluated with the diagonal-
ization of the Jacobi matrix defined in Eq. (2.71) and the recurrence coefficients are
in Table2.11.

The Legendre polynomials satisfy a Sturm–Liouville eigenvalue problem of the
form

d

dx

[
(1 − x2)

dP�

dx

]
= −�(� + 1)P�, (2.82)

which is analogous to the Schrödinger equation for the rotational states of a diatomic
nonvibrating molecule referred to as a rigid rotor and � is the angular momentum
quantum number.

The Legendre polynomials are often employed in kinetic theory to express the
departure of the velocity distribution function, f (v), from spherical symmetry, that is,

f (v) =
∞∑

�=0

f�(v)P�(μ), (2.83)

where the argument of the Legendre polynomials is μ = cos θ and θ gives the
orientation of v relative to the polar axis. This representation arises in the kinetic
theory of gases to describe the drift of charged particles (electrons or ions) through
a background gas under the influence of a spatially homogeneous electrostatic field
or to calculate the ion or electron mobility versus the electrostatic field strength
(Pitchford and Phelps 1982; McMahon and Shizgal 1985; Mason and McDaniel
1988; Viehland 1994). In space physics, θ is the angle between the particle velocity
and the Earth’s geomagnetic field and it is referred to as the “pitch angle”. Legendre
polynomials have been used in climate models (North 1975), image inversion in
photoionization (Garcia et al. 2004) and many other applications.

The transport of radiation through some medium such as a planetary atmosphere
or interstellar matter is described with the radiative transfer equation discussed in
Chap.5. The intensity of radiation, I(τ ,μ) depends on direction of propagation as

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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denoted by μ = cos θ and the position as specified in terms of the optical depth, τ .
The radiative intensity is expanded in a series of Legendre polynomials, that is,

I(τ ,μ) =
∞∑

�=0

C�(τ )P�(μ), (2.84)

analogous to Eq. (2.83) and this method is referred to as a PN method in the radiative
transfer community. Similar expansions in Legendre polynomials are employed in
the relaxation of anisotropic velocity distributions (Shizgal and Blackmore 1983)
and in the Milne problem (Lindenfeld and Shizgal 1983).

2.4.2 Half Range Legendre Polynomials

In the field of radiative transfer (Garcia and Siewert 1996; Garcia and Ono 1999), it
has often been found advantageous to split the interval [−1, 1] into two subintervals,
namely [−1, 0] and [0, 1]. This is done to better fit boundary conditions at μ = 0.
Thus, the half-range (hr) Legendre polynomials are defined orthogonal on [0, 1]
and are easily derived from the full range polynomials. With the transformation
y = (x + 1)/2, we get the half-range Legendre polynomials

P(hr)
0 (y) = 1,

P(hr)
1 (y) = 2y − 1,

P(hr)
2 (y) = 6y2 − 6y + 1,

P(hr)
3 (y) = 20y3 − 30y2 + 12y − 1),

P(hr)
4 (y) = 70y4 − 140y3 + 90y2 − 20y + 1,

P(hr)
5 (y) = 252y5 − 630y4 + 560y3 − 210y2 + 30y − 1, (2.85)

orthogonal according to

1∫

0

P(hr)
k (y)P(hr)

� (y)dy = 1

2� + 1
δk�. (2.86)

The quadrature points are derived from the quadrature points for the full range Legen-
dre polynomials, that is, μ(hr)

i = (μi + 1)/2 and the weights are w
(hr)
i = wi/2.

A collocation method in radiative transfer theory (Thomas and Stamnes 2002)
based on quadrature points is referred to as a “discrete ordinate method” or the SN

method. It appears that this notation is derived from “segmentation” (Carlson 1953)
and discussed by Lathrop (1992). If the method is based on the half-range Legendre
weights and points it is often called a “double Gauss method” (Sykes 1951; Garcia
and Siewert 1996; Garcia and Ono 1999; Thomas and Stamnes 2002).
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This linear transformation from full range to half range polynomials can be done
for the Legendre polynomials owing to the unit weight function, w(x) = 1. This is
not the case for half range Hermite polynomials which are the associated Maxwell
polynomials with p = 0. There is no relationship between the half range Rys poly-
nomials discussed in Sect. 2.2.2 or the half range Chebyshev polynomials employed
by Garcia and Ono (1999) in terms of the corresponding full range polynomials.

2.4.3 Associated Legendre Polynomials

It is appropriate to also introduce the associated Legendre polynomials that arise
in particular in the solution to the Schrödinger equation for the hydrogen atom,
Sect. 2.4.6, and in many other applications. The associated Legendre polynomials
Pm

� (x) satisfy a Sturm-Liouville problem similar to Eq. (2.82) given by

d

dx

[
(1 − x2)

dPm
�

dx

]
− m2

1 − x2
Pm

� = −�(� + 1)Pm
� , (2.87)

where m is the “magnetic” quantum number. These are the eigenfunctions of the
square of the angular momentum operator, L2, with eigenvalues �(� + 1) and are
orthogonal according to,

1∫

−1

Pm
� (x)Pm

�′ (x)dx = 2(� + m)!
(2� + 1)(� − m)!δ�,�′ . (2.88)

They satisfy the recurrence relation given by,

xPm
� (x) = 1

2� + 1

[
(� − m + 1)Pm

�+1(x) + (� + m)Pm
�−1(x)

]
. (2.89)

Form = 0, these reduce to the corresponding relations for the Legendre polynomials.

2.4.4 The Spherical Harmonics

The spherical harmonics are basis functions in the spherical polar angles (θ,φ)

that are constructed as a direct product of the associated Legendre polynomials and
the Fourier functions e±imφ. The Fourier functions are the eigenfunctions of the
z-component of the angular momentum operator, Lz, as discussed in Sect. 2.4.6 and
defined by the eigenvalue problem,

d2Φm(φ)

dφ2 = −m2Φ(φ). (2.90)
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where Φ(φ + 2π) = Φ(φ). We define the spherical harmonic functions as

Y�m(θ,φ) =
√

(2� + 1)
(� − m)!
(� + m)!Pm

� (cos θ)eimφ, (2.91)

which are orthonormal,

2π∫

φ=0

π∫

θ=0

Y∗
�,m(θ,φ)Y�′,m′(θ,φ) sin θdθdφ = δ�,�′δm,m′ , (2.92)

and the asterisk denotes the complex conjugate. The integrations over θ and φ are
often written in terms of the spherical solid angle Ω where dΩ = sin θdθdφ. The
spherical harmonic functions are the simultaneous eigenfunctions of the operators,
L2 and Lz which commute, as discussed in Sect. 2.4.6.

In molecular quantum mechanics, spherical integrals of the form,

Ir =
∫

R(r)dr, (2.93)

are required. These can be separated as a radial integral over r and an angular integral
over (θ,φ), that is

Ir =
∞∫

0

R(r)r2dr,

R(r) =
2π∫

φ=0

π∫

θ=0

f (r, θ,φ) sin θdθdφ. (2.94)

We discuss and compare in Chap.3 the various quadratures that have been used for
radial integrals over r (Gill and Chien 2003; El-Sherbiny and Poirier 2004; Chien and
Gill 2006) and the angular integral over (θ,φ). The angular integrals are often eval-
uated with Lebedev cubatures (Lebedev 1977; Haxton 2007) There is considerable
interest to develop efficient quadrature procedures for such integrals.

2.4.5 Associated Laguerre and Sonine Polynomials

The associated Laguerre polynomials denoted by L(α)
n (y) are defined on y ∈ [0,∞)

orthogonal with respect to the weight function w(y) = yαe−y, that is,

∞∫

0

yαe−yL(α)
n (y)L(α)

m (y)dy = Γ (n + α + 1)

n! , (2.95)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The first members of this set are,

L(α)
0 (y) = 1, L(α)

1 (y) = α − y + 1,

L(α)
2 (y) = y2

2
− (α + 2)y + (α + 1)(α + 2)

2
,

L(α)
3 (y) = −y3

6
+ (α + 3)y2

2
+ (α + 2)(α + 3)y

2

+ (α + 1)(α + 2)(α + 3)

6
, (2.96)

and they satisfy the recurrence relation

L(α)
n (y) =

(
2 + α − y − 1

n

)
L(α)

n−1(y) −
(
1 + α − 1

n

)
L(α)

n−2(y). (2.97)

These polynomials are related to the eigenfunctions of the radial Schrödinger
equation for the hydrogen atom. They are the eigenfunctions of the integral collision
operator of the Boltzmann equation for the Maxwell molecule collision model dis-
cussed in Chap.5. The Maxwell molecule model corresponds to a repulsive particle
interaction potential that varies as r−4 where r is the particle separation (Chapman
and Cowling 1970). The Laguerre polynomials are also the eigenfunctions of a hard
sphere Fokker-Planck operator in the Rayleigh limit (Andersen and Shuler 1964),
discussed in Chap.6, Sect. 6.1.4.

The MATLAB code for the calculation of the associated Gauss-Laguerre quadra-
ture points and weights with the diagonalization of the Jacobi matrix Eq. (2.71)
defined in terms of the recurrence coefficients in Table2.11 is provided in List-
ing 2.2. The MATLAB code sets up and diagonalizes the symmetric Jacobi matrix,
J, in terms of αn = 2n + α + 1 on the diagonal and βn = n(n + α) on the upper and
lower off-diagonals.

Listing 2.2 MATLAB code lag_ptswts.m calculates the associated Laguerre quadrature points and
weights

1 function [pt ,wt]= lagptwt 2(n,alf)

2 format long e

3 xn =[0:1:n-1];

4 a=2*xn+alf+1; rtb=sqrt(xn.*(xn+alf)); rtb(1) =[];

5 J=diag(rtb ,-1)+diag(a)+diag(rtb ,1);

6 [f,lambda]=eig(J); pt=diag(lambda);

7 wt=gamma(alf+1)*f(1,:) .^2;

8 ptwt=[pt ,wt ']

The numerical results for the Laguerre quadrature points and weights obtained with
this code agree to 16 significant figures with the tabulated values in Table25.9 by
Abramowitz and Stegun (1964). There is also agreement with the results reported by
Concus et al. (1963) as well as the results obtained with the code mp.GaussRule.m

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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provided at http://www.advanpix.com/. The calculation of 100 weights and points
on a PC with an Intel i5 CPU @ 2.50GHz requires approximately 0.01 s.

In kinetic theory (Chapman and Cowling 1970; Kremer 2010), the basis set that
is often used are the Sonine polynomials which are very similar to the Laguerre
polynomials. The independent variable is the particle speed, v = |v|, where v is
the velocity of a particle. A dimensionless reduced speed is defined, that is, x =
v
√

m/2kBTb where kB is the Boltzmann constant and Tb is the temperature of the gas.
The associated Sonine polynomials are written as S(n)

α (x2). The Sonine polynomials
for α = 1/2 occur frequently (Shizgal and Karplus 1970; Shizgal and Dridi 2010)
and are orthogonal as given by

∞∫

0

x2e−x2S(n)(x2)S(m)(x2)dx = Γ (n + 3/2)

2n! δnm. (2.98)

where α is not shown explicitly. We use this notation in Chap.5. Owing to the
similarity with the Laguerre polynomials, the Sonine polynomials are referred to as
the Sonine-Laguerre polynomials.

2.4.6 Quantum Mechanics of the Hydrogen Atom

We consider the quantum mechanical description of the discrete energy states of
the hydrogen atom or other one electron ion. This is a two body problem involv-
ing an electron interacting with a positively charged nucleus where their relative
position is given by the vector r with spherical polar coordinates r, θ,φ. The math-
ematical problem involves the calculation of the eigenfunctions and eigenvalues of
the Schrödinger equation. The classical orthogonal polynomials are used for the
description of the physics. Detailed discussions can be found in numerous textbooks
on quantum mechanics (Karplus and Porter 1970; Szabo and Ostlund 1996; Liboff
2002; Levine 2009; Tsuneda 2014).

The Schrödinger equation for a one electron atomic system is

Hψn�m(r, θ,φ) = − �
2

2me
∇2ψn�m(r, θ,φ) − Zq2e

r
= Enψn�m(r, θ,φ), (2.99)

where me and qe are the electron mass and charge, respectively, and � = h/2π where
h is the Planck constant. The Hamiltonian, H, consists of the kinetic energy operator,
�
2∇2/2me and the Coulomb potential, Zq2e/r, where Zqe is the nuclear charge. The

final result has been anticipated as the eigenfunctions are denoted with the three
quantum numbers (n, �, m) and the energy eigenvalues, En, depend only on n.

The correspondence between classical and quantummechanics associates the lin-
ear momentumwith the operator px = −i� ∂

∂x (and two other operators for py and pz).
Thus, the quantum mechanical representation of the classical angular momentum

http://www.advanpix.com/
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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defined by L = r × p, where p is the linear momentum is given by,

Łx = �

i

(
y

∂

∂z
− z

∂

∂y

)
,

Ly = �

i

(
z

∂

∂x
− x

∂

∂z

)
,

Lz = �

i

(
x

∂

∂y
− y

∂

∂x

)
. (2.100)

The square of the total angular momentum operator is

L2 = L2
x + L2

y + L2
z . (2.101)

The three mutually commuting operators in H, Lz and L2, where the commutator
of two operators A and B is defined by [A, B] = AB − BA have the same set of
eigenfunctions. The analogy in linear algebra is that of two symmetric matrices that
commute and can be diagonalized with the same rotation operator; that is, they have
the same set of eigenvectors.

With the explicit expression for∇2 in spherical polar coordinates, the Schrödinger
equation is

− �
2

2me

[
1

r2
∂

∂r
[r2 ∂ψn,�,m

∂r
] + L2

2μr2
ψn,�,m

]
− Zq2e

r
ψn,�,m = Enψn,�,m, (2.102)

where

L2 = �
2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (2.103)

In this coordinate system, Lz = �

i
∂
∂φ . The eigenvalue problem for L2 leads to a sep-

aration of the variables θ and φ by analogy with the rigid rotor problem, Eq. (2.82).
This is very similar to the situation here except for the added term in ∂2

∂φ2 . The eigen-

functions of L2 are expressed as the product of functions of the form P(m)
� (θ)Φm(φ).

With this representation,

sin θ

P(m)
�

∂

∂θ

(
sin θ

∂P(m)
�

∂θ

)
+ �(� + 1) sin2 θ = − 1

Φm

d2Φm

dφ2 = −m2. (2.104)

where
Φ(φ) = Ceimφ. (2.105)

and m is an integer so that Φ(φ + 2π) = Φ(φ).
With the substitution x = cos θ we have the differential equation for the asso-

ciated Legendre polynomials in the form of a Sturm-Liouville eigenvalue problem,
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Eq. (2.87). We summarize the results so far in terms of the spherical harmonic func-
tions, Y�,m(θ,φ), Eq. (2.91), orthonormal as given by Eq. (2.92).We have determined
the simultaneous eigenfunctions of the commuting operatorsH,L2 andLz as given by

ψn�m(r, θ,φ) = Rn�(r)Y
(m)
� (θ,φ) (2.106)

With this form for the eigenfunctions, the differential equation for the radial functions,
Rn�(r), is

− �
2

2mr2
d

dr

(
r2

dRn�(r)

dr

)
+ �

2�(� + 1)

2mr2
Rn�(r) − Zq2e

r
Rn�(r) = EnRn�(r) (2.107)

With the change of the independent radial variable

ρ = r

√
8me|En|

�2
, (2.108)

the radial equation is

d2Rn�(ρ)

dρ2
+ 2

ρ

dRn�(ρ)

dρ
−
[
�(� + 1)

ρ2
+ Zq2e

�ρ

√
me

2|En| − 1

4

]
Rn�(ρ) = 0. (2.109)

After some algebra, the solution of this differential equation can be written in terms
of the associated Laquerre polynomials, that is,

Rn�(ρ) = ρ�Ln�(ρ)e−ρ/2. (2.110)

The hydrogen atom “orbitals” given by Eqs. (2.106) and (2.110) or variants are
used as the basis functions for the solution of the Schrödinger equation for more
complicated atoms and molecules.

2.4.7 Hermite Polynomials

The Hermite polynomials, Hn(x), are defined on x ∈ (−∞,∞) orthogonal with
respect to weight function w(x) = e−x2 , that is,

∞∫

−∞
e−x2Hn(x)Hm(x)dx = √

π2nn!δnm. (2.111)

The first few members of the set are,

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12. (2.112)
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and satisfy recurrence relations

Hn+1(x) = 2xHn(x) − 2nHn−1(x),

Hn+1(x) = 2xHn(x) − dHn(x)

dx
,

dHn(x)

dx
= 2nHn−1(x). (2.113)

The orthonormal Hermite polynomials, hn(x) = e−x2/2Hn(x)/
√√

π2nn!, satisfy the
recurrence relation

xhn(x) = √
βn+1hn+1(x) −√

βnhn−1(x), (2.114)

with βn = n/2. The Gaussian quadrature weights and points are easily evaluated
with the MATLAB code provided in Listing 2.3. The quadrature weights and points
computed with this MATLAB code agree with the values provided in Table25.10 of
Abramowitz and Stegun (1964).

The Hermite polynomials satisfy the Sturm-Liouville equation,

− d

dx

[
e−x2H ′

n(x)
]

= 2ne−x2Hn(x), (2.115)

The eigenfunctions of the Schrödinger equation for an harmonic oscillator with a
quadratic potential, V (x) = x2, are the hn(x) functions that is

− d2hn(x)

dx2
+ x2hn(x) = (2n + 1)hn(x), (2.116)

with the energy eigenvalue in dimensionless units is equal to (2n + 1).

Listing 2.3 MATLAB code herm_ptswts.m for the Hermite quadrature points and weights

1 function [pt wt]= hermptwt(n)

2 format long e

3 xn =[1:1:n]; rtb=sqrt(xn/2); rtb(n)=[];

4 J=diag(rtb ,-1)+diag(rtb ,1);

5 [f,lambda]=eig(J); pt=diag(lambda);

6 wt=sqrt(pi)*f(1,:) .^2;

7 ptwt=[pt ,wt '];

The Hermite polynomials are often used as a basis set for quantummechanical prob-
lems, the solution of the Vlasov equation of plasma physics (Schumer and Holloway
1998; Gibelli et al. 2010), the kinetic theory of ion drift in gases (Viehland 1994),
in signal processing (Alp and Arikan 2012) and many other applications. A very
important use of Hermite polynomials is in the solution of the Boltzmann equation
for rarefied gases with the thirteen moment method developed by Grad (1949).
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With Eq. (2.65), we have an important result for the quadrature weights for a
quadrature of order N used in Chap.3, that is,

wi = −
√

2

N + 1

√
2(N + 1)2N N !√π

HN+1(xi)H
′
N (xi)

= 2N+1N !√π

H2
N+1(xi)

, (2.117)

where the recurrence relation

H ′
n(x)

∣∣∣∣
x=xi

= 2xiHN (xi) − HN+1(xi) = −HN+1(x), (2.118)

has been used and HN (xi) = 0 by virtue of the definition of the quadrature points.

2.4.8 Gegenbauer Polynomials

The Gegenbauer polynomials are a subset of the Jacobi polynomials with α = β =
λ−1/2 and have applications to potential theory and harmonic analysis. They reduce
to Legendre polynomials for λ = 1/2 and to Chebyshev polynomials for λ = 0. It is
useful to note the explicit expressions for the lower order Gegenbauer polynomials.
These are,

Cλ
0 (x) = 1, Cλ

1 (x) = 2λx, Cλ
2 (x) = 2λ(λ + 1)x2 − λ,

Cλ
3 (x) = 4λ

3
(λ + 1)(λ + 2)x3 − 2λ(λ + 1)x, (2.119)

and satisfy the orthogonality relation

1

hλ
�

1∫

−1

(1 − x2)λ−1/2Cλ
� (x)Cλ

k (x)dx = δ�,k . (2.120)

The normalization hλ
� is

hλ
� = 21−2λπΓ (� + 2λ)

�!(� + λ)[Γ (λ)]2 . (2.121)

The recurrence relation for the Gegenbauer polynomials is given by

(� + 2)Cλ
�+2 = 2(λ + � + 1)xCλ

�+1 − (2λ + �)Cλ
� . (2.122)

These relationships for the Gegenbauer polynomials are used for the resolution of
the Gibbs phenomenon presented in Chap. 4.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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2.4.9 Chebyshev Polynomials; Fourier Cosine Basis Functions

We define the Chebyshev polynomials in terms of the non-polynomial cosine func-
tions, cos(nθ), defined on the interval x ∈ [0,π] and orthogonal as given by

π∫

0

cos(nθ) cos(mθ)dθ =
⎧
⎨

⎩

0 n �= m,

π n = m = 0,
π
2 n = m �= 0.

(2.123)

This orthogonality relation can be verified with the use of the addition formulae
cos(θ1) cos(θ2) = 1

2 [cos(θ1 + θ2) + cos(θ1 − θ2)]. We introduce the Fourier cosine
orthogonality to construct the Chebyshev polynomials. A more complete discussion
of Fourier series is presented in Chap. 4.

Chebyshev polynomials together with Fourier basis functions are the basis sets
of choice used for fluid dynamics and related problems (Gottlieb and Orszag 1977;
Boyd 2001; Peyret 2002; Canuto et al. 2006).

The definition of the Chebyshev polynomials is

Tn(x) = cos(nθ), x = cos θ. (2.124)

With the well known identities for cos(nθ), that is cos(2θ) = 2 cos2(θ) − 1),
cos(3θ) = 4 cos3(θ) − 3 cos(θ), etc. one can easily show that the lower order
Chebyshev polynomials are given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x. (2.125)

With the change of variable, x = cos θ, in Eq. (2.123), the Chebyshev polynomials
are orthogonal in accordance with

1∫

−1

1√
1 − x2

Tn(x)Tm(x)dx = cn
π

2
δnm, (2.126)

where

cn =
{
2 n = 0
1 n ≥ 1

. (2.127)

The recurrence relation for the Chebyshev polynomials is

Tn+1(x) = 2xTn(x) − Tn−1, (2.128)

The quadrature points of order N for this basis set are easily determined as the
roots of cos(Nθi) = 0 given by θi = (2i − 1)π/2N, i = 1, 2, . . . , N , so that the

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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Gauss-Chebyshev quadrature points are

xi = cos
[
(2i − 1)

π

2N

]
i = 1, 2, . . . N . (2.129)

With Eq. (2.65) for the quadrature weights and noting the normalization of the
Chebyshev polynomials, we have that

wi = − π

Tn+1(xi)T ′
N (xi)

. (2.130)

The definition, Eq. (2.124), thus yields

T ′
N (x) = N sin(Nθ)

sin(θ)
. (2.131)

We evaluate TN+1(x) at the quadrature nodes, that is

TN+1(xi) = cos[(N + 1)θi]
= cos(Nθi) cos(θi) − sin(Nθi) sin(θi)

= − sin(θi), (2.132)

where cos(Nθi) = 0 and sin(Nθi) = 1. Thus with Eq. (2.131) evaluated at xi, we
have the result

TN+1(xi)T
′
N (xi) = −N . (2.133)

With this result in Eq. (2.130), the weights in the quadrature are given by

wi = π

N
. (2.134)

Equations (2.129) and (2.130) define the Gauss-Chebyshev quadrature defined by

1∫

−1

1√
1 − x2

f (x)dx ≈
N∑

i=1

wi f (xi) (2.135)

The Sturm-Liouville equation for the Chebyshev polynomials is

√
1 − x2

d

dx

[√
1 − x2

dTn(x)

dx

]
= −n2Tn(x). (2.136)
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2.4.10 Fejér Quadratures

The presentation here is adapted from the discussion inDavis andRabinowitz (1975).
The Fejér18 quadrature is based on the Chebyshev nodes, defined by TN (xi) = 0,
Eq. (2.129), with w(x) = 1 in Eq. (2.58). The quadrature approximation is then
given by

1∫

−1

f (x)dx ≈
N∑

i=1

wi f (xi), (2.137)

with the quadrature weights,wi, obtained with Eq. (2.35) in Eq. (2.59) with the result

wi = 1

T ′
N (xi)

1∫

−1

TN (x)

x − xi
dx. (2.138)

We now use the Christoffel-Darboux relation, Eq. (2.62), with y = xi and use
TN (xi) = 0 on both sides of the equation so that the sum terminates at N − 1.
The first term in the sum is written separately and with

√
βN+1 = 1/2 the result with

the Christoffel-Darboux relation is

2

[
1 +

N−1∑

k=1

Tk(x)Tk(xi)

]
= −TN+1(xi)

TN (x)

x − xi
. (2.139)

With the substitution of TN (x)/(x − xi) obtained from Eq. (2.139) in Eq. (2.138) and
with Eq. (2.133), the quadrature weights, Eq. (2.138), are given by

wi = 2

N

⎡

⎣1 +
N−1∑

k=1

Tk(xi)

1∫

−1

Tk(x)dx

⎤

⎦ . (2.140)

The integral above is evaluated as

1∫

−1

Tk(x)dx =
π∫

0

cos(kθ) sin(θ)dθ =
{

2
1−k2

k even,

0 k odd.
(2.141)

18 Leopold Fejér (1880–1959) was a Hungarian mathematician noted for his work on harmonic
analysis and Fourier series. He was the thesis advisor of John von Neumann, Paul Erdös, George
Pólya and Pál Turán.
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With k = 2j and T2j(xi) = cos(2jxi), the final result for the quadrature weights is

wi = 2

N

⎡

⎣1 −
N/2∑

j=1

cos(2jxi)

4j2 − 1

⎤

⎦ . (2.142)

The Fejér quadrature rule is used for the multidomain quadratures in the Gautschi-
Stieltjes calculation of the recurrence coefficients, αn and βn (Gautschi 1985, 1994).

2.4.11 The Clenshaw-Curtis Quadrature

The Clenshaw-Curtis quadrature (Clenshaw and Curtis 1960) is also based on
the integral Eq. (2.137) with w(x) = 1. The integrand is expanded in Chebyshev
polynomials

f (x) =
∞∑

n=0

anTn(x). (2.143)

The orthogonality of the Chebyshev polynomials, Eq. (2.126), gives the expansion
coefficients

an = 2

π

1∫

−1

1√
1 − x2

f (x)Tn(x)dx. (2.144)

The change of variable, x = cos(θ), gives

an = 2

π

π∫

0

f (cos(θ)) cos(nθ)dθ. (2.145)

With the expansion Eq. (2.143), the desired integral, Eq. (2.137) is evaluated as the
integral of the Chebyshev polynomial, Eq. (2.141), so that

1∫

−1

f (x)dx = a0 +
∞∑

n=1

2a2n

1 − 4n2
. (2.146)

The Clenshaw-Curtiss quadrature is based on the truncation of the infinite series
in Eq. (2.146)

1∫

−1

f (x)dx ≈ a0 +
N/2∑

n=1

2a2n

1 − 4n2
, (2.147)
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and the evaluation of the expansion coefficients with a trapezoidal rule based on a
uniform grid of N +1 points, θi = iπ/N with step size h = π/N . In accordance with
Eq. (2.38), the expansion coefficients are given by

an = 2

N

[
f (1)

2
+

N−1∑

i=2

f

[
cos[ iπ

N

]
cos(

niπ

N
) + f (−1)

2
(−1)n

]
. (2.148)

The integral is thus given by a variant of the Fejér quadrature with two points at
the interval boundaries, namely x1 = −1 and xN = 1 analogous to the Lobatto
quadratures of the next section. The interior quadrature points are the extrema of the
TN−1(x),

xi = cos(
(i − 1)π

N − 1
, i = 1, 2, . . . , N (2.149)

If the a2n coefficients given by Eq. (2.148) are substituted into Eq. (2.147) and the
result can be written as a quadrature, Eq. (2.58). The Clenshaw-Curtiss quadrature is
with the points xi = (i − 1)π/(N − 1). An explicit expression can be written for the
weights with Eqs. (2.146) and (2.148) which depend on whether N is even or odd.

We do not provide these explicitly and refer readers to the MATLAB code clen-
curt.m provided by Trefethen (2000). Additional works on the Clenshaw-Curtiss
quadrature have been reported (Gentleman 1972; Waldvogel 2006; Calabrò and
Esposito 2009). The quadrature has been used in the evaluation of the scattering
phase shifts for quantum collision cross sections (Kennedy and Smith 1967; Cohen
1978) and for classical scattering cross sections (Viehland and Chang 2010). Error
estimates for these quadratures have been discussed (ÓHara and Smith 1968) and also
compared with Gaussian quadratures (Trefethen 2008; Calabrò and Esposito 2009).

2.4.12 Gauss-Lobatto and Gauss-Radau
Quadrature Algorithms

In collocation methods, it is often necessary to have quadrature points at the bound-
aries of the interval of interest so as to impose boundary conditions. The extremum
values of the Gauss-Legendre quadrature points do not coincide with the interval
boundaries for the interval [−1, 1]. The quadrature points referred to as the Gauss-
Legendre-Lobatto are constructed so that x1 = −1 and xN = 1.

The Lobatto quadratures are often used in pseudospectral calculations for sim-
ulations in fluid mechanics (Peyret 2002; Canuto et al. 2006) but are also used in
other applications (Herman and Conway 1996). This technique is generally applied
to problems defined on a bounded domain such as x ∈ [−1, 1] for which Legendre,
Chebyshev or Jacobi quadratures are used. The method has been applied to opti-
mal control problems (Garg et al. 2009) and for numerical simulations of tethered
satellites (Williams 2011). The method can also be used for non-classical basis sets
(Shizgal 2002).
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The Gauss-Lobatto19 quadrature points and weights associated with the weight
function w(x) are based on the set of polynomials qn(x) which are orthogonal with
respect to w(x)(1 − x2), that is,

1∫

−1

w(x)(1 − x2)qn(x)qm(x)dx = δn,m. (2.150)

We use qn(x) to distinguish this set from the polynomials, P�(x), orthonormal with
respect to w(x). The set of Gauss quadrature points, {x̃k, k = 2, . . . N − 1}, interior
to [−1, 1] obtained with the diagonalization of the Jacobi matrix forw(x)(1−x2) are
the roots of qN−1(x). The corresponding weights are {w̃k}. The Lobatto quadrature
formula for w(x) of order N is

1∫

−1

w(x) f (x)dx ≈ v0 f (−1) + vN f (1) +
N−1∑

k=1

vk f (x̃k). (2.151)

where the N quadrature points are (x̃1 ≡ −1, x̃2, . . . , x̃N−1, x̃N ≡ 1).
The quadrature points canbe shown to be the roots of the derivative of theLegendre

polynomial. If we multiply the Sturm-Liouville equation, Eq. (2.82), by P�(x) and
use orthogonality on the right hand side and integrate by parts on the left hand side,
we find that qn(x) ≡ P′

n(x).
The Gauss-Lobbato weights, vk are given in terms of the Gauss quadrature

weights, w̃k , that is, vk = w̃k/(1 − x̃2k ) for k = 2, . . . , N − 1. The two weights
associated with the ends of the interval can be determined by requiring that the first
two moments of w(x) are determined exactly with the quadrature, that is,

1∫

−1

w(x)dx = v1 + vN +
N−1∑

k=1

vk (2.152)

and
1∫

−1

w(x)xdx = −v1 + vN +
N−1∑

k=1

vk x̃k (2.153)

This gives two equations for v1 and vN and the Lobatto-quadrature is fully specified.
The positive Lobatto-Legendre quadrature points for N = 10 are listed in

Table2.12 together with the associated weights in comparison with the Gauss-
Legendre points and weights. Explicit expressions for the quadrature points and
weights appear in many of the books on spectral methods (Boyd 2001; Peyret 2002;

19 Rehuel Lobatto (1797–1866) was a Dutchmathematician known primarily for the Gauss-Lobatto
quadrature.
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Table 2.12 Comparison of
the Lobatto-Legendre and the
Gauss-Legendre quadrature
points, N = 10

Lobatto-Legendre Gauss-Legendre

x̃k vk xk wk

0.16527896 0.32753976 0.14887434 0.29552422

0.47792495 0.29204268 0.43339539 0.26926672

0.73877387 0.22488934 0.67940957 0.21908636

0.91953391 0.13330599 0.86506337 0.14945135

1.00000000 0.02222222 0.97390653 0.66671344

Canuto et al. 2006; Kopriva 2009). There are MATLAB codes provided by other
authors for the evaluation of Lobatto-Legendre and Lobatto-Chebyshev quadrature
points and weights (Shen et al. 2011; Gautschi 1985, 1994). The codes provided
here for general positive nonclassical weight functions can be used efficiently for
the classical polynomials and yield the same numerical results as do the explicit
formulae provided in the textbooks cited.

We have shown that Gaussian quadratures withN points are exact for polynomials
of order 2N − 1. In particular, the orthogonality of the polynomials is computed
exactly with N points, that is,

N∑

k=1

wkPn(xk)Pm(xk) = δnm. (2.154)

Analogously, the discrete form of the completeness relation is exact, that is,

wk

N∑

n=0

Pn(xk)Pn(x�) = δk� (2.155)

and these relationships are used to define the unitary transformation, T, between
physical and spectral spaces discussed in Chap.1.

However, the Lobatto quadrature is only exact for polynomials of order N − 2
and the normalization of the polynomial of order N − 1 is given by

SN−1 =
N∑

k=1

vkq2N (x̃k) �= 1. (2.156)

If the N th order polynomial is renormalized with SN , there is a modified discrete
“completeness” identity analogous to Eq. (2.155),

vk

( N−2∑

n=0

qn(x̃i)qn(x̃j) + qN−1(x̃j)qN−1(x̃j)

SN

)
= δij, (2.157)

and a unitary transformation between spectral space and physical space exists
(Hesthaven 1998).

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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Table 2.13 Comparison of Radau-Laguerre and Gauss-Laguerre quadrature points, N = 10,
α = 1/2

Radau-Laguerre Gauss-Laguerre

x̃k wk x̃k wk

0.00000000 0.35926778 (−1) 0.22987298 0.17547082

0.49469154 0.31262035 0.92448155 0.35522338

1.47402112 0.34308717 2.09941046 0.25268356

2.97365694 0.15621514 3.78288087 0.86356103 (−1)

5.03607835 0.34472913 (−1) 6.01991803 0.15109778 (−1)

7.72862347 0.37177539 (−2) 8.88034760 0.13282156 (−2)

11.1593223 0.18325258 (−3) 12.4748324 0.54187800 (−4)

15.5123604 0.35435841 (−5) 16.9908473 0.87374758 (−6)

21.1450926 0.19557860 (−7) 22.7910029 0.40196999 (−8)

28.9761533 0.1357736 (−10) 30.8064059 0.2292222 (−11)

The Gauss-Radau quadrature specifies one fixed point, generally the origin.
Radau-Legendre quadratures has been used in the solution of the Poisson equation to
facilitate the application of boundary conditions (Chen et al. 2000). The calculation
of the Gauss-Radau quadratures requires a minor change in the MATLAB codes
used for the Gauss quadratures in that all that needs to be changed is the last diagonal
element in the Jacobi matrix, J. The procedure is very well described in the papers by
Golub (1973) and by Gautschi (2000). For the Radau-Laguerre quadrature, the last
diagonal element of the Jacobi matrix is given by JN−1,N−1 = N − 1. A comparison
of the Radau-Laguerre and Gauss-Laguerre quadratures is in Table2.13.

2.5 Nonclassical Basis Functions

Table2.2 lists several non-classical polynomials used in pseudospectral solutions of
theBoltzmann, Fokker-Planck and Schrödinger equations, aswell as for the solutions
of other differential/integral equations. Gautschi (1994) noted two decades ago the
slow adoption of spectral methods based on non-classical basis sets.

2.5.1 Maxwell Polynomials

In the kinetic theory of gases, the distribution of particle velocities, f (v, r, t), plays a
central role. The distribution function depends on seven variables; the three compo-
nents of the particle velocity, v, three position variables, r, and the time, t. At complete
equilibrium in the absence of external forces, spatial gradients, or chemical reactions,
the distribution function is the Maxwell-Boltzmann distribution function given by
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F(v) = nb

(
m

2πkBTb

)3/2

exp(− mv2

2kBTb
), (2.158)

wherem is themass of the particles and kB is theBoltzmann constant. The distribution
function is normalized to the total density nb

nb = 4π

∞∫

0

F(v)v2dv, (2.159)

and the temperature, Tb, is the average kinetic energy given by

3

2
nbkBTb = 4π

∞∫

0

F(v)
mv2

2
v2dv. (2.160)

The Maxwellian distribution function is isotropic in velocity space and depends
on |v|.

The subject of kinetic theory impacts on numerous fields including transport phe-
nomena in gaseous systems, neutron transport, nuclear engineering, plasma physics,
space science, aerosol science, granularmatter physics, aswellmany aspects of astro-
physics including the kinetic theory of star clusters. In almost all these applications,
the distribution function is not a Maxwellian and the goal of numerical simulation
is to determine the extent of the departure from equilibrium. These simulations are
based on a transport equations for the distribution function, such as the Boltzmann
and or Fokker-Planck equations. These transport equations are generally differen-
tial or integro-differential equations. Their solution is obtained by various numeri-
cal methods including finite difference and spectral/pseudospectral methods as well
as Monte-Carlo simulations (Bird 1994) and particle-in-cell methods (Birdsall and
Langdon 1984).

The most often used basis set in kinetic theory are the Sonine-Laguerre poly-
nomials (Chapman and Cowling 1970; Ferziger and Kaper 1972) expressed in the
reduced energy, y = mv2/2kBTb. TheMaxwellian can be written as the weight func-
tion w(y) = √

ye−y for which the basis set is the Laguerre polynomials, L(1/2)
n listed

in Table2.11. These are equivalent to the Sonine polynomials, S(n)
(1/2)(x

2), written in

terms of the reduced speed x = √
mv2/2kBTb. If the distribution function is factored

into three components, one for each of the three cartesian velocity components, that
is, vx, vy and vz, the weight function for each velocity component isw(x) = e−x2 x =
mv2z /2kBTb ∈ (−∞,∞), and the basis set corresponds to the Hermite polynomials.
These basis functions occur in the well-known Grad moment method for the solution
of the Boltzmann equation (Grad 1949, 1958; Struchtrup 2005) and for calculations
of ion mobilities in gases (Mason and McDaniel 1988; Viehland 1994).

Maxwell polynomials,M(p)
n (x), are nonclassical basis functions orthonormal with

respect to w(x) = xpe−x2 , x ∈ [0,∞] that is,
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∞∫

0

xpe−x2M(p)
n (x)M(p)

m (x)dx = δmn (2.161)

that have also been used extensively in kinetic theory. The polynomialswith p = 0 are
referred to as the half-range Hermite polynomials and are not equivalent to the Her-
mite polynomials defined on the infinite axis. Theywere first introduced byGross and
Ziering (1958) for the calculation of the heat conduction in a rarefied gas, and also by
Baltz (1969). The Maxwell polynomials were employed in neutron transport theory
by Desai and Nelkin (1966) and Desai (1966) and constructed by Shizgal (1979) and
by Risken and Voigtlaender (1984) for the relaxation of electrons in a monatomic
gas as modelled with a Fokker-Planck equation. Gauss quadrature rules based on
Maxwell polynomials with p = 0 were also considered (Huang and Giddens 1968;
Galant 1969; Steen et al. 1969). The quadratures based on the Maxwell polynomials
were employedbyShizgal (1981) for the solutionof theBoltzmannequation.A recent
application to a rarefied gas dynamical problem was reported by Gibelli (2012).

Recurrence relations for the recurrence coefficients αn and βn in the three term
recurrence relation for p = 2, Eq. (2.14) can be derived as follows. To simplify the
notation the explicit dependence of M(p)

n on p is now omitted. If the Christoffel-
Darboux relation, Eq. (2.66) is multiplied by xw(x) and integrated, one finds that

n∑

k=0

αk = √
βn+1〈x2M ′

n+1Mn〉 = 2
√

βn+1〈x2Mn+1Mn〉, (2.162)

where an integration by parts has been performed on the middle term and the integral
〈xMn+1M ′

n〉 = 0, since xM ′
n, a polynomial of degree n is orthogonal to Mn+1. The

Dirac notation used earlier is employed again. With repeated use of the three term
recurrence relation, Eq. (2.14), and the orthogonality relation, we get

n∑

k=0

αk = 2βn+1(αn + αn+1). (2.163)

A second recurrence relation for the recurrence coefficients can be derived with
Eq. (2.15). The integral 〈xM2

n 〉 can be evaluated by taking the average of the
Christoffel-Darboux relation, Eq. (2.66), and the result is

(n + 1) = √
βn+1〈M ′

n+1Mn〉 = 〈xMn+1M ′
n+1〉, (2.164)

where the second equality results by multiplying Eq. (2.14) by M ′
n+1 and with n

replaced by n + 1. An integration by parts yields

〈xMnM
′
n〉 = −p + 1

2
+ 〈x2M2

n 〉, (2.165)

and a third recurrence relation for βn+1 in terms of βn and αn is,
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βn+1 + α2
n + βn = n + p + 1

2
. (2.166)

The relations Eqs. (2.163) and (2.166) are two equations for the set of recurrence
coefficientsαn and βn. The recurrence is begunwithα0 = 2/

√
π andα1 = 4(4−π)/

(
√

π(3π−8)),β0 = 0 andβ1 = 3/2−α2
0. Equation (2.166) is used forβn+1 andαn+1

is calculated with Eq. (2.163). However simple these relationships they prove to be
numerically unstable. This is another examplewhere round-off error can contaminate
a numerical algorithm that appears innocent.

In Table2.14, the results obtained with these recurrence relations are compared
with those determined with the Gautschi-Stieltjes procedure. The first column shows
αn with the Gautschi-Stieltjes method in comparison with the result with the recur-
sion relations, Eqs. (2.163) and (2.166). The disagreement between the two results
is highlighted with the underlined portion in the second column. The rapid loss in
precision of the two results is very clear. A similar comparison of the βn coefficients
is shown in the next two columns. The loss of precision is machine dependent. Clarke
and Shizgal (1993) employed asymptotic methods to determine the recurrence coef-
ficients accurately with partial success. Ball (2003) derived recurrence relations very
similar to (2.163) and (2.166) and judiciously rearranged the equations to iterate them
appropriatelywithout significant round-off error. Shizgal (1981) originally employed
multiple precision arithmetic to evaluate the recurrence coefficients accurately.

The Gautschi-Stieltjes method provides accurate results for a large class of weight
functions. The MATLAB codes ab_maxwell_p0.m and ab_maxwell_p2.m calculate
the recurrence coefficients for p = 0 and 2, respectively. The results for 100 recur-
rence coefficients agree to 13 significant figures with those reported by Gautschi
(2004) (example 1.13 and the file abhrhermite.dat, p = 0). The timing for the cal-
culation is less than 0.1 sec. A short list of the recurrence coefficients for the poly-
nomials, M(0)

n (x) is shown in Table2.15. The recurrence coefficients for the Hermite

Table 2.14 Recurrence coefficients for Maxwell polynomials, M(2)
n (x), for w(x) = x2e−x2 ,

x ∈ [0,∞)

n αn βn

Gautschi-Stieltjes Eqs. (2.163) and (2.166) Gautschi-Stieltjes Eqs. (2.163) and (2.166)

0 0.22676046 0.22676046 1.35966300 1.35966304

1 0.42455596 0.42455596 1.57050690 1.57050686

2 0.60895224 0.60895224 1.76189660 1.76189657

3 0.78676825 0.78676825 1.93706160 1.93706157

4 0.96102423 0.96102423 2.09900070 2.09900068

5 1.13317190 1.13317191 2.25007810 2.25007811

6 1.30397660 1.30397658 2.39210110 2.39210112

7 1.47387550 1.47387563 2.52645780 2.52645741

8 1.64313570 1.64313735 2.65422970 2.65422471

9 1.81192880 1.81195384 2.77627460 2.77620316

10 1.98037030 1.98074217 2.89328340 2.89227120
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Table 2.15 Recurrence
coefficients for Maxwell
polynomials, M(0)

n (x) with
w(x) = e−x2 x ∈ [0,∞); For
Hermite polynomials
αn = n/2 and βn = 0

n αn βn

0 0.5641895835478 0.0000000000000

1 0.9884253928468 0.1816901138162

2 1.2859676193639 0.3413251289594

3 1.5247208440801 0.5049621529880

4 1.7301922743095 0.6702641946396

5 1.9134998431431 0.8361704992803

6 2.0806203364008 1.0023478510110

7 2.2352283805046 1.1686711647443

8 2.3797824435047 1.3350829222423

9 2.5160256434438 1.5015525993448

10 2.6452479250570 1.6680623621881

polynomials are αn = 0 and βn = n/2. Quadrature points and weights for Maxwell
polynomials for all values of p can be efficiently computed for various orders with
the Gautschi-Stieltjes evaluation of the recurrence coefficients and diagonalization
of the Jacobi matrix.

In Fig. 2.3 we compare the Maxwell polynomial, M(2)
10 (x), x ∈ [0,∞), with

the Laguerre polynomial, L(1/2)
10 (y), y ∈ [0,∞). It is important to notice that the

Laguerre polynomial is shown versus
√

y and the polynomial is far more extended
if shown versus y. The symbols in the figures denote the quadrature points. The
quadrature points, yi, are more sparsely distributed and extend to larger y as shown
in Table2.16 for both weight functions with N = 10. Table2.16 lists the quadrature
points and weights for both polynomials. The table illustrates the very different dis-
tribution of the quadrature points and the very small weights, wi, for the Laguerre
polynomials in comparison to the weights for theMaxwell polynomials. This is clear
from the results in Table2.17 which compares quadrature nodes for the two poly-
nomials for N = 6. It is interesting to note that there is no relationship between the
quadrature points

√
yi and xi. We will demonstrate very different convergence results

for these basis sets in Chaps. 3, 5 and6.

Fig. 2.3 Maxwell polynomial, M(2)
10 (x), versus x on the left and Laguerre polynomial, L(1/2)

10 (y),
versus

√
y on the right; symbols denote the quadrature points with N = 10

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Table 2.16 Quadratures
nodes, xi, for Maxwell
polynomial (M(2)

10 (x)) and yi,
for Laguerre polynomial
L(1/2)
10 (y), corresponding to

the graphs in Fig. 2.3

Maxwell Laguerre

i xi wi yi wi

1 0.1512 0.4326 (−2) 0.2299 0.1755

2 0.3901 0.3675 (−1) 0.9245 0.3552

3 0.7075 0.1064 2.0994 0.2527

4 1.0880 0.1473 3.7829 0.8636 (−1)

5 1.5171 0.1044 6.0199 0.1511 (−1)

6 1.9921 0.3728 (−1) 8.8803 0.1328 (−2)

7 2.5120 0.6240 (−2) 12.4748 0.5419 (−4)

7 2.5120 0.6240 (−2) 12.4748 0.5419 (−4)

8 3.0842 0.4244 (−3) 16.9908 0.8738 (−6)

9 3.7294 0.8811 (−5) 22.7910 0.4020 (−8)

10 4.5089 0.2708 (−7) 30.8064 0.2292 (−11)

Table 2.17 The positive
quadrature points for the
Hermite polynomial, H12(x),
and the quadratures points for
the Maxwell polynomial,
M(0)

6 (x), which is the
half-range Hermite
polynomial

H12 M(0)
6

i xi i xi

7 0.3142 1 0.0786

8 0.9476 2 0.3867

9 1.5977 3 0.8664

10 2.2795 4 1.4657

11 3.0206 5 2.1727

12 3.8897 6 3.0368

There is also no relationship between the Maxwell polynomials (p = 0) poly-
nomials and the Hermite polynomials, Hn(x), even for the set of even polynomials
H2n(x) and symmetric on the infinite interval. The Maxwell polynomial M(0)

10 (x) and
H20(x) for 0 < x < ∞ are compared in Fig. 2.4 with the quadrature points shown as
the solid symbols and listed in Table2.17. It is clear the Maxwell quadrature points
are distributed closer to the origin than the positive Hermite quadrature points.

Fig. 2.4 Maxwell polynomial, M(0)
10 (x), on the left and the Hermite polynomial, H20(x), for x ∈

[0, 8], on the right; symbols denote the roots
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2.5.2 The Bimodal Polynomials

In Chap.6, we introduce a class of chemical reactions for which the reactant and
products exist in two distinct potential minima separated by a barrier. The dynamics
of such systems have been treatedwith Fokker-Planck equations that possess bimodal
steady distribution functions (Blackmore and Shizgal 1985a, b; Montgomery et al.
1979; Hänggi et al. 1990; Shizgal and Chen 1997; Borromeo and Marchesoni 2005;
Lo and Shizgal 2006). Similar Fokker-Planck equations have also been used tomodel
climate (Nicolis and Nicolis 1981; Nicolis 1982), optical bistability (Bonifacio et al.
1978; Schenzle and Brand 1979; Blackmore et al. 1986) and stochastic resonance
(Gammaitoni et al. 1998).

The steady state distributions of these systems exhibit two stable states and the
equilibrium probability density can be modelled with the weight function

w(x) = exp

[
−1

ε

(
x4

4
− x2

2

)]
, x ∈ (−∞,∞). (2.167)

shown in Fig. 2.5with twomaxima at x = ±1 and the shape varies with the parameter
ε.With decreasing ε the peaks get narrower and the weight function is localized about
x = ±1. The bimodal polynomials, Bn(x) with x ∈ [−∞,∞], are orthogonal with
respect to this weight function

∞∫

−∞
w(x)Bn(x)Bm(x)dx = δnm, (2.168)

and are also localized as shown in Fig. 2.6.
The βn recursion coefficients for these polynomials satisfy the recurrence relation

(Blackmore and Shizgal 1985a),

βn+2 = (n + 1)ε

βn+1
− βn+1 − βn + 1, (2.169)

Fig. 2.5 The bimodalweight functionw(x) = exp
(−[x4/4ε − x2/2ε]) relative to exp(1/4ε) versus

x for ε = 0.1 and ε = 0.02

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Fig. 2.6 Bimodal polynomial, B12(x) versus x and ε; solid symbols denote the quadrature points

Table 2.18 Quadrature
nodes for bimodal
polynomials for the positive
roots versus the parameter ε
in the weight function

i ε = 0.1 ε = 0.02 ε = 0.005

1 0.250927 0.5313424 0.8130843

2 0.6539267 0.7651935 0.8973338

3 0.9463795 0.9201875 0.9658537

4 1.181996 1.047651 1.027887

5 1.391344 1.164084 1.088161

6 1.59881 1.282431 1.152341

which suffers from round-off errors owing to the subtractions. Equation (2.169) is
derived with the Christoffel-Darboux relation and the three term recursion relation.
We can determine themoments μn withMAPLE. From this moment information, the
normalizations γn, the recursion coefficients βn and the polynomial basis set can be
calculated. Alternatively, we can use the Gautschi-Stieltjes procedure and calculate
the βn recursion coefficients and the polynomials by recursion, Eq. (2.14). The non-
monotonic variation of βn is shown in Fig. 2.7. For large n, there is a transition from
an oscillatory behaviour to a smoother asymptotic result for larger n (Clarke and
Shizgal 1993).

The quadrature points determined from the diagonalization of the Jacobi matrix
are densely distributed in the vicinity of the peaks of the weight function as shown

Fig. 2.7 Variation of βn for the bimodal polynomials



82 2 Polynomial Basis Functions and Quadratures

by the solid symbols in Fig. 2.6. These are listed in Table2.18, with the first two
columns corresponding to Fig. 2.6. The polynomials orthogonal with this weight
function are also concentrated in the region x = ±1. These attributes of the quadra-
tures provide for rapidly convergent solutions of the Fokker-Planck equation for
isomerization reactions in liquids discussed in Chap.6. We also make use of half-
range bimodal basis functions defined with the same weight function but for the
semi-infinite interval.

2.5.3 Rys Polynomials; Full-Range and Half-Range

The Schrödinger equation for the electronic energy states of a molecule is the basis
for electronic structure calculations in quantum chemistry (Szabo and Ostlund 1996;
Helgaker et al. 2000; Sherrill 2010; Reine et al. 2012; Parrish et al. 2013; Tsuneda
2014). This is an extremely technical subject and we cannot consider here all the
details of the calculations involved. Our purpose is to illustrate the use of quadratures
based on the nonclassical Rys polynomials. This quadrature is employed in quantum
chemistry computer codes including commercial products (Carsky andPolasek 1998;
Lindh et al. 1991; Asadchev and Gordon 2012; Sandberg and Rinkevicius 2012).
Further details are provided in Chap.3.

The basis functions used in quantum chemistry are often constructed from
Gaussians of the form,

φ(r) = xn1yn2zn3e−ar2 , (2.170)

where x, y and z are the cartesian components of r measured from the position of a
nucleus of an atom or molecule. The matrix elements of the Coulomb potential in
the Hamiltonian for an atom or molecule are calculated for two such Gaussians, one
for each electron at r1 and r2 and the electron repulsion integral is given by

〈ij| 1

r12
|k�〉 =

∫ ∫
φi(r1)φj(r1)

(
1

r12

)
φk(r2)φ�(r2)dr1dr2, (2.171)

where r12 = |r1 − r2| where the subscripts such as i on φi(r1) is a shorthand for
all the parameters that define the orbital. The main steps in the reduction of this
six-dimensional integral involves writing the reciprocal of r12 as the integral,

1

r12
= 2√

π

∞∫

0

e−(r12t)2dt. (2.172)

The product of two Gaussians is then written as a single Gaussian which is easily
demonstrated by completing the square of the argument.

The change of variable

t2 = x2

a + x2
, (2.173)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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transforms the integration from t ∈ (0,∞) to x ∈ [0, 1]. After some considerable
reductions, the electron repulsion integral, Eq. (2.171), is written in terms of sums of
integrals of the form

IL(c) =
1∫

0

fL(x2)e−cx2dx, (2.174)

where fL(x2) is a polynomial of degree 2L and an even function. The parameter
c depends on the parameters of the Gaussian functions used and varies consider-
ably from integral to integral. Further details of these calculations for Gaussian
type orbitals in electronic structure calculations is presented in the book by Helgaker
et al. (2000) and also in Chap.3. The brief discussion here is to provide the reader
with some background for the occurrence of integrals of the type in Eq. (2.174). In
typical applications, a very large number of integrals, Eq. (2.171), are evaluated and
thus the interest to reduce the computational cost.

In Sect. 2.2.2, we demonstrated the ill-conditioned Gram-Schmidt procedure with
the construction of the full-range Rys polynomials, Jn(x), defined on the interval
x ∈ [−1, 1]. We here consider the half-range nonclassical polynomials, Rn(x), with
x ∈ [0, 1] defined by the orthonormality

1∫

0

e−cx2Rn(x)Rm(x)dx = δnm, (2.175)

The quadrature points associated with these polynomials do not coincide with the
positive quadrature points and weights defined by the polynomials Jn(x), Eq. (2.24).

The αn and βn recurrence coefficients are calculated with the Gautschi-Stieltjes
procedure. The integrals, Eqs. (2.68) and (2.69), are evaluated by dividing the interval
into many subintervals and evaluating the integral in each subinterval with a Fejér
quadrature as suggested by Gautschi (1985, 1994). The MATLAB code ab_Rys.m
can be used for this calculation. The quadrature points andweights are then calculated
with the diagonalizaton of the Jacobi matrix, Eq. (2.71) (Golub and Welsch 1969).
The quadrature based on either the full-range or half range Rys polynomials can be
calculated with the same code by inputing either xmin = −1 or 0. For the full-range
polynomials αn = 0 as discussed in Sect. 2.2.2 whereas these coefficients are finite
for the half-range polynomials.

The variation of βn versus n was shown in Fig. 2.1 for the full-range Rys polyno-
mials. The variation of αn and βn for the half-range polynomials is shown in Fig. 2.8.
The quadrature points and weights calculated with this code reproduces the values
in Tables1 and 2 in the work of Schneider and Nygaard (2002) for the full-range
with αn = 0.

The results for N = 40 and c = 0, 10 and 20, agree to the eight significant figures
with the results shown in Tables1 and 2 in the paper by Schneider and Nygaard
(2002). For c = 10 and N = 26, we calculate the weights and points in complete

http://dx.doi.org/10.1007/978-94-017-9454-1_3


84 2 Polynomial Basis Functions and Quadratures

Fig. 2.8 Variation of αn and
βn versus c for Rys
polynomials Rn(x) for n = 1
to 5, and x ∈ [0, 1].
Half-Range Legendre
polynomials correspond to
c = 0 and half-range
Hermite polynomials for
c → ∞

agreement with the results reported by Sagar and Smith (1992) in their Table4.
The quadrature points defined by J20(x) in the interval [0, 1] shown in Fig. 2.9 and
Table2.19 do not coincide with the quadrature points in [0, 1] defined by R10(x). The
integrand in Eq. (2.174) is even and consequently only the positive quadrature points
associated with Jn(x) for n even are used in the numerical evaluation of Eq. (2.174).
The quadrature points for the full range quadrature are more densely distributed at
x ≈ 1whereas the half range quadrature points aremore densely distributed at x ≈ 0.
The weights for the two quadrature rules also differ as shown in the table. However,
for c = 0, for which the Rys polynomials, Jn(x, 0), are the Legendre polynomials,
the quadrature points for the half-range (hr) Legendre polynomials, xhr

i , defined on

[0, 1] can be calculated from the full-range ( f r) quadrature points, x f r
i , on [−1, 1] as

given by the transformation of the intervals, that is xhr
i = (x f r

i +1)/2. The half-range
Legendre polynomials have found widespread application in the theory of radiative
transfer which we discuss at greater length in Chap. 5. A comparison of the Rys
quadrature rules is presented in Chap. 3.

Fig. 2.9 Variation of the Rys polynomials
√

w(x)J20(x) on [−1, 1] and
√

w(x)R10(x) on [0, 1]

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Table 2.19 Quadrature
points and weights for Rys
polynomials; c = 2

n Quadrature points Quadrature weights

J20(x) R10(x) J20(x) R10(x)

1 0.07299 0.01244 0.014421 0.031758

2 0.21768 0.06420 0.130255 0.070372

3 0.35851 0.15219 0.106726 0.099041

4 0.49278 0.26879 0.080009 0.110693

5 0.61759 0.40472 0.055537 0.102518

6 0.72991 0.54976 0.036182 0.079753

7 0.82656 0.69279 0.022376 0.052868

8 0.90436 0.82164 0.013126 0.030434

9 0.96042 0.92320 0.007009 0.015194

10 0.99241 0.98493 0.002709 0.005514

2.5.4 Additional Examples of Nonclassical Quadratures

In this section, we further demonstrate the efficient use of the Gautschi-Stieltjes
procedure for the generation of quadratures based on nonclassical weight functions
andwe discuss several examples. Other examples are in the book byGautschi (2004).
The first is the weight function

w(x) = e− 3
2x , x ∈ [0, 1], (2.176)

proposed by Gander and Karp (2001) for use in radiative transfer problems that we
consider inChap.5. The authors report that themethod ofmoments for the calculation
of polynomial recurrence relations and quadrature points is numerically unstable as
we have seen with the Gram-Schmidt orthogonalization. However, they also report
that the Gautschi-Stieltjes procedure is unstable and show in Table3 of their paper
the errors they compute for the αn and βn recurrence coefficients presumably arising
from numerical instabilities. Thus, they claim that these two classical methods for
continuous measures fail and it is impossible to compute the Gauss quadrature.

Instead, they use MAPLE and the method proposed by Boley and Golub (1987)
based on the discrete measures of the weight function to calculate accurate values
of the recurrence coefficients reported in Table2. However it is not clear why the
Gautschi-Stieltjes procedure fails in contradiction to the code ab_rad_transf.mwhich
provides the recurrence coefficients in agreement with the results in Table2 of the
paper by Gander and Karp (2001). The authors also report results with four other
weight functions but specific applications to radiative transfer problems were not
considered (Garcia 1999).

The evaluation of radial integrals that arise in the application of density functional
theory in molecular electronic structure calculations is a very important endeavor
(Gill and Chien 2003; El-Sherbiny and Poirier 2004). In Chap.3, we present a com-
parison of several different quadratures that involve interval mappings and the use

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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of classical quadratures although Gill and Chien (2003) introduced a nonclassical
weight function defined by

w(x) = ln2 x, x ∈ [0, 1]. (2.177)

The recurrence coefficients for this weight function can be accurately calculated
with the Gautschi-Stieltjes procedure. The quadrature points and weights are then
determined from the diagonalization of the Jacobi matrix and are in agreement with
the results provided at http://rsc.anu.edu.au/~pgill/multiexp.phpp2008.

The third example of a nonclassical weight function arises from the role of Kappa
distributions (Maksimovic et al. 1997; Shizgal 2007) in space physics.We discuss the
nonconvergence of the expansion of the Kappa distribution in Laguerre polynomials
in Chap.4 and the derivation of this distribution from a particular Fokker-Planck
equation in Chap.6.

Magnus and Pierrard (2008) discuss the calculation of the recurrence coefficients
for the weight function

w(x) = |x|A
[
1 + ( x

C

)2r
]B , x ∈ (−∞,∞), (2.178)

which is a variant of the Kappa distribution

fκ(x) = x2

(1 + x2
κ )κ+1

, x ∈ [0,∞), (2.179)

and reduces to the Kappa distribution with A = 2, B = κ + 1, C = κ, r = 1
and the change of domain. The κ distribution tends to a Maxwellian for κ → ∞.
One feature of the Kappa distribution is that all the moments are not defined and
in particular the temperature and normalization are not defined for κ ≤ 3/2 and
1/2, respectively. Thus, it cannot be used as a weight function to define a set of
nonclassical polynomials. Magnus and Pierrard (2008) consider the weight func-
tion, Eq. (2.178), and provide a number of recurrence relations for the βn recur-
rence coefficients which all prove to be numerically unstable even for the partic-
ular values, r = 1 and 2. It is the very slow decay of these weight functions for
x → ±∞ analogous to the Kappa distribution that is responsible for these numer-
ical instabilities. Of particular interest is that for the special case B = C → ∞,
the weight function, Eq. (2.178) reduces to w(x) = |x|Ae−x2 which defines the rel-
ativistic Hermite polynomials related to the Gegenbauer polynomials (Nagel 1994).
Further work is required to develop new quadratures that may prove useful in space
plasma physics.

In Sect. 2.7, we consider the Stieltjes moment method which is defined as the
problem of recovering a weight function from a finite number of the moments. One
such application is the work of Langhoff et al. (1976) which is directed towards the
reconstruction of photoabsorption distributions from experimental measurements

http://rsc.anu.edu.au/~pgill/multiexp.phpp2008
http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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of the moments. In order to benchmark their inversion procedure, they choose the
distribution

w(x) = 1 − 2

π

[
√

1
x − 1

3

(
2x2 − 5x

)
+ tan−1(

√
1

x
− 1)

]
, x ∈ [0, 1], (2.180)

and report recurrence coefficients

αn = 4n2 − 3

2(4n2 − 1)
,

βn = (2n + 3)(2n − 1)

[4(2n + 1)]2 . (2.181)

for the polynomials

qn(x) = (x − αn)qn−1(x) − βn−1(x)qn−2(x), (2.182)

orthogonal with respect to w(x), Eq. (2.180). The αn and βn coefficients define a
Jacobi matrix and hence a set of quadrature weights and points. The reconstruction
of the weight function can be done discretely from the quadrature points (Clarke and
Shizgal 1993) as given by

w(x̃i) = wi+1 + wi

2(xi+1 − xi)
(2.183)

where x̃i = (xi+1 − xi)/2. Langhoff et al. (1976) report the reconstruction of the
weight function, Eq. (2.180), from the quadrature points and weights as shown in
Fig. 1 of their paper.

2.6 Sinc Interpolation, Cubic B-Splines and Radial
Basis Functions

In Sect. 2.3.1, we discussed the Lagrange interpolation and it forms the basis for
the Newton-Cotes integration rules for a uniform grid as well as the nonuniform
Gaussian quadratures based on orthogonal polynomials. As mentioned previously,
and as we will discuss in Chap. 3, interpolation is the basic tool to define derivative
operators in physical space and their application to the solution of partial differential
equations. In this section, we present several alternate interpolation procedures that
are also discussed in standard references (Press et al. 2007; Cheney and Kincaid
2008; Burden and Faires 2011).

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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2.6.1 Sinc Interpolation

Our main concern in this chapter is with the Lagrange interpolation of Sect. 2.3.1 and
the nonuniformly distributed quadrature points that arise with orthogonal polynomi-
als. Quite generally, spectral methods involve the use of Fourier or Chebyshev basis
functions. We consider in this section Fourier basis functions discussed in greater
detail in Chap. 4 and the corresponding quadrature.

We note that the roots of sin(y) are at yk = ±kπ, k = 0, 1, 2, . . . We thus define
p(x) = sin(πx)with an infinite number of uniformly distributed integer roots, xk = k
for k = 0,±1,±2, . . . , that is,

p(x) = sin(πx) = πx
∞∏

k=1

(
1 − x2

k2

)
, x ∈ (−∞,∞), (2.184)

with roots at xk = k for k = 0,±1,±2, . . . Equation (2.184) is Item 1.431.1 in
Gradshteyn and Ryzhik (2007). In terms of the polynomial p(x), the Lagrange inter-
polant as in Eq. (2.31) is

�k(x) = p(x)

(x − xk)p′(xk)
,

= sin(πx)

π(x − xk)
,

= sinc(x − xk), (2.185)

where we have used p′(xk) = π cos(πxk) = π, sin(πxk) = sin[π(x − xk)] and the
sinc function is defined by sinc(x) = sin(πx)

πx . The original work on sinc interpolation
is due to Whittaker (1929a, 1927) and discussed in detail by Stenger (1993).

In view of the definition of the sinc function, we easily verify that �k(x) defined by
Eq. (2.185) satisfies the cardinality condition, �k(xj) = δkj arising from the result that

sinc(xj − xk) =
{
1, j = k,

0, j �= k.
(2.186)

For j �= k, sin[π(xj − xk)] = 0, and for j = k, l’Hopital’s rule is used. Thus we have
the sinc-interpolation of some function of the form

f (x) =
∞∑

k=−∞
f (xk)sinc(x − xk), (2.187)

where the nodes are the integers, xk = k, k = 0,±1,±2, . . . In this case, there are
an infinite number of nodes along the real axis.

The variation of the sinc functions is shown in Fig. 2.10 with the same grid as
used for the Lagrange interpolation in Fig. 2.2. The Lagrange interpolation based on

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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Fig. 2.10 Variation of the
sinc function, sinc(x) =
sin(πx)/[π(x − xj)], defined
for 11 points [−6:1:6] and
xj = 0. The Lagrange
interpolation on the same
grid is shown in Fig. 2.2

polynomials discussed in Sect. 2.3.1 is usually a polynomial of degree N determined
from N +1 data. In both cases, the interpolant reproduces the given data exactly. For
the sinc interpolation, the spacing between grid points does not have to be unity as
assumed. If we define y = xh, the spacing between grid points in y is yk+1 − yk = h.
With this substitution we have that

f (y) =
∞∑

k=−∞
f (

yk

h
)sinc(

y − yk

h
). (2.188)

It is clear that the formalism introduced for polynomials does not apply to this basis
set of trigonometric functions. There is no three term recurrence relation and the
quadrature rules employed previously do not apply in this case. The quadrature or
grid points in this case are uniformly distributed and the weights are not specified.
Theweights are defined by any quadrature based on uniformly distributed grid points.
Thus the trapezoidal or Simpson’s rules or other Newton-Cotes algorithms can be
used. There have been numerous applications of the sinc interpolation to the solution
of the Fokker-Planck and Schrödinger equations (Colbert andMiller 1992;Wei 2000;
Amore 2006) and Fishers equation (Wei 1999; Al-Khaled 2001; Zhao andWei 2003;
Olmos and Shizgal 2006). The sinc interpolation features prominently in digital
signal processing (Blackledge 2006; Meijering et al. 1999; Meijering 2002).

2.6.2 Cubic B-Splines:

Our discussion of interpolation would not be complete without a comparison with
cubic splines and B-Splines that are used in many applied problems. We return
to the problem of interpolating within a table containing pairs of values {xi, yi ≡
f (xi), i = 1, . . . , N}. We wish to determine the function value yk = f (xk) for
the independent variable at xk . The Lagrange interpolation discussed in Sect. 2.3.1
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is a global polynomial based method and may not be accurate for functions that
vary rapidly in some small subinterval. We could divide the domain into unequal
subdomains and use different Lagrange interpolants in each domain. However, the
resulting interpolation can have discontinuous first and second derivatives at the
subdomain boundaries.

We introduce the cubic polynomial, Si(x), in each subinterval (xi, xi+1) to inter-
polate the numerical values in the table. We impose the requirements that (1) the
function values are returned exactly, that is yi = S(xi), (2) the first derivative
y′

i ≡ d f (x)/dx|x=xi is continuous at the interval boundaries and (3) the second deriv-
ative y′′

i ≡ d2 f (x)/dx2|x=xi is also continuous. With this local fitting procedure, we
anticipate an approximation to the function that will be smoother with fewer oscilla-
tions as compared with the Lagrange interpolation over the whole interval [a, b]. In
the B spline literature (Prenter 1975), the grid points, {xi}, are referred to as knots.

We consider representing Si(x) as a cubic in x but instead we begin by noting
that the second derivative, S′′

i (x) is linear in x (Press et al. 2007). We thus consider
a linear interpolation of the second derivative, that is,

S′′
i (x) = y′′

i
x − xi+1

xi − xi+1
+ y′′

i+1
x − xi

xi+1 − xi
. (2.189)

It is important to mention that the input data is strictly the table of values xi and yi

and the second derivatives in Eq. (2.189) are not provided. We generate the desired
cubic by integrating twice,

Si(x) = y′′
i

6

(x − xi+1)
3

(xi − xi+1)
+ A(x − xi) + y′′

i+1

6

(x − xi)
3

(xi+1 − xi)
+ B(x − xi+1). (2.190)

The first requirement, (1), gives the two equations yi = Si(xi) and yi+1 = Si(xi+1).
These two conditions give the values of the constants A and B in Eq. (2.190), that is,

A = yi

xi+1 − xi
− y′′

i+1

6
(xi+1 − xi),

B = yi

xi − xi+1
− y′′

i

6
(xi − xi+1). (2.191)

With the substitution of Eq. (2.191) in Eq. (2.190), we get the cubic equation

Si(x) = y′′
i

6

(x − xi+1)
3

(xi − xi+1)
+
[

yi+1

xi+1 − xi
− y′′

i+1

6
(xi+1 − xi)

]
(x − xi)

+ y′′
i+1

6

(x − xi)
3

(xi+1 − xi)
+
[

yi

xi − xi+1
− y′′

i

6
(xi − xi+1)

]
(x − xi+1). (2.192)

As for the continuity of the first derivatives, we equate the first derivative as calculated
for the interval (xi−1, xi) and the first derivative calculated for the interval (xi, xi+1),
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both at the interval boundary x = xi. With S
′
i−1(x) evaluated from Eq. (2.192) we

find after some algebra that

S′
i(xi) = (xi − xi+1)

y′′
i

3
− (xi+1 − xi)

y′′
i

6
+ yi+1 − yi

xi+1 − xi
,

S′
i−1(xi) = (xi − xi−1)

y′′
i

3
− (xi−1 − xi)

y′′
i−1

6
+ yi − yi−1

xi − xi−1
, (2.193)

and by imposing continuity of the first derivative, S′
i(xi) = S′

i−1(xi), we get

(xi − xi−1)y
′′
i−1 + 2(xi+1 − xi−1)y

′′
i + (xi+1 − xi)y

′′
i+1

= 6

[
yi+1 − yi

xi+1 − xi
− yi − yi−1

xi − xi−1

]
. (2.194)

Equation (2.194) represents a tridiagonal matrix for the unknown second deriva-
tives y′′

i in terms of the input data, {xi, yi}, on the right hand side as well as the
matrix elements in terms of the interval lengths hi = xi+1 − xi. The solution of this
matrix equations gives y′′

i and thus we have the cubic fit in each interval defined with
Eq. (2.192).

However, since we have N points we have only specified continuity of the first
and second derivatives at the N − 2 interior points and the conditions at the interval
ends at x1 and xN have not been specified. If the second derivatives at these points are
known, which is usually not the case, then these are simply added to the conditions
at x1 and xN . There are several different choices that can be made in the absence of
this information. One can set y′′

1 = y′′
N = 0 and then solve Eq. (2.194). This choice is

referred to as a natural spline which in the absence of the required second derivative
values is expedient but one must exercise caution.

2.6.3 B-Splines

Closely related to the use of cubic splines for the interpolation of data are the family of
functions known as B-Splines defined locally and used in the solution of integral and
differential equations inmanydifferent fields discussed at the endof this section.They
are used as a non-orthogonal set of linearly independent basis functions of increasing
degree over a finite interval. For the set of nodes at xi = i, i = 0, 1, 2, . . . , k), the
first member of the set of B-splines is

B(1)(x) =
{
1 x ∈ [0, 1]
0 otherwise.

(2.195)
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The second member of the set is the piecewise continuous linear function defined by

B(2)(x) =
⎧
⎨

⎩

x x ∈ [0, 1]
2 − x x ∈ [1, 2]
0 otherwise.

(2.196)

The third member of degree 2 spans three intervals and is given by,

B(3)(x) = 1

2

⎧
⎪⎪⎨

⎪⎪⎩

x2 x ∈ [0, 1]
−2x2 + 6x − 3 x ∈ [1, 2]
(3 − x)2 x ∈ [2, 3]
0 otherwise,

(2.197)

and is zero at x = 0 and x = 3. The polynomial in the interval x ∈ [1, 2] can be
determined by requiring continuity of the functions and the derivatives at x = 1 and
2. Alternatively, it can be evaluated with the recursion relation

B(k)(x) = x

k − 1
B(k−1)(x) + k − x

k − 1
B(k−1)(x). (2.198)

As for k = 4, the polynomials in the first and last intervals can be written down
easily. With the use of the recursion relation, the polynomials in the remaining two
intervals can be obtained and the B-Spline of order 4 is,

B(4)(x) = 1

6

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x3 x ∈ [0, 1]
−3x3 + 12x2 − 12x + 4 x ∈ [1, 2]
3x3 − 24x2 + 60x − 44 x ∈ [2, 3]
(4 − x)3 x ∈ [3, 4]
0 otherwise.

(2.199)

This local function is defined by four uniformly spaced grid points over a finite
interval. The grid spacing, h, has been set to unity and the B-spline spans four grid
points. We show in Fig. 2.11 four such B-Splines by taking the fundamental spline in
the interval x ∈ [0, 4] and translating it by one grid spacing to the right three times.

Fig. 2.11 Four B-spline
functions of order 3 versus x
measured in units of the grid
spacing h
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The B-Spline functions are local and not orthogonal and the integral over a pair of
B-Spline functions defines an overlap matrix,

Sij =
b∫

a

Bi(x)Bj(x)dx. (2.200)

As can be seen from Fig. 2.11, the overlap of a particular B-Spline function is with
four other B-Spline functions two to the left and two to the right. The overlap matrix
for B-Splines of order 4 is therefore pentadiagonal. A review of current work in
atomic and molecular physics with B-Spline basis functions has been provided by
Bachau et al. (2001). The application of B-Splines to the solution of the Schrödinger
equation has been developed long ago (Shore 1973, 1975; O’Niel and Reinhardt
1978). There have also been several applications to kinetic theory and the study of
electron transport in molecular gases (Pitchford et al. 1981), transport coefficients
(Siewert 2002) and relaxation in hard sphere gases (Khurana and Thachuk 2012).

2.6.4 Radial Basis Functions

The developments in the previous sections, have been based largely on the Lagrange
interpolation with polynomial basis functions in one dimension. A two dimensional
application would involve the direct product of the two one dimensional spaces.
For trigonometric basis functions, that is Fourier series discussed in greater detail
in Chap.5, the interpolation on the real line is in terms of the sinc function that we
have discussed. Another type of interpolation that has important applications inmany
different areas is based on radial basis functions. It is important to mention that these
are not orthogonal “basis functions”.

A radial basis function, φ(r), depends on a one dimensional radial variable r.
The radial variable measures the distance from some reference point x0 to x, that is

r = ‖x − x0‖ =
√

x2 − x20, that is the Euclidean distance. Given the function φ(r),
for which there are several choices as listed in Table2.20, the basic interpolating
radial basis function is

fN (x) =
N∑

i=1

aiφ(ri), (2.201)

where ri = ‖x − xi‖ and xi are distinct positions. Given a set of data points for
f (x), that is fi = f (xi), the expansion coefficients, ai are determined such that
fN (xi) = fi, and are the solution of the matrix equation,

N∑

j=1

Aijaj = fi, (2.202)

where Aij = φ(‖xj − xi‖).

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Table 2.20 Commonly used
radial basis functions

Radial basis function Name

φ(r) = r3 Cubic

φ(r) = r5 Quintic

φ(r) = r3 Cubic

φ(r) = exp(−r2) Gaussian

φ(r) = r2 log r Thin plate spline

The common forms of radial basis functions are in the table. An excellent discus-
sion of radial basis functions is in the thesis by Sturgill (2009). A thorough discussion
can be found in the book by Buhmann (2004). The technique is an interpolation anal-
ogous in some respects to splines andwavelets. Other useful discussions can be found
in several recent research articles (Fornberg et al. 2002, 2004; Fasshauer and Zhang
2007) including interpolation for multidimensional problems (Sturgill 2009), reso-
lution of the Runge phenomena (Boyd 2010) as well as the Gibbs phenomenon (Jung
et al. 2011), comparison with finite difference differentiation (Boyd andWang 2009)
and quantum fluid dynamical equations (Hu et al. 2000, 2002). The applications
of this interpolation technique include medical imaging, thermodynamics, quantum
mechanics (Trahan and Wyatt 2003), engineering systems and fluid mechanics (Shu
et al. 2003).

2.7 Moment Methods for Orthogonal Polynomials
and the Stieltjes Moment Problem

In Sects. 2.2–2.2.2, we discussed the role of themoments of theweight function in the
construction of orthogonal polynomials and the correspondingGaussian quadratures.
In this section, we reconsider this problem as there is a close connection between the
classicmoment problem (to be defined) and analogouswork in chemical physics. The
construction of orthogonal polynomials from the moments of the weight function
will be contaminated with round-off errors.

The monic polynomial, Qn(x), is written as a series in the monomials, 1,
x, x2, . . . , xn, that is

Qn(x) =
n∑

k=0

ankxk, (2.203)

where by definition ann = 1. Since xm can be written in terms of the polynomials of
order less than n, the scalar product with xm with m < n gives

〈xm|Qn〉 =
n∑

k=0

ankμm+k = 0, m < n. (2.204)
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For the case m = n, Eq. (2.16) gives

xn = Qn(x) −
n−1∑

k=0

cn,kPk(x). (2.205)

where 〈Pk |Pn〉 = δkn. We take the scalar product of Eq. (2.205) with Qn(x) and since
〈Qn|Pk〉 = 0, k = 0, 1, . . . , n − 1 we find that

〈xn|Qn〉 =
n∑

k=0

ankμn+k = γn. (2.206)

Equations (2.204) and (2.206) can be rewritten as the linear set of equations for
the ank coefficients, that is,

⎛

⎜⎜⎜⎜⎜⎝

μ0 μ1 μ2 · · · μn

μ1 μ2 μ3 · · · μn+1
...

...
...

...

μn−1 μn μn−1 · · · μ2n−1
μn μn+1 μn+2 · · · μ2n

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

an0
an1
...

an,n−1
ann

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

0
γn

.

⎞

⎟⎟⎟⎟⎟⎠
(2.207)

Equation (2.207) cannot be used to determine the polynomials as the normalization
γn is required. Rather we use this set of equations with a known value of γn to verify
the value of the coefficient ann = 1 versus the size of the matrix. We study the
solution of the moment equations, Eq. (2.207), versus the size of the matrix, the
condition number and the value of ann in comparison with the exact value ann = 1.
The results are shown in Table2.21 for Legendre and Hermite polynomials.

It is clear that the condition numbers increase dramatically with increasing n and
the solution of thematrix equation breaks down for n ≈ 10 for Legendre polynomials
and for n ≈ 15 for Hermite polynomials with much larger condition numbers for the
Hermite case. These results are anticipated from our earlier analyses and consistent
with other similar discussions (Gautschi 2004).

In this chapter, we have focussed on the construction of a set of orthognonal
polynomials and quadrature rules starting fromagivenweight function.Wehave used
the numerical methods developed by Golub and Welsch (1969) and Gautschi (1985,
1996) based on the recurrence coefficients αn and βn in the three term recurrence
relation, Eq. (2.14), and the diagonalization of the Jacobi matrix, Eq. (2.71). This
approach is efficient and accurate as we have demonstrated for a large number of
different classical and nonclassical weight functions.

However, inspite of the numerical instabilities involved in the construction of a
polynomial basis set directly from the moments, mathematical theory of orthogonal
polynomials has been based onmoment theory and in particular the Stieltjes moment
problem. This refers to the inverse problem of determining the weight function from
a knowledge of the power moments μn = ∫ b

a w(x)xndx, which has a long history
(Shohat and Tamarkin 1943; Akhiezer 1965; Chihara 1989).
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Table 2.21 Condition number and solution of the moment equations, Eq. (2.207)

n Legendre Hermite

Condition number ann Condition number ann

2 1.41×101 1.00000000 3.87 1.00000000

3 3.58×102 1.00000000 6.78×101 1.00000000

4 1.02×104 1.00000000 4.23×103 1.00000000

5 3.07×105 1.00000000 4.83×105 1.00000000

6 9.44×106 1.00000000 8.55×107 1.00000000

7 2.96×108 1.00000000 2.15×1010 1.00000000

8 9.39×109 0.99999992 7.22×1012 1.00000000

9 3.00×1011 0.99999823 3.11×1015 1.00000000

10 9.68×1012 0.99997208 1.66×1018 0.99999993

11 3.13×1014 0.99882357 1.89×1020 0.99999941

12 9.86×1015 0.94434728 1.17×1023 0.99999679

13 1.42×1017 0.31755343 5.09×1025 0.99999238

14 2.29×1017 0.07350753 2.84×1027 1.00004565

15 – – 4.66×1031 1.00055745

16 – – 5.24×1032 0.99822421

17 – – 2.27×1035 0.90941239

18 – – 2.29×1038 0.46249017

19 – – 9.61×1039 0.21464113

20 – – 1.57×1043 0.38678474

The main purpose for introducing the discussion here is the application to
analogous problems in chemical physics (Gordon 1968; Wheeler 1974; Corcoran
and Langhoff 1977; Reinhardt 1979). We will not cover this subject in great depth
but it is important to point out the relationship of these separate workings on a com-
mon problem with different perspectives and objectives. An excellent overview with
an historical list of references was provided by Müller-Plathe and Diercksen (1989).

The matrix defined by Eq. (2.207) is known as a Hankel matrix and the recursion
coefficients can be written in terms of these matrices (Gautschi 2007; Golub and
Meurant 2009). This approach leads, as might be anticipated, to algorithms that are
fraught with round-off errors and are not of practical use. Consequently, alternate
procedures based on the determination of the moments with other orthogonal poly-
nomials, known as “modified moments” (Gautschi 1970; Sack and Donavan 1972;
Wheeler 1974) that provide stable algorithms have been developed.

These methods have important applications in the determination of unknown
weight functions or spectral densities from the power moments (Gordon 1968). This
inversion of the moment problem has been applied to the determination of photoab-
sorption cross sections from limited moment spectral data (Langhoff et al. 1976;
Corcoran and Langhoff 1977; Reinhardt 1979; Hermann and Langhoff 1983). One
aspect of these works is that the authors are considering quantum problems involving
emission and/or absorption of a free electron and thus the continuum spectrum of the



2.7 Moment Methods for Orthogonal Polynomials and the Stieltjes Moment Problem 97

Fig. 2.12 Reconstruction of
the Maxwell weight
function, w(x) = x2e−x2

shown as the solid curve
from the quadrature points
and weights, w(xi) =
(wi+1 + wi)/[2(xi+1 − xi)]
shown as the filled circles

Hamiltonian for the system is studied.The associated eigenproblems are solvedby the
expansion of the eigenfunctions in a finite basis set and the continuum eigenfunctions
cannot be treated rigorously as we will discuss for the Boltzmann, Fokker-Planck
and the Schrödinger equations in Chaps. 5 and6.

Of particular interest is the reconstruction of theweight function fromaknowledge
of the moments of the weight function or equivalently the recursion coefficients in
the three term recurrence relation (Langhoff et al. 1976). To illustrate this process,
we choose the recurrence coefficients for the Maxwell polynomials and the discrete
form of the weight function, that is

w(x̃i) = wi+1 + wi

2(xi+1 − xi)
. (2.208)

where x̃i = (xi + xi+1)/2. The solid curve in Fig. 2.12 is w(x) = x2e−x2 and the
filled circles are calculated with Eq. (2.208).

2.8 Two Dimensional Integrals and Cubatures

The calculation of two dimensional integrals of the type

I2D =
b∫

a

d∫

c

f (x, y)dxdy, (2.209)

can be estimated with a direct product of the two spaces, that is we use two grids {xi}
and {yi} and estimate the integral as the double quadrature sum

I(N1,N2)
2D =

N1∑

i=1

N2∑

j=1

wiwj f (xi, yj), (2.210)

which involves N1 × N2 function evaluations and the computational cost of the
algorithm can be high, especially if we extend this direct product to more that two

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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dimensions. The integral in Eq. (2.209) is over the square in the x−y plane defined by
the points (a, c), (b, c), (b, d) and (a, d). Obviously, if f (x, y) factors into separate
functions of x and y, the integral reduces to the product of two one-dimensional
integrals. Occasionally, a suitable variable change accomplishes this factorization.

A more efficient algorithm for a two-dimensional integral involves a single sum-
mation of the form ∫ ∫

A

f (x, y)dxdy ≈
N∑

i−1

wi f (xi, yi), (2.211)

where A is the area in the x − y plane analogous to the rectangle in the example
in Eq. (2.209) and (xi, yi) are the coordinates of a point in the area A. Quadrature
formulas of this form are referred to as “cubatures” (Cools 2002, 2003) whereas
for a one-dimensional integral the numerical approximation is a quadrature. If a
Simpson’s rule or a Gaussian quadrature is used for each dimension in Eq. (2.212),
the quadrature points are well defined and the weights can be deduced in terms of
products of the weights in each dimension (Burden and Faires 2011). The analogue
cubature in three dimensions is a rule of the form

∫

V

∫ ∫
f (x, y, z)dxdydz ≈

N∑

i−1

wi f (xi, yi, zi). (2.212)

The literature on this subject is extensive and was begun long ago by Clerk-
Maxwell (1877) as noted by Hammer and Wymore (1957) and Hammer and Stroud
(1958). These two older references provide a useful discussion of the construction
of these quadrature rules. Cools (1997) has provided a very readable review of the
origin of cubature formulae and also provides some elementary examples originally
presented by Stroud (1971).

There are many applications of cubatures including spectral element methods in
fluidmechanics (Pasquetti and Rapetti 2004), the computation of the solid angle inte-
grations for radial integrals in the theory of molecular electronic structure (Lebedev
1977; Haxton 2007), density functional theory (El-Sherbiny and Poirier 2004), and
with a finite difference discretization of the non-linear Boltzmann equation (Kabin
and Shizgal 2003; Sospedra-Alfonso and Shizgal 2012b). For the solution of the
vibrational Schödinger equation (Avila and Carrington Jr. 2009; Avila and Carring-
ton 2013; Lauvergnat and Nauts 2014), a Smolyak algorithm similar to cubature
quadratures is used to reduce the dimensionality of the direct product basis sets.
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Chapter 3
Numerical Evaluation of Integrals
and Derivatives

Abstract The numerical evaluation of integrals referred to as a quadrature is an
important aspect of a large number of applied problems in science and engineer-
ing. In Chap.2, we derived several different methods for the numerical evaluation
of integrals. These include the trapezoidal and Simpson’s rules, the higher order
Newton-Cotes algorithms, the Clenshaw-Curtis scheme and the Gauss quadrature
methods based on classical and nonclassical polynomials. In this chapter, general
principles for the accurate and efficient numerical evaluation of integrals that occur
in the modeling of physical systems are provided. This is the basis for an efficient
numericalmethod of solution of integral equations discussed inChap. 5. The physical
systems considered vary considerably from section to section and a brief introduc-
tion is provided in each case with numerous references to textbooks and current
research publications. We consider radial integrals that occur in density functional
theory, integrals for chemical and nuclear fusion rate coefficients and also for the
solution of the Boltzmann equation. The numerical evaluation of matrix elements
in kinetic theory and quantum mechanics is also presented with important impli-
cations for pseudospectral methods. The latter section of the chapter is devoted to
the pseudospectral method for numerical differentiation based on the Lagrange and
Sinc interpolants. The numerical solution of Sturm-Liouville differential eigenvalue
problems for the classical polynomials is also presented.

3.1 Numerical Evaluation of Integrals

The integration of a smooth slowing varying integrand is generally not difficult.
With the speed of current personal computers, almost any one-dimensional inte-
gral can be evaluated to almost machine accuracy in a finite time. It is well known
that a specific numerical method might be efficient for a particular type of inte-
gral and not for others. One can always propose a method adapted to work very
well for a certain class of integrals but that performs poorly when applied to other
integrals.

There have been several discussions of automatic integrators (Davis and Rabi-
nowitz 1975; Lyness 1983) which evaluate one-dimensional integrals for a given
integrand, interval and accuracy desired. These automatic integrators have found
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110 3 Numerical Evaluation of Integrals and Derivatives

some success but are not flawless, as discussed by Lyness (1983). A comprehensive
presentation of computational methods for integration with a large number of exam-
ples was provided by Kythe and Schaferkotter (2004).

The main objective of this chapter is to present techniques for the evaluation of
integrals that arise in physical problems, The precision required will be high but not
necessarily of machine accuracy. Specific examples will include radial integrals that
arise in density functional theory, electron repulsion integrals in quantum chemistry,
integrals in kinetic theory applications and in the evaluation of chemical and nuclear
reaction rates, integrals for the efficient evaluation of semi-classical phase shifts in
atom-atom scattering and other applications. Often the integrals desired generally
have smooth well behaved integrands but in the simulations for which they are
required there are a large number of such integral evaluations and thus an efficient
scheme is desired.We emphasize the use ofGauss quadratures based on non-classical
polynomials.

In kinetic theory, the Boltzmann collision operator is the sum of an integral oper-
ator with a well-defined kernel and the collision frequency which is a multiplicative
operator. Similarly, the Hamiltonian in the Schrödinger equation is the sum of the
kinetic energy second derivative operator and a multiplicative potential function. We
consider the calculation of the spectral matrix representations of such multiplicative
operators, that is, matrix elements of functions that arise in kinetic theory (Hoare
and Kaplinsky 1970; Shizgal and Fitzpatrick 1974; Lindenfeld and Shizgal 1979;
Loyalka et al. 2007) and in quantum mechanics (Harris et al. 1965; Dickinson and
Certain 1968; Gallas 1980; Bordoni and Manini 2007).

An important example is the matrix representative of the coordinate operator
which is the Jacobi matrix, Eq. (2.71). The eigenvalues of this multiplicative operator
are the Gaussian quadrature points for the specified weight function and represent
the continuous spectrum of the coordinate operator on the specified interval. These
continuous eigenvalues do not converge to discrete values with an increase in the
number of quadrature points.

Thematrix elements of suchmultiplicative operators can sometimes be calculated
exactly in a particular basis set with algebraic methods or approximately by using
an appropriate Gaussian quadrature. Harris et al. (1965) and Dickinson and Certain
(1968) considered the quadrature evaluation of matrix elements of the potential in
the Schrödinger equation. The research lead to the development of a pseudospectral
method (Hamilton and Light 1986; Light and Carrington Jr. 2000) for the solution
of the Schrödinger equation, primarily for the calculation of the vibrational states of
polyatomic molecules.

In quantum chemistry, there is an ongoing interest in the efficient numerical eval-
uation of three-dimensional integrals over spherical coordinates, (r, θ,φ). The the-
oretical modelling of polyatomic molecules requires the accurate computation of
a very large number of similar integrals (Treutler and Ahlrichs 1995; Mura and
Knowles 1996; Lindh et al. 2001; Gill andChien 2003; El-Sherbiny and Poirier 2004;
Kakhiani et al. 2009; Mitani 2011). This is an important concern for researchers in
quantum chemistry involved with electronic structure calculations. The integration

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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over solid angle, (θ,φ), is generally considered with a cubature separately from the
integration over the radial variable, r. In Sect. 3.4.2, the details of the integration of
radial integrals is discussed with several examples.

The solution of the Boltzmann equation with a collocation method involves the
integral over a kernel which can have a sharp cusp (Gibble and Gallagher 1991;
Rogers and Berman 1991; Bovino et al. 2011; Kharchenko et al. 1998; Sospedra-
Alfonso and Shizgal 2012). We address the problem of the integration over the cusp
for the solution of the Boltzmann equation and similar integral equations discussed
in greater detail in Chap.5.We briefly discuss the challenges presented by oscillatory
integrals in physics as well as several integrals that are largely devoid of any physical
application (Bornemann et al. 2004).

Pseudospectral methods (Fornberg 1996; Canuto et al. 2006) applied to a mul-
titude of applied problems in diverse fields are defined in terms of global discrete
derivative matrix operators generally based on some interpolant. These methods
provide first and second order finite derivative matrix operators in physical space
and reduce partial differential equations to ordinary differential equations. We will
apply these matrix derivative operators to the solution of Sturm-Liouville eigenvalue
problems that define the classical polynomials. We also consider the application of
pseudospectral methods to the solution of the Fokker-Planck and Schrödinger equa-
tions in Chap.6. There are also finite difference methods (LeVeque 2007; Burden
and Faires 2011) that are local representations of the derivative.

3.2 Some General Principles for the Numerical
Evaluation of Integrals

We are concerned with the numerical evaluation of a one-dimensional integral of
the form

I =
b∫

a

f (x)dx, (3.1)

with the assumption that the antiderivative, F(x) defined by dF(x)/dx = f (x) is not
known analytically. If F(x) is known analytically, then the problem reduces to

I =
b∫

a

f (x)dx = F(b) − F(a). (3.2)

Since F(x) is generally not known, we consider a numerical approximation to the
integral I . In some cases, F(x) is known but expressed in terms of a very complicated
function, such as the hypergeometric function, whose evaluation is perhaps more
difficult than the numerical calculation of the integral.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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For numerical integration, it is important to know in detail the behaviour of the
integrand f (x). Of primary interest is the smoothness of f (x) as governed by the
continuity of f (x) and its derivatives. If f (x) is continuous, but df (x)/dx is not, spe-
cial attention is required for the numerical evaluation of I to be accurate as we will
show. If x ∈ [0,∞) and f (x) decays too slowly as x → ∞, the numerical algo-
rithm chosen must be adapted to take this behaviour into account. Other examples
include an integrand that oscillates about zero as x → ∞ or perhaps as x → 0 and
the value of I is small. Other special cases include integrands that have singular-
ities in the domain of integration for which a Cauchy principal value is required.
For certain functions, a simple variable change x → y, referred to as a mapping,
can transform the integrand to a more manageable form suitable for a particular
quadrature.

3.3 Scaling Quadrature Points and Weights

For quadratures defined by polynomials on the infinite and semi-infinite intervals
such as the Laguerre, Hermite and Maxwell polynomials, an important mapping
is the scale change, z = sx, to redistribute the quadrature points so as to better
capture the integrand. The scaling of quadrature points on the semi-infinite inter-
val for Gauss-Maxwell quadrature with weight function w(x) = x2e−x2 often
involves this variable change, z = sx, and the integral is calculated with the
algorithm

I =
∞∫

0

G(z)dz = s

∞∫

0

G(sx)dx = s

∞∫

0

x2e−x2 G(sx)

x2e−x2
dx,

≈
N∑

i=1

swi

x2i e−x2i
G(sxi) =

N∑

i=1

WiG(sxi), (3.3)

where the “big” weights are given by Wi = swi/w(xi).
The variable z = √

mv2/2kBT in the Maxwell weight function is the reduced
particle speed with m the particle mass, kB the Boltzmann constant and T the tem-
perature of the gas. We interpret this mapping in terms of an arbitrary temperature,
Ts, different from T so that x = √

mv2/2kBTs where the scaling parameter is iden-
tified as s2 = Ts/T . This scaling technique has been used in the solution of the
Boltzmann equation (Shizgal 1981), the Schrödinger equation (Baye and Heenen
1986; Lo and Shizgal 2008), the Vlasov equation (Schumer and Holloway 1998;
Gibelli et al. 2010) and is the basis for the two-temperature model for the solution of
the Boltzmann equation for ion mobilities (Mason and McDaniel 1988) in ion-atom
binary gases. In the sections that follow, we apply this important technique (Holway
1967; Tang 1993; Holloway 1996; Ordzywolek 2011) to the calculation of radial
integrals in density functional theory and to several other applications.
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3.4 Integrals in Density Functional Theory

The efficient evaluation of integrals is particularly relevant to the calculation of the
electronic energy states of atoms and molecules. Electronic structure modeling in
quantum chemistry involves the solution of the Schrödinger equation for the elec-
tronic state of a many electron atom ormolecule.We provide a very brief overview of
this subject tomotivate the specific applications in subsequent sections and refer read-
ers to several texts (Karplus and Porter 1970; Szabo and Ostlund 1996; McQuarrie
and Simon 1997; Helgaker et al. 2000; Levine 2009; Tsuneda 2014) and research
papers (Rys et al. 1983; El-Sherbiny and Poirier 2004; Sandberg and Rinkevicius
2012; Reine et al. 2012; Becke 2014) for a more complete description of this subject
and the numerical challenges presented.

The Hamiltonian for the Schrödinger equation is the sum of the electron kinetic
energy operators, the electron-nuclei and the electron-electron Coulomb interac-
tions. The only systems for which exact results exist are the hydrogen atom, and
one-electron ions such as He+ (Drake 1999; Drake et al. 2002) and H+

2 (Cassar and
Drake 2004).

The quantum state of the hydrogen atom is represented by the wave functionψn�m

(r,Ω) in spherical polar coordinates (r,Ω), Ω = (θ,φ). We showed in Sect. 2.4.6
that the wavefunction for the H-atom separates into the spherical harmonic basis
functionsY�m(Ω) = Pm

� (cos θ)eimφ and the associatedLaguerre polynomials, so that,

ψn�m(ρ,Ω) = Nn� exp(−ρ/2)ρ�L(2�+1)
n−�−1(ρ)Y�m(Ω), (3.4)

where ρ = 2r/na0, a0 = �
2/meZ2

e is the Bohr1 radius and Nn� is a normalization
such that the wave functions are orthonormal,

∫∫
ψ∗

nlmψn′l′m′r2drdΩ = δnn′δ��′δmm′ .

The spherical harmonic and Laguerre basis functions were discussed in Sects. 2.4.4
and2.4.5, respectively. In the absence of external fields and spin dependent interac-
tions, the electronic energy states depend only on the principal quantum number n,
and the energy is given by En = −e2/2a0n2.

The basis functions for the solution of the Schrödinger equation for many elec-
tron atoms and molecules are often derived from the eigenfunctions (“orbitals”) of
the H-atom. The basis functions chosen must be antisymmetric with respect to the
exchange of any pair of electrons in order to satisfy the symmetry properties of fermi-
ons. The representation of the Hamiltonian in these basis sets is then required and
the calculation of the electron-electron pair repulsion integrals presents an ongoing
numerical challenge as discussed in Sect. 3.8.1.

An important development in the field was the adoption of an approximate
formalism originally developed independently by Thomas (1927) and Fermi (1927)

1 Niels Henrik David Bohr (1885–1962) was a Danish physicist who made fundamental contribu-
tions to quantum theory and in particular to the Bohr model of the hydrogen atom. He received the
Nobel Prize in Physics in 1922.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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for the statistical mechanics of an electron gas and later applied to atomic structure
theory (Parr 1983; Parr and Gosh 1986). The electronic ground state is viewed as
dependent on the electron density, ρ(r), rather than on the multidimensional electron
wavefunction. For many electron systems, the electron density is formally expressed
by the integral of the square of the many electron wave function, that is,

ρ(r) =
∫

|Ψ (r1, r2, . . . , rn|2dr1r2 . . . rn−1. (3.5)

The electron-electron and electron-nuclei interactions are then expressed in terms of
the density. A variational formalism is applied to the Schrödinger equation written
in terms of the electron density appearing as a functional. The theoretical founda-
tions were established by Hohenberg and Kohn (1964) and Kohn and Sham (1965).
Excellent reviews of the Thomas-Fermi model and density functional theory are
available (Lieb 1981; Jones and Gunnarsson 1989; Morgan 1996) where the original
references can be found.

Density functional theory is now routinely employed in electronic structure sim-
ulations. The details of this theoretical approach are well beyond the scope of this
book. Amore complete exposition of this theoretical formalism is available in several
textbooks and reviews (Parr 1983; Jones and Gunnarsson 1989; Fiolhais et al. 2003;
Burke 2012).

3.4.1 Mapping the Semi-infinite Interval
r ∈ [0,∞) to x ∈ [−1, 1]

Much of the work on spectral methods (Fornberg 1996; Boyd 2001; Peyret 2002;
Canuto et al. 2006; Hesthaven et al. 2007) is based on Fourier series, Chebyshev and
Legendre polynomials. Chebyshev polynomials are very closely related to a Fourier
series and often referred to as a “Fourier series in disguise” as discussed in Chap.2.
In the next section, we review the evaluation of radial integrals that arise in density
functional theory applied to quantum chemistry. The integrals over the semi-infinite
domain are often mapped onto the finite interval [−1, 1] as summarized in Table3.1,
and Chebyshev or Legendre quadratures are then used.

Table 3.1 Different mappings of the semi-infinite interval r ∈ [0,∞) to x ∈ [−1, 1]
Reference Mapping

Boyd (1982), Treutler and Ahlrichs (1995) x = 1 − 2e−r/s

Murray et al. (1993) x = 2 m
√
1 − e−r/s − 1

Boyd (1987), Becke (1988) x = r−s
r+s

Mura and Knowles (1996) x = 2
√

r/(r − s − 1

Linear map x = 2r
rmax

− 1; r ∈ [0, rmax]
The parameter s is a scaling factor

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The accuracy of the different mappings can be tested with the numerical calcula-
tion of two integrals on the semi-infinite domain given by

∞∫

0

r2e−r2M2
5 (r)dr = 1,

∞∫

0

r2e−r2M4(r)M5(r)dr = 0, (3.6)

for which the integrands are shown in Fig. 3.1.
Figure3.1(A) shows the integrand for the normalization of the Maxwell polyno-

mial M5(r) with respect to the weight function, w(r) = r2e−r2 , r ∈ [0,∞). The
integral of this function is the norm which is unity. Figure3.1(B) shows the inte-
grand for the product of the polynomials M4(r) and M5(r) which are orthogonal and
the integral for this integrand is zero. We have changed notation from x (originally
reduced speed) to r (a radial coordinate) and in the current context we use x ∈ [−1, 1]
as the new variable obtained with variable change or mapping.

These two integrals, one of degree 10 and the other of degree 9, can be done
exactly to machine accuracy with the Maxwell (p = 2) quadrature points of order
6 shown by the symbols in the graphs. This is a remarkable demonstration of the
power of Gaussian quadratures albeit for polynomial integrands. This is no surprise.

This exact quadrature would not be obvious simply from the graphs of the
integrands. One could consider the numerical calculation of the integral in Fig. 3.1(A)
as the sum of six integrals, each evaluated with a quadrature between the zeros of
the function suitably transformed to [−1, 1]. The last interval would have to be trun-

(A) (B)

Fig. 3.1 (A) The variation of r2e−r2M2
5 (r) and (B) r2e−r2M4(r)M5(r) versus r. The polynomials

Mn(r) are orthogonal with the Gauss-Maxwell weight function w(r) = r2e−r2 , r ∈ [0,∞). The
integral of the function on the left is 1 and for the function on the right it is zero. The closed circles
are the quadrature points for the Gauss-Maxwell quadrature for which the integrals in Eq. (3.6) are
calculated to machine accuracy with N = 6
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Fig. 3.2 Different variable transformations or mappings from r ∈ [0,∞) to x ∈ [−1, 1] as summa-
rized in Table3.1. The dashed line is the linear map. The scale factor s is chosen such that rmax = 8
for which the integrands in Fig. 3.1 are considered to be very small

cated at some sufficiently large rmax. The integral of the function in Fig. 3.1(B) could
also be calculated by evaluating the ten integrals between nodes in the same way.
The integrals from node to node can be evaluated with a Chebyshev or Legendre
quadrature or a Simpson’s rule. This is a commonly used technique for oscillatory
integrals.

Five mappings that transform the radial variable r ∈ [0,∞) to x ∈ [−1, 1] are
listed in Table3.1 and shown in Fig. 3.2. A Gauss-Legendre quadrature is then used
to evaluate the integrals. These mappings are used in spectral methods (Boyd 1982,
1987) and in particular for the evaluation of integrals in density functional theory.
There have been several reviews with numerical comparisons (Lindh et al. 2001; Gill
and Chien 2003; El-Sherbiny and Poirier 2004).

The linear map (dashed line) with a truncation at r = 8 beyond which there is an
insignificant contribution to the integrals does not bias the distribution of quadrature
points other than the original clustering near the ends of the interval. An exponential
map (open circles) proposed independently byBoyd (1982) andTreutler andAhlrichs
(1995) distributes more quadrature points at small r than at large r. There could be
an additional flexibility in the mappings with the use of the scaling parameter which
has been chosen as s = 1. The main concern is the manner in which the mapping
distributes quadrature points and whether the details of the integrand have been
captured. A comparison of the distribution of quadrature points for the mappings in
Table3.1 was presented in Fig. 1 of Gill and Chien (2003).

We choose two test integrals of this type to study the different mappings from
[0,∞) to [−1, 1] that have been used as summarized in Table3.1, namely

〈M2
4 〉 =

∞∫

0

r2 exp(−r2)M2
4dr = 1,

〈M2
6 〉 =

∞∫

0

r2 exp(−r2)M2
6dr = 1. (3.7)
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Fig. 3.3 The variation of the relative error for the integrals 〈M2
n 〉 = ∫∞

0 r2e−r2M2
n (r) = 1 for

n = 4 and 6 with four different mappings. The relative error is shown versus the number of
Legendre quadrature points, N . The definitions of the mappings are given in Table3.1

Thevariation of the relative error for the numerical evaluation of these integrals versus
the number of quadrature points,N , is shown for severalmappings in Fig. 3.3. The rel-
ative error log10[1− Iapprox] for the linear map provides the most rapid convergence.
The error with the exponential map is comparable to that with the Boyd-Becke map.
The Mura-Knowles map provides the slowest convergence. The different conver-
gence rates depend on the distribution of quadrature points in the transformed interval
[−1, 1]. These normalization integrals can be evaluated exactly with the Gauss-
Maxwell quadrature (p = 2) with N = 5 and N = 7 quadrature points, respectively.

3.4.2 Radial Integrals in Density Functional Theory

Electron structure calculations in quantum chemistry and density functional theory
for polyatomic molecules require the calculation of a large number of three dimen-
sional integrals over a sphere of the form

I3D =
∫

F(r)dr, (3.8)
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where the vector r is defined in terms of the three spherical polar coordinates (r, θ,φ).
The three dimensional integral can be split into an angular integral

f (r) =
2π∫

0

π∫

0

F(r, θ,φ) sin θdθdφ, (3.9)

over θ and φ and the radial integral

Iradial =
∞∫

0

f (r)r2dr. (3.10)

The angular integral is often evaluated with an algorithm that reduces the two dimen-
sional integral to a single quadrature sum referred to as a cubature (Stroud and Secrest
1966; Lebedev 1977; Cools 2003; Haxton 2007) as discussed in Chap.2, Sect. 2.8.

There have been several numerical experiments of the calculation of Iradial with
f (r) approximated by a sum of Gaussians to model the radial variation of the electron
density in simple systems such as the inert gas atoms. Themappings from r ∈ [0,∞)

to x ∈ [−1, 1] in Table3.1 have been used (Becke 1988; Murray et al. 1993; Treutler
and Ahlrichs 1995; Mura and Knowles 1996; Lindh et al. 2001; Gill and Chien 2003;
El-Sherbiny and Poirier 2004; Kakhiani et al. 2009). These studies demonstrate
the intense interest in the development of efficient numerical algorithms for the
calculation of these three dimensional integrals, Eq. (3.8).

Lindh et al. (2001) considered the integral of a simple (normalized) Gaussian
given by,

2α(�+3)/2

Γ [(� + 3)/2]
∞∫

0

r�e−αr2r2dr = 1. (3.11)

They employed the mappings in Table3.1 and studied the calculation of this elemen-
tary integral for a range of values ofα and �versus the number of quadrature points,N .
For the integral of theGaussian inEq. (3.11), theGauss-Maxwell quadraturewith p =
2 provides an exact result for this integral (with � = 0) and a scale factor s = 1/

√
α.

We evaluate this integral with the Gauss-Maxwell quadrature and the scaling
procedure given by Eq. (3.3). The variation of the relative error, defined by

Relative Error =
∣∣∣∣1 − Iapprox

Iexact

∣∣∣∣, (3.12)

versus the scaling parameter s is shown in Fig. 3.4. The integral is evaluated to
machine accuracy for s = 1/

√
α which for α = 4 occurs at s = 0.5. For N = 2

and 4, the range of s values for which the integral is evaluated exactly (to machine
accuracy) in the vicinity of s = 0.5 is narrower than for the N = 8 and 10. It is clear
from the graph that there are values of s > 1/2, at the inverted cusps, for which the

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Fig. 3.4 The variation of the relative error for the integral of the Gaussian in Eq. (3.11) versus the
scale factor s with the number of Maxwell quadrature points equal to N . The integral is evaluated
to machine accuracy for s = 1/

√
α = 0.5 for which the quadrature is exact

integral is also evaluated exactly. This occurs because the error in the integration can
overestimate or underestimate the exact value and (Iapprox − Iexact) oscillates about
zero as s varies. It is difficult to determine a priori where these “roots” of Iapprox − I
versus s occur. We will demonstrate this behaviour versus the scaling parameter in
the evaluation of other integrals.

The variation of the relative error for the integral in Eq. (3.11) with the Maxwell
quadrature is shown in Fig. 3.5 versus N for s = 1/2, α = 4 and several values of �.
The integral is evaluated to machine accuracy for � = 6, 8, 10 and 14, with N = 4, 5,
6, and 8 quadrature points, respectively. This is not a surprising result as the Gauss-
Maxwell integration of a polynomial of degree 2N − 1 is exact with N quadrature
points. The Gaussian in Eq. (3.11) is essentially the Gauss-Maxwell weight function.

The functional forms chosen to simulate realistic radial integrands in Eq. (3.10)
include a simple Gaussian

f1(r) = e−ar2 , (3.13)

Fig. 3.5 The variation of the relative error for the Gaussian in Eq. (3.11) versus the number of
Maxwell quadrature pointsN for s = 1,α = 4 and several � values. For � = 6, 8, 10 and 14, the inte-
grals are evaluated to machine accuracy with N= 4, 5, 6, and 8 quadrature points, respectively. This
is consistent with the exactness of the Gauss-Maxwell quadrature for polynomials of order 2N − 1
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which is essentially Eq. (3.11). Also studied are the integrands which are the sum of
two Gaussians

f2(r) =
[
e−r2 + ae−ar2

]
, (3.14)

and the sum of three Gaussians

f3(r) =
[
e−r2 + ae−ar2 + be−br2

]
. (3.15)

Almost all of the algorithms proposed by different authors to date involve the
mapping of the semi-infinite interval, [0,∞) to the new integration variable x ∈
[−1, 1] and a quadrature appropriate for the new interval is chosen. These mappings
are summarized in Table3.1. These numerical experiments have been carried out
for a = 10 and b = 100. The quadratures chosen for x ∈ [−1, 1] are generally
Gauss-Legendre, Gauss-Chebyshev and Gauss-Jacobi quadratures.

The variation of the relative error versus the number ofGauss-Maxwell quadrature
points, N , for the evaluation of the integrand with a sum of two and three Gaussians,
Eqs. (3.14) and (3.15), are shown in Fig. 3.6(A), (B), respectively, for several values
of the scaling parameter, s. For the smaller values of s the variation of log10(Relative
Error) versus N is almost linear as shown by the dashed lines and also summarized
in Table3.2 for both integrands. The relative error oscillates with N and the linear
variation is not accurate for the larger s values.

A Laguerre quadrature which does not involve the mapping to [−1, 1] has also
been used as well as a nonclassical quadrature based on the weight function w(x) =
ln2 x for x ∈ [−1, 1] (Gill and Chien 2003). The quadrature points and weights for
this weight function are easily calculated with a MATLAB code. A comparison and
summary of the results of these studies were provided by Gill and Chien (2003) and
El-Sherbiny andPoirier (2004). The relative errors obtainedvary considerably and are
for the most part in the range −2 → −4 for N in the range 11 → 17. The accuracies

(A) (B)

Fig. 3.6 (A) The variation of the relative error versus the number of quadrature points N for the
integrand in Eq. (3.14) with a = 10 and several values of the scaling parameter s. (B) The variation
of the relative error versus the number of quadrature points N for the integrand in Eq. (3.15) with
a = 10 and b = 100 and several values of the scaling parameter s. The dashed lines are the linear
fits to the numerical result
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Table 3.2 Spectral fits to the
convergence of
log10[|1 − I(N)/Iexact |] =
A(s)N + B(s) and the scaling
parameter s

s A(s) B(s)

f2(r) = [e−r2 + 10e−10r2 ]
0.5 −0.2630 0.1471

0.6 −0.3996 0.1991

0.7 −0.4804 −0.2947

0.8 −0.4554 0.0915

f3(r) = [e−r2 + 10e−10r2 + 100e−100r2 ]
0.3 −0.08630 0.01899

0.4 −0.01643 0.01015

0.45 −0.02132 0.01369

of the quadratures proposed for the integration of the radial densities for the three
atoms mentioned are in the approximate range −5 → −8 with N up to 25.

In Table3.3, we compare the results with the Gauss-Maxwell quadrature with the
nonclassicalMultiexp quadrature ofGill andChien (2003). Both algorithms converge
quicklywith a small number of quadrature pointswith theGauss-Maxwell quadrature

Table 3.3 Convergence of the integration of f2(r) and f3(r), Eqs. (3.14) and (3.15)with theMaxwell
quadrature (p = 2) and the Multiexp nonclassical quadrature by Gill and Chien (2003) with weight
function w(x) = ln2(x), x ∈ [0, 1]
N I(N) (s=0.74) log10(Relative Error) I(N) log10(Relative Error)

w(r) = r2e−r2 ; r ∈ [0,∞) w(x) = ln2(x); x ∈ [−1, 1]
f2(r) = [e−r2 + 10e−10r2 ]
3 0.586161143 −2.30 0.586777664 −2.22

5 0.581900828 −2.64 0.585623383 −2.39

7 0.583287168 −4.08 0.585623383 −2.39

9 0.583232448 −5.00 0.583206200 −4.26

11 0.583238398 −6.58 0.583228705 −4.79

13 0.583238252 −7.81 0.583238660 −6.15

15 0.583238238 −8.09 0.583238152 −6.80

f3(r) = [e−r2 + 10e−10r2 + 100e−100r2 ]
3 0.471897196 −0.606 0.586885435 −1.19

5 0.578862504 −1.11 0.622404076 −2.09

7 0.622639519 −2.11 0.634521349 −1.95

9 0.624246729 −2.28 0.625215372 −2.43

11 0.625501911 −2.49 0.628005273 −3.14

13 0.627361813 −3.52 0.627477032 −3.94

15 0.627548579 −5.79 0.627559616 −4.80
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converging slightly faster. The value of s is optimized for the Gauss-Maxwell quadra-
ture. It appears that it is more efficient to develop quadratures on the semi-infinite
interval and avoid the mapping to the interval x ∈ [−1, 1].

3.5 Chemical and Nuclear Reaction Rate Coefficients

In this section, we consider integrals that arise in the calculation of equilibrium
reaction rates for chemical and nuclear fusion reactions. The theoretical calcula-
tion of reactive cross sections involves a classical or quantal treatment of the colli-
sion dynamics between the reactants with a specified interparticle interaction. The
macroscopic rate coefficient is then the average of the reactive cross section with
Maxwellian distributions for the colliding particles (Ross and Mazur 1961; Truhlar
andWyatt 1976; Chatfield et al. 1991). An important endeavor is the development of
efficient algorithms for the calculation of rate coefficients of chemical reactions for
numerous applications in shockwaves (Brun 2009), in atmospheric science (Seinfeld
and Pandis 2006), for nuclear fusion reactions in astrophysics (Clayton 1968) and
nuclear fusion machines (Atenzi and Meyer-Ter-Vehn 2004).

3.5.1 Equilibrium Rate Coefficient for Chemical Reactions

The temperature dependence of the binary reactive rate coefficient, k(T), for gas
phase chemical reactions as well as nuclear fusion reactions is given in terms of
the energy dependence of the total reactive cross section, σr(E), versus the relative
translational energy of the reactants E, and the equilibriumMaxwell-Boltzmann dis-
tribution functions of the colliding pair of particles, F1(v1) and F2(v2), respectively,
of the form

F(v) =
[

m

2πkBT

]3/2
e−mv2/2kBT , (3.16)

and normalized according to 4π
∫∞
0 F(v)v2dv = 1. In Eq. (3.16), the temperature

of the gas is T , kB is the Boltzmann constant and m = m1 or m = m2 for the particle
masses. The temperature dependence of the reactive rate coefficient is given by the
average of the reactive flux gσr(E) over all particle velocities weighted with the
distribution functions, that is,

k(T) =
∫∫

F1(v1)F2(v2)gσr(E)dv1dv2, (3.17)

where the relative velocity is g = v2 − v1. We transform to relative velocity, g, and
center of mass, G, that is,

g = v2 − v1,

G = m1v1 + m2v2
m1 + m2

. (3.18)
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The total kinetic energy can be expressed in terms of G and g given by

m1v
2
1 + m2v

2
2 = m0G2 + μg2, (3.19)

where m0 = m1 + m2 and the reduced mass is μ = m1m2/m0. The Jacobian of the
transformation is unity so that dv1dv2 = dGdg. The integral over G that results
from this transformation is

4π

∞∫

0

e−m0G2/kBT G2dG = 2π

[
2kBT

m0

]3/2
Γ ( 32 ), (3.20)

where Γ (α) = ∫∞
0 e−xxα−1dx is the Gamma function. Two useful identities for the

Gamma function are Γ (n + 1) = nΓ (n) = n! and Γ ( 12 ) = √
π.

With Eq. (3.20), Eq. (3.17) can be reduced to a single integral over g, that is

k(T) = 4π

(
μ

2πkBT

)3/2 ∞∫

0

e−μg2/2kBT σr(E)g3dg, (3.21)

or in terms of relative energy E = μg2/2,

k(T) =
√

8

πμ

1

(kBT)3/2

∞∫

0

e−E/kBT Eσr(E)dE. (3.22)

These are standard results that can be found in many texts on chemical kinetics and
kinetic theory (McQuarrie and Simon 1997; Gombosi 1994; Kremer 2010; Liboff
2003). The thermal average in Eq. (3.22) is the last step in a detailed theoretical
calculation that involves the interaction potential between the reactants followed by
the classical or quantal scattering calculation of the reactive cross section (Chatfield
et al. 1991).

The temperature dependence of k(T) is determined by the energy dependence of
the reactive cross section σr(E). In fact, one can view k(T) as the Laplace transform
of Eσr(E). There are many applications that we can consider each with a different
reactive cross section σr(E). We first consider a simple model system for reactions
with activation energy referred to as the line-of-centers reactive cross section given by

σr(E) =
{
0, E ≤ E∗,
σd(1 − E∗

E ), E > E∗. (3.23)

The activation energy is denoted by E∗ and there are no reactive collisions if E < E∗.
For this simple model, the integral in Eq. (3.17) can be done analytically and the
result is,

k(T) = σd

√
8kBTb

πμ
e−E∗/kBT , (3.24)

where σd is a hard sphere cross section.
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There is an ongoing effort to determine reactive cross sections experimentally
as well as theoretically for a large number of different systems for a wide range of
applications. We consider here just one such physically realistic process, namely the
collision dissociation reaction O + O2 with applications to planetary atmospheres
(Johnson and Tully 2002). The analytic fit to the theoretical scattering results is

σr(E) = σ0
(E − Et)

a

E0 + Eb
, (3.25)

where σ0 = 4.51, Et = 14.5eV, E0 = 0.21, a = 1.03 and b = 1.31. The cross
section is in 10−16 cm2 with E in eV. The variation with energy of this cross section
is shown in Fig. 3.7 in comparison with the line-of-centers cross section with the
threshold energy Et = 1.8eV in order to fit the cross sections near threshold.

For such reactions with activation energy, we transform the integral over energy in
Eq. (3.17) to an integration over reduced energy y = E/kBT from which the integral
is zero for y < yt = Et/kBT . With the additional transformation to z = y − yt

we get the rate coefficient in a form suitable for integration with Gauss-Laguerre
quadratures, that is,

k(T) =
√
8kBT

πμ

⎡

⎣yte
−yt

∞∫

0

e−zσ[(z + yt)kBT ]dz

+ e−yt

∞∫

0

ze−zσ[(z + yt)kBT ]dz

⎤

⎦ . (3.26)

The first integral suggests the use of Laguerre quadratures based on L(α)
n (z) with

α = 0 and the secondwithα = 1. Theweights and points for each can also be scaled.
In Table3.4, we show the convergence of the rate coefficient versus the number of

Gauss-Laguerre quadrature points for several different scale factors, s. Also shown

Fig. 3.7 (Left panel) Reactive cross section for collisional dissociation for O+O2, Eq. (3.25) (solid
line) in comparison with the line of centers cross section (dashed line; E∗ = Et, σd = 1.8Å2).
(Right panel) Integrand in Eq. (3.22) versus the reduced energy, y = E/kBT )
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Table 3.4 Convergence of the integration Eq. (3.26) for the O + O2 reactive cross section,
Eq. (3.25), for T = 6,000K with a Simpson’s rule (SR) integration and the Gauss-Laguerre quadra-
ture for three scalings, s

N SR N s = 1 s = 0.8 s = 0.5

20 1.243617 6 1.257290 1.257398 1.257416

40 1.257156 12 1.257497 1.257522 1.257546

60 1.257661 18 1.257533 1.257544 1.257555

80 1.257671 24 1.257546 1.257551 1.257557

120 1.257625 30 1.257551 1.257555 1.257559

200 1.257586 40 1.257556 1.257558 1.257560

300 1.257572 50 1.257558 1.257559 1.257560

The rate coefficient is in units of 10−12
√
8kBT/πμ

is the convergence with a Simpson’s rule. One difficulty with the Simpson’s rule
integration is the truncation of the grid at some sufficiently large zmax. There are
therefore two convergence parameters, the number of grid points, N and zmax .

The rate of convergence of the integrals is much slower with the Simpson’s rule
in comparison with the Gauss-Laguerre quadrature. The change with scale factor
improves the quadrature result for the smaller N values.

3.5.2 Rate Coefficients for Fusion Reactions;
Non-resonant Cross Sections

The accurate calculation of nuclear reaction rate coefficients is a very important
for solar and big bang nucleosynthesis (Clayton 1968; Angula 1999; Descouvemont
et al. 2004; Bertulani et al. 2013) as well as for nuclear fusionmachines (Haubold and
John 1981; Heidbrink and Sadler 1994; Atenzi and Meyer-Ter-Vehn 2004). There
is considerable research work on the accurate computation of nuclear reaction rates
versus the ambient temperature. For time dependent evolutionary simulations, the
rate coefficients need be evaluated numerous times as the temperature evolves with
time.

In this section, we consider nuclear fusion reactions for which the non-resonant
reactive cross sections are of the form

σr(E) = S(E)

E
e−B/

√
E, (3.27)

where B is a constant and S(E), often referred to as the astrophysical S-factor,
is a slowly varying function of E. There is another important resonant contribu-
tion to fusion reactions which we do not consider. The equilibrium rate coefficient
from the average of the reactive cross section with the Maxwellian distribution of
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relative energies is given by Eq. (3.22). With the reduced energy y = E/kBT , the
rate coefficient is given by

k(T) = S0

√
8

πμkBT
I, (3.28)

where S(E) is set to a constant, S0, and the energy average of the cross section can
be written in terms of the dimensionless integral

I =
∞∫

0

e−y−b/
√

ydy, (3.29)

with b = B/
√

kBT .
We are interested in the numerical evaluation of the integral in Eq. (3.29). The

S0 and B values of some representative nuclear fusion reactions in stellar interiors
are shown in Table3.5. The details of the integration in Eq. (3.29) are shown in
Fig. 3.8(A) as the product of the decreasing Maxwellian and the increasing cross
section. The integrand is shown as the Gaussian curve.

The integral in Eq. (3.29) is often approximated with the method of stationary
phase also referred to as the saddle-point method (Clayton 1968; Atenzi and Meyer-
Ter-Vehn 2004). This is the Gaussian approximation to the bell-shaped curves in
Fig. 3.8 which involves the Taylor expansion of the argument of the exponential in

Table 3.5 Representative nuclear fusion reactions (barn = 10−24 cm2)

Reaction S(0) (keV barn) B (
√
keV)

D + T → α + n 1.2× 104 34.38

T + T → α + 2n 138 38.45

p + p → D + e+ + ν 4.0× 10−22 22.20

(A) (B)

Fig. 3.8 (A) The product of decaying Maxwellian distribution and the rising nuclear cross section
for b = 20. The thermally averaged rate coefficient is the area under the Gaussian shaped curve.
(B) Integrands for Eq. (3.29) for b = 18, 20 and 22, from top curve to bottom curve. The dashed
curves are the Gaussian approximations to the actual integrands used in the approximate evaluation
of the integral with the saddle-point or stationary phase method as discussed in the text. The exact
integrands, Eq. (3.29), are shown by the solid curves
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Eq. (3.29) up to the quadratic term. The maximum of the function f (y) = y + b/
√

y

occurs at ym = 3
√

b2/4 and the second derivative is f ′′(ym) = 3
4b/y5/2m . With the

extension of the lower limit of the integral to −∞, the analytic evaluation of the
integral of the resulting Gaussian, gives the approximate result

Iapprox =
√

4π

3ym
e−ym−b

√
ym . (3.30)

The Gaussian approximations to the integrand for b = 18, 20 and 22 are shown by
the dashed curves in Fig. 3.8(B). The exact value of the integral can be determined
withMAPLE and a comparison of the exact valuewith the approximation, Eq. (3.30),
is shown in Table3.6 versus b. The Gaussian approximation is accurate to several
percent.

We use a Simpson’s rule integration to estimate the integral in Eq. (3.29). The
variation of the accuracy versus the number of integration points, N , is shown in
Fig. 3.9 for three different values of ymax that defines the integration interval [0, ymax].
Figure3.9(A) shows an oscillatory variation of the relative error versus N and there
are sharp minima at specific N values for each ymax .

Table 3.6 The error of the Gaussian approximation to the integral I = ∫∞
0 exp(−y − b/

√
y)dy,

Eq. (3.30), and the exact value computed with MAPLE

b Iexact Iapprox log10 |(Iexact − Iapprox)/Iexact

5 0.118541084561830544929940 (−1) 1.106 (−2) −1.18

10 0.567437038339189105890373 (−3) 5.425 (−4) −1.36

18 0.101229347024099882905469 (−4) 0.9815 (−5) −1.52

20 0.406891577852032546746999 (−5) 3.953 (−6) −1.55

22 0.168190705863960574567002 (−5) 1.637 (−6) −1.56

(A) (B)

Fig. 3.9 Variation of log10[relative error] versus the number of integration points, N , for the Simp-
son’s rule evaluation of the integral, Eq. (3.29) for b = 20. (A) Integration interval is [0, ymax],
(B) Integration intervals [0, 3

√
b2/4] and [ 3

√
b2/4, ymax] where the peak in the Gaussian approxima-

tion occurs at y0 = 3
√

b2/4 and N integration points in each interval
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Figure3.9(B) shows the results with a Simpson’s rule integration using two inter-
vals, namely [0, 3

√
b2/4] and [ 3

√
b2/4, ymax] where the peak in the Gaussian approx-

imation occurs at y0 = 3
√

b2/4. The relative error is comparable to that with the full
integral and half the number of points but the variation versus N appears monotonic.
For the smaller values ofN , the accuracy decreases with increasing ymax owing to the
larger step size. For ymax = 20, the accuracy attains an asymptotic value because the
“tail” of the integrand has not been sampled. This improves with the larger ymax val-
ues. This exercise illustrates the difficulties of the Simpson’s rule on the semi-infinite
axis requiring ymax to be specified.

We also carry out a comparison of the numerical evaluation of the integral in
Eq. (3.29) with a Laguerre quadrature defined byw(y) = e−y , and with a quadrature
based on the Maxwell weight with p = 1 that is, w(x) = xe−x2 with the change
of variable y = x2. An important aspect is the distribution of points within the
integrand shown in Fig. 3.8. Thus the quadrature points must be scaled so as to be
predominantly within the bell shaped curve of the integrand. The results with the
Gauss-Laguerre and Gauss-Maxwell quadratures shown in Fig. 3.10 converge much
faster versus N than the Simpson’s rule integration. The sharp minima in Fig. 3.10

(A) (B)

(C)
s

s s

s
(D)

Fig. 3.10 The variation of the log10[relative error] versus the scale factor s for the integral I = ∫∞
0

exp(−y − b/
√

y)dy: (A) and (C) Gauss-Maxwell quadrature; w(x) = x exp(−x2). (B) and (D)
Laguerre quadrature based on w(y) = exp(−y). The exact value of the integral is calculated with
MAPLE listed in Table3.6
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versus the scaling parameter s arise from the change in sign of Iapprox − Iexact . Thus,
there are several values of the scaling factor for which the numerical result is exact.

There have been several approximate analytical results for the energy integral with
the cross section Eq. (3.27) and an energy dependent S(E) which is often expanded
in a power series about E = 0, that is,

S(E) = S(0) +
N∑

n=1

1

n!
dS(E)

dE

∣∣∣∣
E=0

En. (3.31)

With Eq. (3.31), the reaction rate involves integrals of the form

In =
∞∫

0

yne−y−b̂/
√

ydy. (3.32)

This type of parametrization of the cross section and the subsequent analytical
approximation of the integrals was carried out by several groups (Haubold and John
1981; Hussein and Pato 1997; Ueda et al. 2000; Mathai and Haubold 2002). This
approach yields the integrals in terms of the Meijer G-function related to the hyper-
geometric function.

We do not pursue this approach here and consider an efficient quadrature evalu-
ation of the integral in Eq. (3.22) with an alternate fit to S(E) in the form of a Padé
approximant (Bosch and Hale 1992) of the form

S(E) = a1 + E(a2 + E(a3 + E(a4 + Ea5))))

1 + E(b1 + E(b2 + E(b3 + Eb4)))
. (3.33)

The cross section parameters for some of the more important fusion reactions are
provided in Table IV of the review paper by Bosch and Hale (1992). With the change
of variable x2 = E/kBT , the integral in Eq. (3.22) is appropriate for the Gauss-
Maxwell quadrature with p = 1.

In Table3.7 we show the rapid convergence of the rate coefficients, k(T), for
three nuclear fusion reactions with the Gauss-Maxwell (p = 1) quadrature. A small
number of quadrature points of the order of 10 yields more accurate results than the
corresponding empirical fits of the rate coefficients versus temperature by Bosch and
Hale (1992).

3.6 Integrals in Collision Theory and Kinetic Theory

The theoretical description of collisional processes represents an important research
effort in chemical physics. This includes the theoretical calculations of reactive
cross sections for chemical and nuclear reactions, photoionization, collisional energy
transfer and many other applications. In kinetic theory, the collision operator in the
Boltzmann equation for translational energy is defined by the differential collision
cross section for binary collisions for atom-atom, electron-atom and ion-atom pairs.
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Table 3.7 Convergence of the nuclear reaction rate coefficient, k(T) in cm3s−1 with the thermal
average of the cross section in Eq. (3.33) and the parameters in Table VII of Bosch and Hale (1992)

kBT(keV) N 3He(d, p)4He D(d, p)T D(d, n)3He

1 4 0.2353 (−26) 0.98921 (−22) 9.6908 (−23)

6 2.8176 (−26) 0.99971 (−22) 9.8165 (−23)

8 2.9488 (−26) 1.0015 (−22) 9.8340 (−23)

10 2.9571 (−26) 1.0013 (−22) 9.8328 (−23)

12 2.9575 (−26) 9.8326 (−23)

14 2.9576 (−26)

Bosch and Hale (1992) 3.057 (−26) 1.017 (−22) 9.933 (−23)

10 4 1.6792 (−19) 5.8566 (−19) 6.0804 (−19)

6 1.6301 (−19) 5.8523 (−19) 6.0798 (−19)

8 1.6286 (−19) 5.8486 (−19) 6.0766 (−19)

10 1.6288 (−19) 5.8492 (−19)

12 5.8491 (−19)

Bosch and Hale (1992) 2.126 (−19) 5.781 (−19) 6.023 (−19)

50 4 3.4347 (−17) 9.9370 (−18) 1.1349 (−17))

6 3.4255 (−17) 9.9725 (−18) 1.1378 (−17)

8 3.4241 (−17) 9.9668 (−18) 1.1373 (−17)

10 3.4244 (−17) 9.9678 (−18) 1.1374 (−17)

Bosch and Hale (1992) 5.554 (−17) 9.838 (−18) 1.133 (−17)

The Maxwell weight function w(x) = x exp(−x2) is used in the energy integration. The rate
coefficients quoted by Bosch and Hale (1992) are taken from their Table VIII

Inelastic collisions between molecules with internal energy transfer are also impor-
tant processes (McCourt et al. 1991; Brun 2009) as well as inelastic electron or ion
atom/molecule collisions (Burke and Joachain 1995; Burke 2011) but these topics
are beyond the scope of this book.

In the next five subsections, we consider the quadratures involved in the evaluation
of (1) the reactive and elastic collision frequencies, (2) the integration over the cusp in
the kernel of the Boltzmann equation, (3) the shear viscosity for a simple gas, (4) the
eigenvalues of the collision operator in the Boltzmann equation for the special model
referred to as Maxwell molecules and (5) the Jeffries-Wentzel-Brillouin-Kramers
(JWKB) approximation to the quantal phase shifts used in the calculation of atom-
atom collision cross sections. Some but not all of the physical results discussed
are derived in detail and the references provided should be consulted for a better
understanding of each topic.

3.6.1 The Reactive and Elastic Collision Frequencies

In the previous sections we showed the relationship between the energy dependence
of the reactive cross section and the temperature dependence of the reactive rate
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coefficient for reactions of chemical interest as well as for fusion reactions. In this
section, we express the reactive rate coefficient in terms of the speed dependence
of the reactive collision frequency by assuming that one reactant is distributed in
speed with aMaxwellian distribution whereas the distribution function of the second
component is not specified. We thus integrate over the velocity of the species m2
taken to be at equilibrium but we do not transform to centre of mass and relative
velocity coordinates as done in the previous section.

We write the reactive rate coefficient as

k(T) =
∫

f1(v1)R(v1)dv1, (3.34)

where the reactive collision frequency is defined by

R(v1) =
∫

F(v2)σr(E)gdv2. (3.35)

The analogous elastic collision frequency, Z(v1), is

Z(v1) =
∫

F(v2)σel(E)gdv2, (3.36)

with the total elastic cross section denoted by σel(E). This elastic collision frequency
occurs in the collision operator of the Boltzmann equation. The spectral properties of
the linear and linearized operators are considered in detail in Chap. 5, and the elastic
collision frequency plays an important role as demonstrated later.

The distribution function of reactant labeled 1, f1(v1), is unspecified whereas
F(v2) is a Maxwell-Boltzmann distribution function. We define reduced velocity
variables

z = g
√

μ

2kBT
, xi = vi

√
mi

2kBT
, i = 1, 2 (3.37)

so that

R(x1) = 1

π

√
2kBT

πμ

∫
e−x22σr(E)zdx2. (3.38)

With the change of variable in Eq. (3.38) from x to z where the reduced relative
velocity is z = √

M1x2 − √
M2x1 and the mass fractions are M1 = m1/(m1 + m2)

and M2 = m2(m1 + m2), we have that

R(x1) = 2

√
2kBT

πμ
M

− 3
2

1

∞∫

0

e−(z2+M2x21)/M1

⎡

⎣
1∫

−1

e−2
√

M2zx1μ̂/M1dμ̂

⎤

⎦σr(E)z3dz.

(3.39)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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The 2π factor results from the integration over the azimuthal angle of z relative to x1
as the polar axis and μ̂ = cos θ where θ is the angle between z and x1. The integration
over μ̂ is elementary and we find that,

R(x1) =
√
2kBT

πμ

1√
M1M2x1

[G(−x1) − G(x1)] , (3.40)

where

G(x1) =
∞∫

0

e−(z+√
M2x1)2/M1σr(E)z2dz. (3.41)

To evaluate R(x1), the energy dependence of the reactive cross section must be
specified and in the first instance we choose the line-of-centers model, Eq. (3.23),
for which we have

G(x1) = σd

√
M1

[
M1I2 − 2

√
M1M2I1 + (M2x1 − ε)I0

]
, (3.42)

where the In integrals are defined by

In =
∞∫

t0

e−t2 tndt, (3.43)

where t0 = (
√

ε + √
M2x1)/M1. These integrals are determined by iteration with

I0 =
√

π

2
erfc(t0),

and

In+1 = 1

2

[
e−t20 tn

0 + nIn−1

]
.

The variation of the reactive collision frequency for this line-of centers cross
section versus reduced energy, x21, for several mass ratios is shown in Fig. 3.11. The
mass ratio decreases from m1/m2 = 100 to m1/m2 = 10−4 as shown in the graph
and Table3.8. The reactive collision frequency changes form with mass ratio and the
numerical evaluation of the integral

k(T) =
∞∫

0

x2e−x2R(x)dx, (3.44)

for the rate coefficient must take this mass ratio variation into account. A straightfor-
ward application of the quadrature based on theMaxwellian weight,w(x) = x2e−x2 ,
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Fig. 3.11 The reactive collision frequency R(x) in units of
√
2kBT/πμ versus reduced energy, x2 ≡

x21 = mv21/2kBT for reduced threshold energy ε∗ = 5 for the line-of-centers cross section, Eq. (3.23),

and for several mass ratios m1/m2 (see Table3.8). For m1/m2 → 0, R(x) → 2e−x2σr(x2kBT) and
increases rapidly near the threshold energy for small mass ratios m1/m2

Table 3.8 The relative error of the Gauss-Maxwell quadrature approximation (w(x) = x2e−x2 ) to
the integral I = ∫∞

0 x2 exp(−x2)R(x)dx for the line-of-centers cross section, Eq. (3.23)

m1/m2 0.0001 0.05 1 10 100

N Accuracy = log[|1 − I(N)/Iexact |]
4 −0.300 −0.521 −4.34 −6.65 −10.5

6 −0.379 −0.731 −4.56 −10.3 −14.3

8 −0.552 −1.08 −6.17 −14.3

10 −0.806 −1.66 −7.88

12 −1.73 −1.98 −9.64

14 −0.878 −1.87 −11.5

16 −0.945 −2.69 −14.0

18 −1.01 −2.45 −14.9

20 −1.16 −3.14

The exact value is Iexact = e−ε∗ , ε∗ = 5; The integrals are in units of
√
2kBT/πμ

yields excellent results for the larger mass ratios but does not capture the integrand
for the small mass ratios as shown in Table3.8. The results for the two smallest mass
ratios in the table are very poor and understandably so. Much better results can be
obtained with the appropriate translation of the quadrature points so that the first
point is just below the threshold energy.

For ε∗ = 0, the reactive collision frequency reduces to the well-known elastic
collision frequency,

Z(x) = πd2

√
kBTb

2M

[
(2

√
γx + 1√

γx
)

√
π

2
erf(

√
γx) + e−γx

]
. (3.45)
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This collision frequency appears in the Boltzmann collision operator, Eq. (3.46),
and is in part the origin of the continuous portion of the eigenvalue spectrum of
the collision operator (Hoare and Kaplinsky 1970). In Sect. 3.9.2, we consider the
calculation of matrix elements of the multiplicative operator, Z(x). We compare the
matrix representation in Laguerre polynomials with the representation in Maxwell
polynomials. We compare the calculation of the matrix elements of the elastic col-
lision frequency with the calculation of the matrix elements of the potential in the
Schrödinger equation. The matrix elements of the coordinate operator (Harris et
al. 1965; Dickinson and Certain 1968) featured prominantly in the development of
pseudospectral methods in chemical physics (Light and Carrington Jr. 2000).

3.6.2 Integration Over a Cusp; the Boltzmann Equation

In Chap.5, we consider the solution of integral equations, in particular the Boltzmann
equation, with a kernel K(x, y) defined later. The kernel in this integral equation
exhibits a cusp for x = y with a derivative discontinuity at this point. We use a
pseudospectral or collocation method (Jerri 1999; Kythe and Puri 2002) to solve the
integral equation which requires the integration over the cusp with a chosen quadra-
ture. Other examples of this type of integral equation include Love’s integral equation
for a circular parallel plate capacitor (Love 1949; Bartlett and Corle 1985; Kumar
2010; Pastore 2011) and a weakly singular Volterra integral equation with sharp
gradients reported by Isaacson and Kirby (2011) as well as for quantum mechan-
ical modelling of crystalline solids (Pask et al. 2012). In this section, we consider
numerical experiments that involve the integration over the cusp in the kernel for the
Boltzmann equation.

We consider a two component system with one component of mass m dilutely
dispersed in a second component of mass M which is at equilibrium and at a constant
temperature, Tb. The nonequilibrium distribution function, f (v, t), in the absence of
external fields and spatial gradients is given by the linear Boltzmann equation

∂f (v, t)

∂t
=
∫

K(u, v)f (u, t)du − Z(|v|)f (v, t), (3.46)

where K(u, v) is a kernel that describes the change in the distribution function owing
to collisions between the two species (Chapman and Cowling 1970; Kapral and
Ross 1970; Ferziger and Kaper 1972; Kharchenko et al. 1997) and is known for
arbitrary differential cross section as given explicitly by Eq. (7) in Sospedra-Alfonso
and Shizgal (2012). The kernel depends on the mass ratio of the two components
defined by γ = M/m.

The distribution function can be anisotropic and it is often represented as an
expansion in Legendre polynomials, that is

f (v, t) =
∞∑

�=0

f�(v, t)P�(μ), (3.47)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where μ = cos θ and θ is the angle between v and the polar axis in velocity space.
We consider the relaxation of isotropic and anisotropic distributions in Chap.5,
Sects. 5.6.3 and5.7.1, respectively. In Chap.6, Sect. 6.3, we consider the relaxation
of electrons in inert gas atoms with the Fokker-Planck equation which is the limiting
form of the Boltzmann equation for γ → ∞. This mass ratio limit is referred to as the
Lorentz limit as discussed in detail later. The other mass ratio limit is the Rayleigh
limit, namely γ → 0.

If the distribution function of species m is assumed isotropic, only the spherically
symmetric component f0(v, t) in Eq. (3.47) is of concern. In terms of the reduced
energies x = mu2/2kBTb and y = mv2/2kBTb, respectively, the isotropic distribution
satisfies the Boltzmann equation,

∂f0(y, t)

∂t
=

∞∫

0

k0(x, y)f0(x, t)dx − Z(y)f0(y, t). (3.48)

The kernel k0(x, y) is the spherical component of K(u, v).
The kernel for the hard sphere differential cross section, σ = d2/4, is known as

the Wigner2-Wilkins3 kernel and was originally used to describe neutron slowing
down (Wigner andWilkins 1944). TheWigner-Wilkins kernel (Andersen and Shuler
1964; Hoare and Kaplinsky 1970; Hoare 1971) is given by

kww(x, y) = 1
2AQ2

√
π

x

[
erf(Q

√
y − R

√
x) + ex−yerf(R

√
y + Q

√
x)

±
(
erf(Q

√
y − R

√
x + ex−yerf(R

√
y − Q

√
x)

)]
, (3.49)

where A = πd2nb
√

kBTb/2M, Q = 1
2 (γ

−1/2 + γ1/2), R = 1
2 (γ

−1/2 − γ1/2) and nb
is the density of the background gas of particles of mass M. It is useful to note for
later reference that the corresponding kernel for realistic differential cross sections
is known and involves two integrations over the scattering angle and relative energy
(Kapral and Ross 1970; Sospedra-Alfonso and Shizgal 2012, 2013).

The steady state solution is the equilibrium Maxwellian distribution in dimen-
sionless energy units, (see Eq. (3.16)), that is

F̂(y) = 2√
π

√
ye−y .

There are two important physical principles that yield the dependence of the colli-
sion frequency, Z(y), versus the reduced energy, y, originally defined by Eq. (3.36).

2 Eugene Paul Wigner (1902–1995), was an Hungarian American theoretical physicist and math-
ematician who was awarded the Nobel Prize in Physics in 1963 for his fundamental work on the
quantum mechanics of elementary particles and symmetries.
3 Jesse Ernest Wilkins, Jr. (1923–2011) was an African American nuclear physicist and mathemati-
cian who contributed to the Manhattan project and nuclear fission reactions.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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The first is conservation of number density so that the integral of Eq. (3.48) gives
zero that is, ∂/∂t[∫∞

0 f0(y, t)
√

ydy] = 0, as f0(y, t) is normalized to unity, and we
have that,

Z(y) =
∞∫

0

k0(y, x)dx. (3.50)

The second principle is the detailed balance condition at equilibrium (Hoare and
Kaplinsky 1970) so that ∂f0/∂t = 0 for f0 = F̂, that is,

Z(y) = 1

F̂(y)

∞∫

0

k0(x, y)F̂(x)dx. (3.51)

The Maxwellian distributions in Eq. (3.51) symmetrize the kernel, that is

G0(x, y) = F̂(x)

F̂(y)
k0(x, y) = G0(y, x). (3.52)

The Wigner-Wilkins kernel for the special case of equal masses, γ = 1, is

kww(x, y) = 1
2AQ2

√
π

x
erf(

√
y), y < x,

= 1
2AQ2

√
π

x
ex−yerf(

√
x), y > x. (3.53)

The three dimensional plot of the symmetrized Wigner-Wilkins kernel for γ = 1 is
shown in Fig. 3.12 (top left graph). The variation of G(x, y0) versus x for y0 = 1, 2,
3, 4 and 5 for γ = 0.0001, 1 and 1,000 is shown in the other three graphs. For γ = 1,
the kernel versus x for each y0 is much wider than the very narrow cusps for the two
disparate mass ratios on the right hand graphs.

It is clear that the kernel is sharply peaked at the disparate mass limits, which
are referred to as the Lorentz and Rayleigh limits as discussed previously. This is a
result of the small energy transfers in a collision between particles of very different
mass. This property of the kernel concerning velocity changing collisions has been
reported frequently in the literature (Shizgal and Lindenfeld 1979; Liao et al. 1980;
Berman et al. 1986; Rogers and Berman 1991; Gibble and Gallagher 1991; Shapiro
2000; Belai et al. 2007; McGuyer et al. 2012) and impacts on many applications and
on Doppler spectroscopy in particular. Examples of a similar localized nature of the
kernel in the Boltzmann equation for realistic cross sections are shown in Fig. 4 of
Bovino et al. (2011) and Fig. 5 of Zhang et al. (2007).

Our interest in this section is the calculation of the collision frequency with
Eq. (3.51). It is clear that in the disparate mass limits a single quadrature for all
values of y0 would be inefficient if the integration algorithm does not take into
account the position and width of the cusp over a small interval [xmin, xmax].
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Fig. 3.12 (Upper left panel) The three dimensional surface of theWigner-Wilkins kernel, Eq. (3.53)
for equal masses, γ = 1. Variation of the kernel for fixed argument, y0 = 1, 2, 3, 4 and 5 versus x
for γ = 0.0001, 1 and 1,000

We consider the extreme mass ratio γ = 1,000, shown in Fig. 3.12 and choose a
Simpson rule quadrature to evaluate the integral. In view of the localized nature of
the kernel, we consider a narrow interval that brackets the cusp at y0.

In Fig. 3.13(A), we show for γ = 100, y0 = 1, the variation of the relative error
with a Simpson rule algorithm versus the number of grid points, N , xmin = 0 and
different values of xmax . The grid spacing is the same for all xmax and as expected the
number of integration points required to achieve convergence decreases with xmax .
The initial decrease in the relative error is rapid for small values of N for all values of
xmax . In spite of the localized nature of the kernel, the interval has to be sufficiently
wide to capture the “tails” on either side of the cusp.

In Fig. 3.13(B), we show for y0 = 5 the variation of the relative error versus the
number of grid points, N , for different values of xmax with xmin = 0 (dashed curves)
and xmin = 3 (solid curves). The smaller interval about y0 = 5 gives the more
rapid convergence as expected with also a rapid convergence even for small values
of N . For all the results shown in Fig. 3.13 there is a grid point at the cusp. The grid
spacing, h, is varied as given by h = 1/m, and m varies from 10 to 400 in increments
of 10. These aspects of the integration over the kernel are important with regard the
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(A) (B)

Fig. 3.13 Variation of log10[relative error] for the Simpson rule integration of the symmetrized
Wigner-Wilkins kernel G0(x, y0), Eq. (3.52) for γ = 1,000. (A) y0 = 1; integration is over the
interval x ∈ [0, xmax]; (B) y0 = 5; integration is over the interval x ∈ [3, xmax] (solid curve)
and x ∈ [0, xmax] (dashed curve). In each case, the grid spacing is given by h = 1/m with m =
[10:10:400]

solution of the time dependent Boltzmann equation, Eq. (3.48), discussed in Chap.5.
However, the choice γ = 1,000 is extreme.

We compare further the results just discussed with integrations that divide the
integration interval into two subintervals x ∈ [0, y0] and x ∈ [y0, xmax]. We use a
Simpson rule integration in both subdomains as well as a Legendre quadrature for
each subdomain with the appropriate change of variable. The results for the Simpson
rule integration are shown in Fig. 3.14(A) for y0 = 1 (solid curves) and the two
intervals [0, 3] and [0, 2] with convergence faster for the smaller interval. The results

(A) (B)

Fig. 3.14 Variation of log10[relative error] for the integration of the symmetrized Wigner-Wilkins
kernel G0(x, y0), Eq. (3.52) for γ = 1,000. (A) Simpson rule integration withN/2+1 points in each
of the intervals [0, y0] and [y0, xmax] for y0 = 1 (solid curves) and y0 = 5 (dashed curves). The
intervals used are shown next to the curves. (B) Legendre quadrature integration over the intervals
[xmin, y0] and [y0, xmax] for y0 = 1, 3 and 5 with N/2 points in the intervals [0, 2], [2, 5] and [3,
8], respectively, that bracket y0

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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for y0 = 5 (dashed curves) are very similar with the smaller interval providing faster
convergence. We notice an initial rapid convergence versus N with a small number
of quadrature points as also shown in Fig. 3.13. By contrast with Fig. 3.13, there are
N /2 points in each interval and many more points between the origin and y0. Also
the grid spacing changes with N as given by h = 1/m with m chosen as before.

In Fig. 3.14(B), the results the Gauss-Legendre quadrature in the two intervals
[xmin, y0] and [y0, xmax] with N/2 quadrature points in each interval are shown. It
is very clear that the Gauss-Legendre quadrature is far superior to the Simpson rule
algorithmwith results similar for all y0 provided that the integration domain brackets
the cusp. A similar comparison of Simpson and trapezoidal rules for integrations over
a cusp were discussed by Secrest and Johnson (1966) in their modelling of atom-
diatomic collisional energy transfer.

We consider the Gauss-Maxwell quadrature with w(x) = x2e−x2 where x =√
mv2/2kBTb is the reduced speed rather than the reduced energy.We calculate Z(xi)

where xi is the ith quadrature point of the quadrature of order N . This approach does
not take into account the cusp in the kernel and we cannot expect the convergence to
yield the very small relative errors as in Figs. 3.13 and 3.14. The collision frequency
at each xi calculated with the same set of N = 80 quadrature points is shown in
Fig. 3.15. The best agreement between the exact and numerical collision frequencies
is formass ratio unity. The departures for the larger and smallermass ratios arise from
themore narrow cusp. The errors are largest for the larger quadrature points as a small
number of quadrature points are distributed to the right of the cusp. The calculation
of Z(x80 = 14.012) does not include the contributions beyond x80. However, this
is precisely the approach used, with this or other quadratures, to reduce the integral
equation, Eq. (3.46) to a set of coupled ordinary differential equations as discussed
further in Chap. 5.

Fig. 3.15 Comparison of the exact hard sphere collision frequency, Z(x) (dashed curves) in units
of πd2√kBTb/2m, Eq. (3.45), with the numerical integration (solid curves) of the Wigner-Wilkins
kernel with the Gauss-Maxwell quadrature (p = 2, N = 80) for several mass ratios. The symbols
show each of the 80 quadrature points and x = √mv2/2kBTb is the reduced speed

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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3.6.3 Viscosity of a Simple Gas

The Chapman-Enskog method of solution of the Boltzmann equation for a one com-
ponent gas discussed in Chap.5 is the basis for the calculation of the transport coeffi-
cients (Hirschfelder et al. 1954; Huang 1967; Chapman and Cowling 1970; Ferziger
and Kaper 1972). For the calculation of the viscosity, the method assumes a small
departure of the velocity distribution function from a Maxwellian owing to a small
velocity gradient. This perturbation of the distribution function is given by the solu-
tion of the linearized Boltzmann equation, Eq. (5.45). The integral collision operator
in the Boltzmann equation is defined by the differential scattering cross section for
binary collisions of the gaseous particles. We assume that the particle collisions are
described by a hard sphere cross section and the integral Boltzmann equation is then
given by Eq. (5.88).

The shear viscosity of a simple gas in reduced units is given by

ν = 16
√
2

15

∞∫

0

e−x2x4B(x)dx, (3.54)

as defined in recent publications (Siewert 2002; Sharipov and Bertoldo 2009). We
direct our attention to the numerical integration of the integral in Eq. (3.54) given the
function B(x) which is determined with the solution of the Boltzmann equation for
viscosity (Loyalka et al. 2007).

Loyalka et al. (2007) employed an expansion of the distribution function in the
Laguerre (or Sonine) polynomials and used Mathematica to algebraically obtain
extremely accurate converged solutions to the Boltzmann equation with up to 150
terms and provided the function B(x) in Table5 of their paper. This is essentially
the Galerkin solution of the integral equation. Their work serves as an excel-
lent benchmark and they report the viscosity to 34 significant figures, that is
ν = 0.4490278062878924346090494895346545.

We use a spline fit of B(x) from the data provided in Table5 of Loyalka et al.
(2007) which has 44 data points for x ∈ [0, 6]. The values of B(x) are available
only up to x = 6, but beyond this point the integrand is less than 10−15. With the
weight factor w(x) = x2 exp(−x2) in the integrand, it would appear that an optimal
quadrature is the one based on the Maxwell polynomials with p = 2.

Thus we consider the integral in Eq. (3.54) with the quadratures based on the
Maxwell and Laguerre polynomials and we also include a Simpson’s rule for com-
parison. In this case since the data for B(x) is limited up to xmax = 6 the Simpson’s
rule is defined on the interval [0, 6]. Also, for the higher order quadratures, the
Laguerre quadrature points can be greater than 62 so that these have to be scaled
as in Eq. (3.3) such that the last point is at y = 36 which occurs for N >10. The
quadrature point xN for the Maxwell quadrature and yN for the Laguerre quadratures
for orders N = 3 to 10 are compared in Table3.9. The Laguerre quadrature points
are far more diffuse in reduced energy than theMaxwell quadrature in reduced speed
for the same N . A similar comparison was shown in Chap.2.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Table 3.9 The quadrature points, xN and yN , for the listed N th order Gaussian quadratures

N 3 4 5 6 7 8 9 10

Maxwell (p = 2) xN 2.220 2.640 3.014 3.356 3.671 3.967 4.245 4.509

Laguerre (α = 3/2) yN 8.471 11.71 15.05 18.46 21.92 25.43 28.98 32.55

The Laguerre quadrature points are far more diffuse than the Maxwell quadrature points with the
same N

(A) (B)

(C) (D)

Fig. 3.16 Convergence of the integral for the viscosity of a simple hard sphere gas, Eq. (3.54).
(A) Gauss-Maxwell quadrature with spline fit to the data in Table 5 of Loyalka et al. (2007); (B)
Gauss-Maxwell quadrature with a 16th order polynomial fit to the data in Table 5 of Loyalka et al.
(2007); dashed curve uses the “exact” value with the polynomial fit; (C) Gauss-Laguerre quadrature
(α = 3/2); (D) Simpson’s rule

A comparison of the convergence of the viscosity, given by Eq. (3.54) versus
the number of quadrature points for these three algorithms is shown in Fig. 3.16.
Figure3.16(A), (B) are the results for Gauss-Maxwell (p = 2) with a spline fit of the
data in Table 5 of Loyalka et al. (2007). For the dashed curve in Fig. 3.16(B), the exact
value from the polynomial fit is used so that machine accuracy obtained is expected.
The results with the Gauss-Laguerre quadrature in Fig. 3.16(C) are comparable to
those with the Gauss-Maxwell quadrature above. The moderately rapid convergence
of the relative errors for this integral for all quadratures are anticipated for this very
smooth integrand. In Chap.5, Sect. 5.4.5, we consider the solution of the Boltzmann
integral equation for B(x) and the calculation of the shear viscosity in comparison
with the spline method of solution used by Siewert (2002).

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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3.6.4 Eigenvalues of the Boltzmann Collision Operator
for Maxwell Molecules

In the kinetic theory of gases, the model system based on the atom-atom power
law repulsive interaction of the form VMM(r) = κ/r4, where r is the atom-atom
separation, is referred to as “Maxwell molecules” and κ determines the strength
of the interaction. The model was introduced by James Clerk Maxwell4 long ago
as reviewed by Santos (2009). This model is of major significance to the history
of the kinetic theory of gases. In spite of the nonphysical nature of this repul-
sive interaction potential, the model has been used over several decades in many
applications (St.-Maurice and Schunk 1976, 1979; Hubert 1983; Shizgal and Hubert
1989; Sabbane et al. 2003; Napier and Shizgal 2008; Santos 2009). The attractive
potential, V(r) = −κ/r4, is a model for the long range ion atom interaction poten-
tial that provides an estimate of ion mobilities in neutral gases with solutions of the
Boltzmann equation (McDaniel and Mason 1973; Mason and McDaniel 1988).

The eigenfunctions of the linearized one-component Boltzmann collision operator
for the repulsive Maxwell molecule interaction are the direct product of the Sonine-
Laguerre polynomials and the spherical harmonics. Thus, the Sonine-Laguerre poly-
nomials havebecome thebasis set of choice for kinetic theoryproblems.TheMaxwell
molecule model has also been employed in studies of the approach to equilibrium for
the non-linear Boltzmann equation (Krook andWu1976; Ernst 1981; Bobylev 1984).

For the interparticle potential, VMM(r), the two body classical scattering problem
can be solved exactly (Goldstein et al. 2000; Liboff 2003) and the dependence of the
differential cross section on the relative speed, g, and scattering angle, θ, is given by

σ(g, θ) = 2

√
κ

m

1

g
I4(θ). (3.55)

The dependence on the scattering angle is given by

I4(θ) = − 1

sin(θ)

d cot(2φ)

dθ
, (3.56)

with the scattering angle θ defined in terms of φ

θ = π − 2
√
cos(φ)K(sin2 φ), (3.57)

where

K(sin2 φ) =
π/2∫

0

1

[1 − sin2 φ sin2 α]dα, (3.58)

is the Elliptic integral.

4 James Clerk Maxwell (1831–1879) was a Scottish mathematical physicist who made a large
number of fundamental contributions to electromagnetic theory, kinetic theory and thermodynamics.
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It is very important to notice that for this interaction the product gσ(g, θ) is inde-
pendent of g (see Eq. (3.55)). An important consequence of this model is that the col-
lision frequency Z(v) that occurs in the collision operator in the Boltzmann equation
as given by Eq. (3.35) is independent of the particle speed. The collision operator is
greatly simplified and the eigenvalue spectrum of the operator is completely discrete.

It can be shown (Ford 1968; Foch and Ford 1970) that the eigenvalues, λn,�, of the
linearized one-component collision operator for this interaction are given explicitly
by the integral

λn,� = −4π

√
κ

m

π∫

0

I4(θ)

[
cos2n+�(

θ

2
)P�[cos(θ

2
)] + sin2n+�(

θ

2
)P�[sin(θ

2
) − 1]

− δn0δ�,0

]
sin θdθ. (3.59)

We find it convenient to transform the integration variable from θ to φ so that the
integral in Eq. (3.59) becomes

λn,� = 8π

√
κ

m

π/4∫

0

[
cos2n+�( θ

2 )P�[cos( θ
2 )] + sin2n+�( θ

2 )P�[sin( θ
2 ) − 1] − δn0δ�,0

sin2 2φ

]
dφ,

(3.60)

and the angle θ is determined from φ as given by Eq. (3.57). In Fig. 3.17(A) we show
the integrands of Eq. (3.60) versus φ for λn,0 with n = 4, 8, 12 and 16 and likewise
in Fig. 3.17(B) we show the integrands for λ0,� with � = 6, 10, 14 and 16. There is
a rapid variation near φ = π/4 shown in Fig. 3.17(B).

We choose a Gauss-Legendre quadrature to calculate λn,�. The convergence of
several eigenvalues versus the number of quadrature points increases with n and �

as shown in Tables3.10 and 3.11. The results in the tables are in agreement with

(A) (B)

Fig. 3.17 The φ variation of the integrand in Eq. (3.60) for the Maxwell molecule eigenvalues,
λn,�. (A) � = 0 and n from top to bottom is 16, 12, 8 and 4. (B) n = 0 and � from top to bottom
is 16, 14, 10 and 6
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Table 3.10 Convergence of the Maxwell molecule eigenvalues, λn,0 with Gauss-Legendre
quadratures

N λ4,0 λ8,0 λ12,0 λ16,0

4 7.2473049826 10.6815741779 12.6401640971 13.9560579506

8 7.1404138296 10.3355659392 12.2873384173 13.7368118926

12 7.1402976496 10.3296515433 12.2624669303 13.6902870561

16 7.1402976448 10.3296443968 12.2622077369 13.6886563346

20 7.1402976448 10.3296443951 12.2622072790 13.6886437782

24 10.3296443951 12.2622072788 13.6886437520

32 12.2622072788 13.6886437519

40 13.6886437520

Table 3.11 Convergence of the Maxwell molecule eigenvalues, λ0,� with Gauss-Legendre
quadratures

N λ0,6 λ0,10 λ0,14 λ0,18

4 15.0278419641 18.9389440371 21.4348909276 25.4697236812

8 14.2744916100 19.4726281411 23.4800390873 26.5094667009

12 14.2628153767 19.3091338846 23.3459851156 26.8105457092

16 14.2628093775 19.3059204404 23.2863701647 26.7017149499

20 14.2628093771 19.3059159880 23.2852977701 26.6815970246

24 19.3059159869 23.2852954023 26.6812438552

32 19.3059159868 23.2852954009 26.6812426849

40 23.2852954011 26.6812426851

50 26.6812426847

the large number of eigenvalues reported by Alterman et al. (1962) to the significant
figures shown and expressed in units of their A2 = 9.689818653

√
κ/m, that is

λ02 = 0.6× 9.689818653
√

κ/m = 5.8138911918
√

κ/m. The authors mention that
the integrands in their work were highly oscillatory. They calculated the eigenvalues
to 10 significant figures in triple precision with up to 96 Gauss-Legendre quadrature
points. The lower order eigenvalues reported recently (Sabbane et al. 2003; Santos
2009) are also in agreement with the results reported here.

3.6.5 The JWKB Phase Shifts and Quantum
Elastic Cross Sections

The calculation of the differential and total elastic cross sections for atom-atom colli-
sionswith a specified interatomicpotential is important for the calculationof transport
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coefficients for diffusion, viscosity, heat conduction and ion mobilities (Hirschfelder
et al. 1954; Chapman and Cowling 1970; Ferziger and Kaper 1972; Mason and
McDaniel 1988; Lemmon and Jacobsen 2004; Danailov et al. 2008; Oh 2013). Other
applications include the relaxation to equilibrium of an initial nonequilibrium dis-
tribution of energetic atoms by collisional energy transfer (Nan and Houston 1992;
Kharchenko and Dalgarno 2004; Zhang et al. 2007; Bovino et al. 2011; Sospedra-
Alfonso and Shizgal 2013). Binary collision theory is based on either classical
mechanics (Goldstein et al. 2000) or quantum mechanics (Child 1996; Burke 2011).

The quantum mechanical differential elastic cross section for binary collisions
between two structureless particles is given in terms of the square of the scattering
amplitude, f (E, θ), which depends on the center-of-mass relative energy, E, and the
scattering angle, θ, that is

σ(E, θ) = |f (E, θ)|2, (3.61)

where the scattering amplitude can be expressed in terms of the phase shifts, δ�(E),

f (E, θ) = 1

k

∞∑

�=0

(2� + 1)eiδ� sin(δ�)P�(cos θ), (3.62)

and P�(cos θ) is the Legendre polynomial. In Eq. (3.62), k = √2μE/�2 is the wave
number and μ is the reduced mass of the colliding pair. The phase shifts can be
determined from a solution of the radial Schrödinger equation

1

r2
d

dr

(
r2

duk,�(r)

dr

)
+ [k2 − U(r) − �(� + 1)

r2
]uk,�(r) = 0 (3.63)

whereU(r) = 2μV(r)/�
2, k2 = 2μE/�

2 and the interaction potential isV(r), where
r is the distance between the pair of particles considered. The Schrödinger equation
is solved for the continuum scattering states withE > 0 and the asymptotic boundary
condition on the radial wavefunction is

uk,�(r) ∼
r→∞ r

sin(kr − �π/2 − δ�)

kr
, (3.64)

which defines the phase shift δ�. A more detailed discussion of the theoretical
approach can be found in several references (Bernstein 1966; Child 1996; Burke
2011; Taylor 2012).

With the scattering amplitude expressed as in Eq. (3.62), the total cross section is
given by

σtotal(E) = 2π

π∫

0

σ(E, θ) sin θdθ = 4π

k2

∞∑

�=0

(2� + 1) sin2 δ�(k). (3.65)

For heavy particle collisions at high relative energies, many phase shifts contribute
to the total cross section, Eq. (3.65), and the time consuming numerical integration
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of the radial Shrödinger equation is not necessary in many situations. The Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) phase shift (Child 1996; Burke 2011) given by

δ� =
∞∫

r0

√√√√
[

k2 − (� + 1
2 )

2

r2
− U(r)

]
dr −

∞∫

r1

√

k2 − (� + 1
2 )

r2
dr, (3.66)

provides a very good approximation. In Eq. (3.66), r0 is the classical turning point
given by the root of the square bracket term in the first integral. Analogously, r1 =√

(� + 1
2 )

2/k2 and we have made the familiar Langer modification (Langer 1937)

by replacing �(� + 1) with (� + 1
2 )

2.
With this very brief overview of semiclassical scattering theory, we now direct

attention to our main concern here, namely the numerical evaluation of the phase
shift as defined by Eq. (3.66). As with the previous applications discussed in this
chapter, the nature of the integrand dictates the choice of numerical quadrature. In
this application, it is important to notice that the integral depends on the choice for
the potential, V(r), the relative energy as given by k2, the value of � and the classical
turning point, r0.

Wechoose thediatomO-Hwhich is important in the estimationof the escapeof ato-
mic species from planetary atmospheres (Shizgal 1999; Balakrishnan and Dalgarno
2003; Kharchenko and Dalgarno 2004; Jamieson et al. 2006) and in other applica-
tions (Wright and Donaldson 1985; Oneal and Neff 1997). The interaction potentials
and collision dynamics were reported in detail in these references. For the purpose of
the numerical comparisons presented here it is sufficient to choose the ground X2Π

state of OH to be the Morse potential reported by Wright and Donaldson (1985) and
given by

V(r) = De

[
1 − e−β(r−re)

]2
, (3.67)

where re = 1.821 au, De = 5.426eV and β = 1.189 (au)−1 where 1au = 0.52917Å
and 1Å = 10−8 cm. In Chap.6, we will also consider the bound vibrational states of
such diatomic molecules modelled with the Morse potential. There are many other
choices for the interatomic potentials including a Lennard-Jones potential (Sospedra-
Alfonso and Shizgal 2013) as well the results of quantum mechanical calculations
of the electronic structure (Jamieson et al. 2006) for which the potential is often
available in tabular rather than in analytic form (Shizgal 1999).

The methods that have been proposed to evaluate the integral in Eq. (3.66) include
a modified Clenshaw-Curtis quadrature (Kennedy and Smith 1967), a Gauss-Mehler
quadrature (Pack 1974), a Gauss-Legendre quadrature and a non-classical quadrature
proposed by Cohen (1978) based on the weight function w(x) = 1/

√
1 − x x ∈

[0, 1] (see Item 25.4.36 in Abramowitz and Stegun (1964)) with quadrature points
and weights related to the Gauss-Legendre quadrature.

A comparison of theGauss-Legendre andGauss-Mehler quadratures in the numer-
ical evaluation the integrals for δ� is presented. It is of interest to note that the use of the

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Clenshaw-Curtis quadrature in this application resulted in a study of the convergence
properties by O’Hara and Smith (1968) and later by Trefethen (2008).

A detailed comparison of different quadratures is made challenging owing to
the variation of the integrand in Eq. (3.66) versus x that depends on the interaction
potential, V(r), the energy E and the value of �. Except for the case of short ranged
nuclear interactions, a moderately large number of partial waves must be calculated
in order to get a converged cross section. Such cross sections for a variety of binary
atomic pairs are used in several studies of the approach to equilibrium based on the
Boltzmann equation (Bovino et al. 2009, 2011; Sospedra-Alfonso and Shizgal 2013)
that we consider in detail in Chap.5. There are also practical applications concerning
gaseous transport properties (Oh 2013; Lemmon and Jacobsen 2004) as well for ion
mobilities in gases (Mason andMcDaniel 1988;Viehland 1994;Danailov et al. 2008).

Thefirst step in the evaluation of the integral for the phase shift is the determination
of the classical turning point which can be done with a simple search to bracket the
root and then with a Newton-Raphson iteration to converge to the root. We show
in Fig. 3.18 the variation of the “effective” potential, Veff (r) = V(r) + (� + 1

2 )/r2

versus r for four values of � at E = 1.0eV. For the two lowest � values there is one
innermost turning point whereas for � = 60 there are three turning points and for
� = 62 there is one outermost turning point.We here only consider the one outermost
turning point but there is an error introduced (Munn et al. 1964; Viehland and Chang
2010) which is related to the classical orbiting problem when the relative energy
is close to the top of the centrifugal barrier depicted by the maximum in Veff (r) in
Fig. 3.18.

We make the change of variable x = r0/r and recognize the classical impact
parameter with b = (� + 1

2 )/k. A very important connection between the semiclas-
sical theory and the classical approach is the relationship between the variation of δ�

versus � and the scattering angle, χ(b) versus b, given by χ(b) = 2∂δ�/∂� (Child
1996; Viehland and Chang 2010). The phase shift in the new integration variable

Fig. 3.18 (Left hand side) The effective potential Veff (r) = V(r) + (�+1/2)2

r2
where � = 56, 58, 60

and 62 from bottom to top curves with E = 1.0eV as the dashed line. The three turning points are
clearly seen for � = 60. (Right hand side) The classical turning points, r0 versus �, for E = 0.5eV
(square symbols) and for E = 1.0eV. The symbols show the change in the classical turning from
the innermost root to the outermost root

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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appropriate for Gauss-Legendre (GL) quadratures is given by,

δ
(GL)
� = kr0

1∫

0

I(GL)
� (x)dx + π[(� + 1

2 ) − kr0]
2

, (3.68)

where

I(GL)
� (x) =

⎡

⎣

√

1 − (� + 1
2 )x

2

kr0
− U(r0/x)

k2
−
√
1 − x2

⎤

⎦ 1

x2
. (3.69)

Pack (1974) suggested the use of a Gauss-Mehler quadrature which is a Chebyshev
quadrature (w(x) = 1/

√
1 − x2)with only the positive quadrature points. TheGauss-

Mehler quadrature points and weights are given by

xi = cos(
iπ

2N + 1
), i = 1, . . . N

wi = (1 − x2i )π

2N + 1
. (3.70)

The algorithm is applied to the integral

δ
(GM)
� = kr0

1∫

0

1√
1 − x2

I(GM)
� (x)dx + π[(� + 1

2 ) − kr0]
2

, (3.71)

where

I(GM)
� (x) = (1 − x2)

⎡

⎣

√

1 − (� + 1
2 )x

2

kr0
− U(r0/x)

k2
− 1

⎤

⎦ 1

x2
. (3.72)

It is readily shown that the derivative of the integrand is singular at x = 1.
The phase shifts for a range of energies and � values were determined from the

integral in Eq. (3.68) with a Gauss-Legendre quadrature. It is instructive to first show
the energy dependence of the total cross section in Fig. 3.19(A). The actual value
of the cross section is somewhat larger than previously reported for more realistic
potentials for OH (Wright and Donaldson 1985; Shizgal 1999; Bovino et al. 2009,
2011). The differential cross section for E = 0.5eV is shown in Fig. 3.19(B). The
number of phase shifts required to get convergence of the cross sections increaseswith
E and for the energy range shown in the figure up to 400 phase shifts were required.
Thus a large number of phases shifts are required for the results shown in Fig. 3.19.

The details of the integrand in Eq. (3.68) vary considerably with E and � and of
course the choice of the potential. We choose two energies, E = 0.5 and 1.0eV and
four � values as shown in Fig. 3.20.
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(A) (B)

Fig. 3.19 (A) The total cross section in Å2 versus relative energy, E, for O-H; (B) The differential
cross section in Å2 versus scattering angle for E = 0.5eV

(A) (B)

Fig. 3.20 The integrand, I�(x) for E = 1.0eV for Gauss-Legendre quadrature (dashed line),
Eq. (3.69), and Gauss-Mehler quadrature (solid line), Eq. (3.72)

Table 3.12 Convergence of the Gauss-Legendre evaluation of the JWKB phase shifts, Eq. (3.66),
versus the number of quadrature points, N , at two energies

N E = 0.5eV E = 1.0eV

� = 20 � = 50 � = 80 � = 20 � = 50 � = 80

20 49.72877 1.73645 0.017339 41.81695 32.97958 0.37106

40 49.72806 1.73663 0.017342 41.81610 32.97880 0.36994

60 49.72799 1.73665 0.017342 41.81601 32.97871 0.36982

80 49.72797 1.73666 41.81599 32.97869 0.36979

100 41.81598 32.97868 0.36978

The convergence of the phase shifts with the Gauss-Legendre and Gauss-Mehler
quadratures are shown in Tables 3.12 and 3.13, respectively. It is clear that the Gauss-
Mehler quadrature outperforms the Gauss-Legendre quadrature. The convergence of
the smaller phase shifts for the larger � values is faster than for the larger phase
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Table 3.13 Convergence of the Gauss-Mehler evaluation of the JWKB phase shifts, δ�, Eq. (3.66),
versus the number of quadrature points, N , at two energies

N E = 0.5eV E = 1.0eV

� = 20 � = 50 � = 80 � = 20 � = 50 � = 80

6 49.72877 1.73645 0.017339 42.21144 32.94304 0.36977

8 49.72806 1.73663 0.017342 42.01845 32.97914 0.36977

12 49.72799 1.73665 0.017342 41.79747 32.97949

16 49.72797 1.73666 41.81488 32.97895

20 41.81665 32.97864

30 41.81595 32.97868

40 41.81597

shifts for smaller � values. The reason would appear to be the slower variation
of the integrands for the Gauss-Mehler quadrature than for the Gauss-Legendre
quadrature as seen in Fig. 3.20. This type of analysis was not considered in the
review of the different quadratures by Cohen (1978). A more detailed comparison
of the different quadrature procedures and for different potential forms would be
useful.

It is important to point out that the numerical calculation of the total cross section
with Eq. (3.65) as the integral of the differential cross section shown in Fig. 3.19
would require a very fine grid of points in order to capture the detailed structure. In
this case a Simpson’s rule would be the method of choice or an adaptive quadrature
with subdivision of the domain. This is also the case for the calculation of the elastic
collision frequency, Eq. (3.36) with the total cross section also shown in Fig. 3.19 in
order to capture the detailed oscillations that occur.

3.7 The Calculation of Matrix Elements
of Multiplicative Operators

The collision operator in the Boltzmann equation, Eq. (3.48), is the difference of
the integral collision operator and the elastic collision frequency, Z(y), defined by
Eq. (3.50). The eigenvalue spectrum of the collision operator has in general a discrete
set of eigenvalues as well as a continuum. Similarly, the Hamiltonian for a quantum
problem can have bound states of negative energy (discrete eigenvalues) as well
as scattering states of positive energy (continuum states). These eigenvalue spectra
can be modelled approximately from the matrix representatives of the respective
operators in suitable basis sets as discussed in the sections that follow.

InChap.1,we outlined the spectralGalerkin solution of differential and/or integral
equations based on the method of weighted residuals (Finlayson and Scriven 1966;
Finlayson 1972). The Boltzmann or Fokker-Planck equation for a spatially uniform

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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system in the absence of external forces is the time dependent equation of the form

∂f (x, t)

∂t
= Lf (x, t) x ∈ [a, b], (3.73)

where L is a linear self-adjoint operator and an initial condition, f (x, 0) = g(x), is
specified.

An approximate solution is given by the finite expansion in a set of orthonormal
basis functions Pn(x) where Pn(x) are classical or nonclassical polynomials and∫ b

a w(x)Pn(x)Pm(x)dx = δnm. We thus have the N th order approximation to f (x, t),

f (N)(x, t) =
N−1∑

n=0

cn(t)Pn(x). (3.74)

The initial values, cn(0), are provided by the expansion of the initial condition, that is,

g(x) =
N−1∑

n=0

cn(0)Pn(x). (3.75)

The departure of the approximate solution from the actual solution is measured by
the “residue” defined by

RN (x, t) = ∂f (N)(x, t)

∂t
− Lf (N)(x, t),

=
N−1∑

n=0

Pn(x)
dcn(t)

dt
−

N−1∑

n=0

cn(t)LPn(x). (3.76)

The method of weighted residuals (Finlayson and Scriven 1966; Finlayson 1972;
Shen et al. 2011) is a procedure to calculate cn(t) so as to minimize the residual
RN (x, t) in some average way. We impose the condition that the residue is mini-
mized subject to

b∫

a

t(x)RN (x, t)dx = 0, (3.77)

where we choose the “test function” as t(x) = w(x)Pm(x), m = 0, 1, . . .
(N −1). The partial differential equation is approximated by the set of N −1 coupled
ordinary differential equations with the Galerkin procedure, that is,

dcm(t)

dt
=

N−1∑

n=0

Lmncn(t) m = 0, 1, . . . , N − 1, (3.78)

where
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Lmn =
b∫

a

w(x)Pm(x)LPn(x)dx, (3.79)

is the matrix representative of the operator L in spectral space. An important con-
sideration is the condition number of the matrix Lmn which determines the stability
of the linear set of equations, Eq. (3.78), and their numerical time integration. The
preceding discussion follows closely the presentation in Sect. 1.3.

TheN th order transformation from spectral space, cn, to physical space, fi ≡ f (xi),
is given by

fi =
N−1∑

n=0

T (N)
in cn. (3.80)

The transformation matrix is defined by

T (N)
ni = √

wiPn(xi) i = 1, 2, . . . N; n = 0, 1, . . . (N − 1) (3.81)

and is symmetric at all orders N , that is

(
T(N)

)t · T(N) = I(N), (3.82)

where t denotes the transpose of the real matrix of order N . Equation (3.82) written
in component form is

N−1∑

n=0

T (N)
in T (N)

nj = √
wiwj

N−1∑

n=0

Pn(xi)Pn(xj)

= √
wiwj

δij√
wiwj

= δij. (3.83)

which is exact to any orderN . This is a direct consequence of the cardinality condition
for the underlying interpolation at any order N .

In the following sections, we direct our attention to the calculation of the matrix
elements of multiplicative operators denoted by G(x). The matrix representative in
some basis set is

Gmn =
b∫

a

w(x)Pm(x)G(x)Pn(x)dx. (3.84)

If this is approximated with the quadrature associated with the basis functions Pn(x),
then the N th order approximation is

G(N)
mn =

N∑

k=1

wkPm(xk)G(xk)Pn(xk). (3.85)

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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What is remarkable is that if we transform this (approximate) spectral space repre-
sentation, G(N)

nm , to the discrete space, Gij, we have that

Gij =
N−1∑

n=0

N−1∑

m=0

TinG(N)
nm Tmj,

=
N−1∑

n=0

N−1∑

m=0

√
wiPn(xi)

[
N∑

k=1

wkPm(xk)G(xk)Pn(xk)

]
√

wjPm(xj),

= √
wiwj

N∑

k=1

wkG(xk)[
N−1∑

n=0

Pn(xj)Pn(xk)][
N−1∑

m=0

Pm(xi)Pm(xk)],

= √
wiwj

N∑

k=1

wkG(xk)
δjk√
wjwk

δik√
wiwk

,

= G(xi)δij, (3.86)

where the definition of Tin was used in the 2nd line and the “finite completeness” of
the basis set in the 3rd line. The transform of the exact Gnm matrix elements would
not give a diagonal physical space representation of the multiplicative operator as
we demonstrate later.

For the Schrödinger equation, the multiplicative operator of interest is the poten-
tial, V(x), in a one-dimensional Hamiltonian. The approximate calculation of the
matrix elements of the potential function with a quadrature has served as the basis in
chemical physics (Harris et al. 1965; Dickinson and Certain 1968) for the develop-
ment of a pseudospectral or collocation solution of the Schrödinger equation (Light
et al. 1985; Light and Carrington Jr. 2000) referred to as the Discrete Variable Rep-
resentation (DVR).

An analogous procedure was developed by Shizgal (1981) and Shizgal and
Blackmore (1984) for the Boltzmann equation and later applied to the Fokker-
Planck and the Schrödinger equations (Shizgal and Chen 1996, 1997; Lo and Shizgal
2006, 2008). There is also the analogous Lagrange mesh method developed by Baye
(1994, 2006) and coworkers (Baye and Heenen 1986; Baye et al. 2002). These
methods of solution of the Schrödinger equation are studied in detail in Chap.6. The
objective in this section is to demonstrate the relationship of the spectral representa-
tion of multiplicative operators in an orthonormal basis set evaluated by quadrature
and the physical space representation as described in Eq. (3.85).

For the Boltzmann equation the multiplicative operator is the collision frequency,

Znm = 2√
π

∞∫

0

w(y)Pn(y)Z(y)Pm(y)dy, (3.87)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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which depends on the mass ratio, γ = M/m. We will compare these calculations
with similar calculations for the matrix elements of the potential in the Schrödinger
equation of the form

Vnm =
∞∫

0

w(x)Qn(x)V(x)Qm(x)dx, (3.88)

where Qn(x) are “appropriate” orthonormal basis functions. It should be clear that
the choice of basis functions in different applications is crucial so as to get the “best”
approximation to the operators. In Sect. 3.7.2, we consider the analogous calculation
of the matrix elements of the potential in the Schrödinger equation for the quantum
harmonic oscillator. It is the quadrature calculation of the matrix elements of the
potential in the Schrödinger equation (Harris et al. 1965; Dickinson and Certain
1968) that inspired the discrete variable representation pseudospectral method in
chemical physics (Light and Carrington Jr. 2000).

3.7.1 Matrix Representation of the Collision Frequency
in Laguerre and Maxwell Polynomials

The collision operator of the Boltzmann equation, Eq. (3.48), includes the sum of
the integral operator and the elastic collision frequency, Z(y), Eq. (3.50) which for
the hard sphere cross section is given by Eq. (3.45). The physical system of inter-
est is the binary system of a test particle of mass m dilutely dispersed in a back-
ground gas of particles of mass M at equilibrium at temperature Tb. The mass ratio is
γ = M/m.

We are interested in the analytic evaluation of the matrix elements of the collision
frequency, Z(y), for a binary gas with the hard sphere cross section. This calculation
illustrates some of the techniques used in kinetic theory with the so-called moment
method of solution which is a spectral solution of the Boltzmann equation with the
distribution expanded in a basis set of functions. The basis set that is commonly used
is the Sonine-Laguerre polynomials (Hoare and Kaplinsky 1970). The reason for this
choice is that for a particular collisional model, namely for “Maxwell molecules”,
particles that interact with an inverse power law potential, (V(r) ≈ r−4), the collision
frequency is a constant and the eigenvalue spectrum of the Boltzmann collision
operator is discrete. Further details are discussed in Chap.5.

The Sonine-Laguerre polynomials of order α = 1/2 can be defined by their
explicit polynomial representation,

L
( 12 )
n (y) =

n∑

k=0

Snk yk, (3.89)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where y = mv2/2kBTb is reduced energy and the coefficients are given by

Snk = (−1)kΓ (k + 3
2 )

Γ (n + 3
2 )(n − k)!k! yk . (3.90)

The L
( 12 )
n (y) basis functions are orthogonal as given by

∞∫

0

√
ye−yL

( 12 )
n (y)L

( 12 )
m (y)dy = Γ (n + 3

2 )

n! δnm. (3.91)

It is important to note that the coefficients in Eq. (3.90) alternate in sign owing to the
factor (−1)k .

With Eqs. (3.89) and (3.90), the matrix elements of the collision frequency, Z(x),
Eq. (3.45), are given by

Znm = A√
γ

n∑

k=0

m∑

�=0

SnkSm�

∞∫

0

√
ye−y y(k+�)

×
(

e−γy +
√

π

2

[
1√
γy

+ 2
√

γy

]
erf(

√
γy)

)
dy, (3.92)

with A = πd2√kBTb/2M. The integrals of powers of the collision frequency can be
evaluated exactly in terms of two sets of integrals, defined by,

I1(n) =
∞∫

0

yne−(γ+1)ydy = 1

(γ + 1)n+1Γ (n + 1), (3.93)

and

I2(n) =
∞∫

0

yne−yerf(
√

γy)dy, (3.94)

which satisfies the recurrence relation

I2(n) = nI2(n − 1) +
√

γ

π

Γ (n + 1)

(γ + 1)(n+1)
. (3.95)

The matrix elements can be written in terms of these integrals as given by

Znm = A√
γ

n∑

k=0

m∑

�=0

SnkSm�

[
I1(k + � + 1

2 ) + 1

2

√
π

γ
I2(k + �) + √

πγI2(k + � + 1)

]
.

(3.96)



156 3 Numerical Evaluation of Integrals and Derivatives

As noted earlier, the terms in the sum in Eq. (3.96) alternate in sign and we can expect
significant round-off errors for n and m of the order of 15–20. We only consider the
lower order matrix elements.

The matrix elements of the collision operator are calculated exactly with
Eqs. (3.93)–(3.96) and approximately by quadrature. An important consideration
is the mass dependence of the collision frequency that is shown in Table3.14.

The exact matrix elements for γ = 1 and order N = 5 in Table3.14 are calculated
withEq. (3.96). The approximate results evaluatedwith onlyN = 5 quadrature points
are shown in Table3.15. If Z(y) were unity, the matrix is diagonal with the diagonal
elements equal to the normalization of the Laguerre polynomials and would require
at least N = (n + 1)/2 quadrature points for their exact evaluation. Whereas the
lower order matrix elements are in agreement (to 4 significant figures), the higher
order matrix elements are not exact owing to the departure of Z(y) from a polynomial
of some finite order. The convergence of Z22 and Z44 is shown in Fig. 3.21 for much
large numbers of quadrature points.

If we transform the “approximate” matrix representative, Table3.15, to physical
spacewe recover a diagonalmatrixwith the diagonal elements equal toZij = Z(yi)δij

which for N = 5 is represented by the vector

A√
γ

[2.5681 3.3945 4.5452 5.9259 7.6095].

with the components equal to the “exact”Z(yi)values for thefiveLaguerre quadrature
points 0.43140, 1.75975, 4.10447, 7.74670, 13.45768, in accordance with Eq. (3.86).

Table 3.14 Exact matrix elements, Znm, in units of A/
√

γ for γ = M/m = 1, Eq. (3.96), of the
hard sphere collision frequency Z(x)

n/m 0 1 2 3 4

0 3.1915 −0.6515 −0.0728 −0.0169 −0.0050

1 −0.6515 4.1224 −0.9961 −0.1273 −0.0331

2 −0.0728 −0.9961 4.8688 −1.2693 −0.1755

3 −0.0169 −0.1273 −1.2693 5.5103 −1.5018

4 −0.0050 −0.0331 −0.1755 −1.5018 6.0819

Table 3.15 Approximate matrix elements of the hard sphere collision frequency, Z(x), in units of
A/

√
γ for γ = M/m = 1 evaluated with N = 5 Gauss-Laguerre quadrature points

n/m 0 1 2 3 4

0 3.1915 −0.6515 −0.0728 −0.0167 −0.0044

1 −0.6515 4.1225 −0.9958 −0.1261 −0.0292

2 −0.0728 −0.9958 4.8703 −1.2637 −0.1585

3 −0.0167 −0.1261 −1.2637 5.5297 −1.4388

4 −0.0044 −0.0292 −0.1585 −1.4388 6.3291
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Fig. 3.21 The convergence
of the diagonal matrix
elements Z22 and Z44 versus
the number of Laguerre
quadrature points, N . The
exact values are determined
as given by
Eqs. (3.93)–(3.96);
Accuracy= log10 |1 −
Z(N)

nn /Znn|

By contrast, the transform of the “exact” spectral space representation of Znm in
Table3.14 gives the “approximate” non-diagonal physical space representation,

T† · Z · T = A√
γ

⎛

⎜⎜⎜⎜⎝

2.5540 0.0243 −0.0296 0.0313 −0.0308
0.0243 3.3527 0.0512 −0.0544 0.0540

−0.0296 0.0512 4.4822 0.0675 −0.0676
0.0313 −0.0544 0.0675 5.8527 0.0742

−0.0308 0.0540 −0.0676 0.0742 7.5333

⎞

⎟⎟⎟⎟⎠
. (3.97)

This remarkable result between the exact and quadrature evaluated matrix elements
and the corresponding physical space representation might be unexpected, but it is
consistent with the analysis given by Eq. (3.85). The variation of the matrix rep-
resentation of the collision frequency with mass ratio is of interest and shown in
Tables3.16 and 3.17 for two different mass ratios.

ForM/m → 0, the Rayleigh limit, thematrix representative is becoming diagonal
in this basis set, whereas in the larger mass limit, M/m → ∞, the Lorentz limit, the
off-diagonal elements are increasing.

It is of interest to examine the reduced energy dependence of the collision fre-
quency in the Rayleigh limit for which γ → 0. With the Taylor series expansion of

Table 3.16 Exact matrix elements in units of A/
√

γ for γ = M/m = 0.1 with Eq. (3.96)

n/m 0 1 2 3 4

0 2.367 −0.088 −0.002 −0.000 −0.000

1 −0.088 2.507 −0.155 −0.004 −0.000

2 −0.002 −0.155 2.640 −0.217 −0.008

3 −0.000 −0.004 −0.217 2.767 −0.275

4 −0.000 −0.000 −0.008 −0.275 2.888
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Table 3.17 Exact matrix elements in units of A/
√

γ for γ = M/m = 100 with Eq. (3.96)

n/m 0 1 2 3 4

0 22.680 −9.167 −2.030 −0.930 −0.543

1 −9.167 33.945 −12.570 −2.693 −1.213

2 −2.030 −12.570 42.397 −15.191 −3.199

3 −0.930 −2.693 −15.191 49.443 −17.411

4 −0.543 −1.213 −3.199 −17.411 55.608

the exponential and error functions, we find that

Z(y)
γ→0≈ 2A√

γ

[
1 − 1

3
γy − 1

30
(γy)2 + 1

210
(γy)3 − · · ·

]
. (3.98)

Therefore in this mass ratio limit, the Laguerre basis set is a good choice for the
representation of Z(y) as the collision frequency is approaching a polynomial in
the reduced energy, y. In the Lorentz limit for which γ → ∞ we use erf(

√
γy) =

1 − erfc(
√

γy) and with the asymptotic expansion of the erfc(
√

γy), that is

erfc(y) = e−y2

y
√

π

(
1 − 1

2y2
+ 3

4y4
− 15

8y6
+ · · · + (−1)n (2n − 1)!!

(2y2)n
+ · · ·

)

(3.99)
we get

Z(y)
γ→∞≈ A

[√
πy(1 + 1

2γy
) − e−γy

2(γy)2

[
1 − 3

2γy
+ 15

4(γy)2
. . .

]]
. (3.100)

and the limiting dependence is
√

y with the resulting slow convergencewith Laguerre
polynomials. On the other hand, if Z(y) is expressed in reduced speed x = √

y, we
recognize that the expansion in Maxwell polynomials would be exact with N = 2.
This demonstrates the manner in which a particular problem dictates the optimal
choice of basis functions, namely Laguerre polynomials for the Rayleigh limit and
Maxwell polynomials for the Lorentz limit.

3.7.2 Matrix Representation of the Harmonic
Oscillator Potential in Hermite Polynomials

An instructive calculation of the pseudopsectral representation of the Hamiltonian
for the quantum harmonic potential is the evaluation of the matrix elements of the
harmonic potential, V(x) = x2 for the quantum harmonic oscillator problem, that is,

− d2ψn

dx2
+ x2ψn(x) = λnψn(x), (3.101)
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where λn = 2n + 1 in dimensionless units. The Hermite polynomials, Sect. 2.4.7,
(Liboff 2002) are the eigenfunctions of the Hamiltonian and are a logical choice
for the basis functions. The matrix representative of the potential in the set of basis
functions hn(x) = e−x2/2Hn(x)/

√
Mn, Mn = √

π2nn! is given by

Vnm =
∞∫

−∞
hn(x)x

2hm(x)dx =

⎧
⎪⎨

⎪⎩

1
2 (2n + 1), n = m,

1
2

√
(n + 1)(n + 2), n = m ± 2,

0, otherwise

(3.102)

where we have used the recurrence relation

xHn(x) = 1

2
[Hn+1(x) + 2nHn−1(x)], (3.103)

twice. We use MN to denote the normalization factor of the Hermite polynomials to
distinguish it from N .

We are interested in the evaluation of these matrix elements with the Gauss-
Hermite quadrature, that is,

V (N)
nm = 1√

MnMn

N∑

i=1

wiHn(xi)x
2
i Hm(xi). (3.104)

The matrix Vnm without the term in x2 in the integral in Eq. (3.102) represents the
orthonormality of the basis functions.We can verify this result to orderN with exactly
N Gauss-Hermite quadrature points and weights since the largest element would be
a polynomial of order 2N and the use of N quadrature points would yield an exact
result. However, with the additional term in x2 in Eq. (3.102), the matrix element
V (N)

N−1,N−1 in the bottom rightmost corner of the matrix is not calculated accurately
with N quadrature weights and points. The error in this one matrix element can be
determined exactly.

The matrix element V (N)
N−1,N−1 of the potential for the harmonic oscilator is given

by Eq. (3.104)

V (N)
N−1,N−1 = 2

MN−1

N/2∑

i=1

wix
2
i H2

N−1(xi), (3.105)

and the quadrature sum is twice the sum over the positive quadrature points. With
MN−1 = √

π2N−1(N − 1)!, the use of the recurrence relation, Eq. (3.103) and
HN (xi) = 0 which defines the quadrature points, we get that,

V (N)
N−1,N−1 = 1

MN−1

N∑

i=1

wiH
2
N−2(xi),

= (N − 1)2
MN−2

MN−1
,

= N − 1

2
, (3.106)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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where the quadrature sum is the normalization of HN−2 which is “exact” with N
quadrature points. The approximate result, Eq. (3.106), should be compared with the
exact result given by Eq. (3.102), that is

VN−1,N−1 = 2N − 1

2
. (3.107)

The transform of the “approximate” quadrature evaluatedmatrix representative gives
the “exact” physical space representation of the potential as the diagonal matrix,

Vij =
N−1∑

m=0

N−1∑

n=0

TimV (N)
nm Tmj = x2i δij. (3.108)

This is expected as the transformation of the matrix representation of a multiplicative
operator evaluated with an N th order quadrature, namely G(N)

nm in Eq. (3.85) gives on
transformation to physical space the diagonal representation, G(xi)δij.

If the exact spectral representation of the harmonic oscillator potential is trans-
formed to physical space it gives an inexact result. This can be seen by considering
the transform of the difference of the two spectral space representations,

(ΔV)nm = N

2
δm,N−1δn,N−1, (3.109)

which is the null matrix except for the one element VN−1,N−1 = N/2. We transform
the matrix, Eq. (3.109) to physical space and recognize that it is the last row of T that
plays a role which is the vector with components

TN−1,j = (−1)N+j 1√
N

. (3.110)

Thus we have analogous to Eq. (3.108)

(ΔV)ij =
N−1∑

m=0

N−1∑

n=0

Tim(ΔV)nmTmj = N

2

N−1∑

n=0

N−1∑

m=0

TinTjmδm,N−1δn,N−1

= 1

2
(−1)i+j. (3.111)

where Eqs. (3.109) and (3.110) have been used. These results were noted by others
(Eq.4.1 in Baye and Heenen (1986) and Eq. (14) in Szalay (1993)) and are important
in connection with the convergence properties of pseudospectral methods in kinetic
theory and also in quantum mechanics (Szalay et al. 2003). The analysis in this
section explains in part the accuracyof pseudospectralmethods basedon approximate
quadrature evaluated matrix elements (Baye et al. 2002; Szalay et al. 2012). Further
details are presented in Sect. 6.7.3, in Chap.6.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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3.8 Challenging Integrals

We complete our discussion of the quadrature evaluation of integrals with a brief
summary of some challenging integrals, the majority of which are characterized
by integrands that oscillate and decay very slowly for x → ∞ on the semi-infinite
interval (Lyness 1985). Integrals with oscillatory integrands, especially those defined
on the infinite or semi-infinite domains abound in the physical sciences and engi-
neering (Safouhi 2001; Fornberg et al. 2002; Asheim et al. 2014). The use of the
Distorted Wave Born Approximation (DWBA) for quantum inelastic cross sections
(Rasch and Whelan 1997) leads to oscillatory integrands for the matrix elements
between continuum eigenstates. A good example is the calculation of the rate of
nuclear spin transitions in 3He-3He collisions (Shizgal 1973; Mullen and Richards
1990; Newbury et al. 1993). We also consider an integral from the SIAM 100-Digit
Challenge (Bornemann et al. 2004) that exhibits a similar behaviour.

The numerical evaluation of the six-dimensional electron repulsion integrals that
are required for molecular electronic structure calculations is summarized. In these
simulations, many integrals are required so as to estimate the electronic states of
atoms and molecules. There is a very large effort devoted to the efficient calculation
of such integrals. Our discussion in this section is an overview of current work
with emphasis on the choice of basis functions and the numerical calculation of the
integrals that occur for the different choices. The use of nonclassical Rys quadratures
is one of several different methods to calculate the integrals.

3.8.1 Molecular and Atomic Electronic Structure;
Electron Pair Repulsion Integrals

The description of the electronic energies of an atom or molecule is based on the
Schrödinger equation for the motion of the electrons and nuclei which interact via
Coulomb potentials. Owing to the much smaller mass of the electrons relative to the
nuclei, one can uncouple the electronic and nuclear motions in accordance with the
Born5-Oppenheimer6 approximation (Levine 2009; Szabo and Ostlund 1996). Thus
one can write the Schrödinger equation for the electronic motion with the nuclei
in fixed positions at Rn for the nucleus labelled by n. In this way, the Schrödinger
equation is the eigenvalue problem

(Hel + Vnn)ψ(r1, r2, . . . , rn) = Eel(Rn)ψ(r1, r2, . . . , rn), (3.112)

5 Max Born (1882–1970) was a German-British physicist and mathematician who made significant
contributions to quantum mechanics, solid-state physics and optics, and won the 1954 Nobel Prize
in Physics for the statistical interpretation of wavefunctions.
6 Julius Robert Oppenheimer (1904–1967) was an American theoretical physicist and played a
prominent role in the Manhattan Project for which he became known as the “father of the atomic
bomb”.
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where ri is the position vector of the ith electron. The electronic Hamiltonian is

Hel = − �
2

2me

∑

i

∇2
i −

∑

n

∑

i

Zne2

|Rn − ri| +
∑

i

∑

i>j

e2

|rj − ri| , (3.113)

where Zn is the charge of the nth nucleus and e is the charge of the electron. The first
term in Eq. (3.113) is the kinetic energy of the ith electron. The second term is the
Coulomb interaction with the ith electron and the nth nucleus and the last term is the
electron-electron repulsion between different electrons. The Rn positions relative to
some space fixed axes are considered known. The rotational and vibrational states are
the solution of the Schrödinger equation for the motion of the nuclei in the potential
Eel(Rn) considered separately in Chap.6.

The situation simplifies considerably if we consider atoms with one nucleus and
in particular atomic hydrogen with one electron moving about a proton for which
an analytic solution is known (Karplus and Porter 1970; Levine 2009; Liboff 2003).
The eigenfunctions of the H-atom are

ψn�m(r, θ,φ) = Rn�(r)Y
(m)
� (θ,φ), (3.114)

where Rn�(r) can be written in terms of the associated Laguerre polynomials as
discussed in Chap.2, Sect. 2.4.6. These atomic orbitals are often used as the basis
functions for larger molecular systems. Another one-electron system that can be
solved analytically is H+

2 (Wind 1965; Levine 2009; Liu and Zhao 2010). TheHelium
atom is the simplest two electron problem for which the Hamiltonian is,

H = − �
2

2me
∇2
1 − �

2

2me
∇2
2 − 2e2

r1
− 2e2

r2
+ e2

|r1 − r2| , (3.115)

where the last term is the electron repulsion potential. This is a prototypical quantum
system that provides some of the main concepts for quantum chemical problems
(Karplus and Porter 1970; Levine 2009).

Ourmain interest is with respect to the quadrature evaluation of electron repulsion
integrals which is central to quantum chemistry computer codes (Becke 1988; Lindh
et al. 2001; Gill and Chien 2003; El-Sherbiny and Poirier 2004; Kakhiani et al. 2009;
Mitani 2011). Any speed-up in the computational time of these integrals represents
an enormous advance toward the treatment of larger molecular systems. The subject
is very technical and it is not our intention to treat this in any detailed manner here.
It has become a very computationally intensive problem that occupies the interests
of a large number of computational theoretical chemists and physicists. Additional
presentations of the problemare in several textbooks (Karplus andPorter 1970; Szabo
and Ostlund 1996; Helgaker et al. 2000; Levine 2009; Tsuneda 2014) and review
papers (Gill 1994; Reine et al. 2012). The objective is to introduce the reader to the
ongoing efforts of many researchers in the development of efficient methods for the
evaluation of integrals over the basis functions of electrons in atoms and molecules.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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This subject area often involves very technical aspects of Fortran codes and the
nomenclature for the basis sets used can be found in Chap.3 in the book by Szabo
and Ostlund (1996). This brief summary will hopefully provide the reader with the
essential aspects as it relates to numerical quadratures and the evaluation of integrals.

The only exact solution of the Schrödinger equation is for the hydrogen atom
and other one-electron atoms such as He+, Li++, etc. with a Hamiltonian which is
separable and consequently with eigenfunctions that are expressed as a direct product
of the associated Laguerre polynomials and the spherical harmonics, Eq. (3.4). In
the absence of external fields, the allowed energy levels depend only on n. The
eigenfunctions ψnlm(r, θ,φ) are referred to as orbitals.

The Schrödinger equation for two-electron atoms such as He, is not separable in
the same way owing to the Coulomb electron-electron interaction dependent on the
distance, r12 = |r1 − r2| between the two electrons. There are several variational
treatments for He that provide useful analytical approximations to the electronic
ground eigenstate (Frankowski and Pekeris 1966; Levine 2009). The choice of basis
functions is a key element in current computational methods in atomic electronic
structure calculations. As always, the basis functions should be chosen so as to best
describe the anticipated behaviour of the eigenfunctions and at the same time provide
for an efficient numerical treatment.

For many electron atoms, one useful choice of basis functions or “orbitals” are
those that mimic the orbitals for the single electron for the H-atom and are the
product of a radial function Rn�(r) and the spherical harmonic Y�m(θ,φ). One such
basis function is the set of Slater7-type orbitals (STO) given by

φsto
n�m(r) = Nn�mrn−1e−αrY�m(θ,φ), (3.116)

where Nn�m is a normalization and α is a parameter. An added complexity is that
electrons are fermions with spin 1/2 states and the eigenfunctions must be made anti-
symmetric with respect to an exchange of the two electrons. In order to reduce the
Schrödinger equation for He to a set of matrix equations, a large number of matrix
elements of the Hamiltonian between basis functions must be evaluated. The situa-
tion for He has been considered by numerous researchers and exact numerical results
are known (Drake 1999; Drake et al. 2002) including the application of pseudospec-
tral methods (Cassar and Drake 2004; Grabowski and Chernoff 2011). Electronic
structure calculations for many electron atoms is an active area of research.

Another level of complexity occurs for diatomic molecules such as H2 with two
nuclei, that is “two centers”, as shown in Fig. 3.22. The protons are at a fixed sep-
aration R in keeping with the Born-Oppenheimer approximation and the relative
electron-electron distance is r12 = |r1 − r2|. The other solid lines are the four
electron-proton interactions. The two electrons can move in space and their posi-
tions specified with cartesian coordinates (x1, y1, z1) and (x2, y2, z2) or preferably in
terms of spherical polar coordinates which is made difficult owing to the two centers.

7 John Clarke Slater (1900–1976) was an American physicist who pioneered theoretical methods
in atomic and molecular electronic structure.
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Fig. 3.22 Electron-electron separation is denoted by r12 = |r1 − r2| and then fixed separation of
the protons by R. The other solid lines are the four electron-proton interactions

Thus, one of the main difficulties is the choice of coordinates and the basis functions
in which to express the three-dimensional eigenfunctions. The ground state eigenen-
ergy depends on the nuclear separation R and provides the potential V(R) for the
subsequent study of the nuclear motion or vibration. For H+

2 , with only one electron
and no electron-electron repulsion the problem is simplified (Wind 1965). Further
details of the theoretical treatment for this molecular ion can be found elsewhere
(Cassar and Drake 2004; Levine 2009).

For molecular systems, the evaluation of matrix elements between Slater type
orbitals is difficult and a better choice are the basis sets constructed from Gaussian
type orbitals,

φ
gto
n�m(r) = Nn�mr�e−αr2Y�m(θ,φ), (3.117)

where the main difference with Slater type orbitals is the exponential dependence on
r2 rather than r. The main advantage is that the product of two Gaussians is another
Gaussian which can be easily understood by completing the square of the argument
of the exponential. Another suggestion for basis function are those discussed by
Weniger (2009) referred to as B-functions with the radial portion expressed as a
Bessel function. In this approach, we once again encounter integrals with oscillating
integrands as discussed in Sect. 3.8.2 (Safouhi 2001). The importance of choosing
the appropriate basis functions is clear.

In either case, the problem reduces to an expansion of the multi-electron ground
state eigenfunction in these basis sets and the reduction of the Schrödinger equation
to a set of linear equations for the eigenvalues. This is easier said than done. In the
course of this calculation, the matrix elements of the kinetic energy operator and, in
particular, of the electron-electron Coulomb repulsion potential must be calculated.
These are integrals of the form

〈ij| 1

r12
|k�〉 =

∫∫
φi(r1)φj(r2)

1

r12
φk(r1)φ�(r1)dr2dr2. (3.118)

These are 6-dimensional integrals with the position, ri, of each basis function (or
orbital) with reference to the position of a particular nucleus. Even for diatomic
molecules, the numerical evaluation of these integrals is difficult and a large number
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are required in a simulation of the electronic structure. It might be of interest for
the reader to consult some original papers in which some of these integrals were
evaluated analytically (Shavitt and Karplus 1965; Kern and Karplus 1965).

3.8.2 Relaxation Times for 3He-3He Spin Exchange
Collisions—Oscillatory Integrands

The use of the distorted wave Born approximation to approximate transition proba-
bilities for inelastic collision processes (Child 1996; Canto and Hussein 2013) yields
integrals with oscillatory integrands. We choose to apply this theoretical approach
to the nuclear spin-exchange that accompanies 3He-3He collisions. The distorted
wave Born approximation applies to systems for which the interaction potential is
the sum of two distinct potentials, a spherical potential, V0(r), that defines the elastic
scattering of the He atoms and another much weaker spin dependent interaction,
V1(r; I1, I2) that is responsible for the changes in the 3He nuclear spin states, I1
and I2. With this assumption, the continuum scattering eigenfunctions are very well
approximated with the solution of the Schrödinger equation with only V0(r).

The integrals required in the distorted wave Born approximation are the diagonal
matrix elements between the radial wavefunctions uk,�(r), of the form

∫∞
0 u2k,�

/r8dr
or
∫∞
0 u2k,�

e−αr/r2dr for the spin dependent interactions (Shizgal 1973, 1974a). The
radial wavefunction, uk.�(r), are the solutions of Eq. (3.63). However, the continuum
radial eigenfunctions can also be approximated with the JWKB eigenfunctions. The
difficulty with the numerical evaluation of these integrals is that the integrands are
highly oscillatory and may decay slowly for r → ∞. Shizgal (1974b) evaluated
such integrals by searching for the roots of the integrands and evaluating the inte-
grals between successive roots with a Gauss-Mehler quadrature. This technique pro-
vides acceptable results but the convergence of the partial sums is slow. The results
compared favorably with the exact quantum results obtained with a direct numer-
ical integration of the radial Schrödinger equation. Dickinson and Shizgal (1975)
later employed a classical analogue to the JWKB approximation and found excellent
agreement with the semi-classical and quantal results.

We will not discuss the details of these calculations but instead consider analo-
gous integrals with the replacement of the radial wavefunctions with the plane wave
analogues so that uk,�(r) → j�(kr) where j�(kr) is the spherical Bessel function
(Abramowitz and Stegun 1964). A typical example is the integral

∞∫

0

j2�(x)

x
dx = 1

2�(� + 1)
, (3.119)

with the oscillatory integrand shown in Fig. 3.23. The partial sums of the integrals
between the successive zeros (with 8Gauss-Legendre quadrature points andweights)
for the integral in Eq. (3.119) with � = 5 are 0.01556, 0.01600, 0.01618, 0.01630,
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(A) (B)

Fig. 3.23 (A) Integrand for the integral in Eq. (3.119) for � = 5; (B) The integrand for the integral,
Eq. (3.120) in the SIAM 100-Digit Challenge (Gautschi 2008; Slevinsky and Safouhi 2008)

0.01637, 0.01643, etc. The exact value is 1/60 = 0.01666. More than 93% of the
contribution to the integral is from the first peak and the contributions from the
remaining intervals are much smaller and decrease very slowly. For physical appli-
cations such as this one, the required accuracy is of several significant figures. Similar
integrals involving the squares of Bessel functions occur in the reconstruction of tem-
perature multipole spectrum of cosmic microwave background from measured data
(Tomaschitz 2012, 2013) containing the squares of Bessel functions as in Eq. (3.119).
An exhaustive discussion of the work on oscillatory integrands is beyond the scope
of the book. The original treatment of quadratures for integrals of this type is Filon8’s
sine and cosine formulae discussed in Sect. 4.11 of the book by Lindfield and Penny
(2012).More advanced discussions can be found in recent papers (Iserles andNorsett
2005; Asheim et al. 2014).

3.8.3 The SIAM 100-Digit Challenge;
a “Twisted Tail” Integral

It is useful to compare the previous discussion with the integral

I =
∞∫

0

cos(x)

x + u(x)
dx (3.120)

arising from a change of variable from an original integral (Slevinsky and Safouhi
2008; Gautschi 2008) discussed by Laurie in Chap.1 in the SIAM 100-Digit

8 Louis Napoleon George Filon (1875–1937) was an Englishmathematician andworked in classical
mechanics, elasticity and continuous media.

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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Challenge (Bornemann et al. 2004). In Eq. (3.120), x = u(x) ln[u(x)]. The inte-
grand in Eq. (3.120) is shown in Fig. 3.23(B) and shares some of the features of
Fig. 3.23(A). The graph is drawn with the spline fit of a table of u(x) versus x.
Gautschi (2008) provides a numerical algorithm for the evaluation of this integral.
The infinite domain is divided into subdomains with the end points at the roots of
cos(x) that is xk = (2k + 1)π/2 so that the integral is represented as a sum over each
subdomain. The integral in each sub-domain is evaluated with a Gauss-Legendre
quadrature over the interval [−1, 1] with the appropriate change of variable as done
for the integral in Eq. (3.119). Gautschi also discusses the need to introduce a special
acceleration scheme in the summation over subintervals as this series converges very
slowly analogous to the results cited for Eq. (3.119).

Further details can be found in recent publications (Gautschi 2008; Slevinsky and
Safouhi 2008). In contrast to the applications to physical problems where the preci-
sion required is often less than machine accuracy, the “challenge” for this example
and others (Bornemann et al. 2004) is to evaluate the integral to 100 digits.

3.9 Numerical Evaluation of Derivatives

The numerical evaluation of the derivatives of a function is the basis of pseudospec-
tral methods of solution of partial differential equations such as the Schrödinger
equation and/or differential-integro equations such as the Boltzmann equation. The
earliest collocation appears to be the solution of the radiative transfer equation by
Wick (1943) and Chandrasekhar (1960). The technique of differential quadrature
was later introduced by Bellman (Bellman et al. 1972; Shu 2000) based on either
polynomials or Fourier basis sets. The monograph by Gottlieb and Orszag (1977)
established the use of spectral methods with a finite basis set expansion and the
relationship with a collocation.

Blackmore and Shizgal (1985) applied pseudospectral discretizations of deriv-
atives together with quadratures for integrals to reduce the Boltzmann equation to
linear algebraic form. The method was referred to as a discrete ordinate method anal-
ogous to the terminology in radiative and neutron transport (Chandrasekhar 1960;
Liou 1973) and in kinetic theory (Robson et al. 1991; Robson and Prytz 1993). These
discretization techniques were applied to the Schrödinger equation by Light and
coworkers (Hamilton and Light 1986; Bacic and Light 1986; Light and Carrington
Jr. 2000) and originated from considerations of the quadrature evaluation of matrix
elements (Harris et al. 1965; Dickinson and Certain 1968) discussed in Sect. 3.7. The
Lagrange mesh method developed by Baye (1994) and coworkers (Baye and Hee-
nen 1986; Baye and Vincke 1999) is based on Lagrange interpolation. A personal
chronology of the development of pseudospectral methods in chemistry and physics
was provided in Table1.1. The applications to the Boltzmann, Fokker-Planck and
Schrödinger equations are presented in Chaps. 5 and6.

http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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3.9.1 Finite Difference Formulas for Derivatives

Finite difference methods for the evaluation of derivatives are often used for the
solution of differential equations. We present a brief summary in comparison with
pseudospectral methods. The finite difference first derivative of a function is simply
an approximation to the definition of the derivative as the slope of the function at
some point. The method is considered local as the derivative is approximated by
neighbouring function values. Specifically, we evaluate the first derivative between
uniformly spaced grid points, xi and xi+1, with Δx = xi+1 − xi as

df

dx

∣∣∣∣
xi

≈ f (xi+1) − f (xi)

Δx
. (3.121)

Equation (3.121) is the forward finite difference whereas

df

dx

∣∣∣∣
xi

≈ f (xi) − f (xi−1)

Δx
, (3.122)

is the backward finite difference approximation to the first derivative. It is clear
that this is a local method as only neighbouring grid points are involved. The third
approximation is the centered difference formula given by,

df

dx

∣∣∣∣
xi

≈ f (xi+1) − f (xi−1)

2Δx
. (3.123)

The error in the above approximations to the first derivative is second order in Δx.
Higher order estimates can also be provided. Further details can be found in Chap.4
of Burden and Faires (2011) and Chap.7 of Cheney and Kincaid (2008).

The approximation to the second derivative is derived from the expressions above
and we have the second order estimate,

d2f

dx2

∣∣∣∣
xi

≈ f (xi+1) − 2f (xi) + f (xi−1)

(Δx)2
. (3.124)

The diffusion equation of the form

∂n(x, t)

∂t
= ∂2n(x, t)

∂x2
(3.125)

can be discretized with Eq. (3.121) on the right-hand side in x and with Eq. (3.124)
on the left hand side in t so that

ni(t + Δt) − ni(t)

Δt
= ni+1(t) − 2ni(t) + ni−1(t)

(Δx)2
. (3.126)
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where ni(t) ≡ n(xi, t). The solution can be advanced in timewith an Euler algorithm,
that is

ni(t + Δt) = ni(t) +
[

ni+1(t) − 2ni(t) + ni−1(t)

(Δx)2

]
Δt, (3.127)

which is initiated with the initial condition ni(0).
The differential operators in many different partial differential equations can be

discretized in this way and the equations reduced to ordinary differential equations
which are then advanced in time with an Euler scheme above or with higher order
methods such as a Runge-Kutta scheme (Cheney and Kincaid 2008). An important
aspect of these methods is the choice of the grid spacing in x and t, that is Δx and
Δt. Further details on finite difference methods can be found in several textbooks
(LeVeque 2007; Cheney and Kincaid 2008; Durran 2010). We use a finite difference
method for the solution of the nonlinear Boltzmann equation in Chap.5, Sect. 5.8
(Kabin and Shizgal 2003). We make use of the Chang and Cooper (1970) finite dif-
ference scheme for the solution of the Fokker-Planck equation in Chap.6, Sect. 6.2.3.

3.9.2 Interpolation and Differentiation

In Chap.2, Sect. 2.3.1, we discussed the role of interpolation in the development of
quadrature procedures. A Lagrange interpolation was defined for the set of N points
{xi} and the corresponding function values, yi = f (xi). The N th order Lagrange
interpolant is of the form

f (x) ≈ f (N)(x) =
N∑

i=1

f (xi)Ii(x), (3.128)

where the interpolation function, Ii(x), is constructed from orthogonal polynomials
that is

Ii(x) = wi

N−1∑

n=0

Pn(x)Pn(xi), (3.129)

and satisfy the Cardinality condition

Ii(xj) = δij. (3.130)

Thus the interpolation returns the exact values of the function values, f (xi), at each
point xi, as discussed in Sect. 2.3.1 and shown in Fig. 2.2.

It is clear that an approximation for the derivative of f (x) is given by

df (N)(x)

dx
=

N∑

i=1

f (xi)
dIi(x)

dx
. (3.131)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2


170 3 Numerical Evaluation of Integrals and Derivatives

We thus identify the derivative matrix operator used in pseudospectral methods for
the solution of differential equations as the derivative of the Lagrange interpolant,
that is,

D̂ij = dIj(x)

dx

∣∣∣∣
x=xi

= wj

N−1∑

n=0

P′
n(xi)Pn(xj). (3.132)

It is straightforward to construct the discrete derivative matrix operator for classi-
cal and nonclassical polynomials from the recurrence coefficients αn and βn. The
quadrature weights and points are calculated with the diagonalization of the Jacobi
matrix, Eq. (2.71). The polynomials,Pn(x), and the derivatives,P

′
n(x) are determined

by recurrence and the discrete derivative matrix operator is given by Eq. (3.132).
It follows that the second derivative matrix operator in physical space is given by

D̂(2)
ij = wj

N−1∑

n=0

P′′
n(xi)Pn(xj). (3.133)

With Eq. (3.132), the approximation to the second derivative that appears in
Eq. (3.133) is

P′′
n(xi) =

N∑

�=1

D̂i�P′
n(x�). (3.134)

We substitute Eq. (3.134) into (3.133) and get

D̂(2)
ij = wj

N∑

n=0

[ N∑

�=0

D̂i�P′
n(x�)

]
Pn(xj),

=
N∑

�=0

D̂i�wj

N∑

n=0

P′
n(x�)Pn(xj),

=
N∑

�=0

D̂i�D̂�j. (3.135)

Thus the second derivative matrix operator is the matrix product of the first order
derivative matrix operators.

We use nonclassical basis functions for themajority of the applications in Chaps. 5
and6 and use the definition Eq. (3.132) to construct the derivative matrix operator.
For some nonclassical weight functions it is possible to express the spectral space
matrix elements, dnm, in terms of the recurrence coefficients and then transform to

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Table 3.18 References to explicit first and second derivative matrix operators

Basis Quadrature Reference D(1) D(2)

Fourier Schwartz (1985) Eq. (2) Eq. (3)

Baye and Heenen (1986) Eq. (3.5)

Colbert and Miller (1992) Appendix

Kokoouline et al. (1999) Appendix

Shen et al. (2011) Eq. (2.34) Eq. (2.37)

Odd collocation Peyret (2002) Eq. (2.30) Eq. (2.31)

Even collocation Peyret (2002) Eq. (2.32) Eq. (2.33)

Chebyshev Gauss Funaro (1992) Eq. (7.2.14)

Gauss Shen et al. (2011) Eq. (3.231)

Lobatto Peyret (2002) Eq. (3.46) Eq. (3.47)

Lobatto Canuto et al. (2006) Eq. (2.4.33) Eq. (2.4.36)

Lobatto Shen et al. (2011) Eq. (3.228)

Radau Shen et al. (2011) Eq. (3.229)

Legendre Gauss Funaro (1992) Eq. (7.2.14)

Jacobi Gauss Shen et al. (2011) Eq. (3.164)

Gauss Funaro (1992) Eq. (7.2.12)

Lobatto Shen et al. (2011) Eq. (3.160)–(3.162)

Radau Shen et al. (2011) Eq. (3.163)

Laguerre Radau Funaro (1992) Eq. (7.2.15)

Gauss Baye and Heenen (1986) Eq. (3.17)

Hermite Gauss Baye and Heenen (1986) Eq. (3.14)

the physical space representation as done for Maxwell polynomials (Shizgal and
Blackmore 1984). In general, explicit expressions of the physical space deriva-
tive matrix operators, D̂ij and D̂(2)

ij , for nonclassical polynomials are not available.
Explicit expressions do exist for derivative operators for the classical polynomials and
Table3.18 provides a partial list to the references where these results can be found.

The Fourier basis is the basis set of choice especially for the second derivative
operator representing the kinetic energy in the Hamiltonian for quantum problems.
Other definitions of these derivative matrix operators were reported by Baye (1994),
Barkley (1995) and by Szalay (1993). There is considerable overlap of the results
reported in these references.

If the matrix elements of the derivative operator in spectral space

dnm =
b∫

a

w(x)Pn(x)
dPm(x)

dx
dx, (3.136)

is transformed to physical space with the transform, Tni, then the derivative matrix
operator in physical space is,
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Dij =
N−1∑

n=0

N−1∑

m=0

TindnmTmj,

=
N−1∑

n=0

N−1∑

m=0

[√
wiPn(xi)

] N∑

k=1

wkPn(xk)P
′
m(xk)

[√
wjPm(xj)

]
,

= √
wiwj

[ N∑

k=1

wk

N−1∑

n=0

Pn(xi)Pn(xk)

] N−1∑

m=0

P′
m(xk)Pm(xj),

= √
wiwj

[
Ik(xi)

] N−1∑

m=0

P′
m(xk)Pm(xj), (3.137)

where in the second line we have used the definitions of dnm and of Tin in the square
brackets. In the third line, we have collected the separate sums over n and m and we
recognize the interpolation function in square brackets as noted in the last line. Since
Ik(xi) = δki, we have that

Dij = √
wiwj

N−1∑

m=0

P′
m(xi)Pm(xj) . (3.138)

This is consistent with Eq. (3.132) since

D̂ij = Dij

√
wi

wj
. (3.139)

In the absence of explicit analytic expressions, we show the physical space first
and second derivative matrix operators for Maxwell polynomials, (w(x) = x2e−x2),
with N = 5 in Tables3.19 and 3.20. The main objective is to show the potential
round-off errors that can occur in the calculation of numerical derivatives with these
matrix operators. The matrix elements alternate in sign and increase rapidly with N ,
especially for D(2).

In Fig. 3.24, we show the first and second derivatives of f (x) = e−x4 and the
numerical values as symbols with N = 20 and a scale factor s = 0.3 so to as

Table 3.19 First derivative
operator, D, in physical space
for Maxwell Polynomials,
w(x) = x2e−x2

i/j 1 2 3 4 5

1 −3.8890 6.1977 −3.1580 0.9693 −0.1201

2 −0.6768 −0.8170 1.8841 −0.4389 0.0485

3 0.2644 −1.4443 0.5276 0.7112 −0.0588

4 −0.3160 1.3101 −2.7694 1.5640 0.2112

5 1.1631 −4.3053 6.8023 −6.2745 2.6143
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Table 3.20 Second
derivative operator, D(2), in
physical space for Maxwell
Polynomials, w(x) = x2e−x2

i/j 1 2 3 4 5

1 9.6484 −22.8180 18.7915 −6.4661 0.8442

2 3.8783 −7.0327 3.1378 0.0515 −0.0349

3 −0.2042 3.2413 −5.6473 2.7466 −0.1364

4 −0.6386 2.1113 −0.8897 −1.7295 1.1467

5 5.2122 −18.5745 26.9635 −18.3623 4.7611

Fig. 3.24 Numerical values
of f ′(x) (circles) and f ′′(x)
(squares) versus x for
f (x) = e−x4 with Maxwell
quadrature points with
scaling factor s = 0.3. The
solid lines are the exact
results

to shorten the effective interval. The effect of the roundoff error in the second
derivative is illustrated by the two quadrature points for n = 18 and n = 19 (solid
circles) that deviate significantly from the exact result (solid curve). In fact, the
error in the last point, n = 20, is too large to show on the graph. Similar round-off
errors for physical space derivative matrix operators for Chebyshev polynomials was
discussed in Sect. 3.3.4 in Peyret (2002). This was also discussed in greater detail
by Baltensperger and Trummer (2003) who provided methods to reduce the errors.
Additional detailed discussions of such errors were also reported in the solution of
Fisher’s equation (Olmos and Shizgal 2006). The errors for the pseudospectral meth-
ods based on the Maxwell polynomials in the semi-infinite axis are larger than for
Chebyshev pseudospectral methods.

Shizgal and Blackmore (1984) calculated Dkj for Legendre polynomials normal-
ized to unity with the transform of

dnm =
{√

(2n + 1)(2m + 1), m > n, m + n odd,
0 otherwise,

(3.140)

as given by the first line of Eq. (3.137). In Fig. 3.25, we show the variation of the
absolute error in the calculation of the first and second derivatives of the oscillatory
function

f (x) = sin
[
3(sinh(x) + (1 − x)2)

]
. (3.141)

The convergence is moderately fast for this non-polynomial function and slow at
the interval boundaries relative to the convergence in the middle part of the interval.
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Fig. 3.25 Variation of the absolute error versus x for the numerical first derivative f (1) = D · f and
numerical second derivative f (2) = D(2) · f for f (x) = sin[3(sinh(x) + (1+ x)2)] with N = 24, 30,
and 36 Legendre quadrature points

A comparison with a fourth order finite difference differentiation was shown by
Shizgal and Blackmore (1984).

3.9.3 Sturm-Liouville Eigenvalues Problems

The classical polynomials satisfy Sturm-Liouville eigenvalue problems and equiva-
lent Schrödinger equations. We provide a detailed discussion of these problems in
Chap.6. In this section, we introduce the subject so as to show that only the first
derivative matrix operator is required for such second order differential equations.
To illustrate this result, we note that the Sturm-Liouville equation for Legendre poly-
nomials is given by

− d

dx

[
(1 − x2)

dP�(x)

dx

]
= �(� + 1)P�(x), (3.142)

which is equivalent to the Schrödinger equation for a rigid rotor, that is

− �
2

2I

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψ�(θ) = E�ψ�(θ), (3.143)

where I is themoment of the inertia of the diatomicmolecule. The change of variable,
x = cos θ transforms Eq. (3.143) to Eq. (3.142) with E� = �(� + 1)�2

2I .
We wish to construct the physical space representation of the Sturm-Liouville

operator on the left hand side of Eq. (3.142). We begin with the spectral space
representation given by

L��′ = −
1∫

−1

P�

d

dx

[
(1 − x2)

dP�′(x)

dx

]
dx. (3.144)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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An integration by parts gives

L��′ =
1∫

−1

(1 − x2)P′
�(x)P

′
�′(x)dx,

≈
N∑

k=1

wk(1 − x2k )P′
�(xk)P

′
�′(xk),

=
N∑

k=1

wk(1 − x2k )

N∑

α=1

D̂kαP�(xα)

N∑

β=1

D̂kβP′
�(xβ), (3.145)

where the integral for thematrix elements is evaluated byquadrature in the second line
and the derivatives are evaluated with the derivative matrix operator in the third line.
The transformationofL��′ to physical spacewith the transformationTi� = √

wiP�(xi)

gives

Lij =
N−1∑

�=0

Ti�L��′T�′j,

=
N∑

k=1

wk(1 − x2k )

[
N−1∑

�=0

√
wiP�(xi)

N∑

α=1

D̂kαP�(xα)

]

×
⎡

⎣
N−1∑

�′=0

√
wjP�′(xj)

N∑

β=1

D̂kβP�′(xβ)

⎤

⎦ . (3.146)

We now use the discrete “completeness” relation

N−1∑

�=0

P�(xi)P�(xα) = δiα

wi
, (3.147)

in each square bracket and the final result is

Lij =
N∑

k=1

(1 − x2k )DkiDkj, (3.148)

where the definition Eq. (3.139) has been used. The eigenfunctions of L given by
Eq. (3.148) for N = 6 calculated with a MATLAB code are shown by the solid
symbols in Fig. 3.26. These coincide exactly with the solid line which is P5(x). The
eigenvalues calculated in this way are “exactly” the rigid rotor eigenvalues, that is
λ� = �(� + 1).
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(A) (B)

Fig. 3.26 (A) Solid line is the exact result for the orthonormal Hermite polynomial H5(x)e−x2/2.
The eigenfunctions of Hij of Eq. (3.149) agree with the exact polynomial as shown by the solid
circles for N = 12 and by the squares for N = 6. (B) Solid line is the exact result for the
orthonormal Legendre polynomial P5(x). The eigenfunctions of Lij of Eq. (3.148) agree with the
exact polynomial as shown by solid circles for N = 6

Similarly, the eigenfunctions and eigenvalues for the harmonic oscillator are calcu-
latedwith the diagonalization of the pseudospectral representation of the Schrödinger
equation, that is

Hij =
N∑

k=1

DkiDkj (3.149)

with Gauss-Hermite quadratures.
This calculation provides N exact eigenvalues, λn = 2n, relative to the ground

state and eigenfunctions that coincide with the Hermite functions hn(x). In Fig. 3.26,
the symbols are the results obtained with the diagonalization of Eq. (3.149) and are
in exact agreement with the polynomial h5(x) = H5(x)e−x2/2 shown by the solid
lines for N = 6 and N = 12. This calculation for the quantum harmonic oscillator,
based on Eq. (3.149), does not involve the calculation of the matrix elements of the
harmonic potential (Colbert and Miller 1992; Baye and Heenen 1986).

The evaluation of the potential energy matrix elements by quadrature (Szalay
1993; Baye et al. 2002; Szalay et al. 2012) are of no concern with this pseudospec-
tral approach. Moreover, there is no occurrence of nonphysical “ghost levels” (Wei
1997; Willner et al. 2004; Kallush and Kosloff 2006) as discussed further in Chap.6,
Sect. 6.7.3.

3.9.4 Discrete Singular Convolution;
Whittaker’s Sinc Interpolation

Fourier basis functions are traditionally associated with pseudospectral methods for
the solution of partial differential equations, and the grids associated with Fourier
methods are uniform grids. In Sect. 2.6.1, we introduced the sinc function (Whittaker
1929a, b; Stenger 1993)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Sk(x) = sin[π
h (x − xk)]

π
h (x − xk)

, (3.150)

which satisfies the cardinality condition Sk(xj) = δjk . Thus we have the interpolation
on a uniform grid of N points xk = xmin + h(k − 1), defined for the finite interval
[xmin, xxmax] where the grid spacing is h = (xmax − xmin)/(N − 1), that is

fN (x) ≈
N∑

k=0

Sk(x)f (xk). (3.151)

From the explicit differentiation of Eq. (3.151), the representation of the second
derivative operator is,

D(2)
jk = S′′

k (xj) =
⎧
⎨

⎩
− 2(−1)j−k

(j−k)2h2
, j �= k,

− π2

3h2
, j = k.

(3.152)

This representation of the second derivative operator has been used frequently for
the solution of the Schrödinger equation (Schwartz 1985; Colbert and Miller 1992;
Dulieu et al. 1997; Meijering et al. 1999; Boyd 2001; Wei 2000a, b; Amore 2006).
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Chapter 4
Representation of Functions in Basis Sets

Abstract The orthogonal basis sets most often used in spectral methods are the
Chebyshev andLegendre polynomials on a bounded domain, or a Fourier basis set for
periodic functions. We discuss in this chapter the expansions of Gaussian and Kappa
distributions of kinetic theory in Hermite and Laguerre polynomials on the infinite
and semi-infinite intervals, respectively. The spectral convergence properties of these
expansions is demonstrated numerically and analytically. The expansions of sin(x) in
Hermite polynomials, and of the Maxwellian distribution in Chebyshev polynomials
are also considered. The basic principles of Fourier series are presented and applied
to quantum mechanical wave packets as well as the analysis of free induction decay
signals. The resolution of theGibbs phenomenonwith theGegenbauer reconstruction
method is comparedwith the inverse polynomial reconstructionmethod.A resolution
of the Runge phenonmena is also presented.

4.1 Introduction

The spectral solutions of integral and partial differential equations are based on the
finite expansions in a basis set. Spectral methods are used in many different fields
including fluid mechanics (Gottlieb and Orszag 1977; Canuto et al. 2006), biology
(Olmos and Shizgal 2006; Olmos 2010), economics (Tangman et al. 2008; Pindza et
al. 2014), relativity (Grandclément and Novak 2009), satellite engineering (Williams
2011) and numerous other fields. In this chapter, the spectral convergence of the
expansion of several different functions in basis sets is studied. The description of
spectral (and pseudospectral) solutions of differential and integral equations, lim-
ited to physical problems based on the Boltzmann, Fokker-Planck, Kramers and the
Schrödinger equations, as well as the equation for radiative transfer, are presented
in Chaps. 5 and 6.

The basis sets commonly used are orthogonal polynomials and the periodic
trigonometric functions. The choice of the basis functions depends on the problem
studied. For a problem defined on a finite interval, the choice is generally Chebyshev,
Legendre polynomials or trigonometric functions for periodic solutions. The most
frequently used basis sets are listed in Table2.1. Numerous mathematical identities
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are readily available for the classical polynomials (Abramowitz and Stegun 1964;
Gradshteyn and Ryzhik 2007) and for each set there is a defining differential Sturm-
Liouville eigenvalue problem (Jirari 1995; Al-Gwaiz 2008) discussed in Sect. 6.7.
Nonclassical polynomials have also beenused inmany applications (Baye andVincke
1999; Garcia 1999; Weideman 1999; Chen and Shizgal 2001; Lo and Shizgal 2008;
Asadchev and Gordon 2012). By contrast, very few mathematical properties are
known for the non-classical polynomials listed in Table2.2.

A spectral method is based on the approximation of a function, f (x), in a basis
set. The N th order polynomial approximation is given by

f (N )(x) =
N∑

n=0

an Pn(x), x ∈ [a, b], (4.1)

where the basis functions, Pn(x), are orthonormal with respect to a weight function,
w(x), that is

b∫

a

w(x)Pn(x)Pm(x)dx = δnm .

A spectral method generally implies that if the function, f (x), is sufficiently smooth,
the absolute value of the coefficients, |an|, will decrease rapidly with n and the
representation is efficient and accurate. There are proofs of the spectral convergence
for certain problems that show an exponential decrease of the absolute value of the
coefficients, |an|, with n (Gottlieb and Orszag 1977; Boyd 2001; Wang and Xiang
2012; Trefethen 2013).

In this chapter, we are concerned with the rate of convergence of the spectral
representation of specific real functions, f (x), in a basis set on a given interval.
The Hermite and Laguerre polynomials are the basis sets of choice in many different
applications in quantum theory (Boyd et al. 2003) and kinetic theory.We begin with a
studyof the convergence of expansions inHermite polynomials on the infinite interval
(Schumer and Holloway 1998; Alp and Arikan 2012) and Laguerre polynomials on
the semi-infinite interval (Bao et al. 2008; Weniger 2009; Tatari and Haghighi 2014)
as discussed in Sects. 4.3 and 4.5.

We consider Fourier series in some detail in Sect. 4.6.1 with particular attention
given to the Gibbs’ phenomenon (Gottlieb and Shu 1997; Driscoll and Fornberg
2001; Shizgal and Jung 2003; Jerri 2011; Gelb and Hines 2012). The expansion of
a function on a finite interval in a Fourier series can lead to spurious oscillations,
known as Gibbs phenomenon, at the discontinuous points where the function has a
jump discontinuity. We also note the extensive use of Fourier series in the solution of
numerous problems in quantummechanics (Kosloff and Kosloff 1983; Kosloff 1993;
Balint-Kurti and Pulay 1995; Balint-Kurti 2010), kinetic theory (Filbet et al. 2006;
Filbet and Mouhot 2011), astrophysics (Bonazzola et al. 1999), geophysics (Durran
2010), signal and image processing (Blackledge 2006) and in many other fields.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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4.2 Approximation of Functions in a Basis Set; The Least
Squares Error

The representation of a given real function, f (x), in a basis set, {Pn(x)}, orthonormal
with respect to weight function, w(x), is

f (N )(x) = w(x)

N∑

n=0

an Pn(x). (4.2)

The expansion coefficients are given by the integral

an =
∫

I

f (x)Pn(x)dx, (4.3)

on some specified interval I . It is important to notice that the series expansion,
Eq. (4.2), the weight function,w(x), multiplies the series expansion and differs from
Eq. (4.1). This choice is made with the expectation that f (x) is not very different
from w(x) and hence the series expansion will converge quickly. This will become
evident with the examples discussed in the sections that follow. A primary interest
is the decrease of the expansion coefficients, |an|, versus n and how good is the
approximation f (N )(x).

In kinetic theory, w(x), is often the Maxwellian velocity distribution function,
F(x), Eq. (4.9), and the expansion Eq. (4.2) is often referred to as the expansion
“about” a Maxwellian. The series expansion gives the correction to the Maxwellian
owing to nonequilibrium processes (Mintzer 1965; Holway 1967).

There have been numerous discussions of approximation theory with different
degrees of mathematical rigour (Davis 1963; Cheney 1966; Rivlin 1969; Boyd 2001;
Trefethen 2013). One of the main results is the Weierstrass approximation theorem
which states that every continuous function defined on a closed interval, [a, b], can
be uniformly approximated as closely as desired by a polynomial. An excellent
historical account of approximation theory has been provided by Steffens (2006)
and also by Pinkus (2000).

Given the approximation of the function, Eq. (4.2), how do we measure the accu-
racy of the approximation f (N )(x)? How do we express the “distance” of f (N )(x)

from f (x)? We could make use of the familiar method of least squares used to fit
discrete data {xi , yi } to a straight line, y = ax + b. In this case, the least squares fit
is the one that minimizes the error

E(a, b) = 1

N

N∑

i=1

[yi − (axi + b)]2,

with respect to a and b obtained with the inversion of the 2× 2 matrix equation that
is derived by setting ∂E/∂a = 0 and ∂E/∂b = 0 (Cheney and Kincaid 2008).
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For the polynomial approximation in Eq. (4.2), we use the minimization of the
global continuous least squares distance between f (x) and f (N )(x) as given by

E2(N ) =
∫

I

1

w(x)

[
f (x) − f (N )(x)

]2
dx, (4.4)

where the definition of the norm is dictated by the form of Eq. (4.2) (Mintzer 1965).
There are many other criteria that can be used to measure the closeness of f (N )(x) to
f (x) that serve to quantify the rate of convergence versus N . A comprehensive survey
of different measures has been provided by Cha (2007) with particular emphasis to
signal processing and image resolution. This includes the Kullback–Leibler entropy
(Kullback and Leibler 1951) and other entropy functionals as a distance measure
between a pair of probability density functions. We make use of entropy functionals
in the study of the approach to statistical equilibrium in Chap.6.

In this chapter, we study the way inwhich the choice of basis functions determines
how well f (x) is approximated by f (N )(x), and the rate of convergence versus the
number of basis functions, N , retained. If the square in Eq. (4.4) is written out in full,
then with Eq. (4.2) the least squares error is

E2(N ) =
∫

I

f 2(x)

w(x)
dx − 2

N∑

n=0

an

∫

I

Pn(x) f (x)dx +
N∑

n=0

N∑

m=0

anam

∫

I

w(x)Pn Pmdx .

(4.5)

With the orthonormality of the basis functions in the last term, the minimization of
E2(N ) with respect to all an , that is ∂E2(N )/∂an = 0 gives precisely the expansion
coefficients derived with the orthogonality of the polynomials, Eq. (4.3), The first
term in Eq. (4.5) must be finite, that is

∫

I

f 2(x)

w(x)
dx < ∞, (4.6)

which for the infinite and semi-infinite intervals restricts the asymptotic dependence
of f (x), namely

lim|x |→∞
f (x)√
w(x)

∼ 0. (4.7)

The function f (x) must decay to zero faster than
√

w(x) as x → ∞ (Mintzer 1965;
Leblanc and Hubert 1997). Thus we have from Eqs. (4.2) and (4.5)

E2(N ) =
∫

I

f 2

w(x)
dx −

N∑

n=0

a2
n (4.8)

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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with the understanding that the classical polynomials, Table2.1, are normalized to
unity. The integral in Eq. (4.8) defines the norm, which is consistent with the form
of the expansion, Eq. (4.2).

4.3 Expansions in Hermite Polynomials; Spectral
Convergence

For quantum and statistical mechanical problems, the domain of interest is either
the infinite or semi-infinite interval and the functions of interest may be close to
Gaussians. Thus we begin the illustration of spectral convergence with expansion of
Gaussians inHermite polynomials, Hn(x),with x ∈ (−∞,∞).Hermite polynomials
are the eigenstates of the quantum harmonic oscillator which is a Sturm-Liouville
eigenvalue problem. Expansions in Hermite polynomials are used for calculations
of ion mobilities (Viehland 1994), in applications to astrophysics (Blinnikov and
Moessner 1998), financial econometrics (Hurn et al. 2007), geophysics (Boyd 2001;
Durran 2010), signal analysis (Alp and Arikan 2012), image processing (Martens
2006), stochastic processes (Risken and Till 1996), plasma physics (Schumer and
Holloway 1998; Le Bourdiec et al. 2006; Gibelli et al. 2010) and other applications.

The kinetic theory of gases is based on the Boltzmann equation for the velocity
distribution of electrons, protons, atoms, and ions in a large variety of physical
situations forwhich only the translational energyof the particles is important. In space
physics, where the effects of a magnetic field are important, it is often sufficient to
consider the one dimensional distribution function, f (vz), as a function of the particle
velocity, vz , along the magnetic field direction.

We consider a one-dimensional distribution function assumed to be time inde-
pendent and spatially homogeneous. It is defined such that the number of particles
with velocities in the range [vz, vz + dvz], is f (vz)dvz . At complete equilibrium,
the distribution is the well known one dimensional Maxwell-Boltzmann distribution
given by

F(vz) =
(

m

2πkB Tb

)1/2

e
− mv2z

2kB Tb , (4.9)

where m is the particle mass, kB is the Boltzmann constant and Tb is the temperature
of the gas. The distribution function is normalized to unit density, that is

∞∫

−∞
F(vz)dvz = 1, (4.10)

and the temperature is defined in terms of the average energy

kB Tb

2
=

∞∫

−∞
F(vz)

mv2z

2
dvz . (4.11)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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As is well known, each degree of freedom contributes kB Tb/2 to the average energy.

Were we to consider the three-dimensional distribution in v =
√

v2x + v2y + v2z as we

do later, the average energy is then 3kB Tb/2.
If there are external perturbations on the system, the distribution function may be

different from the Maxwellian. There are integral or differential kinetic equations
for these nonequilibrium distribution functions in different physical situations as
discussed in Chaps. 5 and 6.

The solution of these kinetic equations can often be obtained with the expansion
of the distribution function in Hermite polynomials of the form,

f (N )(x) = se−s2x2
N∑

n=0

cn Hn(sx), (4.12)

where the reduced speed is x = vz
√

m/(2kB Tb), s > 0 is a scaling parameter and
w(sx) = e−s2x2 is the weight function for the scaled Hermite polynomials. The
introduction of the scaling parameter has been shown to improve the convergence
of such expansions (Holloway 1996; Schumer and Holloway 1998; Tang 1993; Fok
et al. 2001; Le Bourdiec et al. 2006; Gibelli et al. 2010) as we later demonstrate
in this chapter. This scaling procedure is analogous to the scaling of quadrature
points discussed in Chap.3, Sect. 3.3. For the solution of kinetic theory problems, it
is often useful to choose the weight function to be as close to the actual anticipated
distribution so that only a few terms in the sum, Eq. (4.2) are required.

4.3.1 An Asymmetric Hermite Expansion

In this and subsequent sections, we consider different expansions of a normalized
dimensionless Maxwellian distribution, f (x) = √

r/πe−r x2 , at temperature T0 with
r = Tb/T0. The first expansion that we consider is with the Hermite polynomials,
Hn(x), that is, √

r

π
e−r x2 = se−s2x2

∞∑

n=0

a2n H2n(sx), (4.13)

which are orthogonal in accordance with

∞∫

−∞
e−s2x2 H2n(sx)H2m(sx)d(sx) = δnm

√
π22n(2n)!. (4.14)

Only even order Hermite polynomials occur in the sum as the function is even,
f (−x) = f (x). It is important to notice that the weight function, w(sx) =
exp(−s2x2), occurs in front of the expansion, Eq. (4.13). The expansion of a

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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distribution about a zero order weight function that is a good approximation to the
solution sought is a common technique in kinetic theory (Viehland 1994; Gibelli et
al. 2010). The expansion, Eq. (4.13) is referred to as the asymmetric weight expan-
sion employed in the solution of the Vlasov equation (Holloway 1996; Schumer and
Holloway 1998).

If Eq. (4.13) is multiplied by H2n(sx) and integrated over x and the orthogonality
relation is used, the expansion coefficients are

a2n =
√

r

π22n(2n)!
∞∫

−∞
e−r x2 H2n(sx)dx . (4.15)

We use the identity 7.373-2 from Gradshteyn and Ryzhik (2007), namely,

∞∫

−∞
e−z2 H2n(βz)dz = √

π
(2n)!

n! (β2 − 1)n, (4.16)

to evaluate this integral. With the change of variable z = x
√

r and β = s/
√

r in
Eq. (4.16), we find that,

a2n = 1

n!√π

(
s2 − r

4r

)n

. (4.17)

The E2(N ) error, Eq. (4.8), is given by

E2(N ) = r

π

∞∫

−∞
e−(2r−s2)x2dx − s

√
π

N∑

n=0

a2
2n(2n)!22n, (4.18)

where Eq. (4.15) and the normalization of the Hermite polynomials, Eq. (4.14), have
been used. The integral in Eq. (4.18) is elementary and with the substitution of a2n

from Eq. (4.17) we have that

E2(N ) = r√
π(2r − s2)

− s√
π

N∑

n=0

(
s2 − r

2r

)2n
(2n)!
(n!)2 . (4.19)

For the special case, s2 = r , the summation in Eq. (4.19) truncates at n = 0 and
E2(N ) = 0 with a0 = 1/

√
π and a2n = 0, n �= 0. For s = 1 and several values

of the temperature ratio, r , we show the variation of ln[E2(N )] versus N in the left
hand graph of Fig. 4.1. The exponential variation of E2(N ) versus N , although not
exact, is evident by the almost linear curves. Notice that with s ≥ √

2r the integral
in Eq. (4.18) and the series, Eq. (4.19), are not defined.

The symbols in Fig. 4.1 are the results obtained with Eq. (4.19) and the solid
straight lines are the linear least squares fit to the curves. With s = 1, r must be
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Fig. 4.1 Demonstration of spectral (that is exponential) convergence of the expansion of a
Maxwellian

√
r/πe−r x2 at T0 in Hermite polynomials, H2n(sx), about the weight function,

w(sx) = e−s2x2 , with x = vz
√

m/2kB Tb defined at Tb, r = Tb/T0 and s is the scale factor.
The left hand graph shows the spectral convergence for s = 1 and different values of r (from top to
bottom) whereas the right hand graph is for r = 0.55 and different values of s (from top to bottom).
The values r = 4 and 2.5 are equivalent to r = 4/7 and 5/8, respectively. The symbols are the
numerical results from Eq. (4.19) and the straight lines are linear least squares fits to the symbols.
The slope of the lines are compared with the asymptotic estimates of Eq. (4.25) in Table4.1

Table 4.1 Demonstration of spectral (exponential) convergence to accompany Fig. 4.1; E2(N ) ≈
Ce−AN

r s A from the linear fit A = − sinh−1[ E2(N+1)−E2(N−1)
2E2(N )

] A = − ln[ s2−r
r ]2

0.52 1 0.192 0.177 0.160

0.55 1 0.439 0.420 0.401

4.00 1 0.615 0.595 0.575

0.60 1 0.852 0.830 0.811

2.50 1 1.062 1.041 1.022

0.55 0.95 0.931 0.909 0.890

0.55 0.94 1.042 1.020 1.000

0.55 0.92 1.293 1.266 1.236

0.55 0.90 1.564 1.534 1.499

The slopes of the linear fit to each curve is shown in the third column. The fourth column provides
an estimate of A with the last three points in the figures as discussed in the text. The fifth column
is from the asymptotic analysis of Eq. (4.19); ln E2(N ) ≈ −N ln q − ln

√
N+ constant

greater than 0.50 for E2(N ) to remain finite and for the convergence of the series
Eq. (4.13). The criterion for the convergence of the expansion Eq. (4.13) is that f (x)

decays faster than
√

w(sx), that is lim|x |→∞ f (x)/
√

w(sx) → 0 (Mintzer 1965;
Holway 1967; Tang 1993; Leblanc and Hubert 1997; Gibelli et al. 2010).

The topmost curvewith r = 0.52 in Fig. 4.1 demonstrates the slowest convergence
for the r values chosen. The spectral convergence is clear for all the curves but the
rate is dependent on r and s. The right hand graph of Fig. 4.1 shows the more rapid
spectral convergence obtained by decreasing the scale factor belowunity for r = 0.55
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and s decreases from the top curve to the bottom curve. The values r = 4 and 2.5
are equivalent to r = 4/7 and 5/8, respectively.

With the definition

q =
(

s2 − r

r

)2

, (4.20)

and the approximate evaluation of the slope, the backward finite difference E2(N )−
E2(N − 1) gives,

E2(N ) − E2(N − 1) = − s

π

q N

4N

(2N )!
(N !)2 . (4.21)

It is useful to extract this (almost) exponential behaviour and for this purpose, we
use Stirling’s approximation in the form

n! ≈ √
2πn

(n

e

)n
, (4.22)

so that in Eq. (4.21)
(2N )!
(N !)2 ≈ 4N

√
πN

. (4.23)

With this subtitution into Eq. (4.21)

E2(N ) − E2(N − 1)
N→∞≈ s

π
√

πN
e−N ln q (4.24)

and the final result is

ln[E2(N ) − E2(N − 1)] N→∞≈ −N ln q + ln(s/
√

N ) + constant. (4.25)

Table4.1 shows the r and s variation of the different approximations to the slopes
of the curves in Fig. 4.1. The third column is the slope from the linear fit whereas
the values in the fourth column are derived from the assumption of an exponential
dependence on N and the numerical centered finite difference evaluation of the
derivative, that is

d E2(N )

d N
≈ e−A(N+1) − e−A(N−1)

2e−AN
= − sinh(A). (4.26)

The last column in the table is based on the asymptotic result, Eq. (4.25) with q given
by Eq. (4.20). It is clear that the convergence is very close to exponential. Both the
linear fit and the asymptotic result, columns 3 and 5 in the table, are approximations.
They differ by about 20% for the first entry and by 4% for the last five entries. An
important point is that exponential convergence does not necessarily mean that the
convergence is rapid as demonstrated by the topmost curves in Fig. 4.1.
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With the identity x2 = [H2(x) + 2H0(x)]/4, the average energy of the
Maxwellian distribution, Eq. (4.13), equivalently the average of the second moment
of this distribution is

eavg =
√

r

π

∞∫

−∞
e−r x2x2dx = 1

2r
, (4.27)

and is given exactly by the first two terms in the expansion, that is

eavg =
√

π

2s2
(a0 + 4a2) . (4.28)

With Eq. (4.17), the dimensionless average energy is confirmed, that is, eavg =
1/2r = T0/2Tb, even though the series approximation may not accurately approxi-
mate the distribution function.

4.3.2 A Symmetric Hermite Expansion; Spectral Convergence

An alternate expansion referred to as the symmetric weight expansion (Holway 1967;
Tang 1993; Schumer and Holloway 1998; Gibelli et al. 2010) employs the functions
hn(sx) given by

hn(sx) = e−s2x2/2Hn(sx)√
22n(2n)!√π

, (4.29)

orthogonal with unit weight function, that is,

∞∫

−∞
hn(sx)hm(sx)d(sx) = δnm . (4.30)

We use the expansion √
r

π
e−r x2 = s

∞∑

n=0

b2nh2n(sx), (4.31)

where the b2n coefficients are given by orthogonality as

b2n =
√

r

π

∞∫

−∞
e−r x2h2n(sx)dx . (4.32)
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If we define

b2n = b̂2n√
22n(2n)!√π

, (4.33)

then

b̂2n =
√

r

π

∞∫

−∞
e−(r+s2/2)x2 H2n(sx)dx, (4.34)

which with the identity, Eq. (4.16), we find that

b̂2n =
√

2r

(s2 + 2r)

(
s2 − 2r

s2 + 2r

)n
(2n)!

n! . (4.35)

The least squares error is evaluated as in the previous section but without the weight
function factor, that is

E2(N ) =
∞∫

−∞
| f (x) − f (N )(x)|2dx =

√
r

2π
− s

N∑

n=0

b̂22n

22n(2n)!√π
, (4.36)

which with Eq. (4.35) is given by

E2(N ) =
√

r

2π
− s√

π

(
2r

2r + s2

) N∑

n=0

[
s2 − 2r

2(s2 + 2r)

]2n
(2n)!
(n!)2 . (4.37)

It is clear from Eq. (4.37) that the expansion is exact for s = √
2r . Since the distrib-

ution is expanded as given by Eq. (4.31), the condition, Eq. (4.6) is always satisfied.
The spectral convergence is shown in the left hand graph of Fig. 4.2 for s = 1

and different values of r much larger than those chosen in Fig. 4.1. The rate of
convergence increases as the temperature ratio decreases. The variation in the rate
of the spectral convergence is shown in the right hand graph for r = 7 for different
values of the scaling parameter, s. It is clear that with the appropriate choice of the
scaling parameter, the rate of convergence is accelerated.

Whereas the expansion Eq. (4.13) diverges for s >
√
2r the expansion Eq. (4.31)

converges for all s. However, with Eq. (4.31) the average energy defined by Eq. (4.27)
is given by the series

eavg =
√
2π

4s2

N∑

n=0

b̂2n√
π22n(2n)!T2n, (4.38)
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Fig. 4.2 Demonstration of spectral (that is exponential) convergence of the expansion of a

Maxwellian
√

r/πe−r x2 at T0 in Hermite polynomials, h2n(sx), with x =
√

mv2z /(2kB Tb) defined

at Tb with r = Tb/T0 and s is a scale factor. The left hand frame shows the spectral convergence for
s = 1 and different values of r (from top to bottom) whereas the right hand frame is for r = 7 and
different values of s (from top to bottom). The symbols are the numerical results from Eq. (4.37)
and the straight lines are linear least squares fits to the symbols. In Table4.2, the slopes of the lines
are compared with the asymptotic results of Eq. (4.37)

Table 4.2 Demonstration of spectral convergence to accompany Fig. 4.2; E2(N ) ≈ Ce−AN with
E(N ) given by Eq. (4.37)

r s A from the linear fit A = − sinh−1[ E2(N+1)−E2(N−1)
2E2(N )

] A = − ln[ s2−2r
(s2+2r)2

]
7 1 0.322 0.304 0.286

5 1 0.439 0.420 0.401

3 1 0.713 0.692 0.673

2 1 1.063 1.041 1.022

1.7 1 1.255 1.227 1.212

7 1.5 0.689 0.668 0.648

7 2.0 1.218 1.192 1.176

7 2.5 1.985 1.950 1.921

7 3.0 3.142 3.110 3.052

where

T2n =
(

(2n + 2)!
(n + 1)! + (8n + 2)

(2n)!
n! + 8n(2n − 1)

(2n − 2)!
(n − 1)!

)
. (4.39)

The recurrence relation x Hn = (Hn+1 + 2nHn−1)/2 has been used twice as well as
the integral identity in Eq. (4.16). This result should be comparedwith approximation
of the temperature, Eq. (4.28), with the asymmetric expansion, Eq. (4.13).

The convergence of the temperature is shown in the left hand graph of Fig. 4.3
for r = 2 and s = 1 calculated with Eqs. (4.38) and (4.39). The temperature in this
case is not given in terms of a finite number of moments as in Eq. (4.28). The local
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Fig. 4.3 (Left graph) Convergence of the average energy, eavg = 1/2r , for the symmetric Hermite

polynomial expansion in h2n(sx) of the Maxwellian, f (x) =
√

r
π e−r x2 : with r = 2 and s = 1;

(Right graph) the local convergence for N = 20, 40, 60 and 80 (from top to bottom)

convergence of the distribution is shown in the right graph of Fig. 4.3 for r = 2 and
s = 1 and numerous cusps are evident (Boyd 2001). The convergence is more rapid
as s increases and the result is exact for s = √

2r ; see Eq. (4.37).
The third column lists the slopes of the linear fits whereas the data in the fourth

column are derived from the dependence on N given by Eq. (4.26). The last column
is based on the asymptotic result, Eq (4.25), derived from Eq. (4.37) with q = [(s2 −
2r)/(s2 +2r)]2. The agreement between the results for the linear fit in column 3 and
the asymptotic results in column 5 improves with an increase in s. Complementary
discussions of this convergence analysis were also provided by Tang (1993) and
Boyd (1987, 2001).

These spectral methods have been applied to the solution of the Vlasov equation
for collisionless plasmas (Holloway 1996; Schumer and Holloway 1998; Gibelli and
Shizgal 2006; Gibelli et al. 2010), in the representation of proton velocity distribution
functions in stellar winds (Leblanc and Hubert 1997) and for the calculation of ion
mobilitieswith solutions of theBoltzmann equation (Almeida et al. 2002). Numerical
experiments with Hermite expansions analogous to those presented here and by Tang
(1993) were also discussed at length by Le Bourdiec et al. (2006) with references to
previous works.

4.3.3 Expansion of sin(x) in Hermite Polynomials

Gottlieb and Orszag (1977) and later Tang (1993) suggested from their studies of the
expansion of a sine wave in Hermite polynomials that Hermite polynomials exhibit
poor resolution properties. They considered the expansion
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sin(kx) = s
∞∑

n=0

d2n+1H2n+1(sx), (4.40)

where the parameter k is the wavenumber of the wave and the scaling parameter s
is included (Tang 1993). With the orthogonality of the scaled Hermite polynomials,
Eq. (4.14), and the change of integration variable y = sx , we have that

d2n+1 = 1√
π22n+1(2n + 1)!

∞∫

−∞
e−y2 sin(ky/s)H2n+1(y)dy. (4.41)

With item 7.388-1 in Gradshteyn and Ryzhik (2007),

∞∫

0

e−x2 sin(
√
2βx)H2n+1(x)dx = (−1)n√

π2n−1/2β2n+1e−β2/2, (4.42)

we get the result

d2n+1 = (−1)n(k/s)2n+1e−k2/4s2

22n+2(2n + 1)! . (4.43)

where β = k/(s
√
2).

The approximation of the sine wave with the expansion in Hermite polynomials
is shown in Fig. 4.4 for N = 10, 20 and 40 (from top to bottom in the figure) which
resolve about 1, 2 1

2 and 41
2 oscillations, respectively. The solid curve is sin(x) and

the symbols are the values computed from the expansion, Eq. (4.40). The fit breaks
down after a few cycles of the sine wave depending on the number of terms retained
in the Hermite expansion.

Fig. 4.4 Convergence of the
expansion of sin(x) in
Hermite polynomials,
H2n+1(x) with
N = 10, 20 and 40 (from
top to bottom). The solid
curve is sin(x) and the
symbols are the values
computed from the
expansion in Eq. (4.40)
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An analysis by Tang (1993) based on the asymptotic behaviour of the Hermite
polynomials demonstrates that to resolve k wavelengths of the sine function requires
of the order of k2/4 Hermite functions. Figure4.4 is similar to Figs. 3.11, 3.12 and
3.13 in Gottlieb and Orszag (1977) with results for the Laguerre polynomials. Their
conclusion derived on the basis of the asymptotic behaviour of the Laguerre poly-
nomials is that the Laguerre expansion requires approximately 9.06 polynomials per
wavelength to achieve high accuracy.

Based on these observations, Gottlieb and Orszag (1977) conclude that this illus-
trates poor resolution properties for the Laguerre and Hermite polynomials and that
these basis functions will not be of much practical value in applications of spec-
tral methods. However we have noted otherwise in Sect. 4.3 that the Hermite basis
functions may be the basis functions of choice in applications on the infinite domain.

4.4 Expansion of a Maxwellian with Chebyshev Polynomials

It is of interest to compare the expansions of theMaxwellian in Hermite polynomials
on (−∞,∞) with the expansion in Chebyshev polynomials which are defined on
[−1, 1]. We consider the transformation of the infinite interval onto [−1, 1] which
can be done with many different mappings and the convergence of the expansion
will depend on the choice (Boyd 1987; Shen and Yu 2012). We choose the map from
x ∈ (−∞,∞) to y ∈ [−1, 1] of the form x = y/(1 − y2) and the expansion

√
r

π
e−r y2/(1−y2)2 =

N∑

n=0

c2n+1T2n+1(y). (4.44)

With the orthogonality of the Chebyshev polynomials

1∫

−1

1√
1 − y2

Tn(y)Tm(y) = Nnδnm, (4.45)

the expansion coefficients are given by

c2n+1 = r

π

1∫

−1

e−r y2/(1−y2)2

√
1 − y2

T2n+1(y)dy, (4.46)

which are evaluated with Chebyshev quadratures. The normalization of the Cheby-
shev polynomials, Nn , is given by Eq. (2.126). The least squares error is given by

http://dx.doi.org/10.1007/978-94-017-9454-1_2


202 4 Representation of Functions in Basis Sets

Fig. 4.5 Convergence of the
expansion of a Maxwellian
in Chebyshev polynomials,
Eq. (4.44), with
r = Tb/T0 = 2, 5 and 10
(from top to bottom)

E2(N ) =
1∫

−1

1√
1 − y2

| f (y) − f (N )(y)|2dy,

= r

π

1∫

−1

e−2r y2/(1−y2)2

√
1 − y2

dy −
N∑

n=1

c22n+1N2n+1. (4.47)

The integral in the second line of Eq. (4.47) can be evaluated accuratelywithMAPLE.
The E2(N ) error is shown in Fig. 4.5 for r = 2, 5, and 10. The rate of convergence
is obviously slower for the larger r values and the curves are not nearly as linear as
those for the expansion in Hermite polynomials shown in Figs. 4.1 and 4.2. Other
mappings from x ∈ (−∞,∞) to y ∈ [−1, 1] will yield different results.

4.5 Expansion in Laguerre Polynomials

The associated Sonine-Laguerre polynomials, L(α)
n (x), are the basis functions tra-

ditionally chosen for transport problems in gases. As discussed in Sect. 3.6.4, the
Laguerre polynomials are the eigenfunctions of the linear Boltzmann collision oper-
ator for “Maxwell-molecules”. These are particles that interact with a repulsive inter-
action potential that varies as the inverse fourth power of the relative separation of the
atoms, r , that is V (r) ∝ r−4. The Laguerre polynomials are also the eigenfunctions
of the radial Schrödinger equation for the hydrogen atom as discussed in Sect. 2.4.6
(Boyd et al. 2003). They are also used in many other spectral applications (Bao et
al. 2008; Weniger 2008; Tatari and Haghighi 2014) and they define the quadratures
(Evans 2005; Xiang 2012) on the semi-infinite domain.

4.5.1 Asymmetric Laguerre

The expansion of aMaxwellian at temperature T0 about aMaxwellian at temperature
Tb with the temperature ratio denoted by r = Tb/T0 in Laguerre polynomials is

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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r3/2
√

ye−r y = sw(sy)

∞∑

n=0

an L(1/2)
n (sy), y ∈ [0,∞), (4.48)

where y = mv2/(2kB Tb) is the reduced energy, w(sy) = √
sye−sy , and s is the

scaling parameter. The associated Laguerre polynomial with α = 1/2 is henceforth
written simply as Ln(sy). With the orthogonality condition,

∞∫

0

√
sye−sy Ln(sy)Lm(sy)d(sy) = Γ (n + 3

2 )

n! δnm, (4.49)

the expansion coefficients are given by

an = n!
Γ (n + 3

2 )
r3/2

∞∫

0

√
ye−r y Ln(sy)dy. (4.50)

We make the change of variable z = sy and get

an = n!
Γ (n + 3

2 )

(r

s

)3/2
∞∫

0

√
ze−r z/s Ln(z)dz. (4.51)

With the result 7.414-8 in Gradshteyn and Ryzhik (2007), namely,

∞∫

0

√
ze−βz Ln(z)dz = Γ (n + 3

2 )

n!β3/2

(
β − 1

β

)n

, (4.52)

and with β = r/s, the expansion coefficients are given by

an =
(r − s

r

)n
. (4.53)

For r = s/2, an = (−1)n and the series, Eq. (4.48) does not converge. Thus for
r > s/2, |an| < 1 and the expansion Eq. (4.48) converges. This is consistent with
the condition, Eq. (4.7), for the E2(N ) error to be finite.

It is useful to set s = 1 and define t = (r − 1)/r so that the expansion becomes

eyt/(t−1)

(1 − t)3/2
=

∞∑

n=0

Ln(y)tn, |t | < 1. (4.54)

Equation (4.54) is recognized as thegenerating function for theLaguerre polynomials.
The series converges provided that |t | < 1. Thus the expansion of a Maxwellian at
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T0 with a Maxwellian weight function at Tb is equivalent to the expansion of the
generating function for Laguerre polynomials. The generating function in Eq. (4.54)
serves as an important tool to calculate the matrix elements of the collision operator
in the Boltzmann equation (Foch and Ford 1970; Shizgal and Karplus 1971; Gust
and Reichl 2009; Shizgal and Dridi 2010).

The least squares error for the expansion, Eq. (4.48), is calculated as done in the
previous sections and is given by

E2(N ) = 1

2

√
π

s

r3

(2r − s)3/2
− s

N∑

n=0

(
r − s

r

)2n
Γ (n + 3/2)

n! . (4.55)

The variation of E2(N ) is shown versus N in Fig. 4.6 for several values of r with
s = 1 and for several values of s with r = 0.54. The topmost curves in both figures is
for r = 0.54 close to the value for which the series expansion is not convergent. For
the graph on the left, the convergence improves with increasing r . For the graph on
the right, there is an improvement in the convergence with a decrease in the scaling
parameter, s. On the right hand side of this figure, the topmost curve is for r = 0.54
and we see the dramatic improvement in the rate of convergence by decreasing the
scaling parameter, s. Table4.3 summarizes the slopes of the almost straight lines
analogous to Tables4.1 and 4.2.

There is a symmetric expansion in the Laguerre functions, �n(y) = √√
ye−y

Ln(y) (Hoare and Kaplinsky 1970) analogous to the expansion in Sect. 4.3.2. How-
ever, an analytical expression for the expansion coefficients is not available as for the
other expansions considered. Although the coefficients can be determined numeri-
cally, the subsequent study of the convergence of the series is contaminated with the
errors in the quadratures for the coefficients.

Fig. 4.6 Demonstration of spectral (that is exponential) convergence of the expansion of a
Maxwellian, r

√
r ye−r y , at T0 in Laguerre polynomials about the function, s

√
sye−sy , with

y = mv2/(2kB Tb) defined at Tb with r = Tb/T0 and s is the scale factor. The left hand frame
shows the spectral convergence for s = 1 and different values of r (from top to bottom) whereas
the right hand frame is for r = 0.54 and different values of s (from top to bottom). The symbols are
the numerical results and the straight lines are linear least squares fits to the symbols. The slope of
the lines are compared with the asymptotic results in Table4.3
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Table 4.3 Demonstration of spectral convergencewith E2(N ) given byEq. (4.55); E2(N ) ≈ CeAN

to accompany Fig. 4.6

r s A from linear fit A = − sinh−1[ E2(N+1)−E2(N−1)
2E2(N )

] A = − ln[( r−s
r )2]

0.54 1 0.281 0.298 0.321

0.56 1 0.439 0.458 0.482

0.58 1 0.600 0.621 0.646

0.60 1 0.765 0.786 0.811

0.62 1 0.931 0.954 0.979

0.54 0.95 0.507 0.527 0.551

0.54 0.94 0.556 0.576 0.600

0.54 0.92 0.657 0.678 0.703

0.54 0.90 0.765 0.786 0.811

4.5.2 Expansion of a Kappa Distribution in Laguerre
Polynomials

The nonequilibrium distribution functions of atoms, ions or electrons in aeronomy
and space physics in amultitude of different situations can exhibit large populations at
high energiesmuch in excess of that given by theMaxwellian at the local temperature.
This includes energetic oxygen atoms in the atmospheres of the terrestrial planets,
electrons and ions in the terrestrial ionosphere, as well as in the solar atmosphere
(Collier 2004; Livadiotis and McComas 2009; Pierrard and Lazar 2010).

The theoretical analysis of these nonequilibrium situations, which occur as a
consequence of many different processes and controlled by numerous physical para-
meters, is a complex problem. Nevertheless, many particle distributions in different
environments can be remarkably well fitted to a Kappa distribution (Meyer-Vernet
2001; Hau and Fu 2007; Hellberg et al. 2009; Hau et al. 2009), given by

fκ(y) = Cκ
√

y
[ 1

1 + y
κ+1

]κ+1
. (4.56)

The distribution is normalized according to 4π
∫ ∞
0 fκ(y)y2dy = 1 which after the

variable transformation, z = y/(κ + 1) and use of the beta function,

B(p, q) =
∞∫

0

z p−1/(1 − z)p+qdz = Γ (p)Γ (q)

Γ (p + q)
(4.57)

gives the normalization

Cκ = Γ (κ + 1)

[√π(κ + 1)]3Γ (κ − 1
2 )

. (4.58)
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Fig. 4.7 (Left panel) Comparison of the Kappa distribution (solid curves) with a Maxwellian
(dashed curve) for κ = 5, 10, 15, 20 and 25. The curve for κ = 5 is identified for which the
departure fromMaxwellian is the largest of those shown. (Right panel) The semi-logarithmic graph
on the right hand side shows more clearly the increased population of energetic particles over
the Maxwellian in the “tail” of the Kappa distribution. The Kappa distribution approaches the
Maxwellian for κ → ∞

The Kappa distribution is compared with aMaxwellian (dashed curve) in Fig. 4.7.
In the limit κ → ∞, fκ(y) approaches the Maxwellian. For finite κ, the Kappa
distribution departs from a Maxwellian for sufficiently large reduced energies, y,
and it is easily verified that fκ(y) ∼ y−(κ+1) as y → ∞, that is as a power law.

The theoretical basis for the appearance of aKappa distribution function is lacking
although there is a large number of researcherswho believe that it is indeed ubiquitous
in nature (Leubner and Vörös 2005; Livadiotis and McComas 2009; Pierrard and
Lazar 2010). The normalization of the distribution is not defined for κ < 1

2 , as is
evident from Eq. (4.58).

The average thermal energy is 3kB Tb/2 where Tb is the temperature of the cor-
responding Maxwellian for κ → ∞. This is given by the average of the reduced
energy, y, and it can be shown, with the appropriate variable change used in the
calculation of the norm, and with Eq. (4.57) that

T

Tb
= κ + 1

κ − 3
2

, (4.59)

which is not defined for κ < 3
2 . One can show that the nth moment of fκ(x) is infinite

for κ = n/2. A justification for the existence of a Kappa distribution is the sugges-
tion that this nonequilibrium distribution arises from a reformulation of statistical
mechanics for particular nonequilibrium states in terms of a new entropy, referred to
as the Tsallis nonextensive entropy (Tsallis 1995). There have been a large number
of researchers in different research fields that have accepted this rationalization of
the Kappa distribution although there have been objections (Nauenberg 2003; Tsallis
2004).

Our primary objective here is to consider the expansion of the Kappa distrib-
ution in Laguerre polynomials. We can anticipate some problems in view of the
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nonexistence of the higher moments as dependent on the value of κ. We consider, as
done previously, the expansion

f (N )
κ (x) = s

√
sye−sy

N∑

n=0

cn Ln(sy), (4.60)

where from orthogonality

cn = s
n!

Γ (n + 3
2 )

∞∫

0

fκ(y)Ln(sy)dy,

≈ n!
Γ (n + 3

2 )

M∑

i=0

Wi fκ(yi )Ln(syi ), (4.61)

where Wi = swi/[√yi e−yi ] are the big weights and M is the number of quadrature
points.

In Fig. 4.8, we show the variation of cn versus n for two moderately large values
of κ. For both graphs, the coefficients are alternately positive and negative and even-
tually diverge for n beyond some value. This occurs at about n = 10 for κ = 30
and n = 16 for κ = 50. This is typical behaviour for an asymptotic series. We can
expect a reasonable approximation to the Kappa distribution function as long as we
are careful not to include too many terms.

In Fig. 4.9, the dashed curves represent the series approximation to the Kappa
distribution, Eq. (4.60), for κ = 30 and κ = 50 with values of N for which the
series expansion is about to diverge. For smaller values of N , the series expansion
provides a reasonable approximation. The solid symbols in these graphs represent
the Kappa distribution evaluated at the quadrature points for the value of N used.
Only the first 8 or 10 quadrature points are shown as most are outside the range of y
in the graphs with the choice s = 1. The series approximation gives the exact values
at the quadrature points owing to the Cardinality condition but departs significantly
from the Kappa distribution elsewhere.

Fig. 4.8 Expansion coefficients, cn , versus n for the Kappa distribution expanded in Laguerre
polynomials for κ = 30 and κ = 50
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Fig. 4.9 The solid curve is the Kappa distribution with Eq. (4.56). The dashed curves represent the
Laguerre series approximations, Eq. (4.60), with κ = 30 and κ = 50 for the values of N shown.
The solid symbols are the values of the distribution evaluated at the quadrature points. Only 10 of
36 points are shown on the graph as the remaining quadrature points occur for y > 8

4.6 Representation of Functions in Periodic Fourier Series

In Sect. 4.3.3, we considered the expansion of sin(kx), x ∈ [0,∞), in Hermite
polynomials andwe concluded that theHermite polynomials are not the optimal basis
set for the sine function. The expansion of the Maxwellian considered in Sect. 4.4 in
Chebyshev polynomials required a non-unique mapping of the semi-infinite interval
to a bounded interval. We thus recognize that the choice of the basis set is of crucial
importance for the convergence of particular functions. The basis set should be a
“match” for the function.

The basis set appropriate for functions that vary periodically in space and/or time
are the trigonometric sine and cosine functions, and the series expansion is referred to
as a Fourier series. We consider the representation of a function, f (x), x ∈ [−L , L],
where the length of the interval can be unity (L = 1), a multiple of π (L = nπ), or
infinite for which L → ∞. Almost every field of study in science and engineering
involves applications based on a Fourier analysis. A classic application is the solution
of partial differential and integral equations (Brown and Churchill 1993; Haberman
2013). Fourier methods parallel the use of polynomial basis sets as discussed in
Chaps. 5 and 6.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_6


4.6 Representation of Functions in Periodic Fourier Series 209

Fourier series are also used to analyze oscillatory phenomena in many different
fields such as spectral analysis (Hunter 2002), Fourier transform spectroscopy (Ernst
and Anderson 1966), solar physics (Le Mouël et al. 2007; Petrovay 2010), astro-
physics (Laskar 1993; Laskar and Correia 2009), stellar dynamics (Hunter 2002) as
well as in finance (Duarte et al. 2010). In many instances, the main objective is to
extract from a signal the fundamental frequencies of the wave motion in terms of a
discrete Fourier transform (Briggs and Henson 1995; Blackledge 2006).

We also note the use of Fouriermethods for the solution of problems in kinetic the-
ory (Filbet et al. 2006), stochastic processes (vanKampen 2007; Paul andBaschnagel
2013) and quantum chemistry (Kosloff and Kosloff 1983; Colbert and Miller 1992;
Kosloff 1993; Kokoouline et al. 1999; Stare and Balint-Kurti 2003; Amore et al.
2009). It is also useful to mention applications to the cosmic microwave background
radiation (Chiang and Chen 2012) and relativity (Grandclément and Novak 2009).
We are selective in our choice of applications and refer the reader to the references
cited and textbooks on Fourier series (Lanczos 1966; Gottlieb and Orszag 1977;
Boyd 2001; James 2002; Hanna and Rowland 2008) for further detailed discussions.

4.6.1 Fourier Series

The non-polynomial trignometric functions, sin(nπx) and cos(nπx), defined on the
interval x ∈ [−1, 1], are easily shown to be orthonormal according to

1∫

−1

sin(nπx) sin(mπx)dx = δnm,

1∫

−1

cos(nπx) cos(mπx)dx = δnm,

1∫

−1

sin(nπx) cos(mπx)dx = 0. (4.62)

These orthogonality relations are verified with the use of the addition formulae for
the trignometric functions, that is, sin(A) sin(B) = 1

2 [cos(A − B) − cos(A + B)],
cos(A) cos(B) = 1

2 [cos(A + B) + cos(A − B)] and sin(A) cos(B) = 1
2 [sin(A +

B) + sin(A − B)]. The approximation of a function f (x) in this basis set is the
Fourier series expansion given by,

f (N )(x) = a0 +
N−1∑

n=1

an cos(nπx) +
N−1∑

n=1

bn sin(nπx). (4.63)
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By virtue of the orthogonality relations, the Fourier coefficients are given by

a0 = 1

2

1∫

−1

f (x)dx,

an =
1∫

−1

f (x) cos(nπx)dx,

bn =
1∫

−1

f (x) sin(nπx)dx . (4.64)

If f (x) is an even function, f (−x) = f (x), then bn = 0, n = 1, . . . , N − 1 and if
f (x) is an odd function, f (−x) = − f (x), then an = 0, n = 0, 1, . . . , N − 1.
We denote sine and cosine basis functions collectively as

φm(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 , m = 0,

cos
[ 1
2 (2m + 1)πx

]
, m odd,

sin
[ 1
2mπx

]
, m even.

(4.65)

so that Eq. (4.63) can be written as

f (N )(x) =
N−1∑

m=0

cmφm(x). (4.66)

The criterion we use to study the convergence of the Fourier series, Eq. (4.71), is
the least squares distance, Eq. (4.5) and in particular Eq. (4.4). For Fourier series,
with w(x) = 1, whether the expansion is written as in Eq. (4.1) or as in Eq. (4.2) is
irrelevant. Minimization of the least squares error, Eq. (4.4), with w(x) = 1, gives
the result

cm =
1∫

−1

f (x)φm(x)dx, m �= 0

c0 = 1

2

1∫

−1

f (x)dx, m = 0. (4.67)

analogous to Eq. (4.64). As before we anticipate that the coefficients |cm | decrease
rapidly with m.
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We do not present a rigorous proof of the convergence of a Fourier series as this
has been presented by other authors (Gottlieb andOrszag 1977; Brown and Churchill
1993; Boyd 2001; Canuto et al. 2006). We note that the Fourier series of a piecewise
continuous function converges for points within each subinterval and to the mean
of the right and left hand limits of the function at the points of discontinuity. At the
jump discontinuities, there can be oscillations referred to as the Gibbs phenomenon,
discussed in detail in Sect. 4.7.

The least squares error associated with the expansion, Eq. (4.63), can be written as

E2(N ) = ‖ f ‖2 −
N−1∑

n=0

c2n, (4.68)

where thenormof the function is definedby‖ f ‖2 = ∫ 1
−1 f 2(x)dx . Since E2(N ) ≥ 0,

we have Bessel’s inequality, namely

N−1∑

n=0

c2n ≤ ‖ f ‖2, (4.69)

and in the limit N → ∞ we have Parseval’s theorem, that is

∞∑

n=0

c2n = ‖ f ‖2. (4.70)

These results are proved in several texts (Brown and Churchill 1993; James 2002;
Kopriva 2009).

We consider the evaluation of the Fourier coefficients with a quadrature based
on a uniform grid and we choose to compare the trapezoidal and Simpson’s rule.
We choose as an example the function f (x) = x which we use in Sect. 4.7 to illus-
trate the Gibbs phenomenon. The Fourier sine series coefficients for f (x) = x are
bn = 2(−1)n+1/(nπ), also given by Eq. (4.134). A comparison of the convergence

of the Simpson’s and trapezoidal rule integrations give the approximation for b
(Nq )
n

versus the number of grid points Nq for n = 1, 5, 9 and 13 (from bottom to top) is
shown in Fig. 4.10. The convergence is slower with the trapezoidal rule as expected
and worsens for both algorithms with increasing n owing to the increasingly oscilla-
tory sine integrand in Eq. (4.64). For the polynomial basis functions, the associated
quadrature is defined by the roots, PN (xi ) = 0. For the Fourier basis functions, the
quadrature is defined by a uniform grid and theNewton-Cotes algorithms, Sect. 2.3.2.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Fig. 4.10 The accuracy = log10 |bn − b
(Nq )
n | versus the number of integration points, Nq , with a

trapezoidal rule (solid curves) and a Simpson rule (dashed curves) for the numerical evaluation of
the Fourier sine coefficient bn = 2(−1)n+1/nπ for f (x) = x , The values of n from bottom to top
curves in each set are n = 1, 5, 9 and 13

4.6.2 Fourier Series in Complex Basis Functions

If we express the trigonometric functions as complex exponentials, sin(x) =
[exp(i x) − exp(−i x)]/2i and cos(x) = [exp(i x) + exp(−i x)]/2, we can rewrite
Eq. (4.63) in the form

f (N )(x) =
N∑

n=−N

cneinπx , (4.71)

where i = √−1, cn = 1
2 (an − ibn), c−n = 1

2 (an + ibn) and c∗−n = cn where the
asterisk denotes complex conjugation. Therefore

cn = 1

2

1∫

−1

f (x)e−inπx dx, n �= 0, (4.72)

and c0 = a0. The orthonormality of the Fourier basis functions, Eq. (4.62), is rewrit-
ten as

1

2

1∫

−1

e−inπx eimπx dx = δnm . (4.73)

The interval can be redefined to be x ∈ [−L , L] and with the change of variable
y = x L , Eqs. (4.71) and (4.62) can be written as

f (N )(y) =
N∑

n=−N

cneinπy/L , (4.74)
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cn = 1

L

L∫

−L

f (y)e−inπy/L dy, (4.75)

and c0 = a0/L . With Eq. (4.63), the orthogonality of the Fourier basis functions,
analogous to Eq. (4.73), is given by

1

2L

L∫

−L

e−imπy/L einπy/Ldy = δnm . (4.76)

We identify the wave-number as kn = nπ/L and consider L → ∞ so as to introduce
the Fourier basis function, φk(x) = 1√

2π
eikx , with x ∈ (−∞,∞) in Sect. 4.6.4.

4.6.3 Fourier Interpolation and Discrete Fourier Transforms

The spectral representation of the function f (x) is the set of Fourier coefficients cn .
This is analogous to the expansions in polynomials, Pn(x), orthonormal with respect
to some weight function, w(x), with quadrature points defined by PN (xi ) = 0.
For polynomial basis functions, the transformation, T, between spectral space, {cn},
and physical space, { f (xi )}, is given by Eq. (1.25). It is important to note that this
transformation is based on the approximate quadrature evaluation of the expansion
coefficients and the transformation is unitary, Eq. (1.27), at any quadrature order.

In Sect. 2.6.1 we introduced the Sinc interpolation based on a uniform grid. In
this section, we construct an interpolation function for Fourier sine basis functions
analogous to the Lagrange interpolation for polynomials discussed in Sect. 2.3.1 and
defined by Eq. (2.31) for polynomial basis functions.

We illustrate the analogous interpolation for Fourier basis functions with the
expansion in a Fourier sine series that is

f (x) =
N∑

n=1

bn sin(nπx), (4.77)

where bn is given by Eq. (4.64) and as the integrand is even the integral is

bn = 2

1∫

0

f (x) sin(nπx)dx . (4.78)

With a trapezoidal integration for the integral with N + 1 grid points, the Fourier
coefficients are given by

http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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bn = 2

N

N∑

i=2

f (xi ) sin(nπxi ), (4.79)

where the points x1 = 0 and xN+1 = 1 do not contribute.
We substitute this approximate numerical result for bn , Eq. (4.79), into (4.77)

and get

f (x) = 2

N

N∑

i=1

f (xi )

N∑

n=1

sin(nπxi ) sin(nπx). (4.80)

With Eq. (4.80), the interpolation function can be recognized as

�i (x) = 2

N

N∑

n=1

sin(nπxi ) sin(nπx), (4.81)

which satisfies the cardinality condition �i (x j ) = δi j . This is shown in Fig. 4.11a
with N = 24 and centered at xi = 0.5.

This interpolation function resembles the Sinc interpolation in Fig. 2.10 although
they are not identical. For N = 6, the two interpolations are given by

�sine
i (x) = 1

3
[sin(πx) − sin(3πx) + sin(5πx)] , (4.82)

and

�sinc
i (x) = sin[3π(2x − 1)]

3π(2x − 1)
, (4.83)

centred at xi = 0.5. The differences in these interpolations near the interval bound-
aries are shown in Fig. 4.11b.

A comparison of several similar interpolations is discussed by Boyd (1992, 1999)
and an interesting historical account is provided by Meijering (2002). The interpola-

(A) (B)

Fig. 4.11 (A) Interpolation function based on the sine basis functions, Eq. (4.81), with N = 24,
xi = 0.5. (B) Comparison of �sine

i (x) (solid line), Eq. (4.82), and �sinc
i (x) (dashed line), Eq. (4.83),

with N = 6, xi = 0.5

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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tion functions are at the basis of pseudospectral solutions of differential equations as
discussed in Sect. 3.9.2 and summarized in Table3.18 (Meyer 1970; Schwartz 1985;
Baye and Heenen 1986; Colbert and Miller 1992; Amore et al. 2009). The interpo-
lation functions provide the discrete first and second derivative matrix operators.

We apply a similar quadrature to the Fourier expansion, Eq. (4.74) and use a
Riemann1 sum (Cheney and Kincaid 2008; Burden and Faires 2011) to evaluate the
expansion coefficients, cn , Eq. (4.75), that is

cn = 1

L

N∑

k=−N

fke−inπkΔy/L = 1√
L

N∑

k=−N

fk Tkn . (4.84)

where fk ≡ f (xk). Equation (4.84) defines the transformation between spectral
space, {cn}, and physical space, { fk}, given by

Tkn = 1√
L

e−iπnkΔy/L , (4.85)

which is orthogonal, that is

N∑

k=−N

T ∗
nk Tkm = δnm, (4.86)

and represents the discrete version of Eq. (4.73).
Whereas the analogous transform for polynomial basis sets, Eq. (1.24), of order

N requires N 2 numerical operations, it is possible to efficiently program the discrete
Fourier transform,Eq. (4.85), so to have amuch smaller operation count of N log10 N .
This is achieved with the Fast Fourier Transform (FFT) algorithm generally credited
to Cooley and Tukey (1965) but with earlier versions developed by Gauss and others.
It should be noted that for one dimensional problems ofmoderate order the savings in
computer time is not of practical significance because of the computational speed of
current personal computers. There can be a substantial savings in the computational
times for very large data sets.

4.6.4 Fourier Transforms

The discrete Fourier series can be extended to the expansion in the basis func-
tions φk(x) = exp(ikx)/

√
2π, x ∈ (−∞,∞), defined on the infinite interval,

x ∈ (−∞,∞), which are orthogonal in accordance with

1 Georg Friedrich Bernhard Riemann (1826–1866) was a German mathematician who made fun-
damental contributions to topology, complex variables and integration.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_1
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∞∫

−∞
φ∗

k′(x)φk(x)dx = δ(k − k′), (4.87)

where the Dirac delta function is defined in the context of an integral, namely

∞∫

−∞
f (x ′)δ(x ′ − x)dx ′ = f (x). (4.88)

The Dirac delta function can be represented as the limit of several different functions.
One example is the normalized Gaussian in the limit of vanishing width, that is

δ(x) = lim
a→0

1

a
√

π
e−x2/a2 . (4.89)

The expansion of f (x) in basis functions φk(x) is the integral

f (x) =
∞∫

−∞
F(k)φk(x)dk, (4.90)

where the function F(k) is the spectral space representation analogous to the expan-
sion coefficients in Eq. (4.63) but parameterized by the continuous index k rather
than the discrete integer n. It is determined in the same way using the orthogonality
of the basis functions, that is

F(k) =
∞∫

−∞
f (x ′)φ∗

k(x ′)dx ′, (4.91)

and is also consistent with convergence in the mean. With the substitution of F(k)

in Eq. (4.90) and use of the orthonormality, Eq. (4.87), we get that

f (x) =
∞∫

−∞

⎛

⎝
∞∫

−∞
f (x ′)φ∗

k(x ′)dx ′
⎞

⎠ φk(x)dk,

= 1

2π

∞∫

−∞
f (x ′)

⎛

⎝
∞∫

−∞
eik(x−x ′)dk

⎞

⎠ dx ′,

=
∞∫

−∞
f (x ′)δ(x − x ′)dx ′. (4.92)
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This result is the completeness condition for Fourier basis functions analogous to
the result for polynomials, Eq. (2.155), in Chap.2. The integral over k in the second
line of Eq. (4.92) leading to δ(x − x ′) is a similar completeness condition for Fourier
basis functions.

4.6.5 The Solution of the Diffusion Equation with Fourier
Transforms

An example of the use of Fourier methods is the solution of the diffusion equation
in one dimension

∂N (x, t)

∂t
= D

∂2N (x, t)

∂x
x ∈ (−∞,∞) (4.93)

where N (x, t) is a number density, D is the diffusion coefficient and the initial density
is N (x, 0). The Fourier transform of the density is

n(k, t) = 1√
2π

∞∫

−∞
N (x, t)e−ikx dx, (4.94)

and of the time derivative, ∂N (x, t)/∂t , is

∂n(k, t)

∂t
= 1√

2π

∞∫

−∞

∂N (x, t)

∂t
e−ikx dx . (4.95)

The Fourier transform of the differential equation is

∂n(k, t)

∂t
= 1√

2π

∞∫

−∞

∂2N (x, t)

∂x2
e−ikx dx, (4.96)

and the left hand side is evaluated with two successive integration by parts to give

∂n(k, t)

∂t
= ik√

2π

∞∫

−∞

∂N (x, t)

∂x
e−ikx dx,

= − k2√
2π

∞∫

−∞
N (x, t)e−ikx dx = −Dk2n(k, t). (4.97)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The representation of the diffusion equation in Fourier space is therefore

∂n(k, t)

∂t
= −Dk2n(k, t). (4.98)

The solution of this first order differential equation is

n(k, t) = n(k, 0)e−Dk2t . (4.99)

The density is given by the inverse transform

N (x, t) = 1√
2π

∞∫

−∞
n(k, 0)e−Dk2t+ikx dk. (4.100)

With n(k, 0) given by Eq. (4.94), we have that

N (x, t) = 1

2π

∞∫

−∞

∞∫

−∞
N (x ′, 0)e−Dk2t+ik(x−x ′)dkdx ′. (4.101)

The integral over k is calculated by completing the square in k, that is

N (x, t) = 1

2π

∞∫

−∞
N (x ′, 0)

[ ∞∫

−∞
e−Dt (k− x−x ′

4Dt )2dk

]
e− (x−x ′)2

4Dt dx ′, (4.102)

and the integral over k gives
√

π/(Dt). The general solution of the diffusion equation
is

N (x, t) = 1√
4πDt

∞∫

−∞
N (x ′, 0)e−(x−x ′)2/4Dt dx ′. (4.103)

For an initial delta function distribution, N (x, 0) = δ(x − x0), the solution is

N (x, t) = 1

4πDt
e−(x−x0)2/4Dt . (4.104)

We use this result to solve the Ornstein-Uhlenbeck Fokker-Planck equation in
Chap.6, Sect. 6.1.2.

http://dx.doi.org/10.1007/978-94-017-9454-1_6
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4.6.6 Construction of a Quantum Wave Packet

We consider a superposition of plane waves so as to construct a wave that is localized
in space about the origin generally referred to as a wave packet. We consider the
following summation of cosines

f (x) = 1

N

N∑

n=1

cos(knπx), (4.105)

each of unit amplitude but with slightly different wavenumbers as given by kn =
k0 + nΔ with k0 = 100, Δ = 0.5 and N = 100. The result is the localized function
shown in Fig. 4.12. In the figure, we see the constructive interference of the waves for
x ≈ ±4 and at x ≈ 0. Elsewhere there is almost complete destructive interference
of the individual waves. The peaks of f (xn) = 1 occur at xn = ±2n/Δ so for Δ =
1/2, the peaks are at 0, ±4, ±8, . . . for n = 0, 1, 2, . . .

In quantum mechanics, the Fourier basis function, φk(x) = eikx/
√
2π, is the

plane wave representation in position space of a free particle with “wave number” k
(Messiah 1961; Liboff 2002). This plane wave is an eigenfunction of the momentum
operator p̂ = −i�∂/∂x , that is

p̂φk(x) = − i�√
2π

∂eikx

∂x
= �k√

2π
eikx (4.106)

where h = 2π� is the Planck constant. We identify the eigenvalue as the momentum
of the particle with p = �k which classically is p = mv where m is the particle
mass. The plane wave basis function is also an eigenfunction of the Hamiltonian
operator, Ĥ = p̂2/2m, that is

Ĥφk(x) = − �
2

2m

d2

dx2
eikx

√
2π

= �
2k2

2m
φk(x) = Ekφk(x) (4.107)

with energy eigenvalues Ek = �
2k2/2m.

Fig. 4.12 Localized wave function formed from the summation of cosines, Eq. (4.105), with kn =
k0 + nΔ with k0 = 100, Δ = 1/2 and N = 100
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The plane wave is of infinite extent and we are interested in a quantummechanical
description of a particle that is localized in space and also moving with some velocity
v analogous to a classical particle. This construction has important applications to
current theoreticalmodelling of reactive processes including photoionization. Recent
reviews were provided by Balint-Kurti (2003, 2008) with extensive references to the
original works in this field. Some aspects for the direct solution of the time dependent
Schrödinger equation have also been addressed (Russo and Smereka 2013, 2014).

A wavepacket is often modelled by assuming a Gaussian envelope for the wave
as given by the wave function

ψ(x, 0) = 1√
α
√

π
e−x2/2α2

e−ikx . (4.108)

This wave function can be constructed from the momentum wavefunction centered
at p = �k, given by

φ(p, 0) =
√

α

�
√

π
exp

[
− α2

2�2
(�k − p)2

]
. (4.109)

Notice that the widths of these two distributions are inversely related. We follow the
presentation in Liboff (2002) and in Chap.7 of the lecture notes by Ghosh2 and write
the time dependent momentum wave function as

φ(p, t) = e−i Ĥ t/�φ(p, 0) = φ(p, 0)e−i p2t/2m�, (4.110)

where φ(p, 0) is an eigenstate of Ĥ . We get the time dependence of the space
wavefunction with the Fourier transform of Eq. (4.110), that is

ψ(x, t) = 1√
2π�

∞∫

−∞
eipx/�φ(p, t)dp,

= 1√
2π�

√
α

�
√

π

∞∫

−∞
eipx/� exp

[
− α2

2�2
(�k − p)2 − i p2t

2m�

]
dp. (4.111)

We write the argument of the exponential as a quadratic in p and notice the integral

∞∫

−∞
exp

[
−ap2 + bp − c

]
dp =

√
π

a
exp(−c + b2/4a), (4.112)

2 (http://www.phy.iitb.ac.in/dkg/qmech/Lecture7.pdf).

http://www.phy.iitb.ac.in/dkg/qmech/Lecture7.pdf


4.6 Representation of Functions in Periodic Fourier Series 221

evaluated by completing the square in the argument of the exponential. With
Eq. (4.112) and the definitions

a = α2

2�2
+ i t

2m�
= α2

2�2
(1 + i�t

mα2 ),

b = i x + kα2

�
,

c = α2k2

2
, (4.113)

we get after some algebra the result

ψ(x, t) = 1√
α
√

π(1 + i t�/mα2)
exp

[−x2/2α2 − i[kx − �k2
2m t]

1 + i t�/mα2

]
. (4.114)

It is confirmed that for t = 0 we recover ψ(x, 0) given by Eq. (4.108). We show the
real part of ψ(x, t) as well as |ψ(x, t)|2 in Fig. 4.13 at three different dimensionless
times, where we have set α = 1, �/m = 1 and k = 10. The result is a wave packet
moving in the positive x direction that spreads with time owing to the dispersion of
the wave which resembles a classical particle with group velocity, vg = p/m.

(A)

(B)

Fig. 4.13 Wave packet as given by Eq. (4.114) with α = 1, �/m = 1 and k = 10. The wave
packets are shown for dimensionless times t = 0, 1 and 2
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4.6.7 Fourier Transform Analysis of Time Series and Fourier
Transform Spectroscopy

InChap.1, we defined spectral space as the set of expansion coefficients, Eq. (1.5), for
the expansion of a function in a basis set of orthogonal functions, Eq. (1.1). In some
instances, these are referred to as a generalized Fourier coefficients. The terminology
carries over to the expansion of a function in the trigonometric Fourier basis functions
where the an and bn coefficients are the spectral space representation of the function.
The physical space representation is as before f (xi ). In the continuous situation we
have the two spectral space representations with “coefficients” F(k) ← f (x) where
k is a wavenumber and “coefficients” F(ω) ← f (t) where ω is a frequency. We can
decompose either the spatial variation or the time dependence of some quantity into
its components.

Almost all types of spectroscopy in chemical physics are based on the Fourier
transform of a free induction decay curve. Perhaps the best example to illustrate this
technique is in the comparison of conventional mass spectrometry with the current
Fourier transform ion cyclotron resonance spectrometry (Comisarow and Marshall
1974).

Achargedparticle executes a circular orbit in a uniformmagnetic field, B,whereby
the centripetal force is balanced by the magnetic force, that is,

mv2

r
= q Bv (4.115)

and the frequency of its circular motion is given by ω = B(q/m). In conventional
mass spectrometry, the magnetic field is changed and the absorption of energy is
measured when this resonance condition is achieved. The acquisition of data is slow
with this technique (Comisarow 1993).

To illustrate the basic principles of Fourier transform spectrocopy, we construct
a hypothetical free induction decay curve with four component waves of the form

f (t) =
4∑

k=1

Ak cos(ωk t)e−t/τ (4.116)

where we arbitrarily choose frequencies ω = (15, 25, 35, 45) radians/s and ampli-
tudes A = [1 2 3 4], in arbitrary units with τ = 5. The signal oscillates and also
decays with time owing to a single relaxation process. The signal and the real part
of the Fourier transform as calculated with MATLAB using real(fft(f)) with 1,024
discrete times tk = (15k/1,024), k = 1, 2, . . . , 1,024 are chosen with t ∈ [0, 15].
The modelled free induction decay curve and the Fourier transform are shown in
Fig. 4.14. As can be seen the frequency spectrum of the signal has been recovered.

There are numerous examples of the extraction of the fundamental frequencies of
a signal. We mentioned the application of Fourier transform techniques to the study
of solar activity, measured in terms of the number of sunsposts observed on the solar

http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_1
http://dx.doi.org/10.1007/978-94-017-9454-1_1
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Fig. 4.14 (Top)
Hypothetical free induction
decay curve with four
components. Equation
(4.116) with ω = 15, 25, 35,
and 45 radians/s. (Bottom)
Real part of the Fourier
transform of the signal
above. The four input
frequencies are recovered

surface. The sunspot number oscillates with a period of about 11years (Petrovay
2010). The extraction of the periodic behaviour in solar activity has received consid-
erable attention. The variation in solar activity can be found by searching the internet
for sunspot.dat and the time series analysis is discussed in Chap.8 in the book by
Moler (2008).

4.7 Gibbs Phenomenon

The Gibbs3 phenomenon is the overshoot that occurs at a jump discontinuity for a
Fourier series approximation, Eq. (4.63), of a piecewise continuous function, f (x).
In two dimensions, a Fourier series is used to represent the image of an object
which is often contaminated with these spurious oscillations. The resolution of the
Gibbs phenomenon, that is the reconstruction of the function, f (x), with the Fourier
coefficients of the approximation, f (N )(x), has a large number of important practical
applications in image reconstruction (Archibald and Gelb 2002; Dadkhahi et al.
2012), tomography (Gottlieb et al. 2000) and medical imaging (Kaur et al. 2007;
Jung and Zhao 2012).

3 Josiah Willard Gibbs (1839–1903) was an American physicist who made fundamental contribu-
tions to physics and mathematics, and to thermodynamics and statistical mechanics in chemistry
where his name as associated for examplewith theGibbs free energy and theGibbs-Duhemequation.
He is also know for his work on physical optics.
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We illustrate the Gibbs phenomenon with the expansion of the step function,

f (x) =
⎧
⎨

⎩

−1, −1 < x < 0,
0, x = 0,
1, 0 < x < 1.

(4.117)

This is an example of a function that is piecewise continuous on [−1, 1]. The deriv-
ative of the function is not continuous at the interval boundaries and the midpoint.
The value of the function at the origin is defined to be the mean of the limits from the
right and the left. Since the function is odd an = 0, and the Fourier series, Eq. (4.63),
reduces to the sine series with odd n = 2k − 1 and bk = 4/[π(2k − 1)].

The N th order Fourier sine series approximation to the step function is given by,

f (N )(x) = 4

π

N∑

k=1

sin[(2k − 1)πx]
2k − 1

. (4.118)

The graph of f (N )(x)versus x in Fig. 4.15 for N = 5 shows the oscillatory approx-
imation to f (x). The oscillations persist for N = 20 with diminished amplitude in
the middle portions of the intervals [−1, 0] and [0, 1]. However, the oscillations in
the vicinity of x = 0 and at x = ±1 do not decrease with an increase in the number of
terms in Eq. (4.118) and move closer to the interval boundaries with almost constant
amplitude. An instructive analysis of this behaviour is provided in Sect. 2.2 in Jerri
(1998). Both approximations with N = 5 and N = 20 give f (N )(0) = 0 as noted by
the solid symbol, consistent with the point-wise convergence theorem. At the junp
discontinuity, the Fourier series converges to the mean of the right and left limits of
the function (Brown and Churchill 1993).

It is the oscillations at the discontinuous points that is referred to as the Gibbs
phenomenon not to be confused with the Runge phenomenon discussed in Sect. 4.8.
The resolution of the Gibbs phenomenon involves the reconstruction of f (x) from
a finite number of coefficients in the Fourier series, Eq. (4.63). In this section, we

Fig. 4.15 The Fourier series approximation to a step function with N = 5 and 20
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summarize some of the current methods employed to resolve Gibbs phenomenon in
one and two dimensions. An important aspect of the reconstruction is to locate the
boundaries at which the Gibbs phenomenon occurs and the technique is referred to
as edge detection (Stefan et al. 2012).

Thus we have shown by example that the expansion of a piecewise continuous
function on a finite interval in a Fourier series can lead to spurious oscillations at
the interval boundaries where the function or its derivatives are not smooth (Lanczos
1966). This subject has had a long history beginning with the work by Wilbraham
(1848) rediscovered byGibbs as chronicled by several authors (Carlson 1925; Hewitt
and Hewitt 1979). Jerri (1998) has suggested that the correct nomenclature should
be the Gibbs-Wilbraham phenonemon.

This nonconvergence of a Fourier series contaminates numerous applications of
Fourier series and the subject has been treated in several textbooks (Jerri 1998,
1999) and research papers (Gottlieb et al. 1992; Gottlieb and Shu 1997; Driscoll
and Fornberg 2001; Shizgal and Jung 2003; Jung and Shizgal 2004, 2005, 2007;
Jung 2007; Hrycak and Grchenig 2010; Kamm et al. 2010). Numerous methods
have been suggested to resolve the Gibbs phenomenon such as spectral filtering
(Adomaitis 2001) adaptive mollifiers (Tadmor and Tanner 2002), a Padé based algo-
rithm (March and Barone 2000; Driscoll and Fornberg 2001), radial basis functions
(Jung 2007) and spectral reprojection (Gelb and Tanner 2006; Adcock and Hansen
2012). A comprehensive review of all these methods is not possible in this book and
the reader is directed to a review of the Gegenbauer reconstruction method
(Gottlieb et al. 2011) and other methods in the book edited by Jerri (2011).

Gottlieb and co-workers (Gottlieb et al. 1992; Gottlieb and Shu 1997) developed a
reconstruction method based on the re-expansion of the finite Fourier representation
of a function inGegenbauer polynomials thatwe refer to as the directmethod. Shizgal
and Jung (2003) developed a reconstruction algorithm which recovers polynomial
functions exactly from their finite Fourier representation. This method is referred
to as the inverse method (Jung and Shizgal 2004, 2005, 2007). It has also been
referred to as the Inverse Polynomial Reconstruction Method (IPRM). The origin
of the terminology concerning direct and inverse methods will be clarified in the
sections that follow with a comparison of the two resolution procedures.

4.7.1 The Direct Method

We consider a piecewise continuous function, f (x), on the interval [−1, 1] expanded
in a finite Fourier series, Eq. (4.63), where the Fourier coefficients are given by
Eq. (4.64). We consider limited input data consisting of the first 2N +1 exact Fourier
coefficients ak and bk . The basic objective of a reconstruction procedure is to recover
the function f (x) from the input data.
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We choose to expand the function in the Gegenbauer polynomials, Cλ
� (x),

discussed in Sect. 2.4.8

f (x) =
∞∑

�=0

g�Cλ
� (x), (4.119)

where the g� coefficients depend on λ and are the exact Gegenbauer coefficients
given by orthogonality, that is,

g� = 1

hλ
�

1∫

−1

(1 − x2)λ−1/2Cλ
� (x) f (x)dx, (4.120)

and hλ
� is the normalization.

The Gegenbauer reconstruction of f (N )(x), Eq. (4.63), is based on the expansion

f̂m(x) =
m∑

�=0

ĝ�Cλ
� (x), (4.121)

where the (approximate) Gegenbauer coefficients, ĝ�, are given by,

ĝ� = 1

hλ
�

1∫

−1

(1 − x2)λ−1/2Cλ
� (x) f (N )(x)dx . (4.122)

Notice that Eq. (4.122) refers to f (N )(x) whereas f (x) appears in Eq. (4.120) and
we have identified the expansion coefficients with ĝ� and g�, respectively.

An important aspect of the reconstruction procedure is that the summation in
Eq. (4.121) is truncated at some sufficiently small value of m < N . Therefore we
have denoted the reconstructed function by f̂m(x). If this expansion is extended
indefinitely, the result recovers the Gibbs phenomenon. Thus m must not be too
large. It is important to note that the sum in Eq. (4.63) is up to n = N − 1.

Weconsider the expansion of the sine and cosine basis functions in theGegenbauer
polynomials, that is

sin(kπx) =
∞∑

�=1

Sk�Cλ
� (x),

cos(kπx) =
∞∑

�=0

Wk�Cλ
� (x), (4.123)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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where the transformation matrices are

Sk� = 1

hλ
�

1∫

−1

(1 − x2)λ−1/2Cλ
� (x) sin(kπx)dx,

Wk� = 1

hλ
�

1∫

−1

(1 − x2)λ−1/2Cλ
� (x) cos(kπx)dx, (4.124)

which can be evaluated analytically in terms of Bessel functions (Gottlieb and Shu
1997). This is the reason for choosingGegenbauer polynomials. Thework byGottlieb
and co-workers was based on a detailed numerical analysis of these coefficients and
their relation to the Gibbs condition as defined previously and discussed by Gottlieb
and coworkers (Gottlieb and Shu 1997; Gottlieb and Hesthaven 2001; Gottlieb et al.
2011).

With Eq. (4.63) substituted into Eq. (4.122) and the definition Eq. (4.124), we have
that

ĝ� = a0 +
N∑

k=1

[ak Wk� + bk Sk�] . (4.125)

Equation (4.125) is referred to as thedirect method as the ĝ� coefficients are calculated
with direct matrix multiplications.

Gottlieb et al. (1992) and Gottlieb and Shu (1997) showed, with a detailed numer-
ical analysis, that a sufficient condition for spectral convergence of Eq. (4.121) versus
N is that λ = m = βN , where β = 2π/27 ≈ 0.2327. This relationship between λ,
m and N is called the “Gibbs condition”. In the numerical experiments carried out
with the direct method, the choice λ = m = N/4 is made. The parameter λ can be
chosen appropriately so as to optimize the Gegenbauer reconstruction procedure.

4.7.2 The Inverse Method; Odd Functions f (−x) = − f (x)

We demonstrate the reconstruction procedure with simple examples and consider
odd functions, f (−x) = − f (x), on the interval [−1, 1]. With the direct method,
Eq. (4.125), for the approximate Gegenbauer coefficients reduces to

ĝ� =
N∑

k=1

bk Sk�, (4.126)

and the reconstructed function with Eq. (4.121).
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We consider an alternate reconstruction procedure and note that the desired rep-
resentation of the function is a finite expansion of Gegenbauer or other orthogonal
polynomials, that is

f̃m(x) =
m∑

odd �

g̃�Cλ
� (x). (4.127)

Therefore, instead of expanding the Fourier sines and cosines in theGegenbauer basis
as in Eq. (4.123), the approximate g̃� coefficients in Eq. (4.127) are determined by
considering the representation of f̃m(x) in a Fourier sine series and then projecting
out each Fourier mode. The underlyingmotivation for this approach is that the sought
after representation of the function, Eq. (4.121), is a finite polynomial.

We consider the correspondence or projection

∞∑

odd �

g̃�Cλ
� (x) ≈

N∑

k=1

bk sin(kπx), (4.128)

made rigorous in subsequent papers (Jung and Shizgal 2004, 2005).With the orthog-
onality of the Fourier sine basis functions, the first m g̃� coefficients are given by,

m∑

odd �

g̃�T�k = bk, (4.129)

where

T�k =
1∫

−1

Cλ
� (x) sin(kπx)dx . (4.130)

We note also the analogous transformation

V�k =
1∫

−1

Cλ
� (x) cos(kπx)dx, (4.131)

and the transformation matrices are

Tkl =
{

0, k = 0,
(−1)k+14λ/(kπ), k �= 0, l = 1,

Vkl =
⎧
⎨

⎩

1, k = 0, l = 0,
0, k �= 0, l = 0,

1
l+λ [Cλ

l+1(1) − Cλ
l−1(1)], k = 0, l �= 0,

(4.132)
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These results can be derived with the recurrence and differential recurrence relations
as shown in the Appendix in Shizgal and Jung (2003).

Equation (4.129) defines the approximate g̃� coefficients that appear inEq. (4.127).
The matrix T�k is the transformation from the Gegenbauer space {g�} to the Fourier
space {bk}, whereas Sk� is the transformation from the Fourier space to the Gegen-
bauer space.

The approximate Gegenbauer coefficients, g̃�, are given by the inversion of
Eq. (4.129) with m = N . We refer to this approach as the inverse method as the
solution of Eq. (4.129) requires the inversion of a linear system. The projection of
Eq. (4.128) onto the Fourier basis gives Eq. (4.129) whereas the projection onto the
Gegenbauer basis gives Eq. (4.125) with g̃� replaced with ĝ�. A more detailed dis-
cussion of these relationships was presented by Jung and Shizgal (2004).

4.7.3 The Inverse Method Is Exact for Polynomials

We choose the odd functions, f1(x) = x and f3(x) = x3, for which the exact
Gegenbauer expansions are

x = 1

2λ
Cλ
1 (x),

x3 = 3

4λ(λ + 2)
Cλ
1 (x) + 3

4λ(λ + 1)(λ + 2)
Cλ
3 (x), (4.133)

where we have used the explicit definitions of the lower order Gegenbauer polyno-
mials in Chap.2, Sect. 2.4.8. The exact Fourier sine coefficients are given by,

b(1)
k = 2(−1)(k+1)

πk
,

b(3)
k = 2(−1)k

πk

[
6

(πk)2
− 1

]
. (4.134)

It is clear that the values of m in the Gegenbauer sum, Eq. (4.121), are m = 1 and
m = 3, for f1(x) and f3(x), respectively, independent of λ. If the sum is taken to N ,
Eq. (4.121) recovers f (N )(x) contaminated with the Gibbs phenomenon.

We write the Gegenbauer polynomials as a finite power series, the expansion of
x� in the polynomials, and the identity for the respective coefficients, that is

Cλ
n (x) =

n∑

�=0

Gn�x�, x� =
�∑

k=0

H�kCλ
k (x),

n∑

�=0

Gn� H�k = δnk . (4.135)

The H�k coefficients are calculated for the lower order � and k indices with the
recurrence relation for Cλ

k (x) provided in Chap.2, Sect. 2.4.8.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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We consider f p(x) = x p (p odd), with Fourier coefficients

b(p)
k =

1∫

−1

x p sin(kπx)dx . (4.136)

With the definition of H�k in the second of Eq. (4.135), the exact Gegenbauer coef-
ficients for x p are g

(p)
� = Hp�. Equation (4.129) is an identity with g̃� = Hp�

and
m∑

odd �

Hp�T�k = b(p)
k . (4.137)

With the definition of T�k , Eq. (4.130), and the first of Eq. (4.135), we have that

m∑

odd �

Hp�

�∑

odd n

G�nb(n)
k = b(p)

k . (4.138)

With the third relation of Eq. (4.135), we get the result

m∑

odd n

δp,nb(n)
k = b(p)

k . (4.139)

The linear system, Eq. (4.129), provides an exact relationship between the first m
(exact) b(p)

k Fourier coefficients and the first m g̃� = g� Gegenbauer coefficients, and
the results are independent of λ.

We illustrate the previous results with the test function, f1(x) = x . We require
only one Fourier coefficient in Eq. (4.129)

g̃1T1,1 = b(1)
1 , (4.140)

and obtain the exact resolution of the Gibbs phenomenon with g̃1 = g1 = 1/2λ.
For f3(x) = x3, the 2 × 2 linear system

g̃1T1,1 + g̃3T3,1 = b(3)
1 ,

g̃1T1,2 + g̃3T3,2 = b(3)
2 . (4.141)

is solved. The Taylor coefficients, Eq. (4.141), are substituted into Eq. (4.141) which
gives the system of equations

d1b(1)
1 + d3b(3)

1 = b(3)
1 ,

d1b(1)
2 + d3b(3)

2 = b(3)
2 . (4.142)
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A solution is d1 = 0 and d3 = 1 independent of λ. We write f̃ p(x) = ∑m
odd n dn xn

with dn = ∑m
odd � g̃�G�,n so that Eq. (4.129) for the Gegenbauer coefficients reduces

to the linear system,
m∑

odd n

dnb(n)
k = bk, (4.143)

for the Taylor coefficients independent of λ.
If the bk coefficients on the right hand side of Eq. (4.143) are for f p(x) = x p

as given by Eq. (4.136), then Eq. (4.143) gives an exact result. One of the columns
in the matrix b(n)

k is equal to the inhomogenous vector on the right hand side of
Eq. (4.143) and dn = 1 for n = p and dn = 0 for n �= p. An important aspect
of Eqs. (4.141)–(4.143) is that the exact bk Fourier coefficients are considered as
input. Therefore, the exact resolution of Gibbs phenomena requires that the exact
Tk� matrix elements be computed.

4.7.4 Numerical Comparisons

Wecompare the direct and inversemethodswith numerical examples used previously
(Gottlieb et al. 1992; Vozovoi et al. 1997) and the first one is the polynomial f (x) =
x3 + x6 which is neither odd nor even. The g̃� coefficients with � odd are obtained
by inverting Eq. (4.129) and those with � even are given by

m∑

even �

g̃�V�k = ak . (4.144)

The matrices T�k and V�k are given by Eq. (4.132).
In Table4.4, we show the Taylor coefficients, dn , versus λ derived from the ĝ�

coefficients, where the exact values are

dn =
⎧
⎨

⎩

0 n �= 3, n �= 6,

1 n = 3, n = 6.
(4.145)

As demonstrated in the table, the inverse reconstruction of the function is exact.
The L∞ error defined by

L∞ = max−1≤x≤1
| f (x) − fm(x)|,

is listed in the last column and is independent of λ. The convergence of the inverse
approach is extremely rapid for this polynomial and requires only 6 terms in
Eqs. (4.129) and (4.144).
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The convergence of the Taylor coefficients versus N with the Gegenbauer recon-
struction in Table4.5 is much slower where the constraint m = λ = N/4 has been
imposed. The L∞ error decreases slowly with increasing N and for N = 40 it is not
at machine accuracy with m = 10. It is clear with the results in Table4.5 that if m
is not large enough the reconstructed function with the direct method is inaccurate.
Consider f (x) = x3 + x6 with N = 20 and m = 5 for which L∞ = 0.373. If
m is too large, then the reconstructed function will converge to f (N ) and the Gibbs
phenomenon is recovered, since limm→∞ f̂m(x) = f (N )(x).

The second test function is f (x) = cos[1.4π(x + 1)] with Fourier coefficients
given by,

a0 = sin(2.8π)

(2.8π)
,

ak = 1.4π(−1)(k+1)

(kπ)2

sin(2.8π)

(1 − ( 1.4k )2)
,

bk = kπ(−1)k

(1.4π)2

(cos(2.8π) − 1)

(1 − ( k
1.4 )

2)
,

The Taylor coefficients versus λ with the inverse method with N = 12 and m = 23
are shown in Table4.6 which gives results independent of λ. The L∞ error is close
to machine accuracy. With only 23 Gegenbauer polynomials, the higher order Taylor
coefficient d19 is unconverged and differs from the exact value by 0.53%.

A comparison of the convergence of the direct and inverse methods for f (x) =
cos[1.4π(x + 1)] is shown in Fig. 4.16. The inverse method provides a much faster
convergence than the direct method. In Fig. 4.16b, we also show results for alter-
nate weight functions. In addition to the Gegenbauer weight function, wg(x) =
(1− x2)λ− 1

2 , we use a modified Gegenbauer weight function,wm(x) = wg(x)e−αx2

and a Gaussian weight function w(x) = e−βx2 . The parameters λ, α and β in the
weight function control the width of the weight functions about the origin. The
orthogonal polynomials are constructed with the Gautschi-Stieltjes procedure dis-
cussed in Chap.2, Sect. 2.3.6. For the Gegenbauer and modified Gegenbauer weight
functions, m = λ = N/4. It is clear that the inverse method converges faster than
the direct method with different polynomial basis sets.

The numerical calculations with the inverse method involve the inversion of
Eqs. (4.129) and (4.144) for the g̃� coefficients. The reconstructed function is given by
Eq. (4.127). Themethod gives remarkable results for the test functions studied. Alter-
natively, the g̃� coefficients can also be determined from the inversion of Eq. (4.125)
or Eq. (4.144) for the equivalent Taylor coefficients. One important concern is the
numerical invertibility of the matrices, T and V. The condition numbers of these
matrices increase rapidly with m and an accurate resolution of the Gibbs phenom-
enon with L∞ ≤ 10−8 can be obtained for functions approximated by polynomials
of order 25 or less. A method to mitigate the round-off errors that occur is described
in the next section.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Table 4.6 Inverse method; Taylor coefficients dn versus λ for f (x) = cos[1.4π(x + 1)]; (−n) ≡
10−n ; N = 12, m = 23

λ/dn d0 d5 d10 d15 d19 L∞
1
2 −0.309017 0.130441 (2) 0.230674 −0.324243 (−2) −0.129876 (−4) 0.7430 (−12)

1 −0.309017 0.130441 (2) 0.230674 −0.324245 (−2) −0.130249 (−4) 0.1628 (−12)

2 −0.309017 0.130441 (2) 0.230674 −0.324244 (−2) −0.130052 (−4) 0.2451 (−12)

4 −0.309017 0.130441 (2) 0.230674 −0.324250 (−2) −0.130888 (−4) 0.1061 (−11)

8 −0.309017 0.130441 (2) 0.230674 −0.324241 (−2) −0.129744 (−4) 0.1671 (−11)

Exact −0.309017 0.130441 (2) 0.230674 −0.324247 (−2) −0.130434 (−4) –

Reprinted from Shizgal and Jung (2003) with permission from Elsevier

Fig. 4.16 The variation of the L∞ error versus N for f (x) = cos[1.4π(x + 1)]; comparison of the
direct and inversemethods. (A)Comparison of the inversemethod and the directmethodbased on the

Gegenbauer weight, wg(x) = (1− x2)λ− 1
2 ; (a) inverse method, (b) direct method; (B) Comparison

of the inversemethod and the direct method based on different weight functions: Gegenbauer weight
function, λ = N/4 (filled squares); modifed Gegenbauer weight, wm(x) = wg(x)e−αx2 ,λ = N/4

(open squares), α = 16; filled circles, α = −16; and a gaussian weight function w(x) = e−βx2 ,
β = 16 (triangles). Reprinted from Shizgal and Jung (2003) with permission from Elsevier

4.7.5 Minimizing the Inverse Method Round-Off Errors

In Chap.2, Sect. 2.2, we emphasized the manner in which round-off errors destroys
the Gram-Schmidt orthogonalization procedure. Round-off errors generally occur
when one attempts to subtract two very large numbers to give a desired result which is
orders of magnitude smaller.We have also noted round-off errors of a different nature
that occur in the calculation of the αn and βn coefficients for Maxwell polynomials
from recurrence relations in Sect. 2.5.1. The inverse method for the resolution of the
Gibbs phenomenon requires the inversion of the matrices T and V and the condition
numbers of thesematriceswhich increasewith thematrix size determine the accuracy
of the final results.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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Table 4.7 Direct method; Taylor coefficients dn versus λ for f (x) = cos[1.4π(x + 1)]; (−n) ≡
10−n ; N = 76, m = N/4 = 19

λ d0 d5 d10 d15 d19 L∞
1
2 −0.309029 −0.203631 (3) 0.151266 (2) 0.454691 (5) 0.566650 (4) 0.5352

1 −0.309016 −0.381491 (2) −0.175522 (1) 0.123990 (5) 0.161670 (4) 0.2472

2 −0.309017 0.133678 (2) −0.614139 −0.143695 (3) −0.228711 (2) 0.2152 (−1)

4 −0.309017 0.130498 (2) 0.242121 −0.258823 (1) −0.402494 0.1358 (−3)

6 −0.309017 0.130439 (2) 0.230461 0.166745 0.336778 (−1) 0.1112 (−3)

8 −0.309017 0.130441 (2) 0.230678 −0.118250 (−1) −0.203508 (−2) 0.1500 (−4)

10 −0.309017 0.130441 (2) 0.230674 −0.279070 (−2) 0.112471 (−3) 0.1613 (−5)

14 −0.309017 0.130441 (2) 0.230674 −0.326321 (−2) −0.173321 (−4) 0.6925 (−7)

18 −0.309017 0.130441 (2) 0.230674 −0.325798 (−2) −0.181841 (−4) 0.2983 (−6)

Exact −0.309017 0.130441 (2) 0.230674 −0.324247 (−2) −0.130434 (−4) –

Reprinted from Shizgal and Jung (2003) with permission from Elsevier

The inversemethod is independent of theλ parameter inCλ
� (x); see Tables4.4, 4.6

and 4.7. With the Legendre polynomial basis set, P�(x), corresponding to λ = 1/2,
the inverse problem is

W · g̃ = f̂, (4.146)

where the matrix W is

Wk� = 1

2

1∫

−1

e−ikπx P�(x)dx, (4.147)

and is ill-condtioned.
The inversion of W is based on Gaussian elimination with partial pivoting. This

method involves three steps, namely, (1) the Gaussian elimination with matrix oper-
ator P to construct the upper triangular matrix U, (2) transformation of the Fourier
coefficients f̂ to a new vector h, and (3) inversion by backward substitution to get ĝ.
This is summarized by the three matrix operations,

U = P · W, h = P · f̂, U · ĝ = h. (4.148)

For the resolution of f (x) = cos[1.4π(x+1)], the various quantities inEq. (4.148)
are shown in Fig. 4.17 and the important result is the exponential decrease of hk

(purple curve) which is analogous to the behaviour of g� (red curve). If we were
to use a test function that is a polynomial of degree m, then g� = 0 for � > m,
and hk follows the same behaviour. The slower convergence of g̃� is also shown in
Fig. 4.17. From the graph, we see that for k > 24, hk is at machine accuracy and
the values for large k represent random noise. Consequently with the inversion of
W, we get a rapid resolution of the Gibbs phenomenon versus N as shown by the
circle symbols in Fig. 4.18a up to about 2N + 1 = 20. Then with increasing N the
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Fig. 4.17 The variation of fk , g�, hk and g̃� for f (x) = cos[1.4π(x + 1)]. f̂k denotes the Fourier
coefficients, g� the exact Legendre expansion coefficients, g̃� the expansion coefficients with the
inverse method and hk the mapped Fourier coefficients. The symbols �, � and © denote g̃� for
N = 32, 40 and 64, respectively. Reprinted from Jung and Shizgal (2007) with permission from
Elsevier

(A) (B)

Fig. 4.18 The variation of L∞ versus N arising from Gaussian elimination and partial pivoting
with and without truncating h. The red curves denoted with circle symbols are the results without
truncation whereas the blue curves denoted with square symbols are the results with truncation and
the L∞ remains at machine accuracy. Reprinted from Jung and Shizgal (2007) with permission
from Elsevier

L∞ error increases as shown by the red curves and circle symbols. A very similar
behaviour is found for f (x) = exp[sin(2.7x) + cos(x)] in Fig. 4.18b.

Jung and Shizgal (2007) proposed a simple truncation by deleting from the vector
h the small hk components that ultimately lead to the increasing L∞ values owing
to the ill-conditioned W matrix. Thus we set hk = 0 for |hk | ≤ ε where ε is taken
close to but larger than the machine epsilon denoted by εM . With this fix, we find the
improved variation of L∞ with N as shown by the blue lines with the square symbols
in Fig. 4.18. Hrycak and Grchenig (2010) have developed an alternate remedy for
the ill-conditioned matrices with the inverse method by increasing the number of
Fourier coefficients for a polynomial of degree n beyond the minimum required so
that the Gibbs reconstruction becomes an overdetermined linear problem solved with
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a least squares minimization. A similar approach using the pseudo-inverse, based on
the statistical filter method, to reduce the round-off errors in the inverse method was
proposed by Jung (2011).

4.7.6 Local Reconstruction and Image Resolution

Shizgal and Jung (2003) also considered a local reconstruction of piecewise contin-
uous functions on subintervals with the inverse method applied to each subinterval.
The generalization of the inverse method to two or more intervals is straightfor-
ward and is a slight modification of the methodology in Sect. 4.7.2. We consider the
function

f (x) =
⎧
⎨

⎩

−(x + 1), x ≤ 0,

(1 − x)6, x > 0,
(4.149)

which is linear in the left domain and a polynomial of degree 6 in the right domain.
We also consider the function

f (x) =
⎧
⎨

⎩

x3 + x6, x ≤ 0.45,

cos[(1.4π(x + 1)], x > 0.45.
(4.150)

From the previous discussions, it is clear that the inverse method will provide an
exact reconstruction in each subinterval.We show in Fig. 4.19 theChebyshev (λ = 0)

(A) (B)

Fig. 4.19 (A)Reconstruction of f (x) = −(x+1) if x ≤ 0 and (1−x)6 if x > 0.Oscillatory curve is
the Chebyshev approximation with N = 35. (B) f (x) = x3 + x6 if x ≤ 0.45 and cos[1.4π(x + 1)]
for x > 0.45. The solid curves are the reconstructed functions and indistinguishable from the
original functions. Reprinted from Shizgal and Jung (2003) with permission from Elsevier
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approximation with N = 35 as the dashed oscillatory curve and the reconstructed
function as the solid curve which is indistinguishable from the exact result. However,
it is very important to note that this reconstruction is done with a knowledge of the
location of the discontinuities at the interval boundaries at x = 0 and x = 0.45.

The inversemethodwas also applied to the reconstruction of images in two dimen-
sions and in particular the Shepp-Loganmodel for the brain (Jung and Shizgal 2005).
Image reconstruction requires locating the points of discontinuity or edges, and edge
detection has become an integral aspect of image restoration (Archibald and Gelb
2002; Stefan et al. 2012; Cochran et al. 2013). This research activity will undoubt-
edly play an important role in medical imaging (Kaur et al. 2007; Koay et al. 2007;
Kamm et al. 2010; Dadkhahi et al. 2012).

4.8 The Runge Phenomenon

The Runge phenomenon is often discussed in conjunction with the Gibbs phenom-
enon and although there are similarities, they are different. The Runge phenomenon
arises from the interpolation of a certain class of functions with a uniform grid. One
such function is

f (x) = 1

1 + 25x2
, x ∈ [−1, 1]. (4.151)

It is straightforward to do the interpolation in MATLAB and compare the interpolant
with the exact result and this is shown in Fig. 4.20. The solid curves are for the
function in Eq. (4.151). The dashed curves in the top graphs show the result of an
interpolation with a uniform grid with N = 8 and N = 14 points, respectively. The
bottom graph shows the results with the nonuniform Chebyshev points. The superior
results with the Chebyshev quadrature points in comparison with the uniform grids
is clear.

The Runge phenomenon has been analyzed in great detail by numerous workers
and we provide a brief summary of some of the work done to date. Jung and Stefan
(2011) analyzed the Runge phenomenon in a manner similar to the discussion in
Sect. 4.7.5 for the minimization of the round-off error in the inversion of the matrices
associated with the inverse method. Trefethen (2000) provides an insightful inter-
pretation of the Runge phenomenon as the solution of the Poisson equation for a
charge distribution. He points to the different charge distributions for the interpola-
tion on the uniform grid in comparison with the Chebyshev grid. Boyd (2010) and
coworkers (Boyd and Ong 2009, 2011) have carried out extensive studies with dif-
ferent strategies to overcome the Runge phenomenon. In spite of all the interest, the
practical applications of these analyses have not been emphasized in the manner that
the Gibbs phenomenon occupies an important role in medical imaging (Koay et al.
2007; Dadkhahi et al. 2012; Jung and Zhao 2012).
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Fig. 4.20 The solid curve in each graph is Eq. (4.151) and the dashed curve is the interpolated
function. (Upper graphs) The interpolation points (solid symbols) are uniformly distributed and
the interpolation fails at the interval boundaries with increasing N as shown. (Lower graphs) The
points (solid symbols) are the Chebyshev quadrature points, xi = cos[(2i −1)π/2n], not distributed
uniformly and there is convergence with increasing N
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Chapter 5
Integral Equations in the Kinetic Theory
of Gases and Related Topics

Abstract Integral equations occur in many areas of chemistry, physics and
engineering. We consider in this chapter the integral equations that arise in radiative
transfer theory and in the study of transport processes in dilute gasesmodeledwith the
Boltzmann equation. The first use of a collocation was the Gauss-Legendre quadra-
ture for the solution of the integro-differential isotropic radiative transfer equation.
The integral equations that are used to calculate the heat conductivity and viscos-
ity of a dilute monatomic gas are derived with the Chapman-Enskog method of
solution of the Boltzmann equation. The integral equations are solved with spectral
and pseudospectral methods. These numerical methods are also used to calculate the
eigenfunctions and eigenvalues for the linearized collision operator for a one compo-
nent gas as well as for the linear collision operator for a binary mixture. The solution
of the Boltzmann equation for many applications can be expressed in terms of the
eigenfunctions and eigenvalues of the collision operators that in general possess an
infinite number of discrete eigenvalues and a continuum. The eigenvalue spectra of
these operators are calculated and discussed. A pseudospectral method of solution
of the Boltzmann integral equation is used for the calculation of the nonequilibrium
reaction rate for a model reactive system. A pseudospectral method is also used to
solve the Chapman-Enskog integral equation that gives the viscosity of a dilute gas.
The relaxation to equilibrium of an initial anisotropic nonequilibrium distribution
for a binary gas mixture versus the mass ratio of the two components is studied. Also
presented are the spectral solutions of Boltzmann equation for the Milne problem of
rarefied gas dynamics, the escape of light atoms from a planetary atmosphere and
the calculation of ion mobilities. Pseudospectral methods with nonclassical weight
functions are used in some of these applications. The chapter concludes with the
study of the relaxation to equilibrium of a one component gas as described by the
nonlinear isotropic Boltzmann equation.

5.1 Introduction

Integral equations in which the desired function appears as an integrand in an integral
operator occur in diverse subjects in science and engineering, and include such fields
as radiative transfer theory (Chandrasekhar 1960), neutron transport (Kourganoff
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1963; Case and Zweifel 1967; Garcia 1999; Ganapol 2008), kinetic theory (Chapman
and Cowling 1970), electromagnetic theory (Volakis and Sertel 2012), geophysics
(Eskola 2012), quantum mechanics and scattering theory (Canto and Hussein 2013)
and many other applications. Many partial differential equations can be transformed
to integral equations with the appropriate Green’s functions that satisfy the boundary
conditions. There are several textbooks devoted to the solution of integral equations
(Tricomi 1985; Delves and Mohamed 1985; Jerri 1999; Kythe and Puri 2002).

In this chapter, spectral and pseudospectral methods are applied to the solution of
several different integral equations that arise in radiative transport and in kinetic the-
ory based on the Boltzmann equation. Quadratures are used to reduce a linear integral
equation to a set of coupled linear equations for the solution at the quadrature points.
The first use of a similar collocation based on Gauss-Legendre quadratures was
by Wick (1943) and Chandrasekhar (1944) for the solution of the radiative transfer
equation (Chandrasekhar 1960). The overlap of radiative transfer theorywith neutron
transport also based on the Boltzmann equation is described in the books by Case and
Zweifel (1967) and by Ganapol (2008). Recent historical reviews of these research
areas were presented by Peraiah (1996) and Shore (2002). An historical account of
the development of nuclear reactor theory based on the fundamental advances in
radiative transfer and neutron transport was presented byWilliams (2000). Although
kinetic theory (Chapman and Cowling 1970) and neutron transport theory (Ganapol
2008) are based on the Boltzmann equation, there is a considerable difference in the
notation employed. The book by Ganapol (2008) has an extensive bibliography to
research papers and monographs on neutron transport theory.

We illustrate the application of spectral and pseudospectralmethods to the solution
of the integral equations for the Boltzmann equation of kinetic theory. A summary
of the Chapman-Enskog method (Hirschfelder et al. 1954; Huang 1967; Chapman
and Cowling 1970; Ferziger and Kaper 1972) is presented. This method is a special
solution of the Boltzmann equation for a monatomic gas in the collision dominated
regime constructed specifically for the calculation of the transport coefficients for
diffusion, heat conduction and viscosity in terms of the differential cross sections
describing binary collisions between particles. This formalism yields integral equa-
tions whose solutions present interesting applications for spectral methods.

The Chapman-Enskog method of solution of the Boltzmann equation provides a
derivation of the hydrodynamic equations of fluid mechanics. This is an alternative
approach to the methods based on control volumes and conservation principles pre-
sented in books on fluid dynamics (Fletcher 1991; Kundu et al. 2012). In physical
situations where the gas density is very low and the mean free path, the average
distance travelled between particle collisions, is comparable to or greater than the
local scale length, the hydrodynamic equations are no longer valid and a kinetic
theory treatment is required. This is the subject of rarefied gas dynamics (Sone 2007;
Struchtrup 2005) and pertains to shock waves, aerodynamics, microfluidics (Gad-
el-Hak 1999) and the high altitude regions of planetary atmospheres from which
energetic atoms and ions can escape (Fahr and Shizgal 1983; Shizgal and Arkos
1996; Pierrard 2003; Echim et al. 2011). The direct simulation Monte Carlo method
(Bird 1994) is often used to study such rarefied gaseous systems.
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In this chapter, spectral and pseudospectral methods are used to study the spectral
properties of the linearized collision operator defined by Eq. (5.41) as well as the
analogous linear operator for a binary gas, Eq. (5.104). A spectral method is used to
calculate the nonequilibrium effects that occur in a simple reactive system (Shizgal
and Karplus 1970). The pseudospectral solutions of the Boltzmann equation for the
viscosity in a one component gas (Siewert 2002; Sharipov and Bertoldo 2009) and
the equilibration of nonequilibrium distributions in a binary gas are also described
(Shizgal and Blackmore 1983).

The departure of distribution functions from spherical symmetry are considered
in the applications to the Milne problem (Lindenfeld and Shizgal 1983) and for the
escape of light species from a planetary atmosphere (Shizgal and Blackmore 1986).
We review the development of spectralmethods used to solve theBoltzmann equation
for the drift of ions in a background gas under the influence of a uniform electrostatic
field (Viehland 1994). In the last section, the nonlinear isotropic Boltzmann equation
is used to study the approach to equilibrium of a one component gas and the rela-
tionship with the spectral properties of the linearized operator is discussed. A finite
difference method is used which requires a cubature for the evaluation of the integral
collision operator. A review of alternative methods based on spectral methods with
both polynomial basis functions (Weinert et al. 1980; Ender et al. 2011) as well as
Fourier methods (Filbet and Mouhot 2011; Wu et al. 2013) is presented.

5.2 Classes of Integral Equations and the
Use of Quadratures

Fredholm integral equations of the 1st and 2nd kind (Delves and Mohamed 1985;
Jerri 1999; Slevinsky and Safouhi 2008) are defined by

b∫

a

K (x, y) f (y)dy = S(x), (5.1)

and
b∫

a

K (x, y) f (y)dy − g(x) f (x) = S(x), (5.2)

respectively, where the kernel, K (x, y), and the functions g(x) and S(x) are known.
These integral equations can also be expressed as eigenvalue problems

b∫

a

K (x, y)φn(y)dy = λnφn(x), (5.3)
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and

b∫

a

K (x, y)φn(y)dy − g(x) f (x) = λnφn(x), (5.4)

respectively. Volterra integral equations, which we do not consider, are similar with
the upper boundary b = x .

The method of solution chosen for a particular problem depends on the behavior
of the kernel versus x and y. If the kernel is well behaved in both variables, the
solution can be easily computed. If there is a discontinuous lower order derivative
or a strong singularity, then the numerical method to be used should be adapted to
the particular behavior of the kernel. The types of singularities include a logarithmic
singularity for which K (x, y) = k(x, y) log |x − y| or an algebraic singularity for
which K (x, y) = k(x, y)/|x − y|. This aspect has been discussed by Atkinson and
Shampine (2008) and MATLAB codes for the numerical solution of a large class of
integral equations are readily available (Driscoll 2010).

Many current solution methods of integral equations involve the reduction of the
integral equation to a set of algebraic equations with a suitable quadrature procedure
with grid points {xi } and associated weights {wi } based on polynomials orthogonal
with respect to weight function w(x) on the interval [a, b]. With the use of a quadra-
ture to perform the integral over y in Eq. (5.2), the integral operator is reduced to the
sum over quadrature weights and points, that is

N∑

i=1

Wi K (x, xi ) f (xi ) − g(x) f (x) = S(x), (5.5)

where Wi = wi/w(xi ). If we evaluate this equation at the same set of grid points,
we have the system of linear algebraic equations,

N∑

i=1

Wi K (x j , xi ) f (xi ) − g(x j ) f (x j ) = S(x j ). (5.6)

Inversion of this set of linear equations gives the desired solution at the grid points.
This is the method often used to solve integral equations and referred to as the
Nyström method (Delves and Mohamed 1985; Kythe and Puri 2002). Obviously we
need to know further details of the behavior of the kernel in order to choose the
appropriate quadrature, and study the convergence of the solution.

To illustrate the method, this technique is used to solve the integral equation,

1∫

−1

sinh(x + y)φ(y)dy − φ(x) = −x2, (5.7)
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which is Example 2.2.2 from Kythe and Puri (2002). This equation has the exact
solution

φexact (x) = α sinh(x) + β cosh(x) + x2, (5.8)

whereα = 16e3(e2−5)/(1−34e4+e8),β = [1+ 1
4 (

1
e2

−e2)]α and e = 2.718282 . . .

Since the domain is x ∈ [−1, 1], we choose a Gauss-Legendre quadrature, for
which Wi = wi and reduce the integral equation to a coupled set of linear algebraic
equations for the solution evaluated at the quadrature points analogous to the linear
set of equations, Eq. (5.6). We have that

N∑

i=1

wi sinh(x j + xi )φ
(N )(xi ) − φ(N )(x j ) = −x2j , (5.9)

and the solution is represented by φ(N )(xi ) at the N quadrature points. We measure
the error of the numerical solution in comparison with the exact solution as given by
the L2 error

E (N )
2 =

√√√√ 1

N

N∑

n=1

[
φ(N )(xi ) − φexact(xi )

]2
. (5.10)

The numerical solution of Eq. (5.9) and the E (N )
2 error are computed with a MAT-

LAB code. The variation of log10[E (N )
2 ] versus N is shown in Fig. 5.1. The solution

converges to machine accuracy very quickly owing to the smooth, well behaved ker-
nel and inhomogeneous term. The variation of the exact solution given by Eq. (5.8)
is well approximated by a low order polynomial for x ∈ [−1, 1] which explains the
rapid convergence. There are numerous examples of such integral equations in Kythe
and Puri (2002).

2 6 10 14
−16

−10

−4

N

lo
g 1

0
E
(N

)
2

Fig. 5.1 Variation of the least squares error, log10 E
(N )
2 , for the integral equation, Eq. (5.7), versus

the number of Gauss-Legendre quadrature points, N
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5.3 Radiative Transfer and Neutron Transport Theory

The transfer of radiation in matter is an important aspect of atmospheric science and
climate (Stamnes et al. 1988; Peraiah 1996; Liou 2002; Thomas and Stamnes 2002),
astrophysics (Rybicki and Lightman 1979; Rybicki 1996), satellite remote sensing
(Liang 2005), medical physics (Kan et al. 2013), neutron transport (Siewert 2000;
Yilmazer and Kocar 2009) and other applications (Shore 2002). The propagation of
radiation through amedium involves both absorption and reemission of the radiation.
Radiative transfer theory is concerned with the variation of the radiative intensity
with position in the medium, the direction of propagation as well as the frequency.

We consider the radiative transfer equation in recognition that almost every
current publication in this field cites the original work by Chandrasekhar (1960).
The numerical treatment introduced by Wick (1943) and developed further by
Chandrasekhar (1960) is perhaps the first use of a quadrature, specifically the Gauss-
Legendre quadrature, to reduce the radiative trnasfer equation, Eq. (5.14) to discrete
form.

The system of interest is the plane-parallel atmosphere shown in Fig. 5.2. We
define the radiative intensity, I (z, θ), with assumed azimuthal symmetry, as the
energy contained in a pencil of radiation at position z moving in direction θ with
respect to the polar direction. The intensity of radiation directed along z changes
owing to the absorption of radiation by the medium, characterized by a mass attenu-
ation coefficient, κ, and density ρ(z). The change in incident intensity, I , directed at
an angle θ with the vertical direction on traversing a slab of the medium of vertical
thickness dz is

d I = −κρI dz/μ, (5.11)

where μ = cos θ. We now transform the vertical altitude, z, to optical depth, τ ,
defined by

dτ = −κρI dz, (5.12)

Fig. 5.2 Optical depth and radiative absorption
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or in integral form

τ (z) =
∞∫

z

κρdz. (5.13)

The integral of Eq. (5.11) in the absence of the emission of radiation from themedium
gives the Beer-Lambert law,

I (τ ,μ) = I (0)e−τ (z)/μ.

In general, there is stimulated radiation emitted from themedium and the radiative
intensity I (τ ,μ) is given by the radiative transfer equation,

μ
d I (τ ,μ)

dτ
= I (τ ,μ) − 1

2

1∫

−1

k(μ,μ′)I (τ ,μ′)dμ′, (5.14)

where the kernel, k(μ,μ′), accounts for the anisotropic absorption and reemission
of radiation induced by the incident radiation.

With the assumption of isotropic scattering, that is k(μ,μ′) = 1, we have the
radiative transfer equation in the form

μ
d I (τ ,μ)

dτ
= I (τ ,μ) − 1

2

1∫

−1

I (τ ,μ′)dμ′. (5.15)

This is the simplest integro-differential equation of radiative transfer theory and is
related to several other problems in rarefied gas dynamics. The radiative intensity,
I (τ ,μ), varies with position, τ , and also with direction through μ. A collocation
based on Gauss-Legendre quadratures is used to solve Eq. (5.15). The presentation
follows the work in Chandrasekhar (1960) with a change in notation.

We use the quadrature on the interval μ ∈ [−1, 1] with 2N quadrature points
μi , i = ±1,±2, . . . ,±N and corresponding weights wi . We note that since the
number of quadrature points is even, there is no point at μ = 0. The discretized
version of Eq. (5.14) is

μi
d Ii (τ )

dτ
= Ii (τ ) − 1

2

N∑

j=−N , j �=0

w j I j (τ ), (5.16)

where Ii (τ ) ≡ I (τ ,μi ). If the solution is assumed to be of the form, Ii (τ ) = ai e−λτ ,
then

ai (1 + μiλ) = 1

2

N∑

j=−N , j �=0

w j a j = C, (5.17)
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with

ai = C

1 + λμi
, (5.18)

which when substituted into Eq. (5.17) gives

1 = 1

2

N∑

j=−N , j �=0

w j

1 + λμ j
=

N∑

j=1

w j

1 − λ2μ2
j

. (5.19)

In the second equality we have usedw− j = w j and μ− j = −μ j . Because the sum of
the weights is normalized to unity,

∑N
j=1 w j = 1, λ2 = 0 satisfies Eq. (5.19), which

is the eigenvalue equation for the 2N − 2 eigenvalues and two zero eigenvalues. The
eigenvalues necessarily come in positive and negative pairs, ±λn, n = 1, 2, . . . ,
N − 1.

The roots of Eq. (5.19) each lie between the reciprocal of the quadrature points
[1/μi+1, 1/μi ]. A simple search combined with a bisection method gives the eigen-
values listed in Table5.1. Alternatively, one can rewrite Eq. (5.19) as a polynomial
of degree N and search for the roots of the polynomial (Kawabata et al. 1991). This
can be numerically unstable for higher orders. The entries up to N = 8 agree with
the limited results in Table VIII in Chandrasekhar (1960).

It is clear that the eigenvalues do not appear to converge to distinct values. The
reason for this is that the discrete spectrum of the radiative transfer equation consists
of only two zero eigenvalues. The remaining eigenvalues all lie in the continuum
and hence there is no convergence. The mathematical properties of the continuum
eigenfunctions have been the subject of considerable research (Case and Zweifel
1967; Liou 1973; McCormick and Kuščer 1973; Stamnes et al. 1988; Kuščer and
McCormick 1991; Ven Den Eynde et al. 2007) (and references therein). In Sects. 5.5
and 5.6, we compare this behaviour with the spectral properties of the Boltzmann
collision operators for a dilute monatomic gas that are characterized by an infinite
number of discrete eigenvalues and a continuum.

Table 5.1 Eigenvalues of the radiative transfer equation, Eq. (5.14)

N λ1 λ2 λ3 λ4 λ5 λ6 q

2 1.97203 0.6940

6 1.225211 3.202945 0.7039

8 1.103188 1.591779 4.458086 0.7069

10 1.059426 1.297814 1.987330 5.721175 0.7082

12 1.038632 1.183180 1.519150 2.394194 6.987899 0.7089

14 1.027106 1.125058 1.330224 1.752305 2.806740 8.256597 0.7094

Exacta 0.710446
a Loyalka and Naz (2008)
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We note that

Ii = b(τ + si ), (5.20)

is also a solution to the radiative transfer equation, Eq. (5.14), which leads to the
result

μi = si − 1

2

N∑

j=1

w j s j , (5.21)

and satisfied by

si = q + μi . (5.22)

To ensure that the solution remains finite for large τ , the terms with positive λi must
be eliminated from the solution. Thus the general solution is

Ii = b

[
N−1∑

n=1

cne−λnτ

1 + μiλn
+ τ + μi + q

]
. (5.23)

The constants cn (n = 1, 2, . . . , N − 1) and q are determined with the boundary
condition that there is no incident radiation at τ = 0, that is,

I (0,μ) = 0, −1 ≤ μ ≤ 0. (5.24)

With this boundary condition, c−n = 0 at τ = 0 and

N−1∑

n=1

cn

1 − λnμi
− μi + q = 0 (i = 1, 2, . . . , N ), (5.25)

which are N equations for the N − 1 constants, cn , and the extrapolation length, q.
The physical significance of the extrapolation length is discussed later.

The results for q in Table5.1 show that the convergence of the Gauss-Legendre
quadrature is slow. This arises because the numerical method cannot provide a good
fit to the boundary condition that requires that the radiative intensity vanishes on the
half space μ ∈ [−1, 0]. There have been many discussions and improvements and
in particular the use of half-range Legendre polynomials referred to as the “double
Gauss” method (Sykes 1951; Liou 1973; Stamnes et al. 1988; Ven Den Eynde et al.
2007).

Radiative transfer theory has its origins in astrophysics (Rybicki and Lightman
1979) and the interest to determine the intensity of the emergent radiation from a
star and the observation that it decreases from the centre of the disc to the limb, a
phenomenon known as limb darkening (Milne 1921). Thus, the radiative transfer
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problem is often referred to as a Milne problem which has many different variants.
We provide a very brief overview of the analysis and refer readers to the original
reference (Chandrasekhar 1960) for further details. It is useful to define twomoments
of the radiative intensity, namely

F = 2
N−1∑

i=1

wiμi Ii ,

K = 1

2

N−1∑

i=1

wiμ
2
i Ii , (5.26)

and one can show that F = 4b/3, where b is the multiplicative constant in Eq. (5.23).
We can also show that K = F(τ + q)/4. The emergent intensity is then

I (0,μ) = 3

4
F

N−1∑

k=1

ck

1 + λkμ
+ μ + q, (5.27)

which is one of the important results sought.
The emergent radiation can be related to the Chandrasekhar H(μ) function.

This requires several new definitions and considerable but straightforward algebra
(Chandrasekhar 1960). The result is the relation

I (0,μ) =
√
3

4
F H(μ), (5.28)

where the Chandrasekhar H function is the solution of the nonlinear integral equation

H(μ) = 1 + 1

2
aH(μ)

1∫

0

H(μ′)
μ + μ′ dμ′. (5.29)

Although the detailed derivations have not been provided, this nonlinear inte-
gral equation is of considerable interest as the object of several different numerical
solution methods. It has been solved with a Simpson’s rule (Hiroi 1994), ratio-
nal Chebyshev functions (Boyd 2005), analytic approximations (Davidović et al.
2008), polynomial approximations (Kawabata and Limaye 2011), integral represen-
tations (Jablonski 2013) and other approaches cited in these references. It is remark-
able that there is continued interest almost 70years after the original publication by
Chandrasekhar and Breen (1947).

In Sect. 5.7.2, we consider the Milne problem of rarefied gas dynamics (see
Fig. 5.16) for a binary hard sphere gas with a test particle ofmassm dilutely dispersed
in a background gas of mass M . The Milne problem reduces to the radiative transfer
equation for the Lorentz limit, that is M/m → ∞. We use a spectral method to
solve the Milne problem based on the concepts developed in this section. A similar
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Milne problem was studied with a Fokker-Planck equation for Coulomb collisions
(Barrett et al. 1992) as well as in the modeling of the sheath problem in plasma
physics (Vasenkov and Shizgal 2000). The Milne problem is the basis for a model of
the escape of light atoms from a planetary atmosphere presented in Sect. 5.7.3 (Fahr
and Shizgal 1983; Shizgal and Blackmore 1986).

Neutron transport theory is the study of the time and spatial dependence of the
neutron velocity distribution function in different materials or moderators given a
steady or pulsed source of neutrons. The theory is based on the Boltzmann equation
for neutrons analogous to dilute gases. It remains a very active area of research
for physicists, applied mathematicians and numerical analysts. Neutron transport
has developed alongside work in radiative transfer theory (Kourganoff 1963). The
distinction between the two fields is that in radiative transfer the photons move at
the speed of light and for neutrons there is a speed distribution to determine. Often
the radiative transfer problem noted in Eq. (5.14) is referred to as the “one speed”
problem. This implies that the neutrons all move at the same speed as do photons.
There are several standard references for both subjects (Davison 1957; Kourganoff
1963; Williams 1966; Case and Zweifel 1967; Thomas and Stamnes 2002). An
historical account of the development of the subject was provided by Shore (2002).

5.4 The Boltzmann Equation and Transport Theory

The central quantity of interest in the kinetic theory of gases is the distribution
function for a large collection or ensemble of particles without internal degrees of
freedom representing some species such as electrons, ions, neutrons, photons, atoms,
etc. At sufficiently low densities, the single particle distribution function, f(v, r,t), is
sufficient to describe the state of the system. The distribution function that depends
on the three dimensional velocity, v, the three dimensional position r, and the time,
t , is defined such that

f (v, r, t)dvdr = number of particles with velocity in [v, v + dv] and
position in [r, r + dr] at time t.

The Boltzmann equation is a seven dimensional nonlinear integro-differential equa-
tion for the one particle distribution function, f (v, r, t), given by

∂ f

∂t
+ v · ∇ f + F

m
· ∇v f =

∫ ∫
[ f ′ f ′

1 − f f1]gσ(g,Ω)dΩdv1, (5.30)

where the gradient operators are ∇ in r and ∇v in v.
The three terms on the left hand side of this equation are collectively referred to

as the drift term where F is an external force. The term on the right hand side is the
nonlinear collision term parameterized by the elastic collision cross section,σ(g,Ω),
where the relative velocity of a pair of particles is g = v1 − v and Ω is the scattering
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solid angle. The prime, f ′ ≡ f (v′), denotes the post-collisional velocity, v′, and is
expressed in terms of the pre-collisional velocity, v, as given by Eqs. (5.47)–(5.49).
The kinetic theory of gases is an integral part of theoretical chemistry and physics
(Hirschfelder et al. 1954; Liboff 2003; Kremer 2010).

A Boltzmann equation is used to model a large number of systems in astrophysics
(Spitzer and Härm 1958; Lightman and Shapiro 1978; Buhmann 2004; Binney and
Tremaine 2008), space science (Fahr and Shizgal 1983; Pierrard and Lazar 2010;
Khazanov 2011), semiconductor physics (Jüngel 2009), nuclear reactor technologies
(Hebert 2009), radiative transfer (Chandrasekhar 1960), radiotherapy (Kan et al.
2013) plasma physics (Boyd and Sanderson 2003), fusion machines (Atenzi and
Meyer-Ter-Vehn 2004) and many more. The different systems and processes that
can be studied with the Boltzmann equation or Boltzmann-like equations is truly
remarkable.

The main objective of this section is to apply spectral and pseudospectral methods
to the integral equations that arise in the application of the Boltzmann equation
to several physical problems. A brief overview of the derivation of these integral
equations in kinetic theory is provided in the sections that follow.

5.4.1 The Chapman-Enskog Method of Solution
of the Boltzmann Equation for Transport Coefficients

The Chapman-Enskog method of solution of the Boltzmann equation was developed
independently by Sydney Chapman1 and David Enskog2 for a particular purpose,
namely the calculation of transport coefficients for a dilute monatomic gas. The
transport coefficients are the diffusion coefficient, the viscosity and the heat con-
ductivity. They serve to relate fluxes of particles, momentum and energy with the
corresponding gradients. These relations between the fluxes and gradients such as
Fourier’s law for heat conduction (de Groot andMazur 1984) are referred to as linear
phenomenological laws. The Chapman-Enskog method provides a separate integral
equation for each transport process. The transport coefficients, such as the viscosity
discussed in Sect. 5.4.5, are expressed as integrals of the solution of a particular inte-
gral equation. The details of the Chapman-Enskog method are described in standard
texts (Huang 1967; Chapman and Cowling 1970; Ferziger and Kaper 1972; Kremer
2010). A concise overview of the methodology follows.

A small departure from a Maxwellian is assumed to occur owing to small
macroscopic drift velocity and/or temperature gradients. The distribution function is

1 Sydney Chapman (1888–1970) was a British mathematician and geophysicist who developed the
Chapman-Enksog method of solution of the Boltzmann equation and contributed to the theory of
stochastic processes. He also made several fundamental contributions to geophysics.
2 David Enskog (1884–1947) was a Swedish mathematical physicist who contributed to the kinetic
theory of gases with the method of solution of the Boltzmann equation developed with Chapman.
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written as a small perturbation of the “local” Maxwellian, F[v, n(r, t), T (r, t),
W (r, t)], parameterized by the particle density n(r, t), the temperature, T (r, t) and
the flow velocity of the gas, W (r, t); see Eq. (5.32). With the assumption that the
distribution is slightly perturbed from the local Maxwellian, F , we set

f (v, r, t) = F(v, n, T, W)

[
1 + εφ(v)

]
, (5.31)

where the parameter ε is taken to be very small and φ(v) is sought. Equation (5.31)
is often extended as a power series in ε as discussed later.

The Chapman-Enskog method proceeds as follows. With the substitution of
Eq. (5.31) in (5.30), the term zeroth order in ε is

∫ ∫
[F ′F ′

1 − F F1]gσ(g,Ω)dΩdv1 = 0,

and defines the local Maxwellian,

F(v, n, W, T ) = n(r, t)

[
m

2πkB T (r, t)

]3/2
exp

[−m(v − W(r, t))2

2kB T (r, t)

]
, (5.32)

where kB is the Boltzmann constant, m is the particle mass, and the number density,
n(r, t), is defined by,

n(r, t) =
∫

FL M (v, r, t)dv. (5.33)

The local Maxwellian, Eq. (5.32), supports a flux and the drift or flow velocity,
W(r, t), is

W(r, t) = 1

n(r, t)

∫
FL M (v, r, t)vdv. (5.34)

The temperature, T (r, t), is a measure of the average thermal energy of the gas and
is related to the diagonal element of the pressure tensor

P = m
∫

f (v, r, t)(v − W)(v − W)dv, (5.35)

and P(L M) = pI where I is the unit matrix and p = nkB T is the ideal gas law.
For nonequilibrium systems, there is a departure from the equilibrium Maxwell-

Boltzmann distribution and the pressure tensor is of the form

P = pI + �. (5.36)
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where� depends on the velocity gradients. If there is a temperature gradient present,
then there is a heat flux defined as

q = m

2

∫
f (v, r, t)(v − W)(v − W)2dv. (5.37)

The Boltzmann equation is rewritten with the collision term multiplied by the
factor 1/ε so as to explicitly take into account the assumption that the collision
operator is dominant relative to the drift term, that is

∂ f

∂t
+ v · ∇ f + F

m
· ∇v f = 1

ε

∫ ∫
[ f ′ f ′

1 − f f1]gσ(g,Ω)dΩdv1. (5.38)

The parameter ε is often identified as the Knudsen3 number, the ratio of the mean-
free-path, Lmfp, to some macroscopic length scale, H , that is K n = Lmfp/H . In the
collision dominated situation, K n � 1.

The equation of order ε is obtained with the drift term evaluated with f → F and
the collision operator linear in φ(v). To this order in ε, the derivatives in the drift term
on the left hand side of the Boltzmann equation are evaluated implicitly through the
r and t variation of n(r, t), T (r, t), W (r, t) in the local Maxwellian, and φ(v) does
not contribute.

In order to evaluate the left hand side of Eq. (5.30) in this way, we need the (r, t)
variation of n, W and T . These relations can be obtained by noting that the particle
number, momentum and energy are conserved in a binary elastic collision. Thus,
we multiply successively the Boltzmann equation by m, mv and mv2/2, known as
the “summational invariants”, and integrate over v. The integral over the collision
operator multiplied by these quantities gives zero owing to their conservation. The
details are provided in other texts (Hirschfelder et al. 1954; Chapman and Cowling
1970; Ferziger and Kaper 1972). The result of this calculation, after some algebra,
of the so-called “equations of change”, are the set of hydrodynamic, non-dissipative
fluid dynamic equations, referred to as the Euler equations, given by

∂ρ

∂t
+ ∇ · (ρW) = 0,

ρ
DW
Dt

+ ∇ p = ρF , (5.39)

nk
DT

Dt
+ 3T

2
(∇ · W) = 0,

where ρ(r, t) = mn(r, t) and

D

Dt
= ∂

∂t
+ W · ∇.

3 Martin Knudsen (1871–1949) was a Danish physicist known for his work on the kinetic theory
of gases and the Knudsen number which measures the degree of rarefaction of dilute gases.
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The term linear in ε which gives the integral equation for φ(v) involves the eval-
uation of the drift term with f replaced with F and the evaluation of the drift term
operator on F implicitly using the Euler fluid equations. The result, after considerable
tensorial algebra using the chain rule for the derivatives, is the integral equation

J (φ) = F

[
(x2 − 5/2)v · ∇ ln T + 2(vv − 1

3
v2I) : ∇W

]
, (5.40)

where x = v
√

m/2kB T is the reduced speed and the linearized collision operator is
given by

J (φ) =
∫ ∫

F1F

[
φ′
1 + φ′ − φ1 + φ

]
σ(g, θ)dΩdv1. (5.41)

It can be shown that J is a negative definite self-adjoint rotationally invariant oper-
ator. The matrix representation of J in Legendre polynomials is diagonal as previ-
ously noted in the discussion of the quadrature evaluation of the eigenvalues for the
Maxwell-molecule model in Chap.3.

We now write the solution of Eq. (5.40) in the form

φ = −A · ∇ ln T − B : ∇W, (5.42)

where the vector A and tensor B are written as

A = A(v)v,

B = B(v)vov, (5.43)

and vov = vv − 1
3v

2I is a traceless tensor. The functions A(v) and B(v) satisfy the
integral equations,

J [A(v)v] = (x2 − 5/2)vF, (5.44)

and

J [B(v)vov] = 2vovF. (5.45)

where x = v
√

m/2kB Tb is the reduced speed. The details of this calculation, which
involve considerable tensorial algebra, are straightforward and can be found in stan-
dard references (Huang 1967; Chapman and Cowling 1970; Ferziger and Kaper
1972). An important aspect of the Chapman-Enskog method is that the solutions
of the homogeneous equations corresponding to Eqs. (5.44) and (5.45), namely the
“summational invariants”, are orthogonal to the inhomogeneous functions in these
integral equations. This ensures the existence of solutions. We will discuss this again
in Sect. 5.4.4 for a simpler physical problem.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The solutions A(v) and B(v) are used to determine the temperature dependence
of the heat conductivity and viscosity for a dilute gas given the differential cross
section, σ(g,Ω), for binary particle collisions. The Sonine-Laguerre polynomials,
S(n)
α (x2), are the basis functions almost always used to solve these integral equations

with α = 3/2 for Eq. (5.44) and α = 5/2 for Eq. (5.45). This formalism forms the
basis for the determination of interatomic potentials frommeasurements of transport
coefficients (Hirschfelder et al. 1954; Pascal and Brun 1993; Oh 2013).

A different integral equation is solved for each transport process and the transport
processes of different tensorial order do not couple, consistent with the Curie princi-
ple of irreversible thermodynamics (de Groot and Mazur 1984); see also (Andersen
1969) and Appendix A of Shizgal and Karplus (1970) where chemical reactions
are included. Mixtures of gases can also be considered and the algebra becomes
more involved.We note that theoretical descriptions of transport phenomena in poly-
atomic gases are available (Wang-Chang andUhlenbeck 1951; Snider 1960;McCourt
et al. 1991; Singh et al. 1996; Brun 2009). Our primary interest is the spectral and
pseudospectral methods for the solution of the integral equations.

The Chapman-Enskog method provides to order ε the Navier-Stokes equations
of fluid mechanics by including the dissipative transport terms in the “equations of
change”. Themethod is usually presented as a power series expansion in εwith terms
of order ε2 and ε3 in addition to the term in ε in Eq. (5.31). This expansion is believed
to be a type of asymptotic expansion where perhaps only the first few terms have
physical meaning. At each level, the resulting hydrodynamic equations are modified,
that is the Euler equations for zero order in ε, the Navier-Stokes equations of order ε
and for higher orders in ε there are the Burnett and the Super-Burnett hydrodynamic
equations (Grad 1949;Cercignani 1988).A very good overviewof the effort to extend
the description of gaseous flows to the larger Knudsen number regime was provided
by Agarwal et al. (2001). This overlaps the approach developed by Grad (1949) and
referred to as the Grad 13-moment method (Struchtrup 2005).

The breakdown of hydrostatic equilibrium and the Chapman-Enskog approach
occurs in particular at high altitudes of the terrestrial atmopshere where collisions
are infrequent (Fahr and Shizgal 1983). This also applies to the solar atmosphere for
which there is a supersonic expansion of the stellar plasma, referred to as the solar
wind. There are both fluid models (Parker 1965) and kinetic theory models (Lemaire
and Scherer 1973) to describe the expansion of the solar atmosphere. This is another
example of the need for a kinetic theory in the K n ≈ 1 regime (Lemaire 2010; Echim
et al. 2011). The loss of ions from the terrestrial atmosphere at high latitudes along
open magnetic field lines, referred to as the polar wind (Lemaire and Scherer 1970;
Lie-Svendsen and Rees 1996; Pierrard and Lemaire 1998) is another example. There
is an ongoing discussion as to the relationship of both fluid and kinetic models for the
solar wind expansion (Parker 2010; Lemaire 2010) These discussions are important
to note but are beyond the scope of this book. However, there is some overlap with
the Milne problem in Sect. 5.7.2 and the escape of light atoms or ions from planetary
atmospheres in Sect. 5.7.3.
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5.4.2 The Linearized Collision Operator, J,
in the Boltzmann Equation

A fundamental problem in the kinetic theory of gases is the relaxation of an initial
nonequilibrium distribution to the equilibriumMaxwellian distribution.We consider
a one component spatially uniform gaseous system for which the linearized Boltz-
mann equation in the absence of external fields is the initial value problem of the
form

∂ f (v, t)

∂t
= J [ f (v, t)]. (5.46)

The kinematics of an elastic collision that relate the post-collisional (v′) and pre-
collisional (v) velocity variables in Eq. (5.41) are required to define the collision
operator, J , (Chapman and Cowling 1970; Cercignani 1988; Ferziger and Kaper
1972; Liboff 2003; Kremer 2010). In an elastic collision, depicted in Fig. 5.3, the
relative velocity vector, g, is rotated to the new orientation, g′, while the magnitudes
remain the same, that is |g′| = |g| owing to energy conservation. The vector k,
referred to as the “apse-line vector”, is the external bisector so that θ = π − 2χ.
Thus, we have the relation

g′ = g − 2(k · g)k. (5.47)

In terms of the centre of mass velocity

G = m1v1 + m2v2
m1 + m2

, (5.48)

we have that

v′
1 = g′ + m1 + m2

m1
G,

v′
2 = g′ − m1 + m2

m2
G. (5.49)

Fig. 5.3 Kinematics of an elastic collision; g and g′ are the relative velocities before and after a
collision, θ is the scattering angle, k is the external bisector of the angle between g and g′ defined
by χ
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The centre-of-mass velocity is conserved, so that,G
′ = G. For the one component

gas considered here, m1 = m2. The variables (v′
1, v′

2) are related to the pair (v1, v2)
with the substitution of g′ from Eq. (5.47) into (5.49).

The linearized integral collision operator in Eq. (5.41) can be written in terms of
a kernel so that we can recast Eq. (5.46) in the form,

∂ f (v, t)

∂t
=
∫

K J (v, u) f (u)du − Z(v) f (v, t), (5.50)

where the collision frequency is

Z(v) = f (v)

∫ ∫
f1(v1)σt (g)dv1. (5.51)

The kernel for the hard sphere cross section, σ(g,Ω) = d2/4, expressed in reduced
velocity variables, x = v

√
m/2kB T and y = u

√
m/2kB T , is

K J (x, y,μ) = Z(0)

π
√

π
e−x2

[
2√

x2 + y2 − 2xyμ
exp

[
x2y2(1 − μ2)

x2 + y2 − 2xyμ

]

−
√

x2 + y2 − 2xyμ

]
, (5.52)

where μ = cos θ′ and θ′ is the angle between x and y and Z(0) = nbπd2√2kB T/m.
The derivation of this kernel is lengthy but straightforward and is provided elsewhere
(Nielsen and Bak 1964; Monchick and Mason 1967; Chapman and Cowling 1970;
Ferziger and Kaper 1972; Williams 1976). For most of the applications presented
here, the hard sphere cross section is used, although the kernel in Eq. (5.50) can
be written for arbitrary differential scattering cross section (Kapral and Ross 1970;
Sospedra-Alfonso and Shizgal 2013).

As the kernel depends only on the angle between x and y, the operator J is rota-
tionally invariant and diagonal in the Legendre polynomial basis set. It is customary
in kinetic theory and radiative transfer theory to expand the kernel in Legendre poly-
nomials in μ, that is,

K J (x, y,μ) =
∞∑

�=0

k(�)
J (x, y)P�(μ), (5.53)

where the scalar kernels are

k(�)
J (x, y) = 2� + 1

2

1∫

−1

K J (x, y,μ)P�(μ)dμ. (5.54)
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In radiative transfer theory this is often referred to as a PN method with the kernel
replaced with an analogous photon scattering phase function (Liou 2002; Thomas
and Stamnes 2002; Ganapol 2008).

For the hard sphere cross section, the kernels, k(�)
J (x, y), are known analyti-

cally versus x and y for the lower order � values as provided in Sect. 4.2.1 in the
book by Williams (1971) and also by other researchers (Pekeris 1955; Pekeris and
Alterman 1957; Desai andNelkin 1966; Siewert 2002). The kernels can be calculated
numerically with a Gauss-Legendre quadrature in Eq. (5.54) (Shizgal 1981a).We use
the quadrature algorithms developed in Chap. 2 and discussed further in Chap. 3 to
solve the initial value problem, Eq. (5.46), (Hoare and Kaplinsky 1970; Shizgal and
Blackmore 1983; Shizgal 1984).

5.4.3 Matrix Representation of the Spherical Component
(� = 0) of J in Sonine-Laguerre Basis Functions

It has been traditional in kinetic theory to solve the integral equations for the transport
coefficients with the expansions in the direct product basis set of the Sonine-Laguerre
basis functions and the spherical harmonics or Legendre polynomials. The choice of
basis function is dictated in part by the fact that the Sonine-Laguerre polynomials
are the eigenfunctions of J for the Maxwell molecule collision model as discussed
in Sect. 3.6.4, although this is a not a sufficient reason for this choice. However, it
is useful to note that the inhomogeneous functions for the Chapman-Enskog inte-
gral equations for the transport coefficients, Eqs. (5.44) and (5.45), are low order
polynomials in x2. The resulting inhomogeneous vector of the linear algebraic equa-
tions that are inverted in the spectral solution for the viscosity has only one nonzero
component (Loyalka et al. 2007).

We restrict the discussion of the initial value problem,Eq. (5.46), to initial isotropic
distributions, so that the eigenvalues, λn , and eigenfunctions, ψn(x), are for � = 0
unless otherwise noted. We consider only the � = 0 component of the collision
operator and do not show this explicitly to simplify the notation, and write

∂ f (x, t)

∂t
= J [ f (x, t)]. (5.55)

We solve Eq. (5.55) with the expansion of the initial distribution function in the
eigenfunctions of J , that is

f (x, 0) =
N∑

n=0

cnψn(x2), (5.56)

where

J [ψn(x2)] = −λnψn(x2). (5.57)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The solution of Eq. (5.55) can be written formally in terms of an evolution operator
similar to the time dependent Schrödinger equation, that is

f (x, t) = eJ t f (x, 0),

=
∞∑

n=2

cnψn(x2)e−λn t , (5.58)

where we have used

eJ tψn(x2) = e−λn tψn(x2). (5.59)

The evolution operator is defined in term of the expansion of the exponential,
eJ t = 1 + J t + J 2t2/2 + · · · analogous to the evolution operator in quantum
mechanics (Balint-Kurti 2008) discussed in Sect. 4.6.6. In the sections that follow,
we are interested in the eigenvalue problem, Eq. (5.57), expressed in terms of a varia-
tional theorem. This eigenvalue problem is a fundamental aspect of the kinetic theory
of gases, analogous to spectral theory in quantum mechanics.

Thematrix elements of the collision operator for isotropic problems are defined by

J (0)
nm =

∫ ∫ ∫
F1F2S(n)

1

[
S(m)′
1 + S(m)′

2 − S(m)
1 − S(m)

2

]
σgdΩdv1dv2, (5.60)

which can be shown to be symmetric, that is, J (0)
nm = J (0)

mn . We denote the Sonine-
Laguerre polynomials for � = 0 as S(n)(x2) given explicitly by

S(n)(x2) =
n∑

k=0

(−1)k Γ (n + 3/2)

Γ (k + 3/2)(n − k)k! x2k,

=
n∑

k=0

Snk x2k, (5.61)

and orthogonal in accordance with

∞∫

0

e−x2 S(n)(x2)S(m)(x2)xdx2 = Γ (n + 3/2)

n! δnm . (5.62)

We evaluate the matrix elements with the generating function for the Sonine-
Laguerre polynomials

G(t, x2) = exp[t x2/(t − 1)]
(1 − t)3/2

=
∞∑

k=0

S(k)(x2)tk, |t | < 1. (5.63)

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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The matrix elements J (0)
nm are evaluated with the one matrix element between two

generating functions, that is the element 〈Gt |J |Gs〉. This technique was first intro-
duced byMott-Smith (1954) and used subsequently by other researchers (Ford 1968;
Foch and Ford 1970; Shizgal and Karplus 1971; Shizgal and Fitzpatrick 1974; Gust
and Reichl 2009; Shizgal and Dridi 2010). The desired matrix element, J (0)

nm , is then
the coefficient of sntm of the expression below.

〈Gs |J |Gt 〉 = 2Z(0)√
π

s2t2

⎛

⎝

√
1 − 1

2 s − 1
2 t

(1 − st)2

⎞

⎠ ,

=
∞∑

n=2

∞∑

m=2

J (0)
nm sntm, (5.64)

Owing to particle number and energy conservation, J (0)
nm = 0 for (n, m) = (0, 1) and

consequently λ0 = 0 and λ1 = 0. The evaluation of the generating function matrix
element, Eq. (5.64), involves the kinematics of binary particle collisions, Eqs. (5.47)–
(5.49).

It has been shown (Ford 1968; Foch and Ford 1970; Lindenfeld and Shizgal 1979a;
Gust and Reichl 2009) that the matrix elements are given by

J (0)
nm = 2Z(0)√

π2n+m

√
n!m!

8Γ (n + 3
2 )Γ (n + 3

2 )

Nm∑

j=0

4 j B jΓ (n + m − 2 j − 1
2 )

(n − j)!(m − j)! , (5.65)

where B j = j − 1 + δ j0 and Nm = min(n, m). We use this representation of J in
the next section to analyze nonequilibrium effects for a model reactive system and
in Sect. 5.5.1 for variational estimates of the eigenvalues and eigenfunctions of the
operator.

It is useful to note that the matrix elements given by Eq. (5.65) involve both the
integral operator in Eq. (5.50) and the collision frequency, Z(x). For cross sections
determinedwith classicalmechanics, the integral operator and the collision frequency
are not defined owing to the divergence of the differential scattering cross section at
small scattering angles. By contrast, quantum cross sections are finite and the two
terms in the collision operator can be considered separately. The matrix elements
of the Hamiltonian for a problem in quantum mechanics is the sum of the matrix
elements of the kinetic energy operator and the matrix elements of the potential
often computed separately. The quadrature evaluations of the matrix elements of the
potential in a Schrödinger equation (Harris et al. 1965; Dickinson and Certain 1968)
are often cited as the origin of pseudospectral methods in quantum chemistry (Light
and Carrington Jr. 2000).
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5.4.4 Spectral Solution of the Boltzmann Equation
for the Departure from Maxwellian for an Elementary
Reaction in a Spatially Uniform System

It is well known that chemical reactions proceed with a concommitant departure of
the particle distribution functions from equilibrium. This subject has a long history
both for systemswith only translational energy (Prigogine andXhrouet 1949; Shizgal
and Karplus 1970; Shizgal and Fitzpatrick 1978; Ross and Mazur 1961; Alves et al.
2011; Kustova and Giordano 2011; Dziekan et al. 2012) as well as for molecular
systems with internal vibrational and rotational states (Shizgal 1972; Shizgal and
Lordet 1996; Pascal and Brun 1993; Brun 2009). The theoretical treatment of such
systems is based on a Boltzmann equation for the velocity distribution and in some
instances on aMaster equation for the distribution of vibrational and rotational states
(Kim and Boyd 2013).

In this section, we consider a one-component atomic system (without internal
degrees of freedom) and a single reactive process. We add a single reactive loss
term to the Boltzmann eqation, Eq. (5.55), to model the nonequilibrium effects that
arise from the reaction. An estimate of the departure from the equilibrium rate of
reaction is obtained with a Chapman-Enskog method similar to its application to
the calculation of transport coefficients discussed in Sect. 5.4.1. However, for this
uniform system the Chapman-Enskog method is more transparent. We also discuss a
nonlinear variational approach that provides a different approximate solution of the
Boltzmann equation (Present and Morris 1969).

We consider a one component system undergoing a reaction

A + A → products, (5.66)

with a total reactive cross section, σr (g), dependent on the relative speed, g, of the
reactants. The spatially homogeneous Boltzmann equation for the isotropic distrib-
ution function of A is

∂ f (v, t)

∂t
= J [ f (v, t)] − ε f (v, t)

∫
f (v1, t)gσr (g)dv1, (5.67)

where a reactive collision term corresponding to the loss of particles by reaction is
added to the right hand side of Eq. (5.46). The integral reactive term is the reactive
collision frequency, Eq. (3.35), of Sect. 3.6. The parameter ε, which is assumed small,
multiplies the reactive term and thus the reaction is considered as a small perturbation
of the elastic collision term, J . The parameter ε is defined in terms of the elastic and
reactive cross sections; see after Eq. (5.77).

The particle number is not conserved and we have on integration of Eq. (5.67)
that the rate of reaction is

dn

dt
= −ε

∫ ∫
f f1gσr (g)dv1dv. (5.68)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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The local temperature also changes owing to the loss of energetic particles as
given by

dT

dt
= −ε

2T

3n

∫ ∫
f f1

[
mv2

2kB T
− 3

2

]
gσr (g)dv1dv. (5.69)

We employ a Chapman-Enskog approach to determine the departure of the distribu-
tion fromMaxwellian and the nonequilibrium reaction rate. Since the rate of reactive
collisions is much smaller than the rate of elastic collisions and the ratio of these
rates to be of the order of ε, we set

f (v, t) = F[v, n(t), T (t)]
[
1 + εφ(v)

]
, (5.70)

where the first term is the localMaxwellian which varies with time implicitly through
the time dependence of the density and temperature, that is

F[v, n(t), T (t)] = n(t)

(
m

2kB T (t)

)3/2

exp

(
− mv2

2kB T (t)

)
. (5.71)

Since the system is assumed to be spatially homogeneous and there is no bulk motion
of the gas, the formalism employed here is a simpler version of the Chapman-Enskog
method described in Sect. 5.4.1.

The time dependence of the distribution function is implicit through n(t) and
T (t), that is

∂ f

∂t
= ∂ f

∂n

dn

dt
+ ∂ f

∂T

dT

dt
. (5.72)

With these substitutions into the Boltzmann equation, Eq. (5.67), the term linear in ε
is the Chapman-Enskog integral equation

J [φ(v)] = F(v)H(v), (5.73)

where

H(v) = −A0
∂F

∂n
+ 2T A1

3n

∂F

∂T
+ F

∫
F1gσr (g)dv1, (5.74)

evaluated with the local Maxwellian, and

A0 =
∫ ∫

F F1gσr (g)dvdv1,

A1 = −
∫ ∫

F F1

[
x2 − 3

2

]
gσr (g)dvdv1. (5.75)
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A solution of the integral equation, Eq. (5.73), exists if the solutions of the homo-
geneous equation, namely J [ψ0] = 0 and J [ψ1] = 0, are orthogonal to the inho-
mogeneous term F(v)H(v). The “summational invariants” for this problem, namely
ψ0(v) = 1 and ψ1(v) = v2, are orthogonal to the inhomogeneous portion of the
Chapman-Enskog equation, Eq. (5.73), that is

∫
F(v)H(v)dv = 0,

and
∫

F(v)H(v)v2dv = 0.

These results are easily verified with the definitions of A0 and A1. These are referred
to as the auxiliary conditions and were previously discussed in connection with the
integral equations for heat conduction and viscosity, namely Eqs. (5.44) and (5.45).

Inspection of the terms in Eq. (5.73) reveals that all terms are of order ε. We
consider the hard sphere elastic cross section, πd2, and the line-of-centers reactive
cross section, given by

σr (E) =
{
0, E ≤ E∗,
πd2

r (1 − E∗
E ), E > E∗. (5.76)

The equilibrium rate coefficient is

keq(T ) = A0/n2 = 4πd2
r

√
kB T

πm
exp(−E∗/kB T ). (5.77)

The expansion parameter can be identified as ε = (dr/d)2 and thus we must
have that dr � d for the Chapman-Enskog perturbative method of solution to be
accurate. The inhomogeneous terms of the integral equations for transport processes
in Sect. 5.4.1 also satisfy these “auxiliary conditions”.

We expand the perturbation of the distribution function, φ(x), in Sonine-Laguerre
polynomials

φ(x) =
N∑

n=2

an S(n)
α (x2), (5.78)

withα = 1/2which is hereafter deleted. This expansion reduces the integral equation
to a set of linear equations,

N∑

n=2

J (0)
mn an = αm, (5.79)
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where

αm =
∫

F(v)H(v)S(m)(x2)dv,

= −A0δ0m − A1δ1m + Am, m ≥ 2, (5.80)

and

Am =
∫ ∫

F F1Sm(x2)gσr (g)dvdv1. (5.81)

It has been shown (Shizgal and Karplus 1970) that these moments of the reactive
collision frequency are given by

Am = 8

2m

√
πkB T

m

m∑

k=0

Smk Kk, (5.82)

where the Smk coefficients are defined by Eq. (5.61) and

Kk = 1

π

∞∫

0

e−ξ2ξ2k+3σr (g)dξ, (5.83)

and ξ = √
μg2/2kB T is the reduced relative speed. For the line of centers reactive

cross section, Eq. (5.76), the Kk integrals can be done iteratively with an integration
by parts and thus the Am integrals are known.

The main objective is to calculate with the distribution function, Eq. (5.70), the
departure of the nonequilibrium rate coefficient, kneq , Eq. (5.68), from the equilib-
rium rate coefficient, keq , that is

kneq = keq(1 − η), (5.84)

where the desired quantity is η given by

η = −2
N∑

n=0

an
Am

A0
. (5.85)

A MATLAB code is used to calculate the matrix elements, Eq. (5.65), and the αm

moments, Eq. (5.80). The code also solves the linear equations, Eq. (5.79), and cal-
culates η with Eq. (5.85).

The rapid convergence of η versus the number of basis functions, N , is shown in
Table5.2. The convergence of η versus N is frombelow so that each estimate provides
a lower bound indicative that a variational theorem is operative although we have
not made explicit use of the variational theorem. The extremely small correction for
E∗/kB T = 32 is converged to 5 significant figures with 10 basis functions.
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Table 5.2 Convergence of the nonequilibrium correction to the reaction rate coefficient for the
line-of-centers model cross section

E∗/kB T 8 16 32

N η × 102 η × 103 η × 106

1 3.2582 0.2021 0.0004

2 3.6496 0.5600 0.0046

3 3.6507 0.9019 0.0343

4 3.6569 1.0118 0.1581

5 3.6571 1.0167 0.4637

6 3.6571 1.0177 0.9056

7 1.0179 1.2633

8 1.0179 1.4072

9 1.4271

10 1.4271

Nonlinear variationala 3.6251 0.8924 0.7665
a Present and Morris (1969)

The variation of η with the reduced threshold energy E∗/kB T is shown by the
solid curve in Fig. 5.4(A). The unusual behavior with η decreasing for E∗/kB T < 5
in spite of the increase in the reaction rate has been explained (Shizgal and Karplus
1970) on the basis of the speed dependence of the reactive collision frequency.
The nonequilibrium effect vanishes for a reactive collision frequency that varies in
such a manner analogous to the way changes in density and temperature change the
distribution function. Thus, for a reactive cross section that varies as g or 1/g, η = 0.
This accounts for the minimum and maximum of η near the E∗/kB T origin.

It is useful to compare with the nonlinear variational solution of the chemical
kinetic Boltzmann equation introduced by Present and Morris (1969). They chose
a solution (their Eq. (33)) which is made to satisfy the two auxiliary conditions and
parameterized by the variational parameter s, that is

φ(x2) = C(s)

[
esx2 − sx2 + 1 − 5

2 s
5/2
√
1 − s

]
. (5.86)

Substitution of this form of the solution into Eq. (5.73) and taking the scalar product
withφ(x) gives an equation forC(s).We then calculate the rate of reaction and divide
by the equilibrium rate, Eq. (5.77). The correction to the rate of reaction parametrized
by the variational parameter s and q = E∗/kB T is given by,

η(q, s) = 2(1 − 2s)2e−q

s4
√
1 − s

[√
2 − s

2
exp

(
sq

2 − s

)
− 1 − 3

4 s + 1
2 sq√

1 − s

]
. (5.87)

The extremum value of η(q, s) versus s for fixed q can be determined with a short
MATLAB code.



5.4 The Boltzmann Equation and Transport Theory 273

The symbols in Fig. 5.4 show the results with the nonlinear variational approach
(Present and Morris 1969) and appear indistinguishable from the spectral solution.
However, the comparison of the numerical values with the variational approach and
theSonine polynomial expansion shown inTable5.2 demonstrates that the variational
approach gives poor results for the larger E∗/kB T values.

The spectral convergence is also demonstrated with the decrease in the expan-
sion coefficients versus n in Fig. 5.4(B) and the accuracy of the expansion for η in
Fig. 5.4(C). The “exact” values for η are those calculated with the Sonine polyno-
mial expansion with a sufficient number of terms to get convergence to 16 significant
figures.

Explicit time dependent solutions of the Boltzmann equation were carried out
to determine the range of validity of the Chapman-Enskog approach for the one
component system treated here (Shizgal 1971) as well as for a binary system (Shiz-
gal 1974). These studies suggest that the value of ε must be of the order of 10−3

to 10−4 for the Chapman-Enskog values to be accurate. Shizgal (1981a) used a

(A)

(B) (C)

Fig. 5.4 (A) Variation of the nonequilibrium connection to the reaction rate, η, versus the reduced
activation energy, E∗/kB T , for the line-of-centers reactive cross section and hard sphere elastic
cross section; the solid symbols are the results with the variational solution. (B) Convergence of
the expansion coefficients of φ(x) versus n, with E∗/kB T = 10 (triangles), 20 (squares) and 30
(circles). (C) Accuracy = log10[1 − η/ηexact] where ηexact is determined to 16 significant figures
with N sufficiently large
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pseudospectral method based on Laguerre quadratures in reduced energy to solve
the chemical kinetic Boltzmann equation, Eq. (5.67), but for a binary gas with unit
mass ratio and the integral kernel operator, Eq. (5.110). This reactive system was
also the basis for the study of the nonequilibrium effects associated with the escape
of planetary atmospheres (Lindenfeld and Shizgal 1979b). The loss of atoms from
an atmosphere is in the first instance given by the well-known Jeans escape flux
(Fahr and Shizgal 1983) analogous to a chemical reaction where the reaction thresh-
old energy is replaced by the escape energy from the planet.

5.4.5 Pseudospectral Solution of the Boltzmann Equation
for Shear Viscosity with the Maxwell Quadrature

The Chapman-Enskog solution of the Boltzmann equation for the viscosity of a one
component gas was summarized in Sect. 5.4.1. The integral equation for the function
B(x), Eq. (5.45), for the hard sphere cross section is the solution of the linear integral
equation (Shizgal 2011; Siewert 2002)

∞∫

0

e−x2x2k(2)
J (x, y)B(x)dx − Z(y)B(y) = −y2, (5.88)

where the symmetric kernel, k(2)
J (x, y), is given by

k(2)
J (x, y) = −2Z(0)

x4y4

[
A(x, y) + C(x, y)

√
πex2erf(x)/2

]
, x < y, (5.89)

with

A(x, y) = 2

35
x7 − 3x3 + 18x − y2(

2

15
x5 − 3x),

C(x, y) = −6x4 + 15x2 − 18 + y2(2x2 − 3),

as discussed by Siewert (2002). The kernel k(2)
J (x, y) is the � = 2 component of

the expansion of the anisotropic kernel, Eq. (5.53). Equation (5.88) is equivalent to
Eq. (5.45). The function B(x) in this paper corresponds to x2b(x) in the papers by
Siewert (2002) and by Loyalka et al. (2007). The shear viscosity in reduced units is
given in terms of B(x), that is

ν = 16
√
2

15

∞∫

0

e−x2x4B(x)dx . (5.90)



5.4 The Boltzmann Equation and Transport Theory 275

The details are provided elsewhere (Siewert 2002; Loyalka et al. 2007; Sharipov
and Bertoldo 2009). Our interest here is with the numerical solution of the integral
equation, Eq. (5.88) and the calculation of the viscosity, Eq. (5.90).

There have been several different methods used to get accurate solutions of
Eq. (5.88). Siewert (2002) used a B-spline technique analogous to a recent work
on time dependent solutions of the isotropic Boltzmann equation (Khurana and
Thachuk 2012). Sharipov and Bertoldo (2009) have employed a two-dimensional
mesh to discretize the Boltzmann integral equation, Eq. (5.45).

Loyalka et al. (2007) employed the expansion of the distribution function in the
Sonine-Laguerre polynomials with up to 150 terms to reduce Eq. (5.45) to a set of
linear algebraic equations. They usedMathematica to calculate thematrix representa-
tion of collision operator and invert the resulting set of linear equations algebraically
for the function B(x) in Eq. (5.90). This is the Galerkin solution of the integral
equation, Eq. (5.88) or equivalently Eq. (5.45). The use of Mathematica avoids the
round-off errors that would otherwise occur, and accurate converged solutions to the
Boltzmann equation were obtained. Their work serves as an excellent benchmark for
the solution of this integral equation and they report the viscosity to 34 significant
figures, that is ν = 0.4490278062878924346090494895346545.

We have noted in Sect. 3.6.3 that the integral for the dimensionless viscosity
converges very rapidly with respect to the number, N, of Gauss-Maxwell quadrature
points and weights with w(x) = x2e−x2 . Thus a solution of Eq. (5.88) based on
the Gauss-Maxwell quadrature points should converge quickly. With this quadrature
procedure, the solution of the integral equation, Eq. (5.88), is given by the inversion
of the set of linear algebraic equations

N∑

i=1

Wi e
−z2i z2i k(2)

J (zi , z j )B(zi ) − Z(z j )B(z j ) = −z2j , (5.91)

where Wi = swi/w(xi ), zi = sxi . The scaling parameter s is chosen so that the
quadrature points are in the interval x ∈ [0, 6] for which B(x) is known. The reduced
shear viscosity is then given by

ν = 16
√
2

15

N∑

i=1

Wi e
−z2i z4i B(zi ). (5.92)

The solution to Eq. (5.91), B(x), is shown in Fig. 5.5 and is a very slowly varying
function of x . It is not surprising that the convergence of the solution is rapid. A
graphically accurate solution is obtained with 16 quadrature points. The convergence
is slower for large x but there is a small contribution to ν for x > 6 owing to
the factor x4e−x2 in Eq. (5.90). The convergence of the solution of the Boltzmann
equation obtained with the scaledMaxwell quadrature points is shown in Table5.3 in
comparisonwith the solution reportedbySiewert (2002).Thepseudospectral solution
was spline fitted to the x values reported by Siewert (2002). The major contribution

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Fig. 5.5 The solution of the Boltzmann equation, Eq. (5.88), for the viscosity function, B(x), versus
the number of Maxwell quadrature points, N . The solid curve is the result by Loyalka et al. (2007)
considered exact

Table 5.3 Solution of the Boltzmann equation for shear viscosity with N speed quadrature points;
(−n) ≡ ×10−n

x Siewert 2002 N = 20 N = 30 N = 40 N = 60

x4e−x2 B(x)

0.3 0.40775 (−3) 0.40629 (−3) 0.40763 (−3) 0.40772 (−3) 0.40775 (−3)

0.4 0.21139 (−2) 0.21101 (−2) 0.21134 (−2) 0.21137 (−2) 0.21139 (−2)

0.5 0.72744 (−2) 0.72686 (−2) 0.72726 (−2) 0.72738 (−2) 0.72742 (−2)

1.0 0.20004 0.19983 0.20000 0.20003 0.20004

1.5 0.57830 0.57780 0.57820 0.57827 0.57829

2.0 0.49722 0.496901 0.49716 0.49720 0.49722

2.5 0.17667 0.17659 0.17665 0.17666 0.17667

3.0 0.30011 (−1) 0.30002 (−1) 0.30009 (−1) 0.30010 (−1) 0.30011 (−1)

3.5 0.26318 (−2) 0.26315 (−2) 0.26317 (−2) 0.26318 (−2) 0.26318 (−2)

4.0 0.12465 (−3) 0.12466 (−3) 0.12465 (−3) 0.12465 (−3) 0.12465 (−3)

ν 0.449027806 0.448816 0.448985 0.449014 0.449025

Reproduced in part from Shizgal (2011) with permission of the American Institute of Physics and
from Siewert (2002) with permission from Elsevier

to the integral is approximately in the interval x ∈ [0.4, 4.0]. The scaling of the
Gauss-Maxwell points with the parameter s is thus important so as to compute the
solution in the range of x that contributes to the viscosity.

Siewert (2002) employed 301 “knots” with theHermite cubic spline functions and
a 4th orderGauss-Legendre quadrature to calculate the integral over subintervals. The
final integral for the viscosity, Eq. (5.90), was computed with 100 Gauss-Legendre
quadrature points. Sharipov and Bertoldo (2009) solved the Boltzmann equation as
a two dimensional problem in two velocity coordinates and used 40 grid points in
each velocity direction and 200 points with a Simpson’s rule to evaluate ν to the
same precision as in Table2; that is 2

√
π × 0.126668 = 0.449028. The application

of the speed quadrature points and weights to this problem is very straightforward
and the convergence is rapid as seen in Table5.3 and Fig. 5.5.
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5.5 Spectral Theory for the Linearized Boltzmann
Collision Operator

The Boltzmann equation, Eq. (5.30), is the basis for modelling transport phenomena
in a one component gas. These transport processes include the classic rarefied gas
dynamical problems such as the Kramers problem, Poseuille and Couette flow and
other similar phenomena discussed elsewhere (Williams 1971; Cercignani 1988;
Sharipov and Seleznev 1998; Siewert 2003). These and many other rarefied gas
dynamical flows are described in detail in the book by Sone (2007). Spectral methods
are employed in the solution of the Boltzmann equation for such systems (Wu et al.
2013; Ghiroldi and Gibelli 2014). These problems are beyond the scope of this book
but in Sect. 5.7.2 we discuss the Milne problem for a binary gas that serves as an
example of a rarefied gas dynamical problem. The numerical approximation of the
linearized collision operator in the Boltzmann equation, J , is important in these
applications.

Studies of the mathematical properties of J has a very long history (Alterman
et al. 1962; Grad 1963; Foch and Ford 1970; Cercignani 1988) and is ongoing
(Mouhot 2007; Dudynski 2013). Some of the mathematical works are directed
towards constructive estimates of the first nonzero eigenvalue referred to as the
“spectral gap” (Baranger andMouhot 2005;Mouhot 2007). A comparison of the pre-
viously noted mathematical analyses and others (Alexandre 2009; Dudynski 2013)
with the numerical estimates (Shizgal 1984; Gust and Reichl 2009) has not been
made. The classical differential cross sections diverge at small scattering angle and
the total cross section is infinite, except for the hard sphere cross section. For other
than the hard sphere cross section, the mathematical treatments involve a cut-off of
the divergent classical differential cross section (Grad 1949; Baranger and Mouhot
2005; Mouhot 2007; Alexandre 2009). However, the correct treatment of the elastic
scattering is based on quantum theory for which the differential cross section at zero
scattering angle is finite as is the total cross section.

The quantum mechanical cross sections can be calculated for physically realistic
atomic potentials (Bernstein 1966; Child 1996; Canto and Hussein 2013) and cannot
in general be factored as a product of a function of g and a function of θ.Mathematical
treatments of the approach to equilibrium for the non-linear Boltzmann equation
(see Sect. 5.8) rely on the spectral properties of the linearized operator (Grad 1958;
Baranger and Mouhot 2005; Mouhot 2006; Alexandre 2009).

Realistic quantum cross sections have been used in the Boltzmann equation
for relaxation processes (Kharchenko et al. 1998; Kharchenko and Dalgarno 2004;
Sospedra-Alfonso and Shizgal 2013), in the study of gaseous transport coefficients
Zhang et al. (2013), and in modelling electron (Lin et al. 1979a; Pitchford and Phelps
1982; Hagelaar and Pitchford 2005; Robson et al. 2005) and ion transport (Mason
and McDaniel 1988; Viehland 1994; Danailov et al. 2008). These works are based
on the linear collision operator for binary systems discussed in Sect. 5.6.

We approximate the eigenvalues of the collision operator, J , with a spectral
approach in Sect. 5.5.1 and a pseudospectral method in Sect. 5.5.2. It is well known
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that the spectrum of the collision operator consists of an infinite number of discrete
eigenvalues and a continuum (Grad 1963; Kuščer and Williams 1967; Shizgal 1984;
Gust and Reichl 2009). For the Maxwell molecule model with a constant collision
frequency the spectrum is completely discrete as discussed in Sect. 3.6.4.

Our main interest in the sections that follow is the eigenvalue problem associated
with the initial value problem, Eq. (5.46). There are an infinite number of discrete
eigenvalues defined by

Jψn(x) = −λnψn(x), (5.93)

which satisfy 0 ≤ λn ≤ Z(0) and continuous eigenvalues, λ > Z(0), given by

Jψ(x,λ) = −λψ(x,λ), (5.94)

where Z(0) is the elastic collision frequenxy, Eq. (5.51) at zero reduced speed or
energy. This set of eigenstates (taken to be complete) can be used to represent a
function, φ(x), by writing the expansion of the function in terms of the discrete and
continuum eigenfunctions as given by,

φ(x) =
∞∑

n=0

cnψn(x) +
∞∫

Z(0)

C(λ)ψ(x,λ)dλ. (5.95)

This property of the eigenvalue spectrum has been discussed elsewhere (Grad 1963;
Cercignani 1988; Hoare 1971; Baranger and Mouhot 2005). In Chap.6, Sect. 6.4.1,
we compare this aspect of the spectrum of the Boltzmann equation with a similar
behaviour for the Fokker-Planck equation for Coulomb collisions.

5.5.1 Spectral Calculation of the Eigenvalue Spectrum of J

In this section, we describe the calculation of the eigenfunctions and eigenvalues of
J with a spectral method. The solution of the initial value problem, Eq. (5.46), is
not presented here. However, in Sect. 5.6 we consider the solution of an analogous
initial value problem for the equilibration of a binary mixture with energy exchange
between the components.

We estimate the eigenvalues and eigenfunctions of J with the expansion of
the eigenfunctions in the Sonine-Laguerre polynomials, S(k)

α (x2), with α = 1/2,
that is

ψn(x) =
N∑

k=0

a(n)
k S(k)(x2). (5.96)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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where we have deleted the dependence of S(k) on α to simplify the notation. Since
these basis functions are the eigenfunctions for the Maxwell molecule model, the
usual expectation is that it would be a good choice for other interaction potentials
(Phillips 1959; Tompson et al. 2010). However, there is no mathematical reasoning
for this supposition.

The expansion coefficients a(n)
k are considered as linear variation parameters.

The Rayleigh-Ritz variational approach was discussed in Chap.1, Sect. 1.2.5. Vari-
ational methods are perhaps more familiar in the quantum context (Amore 2006;
Balint-Kurti and Pulay 1995) than for kinetic theory problems. However, there has
been considerable use of the variational theorem in kinetic theory (Phillips 1959;
Cercignani 1969; Driessler 1981) based on maximum entropy principles (Snider
1964; Bobylev and Cercignani 1999).

We use the hard sphere differential cross section for which σ(g,Ω) = d2/4 and
πd2 is the total cross section. We use the expansion, Eq. (5.96), and thus the matrix
representation given by Eq. (5.65). The first two eigenvalues are λ0 = λ1 ≡ 0 since
particle number and energy are conserved, that is, J (0)

nm = 0 for (n, m) = 0 and 1.
The numerical diagonalization of the matrix J of dimension N defined by Eq. (5.65)
yields successive approximations to the nonzero eigenvalues.

The convergence of the lower order eigenvalues, λ2–λ7, in units of Z(0), is shown
in Table5.4 versus the number of basis functions, N . The convergence of each eigen-
value is from above consistent with a variational calculation. With 80 basis functions
there are only 3 discrete nonzero eigenvalues (λn < 1). The other eigenvalues remain
unconverged and lie in the continuum (Hoare and Kaplinsky 1970; Hoare 1971).
Although this is a spectral method, the convergence of the eigenvalues is very slow
with the Sonine-Laguerre basis set.

If we define the columns of the matrix U as the eigenvectors of the matrix J, then
U(−1) · J · U = �, where Λnm = λnδnm . The eigenfunctions can be written in terms
of their expansion in the orthonormal Sonine-Laguerre basis functions, that is

Table 5.4 Convergence of the eigenvalues, λn , in units of Z(0) of the linearized spherically sym-
metric (� = 0) Boltzmann equation with the Sonine-Laguerre basis functions

N λ2 λ3 λ4 λ5 λ6 λ7

4 0.67660 1.06192 1.58295 2.30219

6 0.67260 0.98776 1.35808 1.83700 2.41524 3.13509

8 0.67163 0.95494 1.24700 1.62541 2.06912 2.57270

10 0.67136 0.93797 1.18042 1.49760 1.86907 2.28307

20 0.67123 0.91513 1.05183 1.23130 1.45074 1.69800

30 0.67123 0.91226 1.01497 1.13918 1.29772 1.48081

40 0.91173 0.99982 1.09367 1.21770 1.36401

50 0.91161 0.99246 1.06723 1.16878 1.29073

60 0.91158 0.98848 1.05031 1.13600 1.24051

80 0.98477 1.03049 1.09529 1.17634

The eigenvalues, λn < 1, are in the discrete portion of the spectrum

http://dx.doi.org/10.1007/978-94-017-9454-1_1
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ψn(x) =
N∑

k=2

Unk Ŝ(k)(x2). (5.97)

where Ŝ(k)(x2) = S(k)(x2)/
√

Γ (n + 3/2)/n!. The orthogonality of the eigenfunc-
tions is given by

∞∫

0

w(x)ψn(x)ψm(x)dx =
N∑

k=2

N∑

�=2

UnkUm�

∞∫

0

w(x)Ŝ(k)(x2)Ŝ(�)(x2)dx,

=
N∑

k=2

UnkUmk = δnk, (5.98)

where Eq. (5.62) for the orthogonality of the Sonine-Laguerre polynomials has been
used. The result, Eq. (5.98), is a statement of the orthogonality of the eigenvectors,
U, of the symmetric matrix J. The eigenfunctions are all normalizable in L2 with
weight function w(x) = x2e−x2 whether they belong to the discrete spectrum or the
continuum. However, we must address the meaning of the discretized eigenfunctions
with λn > 1 as representing the continuum eigenfunctions in some approximate way
(Reinhardt 1979).

5.5.2 Pseudospectral Calculation of the Eigenvalue
Spectrum of J

We reconsider the eigenvalue problem of the previous section (for � = 0) defined by
the equivalent integral equation, that is

∞∫

0

e−x2x2k(0)
J (x, y)ψn(x)dx − Z(y)ψn(y) = λnψn(y), (5.99)

where the symmetric kernel, k(0)
J (x, y), is given by

k(0)
J (x, y) = Z(0)

⎧
⎪⎪⎨

⎪⎪⎩

[
4ex2erf(x) − 4

√
π

3 (x2 + 3y2)]/y
]
, x < y

[
4ey2erf(y) − 4

√
π

3 (3x2 + y2)]/x
]
, x > y

and discussed by other researchers (Desai and Nelkin 1966; Kuščer and Williams
1967; Yan 1969; Williams 1971; Siewert 2002). The kernel is the � = 0 component
of the expansion Eq. (5.53).
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The eigenfunctions are discretized on the grid defined by the Gauss-Maxwell
quadrature with p = 2 that is with w(x) = x2e−x2 . With this quadrature, the
discretized form of the integral eigenvalue problem is

N∑

j=1

w j k
(0)
J (x j , xi )ψn(x j ) − Z(xi )ψn(xi ) = λnψn(xi ). (5.100)

The matrix equation is symmetrized by setting ψ̂n(xi ) = √
wiψn(xi ) (Gust and

Reichl 2010).
The computation of thematrix, k(0)

J (x j , xi ), ismuch less prone to numerical round-
off errors than the matrix representation with polynomial basis functions, Sect. 5.4.3.
This pseudospectral method is more flexible as different quadratures associated with
different basis functions can be used with very little additional effort, including a
trapezoidal or Simpson rule. We can also scale the quadrature points and weights to
improve convergence.

In order to impose detailed balance, that is to ensure that λ0 = 0 to machine
accuracy, we use the numerical value of the collision frequency, Z(xi ), as determined
by the integral over the kernel as discussed in Chap. 3

Z(xi ) =
N∑

k=1

wkk(0)
J (xi , xk). (5.101)

The use of this approximate numerical result for Z(xi ) in Eq. (5.99), removes the
contribution from the cusp in the kernel and this method has been referred to as the
singularity subtraction technique (Loyalka and Naz 2008), and was also discussed
by Shizgal (1981a).

However, there is no constraint for λ1 to be zero. Alternatively, one could define
Z(xi ) to ensure that energy conservation is obtained to machine accuracy, that is
λ1 = 0, but we would then find that λ0 �= 0. In this way, one of the two zero
eigenvalues is of the order of 10−15 but not both. The other eigenvalue is much
larger of the order of 10−5. Recall that the spectral method gives trivially the two
zero eigenvalues.

The convergence of the lower order eigenvalues is shown in Table5.5 versus the
number of Gauss-Maxwell quadrature points. The approach of λ1 to zero is also
shown. It is clear that the convergence of the eigenvalues is much faster with the
Maxwell polynomials than with the Sonine-Laguerre polynomials except for λ1 and
λ2. All the eigenvalues shown in the table are in the discrete portion of the spectrum
and converged to five significant figures with 80 quadrature points.

There have been many qualitative discussions and diagrams of the approach of
the eigenvalues to the continuum boundary (Cercignani 1988; Baranger and Mouhot
2005). An accurate representation is shown in Fig. 5.6. The upper graph depicts the
value of each eigenvalue with a vertical line of unit length, the “spectral gap” being
λ1 = 0.67121. The density of eigenvalues increases very quickly near λn = 1;

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Table 5.5 Convergence of the eigenvalues, in units of Z(0), of the linearized spherically symmetric
(� = 0) Boltzmann collision operator, with the Maxwell (p = 2) quadrature points and weights;
quadrature points scaled so that xmax = 6

N λ1 λ2 λ3 λ4 λ5 λ6 λ7

10 −0.0182 0.63890 0.88444 0.95485 1.11878 1.48671 2.0014

20 −0.00121 0.66909 0.90988 0.98090 0.99541 1.0075 1.05629

30 −0.000243 0.67080 0.91123 0.98180 0.99673 0.99917 1.00288

40 −0.0000772 0.67120 0.91155 0.98199 0.99690 0.99949 0.99992

80 −0.0000316 0.67122 0.91157 0.98200 0.99691 0.99950 0.99993

BMa 0 0.671 0.912 0.982 0.997

Mouhotb 0 0.0047
a Bobylev and Mossberg (2008)
b The analytic bound reported by Mouhot (2007) with a constructive approach is 1/(96

√
2e)

Fig. 5.6 (Top graph) The
approach of the eigenvalues
in units of Z(0) of the
linearized spherically
symmetric (� = 0) collision
operator, J , to the continuum
boundary at λn = 1. (Bottom
graph) Distorted diagram so
as to decrease the density of
eigenvalues near the
continuum boundary
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0
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0 0.2 0.4 0.6 0.8 1
0

1

see Table5.5. The lower graph is an artificial plot to spread out the eigenvalues
near the continuum boundary. It is clear that the density of discrete eigenvalues
near the boundary is very high. These discrete or “bound” eigenfunctions, ψn(x),
n = 0–5, are shown in Fig. 5.7 and exhibit (n − 1) nodes. Of particular interest is
the rapid variation of the higher eigenfunctions near the origin which explains the
slow convergence with the Sonine-Laguerre polynomials. A large number of Sonine-
Laguerre basis functions are required in order to accurately describe the behaviour
of the eigenfunctions near the origin. The pseudospectral method is more accurate
and flexible.

One can transform the integral equation to a differential equation, a procedure
which is the opposite to finding a Green function for a differential equation so as
to transform it to an integral equation. With this technique, originally developed by
Wigner and Wilkins (1944) and subsequently by several other workers (Williams
1966; Kuščer and Corngold 1965; Kuščer and Williams 1967; Hoare 1971; Bobylev
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Fig. 5.7 The eigenfunctions, ψn(x), of the linearized spherically symmetric (� = 0) Boltzmann
collision operator determined with the Gauss-Maxwell quadratures with w(x) = x2e−x2

Table 5.6 Convergence of the eigenvalues of the linearized spherically symmetric (� = 0) Boltz-
mann collision operator with the multidomain method; λn in units of Z(0)

n λn
1−λn

1−λn+1

2 0.67121 3.718

3 0.91156 4.913

4 0.98200 5.816

5 0.996904 6.149

6 0.9994966 6.231

7 0.9999192 6.247

8 0.9999871 6.247

9 0.99999793 6.247

10 0.999999667 6.212

WKB 6.253

Reprinted from Shizgal (1984) with permission from National Research Council Research Press

andMossberg 2008), the integral Boltzmann eigenvalue problem can be transformed
to a Schrödinger equation. The Schrödinger equation is of an unusual form in that
the potential is parameterized by the eigenvalue.

Bobylev and Mossberg (2008) solved the Schrödinger equation with a finite
difference method and obtained the eigenvalues with a root searching algorithm.
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Their results are shown in Table5.5 together with the results by Mouhot (2007) with
a constructive approach.

This Schrödinger equation in conjunction with a Wentzel-Kramers-Brillouin
(WKB) analysis provides an understanding of the nature of the approach of the
eigenvalues to the continuum boundary. A clear exposition was provided by Rahman
and Sundaresan (1968) with the result that for the linearized collision operator, the
eigenvalues obey the asymptotic result

1 − λn

1 − λn+1
≈ exp(

4π√
47

) ≈ 6.2526. (5.102)

In order to accurately verify the behavior of the eigenvalues in accordance with
Eq. (5.102), a multidomain spectral method is used (Shizgal 1984). This involves
subdividing the semi-infinite domain into many subintervals and the use of Gauss-
Mehler quadrature points in each subdomain. Scaled Laguerre quadrature points
are used in the last domain which extends to infinity. The division of the semi-
infinite interval into subdomains varies from eigenfunction to eigenfunction, with
a knowledge of the location of the nodes for each eigenfunction. The grid is thus
optimized for each eigenfunction separately. This permits an accurate calculation
of the discrete eigenvalues and the approach to the continuum boundary as shown
in Table5.6 in comparison with the WKB approximation. The asymptotic result,
Eq. (5.102), appears to be attained by λ7 or λ8 but as is clear from the results in the
table it is a numerical challenge to calculate accurate eigenvalues extremely close to 1.

5.6 Relaxation to Equilibrium in Binary Gas Mixtures

The approach to equilibrium of the distribution function of a minor constituent of
massm (sometimes referred to as a “test particle”) dilutely dispersed in a background
gas of mass M at equilibrium is a fundamental problem in kinetic theory (Kuščer
and Williams 1967; Yan 1969) with important applications to hot atom relaxation
(Park et al. 1989; Cline et al. 1990; Nan and Houston 1992; Matsumi et al. 1994;
Nakayama et al. 2005; Zhang et al. 2007; Bovino et al. 2011).

The time dependent Boltzmann equation for a spatially uniform system in the
absence of external forces is identical in form to Eq. (5.46) for the one-component
gas, that is

∂ f (v, t)

∂t
= L[ f (v, t)], (5.103)

with the linear operator, L , defined by

L( f ) =
∫ ∫

[F
′
1 f

′ − F1 f ]gσ(g, θ)dΩdv1, (5.104)

instead of Eq. (5.41) for the linearized collision operator.
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The Boltzmann integral equation for this binary gas is of the same form as in
Eq. (5.50) but with a different kernel that varies with the mass ratio, γ. In terms of
the reduced velocities x = u

√
m/2kB T and y = v

√
m/2kB T , and the cosine of the

angle between the velocity vectors, μ, the kernel is given by

KL(x, y,μ) = Z(0)(γ + 1)2

2πγ3/2

1√
x2 + y2 − 2xyμ

× exp

[
−x2 + γx2y2(1 − μ2)

x2 + y2 − 2xyμ
− (γ − 1)2(x2 + y2)

4γ

− (γ2 − 1)xyμ

2γ

]
, (5.105)

where γ = M/m is the mass ratio of the two components Shizgal and Blackmore
(1983). This result is derived with the definition, Eq. (5.103), and the kinematics of
an elastic collision, Fig. 5.3, and Eqs. (5.47)–(5.49) (Chapman and Cowling 1970;
Ferziger and Kaper 1972; Khurana and Thachuk 2013). In the sections that follow,
we consider spectral and pseudospectral calculations of the eigenvalue spectrum of
the integral operator, L , analogous to the results for J in the previous sections.

5.6.1 Spectral Calculation of the Eigenvalue Spectrum
of the Linear Collision Operator, L, for a Binary Gas

We proceed as we did in Sect. 5.4.3 for the linearized Boltzmann collision operator.
The matrix elements of L in the Sonine-Laguerre basis (for � = 0) are defined by

L(0)
nm =

∫ ∫ ∫
F1F2S(n)

1

[
S(m)′
1 − S(m)

1

]
σgdΩdv1dv2, (5.106)

evaluated as for the linearized case with the generating function for the basis func-
tions, Eq. (5.63) and we have that

〈Gs |L|Gt 〉 = 8

√
2πkB Tb

μ

M1M2st

(1 − st)2

(√
1 − M1(s + t) − [1 − 2M1]st

1 − [1 − 4M1M2]st

)
,

=
∞∑

n=0

∞∑

m=0

L(0)
nmsntm, (5.107)

where M1 = m1/(m1 + m2), M2 = m2/(m1 + m2) and μ = m1m2/(m1 + m2).
The matrix elements are evaluated as the coefficients of sntm in the power series
expansion of 〈Gs |L|Gt 〉 as in Sect. 5.4.3 for the linearized operator, J . A MAPLE
code (Shizgal and Dridi 2010) developed for arbitrary differential cross section can
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Table 5.7 Convergence of the eigenvalues, in units of Z(0), of the linear (γ = 1) spherically
symmetric (� = 0) Boltzmann collision operator with the Sonine-Laguerre basis functions

N λ1 λ2 λ3 λ4 λ5 λ6

4 0.83191 1.23300 1.80103 2.55781

6 0.82351 1.13057 1.53697 2.04776 2.64985 3.38573

8 0.82081 1.08006 1.40112 1.80739 2.27335 2.79345

10 0.81980 1.05092 1.31698 1.65904 2.05109 2.48123

20 0.81905 1.00022 1.14237 1.33917 1.57346 1.83352

30 0.81902 0.98819 1.08405 1.22258 1.39305 1.58660

40 0.98384 1.05604 1.16244 1.29671 1.45194

50 0.98192 1.04007 1.12607 1.23674 1.36656

60 0.98099 1.03005 1.10202 1.19613 1.30775

be used to extract the matrix elements based on Eq. (5.107) for the hard sphere cross
section. Lindenfeld and Shizgal (1983) also provided a closed form expression for
the matrix elements.

The numerical diagonalization of the matrix L of order N gives the eigenvalues
and eigenfunctions. The derivation of the expression for L(0)

nm for the hard sphere cross
section and arbitrary γ, which requires considerable algebra, is given by Eq. (28) and
Appendix A in Lindenfeld and Shizgal (1983).

For γ = 1, the convergence of the eigenvalues versus the number of basis func-
tions, N , is shown in Table5.7. The convergence of the eigenvalues is from above
consistent with a variational theorem. The smallest eigenvalue, λ0 = 0, is consistent
with particle conservation. With up to 60 basis functions, there are only two discrete
eigenvalues, λ1 and λ2, whereas the others shown are in the continuum. Only λ1 is
converged to five significant figures with 30 basis functions. The convergence of the
eigenvalues with the Sonine-Laguerre basis set is slow, similar to the results for J in
Table5.4.

5.6.2 Pseudospectral Calculation of Eigenvalue Spectrum
of the Linear Collision Operator, L, for a Binary Gas

The kernel in the Boltzmann equation for a binary gas mixture is given by Eq. (5.105)
and depends on μ and the mass ratio, γ = M/m. We expand the kernel in Legendre
polynomials in μ as given by Eq. (5.53) for the linearized operator. The scalar kernels
are denoted by k(�)

L (x, y) analogous to the k(�)
J (x, y) for the linearized collision

operator, J . The eigenvalues and eigenfunctions of the collision operator for given
� are defined by the set of integral equations

∞∫

0

k(�)
L (x, y)ψn,�(x)dx − Z(y)ψn,�(y) = −λn,�ψn,�(y). (5.108)
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The collision frequency, Z(x), in Eq. (5.108), is given by

Z(x) =
∞∫

0

k(0)
L (x, y)dy,

= A

2

[
e−γx2 +

[
2
√

γx + 1√
γx

] √
π

2
erf(

√
γx)

]
, (5.109)

where A = nbπd2√kB Tb/2m and Z(0) = 2A. The kernel k(0)
L (x, y) is the Wigner-

Wilkins kernel (Hoare and Kaplinsky 1970) given by

k(0)
L (x, y) = A

2
Q2√π

[
erf[Qy + Rx] + ex2−y2erf[Ry + Qx]

±
[
erf[Qy − Rx] + ex2−y2erf[Qy + Rx]

] ]
, (5.110)

where we have used reduced speeds (x, y) and the + in ± is for y < x and the
− is for y > x . The hard sphere cross section is πd2, Q = 1

2 [ 1√
γ + √

γ] and

R = 1
2 [ 1√

γ − √
γ].

The pseudospectral solution of the eigenvalue problem based on a quadrature
reduces Eq. (5.108) to the linear algebraic problem

N∑

j=1

W j x2j k(0)
L (x j , xi )ψn,�(x j ) − Ziψn,�(xi ) = −λn,�ψn,�(xi ). (5.111)

For the most part, ψn(x) and λn are for � = 0, unless otherwise noted. Since particle
number is conserved, there is one zero eigenvalue, λ0 = 0. The results for the
Gauss-Maxwell quadrature is shown in Table5.8. With 80 quadrature points, we
find four discrete eigenvalues converged to 4 significant figures. The results reported
by Bobylev and Mossberg (2008) are obtained from the solution of a Schrödinger
equation with a potential parametrized by the eigenvalue sought. As a consequence,
an iteration is required to converge to each eigenvalue as shown in Figs. 1 and 2
of their paper. The results in the table are also compared with the cubic B-spline
solution by Khurana and Thachuk (2012) for which only two discrete eigenvalues
are reported.

The study of the approach of the eigenvalues to the continuum boundary requires
a very fine grid defined with the subdivision of the semi-infinite interval into 12
sub-intervals with 8 Fejér quadrature points in each interval except the last where
a shifted Laguerre quadrature is used (Shizgal 1984). The interval boundaries are
chosen to approximately coincide with the roots of the highest bound eigenfunction
desired. We refer to this approach as the adaptive multidomain method.
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Table 5.8 Convergence of the eigenvalues in units of Z(0) of the linear (γ = 1) spherically
symmetric (� = 0) Boltzmann collision operator for Gauss-Maxwell quadrature points (p = 2)

N λ1 λ2 λ3 λ4 λ5 λ6

6 0.81359 0.97258 1.16137 1.55419 2.09752 0.00000

8 0.81616 0.97328 1.05678 1.29033 1.65256 2.11734

10 0.81736 0.97672 1.01756 1.15769 1.40627 1.74453

14 0.81831 0.97897 0.99904 1.04972 1.17109 1.36147

20 0.81874 0.97940 0.99772 1.00972 1.05415 1.13938

30 0.81893 0.97963 0.99829 1.00049 1.01072 1.03677

40 0.81898 0.97969 0.99834 0.99984 1.00274 1.01236

60 0.81901 0.97972 0.99838 0.99986 1.00025 1.00223

80 0.81902 0.97973 0.99838 0.99988 1.00001 1.00058

BMa 0.8190 0.9795 0.9985 0.9995
KTb 0.8190 0.9797
a Eigenvalues determined from the solution of the Schrödinger equation (Bobylev and Mossberg
2008)
b CubicB-spline solution of the integral eigenvalue problemwith 60 intervals (Khurana andThachuk
2012)

Table 5.9 Approach to the
continuum boundary of the
eigenvalues, in units of Z(0),
of the linear (γ = 1)
spherically symmetric
Boltzmann (� = 0) collision
operator with the
multidomain method

n λn
1−λn

1−λn+1

1 0.8190221

2 0.9797339 5.526

3 0.99838853 8.930

4 0.99988132 12.58

5 0.9999913460 13.58

6 0.99999936318 13.71

7 0.999999958353 13.59

8 0.9999999926736 15.29

WKB 13.74

The lower order eigenvalues calculated in this way are shown in Table5.9 in
comparison with the WKB asymptotic behaviour (Rahman and Sundaresan 1968)

1 − λn,�

1 − λn+1,�
≈ exp

⎡

⎣ 4π√
6(1 + 1

γ )2 − (2� + 1)2

⎤

⎦ , (5.112)

which appears to occur by λ6 or λ7. It is clear that the calculation of these eigenvalues
near to the continuum boundary is a challenging numerical exercise.

The eigenfunctions corresponding to these eigenvalues are shown in Fig. 5.8 and
the rapid variation near to the origin is clear. There are several nodes very close
to the origin and the others occur for much larger x . We contrast this behaviour
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Fig. 5.8 The eigenfunctions, ψn(x), of the linear Boltzmann collision operator (� = 0, γ = 1)
determined with the adaptive multidomain quadrature

Fig. 5.9 Eigenfunctions
of the linear (γ = 1/8)
Boltzmann collision operator
with the adaptive
multidomain method for
� = 3. The approach of the
eigenvalues, λn,3, to the
continuum boundary is
shown in Table5.10 in
comparison with the
asymptotic WKB result
(Rahman and Sundaresan
1968)
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with the eigenfunctions for � = 3 and γ = 1/8 in Fig. 5.9. Table5.10 lists the
corresponding eigenvalues and the WKB ratio and it is clear that these eigenvalues
below the continuum boundary can be more easily evaluated. The oscillations of the
eigenfunctions can be resolved over this larger domain than for the results in Fig. 5.8.
With the multidomain approach, the variational theorem is more difficult to verify as
the nodes and number of quadrature points between nodes is specific for a particular
eigenfunction.



290 5 Integral Equations in the Kinetic Theory of Gases and Related Topics

Table 5.10 Approach to the
continuum boundary of the
eigenvalues, in units of Z(0),
of the linear (γ = 1/8)
Boltzmann collision operator
with the adaptive
multidomain method for
� = 3

n λn,3
1−λn,3

1−λn+1,3

1 0.42888 1.4444

2 0.60461 1.4978

3 0.73602 1.5675

4 0.83159 1.6405

5 0.89734 1.6912

6 0.93930 1.7197

7 0.96470 1.7459

8 0.97978 1.7691

9 0.98857 1.7873

10 0.99361 1.8004

11 0.99645 1.8092

12 0.99804 1.8150

13 0.99892 1.8186

14 0.99941 1.8203

WKB 1.824

5.6.3 Spectral Method of Solution of the Linear Boltzmann
Equation with Quantum Cross Sections; Relaxation
to Equilibrium and the Kullback-Leibler Entropy

In this section,we consider the binary gasmixture defined in the previous sectionwith
the application to N-He and Xe-He mixtures for which accurate interatomic interac-
tion potentials are known and the corresponding quantum differential cross sections
can be calculated (Sospedra-Alfonso and Shizgal 2013). We write the spherically
symmetric distribution function (� = 0) as f (x, t) = F[1 + φ(x, t)] and expand
φ(x, t) in Sonine-Laguerre polynomials,

φ(x, t) =
N∑

n=1

an(t)S(n)(x2), (5.113)

and substitute f (x, t) into Eq. (5.103) that defines the initial value problem. With
the subsequent multiplication by S(m)(x2) and integration over v, the Boltzmann
equation is reduced to the set of linear ordinary differential equations

dâm(t)

dt
=

N∑

n=1

L̂(0)
mnân(t), (5.114)

where ân = √
Nnan such that L̂(0)

nm = L(0)
nm/

√
Nn Nm is symmetric, and Nn =

2Γ (n + 3/2)/(n!√π) is the normalization of the Sonine-Laguerre polynomials.
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The matrix elements, L(0)
nm were previously evaluated, Eq. (5.107), for the hard

sphere cross section using the generating function for the Sonine-Laguerre polyno-
mials. This methodology can also be used for realistic cross sections (Shizgal and
Dridi 2010) with the result that the matrix elements can be written in terms of the
classic Omega integrals of transport theory (Hirschfelder et al. 1954; Chapman and
Cowling 1970; Mason and McDaniel 1988) defined by

Ω(�)(k) = 2π

∞∫

0

π∫

0

e−z2 z2k+3(1 − cos� θ)σ(E, θ) sin θdθdz, (5.115)

where z = √
E/kB Tb and

L(0)
nm =

n∑

�=0

n+m−�∑

k=1

C�,kΩ
(�)(k). (5.116)

The coefficients, C�,k were determined with the generating function method and a
MAPLE code is available (Shizgal and Dridi 2010). The differential cross sections
vary rapidly with angle (see Fig. 3.19b) and a Simpson’s rule integration can be
used to accurately calculate the angular integral in Ω(�)(k) and a Gauss-Laguerre
quadrature for the reduced speed z. In this way, realistic cross sections can be used
in a spectral based solution of the Boltzmann equation.

The time dependent solution is expressed in terms of the discrete eigenvalues, λn ,
and eigenvectors, Ukm , of L, that is

N∑

k=1

LnkUkm = −λnUnm . (5.117)

We show in Fig. 5.10 the results of a Sonine-Laguerre spectral calculation of the
eigenvalue spectrum for the two gas mixtures, namely N in He and Xe in He with
realistic quantum cross sections that define the collision operator (Sospedra-Alfonso
and Shizgal 2013). The eigenvalues λn < Z(0) are in the discrete spectrumwhile the
eigenvalues λn > Z(0) are in the continuum. The comparison with the equivalent
hard sphere cross section shown in the figure demonstrates that the hard sphere cross
section is a good approximation. For the Xe-He system with the small mass ratio,
γ = 0.030, there are a large number of converged discrete eigenvalues whereas for
the N-He system with a larger mass ratio, γ = 0.29, there are much fewer converged
eigenvalues. The three discrete eigenvalues for N-He and the 9 discrete eigenvalues
for Xe-He are converged to three significant figures with N = 30 and N = 15,
respectively. This demonstrates the more rapid convergence of the Sonine-Laguerre
basis functions for the Xe-He system which is closer to the Rayleigh limit than
is N-He. In Chap.6, we discuss the Fokker-Planck equations in the Rayleigh and
Lorentz limits and the choice of basis functions.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Fig. 5.10 Eigenvalue spectrum of the Boltzmann collision operator for binary mixtures with He as
the background gas. The filled squares correspond to eigenvalues in the discrete spectrum and open
squares are unconverged eigenvalues in the continuum. HS denotes the results with the hard sphere
cross section, 18Å2 for N-He and 27Å2 for Xe-He. The other curves correspond to the results with
a realistic cross section for each pair. Thirty Sonine-Laguerre polynomials were used. Reprinted
from Sospedra-Alfonso and Shizgal (2013) with permission from the American Institute of Physics

The time dependent solution of the linear equations, Eq. (5.114), is

ân(t) =
N∑

k=1

ckUnke−λk t , (5.118)

and the expansion of φ(x, 0) defines ân(0). The expansion coefficients, ck , in
Eq. (5.118) are determined from the initial condition

ck =
N∑

n=1

Uknân(0). (5.119)

The eigenfunctions are given by the expansion in Sonine-Laguerre polynomials

ψn(x2) =
√

2√
π

N∑

k=1

Ukn
S(k)(x2)√

Nk
, (5.120)

and the time dependent distribution function is

f (x2, t) = 2√
π

x2e−x2
[
1 +

N∑

n=1

cne−λn tψn(x2)

]
. (5.121)

It is readily shown with the orthogonality of the Sonine-Laguerre polynomials
that the average energy of the energetic atoms is given exactly in terms of a1(t),
that is

E(t) = 3kB Tb

2
[1 − a1(t)]. (5.122)
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However, the average energy in terms ofa1(t) is coupled to the higher order expansion
coefficients, an(t) in Eq. (5.114), and the time dependence is multiexponential as
given by Eq. (5.118). If the set of moment equations, Eq. (5.114), is truncated at
a1(t), the resulting approximation to the energy relaxation is a pure exponential.
Alternatively, we can approximate the distribution function with a local Maxwellian
distribution function parametrized by the time dependent temperature (Mozumder
1981; Shizgal 1981b), that is

dT

dt
= −KLM[Teff(t)]

[
T (t) − Tb

]
, (5.123)

where Teff = [MT(t) + mTb]/(M + m) and

KLM(Teff) = 16

3π
M1M2

√
Teff

Tb

∞∫

0

z5e−z2σmt(z
2kB Teff)dz. (5.124)

The momentum transfer cross section in Eq. (5.124) is defined by

σmt(E) = 2π

π∫

0

(1 − cos θ)σ(E, θ) sin θdθ. (5.125)

We consider the approach to equilibrium with an initial test particle Gaussian
energy distribution of the form

f (E, 0) = C√
kB Tb

√
E exp

[
− α

√
E

kB Tb
− x0)

2
]
, (5.126)

where Tb = 300K and Nb = 3.27 × 1016 cm−3 consistent with experimental con-
ditions (Zhang et al. 2007). The parameters α = 5 and x0 = 2 are chosen, and C is a
normalization. A major difficulty can be the expansion of the initial distribution with
Eq. (5.113). The expansion of a Maxwellian at Tb in Sonine-Laguerre polynomials
is equivalent to the representation of the Sonine-Laguerre polynomials with the gen-
erating function defined by Eq. (4.54) in Sect. 4.5.1. The Sonine-Laguerre expansion
of many initial distribution functions, such as a Gaussian, that model energetic dis-
tributions with temperatures above the bath temperature will converge very slowly
if at all.

The time dependence of the distribution functions is shown in Fig. 5.11(A) for N
in He and in Fig. 5.11(B) for Xe in He for an initial energy of 0.12eV. A sufficient
number of basis functions are used so as to fit the initial distribution to three signif-
icant figures. Although there are only a few discrete eigenvalues in Eq. (5.121) that
converge with an increase in N , there a large number of eigenvalues, λn > Z(0) that
are in the continuum. Nevertheless, the summation in Eq. (5.121) that replaces the

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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(A) (B)

(C) (D)

Fig. 5.11 (Upper graphs) Energy distribution function for (A) N-He and (B) Xe-He for t/τ =
0.07, 0.16, 0.29, 0.51 and 0.29 where τ equals (A) 76ns and (B) 56ns; The initial distribution
function is a Gaussian with E(0) = 0.12eV; The dashed curves are the results with a Monte-Carlo
simulation. (Lower graphs) Time evolution of the temperature ratio for (C) N-He and (D) X-He
with an initial Gaussian with E(0) = 1.67 eV. The results are converged to three significant figures
with 30 Sonine-Laguerre polynomials. Reprinted from Sospedra-Alfonso and Shizgal (2013) with
permission from the American Institute of Physics

integral over the continuum eigenvalues, converges with an increase in N and thus
the solution converges even though λk and ck change with N . The dashed (noisy)
curves in the figures are the results of Monte Carlo simulations (Sospedra-Alfonso
and Shizgal 2013) that validate the results with the Sonine-Laguerre expansion.

The relaxation of the temperature is shown in Fig. 5.11(C), (D) for N-He and
Xe-He mixtures, respectively, with E(0) = 1.67eV. The curve identified as the
lowest order approximation with the one moment, a1(t), is a pure exponential while
the other results are multi-exponential curves. Amajor objective of the kinetic theory
is the approach to equilibrium (Ziff et al. 1981; Mouhot 2006). We use the Kullback-
Leibler entropy (Kullback and Leibler 1951;Mozumder 1981; Shizgal 2007) defined
by

ΣSS(t) = −4π
∫

v2 f (v, t) ln

[
f (v, t)

F(v, Tb)

]
dv, (5.127)

and another similar functional that is a measure of the departure of the distribution
function from the local Maxwellian FL M and given by
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ΣL M (t) = −4π
∫

v2 f (v, t) ln

[
f (v, t)

FL M (v, T (t))

]
dv. (5.128)

The local Maxwellian varies with T (t) and it is important to note that ΣL M (t) is not
an entropy. These are two examples of measures for the departure of one function
from another for which there are many choices especially in signal analysis (Cha
2007) analogous to the choice of least squares approximation used in Chap.4 to
analyze the convergence of different expansions.

The time dependence of both quantities is shown in Fig. 5.12 with ΣSS(t) as the
dashed curves and ΣL M (t) as the solid curves for three different initial energies.
ΣSS(t) is a monotonically increasing function of time consistent with an entropy
whereas ΣL M (t) can exhibit extremum values as a function of time. The relaxation
of the shape of the nonequilibrium distribution function can be determined experi-
mentally with Doppler spectroscopy (Nakayama et al. 2005; Zhang et al. 2007). The
translational energy relaxation can also be followed experimentally (Park et al. 1989).

The spectral method of solution of the Boltzmann equation with the Sonine-
Laguerre polynomials provides sufficiently converged solutions so as to permit a
useful comparison with experiment. The choice of the initial distribution is limited
by its expansion in this basis set. Round-off errors can also occur in the calculation
of the matrix elements if large basis sets are required.

A pseudospectral approach based on theGauss-Maxwell or some other quadrature
can also be employed with realistic quantum mechanical elastic scattering cross
sections. The details of these applications is beyond the scope of this book and
can be found elsewhere (Bovino et al. 2009, 2011; Sospedra-Alfonso and Shizgal
2012a), and references therein. The calculation of the spherically symmetric kernel
for realistic cross sections requires an integration over E and θ of the differential
cross section σ(E, θ) (see Fig. 3.19b). The cusp in the resulting kernel tend to be
extremely narrow and the accurate integration over the cusp in the kernel requires a
very fine grid (Kharchenko et al. 1998).

(A)

(a)
(a)

(b)

(c)

(b)

(c)
(b)

(c)

(B)

Fig. 5.12 Time evolution of the Kullback-Leibler relative entropies ΣSS(t) (dashed curve) and
ΣL M (t) (solid curve) for (A) N-He (τ = 76ns) and (B) Xe-He (τ = 56ns). Initial average energies
are (a) 0.12eV, (b) 0.94eV and (c) 1.67eV with an initial Gaussian distribution. Reprinted from
Sospedra-Alfonso and Shizgal (2013) with permission from the American Institute of Physics

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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In Chap.6, we report the eigenvalue spectrum of the Fokker-Planck equation with
the Coulomb cross section.We will show that the eigenvalue spectrum has an infinite
number of discrete eigenvalues and a continuum. However, in contrast to the behav-
iour with the Boltzmann equation, the spectrum becomes completely continuous for
a particular mass ratio (with the exclusion of λ0 = 0). The continuum eigenfunctions
are L2 square integrable discrete eigenfunctions as discussed by Reinhardt (1979)
for quantummechanical problems. In the absence of a single nonzero discrete eigen-
value, that is the “spectral gap”, the approach to equilibrium ceases to be a pure
exponential (Corngold 1981).

5.7 Two Dimensional Anisotropic Distributions

In the previous sections, we provided a description for the relaxation to equilibrium
of isotropic nonequilibrium distributions. In the sections that follow, we consider
several physical systems for which the distribution function of the energetic species
is anisotropic. Laser photofragmentation of molecules can produce energetic atoms
with anisotropic nonequilibrium distributions (Cline et al. 1990; Nicholson et al.
1996). The relaxation of the anisotropy can be followed with Doppler spectroscopy.
In Sect. 5.7.1, we consider a spectral solution of the Boltzmann equationwith amodel
initial anisotropic distribution. The decay of the anisotropy can be uncoupled from
the energy relaxation in the disparate mass ratio, γ = M/m, limits. This provides
the rationale for the use of the Fokker-Planck equation in the Rayleigh limit, γ → 0,
and Lorentz limit, γ → ∞, (Andersen and Shuler 1964) as discussed in Chap.6.

In Sect. 5.7.2, we treat the Milne problem for a two component system previously
considered in the context of the radiative transfer problem (the one-speed model)
in Sect. 5.3. This Milne problem also serves as a model for the escape of planetary
atmospheres (Fahr and Shizgal 1983). Both rarefied gas dynamical problems are in
three dimensions, namely position, speed and the anisotropy variable, μ = cos θ,
where θ denotes the orientation of the particle velocity relative to a polar axis.
A spectral method is used to solve the Boltzmann equation for the Milne prob-
lem whereas a combined spectral/pseudospectral method is used for the planetary
escape problem (Shizgal and Blackmore 1986).

5.7.1 Pseudospectral/Spectral Solution of the Boltzmann
Equation; Relaxation of Anisotropic Distributions
in a Binary Gas

A nonthermal anisotropic distribution function of atoms can be produced in the
laboratory by laser photolysis of a molecule producing an energetic atom.
The nascent distributions then relax by collisions with background inert gas atoms

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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and the approach to equilibrium is followed with Doppler spectroscopy (Park et al.
1989; Taatjes et al. 1990). The relaxation of anisotropic nonthermal distributions
of I∗ produced by photofragamentation of C3F7I has been studied experimentally
(Cline et al. 1990; Nicholson et al. 1996). It is possible to generate with linearly
polarized light an initial distribution that is a product of an isotropic distribution and
an anisotropy factor of the form

f (v,μ, 0) = f (v, 0)[1 + β(0)P2(μ)], (5.129)

where μ = cos θ and θ gives the orientation of the velocity vector, v, relative to some
polar axis. The parameter β(t) is the anisotropy parameter which can also depend
on the particle velocity. Matsumi et al. (1994) carried out similar studies of the
anisotropy and velocity relaxation of energetic O(1D) atoms in different moderators.

In this section, we consider a pseudospectral solution of the linear Boltzmann
equation with a hard sphere cross section and study the relaxation versus the mass
ratio γ = M/m, with m the test particle mass and M the mass of the background
species.We choose for convenience an initial anisotropic nonequilibriumdistribution
of the form

f (x,μ, 0) = C
(μ + 1)β

x
exp

[
− α(E0 − x2)2

]
, (5.130)

where α, β and E0 are constants to be specified and C is a normalization. The
constant β is generally a small integer in keeping with the experimentally generated
anisotropic distribution as a single Legendre polynomial, Eq. (5.129).

The Boltzmann equation for this spatially uniform system is given by Eq. (5.103)
with the collision operator defined by Eg. (5.104) or equivalently the kernel in
Eq. (5.105). The collision frequency is given by

Z(y) = 2π

∞∫

0

1∫

−1

KL(x, y,μ)x2dμdx, (5.131)

which is equivalent to Eq. (5.109). The Wigner-Wilkins kernel, Eq. (5.110), is the
spherical average of KL(x, y,μ). We expand the kernel, Eq. (5.105), in Legendre
polynomials, that is

KL(x, y,μ) =
∞∑

�=0

k(�)
L (x, y)P�(μ), (5.132)

where the expansion coefficients are the kernels

k(�)
L (x, y) = 2� + 1

2

1∫

−1

KL(x, y,μ)P�(μ). (5.133)
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Thus, the relaxation of the anisotropic distribution for the initial distribution given
by Eq. (5.130), is described with the set of uncoupled integral equations for each �,
that is

∂ f�(x, t)

∂t
=

∞∫

0

k(�)
L (x, y) f�(y, t)y2dy − Z(x) f�(x, t), (5.134)

where the initial distributions, f�(x, 0), is determined fromEq. (5.130). The spherical
components, f�(x, t), of the distribution function are defined as in Eq. (5.138). The
kernels, k(�)

L (x, y) can be accurately evaluated with a Gauss-Legendre quadrature for
the μ integration in Eq. (5.133).

The set of integral equations, Eq. (5.134), can be solved with theMaxwell quadra-
ture points, {xi }, and big weights, {Wi = wi/w(xi )}, based on the weight function
w(x) = x2e−x2 defined in Chap.3, Sect. 3.3. The discretized version is thus

∂ f�(xi , t)

∂t
=

N−1∑

j=1

Bij f�(xi , t), (5.135)

where the matrix B is defined by

Bi j = W j k�(xi , x j )x2j − Z(xi )δi j . (5.136)

As beforewe express the solution to each integral equation in terms of the eigenvalues
λ(�) and eigenfunctions U, that is

B · U = U · λ. (5.137)

The � dependence of the matrices in Eq. (5.137) is not shown explicitly. The ini-
tial values of f�(x, 0) are determined from the initial condition, Eq. (5.130). The
expansion of f (x,μ, t) is in Legendre polynomials in μ, that is

f (x,μ, t) =
√
2� + 1

2

∞∑

�

f�(x, t)P�(μ), (5.138)

so that

f�(x, t) =
√
2� + 1

2

1∫

−1

f (x,μ, t)P�(μ)dμ, (5.139)

which is evaluated with Gauss-Legendre quadrature points {μi } and weights {vi },
and written as the transform

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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f�(x, t) =
N∑

i=1

T (b)
�i f (x,μi , t), (5.140)

where the transformation matrix is

T (b)
�i =

√
2� + 1

2
vi P�(μi ). (5.141)

The inverse of this transformation is

f (x,μi , t) =
N−1∑

�=0

T ( f )
i� f�(x, t), (5.142)

where

T ( f )
i� =

√
2� + 1

2
P�(μi ), (5.143)

and T(b) · T( f ) = I.
The time dependent distribution is expressed in terms of the eigenvalues and

eigenfunctions of B, that is

f�(yi , t) =
N∑

j=0

U (�)
i j C (�)

j exp(−λ j�t), (5.144)

with the C (�)
j evaluated with the initial distributions

C (�)
j =

N−1∑

k=0

(
U−1

)

jk
f�(xk, 0). (5.145)

We choose β = 2 in the initial distribution and solve three integral equations,
Eq. (5.134), with � = 0, 1 and 2. For each, 60 Gauss-Maxwell quadrature points
were sufficient to give the convergent distributions shown in Figs. 5.13, 5.14 and 5.15.
For each �, the collision operator has a discrete and continuous eigenvalue spectrum.
The continuous eigenfunctions are square integrable in the discrete L2 space that
is used (Reinhardt 1979). This is another illustration that the discretization of the
continuum portion of the spectrum leads to numerically convergent solutions.

The relaxation of the anisotropic distribution is shown in Figs. 5.13, 5.14 and
5.15 for mass ratios γ = 1/16, 1 and 16, respectively, for the initial condition,
Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The results for the small mass
ratio approaching the Rayleigh limit are shown in Fig. 5.13. The anisotropy of the
distribution function is maintained while there is a relatively rapid energy exchange.
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Fig. 5.13 Time evolution of the anisotropic distribution for mass ratio M/m = 1/16. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from Shizgal and Blackmore (1983)
with permission from Elsevier

There is an efficient transfer of energy on collision relative to the randomization of
the particle direction. For the unit mass ratio case in Fig. 5.14, the anisotropy and
the energy relaxation appear to occur on the same time scale. In addition, since the
energy transfer for equal masses is very efficient; the energy relaxation is rapid as can
be seen by the growth of the peak in the distribution in the thermal energy regime.
This distribution function in this case is bimodal in speed with a peak at both high
and low speeds.

The results in Fig. 5.15 for the larger mass ratio approaching the Lorentz limit,
show an efficient change in direction of the light particle on collision. The anisotropy
of the distribution disappears quickly and the energy relaxation occurs on a longer
time scale. In the limit of very smallmass ratios, which is applicable for the relaxation
of electrons in atoms, the anisotropy decays many orders of magnitude faster than
the energy relaxation. Thus, for electron transport in the Lorentz limit it is often
sufficient to use the two-term approximation, that is with � = 0 and � = 1 (Pitchford
et al. 1981; Pitchford and Phelps 1982; Shizgal and McMahon 1985; Hagelaar and
Pitchford 2005); see Chap.6, Sect. 6.3.

The relaxation of nonthermal distributions for the small and large mass ratio
limits is well approximated by a Fokker-Planck equation (Andersen and Shuler
1964) as discussed in Chap.6, Sect. 6.1.3. The results shown, computed with a

http://dx.doi.org/10.1007/978-94-017-9454-1_6
http://dx.doi.org/10.1007/978-94-017-9454-1_6
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Fig. 5.14 Time evolution of the anisotropic distribution for mass ratio M/m = 1. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from Shizgal and Blackmore (1983)
with permission from Elsevier

spectral/pseudospectral method, provide useful graphically accurate depictions of
the different behaviour in these limits.

5.7.2 A Spectral Method of Solution of the Milne Problem

TheMilne problem, depicted in Fig. 5.16, refers to the diffusion of aminor constituent
of mass m in a background species of mass M considered to be at equilibrium at
temperature Tb (Lindenfeld and Shizgal 1983). The vertical line at r = 0 separates
the medium that occupies the right half-space, r > 0, from the vacuum that is in
the left half-space r < 0. A current density of magnitude j directed in the negative
r -direction exists in the medium. The problem consists of determining the steady
velocity distribution of the minor species within the half-space r > 0 and the angular
distribution of emerging particles at the boundary subject to the condition that there
are no particles incident from the left onto the medium. These boundary conditions
are the same as those used for the radiative transfer problem in Sect. 5.3. For γ → ∞,
we have the Lorentz limit and the one-speed radiative transfer problem. This system
is a typical rarefied gas dynamical half-space problem (Williams 1971; Cercignani
1988; Williams 2005).
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Fig. 5.15 Time evolution of the anisotropic distribution for mass ratio M/m = 16. The initial
distribution is given by Eq. (5.130) with β = 2, E0 = 900 and α = 10−4. The time t is in units
of τ = [Nd2√2πkB T/M]−1. In the figure μ ≡ μ. Reprinted from (Shizgal and Blackmore 1983)
with permission from Elsevier

Fig. 5.16 The geometry of
the Milne problem; The
vertical line separates the
vacuum from the medium.
The orientation of the
particle velocity, v, relative
to the radial direction in
space, r, is θ. There is a
constant source of particles
of flux j at infinity

Far from the boundary, in the positive r -direction, hydrodynamic equations are
valid, which for the present model is the diffusion equation,

j = −D
dn(as)(r)

dr
. (5.146)

This is the usual diffusion equation in the collision dominated regime that relates
the flux j and the gradient of the asymptotic density profile, n(as)(r) and D is the
diffusion coefficient. One finds that the extrapolation of the linear asymptotic depen-
dence of the actual density profile intersects the r -axis at r = −q, where q is the
extrapolation length and is a measure of the departure from hydrodynamic behaviour
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near the boundary. The calculation of the density and temperature profiles and the
extrapolation length are the main objectives.

For steady-state conditions, the Boltzmann equation for the velocity distribution
function of test particles, f (r, v,μ), is

vμ
∂ f (r, v,μ)

∂r
= nb(r)L[ f (r, v,μ)], (5.147)

where μ = cos(θ) and θ is the angle between v and the positive r -axis as shown
in Fig. 5.16. In Eq. (5.147), nb(r) is the number density of the background medium
and the linear Boltzmann collision operator for atom-atom collisions is defined by
Eq. (5.104) except that the background density appears explicitly. We choose a hard
sphere cross section, σel = πd2, and rewrite the Boltzmann equation in dimension-
less form.

With the transformation to dimensionless spatial variable,

z = πd2

r∫

0

nb(r
′)dr ′, (5.148)

which is the “optical depth” of the medium, the Boltzmann equation can be
written as

xμ
∂ f (z, x,μ)

∂z
= nb(r)L[ f (z, x,μ)], (5.149)

where L = L/(πd2v0), f = f [v0/nb(r)πd2]3, v0 = √
2kB Tb/m and x = v/v0 is

the reduced speed.
We seek solutions of this equation subject to the boundary condition that no

particles in the positive μ region return to the medium, that is

f (0, x,μ) = 0, 0 < μ < 1. (5.150)

The general solution is written as the sum of a spatially transient part, f tr , and an
asymptotic part, f as , that is

f = f tr + f as . (5.151)

The transient solution dominates near the z = 0 boundary and it is anticipated that
it decays out in a distance of the order of a few mean free paths. The asymptotic
solution dominates at large distances where hydrodynamics is expected to be valid.

The transient solution is of the form,

f tr (z, x,μ) =
∞∑

k=1

akeλk z Rk(x,μ), (5.152)
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where λk and Rk(x,μ) are the spatial eigenvalues and eigenfunctions, respectively,
given by

L[Rk] = (zμ)λk Rk . (5.153)

We choose basis functions which are products of spherical harmonics and associated
Laguerre polynomials, L(�+1/2)

n (x), that is

φnl(x,μ) = Nn�L(�+1/2)
n (x)P�(μ), (5.154)

where Nn� =
√ √

πn!(2l+1)
2Γ (n+�+ 2

3 )
is the combined normalizations of the Sonine-Laguerre

and Legendre polynomials. The eigenfunctions and eigenvalues are determined with
the expansion of Rk(x,μ) in the basis functions φn�(x,μ)

Rk(x,μ) = exp(−x2)

π3/2

∞∑

n=0

∞∑

�=0

bk
n�φn�(x,μ). (5.155)

The eigenvalue problem is then converted to the finite set of linear equations,

N∑

n′=0

L∑

�′=0

(
L(�)

nn′δ��′ − λk Mn�,n′�′
)

bk
n′�′ = 0. (5.156)

The quantities L(�)

n,n′ and Mn�,n′�′ are the matrix elements of the collision operator
and of xμ in the drift term on the left hand side of Eq. (5.149), respectively. The
matrix elements are defined by

L(�)

nn′ = 〈ψn�|L(�)|ψn′�〉,
Mn�,n′�′ = 〈ψn�|xμ|ψn′�′ 〉. (5.157)

and Mn�,n′�′ is given by

Mn�,n′�′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l + 1)
√

(n + � + 3
2 )/(2l + 1)(2l + 3), n′ = n, l ′ = l + 1

−(� + 1)
√

n/(2� + 1)(2� + 3), n′ = n − 1, l ′ = � + 1

�

√
(n + � + 1

2 )/(4�
2 − 1), n′ = n, l ′ = � − 1

−�
√

(n + 1)/(4�2 − 1), n′ = n + 1, �′ = � + 1

0, otherwise.

and determined with the recurrence relations for the Legendre and associated
Laguerre polynomials, namely,
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μP� = 1

2� + 1

[
(� + 1)P�(μ) + �P�−1

]
,

x L(�+1/2)
n−1 (x) = nL(�+1/2)

n−1 (x) − nL(�+1/2)
n (x) − (n + � − 1/2)L(�−1/2)

n−1 . (5.158)

Numerical diagonalization of the matrices in Eq. (5.156) with a QZ algorithm
(Golub and Van Loan 1996), also known as the Schur decomposition, gives approx-
imate eigenvalues and eigenfunctions to order K = (N + 1)(L + 1). The transient
solution is written as

f tr (z, x,μ) =
1
2 K−1∑

k=1

akeλk z Rk(x,μ). (5.159)

The spatial eigenvalues, λk , which includes the zero eigenvalue, occur in positive
and negative pairs so that the sum over k in Eq. (5.152) includes only nonzero neg-
ative λk (Lindenfeld and Shizgal 1983; Alterman et al. 1962). This is similar to the
radiative transfer problem in Sect. 5.3. If the positive eigenvalues are retained, the
solution diverges. Any discretization of the Boltzmann equation without eliminating
the positive spatial eigenvalues will lead to spurious results (Pierrard and Lemaire
1998).

The asymptotic solution is written in the form

f as(z, x,μ) = −( j/D) f M (x)[q + z − μU (p)], (5.160)

where the dimensionless flux and diffusion coefficient are given by j = j/v0
[n1(r)πd2]3 and D = D/[v0/n1(r)πd2], respectively. The function U (x) satisfies
the Chapman-Enskog equation for diffusion (Chapman and Cowling 1970), that is

L[μU (x)] = −xμ, (5.161)

and is solved with the expansion

μU (x) =
∞∑

n′=0

dn′ψn′1(x,μ). (5.162)

Consequently, the solution of Eq. (5.161) is given by

∞∑

n′=0

L(1)
n′,ndn′ = − 1√

2
δn,0 (5.163)

and the diffusion coefficient is

D = d0√
2
. (5.164)
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The advantage of the associated Laguerre basis functions is that the diffusion
coefficient is given in terms of the one expansion coefficient, d0. However, the matrix
equation, Eq. (5.163), must be inverted and the convergence of d0 verified.

The general solution of the Boltzmann equation is written as the sum of the
transient solution and the asymptotic solution, that is

f (z, x,μ) = F(x)

⎡

⎢⎣

1
2K −1∑

k=1

akeλk z
L∑

�=0

N∑

n=0

bk
n�ψn�(x,μ)

+ 1

D

(
q + z −

N∑

n=1

dnψn�(x,μ)

)]
. (5.165)

The coefficients bk
n� and λk are determined with the solution of the eigenvalue

problem, Eq. (5.156). The dk coefficients are calculated with the inversion of the
Chapman-Enskog equation, Eq. (5.163). The general solution is then completely
specified with the (K/2− 1) ak coefficients and the extrapolation length with appli-
cation of the boundary condition, Eq. (5.150).

However, it should be clear that the expansion Eq. (5.165) cannot satisfy exactly
this boundary condition for all x and μ. There are several different methods to use
to apply the boundary condition and no one method is a priori better than the others.
This is a limitation of a spectral method based on polynomial basis functions. We do
not provide the details of this aspect of the problem discussed elsewhere (Lindenfeld
and Shizgal 1983; Garcia and Siewert 1996; Ghosh 2014) and references therein. The
Marshak boundary condition (Davison 1957; Williams 1971) which sets moments
of the distribution function to zero at the boundary provides convergent results with
modest sized basis sets (N = 9 and L = 11).

One of the main objectives is the density profile of the test particle which is shown
in Fig. 5.17. The solid lines are the resultswith the solution of theBoltzmann equation
whereas the dashed lines represent the extrapolation of the asymptotic profiles for
large x . The intercept on the negative z axis is −q.

The extrapolation length, q, versusmass ratio is shown in Table5.11with a limited
basis set (N = 9, L = 11). The value of the extrapolation length in the one-speed
case (γ → ∞) is 0.7104 to four significant figures. A more precise value reported
by Loyalka and Naz (2008) is 0.710446089599.

The Milne problem was also considered with the Coulomb cross section for col-
lisions between charged particles (Barrett et al. 1992) for which the Boltzmann
collision operator is replaced with the Fokker-Planck differential operator. This has
been referred to as the Coulomb Milne problem (Lie-Svendsen and Rees 1996) and
as amodel for the outflow of light ions from the high latitude ionosphere and the solar
wind (Echim et al. 2011). The Fokker-Planck equation is also the basis for the study
of the plasma sheath problem. This is a Milne problem coupled to the Poisson equa-
tion which provides the electric field in the sheath near an electrode (Vasenkov and
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Fig. 5.17 The solid lines represent the density profile from the solution of the Boltzmann equation.
The dashed lines are the asymptotic linear variation extrapolated back to the negative z axis with
the intercept equal to −q. The mass ratios from top to bottom are γ = ∞ (the one-speed case),
10, 1 and 1/9, respectively. Reproduced from Lindenfeld and Shizgal (1983) with permission of the
American Physical Society

Table 5.11 The variation of the extrapolation length versus mass ratio γ with the solution of the
Boltzmann equation with N = 9 Sonine-Laguerre polynomials and L = 11 Legendre polynomials

γ = M/m q

1 0.9370

1.5 0.8564

2.333 0.7984

4 0.7569

9 0.7278

19 0.7170

39 0.7123

99 0.7097

∞ 0.7104

Reproduced in part fromLindenfeld andShizgal (1983)with permission from theAmericanPhysical
Society

Shizgal 2000, 2002) analogous to the recent treatment of the behaviour of electric
arcs (Lowke and Tanaka 2006).

The Boltzmann equation, Eq. (5.149), may appear similar to the initial value prob-
lem whereby z plays the role of t , but there is an important distinction owing to the
occurrence of μ on the left hand side. If one were to divide through by zμ and inte-
grate directly in z there would be spurious results as noted by Pierrard and Lemaire
(1998) in their modeling of the terrestrial polar wind.
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5.7.3 A Mixed Spectral/Pseudospectral Solution
of the Boltzmann Equation for the Escape
of Light Atoms from a Planetary Atmosphere

The Milne problem presented in Sect. 5.7.2 also serves as a model for the escape
of a minor species from a planetary atmosphere. For the terrestrial atmosphere, this
refers to the escape of atomic hydrogen and helium from the high altitude rarefied
region of the atmosphere referred to as the exosphere. The bottom of the exosphere
is the exobase where the mean free path of the major species, namely atomic oxygen,
is equal to the barometric scale height (Fahr and Shizgal 1983). If we assume that
the distribution function of escaping species is a Maxwellian, the equilibrium escape
flux from the exobase is the Jeans flux given by

FJ = 2π

∞∫

vesc

π/2∫

0

F(v)v cos θ sin θdθv2dv,

= nc

2

√
2kTc

m

(
1 + λesc

)
e−λesc , (5.166)

where λesc = mv2esc/2kB Tc is the escape parameter, vesc = 11.2km/s is the escape
speed andTc is the temperature at the exobase often referred to as the critical level. The
atmosphere above the exobase is assumed to be collisionless. The loss of energetic
particles from the atmosphere perturbs the distribution function from Maxwellian
such that the nonequilibrium escape flux, F , is less than the equilibrium Jeans escape
flux, FJ , and F/FJ < 1. This is analogous to the nonequilibrium effects in reactive
systems discussed in Sect. 5.4.4 except that in this application we are treating a
spatially nonuniform system.

We consider a slab of atmosphere so that a plane parallel model is sufficient. We
measure altitude in terms of the atmospheric “optical depth” that is

z = −
rtop∫

r

σtot nb(r
′)dr ′, (5.167)

where nb(r) is the density of the heavier background gas bound to the planet. The
Boltzmann equation for the distribution function of the minor escaping constituent,
with neglect of the gravitational force in the drift term (Shizgal andBlackmore 1986),
is Eq. (5.147) as in the Milne problem, that is,

xμ
∂ f

∂z
= J̃ [ f ], (5.168)

whereμ = cos θ and J̃ = √
m/2kB Tb J/nb(r)πd2. The physical situation is depicted

in Fig. 5.18 where the exobase is the dashed line at z = −1, where the mean free
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Fig. 5.18 Plane parallel
model of an atmosphere with
the critical level at z = −1
measured in terms of the
atmospheric optical depth.
The lower boundary at
z = −Δ is in the collision
dominated atmosphere
whereas the escape of atoms
is from the “top” of the
atmosphere at z = 0

path is equal to the atmospheric scale height. At the lower boundary in the collision
dominated region (the asymptotic condition in the Milne problem), the distribution
is assumed to be a Maxwellian modified with a drift to account for the flux of
particles from below. This is the Chapman-Enskog regime far from the top boundary.
Therefore, at z = −Δ, which is sufficiently deep within the collision dominated
region, we impose the boundary condition with an anisotropy linear in μ, that is

f (x < xesc,μ,−Δ) = F(x) + μU (x), (5.169)

where F(x) is the Maxwellian and U (x) is to be determined.
This is supplemented with boundary conditions at the top taking into account the

escape speed from the planet. Particles with less than the escape speed get reflected
back down so that

f (x < xesc,−μ, 0) = f (x < xesc,μ,−Δ), μ > 0, (5.170)

and there are no incoming particles in excess of the escape speed, so that

f (x > xesc,μ, 0) = 0, μ < 0. (5.171)

Shizgal and Blackmore (1986) used a mixed spectral/pseudospectral method of
solution of the Boltzmann equation expressed in terms of the expansion of the
anisotropy of the distribution function in Legendre polynomials

f (x,μ, z) =
L∑

�=0

f�(x, z)P�(μ) (5.172)

which yields the set of coupled integral equations

∂ f�(x, t)

∂t
+ x

(
a�

∂ f�−1(x, t)

∂z
+ a�+1

∂ f�+1(x, t)

∂z

)
=

∞∫

0

k(�)
L (x, y) f�(y, t)dy

− Z(x) f�(x, t), (5.173)
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where a� = �/
√

(2� − 1)(2� + 1) and the recurrence relation for the Legendre poly-
nomials has beenused.WediscretizeEq. (5.173)with theGauss-Maxwell quadrature.
However, in view of the boundary condition dependent on the reduced critical escape
speed, xesc = √

λesc, we divide the semi-infinite speed interval into two subinter-
vals, namely [0,√λesc] and [√λesc,∞] so as to apply the boundary condition. Two
sets of polynomials orthogonal with respect to w(x) = x2e−x2 separately on these
intervals, together with the associated quadratures are calculated with the methods
presented in Chap.2. This procedure can be compared to the “double Gauss” method
in radiative transfer (Sykes 1951; Stamnes et al. 1988) with the half-range Legendre
polynomials.

Although we have retained the time dependence in Eq. (5.173), we are interested
in the steady state problem. The Boltzmann equation is discretized with Gauss-
Legendre quadrature points in z with the transformation of the interval [−1, 1] to
[0,−Δ]with quadrature points at the interval boundarieswith the appropriate scaling.
The two interval Maxwell quadratures in reduced speed, x , are used to discretize the
kernels k(�)

L (x, y). The derivativewith respect to z is evaluatedwith the physical space
representation of the derivative operator with the transformed Legendre quadratures.
As the dimension of the resulting linear matrix equation is large, the time dependence
is retained and the steady solution determined with a time iteration. In this scheme
the ith iterate is given by

Δ f (�)
i (xn, zm) =

[ N∑

j=1

B(�)
nj f (�)

i (x j , zm)

+ xn

M∑

k=1

Dmk

(
a� f (�−1)

i (xn, zk) + a�+1 f (�+1)
i (xn, zk)

)

− S[ f (�)
i (xn, zm) − g(�)(xn, zm)]

]
Δt, (5.174)

where B(�)
nj is the physical space representation of the kernels and Dmk is the Gauss-

Legendre physical space matrix derivative operator in altitude, z.
An ansatz is made for the form of the initial distribution, given by

f (0)(x,μ, z) = F(x)

(
− z

Δ

[
1 + 3(1 + λ) exp(−λ)μ

2
√

π

]

+
[
1 + z

Δ

]
[H(xc)H(μ) + h(−μ)]

)
, (5.175)

where the Heaviside function is H(x) = 1 for x > 0 and H(x) = 0 for x < 0.
Equation (5.175) satisfies the boundary condition at the top (z = 0) and the initial
form of the anisotropy at the bottom (z = −Δ). The Legendre polynomial expansion
of Eq. (5.175) provides the initial Legendre coefficients, f (�)

0 (x, z).

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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The term with S at the end of Eq. (5.174) is an added convergence term where at
t = 0, g(�) = f (�)

0 . At each time step, the boundary condition at the top (z = 0),

Eq. (5.170), is imposed by transforming f (�)
i (xn, 0) to fi (xn,μ, 0) and setting the

distribution function for incoming particles (μ < 0) to be equal to outgoing particles
(μ > 0) except for values of x >

√
λesc. Once the top boundary condition is

imposed, the distribution function is transformed back to the Legendre polynomial
basis. When the iterative scheme yields a converged solution g(�) = f (�)

i−1 and the
last term in small square brackets in Eq. (5.174) will be zero.

This iterative procedure is very similar to the one used by (Lie-Svendsen and
Rees 1996) concerning the escape of the minor ion, He+, in a background of O+
with the replacement of the integral Boltzmann collision operatorwith the differential
Fokker-Planck operator for Coulomb collisions. The authors refer to this problem as
the Coulomb Milne problem (Barrett et al. 1992). Thus the Milne problem serves as
the basis for several different physical systems in space and plasma physics.

The principal objective is to determine the reduction of the actual flux, F , from
the Jeans’ flux, FJ . The ratio F/FJ < 1 owing to the depletion of particles with
v > vesc in the tail of the Maxwellian. The ratio F/FJ is shown in Fig. 5.19 versus
Tc, the temperature at the exobase. The results of the formalism described here are
shown as the solid line with solid circles in comparison with two separate Monte
Carlo simulations (Chamberlain and Campbell 1967; Brinkman 1970) and from the
results reported by Pierrard (2003). The lower boundary condition in (Pierrard 2003)
is not the asymptotic Chapman-Enskog distribution for this collisionally dominated
regime. It is aMaxwellianwith only upwardmoving (μ > 0) particles. It is reasonable
to expect that if the lower boundary is sufficiently deep in the atmosphere, that within
a few mean free paths upwards from the lower boundary, the distribution function
would attain the same form, Eq. (5.169), used by Shizgal and Blackmore (1986), that

0.8 1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

Fig. 5.19 The variation of the nonequilibrium escape flux, F , relative to the equilibrium Jeans
flux, FJ versus the temperature at the exobase, Tc; the different results correspond to the work
of SB (Shizgal and Blackmore 1986), B (Brinkman 1970), CC (Chamberlain and Campbell 1967)
and P (Pierrard 2003). Reproduced from Shizgal and Blackmore (1986) and Pierrard (2003) with
permission from Elsevier
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is, a drifting Maxwellian. With increasing altitude, the distribution function will be
further modified owing to the escape of particles at the top.

5.7.4 Electric Field Induced Ion Drift in Buffer Gases;
Applications to Ionospheric and Space Physics

A classic problem in kinetic theory is the drift of ions of mass m dilutely dispersed
in a background atomic or molecular gas of mass M and density nb(r) under the
influence of an external spatially uniform and steady electrostatic field (Danailov et
al. 2008; Viehland and Chang 2012). The distribution function is non-Maxwellian
in speed, x , anisotropic in velocity and depends on the electrostatic field strength,
E , and the background density, nb(r). The steady state Boltzmann equation for a
gaseous ion in a background of a single atomic gas is

v · ∇ f + ZionE
m

· ∇v f = L f, (5.176)

where Zion is the ion charge, E is the electrostatic field directed along the polar
axis and L is the linear collision operator given by Eq. (5.104). The anisotropy of
the distribution function in velocity is expressed by the dependence on μ = cos θ
where θ is the angle between z and v. The Chapman-Enskog method discussed in
Sect. 5.4.1 can be used for small electrostatic field strengths to calculate the diffusion
coefficient D and the mobility K that appear in the expression for the ion flux

Fion = D∇nb(r) + nb(r)K E. (5.177)

The transport coefficients, D and K , are determinedwith the differential cross section
σ(g, θ) for a particular ion-atomsystem. In this small E limit, themobility is related to
the diffusion coefficient by theNernst-Townsend-Einstein relation K = Zion D/kB T
(McDaniel and Mason 1973) and derived also on the basis of Brownian motion
(Newburgh et al. 2006).

At higher electrostatic field strengths, the distribution function is more strongly
perturbed fromaMaxwellian in speed and anisotropy.We assume that the ions diffuse
with a spatially uniform distribution and the Boltzmann equation for the distribution
function, f (v), is given by

Zion

m
E · ∇v f = L f. (5.178)

The distribution function is expanded in the direct product of the Sonine-Laguerre
functions in x2 and Legendre polynomials in μ, that is

f (x,μ) = F(x)

∞∑

n=0

∞∑

�=0

fn,�x�S(�+1/2)
n (x2)P�(μ), (5.179)
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This procedure is very similar to the one used to treat theMilne problem in Sect. 5.7.2.
With the substitution of Eq. (5.179) into (5.178), multiplication by the basis functions
and integration over v, as we have done previously in other applications, we get the
following set of linear equations for the expansion coefficients (see Sect. 6-1-1 in
Mason and McDaniel (1988)),

Zion E

Nm

√
m

2kB T

[
�(� + 1

2
+ n) fn,�−1 − (� + 1) fn−1,�+1

]
= (� + 1

2
)
∑

k=0

L(�)
nk fn,�,

(5.180)

where the matrix elements of the linear collision operator, L(�)
nk , are given by Eq.

(6-1-19), and Table5-4-2 in McDaniel and Mason (1973). The collision operator
matrix elements are diagonal in � and the terms in � + 1 and � − 1 from the drift
term on the left hand side are coupled arising from the recurrence relations of the
Legendre polynomials. The recurrence relation for the Sonine-Laguerre polynomials
has also been used.

This is the spectral Galerkin solution of the Boltzmann equation with the Sonine-
Laguerre basis functions orthogonal with the Maxwellian weight function. The
mobility is given in terms of the single f0,1 coefficient which is coupled to all the
higher order coefficients. With increasing electric field strength, the anisotropy and
non-Maxwellian features of the distribution function increase and the convergence
for the mobility is slow and may even diverge.

To improve the convergence at higher electric field strengths, basis functions
orthogonal with a weight function that closely approximates the form of the antic-
ipated solution are preferable. In Chap.4, we demonstrated the use of the scal-
ing of the quadrature weights and points to improve the convergence of certain
test functions with a scaling factor s which we identified with a “scaling” tempera-
ture, that is s2 = Ts/T . In the ion-mobility literature (McDaniel and Mason 1973;
Lin et al. 1979b; Viehland and Lin 1979; Mason andMcDaniel 1988), this procedure
is referred to as the two-temperature method with the reduced speed defined with Ts

rather than with T . The matrix elements depend on T and Ts where Ts is varied to
accelerate the convergence much in the same way as quadrature points are scaled.

However, with further increase in the electric field strength, the two-temperature
method also fails to provide accurate results and a different set of basis func-
tions is constructed, motivated again by choosing a weight function that better
approximates the anisotropy of the anticipated distribution function. Thus, a drifting
bi-Maxwellian weight function in terms of parallel, v|| = vμ, and perpendicular,
v⊥ = v

√
1 − μ2, velocity components relative to the electric field direction are

used, that is,

f (v‖, v⊥) = 4π
√

m

2kB T‖

(
m

2kB T⊥

)
exp

(
− mv2⊥

2kB T⊥

)
exp

(
− m(v‖ − W )2

2kB T‖

)
.

(5.181)

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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with an unknown drift velocity W and unkown temperature parameters, T⊥ and
T‖. The expansion in terms of reduced energies, y⊥ = mv2⊥/2kB T and y‖ =
m(v‖ − W )2/2kB T , is

f (y‖, y⊥) = e−y2‖−y2⊥
∞∑

n=0

∞∑

m=0

cnm Hn(y‖)S(m)(y2⊥), (5.182)

with y‖ ∈ (−∞,∞) and y⊥ ∈ [0,∞]. This approach is referred to as the three-
temperature model as it depends on T‖, T⊥ and T . The basis functions used to model
ion velocity distributions in the high-latitude ionosphere (St.-Maurice and Schunk
1976, 1979) are also the classical Laguerre polynomials L(0)

n (y⊥) and Hermite poly-
nomials, Hn(y‖).

The basis set used by researchers in gaseous ion transport is the product of three
Hermite polynomials in the Cartesian velocity coordinates (Lin et al. 1979b; Mason
andMcDaniel 1988). The matrix elements of the collision operator can be calculated
but with greatly increased complexity; see the Appendix in Lin et al. (1979b). The
calculations are iterative in that an initial estimate of T⊥, T‖ and W must be made
and subsequently updated from the moment solution. Thus the calculation has two
convergence issues, namely (1) the convergence of the polynomial expansion and
(2) the convergence of the iteration.

Viehland (1994) used a Gram-Charlier approach (Blinnikov and Moessner 1998)
with a more flexible weight function with several unknown parameters that are
updated with an iterative solution of the Boltzmann equation. The parameters in
the weight function include as in the other methods W , T‖, T⊥ and Ts as well as the
skewness and the kurtoses parallel and perpendicular to the electrostatic field. There
are still other parameters related to energy and velocity correlations. The calculation
of the matrix representation of the collision operator in this basis set defined by this
weight function is more involved than for the two and three temperature models. The
details of these calculations can be found in the Appendix of Lin et al. (1979b) with
the matrix elements are expressed in terms of summations with 25 indices. With this
approach, it is possible to compute gaseous ion transport coefficients directly from
ab initio potential energy functions for atomic ions in atomic gases, with greater
precision and accuracy than they can be measured.

It is clear that the choice of weight function and associated basis functions is
crucial in the modelling of ion-mobilities as well as in other similar applications in
ionospheric and space science. In the terrestrial ionosphere there is a geomagnetic
field, B, perpendicular to the ionospheric electric field E. The use of different weight
functions and polynomial basis functions in ionospheric physics was reviewed by
St.-Maurice and Schunk (1979). The objective is to derive a small set of partial differ-
ential equations in the lower order moments. This approach is very similar to Grad’s
13-moment method (Grad 1949; Struchtrup 2005). Models with an increasingly
larger number of moments have been developed (Schunk 1977; Ma and St.-Maurice
2008).
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Themain thrust of the theoretical methods for the solution of the Boltzmann equa-
tion is to choose a weight function close to the anticipated solution. A non-classical
weight function in y⊥ is derived with the Bahatnager-Gross-Krook relaxation time
approximation to the collision operator (Bhatnagar et al. 1954) that yields an analytic
solution to the Boltzmann equation (St.-Maurice and Schunk 1974; Hubert 1983).
This nonclassical weight function is then used to define a set of polynomials that
provide a more rapid convergence than the expansions based on the Sonine-Laguerre
polynomials (Shizgal and Hubert 1989). This basis set has also been used to pro-
vide lower order approximations of the nonequilibrium speed distributions observed
in astrophysical winds (Leblanc and Hubert 1997). This subject is well beyond the
scope of this book but we emphasize the strong overlap between these research fields.

5.8 The Nonlinear Isotropic Boltzmann Equation

In Sect. 5.5, we determined the eigenvalue spectrum of the collision operator for the
linearized Boltzmann equation with expansions in the Sonine-Laguerre polynomi-
als as well as with a multidomain spectral element method. The time scale of the
approach to equilibrium for initial distributions close to the equilibriumMaxwellian
distribution is determined by the eigenvalues of the linearized collision operator.
In particular the lowest nonzero eigenvalue determines the final approach to equi-
librium. In this section, we are concerned with the approach to equilibrium of a one
component spatially uniform gas determined with the nonlinear Boltzmann equation
given by

∂ f (v, t)

∂t
=
∫ ∫ [

f1(v′
1) f (v′) − f1(v1) f (v)

]
gσ(g,Ω)dv1, (5.183)

analogous to Eq. (5.30) without the gradients in space and velocity in the drift term
on the left hand side. For this initial value problem, we assume that the distribution
function is isotropic.

This problem has been considered by many researchers since the time of Ludwig
Boltzmann and a complete review is a daunting task. We highlight here some of the
major advances and also provide the results of recent numerical simulations.

The interest in the time evolution of the nonlinear Boltzmann equation increased
dramatically with the discovery of an analytic solution for the Maxwell molecule
model with the isotropic cross section, σ(g,Ω) = κ/g. The result was originally
reported in the MSc thesis by Krupp (1967) and later published independently by
Krook and Wu (1976) and by Bobylev (1976, 1984). This explicit time dependent
solution is given by

fBK W (x, t) = 2x2e−x2/K (t)

√
πK (t)

[
5K (t) − 3

K (t)
+ 2(1 − K (t))

K 2(t)
x2
]
,
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where t is in units of 4πnκ and K (t) = 1 − 2
5e−t/6, analogous to a time dependent

temperature. This model system serves as a benchmark to test different numerical
methods for the solution of the nonlinear Boltzmann equation (Filbet et al. 2006;
Filbet and Mouhot 2011; Wu et al. 2013; Ghiroldi and Gibelli 2014). The early work
on the nonlinear Boltzmann equation was reviewed by Ernst (1981, 1984).

5.8.1 Finite Difference Method of Solution of the Nonlinear
Boltzmann Equation; Approach to Equilibrium

We restrict our attention to isotropic distributions and the hard sphere collision cross
section. Spectral methods with an expansion of the isotropic time dependent distri-
bution function in the Sonine-Laguerre polynomials were employed long ago (Abe
1971; Weinert et al. 1980). Additional results were reported in a series of papers by
Kügerl and Schürrer (1990) and by Ender et al. (2011).

The distribution function is expanded in the set of the Sonine-Laguerre polyno-
mials S(n)(x2), that is

f (x, t) = 4√
π

x2e−x2
∞∑

n=2

cn(t)S(n)(x2), (5.184)

where c0(t) = 0 and c1(t) = 0 owing to particle and energy conservation, respec-
tively. The expansion coefficients are given by

cn(t) =
√

π

2

n!
Γ (n + 3/2)

∞∫

0

f (x, t)S(n)(x2)dx . (5.185)

With theSonine-Laguerre expansion, the nonlinearBoltzmannequation is reduced
to an infinite set of coupled ordinary differential equations for time dependent c j (t)
coefficients. The substitution of Eq. (5.184) into (5.183) yields the system of nonlin-
ear ordinary differential equations

dcn(t)

dt
=

∞∑

k=2

Jnkck(t) +
∞∑

k=2

∞∑

�=2

N j,k�ck(t)c�(t), n ≥ 2 (5.186)

where the matrix elements of the linearized operator are denoted by Jnk ≡ 〈n|J |k〉
given by Eq. (5.65) and the nonlinear tensor, Nn,k�, is defined by

Nn,k� =
∫ ∫ ∫

F1F2S(n)
1

[
S(k)′
1 S(�)′

2 − S(k)
1 S(�)

2

]
σgdΩdv1v2, (5.187)

and evaluated as described elsewhere (Shizgal and Karplus 1970; Abe 1971; Shiz-
gal 1971; Kügerl and Schürrer 1990; Weinert et al. 1980). The Maxwellian weight
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function in Eq. (5.187) is denoted by F . The spectral method based on the set of
equations, Eq. (5.186) is analogous to the solution of the linearized Boltzmann equa-
tion in Sect. 5.4.3 with the added nonlinear terms.

The solution of the nonlinear Boltzmann equation is then obtained with the choice
of an initial distribution, which provides the initial values of the expansion coef-
ficients, cn(0), and the subsequent numerical integration of the set of equations,
Eq. (5.186). This method of solution is limited to initial distributions close to the
equilibrium Maxwellian owing to the difficulty of accurately calculating the non-
linear matrix elements Nn,k� as well as the convergence of the initial distribution in
the Sonine-Laguerre polynomials. The expansion in Sonine-Laguerre polynomials
can suffer from spurious oscillations and give distributions that become negative in
some regions. However, the method is attractive as the final approach to equilibrium
will be determined by the linear terms in Eq. (5.186) and thus the spectral properties
of J , discussed in Sect. 5.5.2. This spectral method of solution has been reported by
other researchers (Abe 1971; Weinert et al. 1980; Kügerl and Schürrer 1990; Ender
et al. 2011).

5.8.2 Finite Difference Discretization of the Nonlinear
Boltzmann Equation

We solve the nonlinear Boltzmann equation with a stable finite difference method
and determine the expansion coefficients, cn(t), with the numerical solution. For
the hard sphere cross section, we define a dimensionless time t in units of τ =√

m/πkB Tb/(4nd2) and the reduced speed y = √
2kB T/m. We rewrite the initial

value problem defined by the nonlinear Boltzmann equation in the equivalent form
(Kügerl and Schürrer 1990; Kabin and Shizgal 2003),

∂ f (y1, t)

∂t
= Fin(y1, t) − Fout (y1, t), (5.188)

where

Fout (y1, t) = f (y1, t)

∞∫

0

Sout (y1, y2) f (y2, t)dy2, (5.189)

and

Fin(y1, t) =
∞∫

0

∞∫

0

Sin(y′
1 → y1; y′

2) f (y′
1, t) f (y′

2, t)dy′
1dy′

2. (5.190)
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For hard spheres, the scattering kernels can be written as follows (Kügerl and
Schürrer 1990):

Sout (y1, y2) = 1

2

⎧
⎪⎪⎨

⎪⎪⎩

y1

(
1 + y22

3y21

)
for y1 ≥ y2,

y2

(
1 + y21

3y22

)
for y1 ≤ y2,

Sin(y′
1 → y1, y′

2) = y1
y′
1y′

2
min(y1, y2, y′

1, y′
2)H(y22 ),

where H(x) is the Heaviside step function and from energy conservation we have
that y21 + y22 = y′2

1 + y′2
2 . Particle number conservation gives the out-scattering kernel

in terms of the in-scattering kernel by an integration, that is

Sout (y1, y2) =
∞∫

0

Sin(y1 → y′
1, y2)dy′

1.

We also have the detailed balance symmetry property

Sin(y′
1 → y1, y′

2) = Sin(y′
2 → y1, y′

1). (5.191)

We define the integral quantities

F1(y1, t) =
y1∫

0

f (y, t)dy,

F2(y1, t) =
∞∫

y1

f (y, t)

y
dy, (5.192)

so that Fin defined by the double integral (5.190) can be written as

Fin =
√

π

2

[
2v1F1(y1, t)F2(y1, t) + y21 F2

2 (y1, t) + I (y1, t)

]
,

where the last term is the integral

I (y1, t) =
∫ ∫

S0

y1y2
y′
1y′

2
f (y′

1, t) f (y′
2, t)dy′

1dy′
2. (5.193)

The two dimensional integral is evaluated over the area S0 defined by a circle
y′2
1 + y′2

2 = y21 and the straight lines y′
1 = y1 and y′

2 = y1. This is a significant
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simplification of the original expression (5.190) because we have reducedmost of the
double integrals to the products of single integrals.With the substitution, ξ1 = y′2

1 /y21
and ξ2 = y′2

2 /y21 , we get

I (y, t) = y21
4

∫ ∫

S1

√
ξ1 + ξ2 − 1

ξ1ξ2
f (y′

1, t) f (y′
2, t)dξ1dξ2. (5.194)

where S1 is a triangle with the vertices at (1, 0), (1, 1), and (0, 1). This integral can
be efficiently evaluated with the cubature rule for a simplex (Stroud 1971).

5.8.3 Time Dependent Solutions

The reduced speed variable, y, is discretized uniformly according to yi+1 = yi + h
on the finite interval [0, ymax ]. The time variable is also discretized according to
tn+1 = tn + Δt . We integrate the nonlinear Boltzmann equation, Eq. (5.188), in t
with an Euler integration algorithm so that the discretized version of the Boltzmann
equation is

f (n+1)(yi ) = f (n)(yi ) + Δt[F (n)
in (yi ) − F (n)

out (yi )]. (5.195)

The term Fn
out (yi ) is determined from Eq. (5.189) with a Simpson rule integration

over y2 on the uniform grid. The double integral over ξ1 and ξ2 in Eq. (5.194) over
the triangle S1 is evaluated by dividing the triangle into several smaller triangles.
The integral over each of these triangles is evaluated with a cubature for a triangle
(Stroud 1971). With this technique, we have simplified the discretization of the in-
scattering integralwhich presents themajor challenge for the solution of the nonlinear
Boltzmann equation.

Figure5.20 shows the time evolution of the distribution function with the initial

distributions (A) f (y, 0) = y2e−5y2 + e4(y−3)2 and (B) f (y, 0) = e−5
√

|y−1|2 +
e−5

√
|y−3|2 . The first has a large peak at y = 3 and a smaller peak at lower speeds.

The second has two large peaks at y = 1 and 3, respectively.We choose ymax = 8 and
500 grid points in y. The time step Δt is taken sufficiently small so that the number
density and temperature are conserved to 8 significant figures. The time dependent
distributions shown in Fig. 5.20 do not drift and the shape evolves to a Maxwellian
shown by the dashed curves.

Wealso consider an initial distribution function f (x, 0) = M(x)
(
5
2 − 2x2+ 4

5 x4
)

used previously (Kügerl and Schürrer 1990), which corresponds to c0(0) = 1,
c1(0) = 0 and cn(0) = 4

5δn2, n ≥ 2, in Eq. (5.185). The function f (x, 0) is a
bimodal distribution with a slightly populated tail. In Fig. 5.21(A), we show the
time dependent solution of the nonlinear Boltzmann equation with this initial condi-
tion. The dashed curve is the equilibrium Maxwellian. In Fig. 5.21(B), we show the
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Fig. 5.20 Time evolution of the distribution function for the dimensionless time in units of τ from
top to bottom equal to 0, 0.1, 0.4, 0.7 and 1.4; the dashed curves are the equilibrium distributions;
(A) initial distribution f (y, 0) = y2e−5y2 + e4(y−3)2 ; (B) f (y, 0) = e−5

√|y−1| + e−5
√|y−3|.

Reproduced fromKabin and Shizgal (2003) with permission from the American Institute of Physics

(A) (B)

Fig. 5.21 (A) Time evolution of the distribution function for f (x, 0) = M(x)
(
5
2 − 2x2 + 4

5 x4
)
;

The reduced times from top to bottom are 0.3, 1, 2 and 3. The dashed curve is the equilibrium
Maxwellian; (B) The time dependence of the time derivative of ln cn(t) showing that the approach
to equilibrium for all coefficients is given by the “spectral gap”, namely λ2. Reproduced from
Sospedra-Alfonso and Shizgal (2012b) with permission from the American Institute of Physics

time dependence of the time derivative of ln cn(t) where the expansion coefficients
are calculated with Eq. (5.185) and a Simpson rule integration over the distribution
function f (n)(yi ) determined with the finite difference solution. It is clear from these
results that the rate of approach to equilibrium is asymptotically the same for all
coefficients and determined by the “spectral gap”, namely λ2 = 0.67123 of the lin-
earized collision operator, J . We have used to advantage a finite difference algorithm
to calculate the coefficients in a spectral representation of the distribution function
without a direct solution of the nonlinear moment equations, Eq. (5.186). A primary
objective has been the demonstration of the approach to equilibrium as given by the
spectral gap.

The solution of the nonlinear Boltzmann equation for nonuniform systems
presents considerable challenges for the accurate representation of distribution
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functions that may vary rapidly in position and velocity. The direct simulationMonte
Carlo (DSMC) method (Bird 1994) has been used for several decades to study such
rarefied gas dynamical problems. The method has been used with success but is
not useful for systems approaching the small Knudsen number collision dominated
regime. Spectral methods, based on Fourier basis functions, for the nonlinear Boltz-
mann equation have been reported recently (Filbet et al. 2006; Heintz et al. 2008;
Filbet and Mouhot 2011; Wu et al. 2013). The method requires that the velocity and
spatial intervals are bounded. The Fourier transform in velocity

f (N )(v) =
N∑

k=−N

f̂kek·v, (5.196)

fk(t) = 1

(2π)3

∫
f (v)e−ik·vdv, (5.197)

is used to represent the distribution function much in the same way as other basis
sets are used. Filbet and Russo (2003) reduced the nonlinear spatially homogeneous
Boltzmann equation, Eq. (5.183), to Fourier form as given by

d f̂k

dt
=

min(N ,k+N )∑

m=max(−N ,k−N )

f̂k−m f̂m [B(k − m, m) − B(m, m)] (5.198)

where the “kernel modes”, B(n, m), are the Fourier transforms of the collision flux
B(g, θ) = gσ(g, θ) in the collision term. The structure of these moment equations
is similar to Eq. (5.186) except that in the former, the linear term has been retained.

An excellent review of current numerical methods for the study of rarefied gas
dynamical flows modelled with the nonlinear Boltzmann equation was presented by
Narayan andKlöckner (2009)where the details of the derivation of Eq. (5.198) can be
found. These authors have also provided a bibliography to the current numericalmod-
eling efforts in this research area which is developing rapidly. Other direct methods
of solution of the nonlinear homogeneous Boltzmann equation include the discon-
tinous Galerkin method (Aleekseenko and Josyula 2014) and the pseudo-spectral
method based on half-range Hermite polynomials (Ghiroldi and Gibelli 2014). A
complete discussion of these recent applications with comparisons would require
another chapter if not a separate volume.
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Polyatomic Gases Volume 2: Cross Sections, Scattering, and Rarefied Gases. Oxford University
Press, Oxford (1991)

McDaniel, E.W., Mason, E.A.: The Mobility and Diffusion of Ions in Gases. Wiley, New York
(1973)

Milne, E.A.: Radiative equilibrium in the outer layers of a star; the temperature distribution and the
law of darkening. Mon. Not. R. Astron. Soc. 81, 361–375 (1921)

Monchick, L., Mason, E.A.: Free flight theory of gas mixtures. Phys. Fluids 10, 1377–1390 (1967)
Mott-Smith, H.M.: A new approach in the kinetic theory of gases. MIT Linc. Lab. V2, 1–1 (1954)
Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation
for hard potentials. Commun. Math. Phys. 261, 629–672 (2006)



References 327

Mouhot, C.: Quantitative linearized study of the Boltzmann collision operator and applications.
Commun. Math. Sci. 1, 73–86 (2007)

Mozumder, A.: Electron thermalization in gases. III epithermal electron scavenging in rare gases.
J. Chem. Phys. 74, 6911–6921 (1981)

Nakayama, T., Takahashi, K., Matsumi, Y.: Thermalization cross sections of suprathermal N(4S)
atoms in collisions with atmospheric molecules. Geophys. Res. Lett. 32, L24803 (2005)

Nan, G., Houston, P.L.: Velocity relaxation of S(1D) by rare gases measured by Doppler spec-
troscopy. J. Chem. Phys. 97, 7865–7872 (1992)

Narayan, A., Klöckner, A.: deterministic numerical schemes for the Boltzmann equation, 1–51
(2009) ArXiv e-prints

Newburgh, R., Peidle, J., Rueckner, W.: Einstein, Perrin, and the reality of atoms: 1905 revisited.
Am. J. Phys. 74, 478–481 (2006)

Nicholson, J.W., Rudolph, W., Hager, G.: Using laser pulse dynamics to probe velocity distribution
of excited iodine. J. Chem. Phys. 104, 3537–3545 (1996)

Nielsen, S.E., Bak, T.A.: Hard sphere model for the dissociation of diatomic molecules. J. Chem.
Phys. 41, 665–674 (1964)

Oh, S.-K.: Modified Lennard-Jones potentials with a reduced temperature-correction parameter for
calculating thermodynamic and transport properties: noble gases and their mixtures (He, Ne, Ar,
Kr, and Xe). J. Thermodyn. 2013, 828620 (2013)

Park, J., Shafer, N., Bersohn, R.: The time evolution of the velocity distribution of hydrogen atoms
in a bath gas. J. Chem. Phys. 91, 7861–7871 (1989)

Parker, E.N.: Dynamical theory of the solar wind. Space Sci. Rev. 4, 666–708 (1965)
Parker, E.N.: Kinetic and hydrodynamic representations of coronal expansion and the solar wind.
AIP Conf. Proc. 1216, 3–7 (2010)

Pascal, S., Brun, R.: Transport properties of nonequilibrium gas mixtures. Phys. Rev. E 47, 3251–
3267 (1993)

Pekeris, C.L.: Solution of the Boltzmann-Hilbert integral equation. Proc. Natl. Acad. Sci. 41, 661–
669 (1955)

Pekeris, C.L., Alterman, Z.: Solution of the Boltzmann-Hilbert integral equation II; the coefficients
of viscosity and heat transfer. Proc. Natl. Acad. Sci. 43, 998–1007 (1957)

Peraiah, A.: Radiative transfer—Chandrasekhar—and after. Bull. Astron. Soc. India 24, 397–536
(1996)

Phillips, N.J.: Collisional relaxation in gases. Proc. Phys. Soc. 73, 800–806 (1959)
Pierrard, V.: Evaporation of hydrogen and helium atoms from the atmospheres of Earth and Mars.
Planet. Space Sci. 51, 319–327 (2003)

Pierrard, V., Lazar, V.: Kappa distributions; theory and applications in space plasmas. Sol. Phys.
267, 153–174 (2010)

Pierrard, V., Lemaire, J.: A collisional model of the polar wind. J. Geophys. Res. 103, 11701–11709
(1998)

Pitchford, L.C., ONeil, S.V., Rumble Jr, J.R.: Extended Boltzmann analysis of electron swarm
experiments. Phys. Rev. A 23, 294–304 (1981)

Pitchford, L.C., Phelps, A.V.: Comparative calculations of electron-swarm properties in N2 at mod-
erate E/N values. Phys. Rev. A 25, 540–554 (1982)

Present, R.D., Morris, B.M.: Variational solution of the chemical kinetic Boltzmann equation. J.
Chem. Phys. 50, 151–160 (1969)

Prigogine, I., Xhrouet, E.: On the perturbation of Maxwell distribution function by chemical reac-
tions in gases. Physica 15, 913–932 (1949)

Rahman, M., Sundaresan, M.K.: Discrete relaxation modes for a hard sphere gas. Can. J. Phys. 46,
2463–2469 (1968)

Reinhardt,W.P.: L2 discretization of atomic andmolecular electronic continua: moment, quadrature
and J-matrix techniques. Comput. Phys. Commun. 17, 1–21 (1979)
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Chapter 6
Spectral and Pseudospectral Methods
of Solution of the Fokker-Planck
and Schrödinger Equations

Abstract Spectral and pseudospectral methods based on classical and nonclassical
polynomial basis sets are used for the solution of the Fokker-Planck and Schrödinger
equations. Fokker-Planck equations describe many different processes in chemistry
and physics, and their study has attracted considerable attention by researchers in
many different fields including astrophysics, finance and biology. Pseudospectral
methods of solution of the Fokker-Planck equation are presented for several systems
such as the Ornstein-Uhlenbeck model for Brownian motion, electron thermaliza-
tion in atomic moderators, charged particle relaxation in plasmas and models for
chemical reactions based on Kramers’ equation. A Fokker-Planck equation can be
transformed to a Schrödinger equation with a potential that belongs to the class
of potentials in supersymmetric quantum mechanics and expressed in terms of the
superpotential. The quantum harmonic oscillator and the Morse potential belong
to this class of Schrödinger equations. The pseudospectral methods developed for
the solution of the Fokker-Planck equation based on nonclassical basis sets are also
applied to a large number of the Schrödinger equations including the Henon-Heles
potential. Fundamental aspects of different pseudospectral methods such as the Dis-
crete Variable Representation, the Quadrature Discretization method, the Lagrange
mesh method and Fourier grid methods are discussed.

6.1 The Fokker-Planck Equation in Chemistry, Physics,
Astrophysics and Other Fields

The Fokker-Planck equation is a partial differential equation for a probability density
function, P(v, r, t), analogous to a distribution function of kinetic theory discussed
in Chap. 5. The linear integral Boltzmann equation for a binary gas of test particles of
mass m dilutely dispersed in bath particles of mass M at Tb can be approximated by
Fokker-Planck equations in the disparate mass limits (γ = M/m → 0 or γ → ∞)
as a consequence of the small energy transfers in particle collisions (Andersen and
Shuler 1964). A similar approximation is used in plasma physics for which charged
particle Coulomb collisions involve predominantly large impact parameter grazing
collisions (Rosenbluth et al. 1957; Spitzer 1962; Mitchner and Kruger 1973; Hinton
1983). These approximations are examples of a large class of Master equations for

© Springer Science+Business Media Dordrecht 2015
B. Shizgal, Spectral Methods in Chemistry and Physics, Scientific Computation,
DOI 10.1007/978-94-017-9454-1_6

331

http://dx.doi.org/10.1007/978-94-017-9454-1_5


332 6 Spectral and Pseudospectral Methods of Solution …

which a Fokker-Planck equation can be derived with the Kramers-Moyal expansion
(Gillespie 1980; Knessl et al. 1984; Kuczka et al. 1995; Risken 1996; Frank 2007;
van Kampen 2007).

An alternate derivation of the Fokker-Planck equation is based on stochastic dif-
ferential equations such as the Langevin equation to model “Brownian” motion
as discussed in the next section and in greater detail in several references (Chan-
drasekhar 1949; Risken 1996; Gardiner 2003; van Kampen 2007; Reif 2008; Paul
and Baschnagel 2013). For most of the applications in this chapter, we will consider a
Fokker-Planck equation in two variables and a probability density function, P(x, t),
where t is the time and x is an independent variable that represents the reduced speed
or energy of a particle, the particle position or some other independent variable.

The equation is named after Adrian Fokker1 and Max Planck.2 Fokker (1914)
studied the relationship between the fluctuations of the rotational motion of dipoles
in an electric field and the steady state probability density function. Planck (1917)
developed the time dependent equation and provided the relationship between the
drift and diffusion coefficients and the random fluctuations inherent in the system.

Fokker-Planck equations are used to model numerous systems in physics, astro-
physics, chemistry, biology, engineering, finance and other research fields. Fokker-
Planck equations have also been used to model processes in space science, notably
the solar and polar wind expansions (Lie-Svendsen and Rees 1996; Pierrard and
Lemaire 1998; Marsch 2006; Echim et al. 2011). A large number of chemically reac-
tive systems can be modelled with a Fokker-Planck equation proposed by Kramers
(1940). Many aspects of turbulence are modelled as stochastic processes leading
to a Fokker-Planck equation (Pope 2000). The applications of the Fokker-Planck
equation to stellar dynamics and astrophysics (Chandrasekhar 1942; Spitzer 1998;
Chavanis 2006; Binney and Tremaine 2008) overlap applications to plasma physics
(Rosenbluth et al. 1957; Spitzer 1962; Boyd and Sanderson 2003). The set of coupled
rate equations for the growth of a cluster in nucleation theory is often modelled with
a Fokker-Planck equation (Shizgal and Barrett 1989; Demeio and Shizgal 1993a).
The Black-Scholes model in mathematical finance (Black and Scholes 1973; Paul
and Baschnagel 2013) is based on a Fokker-Planck equation. These are just a few
examples of the many different Fokker-Planck equations that arise in diverse applica-
tions. Additional discussion of these topics can be found in several textbooks (Risken
1996; Gardiner 2003; Reif 2008) and review papers (Chandrasekhar 1949; Lightman
and Shapiro 1978).

1 Adrian Fokker (1887–1972) was a Dutch physicist who made contributions to relativity and
statistical mechanics in collaboration with Albert Einstein. The Fokker-Planck equation used to
model numerous processes in physics, astrophysics, chemistry, finance and biology bears his name.
He also made numerous contributions to music theory.
2 Max Planck (1858–1947) was a German physicist and the 1918 Nobel laureate for his contributions
to the explanation of the photoelectric effect, energy quantization and the introduction of the Planck
constant. The basis for this work was his doctoral work on thermodynamics as related to black body
radiation at equilibrium. Planck and Fokker independently derived the Fokker-Planck equation of
statistical physics.
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In Chap. 5, we expressed the solutions of the linearized and linear Boltzmann
equations in terms of the eigenvalues of the collision operators involved. For the
linearized collision operator and the linear collision operator with unit mass ratio
(γ = 1), the integral operator can be transformed to a Schrödinger equation (Kuščer
and Williams 1967; Bobylev and Mossberg 2008). The Fokker-Planck equations
discussed in the sections that follow can be transformed to Schrödinger equations
with well defined potential functions (Risken 1996). The potentials belong to the
class of Schrödinger equations in supersymmetric quantum mechanics (Bernstein
and Brown 1984; Comtet et al. 1985; Dutt et al. 1988; Cooper et al. 1995).

6.1.1 From the Langevin Equation to the Fokker-Planck
Equation; Brownian Motion

We begin the discussion with the classic treatment of Brownian motion. We consider a
subsystem of particles of mass m that interact solely with the particles of a background
medium at equilibrium at temperature Tb. The origin of this approach is the work of
the botanist Robert Brown3 who observed the random movement of a pollen grain in
a fluid at some temperature Tb. The movement of the so-called “Brownian” particle
is random owing to the multitude of collisions of the molecules of the background
fluid with the grain. Thus the scalar force, F(t), on the Brownian particle is random
in time. However, there is also a steady component that corresponds to the friction
involved in the steady movement of the Brownian particle through the fluid. Thus
we write F(t) = Fs(t) + Fr (t) where Fs(t) is the steady component related to the
viscosity of the fluid and Fr (t) is a largely unknown random or “stochastic” force.
The steady component of the force is Fs(t) = −αv(t) where v is the particle velocity
in one dimension and α is the friction coefficient that slows the particle as it moves
through the fluid. We write the “stochastic” differential equation of motion for the
Brownian particle as Newton’s law with a random force, that is,

m
dv

dt
= −αv(t) + Fr (t). (6.1)

Equation (6.1) is known as the Langevin4 equation for Brownian motion that was
treated previously by Einstein (1906). The main difficulty with Eq. (6.1) is that the
detailed time variation of Fr (t) is largely unknown. What is remarkable with this
approach is that the friction coefficient α in Eq. (6.1) is related to the properties of

3 Robert Brown (1773–1858) was a Scottish botanist who made important contributions to botany
and statistical physics from his use of a microscope to observe the random motion of pollen grains
which was later referred to as Brownian motion.
4 Paul Langevin (1872–1946) was a French physicist and doctoral student with J.J. Thompson at
the Cavendish Laboratory and Pierre Curie in Paris. He worked extensively on paramagnetism and
diamagnetism as well as in kinetic theory and theory of Brownian motion following on Einstein’s
work.
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Fr (t) (Reif 2008). Alternative methods are based on computer simulations that follow
the time history of the particle positions and velocities (Gunther and Weaver 1978;
Gillespie 1996). Monte Carlo simulations have become common in statistical physics
and chemistry for the study of multidimensional complex systems in equilibrium and
nonequilibrium situations (Bird 1994; Landau and Binder 2009).

An alternative approach to computer simulations is one based on the probability
density of the random variable leading to a deterministic Fokker-Planck equation.
The stochastic force, Fr (t), is assumed to satisfy two important relations, (1) that
the time (or “ensemble”) average is zero and (2) the correlation in time has a definite
strength, that is

Fr (t) = 0,

Fr (t)Fr (t ′) = 2αkB Tbδ(t − t ′), (6.2)

where kB is the Boltzmann constant and Tb is the temperature of the background.
The overbars indicate time or ensemble averages; see Sect. 15.5 in Reif (2008). In
addition to the textbooks referenced earlier, excellent discussions of the historical
development of stochastic processes are available (Uhlenbeck and Ornstein 1930;
Hänggi et al. 1990; Risken 1996; Abbott 2001; Gardiner 2003; van Kampen 2007;
Dunkel and Hänggi 2009; Paul and Baschnagel 2013).

Brownian motion and other stochastic processes are modelled with a probability
density, P(v, t), corresponding to the values of v(t) sampled in a sufficiently long
sequences of realizations of v(t). Thus P(v, t) is similar to the velocity distribution
function f (v, t) in kinetic theory in Chap. 5. It has been shown (Uhlenbeck and
Ornstein 1930; Chandrasekhar 1949; Reif 2008) that the Fokker-Planck equation
for the probability density (equivalently the velocity distribution) of the Brownian
particle is given by the Ornstein–Uhlenbeck equation,

∂P(v, t)

∂t
= ν

∂

∂v

[
vP(v, t) + kB Tb

m

∂P(v, t)

∂v

]
, v ∈ (−∞,∞), (6.3)

where the drift and diffusion coefficients, defined in what follows are νv and
νkB Tb/m, respectively, and ν = α/m is a collision frequency.

A stochastic process which includes multiplicative as well as additive noise
(Chandrasekhar 1949; Lax 1966; Brey et al. 1987; Gitterman 1999; Biró and Jakovác
2005) yields a Fokker-Planck equation with a velocity dependent diffusion coeffi-
cient. For this more general stochastic process we have the Langevin equation of the
form

dv

dt
= f (v) + g(v)ξ(t) + η(t), (6.4)

with f (v) and g(v) are known but unspecified functions. The additive and multi-
plicative Gaussian random variables, η(t) and ξ(t) have zero mean,

η(t) = 0 and ξ(t) = 0, (6.5)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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and correlations given by,

η(t)η(t ′) = 2Dδ(t − t ′) ξ(t)ξ(t ′) = 2βδ(t − t ′). (6.6)

The Fokker-Planck equation for P(v, t) corresponding to this stochastic process
is of the form

∂P(v, t)

∂t
= ∂

∂v

[
A(v)P(v, t) + ∂B(v)P(v, t)

∂v

]
, (6.7)

where A(v) and B(v) are the time-independent drift and diffusion coefficients,
respectively, given by,

A(v) = f (v) + βg(v)
dg(v)

dv
,

B(v) = D + βg2(v). (6.8)

where f (v), g(v), D and β are defined by Eqs. (6.4) and (6.6). Additional details of
this derivation are in the references cited.

Given some initial condition, P(v, 0), the distribution P(v, t) varies in time as
deduced with Eq. (6.7) and attains a steady distribution at infinite time for which
∂P(v, t)/∂t = 0 and denoted by P0(v). For most of the applications to be discussed,
the reduced speed, x = √

mv2/2kB Tb is used and generally x ∈ (−∞,∞). From
Eq. (6.7), this equilibrium probability density is

P0(v) = 1

B(v)
exp

⎛

⎝−
v∫

−∞

A(v′)
B(v′)

dv′
⎞

⎠ , (6.9)

and is not in general a Maxwellian.

6.1.2 Spectral Solution of the Ornstein-Uhlenbeck
Fokker-Planck Equation

The equilibrium distribution analogous to Eq. (6.9) for the Brownian motion Fokker-
Planck equation, Eq. (6.3), is defined by

[
vP0(v) + kB Tb

m

∂P0(v)

∂v

]
= 0,

and the steady state distribution of Eq. (6.3) is a Maxwellian,

P0(v) =
√

m

2πkB Tb
e−mv2/2kB Tb . (6.10)
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normalized such that

∞∫

−∞
P0(v)dv = 1.

We consider an initial condition whereby all the particles start with a specific speed
v0 that is

P(v, 0) = δ(v − v0). (6.11)

The solution of this Fokker-Planck equation is readily determined with the
transformation to a strict diffusion equation where the diffusion coefficient is
D = μkB Tb/m. We redefine the variables so as to remove the term in ∂P/∂v in
Eq. (6.3) in a manner analogous to the transformation of the Fokker-Planck equation
to a Schrödinger equation discussed in Sect. 6.3.2. We make the change of variable
u = veνt and set P(v, t) = eνt Q(u, t). With these substitutions, the Fokker-Planck
equation can be written in terms of Q(u, t), that is

∂Q(u, t)

∂t
= De2νt ∂

2 Q(u, t)

∂u2 . (6.12)

With the change in the time variable to τ = (e2νt − 1)/ν, we transform the Fokker-
Planck equation to the diffusion equation, that is

∂Q(u, τ )

∂τ
= D

∂2 Q(u, τ )

∂u2 . (6.13)

This equation could be considered as a Fokker-Planck equation without drift which
is referred to as a Weiner process (Risken 1996; Gillespie 1996).

We have solved the diffusion equation with a Fourier transform method in Chap. 4,
Sect. 4.6.5 and the solution of Eq. (6.13) is

Q(u, τ ) = 1√
4πDτ

e−(u−u0)2/4Dτ . (6.14)

With this result, the solution to the Ornstein–Uhlenbeck, Eq. (6.13), in the reduced
speed, x = √

mv2/2kB Tb, is

P(x, t) =
[

1

π(1 − e−2νt )

]1/2

exp

[
− (x − x0e−νt )2

(1 − e−2νt )

]
. (6.15)

A spectral solution of Eq. (6.3) can be expressed in Hermite polynomials in x by
substituting P(x, t) = e−x2

g(x, t) into Eq. (6.3) written in terms of x . The result is
the differential equation

http://dx.doi.org/10.1007/978-94-017-9454-1_4
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∂g(x, t)

∂t
= νex2 ∂

∂x

[
e−x2 ∂g(x, t)

∂x

]
,

= ν

[
− 2x

∂g

∂x
+ ∂2g

∂x2

]
. (6.16)

With the expansion in Hermite polynomials

g(x, t) =
∞∑

n=0

cn(t)Hn(x), (6.17)

Eq. (6.16) can be written as

∞∑

n=0

Hn(x)
dcn

dt
= ν

∞∑

n=0

cn(t)

[
− 2x H ′

n(x) + H ′′
n (x)

]
. (6.18)

With the relation −2x H ′
n + H ′′

n = −2nHn , the time dependence of the coefficients
is given by

dcn(t)

dt
= −2nνcn(t). (6.19)

With the expansion of the initial condition in the Hermite polynomials, the spectral
solution is given by

P(x, t) = e−x2
∞∑

n=0

1

2nn!√π
Hn(x0)Hn(x)e−2nνt . (6.20)

Equations (6.15) and (6.20) can be used to study the rate of convergence of
the expansion in Hermite polynomials (Wei et al. 1997). A study of the use of
orthogonal expansions for the solution of Fokker-Planck equations was reported by
Cukier et al. (1973). An eigenfunction analysis of the three-dimensional Ornstein-
Uhlenbeck process with expansions in associated Laguerre polynomials and spheri-
cal harmonics was reported recently by Wilkinson and Pumir (2011).

6.1.3 Rayleigh and Lorentz Fokker-Planck Equations
from the Boltzmann Equation; The Kramers-Moyal
Expansion

In Chap. 3 (Eq. (3.49)) and Chap. 5 (Eq. (5.110)), we discussed the Wigner-Wilkins
kernel (Wigner 1943; Wigner and Wilkins 1944; Hoare and Kaplinsky 1970; Hoare
1971) for the linear Boltzmann integral operator for a hard sphere cross section. This

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Boltzmann equation models the relaxation of an ensemble of test particles of mass
m dilutely dispersed in a second gas of particles of mass M which is taken to be at
equilibrium with a Maxwellian distribution at temperature Tb.

The hard sphere collision operator in the Boltzmann equation for a binary gas
mixture can be approximated by Fokker-Planck equations in the mass ratio limits
γ = M/m → ∞ (the “Lorentz” limit) or γ → 0 (the “Rayleigh” limit), respectively
as shown by Andersen and Shuler (1964). The derivation is based on the expansion
of the kernel in the small energy transfer on collision for these disparate mass ratios.
The integral operator is expanded up to second order in the small energy transfer and
this transformation of the integral equation to a Fokker-Planck equation is known as
the Kramers-Moyal expansion (Risken 1996; Knessl et al. 1984; van Kampen 2007).

For the disparate mass ratio limit, γ → 0, the Rayleigh Fokker-Planck equation is

∂P(y, t)

∂t
= ∂

∂y

[
(y − 3)P(y, t) + ∂

∂y
[y P(y, t)]

]
, (6.21)

where y = mv2/kB Tb is the reduced energy and t is in units of τ given by
1/τ = K R = 16

3 Mmnbσ0
√

2kB Tb/πM . For γ → ∞, the Lorentz Fokker-Planck
equation is

∂P(x, t)

∂t
= 1

4

∂

∂x

[
(2x2 − 3)P(x, t) + ∂

∂x
[x P(x, t)]

]
, (6.22)

where x = √
mv2/2kB Tb is the reduced speed and 1/τ = KL = 2

√
m/Mnbσ0√

2kB Tb/M . The hard sphere cross section is denoted by σ0 and nb is the density
of the background gas. A spectral solution of the Rayleigh Fokker-Planck equa-
tion in terms of Hermite polynomials is described in the next section. There is no
known spectral solution of the Lorentz Fokker-Planck equation in terms of classical
polynomials.

6.1.4 Spectral Solution of the Rayleigh Fokker-Planck
Equation

We consider an analysis similar to the one in Sect. 6.1.2. If we set P(y, t) =
P0(y)g(y, t) where P0(y) = (2/

√
π)

√
ye−y in dimensionless units and we get

the differential equation

∂g(y, t)

∂t
= 1

P0(y)

∂

∂y

[
y P0(y)

∂g(y, t)

∂y

]
. (6.23)

The evaluation of the partial derivative in the square bracket gives

∂g(y, t)

∂t
= y

∂2g(y, t)

∂y2 + (
3

2
− y)

∂g(y, t)

∂y
. (6.24)
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The differential operator on the right hand side is related to the eigenvalue problem

for the associated Laguerre polynomials, L
( 1

2 )
n (y), that is

y
d2 L

( 1
2 )

n (y)

dy2 + (
3

2
− y)

d L
( 1

2 )
n (y)

dy
= −ny. (6.25)

Thus, the spectral solution is represented by the expansion in the associated Laguerre
polynomials

g(y, t) =
∞∑

n=0

cn L
( 1

2 )
n (y)e−nt , (6.26)

where the coefficients for a δ-function initial condition, P(y, 0) = δ(y − y0), are

cn = Γ (n + 1)

Γ (n + 3
2 )

L
( 1

2 )
n (y0). (6.27)

Analogous to the expansion of the Ornstein-Uhlenbeck Fokker-Planck equation in
Hermite polynomials, the solution of Eq. (6.21) can be expanded in Laguerre poly-
nomials, that is

P(y, t) = √
ye−y

∞∑

n=0

Γ (n + 1)

Γ (n + 3/2)
L

( 1
2 )

n (y0)L
( 1

2 )
n (y)e−nt . (6.28)

Andersen and Shuler (1964) summed this series and found the analytic result,

P(y, t) = et/2

2
√

πy0(1 − e−t )

{
exp

[
− (

√
y − √

y0e−t )2

1 − e−t

]

− exp

[
− (

√
y + √

y0e−t )2

1 − e−t

]}
, (6.29)

analogous to Eq. (6.15) for the Ornstein-Uhlenbeck equation. This provides another
opportunity to study the rate of convergence of the Laguerre expansions.

For an initial Maxwellian distribution at temperature T (0) > Tb, the expansion
in Laguerre polynomials can be summed in closed form (Andersen and Shuler 1964)
to give

P(y, t) = 2√
π

[
Tb

T (t)

]3/2 √
y exp[− Tb

T (t)
y], (6.30)

which is a Maxwellian distribution with the time dependent temperature T (t).
Equation (6.30) also defines the intial Maxwellian at T (0). An important property of
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this Fokker-Planck equation is that if the initial distribution function is a Maxwellian
at some temperature T (0) > Tb, the time dependent distribution remains Maxwellian
with a time dependent temperature. This property of the Rayleigh Fokker-Planck
equation is referred to as canonical invariance (Andersen et al. 1964; Andersen and
Shuler 1964). This is a consequence of the fact that for this Rayleigh Fokker-Planck
equation the moments of the distribution function in the Laguerre basis set are uncou-
pled and the temperature relaxation is a pure exponential given by

T (t) − Tb

T (0) − Tb
= e−t . (6.31)

6.2 Numerical Methods for the Solution
of the Fokker-Planck Equation

We have expressed the spectral solutions of the Ornstein-Uhlenbeck Fokker-Planck
equation in Hermite polynomials and of the Rayleigh Fokker-Planck equation in
Laguerre polynomials. Analogous pseudospectral solutions can also be derived
which provide identical numerical results. We present in the next section a for-
malism for the use of nonclassical basis functions for the solution of the general
Fokker-Planck equation in Eq. (6.7) with arbitrary drift and diffusion coefficients,
A(v) and B(v), respectively. In Sect. 6.2.2, an equivalent pseudospectral formalism
is presented.

6.2.1 Spectral Methods with Nonclassical Basis Functions

We consider a solution of the Fokker-Planck equation with a spectral method and
with a basis set analogous to the solution of the Ornstein-Uhlenbeck equation in
Sect. 6.1.2. The polynomial basis set is defined with the steady distribution P0(x) as
the weight function. If we set P(x, t) = P0(x)g(x, t) in the Fokker-Planck equation,
Eq. (6.7), where P0(x) is given by Eq. (6.9), then the equation for g(x, t) becomes

∂g(x, t)

∂t
= 1

P0(x)

∂

∂x

[
B(x)P0(x)

∂g(x, t)

∂x

]
, x ∈ [0,∞)

= −A(x)
∂g(x, t)

∂x
+ B(x)

∂2g(x, t)

∂x2 ,

= −Lg(x, t), (6.32)

where the definition of P0(x) has been used. The term in square brackets in Eq. (6.32)
can be considered as a flux. With the form of the operator, L , in the first line of
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Eq. (6.32), L is self-adjoint with respect to P0(x) as the weight function provided
that the zero flux boundary condition

P0(x)B(x)
∂g(x)

∂x

∣∣∣∣
∞

0
= 0, (6.33)

is imposed. The linear time dependent Fokker-Planck equation, Eq. (6.32), admits a
solution in terms of the eigenfunctions, ψn(x), and eigenvalues, λn , defined by

Lψn(x) = λnψn(x), (6.34)

and the solution can be written as

P(x, t) = P0(x)

∞∑

n=0

ane−λn tψn(x), (6.35)

where the an coefficients are determined from the initial distribution, P(x, 0). The
self-adjoint property of L can be verified by calculating the matrix element 〈φ1|L|φ2〉
with L defined as in Eq. (6.32). With an integration by parts, it is easily shown that
〈φ1|L|φ2〉 = 〈φ2|L|φ1〉 provided Eq. (6.33) is satisfied.

The eigenvalues and eigenfunctions are determined with a Galerkin spectral
method and nonclassical basis sets and we use the basis set {Sn(x)} orthonormal
with P0(x) as weight function, that is

∞∫

0

P0(x)Sn(x)Sm(x)dx = δnm . (6.36)

The set {Sn(x)}, introduced in this chapter, is used to denote a general basis set of
nonclassical polynomials orthonormal with respect to different equilibrium density
functions, P0(x), defined by a specific physical problem. The matrix elements of the
Fokker-Planck operator L in this basis set are given by

L(sp)
nm =

∞∫

0

P0(x)Sn(x)L Sm(x)dx

= −
∞∫

0

P0(x)Sn(x)
1

P0(x)

d

dx

[
P0(x)B(x)

d Sm(x)

dx

]
dx, (6.37)

where the superscript (sp) denotes the polynomial spectral representation. With an
integration by parts, we get the symmetric matrix representation of the Fokker-Planck
operator,
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L(sp)
nm = −

∞∫

0

P0(x)B(x)S′
n(x)S′

m(x)dx, (n, m) = 0, 1, . . . , N − 1 (6.38)

where zero flux boundary conditions are satisfied, Eq. (6.33). We highlight this impor-
tant result showing the self-adjoint property of the Fokker-Planck equation subject
to zero flux boundary conditions. The eigenvalues, λn , and eigenfunctions, ψn(x),
are determined with a numerical diagonalization of the matrix L(sp) of dimension N .
Although we have not demonstrated this explicitly here, the numerical results will
show that the coefficients of the expansion ψn(x) in the Sn(x) basis set are linear
variational parameters. Thus, the variational theorem is applicable and this spectral
method will provide an upper bound to the eigenvalues for each N and converge
from above. The time dependent solution of the Fokker-Planck equation is given by
Eq. (6.35).

We will use L to denote several different Fokker-Planck operators in the sections
that follow and each is defined at the outset. Otherwise the notation would become
excessive.

6.2.2 Pseudospectral Methods with Nonclassical
Quadratures

We introduce the basis set Rn(x) orthonormal with respect to w(x) defined by

Rn(x) =
√

P0(x)

w(x)
Sn(x), (6.39)

and evaluate the derivative S′(x) ≡ d S(x)/dx ,

S′
n(x) =

√
w

P0

(
w′

2w
− P ′

0

2P0

)
Rn(x) +

√
w

P0
R′

n(x). (6.40)

Thus, the matrix elements of the Fokker-Planck operator, Eq. (6.38), are given by

L(sp)
nm = −

∞∫

0

w(x)B(x)
[
R′

n(x) + h(x)Rn(x)
] [

R′
m(x) + h(x)Rm(x)

]
dx, (6.41)

where

h(x) = w′(x)

2w(x)
− P ′

0(x)

2P0(x)
, (6.42)
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and is a measure of the departure of w(x) from P0(x). This result is highlighted as
it shows that an optimal choice of weight function might be w(x) = P0(x) giving
h(x) = 0.

The matrix elements are evaluated with the quadrature based on the weight func-
tion w(x), that is

L(sp)
nm = −

N∑

k=1

wk B(xk)[R′
n(xk) + h(xk)Rn(xk)][R′

m(xk) + h(xk)Rm(xk)], (6.43)

where xk and wk are the quadrature points and weights associated with the polyno-
mials orthogonal with respect to the weight function, w(x) = P0(x). To express this
spectral representation in the equivalent physical space representation, we transform

L(ps)
i j =

N−1∑

m=0

N−1∑

n=0

Tin L(sp)
nm Tjm, (6.44)

where the superscript (ps) denotes the discrete pseudospectral representation and the
transformation matrix between physical and spectral space is defined as in Chap. 3,
namely

Tin = √
wi Rn(xi ).

We need only consider the first transformation with the sum over n as the second
over m is similar. With the definition of Tin , the term in Rn(xk) is transformed as

h(xk)

N−1∑

n=0

Tin Rn(xk) = h(xk)

N−1∑

n=0

√
wi Rn(xi )Rn(xk),

= h(xk)√
wk

δik . (6.45)

The transformation of R′
n(xk) employs the derivative matrix operator giving

N−1∑

n=0

Tin R′
n(xk) =

N−1∑

n=0

√
wi Rn(xi )

N∑

�=1

Dk�

√
w�

wk
Rn(x�),

=
N∑

�=1

Dk�

√
wiw�

wk

N−1∑

n=0

Rn(xi )Rn(x�),

=
N∑

�=1

Dk�

√
wiw�

wk

δi�

wi
,

= Dki√
wk

. (6.46)

http://dx.doi.org/10.1007/978-94-017-9454-1_3


344 6 Spectral and Pseudospectral Methods of Solution …

The transformation with Tjm yields similar results and we find the discrete
pseudospectral representation

L(ps)
i j = −

N∑

k=1

B(xk)[Dki + h(xk)δki ][Dkj + h(xk)δk j ], (i, j) = 1, 2, . . . , N .

(6.47)

This result is also highlighted because for the quadrature defined with the stationary
distribution, w(x) = P0(x), for which h(xk) = 0, the representation of Li j has the
simpler form,

L(ps)
i j = −

N∑

k=1

B(xk)Dki Dkj . (6.48)

The representation of the Fokker-Planck operator given by Eq. (6.48) is straightfor-
ward to program in MATLAB for different choices of the basis set and associated
quadrature points and weights. The derivative matrix operator, Dki , is calculated as
discussed in Chap. 3, Eqs. (3.138) and (3.139).

The pseudospectral solution of the Ornstein–Uhlenbeck Fokker-Planck equa-
tion is equivalent to the solution of the Schrödinger equation for the quantum har-
monic oscillator. The drift coefficient, B(x) = 1, (Eq. 6.16), and P0(x) = w(x) =
e−x2

, x ∈ (−∞,∞), so that the derivative matrix operator, Dki , is defined in terms
of the Hermite polynomials as discussed in Chap. 4. The eigenvalues of the self-
adjoint representation of the Fokker-Planck operator L(ps) (Eq. 6.48) are λn = n and
the eigenfunctions are the Hermite polynomials.

For the Rayleigh Fokker-Planck equation B(y) = y, and with the Gauss Laguerre
quadrature weights and points defined with P0(y) = w(y) = √

ye−y, y ∈ [0,∞),
the eigenvalues of L(ps) are λn = n and the eigenfunctions are the Laguerre polyno-
mials. This is consistent with the spectral solutions given by Eqs. (6.20) and (6.28).

6.2.3 The Chang-Cooper Finite Difference Method
of Solution of the Fokker-Planck Equation

The finite difference algorithm by Chang and Cooper (1970) has found numerous
applications for the solution of the Fokker-Planck equation in many different appli-
cations (Larsen et al. 1985; Park and Petrosian 1996; Buet and Dellacherie 2010;
Abolhassani and Matte 2012).

The self-adjoint form of the Fokker-Planck equation, Eq. (6.32), was shown to be
consistent with zero flux at the boundaries, Eq. (6.33). This boundary condition is
also related to particle conservation

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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∂

∂t

∞∫

0

P0(x)g(x, t)dx = P0(x)B(x)
∂g(x, t)

∂x

∣∣∣∣
∞

x=0
= 0. (6.49)

Any useful discretization would have to ensure particle conservation which yields,
λ0 = 0.

We discretize the speed variable according to 0 = x1 < x2 < x3 · · · < xN = xmax

with xi+1 = xi +Δx , and Δx = xmax/(N −1) where xmax is the speed point chosen
large enough so that the flux boundary condition is satisfied. We also introduce
a shifted grid at the midpoint defined by xi+1/2 = xi + Δx/2. With a centered
difference for the derivative,

∂g(x, t)

∂x
|xi+1/2 ≈ g(xi+1, t) − g(xi , t)

Δx
, (6.50)

the finite difference representation of the eigenvalue problem is,

N∑

j=1

Li jφn(x j ) = λnφn(xi ), (6.51)

where

Łi i = 1

(Δx)2

x2
i P0(xi )Bi + x2

i+1 P0(xi+1)Bi+1

x2
i+1/2 P0(xi+1/2)

, i = 1, . . . , N , (6.52)

Łi,i−1 = − 1

(Δx)2

x2
i P0(xi )Bi

x2
i+1/2 P0(xi+1/2)

, i = 2, . . . , N , (6.53)

Łi,i+1 = − 1

(Δx)2

x2
i+1 P0(xi+1)Bi+1

x2
i+1/2 P0(xi+1/2)

, i = 1, . . . , N − 1, (6.54)

with the understanding that the first term in the fraction on the right hand side of
Eq. (6.52) vanishes for i = 1 and the second term vanishes for i = N in order to
enforce the boundary conditions.

We use a forward Euler difference algorithm for the time derivative, that is

∂g(xi , t)

∂t
= g(n+1)

i − g(n)
i

Δt
, (6.55)

where t = nΔt and g(n)
i = g(xi+1/2, nΔt). The Chang-Cooper finite difference

algorithm for the Fokker-Planck equation is
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g
(n+1)
i = g

(n)
i + Δt

x2
i+1 P0(xi+1)Bi+1[g(n+1)

i+1 − g(n+1)
i ] − x2

i P0(xi )Bi [g(n+1)
i − g(n+1)

i−1 ]
(Δx)2x2

i+1/2 P0(xi+1/2)
.

(6.56)

This result can be rewritten compactly as the matrix equation

N∑

j=1

Vi jg
(n+1)
j = g

(n)
i , (6.57)

where the matrix V is tridiagonal with elements

Vi,i = 1 + Δt Li,i , i = 1, . . . , N ,

Vi,i−1 = Δt Li,i−1, i = 2, . . . , N , (6.58)

Vi,i+1 = Δt Li,i+1, i = 1, . . . , N − 1

At each time step, the updated values g
(n+1)
i are obtained with the inversion of

Eq. (6.57).
The Chang-Cooper finite difference scheme, as a discrete representation of L ,

does not give rapidly convergent eigenvalues and eigenfunctions (Leung et al. 1998).
However, with the algorithm Eq. (6.56), the probability density function remains
positive, entropy increases with time and a Maxwellian is recovered at equilibrium
(Buet and Dellacherie 2010). We use this algorithm in Sect. 6.4.2 to solve the Fokker-
Planck equation for a model that involves heating of a plasma by wave-particle
interactions.

6.3 Electron Thermalization; The Lorentz Fokker-Planck
Equation Revisited

The degradation or thermalization of energetic electrons in atomic and molecular
moderators is an important aspect of radiation chemistry and physics (Mozumder
1999; Robson 2006), plasma processing of semiconductor devices (Petrović et al.
2009), the physics of the aurora (Stamnes 1980; Basu et al. 1993; Solomon 2001;
Shematovich et al. 2008) fundamental aspects of the approach to equilibrium (Trunec
et al. 2003; Sospedra-Alfonso and Shizgal 2011) and thermalization in condensed
matter (Sakai 2007; White et al. 2010).

The electron anisotropic nonequilibrium distribution functions are often expanded
in the direct product of the spherical harmonics in (θ,φ) and the Sonine–Laguerre
polynomials for the reduced speed or reduced energy dependence (Kumar et al. 1980;
Robson and Ness 1986; Robson 2006; White and Robson 2011; Abolhassani and
Matte 2012). This methodology requires the matrix elements of the collision operator
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in the Boltzmann equation as discussed in Chap. 5. There have also been solutions
of the electron Boltzmann equation with a B spline representation (Pitchford and
Phelps 1982) as well as with Monte Carlo methods (Koura 1983; Solomon 2001;
Shematovich et al. 2008).

For molecular moderators such as N2, O2 and CH4, inelastic collisions that involve
changes in the rotational and/or vibrational states of the moderator (Pitchford and
Phelps 1982; Kowari et al. 1992) and electron attachment to electronegative gases
such as SF6 and CCl4 must be included (Kowari and Shizgal 1996; Kowari et al.
1998).

The relaxation of electrons of moderate energy in atomic moderators for which
only elastic collisions need be included (Mozumder 1981; Knierim et al. 1982; Risken
and Voigtlaender 1984; McMahon and Shizgal 1985; Shizgal and McMahon 1985)
is presented in this section. In atomic moderators, there have been two notable phe-
nomena exhibited, namely the transient negative mobility (Shizgal and McMahon
1985; Dyatko et al. 2001; Dyatko 2007) and the negative differential conductivity
effect in gas mixtures (Shizgal 1990) previously thought to occur only for polyatomic
gases with internal degrees of freedom.

Owing to the small electron mass me to moderator mass M ratio, the Boltzmann
collision operator can be replaced by the Fokker-Planck operator corresponding to
the Lorentz limit discussed in Sect. (6.1.3). The Boltzmann equation or the Fokker-
Planck equation have been used in the study of electron thermalization in rare gases
(Lin et al. 1979; Knierim et al. 1982; McMahon and Shizgal 1985; Shizgal and
McMahon 1985). The physics of the problem is defined by the energy dependent
momentum transfer cross section σmt (v) for electron-atom collisions and the strength
of the applied electric field, E . The electric field results in a drift of the electrons
with a mobility determined by the electron-atom cross section.

To account for the electron drift in the applied electric field, there is a small
anisotropy of the electron velocity distribution function which is expressed by the
expansion in Legendre polynomials, that is,

f (v, t ′) =
∞∑

�=0

f�(v, t ′)P�(cos θ), (6.59)

where θ is the angle between v and the polar axis taken in the direction of the electric
field. Owing to the small mass ratio, me/M , the anisotropy of the distribution remains
small and only the terms in � = 0 and � = 1 in Eq. (6.59) need to be retained. This
is referred to as the “two-term” approximation (Hagelaar and Pitchford 2005). The
coupled equations for the first two terms, f0 and f1, are

∂ f0

∂t ′
+ eE

3me

(
∂

∂v
+ 2

v

)
f1 = me

Mv2

∂

∂v

[
v3γ(v)

(
1 + kB Tb

mev

∂

∂v

)]
f0,

∂ f1

∂t ′
+ eE

me

∂ f0

∂v
= −γ(v) f1, (6.60)

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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where γ(v) = Nbvσmt (v) and Nb is the density of the moderator. There is an initial
fast transient that we ignore and thus we set ∂ f1/∂t ′ = 0. This aspect of relaxation
in the Lorentz limit was illustrated in Chap. 3; see Fig. 5.15.

We also define the reduced speed x = v
√

me/2kB Ts with an arbitrary scaling
temperature Ts and dimensionless time t = t ′/τ where

τ =
[

nmeσ0

2M

√
2kB Tb

me

]−1

. (6.61)

A representative hard sphere cross section is denoted by σ0. We also consider a
scaling of the speed variable in anticipation of the use of a quadrature based solution
of the Fokker-Planck equation so that we define s2 = Ts/Tb. With these definitions
and the steady state value of f1 given by

f1 = − eE

γme

∂ f0

∂v
, (6.62)

we have the Fokker-Planck equation for f0, that is

∂ f0

∂t
= s

x2

∂

∂x

[
2x4σ̂(x) f0 + x2

s2 B(x)
∂ fo

∂x

]
, (6.63)

where

B(x) = x σ̂x) + (α/s)2

x σ̂(x)
, (6.64)

and the field strength parameter is

α2 = M

6me

[
eE

nσ0kB Tb

]2

. (6.65)

In Eq. (6.63), σ̂(x) = σmt (x)/σ0 is a dimensionless cross section written as a function
of reduced speed. The steady state distribution is from Eq. (6.63) given by

f0(x,∞) = D(x) = C exp

⎡

⎣−2s2

x∫

0

(x ′)2σ̂(x ′)
B(x ′)

dx ′
⎤

⎦ . (6.66)

The steady solution, D(x) given by Eq. (6.66), is precisely P0(x) in Sect. 6.2.1. The
distribution, D(x), is referred to as the Davydov distribution which reduces to a
Maxwellian in the absence of an electric field. If we set f (x, t) = D(x)g(x, t), the
equation for g(x, t) is given by

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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∂g

∂t
= s

D(x)x2

∂

∂x

[
x2

s
B(x)D(x)

∂g

∂x

]
= −Lg, x ∈ [0,∞). (6.67)

The linear operator on the right hand side of Eq. (6.67) that we have denoted by L is
self adjoint with D(x) as weight function with zero flux boundary conditions, that is,

x2 D(x)B(x)
∂g(x, t)

∂x

∣∣∣∣
x=∞

x=0
= 0. (6.68)

We are interested in the eigenvalue problem defined by

Lψn(x) = λnψn(x). (6.69)

6.3.1 Hard Sphere Cross Section and Zero Electric
Field, E = 0

If there is no external electric field and the cross section is a hard sphere σ(x) = σ0,
then B(x) = x and the equilibrium distribution is the Maxwellian P0(x) =
x2 exp(−x2). We consider a calculation of the eigenvalue spectrum of this Fokker-
Planck operator with the Maxwell polynomials orthonormal with respect to the
weight function w(x) = x2 exp(−x2). The “traditional” method of solution of
the Boltzmann equation involves the representation of the collision operator in the
Sonine-Laguerre polynomials (Knierim et al. 1982) denoted by L(SL)

nm .
The calculation of this matrix representation of the collision operator in the

Boltzmann equation defined by L(SL)
nm = 〈L

( 1
2 )

n |L|L( 1
2 )

m 〉 with weight function
w(y) = √

ye−y is straightforward but algebraically tedious (Shizgal and Fitzpatrick
1974) and the final expressions obtained can lead to considerable round-off errors in
the numerical calculation of the matrix elements. In the Lorentz limit, the result is
simpler and we have that

L(SL)
nm = −2

√
πA

me

M

√
m!n!

Γ (n + 3
2 )Γ (m + 3

2 )

min(n,m+1)∑

r=1

r(r + 1)N (n − r)N (m − r)

(6.70)

where N (�) = Γ (�− 1
2 )/(2�!√π) and A = 2nbπd2√2kB Tb/me. The matrix L(SL)

in the Sonine-Laguerre representation is a full matrix.
Our main objective is to compare the convergence of the eigenvalues of the Boltz-

mann collision operator as calculated with the representation given by Eq. (6.70)
and a pseudospectral method of solution based on the non-classical polynomials
orthogonal with respect to weight function w(x) = P0(x) = x2 exp(−x2).
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The matrix representation of the Lorentz Fokker-Planck operator in the Maxwell
polynomials, Mn(x), p = 2, orthonormal with respect to a weight function w(x) =
x2e−x2

is defined by L(M P)
nm = 〈Mn|L|Mm〉 where the scalar product is with respect

to w(x). Lo and Shizgal (2006) derived the explicit tridiagonal form of this spectral
representation as

L(M P)
mn =

⎧
⎪⎪⎨

⎪⎪⎩

(n − 1)αn−1 + ∑n−2
k=0 αk, m = n > 1,

2(n − 1)
√

βn, m = n + 1,

2(m − 1)
√

βm, m = n − 1,

0, otherwise.

(6.71)

where αn and βn are the coefficients in the three term recurrence relation discussed
in Chap. 2. It should be clear that the transformation of L(M P)

nm with the transforma-
tion Tin = √

wi Mn(xi ), yields the discrete pseudospectral (ps) representation L(ps)
i j

given by

L(ps)
i j = −

N∑

k=1

xk Dki Dkj , (6.72)

where in Eq. (6.48), B(xk) = xk . An equivalent pseudospectral representation can
also be calculated for the Sonine-Laguerre quadratures.

A comparison of the convergence of the eigenvalues of the Fokker-Planck oper-
ator for a hard sphere cross section versus the size of the basis set N is shown in
Table 6.1. It is clear that the convergence of the eigenvalues is much faster with the
Maxwell polynomials as basis functions. The first nonzero eigenvalue, λ1, requires

Table 6.1 Convergence of the eigenvalues of the hard sphere Lorentz Fokker-Planck equation with
the Sonine-Laguerre polynomial basis set (left) in comparison with the Maxwell polynomial basis
set (right)

w(y) = √
ye−y (Laguerre) w(x) = x2e−x2

(Maxwell)

N λ1 λ2 λ3 λ5 N λ1 λ2 λ3 λ5

1 6.018 1 4.976

2 5.317 16.35 2 4.716 11.52

3 5.066 13.85 30.66 3 4.68704 10.40 19.84

5 4.872 12.10 23.61 68.94 4 4.68378 10.16 17.40

7 4.797 11.41 21.22 53.80 5 4.68343 10.121 16.68 41.28

10 4.748 10.91 19.56 45.96 6 4.68340 10.1137 16.485 35.55

20 4.7032 10.406 17.75 38.29 7 4.68340 10.1127 16.4401 33.11

30 4.6930 10.267 17.19 35.87 8 10.1125 16.4314 32.05

50 4.6871 10.178 16.79 33.94 9 10.1125 16.4300 31.64

75 4.6851 10.145 16.62 32.97 10 16.4297 31.512

100 4.6840 10.132 16.550 32.50 11 16.4297 31.4765

125 4.6840 10.125 16.512 32.231 12 31.4683

150 4.6839 10.122 16.490 32.056 13 31.4666

Reprinted from (Lo and Shizgal 2006) with permission from the American Institute of Physics

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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150 Laguerre polynomials for convergence to five significant figures whereas only
6 Maxwell polynomials are required. The higher eigenvalues also converge very
quickly with the Maxwell polynomial basis set.

Risken and Voigtlaender (1984) introduced the Maxwell polynomials in the trans-
formation of the Fokker-Planck eigenvalue problem to a Schrödinger equation pre-
sented in the following section. They studied the relaxation of neutrons in a heavy gas
moderator with the assumption that the Lorentz Fokker-Planck equation is applicable.
They report eigenvalues in agreement with the results listed in Table 6.1 calculated
with a continued fraction method (Risken and Till 1996).

The pseudospectral method of solution of the Lorentz Fokker-Planck equation
is applicable also to realistic energy dependent momentum transfer cross sections
(McMahon and Shizgal 1985) and also with a nonzero electric field (Shizgal and
McMahon 1985). In these applications, the nonclassical polynomial basis sets that
are used for the eigenvalue problem are orthonormal with respect to P0(x) para-
metrized by the momentum transfer cross section and the electric field strength,
Eq. (6.66). The method was also applied to the relaxation of positrons in He and Ne
(Shizgal and Ness 1987), for an oscillatory electric field (Viehland et al. 1988) and
in systems with an admixture of a strongly electron attaching gas such as SF6 and
CCl4 (Shizgal 1988). A review of this subject was presented by Shizgal et al. (1989).

6.3.2 Transformation of the Fokker-Planck Eigenvalue
Problem to a Schrödinger Equation; Supersymmetric
Quantum Mechanics

The eigenvalue problem of the Fokker-Planck equation is

A(x)
dψn

dx
− B(x)

d2ψn

dx2 = λnψn . (6.73)

We transform the independent variable x to a new variable z defined by

z =
x∫

1√
B(x ′)

dx ′,

so that

dz

dx
= 1√

B
and

d

dx
= 1√

B

d

dz
,

giving

A√
B

dψn

dz
− √

B

(
− B ′

2B3/2

dψn

dz
+ 1√

B

d2ψn

dz2

)
= λnψn .
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where the prime, (B ′ ≡ d B[x(z)]/dz), denotes differentiation with respect to z. The
eigenvalue equation in the new variable z is

− d2ψn

dz2 +
(

A√
B

+ B ′

2B

)
dψn

dz
= λnψn . (6.74)

A function C(z) is defined by

ψn(z) = eC(z)φn(z),

where the functions φn(z) will be shown to satisfy a Schrödinger equation. With
ψ′

n(z) ≡ dψn(z)/dz, we have that

ψ′
n = C ′eCφn + eCφ′

n,

and

ψ
′′
n = C

′′
eCφn + (C ′)2eCφn + 2C ′eCφ′

n + eCφ′′
n .

The Fokker-Planck eigenvalue equation, Eq. (6.74), is rewritten in terms of φn(z) as

−
[
C

′′
φn + (C ′)2φn + 2C ′φ′

n + φ
′′
n

]
+
(

A√
B

+ B ′

2B

)
(C ′φn+φ′

n) = λnφn . (6.75)

We set the coefficient of φ′
n to zero and get the defining equation for C(z), that is,

dC(z)

dz
= 1

2

(
A√
B

+ B ′

2B

)
, (6.76)

which when integrated gives

C(z) = 1

2

z∫
A(z′)√
B(z′)

dz′ + 1

4
ln B(z). (6.77)

With these definitions, the partial differential equation, Eq. (6.75), for φn(z) is the
Schrödinger equation

− d2φn

dz2 + V (z)φn(z) = λnφn(z), (6.78)

where Eq. (6.76) has been used and the coefficient of φn in Eq. (6.75) is the potential
V (z), given by

V (z) = (C ′(z))2 − C ′′(z). (6.79)
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The orthonormality of the eigenfunctions ψn(x) is defined in terms of P0(x) and
given by

∞∫

0

P0(x)ψn(x)ψm(x)dx = δnm,

∞∫

0

P0[x(z)]eC(z)φn(z)e
C(z)φm(z)

√
B(x(z))dz = δnm, (6.80)

which is consistent with the normalization

∞∫

0

φn(z)φm(z)dz = δnm, (6.81)

so that

P0[x(z)]e2C(z)
√

B[x(z)] = 1, (6.82)

which is consistent with the definition of C(z). Moreover, if we set W (z) = 2C ′(z)
we have that

V (z) = W (z)2

4
− W (z)′

2
, (6.83)

and

W (z) = A√
B

+ B ′

2B
. (6.84)

Thus the equilibrium solution of the Fokker-Planck equation can be expressed as

P0(x) = exp[−1

2

x∫
W [z(x ′)]dx ′], (6.85)

and is the ground state of the Fokker-Planck equation with λ0 = 0 as can be easily
verified by differentiating P0(x) twice.

The function W (z) is the “superpotential” of supersymmetric quantum mechanics.
We have derived the formal relationship between the Fokker-Planck equation and
the Schrödinger equation (Comtet et al. 1985; Cooper et al. 1995; Risken and Till
1996; Feizi et al. 2011). This close relationship between these two large classes of
problems has been exploited to advantage in the study of nucleation (Demeio and
Shizgal 1993a), electron relaxation in molecular gases (Demeio and Shizgal 1993b),
relaxation in plasmas (Shizgal 1992) and other applications (Gomez-Ullate et al.
2009).
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6.3.3 Pseudospectral Representation of the Schrödinger
Equation; Supersymmetric Quantum Mechanics

The spectral representation of the Hamiltonian in the Schrödinger equation, Eq.
(6.78), for a basis set {Sn(y)} orthonormal with unit weight function is

H (sp)
nm = −

∞∫

0

Sn(y)S
′′
m(y)dy +

∞∫

0

Sn(y)V (y)Sm(y)dy. (6.86)

We integrate the first integral by parts so that

H (sp)
nm =

∞∫

0

S
′
n(y)S

′
m(y)dy + Vnm, (6.87)

where the potential matrix element is Vnm = ∫
Sn(y)V (y)Sm(y)dy. Define a second

polynomial set {Fn} orthogonal with weight function w(y), that is,

Sn(y) = √
w(y)Fn(y), (6.88)

where the weight function is defined as w(y) = exp(− ∫
W (y′)dy′) analogous to the

equilibrium distribution for the Fokker-Planck equation, Eq. (6.85). Equation (6.87)
can then be rewritten as,

H (sp)
nm =

∫
w[F ′

m + w′

2w
Fm][F ′

n + w′

2w
Fn]dy + Vnm . (6.89)

If one of the cross terms, F
′
m Fn , in the integrand above is integrated by parts we find

that,

H (sp)
nm =

∫
wF ′

n F ′
mdy + [Vnm − Ṽnm], (6.90)

where Ṽnm are the matrix elements of the potential

Ṽ (y) = 1

4
W 2(y) − 1

2
W ′(y), (6.91)

defined in terms of the “superpotential”, W (y), in supersymmetric quantum mechan-
ics. We transform the spectral representation H (sp)

nm to the discrete representation with
the transformation T, that is,

H (ps)
i j =

N−1∑

n=0

N−1∑

m=0

Tin H (sp)
nm Tjm, (6.92)
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to give the final desired result, namely

H (ps)
i j =

N∑

k=1

Dki Dkj + [V (yi ) − Ṽ (yi )]δi j , (6.93)

If the potential of interest can be written as in Eq. (6.91), then a useful weight function
for the definition of the basis set is given by the equilibrium distribution function or
the ground state wave function, Eq. (6.85). For this choice, Ṽ (y) = V (y), and the
pseudospectral representation of the Hamiltonian reduces to

H (ps)
i j =

N∑

k=1

Dki Dkj . (6.94)

This approach has been described in detail by Shizgal and Chen (1996) and Lo and
Shizgal (2006).

6.4 Relaxation and Wave-Particle Heating in Space Plasmas

The Fokker-Planck equation plays a dominant role in plasma physics (Chandrasekhar
1942; Spitzer 1962; Hinton 1983; Shoub 1987) and stellar astrophysics (Spitzer and
Härm 1958; Binney and Tremaine 2008; Lemou and Chavanis 2010). We consider
as was done in Chap. 5, the kinetic theory of a test particle of mass m and charge Z
dilutely dispersed in a large excess of a second species of mass M and charge Zb at
equilibrium with temperature Tb and number density Nb. The Coulomb differential
scattering cross section for collisions between the charged particles interacting via a
Coulomb potential is given by

σ(g, θ) =
(

Zb Ze2

2μg2

)2 1

sin4(θ/2)
. (6.95)

The cross section varies inversely as the fourth power of the relative velocity, g, and
diverges for small scattering angle, θ.

The Coulomb Fokker-Planck equation finds numerous applications in space sci-
ence and in particular for the modelling of the solar and polar winds. The solar wind
consists primarily of protons and electrons that escape the solar gravitational field.
The polar wind (Lie-Svendsen and Rees 1996; Pierrard and Lemaire 1998) is analo-
gous to the solar wind (Parker 1965; Vocks 2002) and represents the escape of ions
from the ionosphere along open magnetic field lines at high latitudes (Marsch 2006;
Echim et al. 2011).

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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6.4.1 Pseudospectral Solution of the Coulomb Fokker-Planck
and Associated Schrödinger Equations; The Approach
to Equilibrium and the Continuous Spectrum

The Fokker-Planck equation for Coulomb collisions is derived from the Boltzmann
equation with the differential cross section, Eq. (6.95), with the assumption of small
energy transfers in individual binary collisions between charged particles. The small
energy transfer collisions are those with large impact parameters. Consistent with
this approximation, the small angle singularity in the momentum transfer differential
cross section is eliminated by restricting the scattering angle such that θ > θmin

where sin2(θmin/2) = [1 + Λ]−1, where Λ = λD/b0; λD is the Debye length and
b0 = Z Zbe2/2kB Tb, the impact parameter that corresponds to the scattering angle
θ = π/2 (Spitzer 1962; Mitchner and Kruger 1973; Hinton 1983).

The Fokker-Planck equation derived from the Boltzmann equation as discussed
in the previous paragraph is

∂ f (v, t ′)
∂t ′

= A

v2

∂

∂v

[
G(v)

(
1 + kTb

mv

∂

∂v

)]
f (v, t ′), (6.96)

where A = (4πNbe4 Z2 Z2
b/m M) ln Λ and the diffusion coefficient is

G(v) = erf(

√
Mv2

2kTb
) −

√
2Mv2

πkTb
exp(− Mv2

2kTb
), (6.97)

as discussed elsewhere (Karney 1986; Shizgal 2004; Chavanis 2006).
The steady state distribution from Eq. (6.96) is a Maxwellian. A dimensionless

time t ′ = t/τ is defined with τ = ([2A/3
√

π][M/2kB Tb]3/2)−1 and the reduced
speed x = v

√
m/2kB Ts where the temperature parameter Ts = s2Tb. The parameter

s is the quadrature scaling parameter introduced in Chap. 3. With these definitions,
the Fokker-Planck equation is

∂ f (x, t)

∂t
= 2

s3x2

∂

∂x

[
G1(sx)

(
1 + 1

2xs2

∂

∂x

)]
f (x, t), (6.98)

where G1(sx) = h(γ)G(v), γ = √
M/m and h(γ) = 3

√
π/4γ3/2.

If we set f (x, t) = e−s2x2
g(x, t), the Fokker-Planck equation is

∂g

∂t
= 1

s2

[
A(x)

∂g

∂x
− B(x)

∂2g

∂x2

]
= Lg, (6.99)

with B(x) = G1(sx)/(sx)3. The drift coefficient in terms of B(x) is

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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A(x) = 2s2x B(x) − 2B(x)

x
− d B(x)

dx
. (6.100)

We are concerned with the eigenvalue problem

Lψn(x) = −λnψn(x),

with L defined with Eq. (6.99). The physical space pseudospectral representation of
this Fokker-Planck operator is

L(ps)
i j = 1

s2

N∑

k=1

B(xk)[Dki + xk(s
2 − 1)δki ][Dkj + xk(s

2 − 1)δk j ]. (6.101)

If the scaling parameter, s = 1, Eq. (6.101) reduces to Eq. (6.48).
The eigenvalues are determined with the numerical diagonalization of the matrix

L(ps) of dimension N . The convergence of the lower order eigenvalues is shown in
Table 6.2 and the rapid convergence is clear.

We transform the Fokker-Planck eigenvalue equation to a Schrödinger equation
as discussed in Sect. 6.3.3 and derive, after some algebra, the potential in x , that is

V−(x) = G1(x)

x
(1− 9

16x4 )−3

[
1+ γ2

2
− 3

8x2

]
e−γ2x2 − 9x

16G1(x)
e−2γ2x2

. (6.102)

The potentials are shown in Fig. 6.1 for two mass ratios, M/m = 0.01 and 0.04,
and the eigenvalues (bound states) are indicated with the horizontal lines. There are
a finite number of discrete eigenvalues and the number of states diminishes with
increasing mass ratio. Since the potential barrier is finite, the eigenstates are not true
bound states (Corngold 1981) and could be referred to as “quasi-bound” states. The
only bound state is the ground state with λ0 = 0. However, it is readily verified that

Table 6.2 Convergence of the eigenvalues of the pseudospectral representation of the Coulomb
Fokker-Planck operator, Eq. (6.101), for mass ratio, γ = 0.3

N λ1 λ2 λ3 λ4 λ5 λ6 λ7

4 3.82049 7.522947 18.6937

6 3.82023 7.35052 10.7565 16.6796 47.3754

8 3.82023 7.34943 10.5866 13.7437 18.4730 30.7286 96.2670

10 7.34943 10.5828 13.5261 16.4786 20.7524 20.3964

20 13.5139 16.1314 18.4301 20.3807

30 13.5139 16.1341 18.4301 20.3897

40 18.4301 20.3807

SWKB 3.82031 7.34954 10.5831 13.5144 16.1348 18.4313 20.3829

WKB 3.82834 7.35710 10.5900 13.5208 16.1407 18.4366 20.3875

Reproduced from Shizgal (1992) with permission from Taylor and Francis
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Fig. 6.1 Potential, V−(y), in the Schrödinger equation corresponding to the Coulomb Fokker-
Planck equation for mass ratios M/m = 0.01 and 0.04. There are a finite number of eigenstates
which are strictly not discrete. Reproduced from Shizgal (1991) with permission from Beylich
A.E.: Rarefied gas dynamics. In: Proceedings of the 17th International Symposium on Rarefied Gas
Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

in the Rayleigh limit, γ = 0, V−(x) = x2 − 3 and the eigenvalues are all discrete
and given by λn = 4n, the harmonic oscillator eigenvalues.

The converged eigenvalues in the table are compared with the semiclassical
Wentzel-Kramers-Brillouin (WKB) eigenvalues (Miller and Good 1953), namely

x2∫

x1

√
λn − V−(x)dx =

(
n + 1

2

)
π, (6.103)

and the corresponding supersymmetric, SWKB, eigenvalues (Fricke et al. 1988)

x ′
2∫

x ′
1

√
λn − W 2(x)dx = nπ, (6.104)

where the integral limits are the classical turning points. The agreement with the
SWKB and WKB approximations is very good.

We expand the solution in the eigenfunctions of L and the time dependence of
the average energy is

E(t ′)
Eth

=
∞∑

k=0

cke−λk t ′ , (6.105)

where Eth = 3kB Tb/2 is the thermal energy and the coefficients are

ck = 2

3
s5ak

∞∫

0

e−s2x2
ψk(x)x4dx . (6.106)
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The coefficients ak are the expansion coefficients of the intial condition

g(x, 0) =
∞∑

k=0

akφk(x).

The 7 eigenvalues for γ = 0.3 are shown in Table 6.2 as the horizontal lines in the
potential functions V−(x) and W 2(x) in Fig. 6.2. The additional eigenvalue in V−(y)

is λ0 = 0. The eigenfunctions ψ4(x) and ψ6(x) are also shown in Fig. 6.2 with
the WKB eigenfunctions denoted with the symbols. Two examples of continuum
eiegenfunctions are shown in Fig. 6.3. The symbols that coincide with the solid
curves are the results with the WKB approximation. These numerical eigenfunctions
are L2 square integrable with the discrete quadrature (Reinhardt 1979) defining the
norm.

The relaxation of the temperature is given by T (t ′) = 2E(t ′)/3kB with E(t ′)
as in Eq. (6.105). The time variation of T (t ′)/Tb is shown in Fig. 6.4 for four mass
ratios includes the sum over discrete and continuous eigenvalues and is convergent.
For mass ratio M/m = 0.4, there are no bound states and the discrete sum is over
the continuous spectrum.

In Chap. 5, we discussed the properties of the discrete and continuous portions of
the eigenvalue spectra of the Boltzmann integral collision operators. It is these spec-
tral properties that determine the time dependent approach to equilibrium (Sospedra-
Alfonso and Shizgal 2013). For the Boltzmann equation, there is always a discrete

Fig. 6.2 (Left hand graphs) (A) The potential V−(y) in the Schrödinger potential; (B) The super
potential W 2(y) with a minimum value of 0. The bound states are shown with the dashed horizontal
lines. (Right hand graphs) Eigenfunctions of the Fokker-Planck equation (A) ψ4(x) and (B) ψ6(x).
The symbols are the WKB approximations (Miller and Good 1953). Reproduced from Shizgal
(1992) with permission from Taylor and Francis

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.3 The continuum eigenfunction of the Fokker-Planck collision operator for Coulomb
collisions (symbols) in comparison with the WKB approximation (solid curve) with Tb = 300 K,
s = 0.6042 and γ = 0.04; (A) λ = 5.855 and (B) λ = 7.603. Reproduced from Shizgal (1992) with
permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the 17th International Sympo-
sium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

Fig. 6.4 Temperature relaxation for T (0)/Tb = 24 and γ = a 0.2, b 0.3, c 0.4 and d 0.5. Reproduced
from Shizgal (1991) with permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the
17th International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co.
KGaA. pp. 22–29, (1991)

spectrum whereas for the Coulomb Fokker-Planck equation we have demonstrated
that the spectrum can be completely continuous, except for λ0 = 0. The approach
to equilibrium is an exponential if there is at least one discrete eigenvalue, that is
“the spectral gap” as discussed in Chap. 5. For mass ratios for which there are no
discrete “quasi-bound” states, the approach to equilibrium can be a complicated non-
exponential function of time (Corngold 1981). This may be the case for curve d in
Fig. 6.4.

We consider the variation of the energy coefficients in the energy relaxation,
Eq. (6.105), versus the numerical continuous eigenvalues. This variation of c(λ)

versus λ is shown in Fig. 6.5 for different scaling parameters. The discrete values
of λk and ck (or λ and c(λ)) in the continuum vary with a change in the scaling
parameter, s, or with a change in the number of quadrature points, N , but the variation
of c(λ) versus λ is on the same curve as shown in Fig. 6.5. As a consequence, the
pseudospectral solution of the Fokker-Planck equation provides a converged solution
even though the continuum has not been treated rigorously. However, the analytic
form of the time variation of the average energy, equivalently the temperature, very
close to equilibrium (Corngold 1981; Shizgal 1991) has not been confirmed.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.5 Variation of the coefficients, c(λ) (in units of 103) for the temperature relaxation versus
the continuous eigenvalue, λ. T (0)/Tb = 24. The symbols are the numerical results for 4 different
values of the scaling parameter. Reproduced from Shizgal (1991) with permission Beylich A.E.:
Rarefied gas dynamics. In: Proceedings of the 17th International Symposium on Rarefied Gas
Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA. pp. 22–29, (1991)

6.4.2 Fokker-Planck Equation for Wave Particle Heating
of Ions; Kappa Distributions, and Tsallis Nonextensive
Entropy

Tsallis (1995) derived the Kappa distribution

fκ(x) = Cκ

[
1

1 + x2

κ+1

]κ+1

, (6.107)

in the development of a new form of entropy functional for problems in statistical
mechanics. In Eq. (6.107), Cκ = 2πΓ (κ+1)/[√π(κ + 1)]3Γ (κ− 1

2 ) is a normaliza-
tion such that 4π

∫∞
0 fκ(x)x2dx = 1. In the limit, κ → ∞, the Kappa distribution

tends to a Maxwellian. The Tsallis nonextensive entropy formalism is a controversial
topic (Nauenberg 2003; Tsallis 2004; Lutsko and Boon 2011).

In Chap. 4, we discussed the expansion of the Kappa distribution function, in
Laguerre polynomials, Eq. (4.60). We demonstrated that the expansion in Laguerre
polynomials is a divergent asymptotic series as the decay of fκ(x) as x → ∞
is slower than that of the Laguerre weight function, w(x) = √

xe−x ; see Fig. 4.9
(Mintzer 1965; Leblanc and Hubert 1997). It is clear that the normalization Cκ does
not exist for κ → 1/2. The average kinetic energy, that is the average of mv2/2 with
fκ(x), defines the nonequilibrium “temperature”

Tκ

Tb
= κ + 1

κ − 3
2

, (6.108)

which also diverges for κ → 3/2. A nonphysical feature of the Kappa distribution
is that the nth moment diverges for κ → (n + 1)/2 (Treumann et al. 2004; Shizgal
2007). For this reason, Magnus and Pierrard (2008) could not generate the Gaussian
quadrature weights and points for the Kappa distribution and used instead modified
weight functions.

http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
http://dx.doi.org/10.1007/978-94-017-9454-1_4
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In space physics, the Kappa distribution has been employed to explain the
nature of energetic distributions in space physics (Meyer-Vernet 2001; Livadiotis
and McComas 2009), the heating of the solar chromosphere (Scudder 1994), the
escape of charged particles from the solar atmosphere and from the high latitude
terrestrial ionosphere known as the solar and polar winds, respectively (Pierrard et
al. 2004; Pierrard and Lazar 2010). There is an ongoing effort in space physics to
better understand the complex mechanism for the energization of ions and electrons
by plasma waves (Schulz and Lanzerotti 1974; Stix 1992; Gary 1993).

One approach is based on a Fokker-Planck equation where the wave-particle
interactions are modelled with a second diffusion operator (Nicholson 1983) that is

∂ f (x, t)

∂t
=

√
m

M

(
1

x2

∂

∂x

[
D1(vth x)(1 + 1

2x

∂

∂x
)

]
f (x, t)

+ αvth

2

1

x2

∂

∂x

[
x2 D2(vth x)

∂

∂x
f (x, t)

])
, (6.109)

where in the second differential operator term the parameter α is an adjustable
parameter that controls the strength of the wave-particle interactions relative to the
Coulomb collision rate. It is clear that for α = 0, the steady state distribution is a
Maxwellian. Equation (6.109) has been written in dimensionless time, t = t ′/t0,
where t0 = [2Nσe f f

√
2kTb/M]−1 and σe f f = [4πN Z2 Z2

be4 ln Λ]/(2kTb)
2.

The steady distribution obtained by setting ∂ f/∂t = 0 in Eq. (6.109) is given by

d fss(x)

fss(x)
= −

⎡

⎣ 2x

1 + αvth x3 D2(vth x)

D̂1(z)

⎤

⎦ dx, (6.110)

where

D̂1(z) = erf(z) − 2z√
π

e−z2
, (6.111)

with z = √
γx, γ = M/m. As a consequence of the wave-particle interaction diffu-

sion term, the steady state solution of Eq. (6.109), fss(v), is no longer a Maxwellian
and depends on the ratio of the strength of the wave-particle diffusion term relative to
the strength of Coulomb collisional relaxation, that is on α, as well as the mass ratio
M/m. The velocity dependence of this steady-state distribution function depends on
both D̂1(z) and D2(vth x).

The choice of the wave-particle diffusion coefficient has been discussed in the lit-
erature (Crew and Chang 1985; Stix 1992; Ma and Summers 1999; Vocks 2002;
Shizgal 2007). There is at present no theoretical model for the occurrence of a
Kappa distribution except for the works of Ma and Summers (1999) and Hasegawa
et al. (1985). We consider the wave-particle diffusion coefficient to be of the form
D2(vth x) = 1/(vth x) following on the work of Ma and Summers (1999). To repro-
duce the result obtained by them, one has to choose D2(vth x) = 1/(vth x) and
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v � vth , that is γ → ∞ in which case D̂1(z) → 1. Thus the mass dependence and
the behaviour D̂1(z) ≈ z−3 as z → 0 are not retained by setting D̂1(z) ≡ 1.

The steady state distribution function that is obtained in this limit is

d fκ(x)

fκ(x)
= −

[
2x

1 + αx2

]
dx, (6.112)

and when integrated leads to the Kappa distribution, Eq. (6.107). In this way, the
adjustable κ parameter in exospheric models is interpreted in terms of the strength
of wave-particle interactions and κ = (1 − α)/α.

The steady state distribution, fss(x), the Kappa distribution, fκ(x) and the
Maxwellian are compared in Fig. 6.6 for two mass ratios and the arbitrary choice
α = 1/8. The steady state distribution has a more extended high energy tail than
either the Kappa distribution or the Maxwellian. The mass ratios chosen correspond
to O+ and Fe+ in the solar atmosphere. For the larger mass ratio the tail of the steady
distribution is more extended than for the smaller mass consistent with the observed
heating of the heavy minor ions in the solar atmosphere.

For this application, we use the Chang-Cooper finite difference algorithm
described in Sect. 6.2.3 to integrate the Fokker-Planck equation given by Eq. (6.109)
with an initial Maxwellian distribution. With this numerical method, there is no ref-
erence to the eigenvalue spectrum of the operator in Eq. (6.109) as we have done for
all the other applications. The solutions converge provided that the grid spacing in
the finite difference reduced speed discretization and the time step are sufficiently
small. The evolution of the distribution functions showing the heating of the tail of
the distributions is shown in Fig. 6.7a, b for m/M = 16 and 55.85, respectively. The
increase in the temperature is shown in Fig. 6.7c for several heavy ions in the solar
atmosphere. This heating is consistent with observations that the temperature of the

x

-12

-10

-8

-6

-4

-2

0
(A) (B)

0 4 8 12 16 20 0 4 8 12 16 20
x

-12

-10

-8

-6

-4

-2

0

lo
g

10
f(

x)

lo
g 10

f(
x)

Fig. 6.6 Comparison of the Maxwellian (dotted curve), Kappa (dashed curve) and steady, fst (x)

(solid curve) distributions. The diffusion coefficient for wave-particle interactions is D̂2(x) = 1/x ,
the mass ratio m/M and α are (A) 16, 1/8 (B) 55.845, 1/8. For the Kappa distribution, κ = (1−α)/α.
Reprinted from Shizgal (2007) with permission from Springer
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minor ions in the solar atmosphere increases with mass (Pierrard et al. 2004).
In Fig. 6.7d, we show the monotonic increase in the Kullback–Leibler entropy

functional defined by

Σ(t) = 4π

∫
x2 f (x, t) ln

f (x, t)

fss(x)
dx . (6.113)

This final result demonstrates that the usual notions of entropy rationalizes the gen-
eration of a non-equilibrium distribution which is neither a Maxwellian nor a Kappa
distribution. The nonextensive entropy formalism of Tsallis (1995) is not required as
previously suggested (Collier 2004; Leubner and Vörös 2005) and references therein.
A pseudospectral solution of the Fokker–Planck operator equation, Eq. (6.109), is of
considerable interest, especially with concern to the properties of the eigenvalue
spectrum of the operator with wave-particle interactions (α �= 0).
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6.5 Fokker-Planck or Smoluchowski Equation
for Bistable Potentials

Potentials U (y), where y denotes a coordinate for internal rotation in a molecule
about some symmetry axis, are known for many molecules including for example
butane, C4H10, (Ryckaert and Bellemans 1978; Montgomery et al. 1979; Blackmore
and Shizgal 1985b; Pastor and Karplus 1989; Travis and Searles 2006), hydrogen
peroxide, HOOH, (Koput et al. 2001; Lin and Guo 2003; Lynch et al. 2004; Le et
al. 2009) and chlorine peroxide, ClOOCl (Gomes and Pacios 1996). The cis-trans
isomerization kinetics for such molecules can be modelled with a Fokker-Planck or
Smoluchowski5 equation of the form

∂P(y, t)

∂t
= ∂

∂y

[
U (y)P(y, t) + ∂B(y)P(y, t)

∂y

]
= L P(y, t), y ∈ (−∞,∞),

(6.114)

where y is a reaction coordinate.
A simple model for the isomerization kinetics used by many researchers

(Larson and Kostin 1978; Bernstein and Brown 1984; Voigtlaender and Risken 1985;
Blackmore and Shizgal 1985a, b; Cartling 1987; Drozdov 1999; Drozdov and Tucker
2001; Felderhof 2008) is defined with the drift and diffusion coefficients given by

U (y) = y3 − y, B(y) = ε. (6.115)

This model potential is bimodal with two minima at y = ±1. The steady distribu-
tion is

P0(y) = C exp[− y4

4ε
+ y2

2ε
], (6.116)

and has two sharp maxima at y = ±1, especially for ε small as shown in Fig. 6.8. The
constant C is a normalization. The model is also referred to as the quartic potential
because of the form of P0(y). This type of Fokker-Planck equation with two stable
states also has application to climate models (Nicolis and Nicolis 1981; Nicolis 1982;
Shizgal and Chen 1997) and laser physics (Blackmore et al. 1986; Shizgal and Chen
1997). The recent work by (Blaise et al. 2012) provides an extensive bibliography
on diffusion in a double well potential.

We study the time evolution of this system in terms of the eigenfunction expansion
discussed in Sect. 6.2. The eigenvalues and eigenfunctions can be calculated numer-
ically with the diagonalization of the spectral matrix representation of the linear

5 Marian Smoluchowski (1872–1917) was a Polish physicist who was responsible for the develop-
ment of fundamental concepts in statistical physics, kinetic theory and Brownian motion. His name
is associated with integral equations for coagulation and a Fokker-Planck equation for chemical
reactions.
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Fig. 6.8 Steady state bimodal distribution P0(x) = C exp[− 1
ε (x4/4 − x2/2)] for ε = 0.02 on the

left and ε = 0.005 on the right. The distribution of quadrature points with N = 20 is also shown

Fokker-Planck operator, L , defined by Eq. (6.114), that is

L(sp)
mn =

∞∫

−∞
w(y)Bn(y)L Bm(y)dy, (6.117)

where the nonclassical polynomials, Bn(y), are orthonormal with respect to the
weight function, w(y) = P0(y), that is

∞∫

−∞
exp

[
−1

ε

(
y4

4
− y2

2

)]
Bn(y)Bm(y)dx = δnm, (6.118)

as discussed in Chap. 2, Sect. 2.5.2.
Since w(y) is even and the integrals are evaluated over (−∞,∞), the recurrence

coefficients, αn = 0. The polynomials Bn(y) are even when n is an even number and
odd when n is an odd number. After some detailed algebraic manipulations presented
in Appendix B of Lo and Shizgal (2006), the symmetric matrix representation of the
Fokker-Planck operator is given by

L(sp)
mn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−(β2 + β1 − 1), m = n = 2,

(n − 1)(βn + βn−1 − 1) + 2
∑n−2

k=1 βk, m = n > 2,

(n − 1)
√

βn+1βn, m = n + 2,

(m − 1)
√

βm+1βm, m = n − 2,

0 otherwise,

(6.119)

where βn are the recurrence coefficients in the three term recurrence relation dis-
cussed in Chap. 2. The eigenvalue problem is Lψn(y) = −λnψn(y), with L as
defined by Eq. (6.114).

This matrix representation of the Fokker-Planck operator for the bimodal model
is pentadiagonal where the off-diagonal elements for m �= n ± 2 are zero. As a

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_2
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consequence, the eigenfunctions are odd or even and there is no coupling between
them. Thus, the matrix representation L(sp)

nm can be split into two separate matrices,
Leven with even n and m and Lodd with odd n and m. The spectrum of the
Fokker-Planck operator is composed of a set of singlet and nearly degenerate triplets.
With B(yi ) = ε, the pseudospectral discrete matrix representation of the Fokker-
Planck operator is given by Eq. (6.48)

L(ps)
i j = −ε

N∑

k=1

Dki Dkj , (6.120)

and yields the same eigenvalues and eigenfunctions as obtained with the spectral
representation. However, L(ps)

i j , is a full matrix and the symmetry properties of the

problem as determined from the structure of L(sp)
nm are not apparent. As demonstrated

in Chap. 2, the quadrature points are distributed nonuniformly within the domain, as
shown in Fig. 6.8 for two choices of ε. Therefore, the pseudospectral approach is more
flexible than the polynomial based spectral method as different weight functions can
be easily used to improve the convergence. The matrix elements for such nonclassical
basis functions may be difficult to calculate analytically as given by Eq. (6.119).

The convergence of the lower order eigenvalues for ε = 0.01 is shown in Table 6.3
versus the number of quadrature grid points, N , for three different grids as defined
by the weight functions shown in the table. As can be seen, the first nonzero eigen-
value λ1 is extremely small relative to the other eigenvalues. The reciprocal of this
eigenvalue represents the isomerization rate as discussed later. The three eigenvalues
λ3 − λ5 are nearly degenerate and converge at different rates. The first set of results
are obtained with the grid defined by wa(y) = P0(y), y ∈ (−∞,∞).

The convergence can be improved by taking advantage of the symmetry of the
eigenstates and calculating the even and odd eigenvalues with different weight func-
tions, w(e)

b (y) and w
(o)
b (y), y ∈ [0,∞), as shown in the middle of the table. The con-

vergence requires about half the number of quadrature points as with wa(y) = P0(y)

over the whole interval. The bottom portion of the table shows the convergence with
the uniform grid for the Sinc collocation method (SCM) (Wei 1999; Amore 2006)
as well as a comparison with the limited results by Dekker and van Kampen (1979).

The convergence of the eigenvalues for ε = 0.001 is shown in Table 6.4 and a third
weight function is chosen in order to accelerate the convergence. The weight function

is wc(y) = P0(y) + exp(− y2

2ε ) where the added exponential term yields quadrature
points in the middle of the interval near the origin. The convergence of the eigenval-
ues is extremely rapid relative to the Sinc collocation method with a uniform grid.

The distribution of quadrature points relative to the bimodal potential is shown
in Fig. 6.9 for three values of ε. The distribution of grid points is uniform for all
three values with the SCM. The quadrature points labelled QDM (a) are densely
distributed over the region of the outermost potential wells. The acronym QDM is
for the Quadrature Discretization Method which is the pseudspectral representation
given by Eq. (6.120). The quadrature points for QDM (b) are defined over the interval

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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x ∈ [0,∞) and are more densely distributed near the origin. The points for QDM (c)
are distributed densely about the origin. The rate of convergence of the eigenvalues
in Tables 6.3 and 6.4 is consistent with the distribution of the quadrature points for
these different weight functions.

The structure of the eigenvalue spectrum is made clearer by considering the trans-
formation to a Schrödinger equation and one finds the potential

V (y) = y2(y2 − 1)2

4ε
− 1

2
(3y2 − 1), (6.121)

which has three minima at

y0 = 0, y± = ±
√√√√

[
2

3
+

√
1

9
+ 2ε

]
. (6.122)

Table 6.3 Convergence of the eigenvalues of the Fokker-Planck operator with the bistable potential,
U (y) = y3 − y; ε = 0.01

N λ1 λ2 λ3 λ4 λ5

wa(y) = exp[−(
y4

4ε − y2

2ε )]/ exp(1/4ε); y ∈ (−∞,∞)

12 5.0833 (−8) 1.866176 1.865861

24 3.6651 (−11) 1.865757 1.865753

36 7.0354 (−12) 1.388230 1.865752 1.865758 2.664871

48 6.1809E-12 0.994289 1.865735 1.865754 1.956370

60 6.15499 (−12) 0.968472 1.865337 1.869329

72 6.15466 (−12) 0.967870 1.864560 1.866993

84 6.15465 (−12) 0.967865 1.864542 1.866975

w
(e)
b (y) = wa(y); w

(o)
b (y) = y2wa(y); y ∈ [0,∞)

12 6.4259 (−12) 1.256087 1.865747 1.865757 2.113341

15 6.1656 (−12) 0.990778 1.865720 1.865754 1.913825

18 6.1405 (−12) 0.969092 1.865601 1.875631

24 6.1424 (−12) 0.967879 1.864549 1.866982

27 6.1436 (−12) 0.967865 1.864542 1.866975

30 6.1427 (−12) 0.967864

Sinc collocation method xmax = 2.2

12 7.4085 (−1) 1.076821 3.336192 3.321671 1.574892

24 3.3865 (−3) 0.967915 1.931199 1.930972 1.865051

36 −4.8093 (−5) 0.967864 1.864066 1.864927 1.866629

48 1.7533 (−8) 1.864542 1.865754 1.866975

60 7.9956 (−12)

DvKa 0.968 1.862 1.867

Reprinted from Lo and Shizgal (2006) with permission of the American Institute of Physics
a Dekker and van Kampen (1979)
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Table 6.4 Convergence of the eigenvalues of the Fokker-Planck operator with the bistable potential,
U (x) = x3 − x ; ε = 0.001

N λ2 λ3 λ4 λ5

wc(y) = exp[−(
y4

4ε − y2

2ε )]/ exp( 1
4ε ) + exp(− y2

2ε )

6 0.9980526 2.0000470 2.0200067 2.0694590

12 0.9969809 1.9878205 1.9880010 1.9881554

18 0.9969817 1.9878873 1.9878903 1.9878937

24 1.9878896 1.9878896 1.9878893

30 1.9878896

Sinc collocation method xmax = 1.2

12 3.4140030 21.7611343 21.7517512 3.4979300

24 1.2875835 8.5716393 8.5704015 1.6476678

36 1.0279928 4.1568953 4.1569000 1.7776398

48 0.9984717 2.5344712 2.5345542 1.9649680

60 0.9970079 2.0928734 2.0928574 1.9872886

72 0.9969819 1.9995592 1.9995565 1.9878842

84 0.9969817 1.9884160 1.9884156 1.9878896

96 1.9878838 1.9878838

108 1.9878884 1.9878884

120 1.9878896 1.9878896

Reprinted from Lo and Shizgal (2006) with permission of the American Institute of Physics

In the limit ε → 0, the potential barriers between the two minima become larger and
the potentials near the minima are quadratic, that is,

lim
ε→0

V ±(y) → (y − y±)2

ε
− 1, y ≈ y±, (6.123)

lim
ε→0

V 0(y) → y2

4ε
+ 1

2
y ≈ 0.

and the corresponding eigenvalues are

lim
ε→0

λ±
k → 2k, k = 0, 1, 2, . . . (6.124)

lim
ε→0

λ0
k → k + 1, k = 0, 1, 2, . . .

Thus in the very small ε limit the eigenvalues approach integer values, the zero eigen-
value is doubly degenerate and the remaining even eigenvalues are triply degenerate.

The importance of the distribution of grid points is illustrated in Fig. 6.9 where the
grid points are shown in relation to the potentials in the Schrödinger equation. For
ε = 0.1 in Fig. 6.9a, the grid points are well distributed in the two wells of the poten-
tial. For ε = 0.01, the potential has a minimum near the origin and wa(y) = P0(y)

does not properly capture the eigenfunction in this region whereas the quadrature



370 6 Spectral and Pseudospectral Methods of Solution …

(A)

(B) (C)

Fig. 6.9 The bimodal potential, V (y), for ε equal to (A) 0.1, (B) 0.01 and (C) 0.001. The quadrature

points with weight functions wa(y) = exp[−(
y4

4ε − y2

2ε )]/ exp(1/4ε); y ∈ (−∞,∞), w
(e)
b (y) =

wa(y) y ∈ [0,∞); w
(o)
b (y) = y2wa(y); y ∈ [0,∞) and wc(y) = exp[−(

y4

4ε − y2

2ε ] exp( 1
4ε ) +

exp(− y2

2ε ) are shown. Reprinted from Lo and Shizgal (2006) with permission of the American
Institute of Physics

over the positive interval defined with wb(y), y ∈ [0,∞) has more quadrature
points close to the origin than does wa(y), y ∈ (−∞,∞). For ε = 0.001, we use a
weight function centred about the origin together with wa(y). These results illustrate
the flexibility of a pseudospectral method based on nonclassical weight functions
that accelerate the convergence.

The variation of the eigenvalues versus ε is shown in Fig. 6.10. The top graph illus-
trates the very rapid decrease of λ1 with decreasing ε. This eigenvalue represents the
slowest mode and the reciprocal can be identified with the long time isomerization
rate coefficient. The division of the other eigenvalues into singlet and triplet states
is shown in the bottom graph with the triplet states converging to integer values for
ε → 0. The objective of such modelling is to determine the nonequilibrium isomer-
ization rate coefficient.

The cis-trans isomerization of n-butane has been studied by numerous researchers
(Ryckaert and Bellemans 1978; Montgomery et al. 1979; Pastor and Karplus 1989;
Shizgal et al. 1991; Travis and Searles 2006) with a particular potential reported by
Montgomery et al. (1979) and also used by Marechal and Moreau (1984).
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Fig. 6.10 Eigenvalue spectrum of the Fokker-Planck operator for the bistable potential; (Top graph)
Variation of the smallest nonzero λ1 eigenvalue versus ε. (Bottom graph) Variation of the higher
eigenvalues showing the splitting into singlet and triplet states. Reprinted from Blackmore and
Shizgal (1985a); Copyright 1985 by the American Physical Society

The solution of the time dependent Fokker-Planck equation for an initial delta
function, δ(y − y0), with all of the particles in one well at y0 is given by

P(y, t) =
∞∑

n=0

ψn(y0)ψn(y)e−λn t , (6.125)

where λn are the eigenvalues of the Smoluchowski operator, L , in Eq. (6.114). The
eigenvalues are calculated with the pseudospectral method with quadrature points
and weights defined with the equilibrium density, P0(y) and the associated discrete
derivative operator in physical space (Blackmore and Shizgal 1985a).

The number density of isomers in the potential well on the right for y ∈ [0,∞)

is denoted by NA(t) and the isomerization rate equation is defined by

d NA(t)

dt
= −k(t)

[
N eq

A − NA(t)

]
. (6.126)
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where the nonequilibrium time dependent rate coefficient is determined from the
time dependent reactive flux over the barrier. From a correlation function formal-
ism (Montgomery et al. 1979; Marechal and Moreau 1984; Blackmore and Shizgal
1985a), the time dependent nonequilibrium rate coefficient can be written in the form

k(t) =
∞∑

n=0

Ane−λn t , (6.127)

with the An coefficients given by

An = λn

[ ∞∫

0

ψn(y)dy

]2

, (6.128)

and determined numerically with the nonclassical quadrature points. The details of
this calculation were provided by Blackmore and Shizgal (1985a).

The nonequilibrium rate coefficient is compared with the transition state theory
estimate given by

ktst = S(0)

√
kB Tb

2πm
, (6.129)

where

S(y) = e−U (y)/kB Tb

∫∞
−∞ e−U (y)/kB Tb dy

.

The time dependent rate coefficient for butane isomerization in the potential
reported by Montgomery et al. (1979) is summarized in Fig. 6.11. The time depen-
dent rate coefficient given by Eq. (6.127) relative to the equilibrium transition state
theory (tst) rate coefficient, Eq. (6.129), is shown in the figure as the solid curves (a)
and (b). The curve labelled (b) is for the potential as reported and the one labelled
(a) is for an harmonic fit to this potential. The curve denoted by MM and MCB are
the results by Marechal and Moreau (1984) and the simulations by Montgomery et
al. (1979), respectively. There are many reactive systems and diffusion processes
that are modelled with the Smoluchowski equation (Szabo et al. 1980; Bagchi et al.
1983; Chavanis 2006; Felderhof 2008) including protein folding (Bicout and Szabo
2000), dielectric relaxation (Coffey et al. 2009) and a Smoluchowski equation with
a capture term (Spendier et al. 2013) that overlaps in some respects the studies of the
nonequilibrium reactive system in Sect. 5.4.4.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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Fig. 6.11 The time dependent nonequilibrium rate coefficient for butane isomerization with the
potential reported by Montgomery et al. (1979) (b) and with an harmonic fit to the potential (a).
The dashed curve (MM) is the result by Marechal and Moreau (1984) and the dotted curve (MCB)
is the result by Montgomery et al. (1979). The collision frequency ν = 3 × 1012 sec−1. Reprinted
with permission from Blackmore and Shizgal (1985a); Copyright 1985 by the American Institute
of Physics

6.6 Kramers Equation and Nonequilibrium Chemical
Kinetics; A Spectral Solution

It has been long recognized that reactive processes for gaseous systems pro-
ceed with the perturbation of the species velocity distribution functions from
Maxwellian (Ross and Mazur 1961; Shizgal and Karplus 1970; Shizgal and Napier
1996; Kustova and Giordano 2011; Dziekan et al. 2012). These analyses of the depar-
ture from Maxwellian are based on the Boltzmann equation. The fundamental quan-
tities that define the Boltzmann equation are the cross sections for elastic and reactive
collisional processes. We considered spectral methods of solution of the chemical
kinetic Boltzmann equation in Chap. 5, Sect. 5.4.4. The theoretical description of the
kinetics of isomerization reactions presented in Sect. 6.5 based on the Fokker-Planck
or equivalently the Smoluchowski equation in position space assumed a Maxwellian
distribution function of the particles in velocity space.

The Kramers equation (Kramers 1940) for the distribution function, f (r, v, t), of
a test particle at position r and velocity v, at time t in the potential U (r) is given by

∂ f

∂t
− v

∂ f

∂r
− F

m

∂ f

∂v
= ν

∂

∂v

(
v + kB Tb

m

∂

∂v

)
f. (6.130)

The equation is comparable to the Boltzmann equation in Chap. 5, Eq. (5.30) with a
drift term on the left hand side and a collision term on the right hand side. The force
F = −∂U (r)/∂r is derivable from an internal potential U (r). The collision term
is a particular choice which can be recognized as the Ornstein-Uhlenbeck Fokker-
Planck operator in Sect. 6.1.2. The strength of the collision operator is denoted by the
collision frequency ν. Kramers equation is generally used to model isomerization
reactions in liquids for which the potential is the internal molecular torsional potential

http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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about a symmetry axis in a molecule with cis-trans isomers. The frequency ν is
related to the viscosity of the background liquid in which the isomerization rate
is measured. There exists experimental data of the isomerization rates versus the
viscosity of the liquid. The magnitude of ν reflects the strength of the coupling of
the nonequilibrium system with the surroundings at equilibrium. When ν is large, the
coupling is strong and the velocity distribution function approaches the equilibrium
Maxwellian distribution at the heat bath temperature, Tb.

We continue the analogy of Kramers equation with the Boltzmann equation and
relate the problem to rarefied gas dynamical problems where instead of ν we have the
Knudsen number, 1/Kn, playing a similar role. In the small Kn collision dominated
regime, departures from equilibrium are small and pertubation type methods such as
the Chapman-Enskog method work remarkably well. The other extreme is the almost
fully collisionless situation when Kn is very large and the Boltzmann equation can
be solved with Liouville’s theorem. It is the intermediate situation when Kn ≈ 1 that
is the most difficult to treat theoretically.

A review of the many different applications of Kramers equation in chemistry and
physics is beyond the scope of this book. The reader is directed to the excellent review
by Hänggi et al. (1990) that provides a large bibliography up to about 1990. Another
good overview is the book by Risken and Till (1996). A more recent summary
was provided by Pollak and Talkner (2005). References 1–40 in the introduction
section of the paper by Voigtlaender and Risken (1985) refers to a large number of
applications of the Kramers equation. Numerical methods for the efficient solution
of the Kramers equation are of considerable importance (Berezhkovskii et al. 1996;
Bicout et al. 2001; Schindler et al. 2005; Bi and Chakraborty 2009; Coffey et al.
2009; Müller et al. 2012).

In this section we describe a particular pseudospectral method of solution of the
Kramers equation with the symmetric bistable double Morse potential introduced by
Garrity and Skinner (1983) given by

U (r) = Um

[1 − e−br0 ]4

[
1 − e−b(r0+r)

]2[
1 − e−b(r0−r)

]2

, (6.131)

where r is an internal spatial coordinate, r0 and −r0 are the positions of the minima
and br0 is a parameter which controls the width of the barrier of height Um that
separates cis-trans isomers, as in the previous section. The potential is shown for two
values of br0 in Fig. 6.12.

The “collision” operator on the right hand side of Eq. (6.130) that describes the
coupling of the system with the surrounding heat bath is the Ornstein-Uhlenbeck
Brownian motion Fokker-Planck operator discussed in Sect. 6.1.2. This is not the
only choice for the operator that couples the reactive system with the surrounding
heat bath. Garrity and Skinner (1983) used the Bhatnagar–Gross–Krook (Bhatnagar
et al. 1954) model of the Boltzmann collision operator. The correspondence between
the Boltzmann equation and the Kramers equation was made in the paper by Skinner
and Wolynes (1980) and they proposed alternate collision operators in the Kramers
equation that couple the reactive system with the heat bath.
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Fig. 6.12 The model bimodal double Morse potential (Garrity and Skinner 1983)

In the high collision frequency limit, ν → ∞, the Kramers equation can be
transformed to the Smoluchowski equation (Risken 1996; Gardiner 2003) for the
distribution in r . This transformation involves the integration over the Maxwellian
velocity distribution for the probability density in position (Blackmore 1985)

P(r, t) =
∞∫

−∞
f (r, v, t)dv, (6.132)

and the result is the Smoluchowski equation

∂P

∂t
= L S P, (6.133)

where L S is defined by,

L S P = 1

νm

∂U
′
(r)P

∂r
+ D

∂2 P

∂r2 , (6.134)

and D = kB Tb/mν is the diffusion coefficient as treated in the previous section.
The theoretical maximum reaction rate is the transition state theory (tst) estimate.

The extent of the nonequilibrium reactive effects is determined by the magnitude
of the coupling of the reactive system with the heat bath. If the coupling is strong,
the nonequilibrium effects are small and conversely if the coupling is weak, the
nonequilibrium effects can be large. This is similar to the treatment in Chap. 5 with
the chemical kinetic Boltzmann equation where the elastic cross section controls the
coupling with the heat bath.

http://dx.doi.org/10.1007/978-94-017-9454-1_5
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The collision frequency ν plays the same role in Kramers equation as does 1/Kn
in gas kinetic theory. We are interested in the solution of Kramers equation over the
whole range of friction coefficient. In the large collision frequency limit, the Kramers
equation is approximated by the Smoluchowski equation.

The Kramers equation in dimensionless variables, x = v
√

m/2kT , ρ = r/r0, and
t ′ = tν/2, is

∂P(x, ρ, t)

∂t ′
= ∂

∂x

[
∂

∂x
+ 2x

]
P(x, ρ, t) − 1

ν

[
2ν

∂

∂ρ
− V (ρ)

∂

∂x

]
P(x, ρ, t)

= L K P(x, ρ, t), (6.135)

where γ =
√

mr2
0 ν2/2kT is the friction coefficient and

V [ρ(r)] = − 1

kT

dU (r)

dr
. (6.136)

We expand the probability density in the eigenfunctions of the Kramers operator, L K .
The eigenfunctions and eigenvalues can be complex as the Kramers operator is not
Hermitian. We expand the eigenfunctions in Hermite polynomials in velocity v and
in the eigenfunctions of the Smoluchowski operator in the spatial coordinate ρ. The
Hermite polynomials are the eigenfunctions of the Ornstein-Uhlenbeck “collision”
operator as discussed in Sect. 6.1.2.

The system is initially prepared to be entirely in one of the potential wells, that is

P(x, ρ, 0) =
⎧
⎨

⎩

P0(x, ρ), ρ > 0,

0, otherwise,
(6.137)

where the equilibrium distribution is

P0(x, ρ) = Ne−x2
exp(

ρ∫
V (ρ′)dρ′), (6.138)

and N is a normalization constant.
We expand P(x, ρ, t) in the eigenfunctions of L K ,

P(x, ρ, t ′) =
∞∑

n=0

ane−λn t ′Ψn(x, ρ), (6.139)

where

L K Ψn(x, ρ) = −λnΨn(x, ρ). (6.140)
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The expansion coefficients, an , are determined by the initial condition,

an =
∞∫

−∞

∞∫

−∞
P(x, ρ, 0)Ψ ∗

n (x, ρ)/P0(x, ρ)dxdρ,

=
∞∫

0

∞∫

−∞
Ψ ∗

n (x, ρ)dxdρ. (6.141)

With Eq. (6.139), it can be shown (Shizgal et al. 1991) that the time dependent
relaxation time is given by

τ−1(t ′) =
∞∑

n=0

An exp(−λr
nt ′)

[
λr

n cos(λi
nt ′) + |λi

n| sin(|λi
n|t ′)

]
, (6.142)

where λn = λr
n + iλi

n are the complex eigenvalues and

An = an

∞∫

−∞

∞∫

0

Pn(x, ρ)dxdρ.

For a sufficiently large barrier separating the two minima, λ1 will be much less than
the higher eigenvalues and the relaxation time will tend to the limiting value,

1

τ
→ λ1 A1, (6.143)

as t → ∞. This result also requires that A1 is of the order of unity and the remaining
coefficients An are very much smaller (Blackmore and Shizgal 1985b).

We compare the results obtained with Eq. (6.143) with the transition state theory
(tst) value of the relaxation time

1

τtst
= S(0)

√
kT/2πm, (6.144)

where

S(r) = e−U (r)/kT /

∞∫

−∞
exp[−U (r ′)/kT ]dr ′. (6.145)

It is important to note that this result is independent of ν.
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The eigenvalue equation for the Kramers operator, L K Ψn = −λnΨn , is written in
terms of the eigenfunctions, φn(x, ρ) = Ψn/P0 which satisfy the eigenvalue problem,

L̃ K φn = [ ∂

∂x
− 2x] ∂

∂x
φn − 1

γ
[2x

∂

∂ρ
− V (ρ)

∂

∂x
]φn = −λnφn . (6.146)

Since the first operator in x alone is diagonal in the Hermite polynomials, Hj (x)

(normalized to unity), we consider the expansion

φn(x, ρ) =
∞∑

j=0

c j (ρ)Hj (x), (6.147)

in Eq. (6.146) and find that the coefficients satisfy the set of operator equations
(Brinkmann 1956; Risken and Till 1996; Blackmore and Shizgal 1985b; Shizgal et
al. 1991),

∞∑

j=0

(
2 jδ jk +

√
2 j

γ

[
∂

∂x
δ j,k−1 + (

∂

∂ρ
− V (ρ))δ j,k+1

])
c j (ρ) = λnck(x).

(6.148)

Equation (6.148) is a tri-diagonal system of coupled differential operator equations
in the spatial variable (Brinkmann 1956; Risken and Till 1996).
The eigenfunctions, S�(x), of the Smoluchowski operator, L̃ S , defined by,

L̃ S S�(ρ) = − 1

γ2

[
φ(ρ) − ∂

∂ρ

]
∂

∂ρ
= −λS

� S�(ρ), (6.149)

are used as nonclassical basis functions to expand

c j (ρ) =
∞∑

�=0

d j�S�(ρ). (6.150)

The set of eigenvalue differential operator equations, Eq. (6.148), reduces to the
matrix eigenvalue equation

∞∑

k′=0

∞∑

�′=0

(
2kδk,k′δ�,�′ − √

2(k + 1)δk′,k+1G�′,�/γ + √
2kδk′,k−1G�,�′/γ

)
dk′,�′

= λdk,�. (6.151)
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The quantities

G�,�′ =
∞∫

−∞
v(ρ)S�(ρ)

d S�′(ρ)

dρ
dρ, (6.152)

are the matrix elements of the derivative operator over the spatial variable with
the eigenfunctions of the Smoluchowski operator, where the weight function is
v(ρ) = exp(− ∫ ρ V (ρ′)dρ′). These eigenfunctions form the nonclassical basis set
for the solution of the Kramers equation.

The eigenfunctions of the Smoluchowsi operator which define the G�,�′ matrix
elements are determined with the pseudospectral solution of the Smoluchowski equa-
tion as discussed in Sect. 6.5. This particular numerical approach permits the efficient
numerical evaluation of the derivative of the eigenfunctions with the derivative matrix
operator, D, and the evaluation of the matrix elements with the associated quadrature.
These matrix elements are evaluated with the derivative operator and quadrature as

G��′ =
M∑

m=1

wm
v(xm)

w(xm)
S�(xm)

M∑

m′=1

Dmm′ S�′(xm), (6.153)

where

w(x) = exp[−Um(x4 − 2x2)/(kB Tb)],

defines the quadrature points, xm and weights, wm . Thus we make use of both the
pseudospectral derivative evaluation and the Gaussian quadrature, both for the non-
classical Smoluchoski eigenfunctions as basis functions. It is useful to mention that
the matrix elements G��′ are the representations of the derivative operator in the basis
set of Smoluchowski eigenfunctions.

A detailed consideration of the form of Eq. (6.151) shows that the characteris-
tic polynomial which determines the eigenvalues factors into two polynomials, with
eigenvalues that correspond to even and odd eigenfunctions (Voigtlaender and Risken
1985), and the dimensionality of the eigenvalue problem is reduced. The reaction
rate, which is given by λ1, is of primary interest. Consequently, the eigenfunction cor-
responding to this eigenvalue must satisfy the conditions, P1(x,−ρ) = −P1(x, ρ)

and P1(−x, ρ) = P1(x, ρ). Since the overall parity is odd, the eigenvalue λ1 can be
determined by restricting the calculation to the space of odd eigenfunctions.

Table 6.5 shows the convergence of λ1 versus the number of Hermite polynomials
M and the number of Smoluchowski eigenfunctions N for br0 = 4. The convergence
of this eigenvalue is very rapid for large γ as expected in view of the use of the Smolu-
chowski eigenfunctions as basis functions. We show the results only for an even num-
ber of Smoluchoswki basis functions, N even. The results for N odd are nonphysical
as λ1 increases with N . This feature of the matrix representation of the Kramers
operator has been interpreted and discussed in detail by Shizgal et al. (1991).
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Table 6.5 Convergence of λ1 of the Kramers operator in units of 10−2 (
√

kB Tb/2m/r0); br0 = 4;
Um/kB Tb = 5

N/M 4 10 16 22

γ = 2

4 1.876

10 2.256 2.043

16 2.268 2.050 2.049

22 2.267 2.049

γ = 1

4 2.295 2.158

10 2.968 2.317 2.119

16 3.020 2.118 2.159 2.157

22 3.022 2.172 2.154 2.153

γ = 0.4

4 3.202 2.525

10 2.572 1.529 1.377 1.359

16 2.669 1.637 1.506 1.478

22 2.679 1.623 1.497 1.470

γ = 0.1

4 4.742 1.474

10 2.003 0.6823 0.470 0.448

16 2.099 0.828 0.665 0.599

22 2.110 0.790 0.634 0.574

Reproduced from (Shizgal et al. 1991) with permission Beylich A.E.: Rarefied gas dynamics. In:
Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag
GmbH and Co. KGaA. pp. 85–92, (1991)

The variation of the relaxation rate relative to the transition state estimate is shown
in Fig. 6.13 versus the friction coefficient. The present method of calculation of these
isomerization rates gives reliable estimates down to γ = 0.05 − 0.1. This variation
of the reaction rate with γ with a maximum at some intermediate γ is referred to as
the “turnover” problem that has been investigated experimentally and theoretically
since the publication of Kramers paper (Kramers 1940). It is the turnover of the graph
in the Figure that has been difficult to calculate. With increasing γ, the convergence
becomes more rapid.

There have been and continue to be many experimental studies of the isomeriza-
tion rates in different solvents with different viscosities. The viscosity is related to
the friction coefficient, γ, and thus the turnover in Fig. 6.13 has been verified exper-
imentally (Pollak et al. 1989; Anna and Kubarych 2010; Pollak and Ianconescu
2014).
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Fig. 6.13 The ratio τ−1/τ−1
T ST versus the friction coefficient γ demonstrates the classic “turnover

problem”. The value of br0 is equal to (a) 0, (b) 2, (c) 3 and (d) 4. Reproduced from (Shizgal
et al. 1991) with permission Beylich A.E.: Rarefied gas dynamics. In: Proceedings of the 17th
International Symposium on Rarefied Gas Dynamics, Wiley-VCH Verlag GmbH and Co. KGaA.
pp. 85–92, (1991)

6.7 Sturm-Liouville Problems and the Schrödinger Equation

The Sturm-Liouville problem (Pryce 1993; Al-Gwaiz 2008) refers to the solution,
either analytically or numerically, of the eigenvalue problem

Lψn(x) = λnw(x)ψn(x), (6.154)

where w(x) > 0 is a weight function and L is the second order differential operator,
defined by

L f (x) = d

dx

[
p(x)

d f (x)

dx

]
+ q(x) f (x). (6.155)

It is useful to notice that this operator is in the form of a diffusion equation where
p(x) is a diffusion coefficient in a Fokker-Planck equation and q(x) is a gain or loss
term. We assume that p(x) > 0, dp(x)/dx , q(x) and w(x) > 0 are real valued and
piecewise continuous. Any linear second order differential equation can be written
in this form. The eigenfunction, ψn(x), defined on the interval [a, b] is subject to
two homogeneous boundary conditions which are linear combinations of the value
of the function and derivative at the two interval end points and are of the form

A1ψn(a) + B1ψ
′
n(a) = 0,

A2ψn(b) + B2ψ
′
n(b) = 0, (6.156)

where for Ak = 0 we have a Neumann boundary condition and if Bk = 0 we have a
Dirichlet boundary condition.
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In Sect. 6.2.1 we demonstrated the self-adjoint property of the Fokker-Planck
operators subject to zero flux boundary conditions. The linear operator defined by
the Sturm-Liouville problem is self-adjoint with respect to the boundary conditions,
Eq. (6.156).

With the transformation of the independent variable from x to y,

y =
∫ √

w(x)/p(x)dx, (6.157)

and the transformation of the dependent variable ψn(x) to φn(y) of the form

ψn(x) = m(x)φn[y(x)], (6.158)

where m(x) = [p(x)w(x)]−1/4, the Sturm-Liouville equation can be written in so-
called Liouville normal form which is identical to a Schrödinger equation of the
form

− d2φn(y)

dy2 + V (y)φn(y) = λnφn(y), (6.159)

where the potential function V (y) is

V (y) = q[x(y)]
w[x(y)] + m[x(y)] d2

dy2 (
1

m[x(y)] ). (6.160)

as derived by Pryce (1993).

6.7.1 Classical Polynomials as Eigenfunctions
of the Sturm-Liouville and Schrödinger Equations

The classical polynomials discussed in this chapter (and other orthogonal poly-
nomials) satisfy a Sturm-Liouville eigenvalue problem related to an associated
Schrödinger equation. Many of the details of these relationships can be found in
standard textbooks so we here outline the main results and the reader is referred to
other references for a complete development. We presented a preliminary discussion
in Sect. 3.9.3.

6.7.2 Legendre Polynomials; Quantized Rotational States
of a Rigid Rotor

The rigid rotor model for a diatomic molecule has a fixed internuclear distance at re

and it is only the orientation of r = (re, θ,φ) in terms of the spherical coordinates

http://dx.doi.org/10.1007/978-94-017-9454-1_3
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that is of concern. The dependence on the azimuthal angle φ does not influence the
rotational energy and thus only the dependence on θ is considered. The Schrödinger
equation is

− �
2

2I

[
1

sin θ

d

dθ
(sin θ

dψ(θ)

dθ
)

]
= Eψ(θ), (6.161)

where E is quantized, I is the moment of inertia and the differential operator in θ is
from the form of ∇2 in spherical polar coordinates. With the substitution x = cos θ,
Eq. (6.161) can be expressed as

Hψ�(x) = − d

dx

[
(1 − x2)

dψ�(x)

dx

]
= λ�ψ�(x), (6.162)

where H is the dimensionless Hamiltonian, E� = λ�
�2

2I is the energy eigenvalue and

λ� = �(� + 1). (6.163)

These rigid rotor energy eigenvalues are precisely the eigenvalues of the total angu-
lar momentum operator L2. There are two aspects that are important to note. The
differential operator in Eq. (6.163) is of the Sturm-Liouville type and the differential
operator on the left hand side is self-adjoint on the interval x ∈ [−1, 1]. The eigen-
value equation, Eq. (6.163), is the defining equation for the Legendre polynomials,
that is

d

dx

[
(1 − x2)

d P�(x)

dx

]
= −�(� + 1)P�(x). (6.164)

Thus, the solution of this problem is ψ�(x) ≡ P�(x). We have found the basis
for which the Hamiltonian is diagonal H�,�′ = �(� + 1)δ�,�′ . This is the physical
space representation. The discrete space representation can be obtained with the
transformation T�j defined in terms of the Legendre polynomials P�(x), that is

H (ps)
i j =

N−1∑

�=0

N−1∑

�′=0

Ti� H��′ T�′i . (6.165)

With the transformation, Ti� = √
wi P�(xi ), one can show that

H (ps)
i j =

N∑

k=1

(1 − x2
k )Dki Dkj , (6.166)

where D is the derivative matrix operator. The numerical diagonalization of this
discrete matrix representation of the Hamiltonian of order N gives N eigenvalues
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λ� = �(� + 1) exactly. This formalism was introduced in Chap. 3, Sect. 3.9.3, and
Fig. 3.26 shows the exact eigenfunction obtained with Eq. (6.166). For Legendre
polynomials, P�(x), defined in x ∈ [−1, 1] with w(x) = 1, p(x) = (1 − x2) and
q(x) = 0, we find easily from Eq. (6.155) that

− (1 − x2)P
′′
� (x) + 2x P

′
� = �(� + 1)P�(x) (6.167)

which is the defining differential equation for Legendre polynomials.

6.7.3 Hermite Polynomials; Quantum Harmonic Oscillator

The Hermite polynomials Hn(x) on x ∈ (−∞,∞), satisfy a Sturm-Liouville prob-
lem defined by w(x) = p(x) = e−x2

and q(x) = 0 in the general form Eq. (6.155).
With these definitions, Eq. (6.155) gives the differential equation

H
′′
n (x) − 2x H

′
n = −2nHn(x). (6.168)

This differential equation can be written as a Schrödinger equation in terms of
hn(x) = e−x2/2 Hn(x). Notice that where Hn(x) polynomials are orthogonal with
respect to w(x) = e−x2

, the basis functions hn(x) are orthogonal with unit weight
function. The defining Schrödinger differential equation for these functions from
Eq. (6.168) is

− h
′′
n(x) + x2hn = (2n + 1)hn(x), (6.169)

where the term in h
′
n(x) does not appear. This is precisely the dimensionless

Schrödinger equation for a quantum harmonic oscillator as a simple model for the
vibrational states of a non-rotating diatomic molecule.

If the interaction potential between the nuclei of a diatom is V (r) where r is
the internuclear separation, the harmonic oscillator model involves the quadratic
approximation of the potential at the minimum of the potential, that is,

V (r) ≈ V (re) + 1

2

d2V

dr2

∣∣∣∣
r=re

(r − re)
2. (6.170)

If we define the force constant as k = dV
dr |r=re and the displacement from re as

x = r − re, the one-dimensional Schrödinger equation is given by

− �
2

2μ
ψ

′′
n(x) + kx2

2
ψn(x) = Enψn(x), (6.171)

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3


6.7 Sturm-Liouville Problems and the Schrödinger Equation 385

where � is the Planck constant and μ = m1m2/(m1 + m2) is the reduced mass with
m1 and m2 the masses of the two nuclei. Comparing Eqs. (6.171) and (6.169), we
get the quantized vibrational states given by

En = (n + 1

2
)�ω, (6.172)

where ω = √
k/μ is the fundamental frequency of the oscillator.

The harmonic oscillator is a typical benchmark problem for which a variety of dif-
ferent discretizations are compared. One such method is based on the representation
of the second derivative operator on x ∈ (−∞,∞) with a uniform grid with spacing
Δx . The grid points are thus xi = iΔx, i = 0,±1,±2, . . . ,±N/2, on the finite
interval [−NΔx/2, NΔx/2]. This representation of the second derivative operator

D2
i j =

{
π3/3, i = j,
2(−1)(i− j)/(i − j)2, i �= j,

(6.173)

has been reported by Schwartz (1985); Colbert and Miller (1992); Mazziotti (1999);
Amore (2006); Baye (2006) and others. The Hamiltonian matrix for the dimension-
less quantum harmonic oscillator (Colbert and Miller 1992) is approximated by

Hi j = 1

2(Δx)2

{−π3/3, i = j,
−2(−1)(i− j)/(i − j)2, i �= j.

}
+ x2

i

2
δi j . (6.174)

The relative accuracy of the approximate harmonic oscillator eigenvalues deter-
mined with the diagonalization of the matrix Hi j of dimension N × N given by
Eq. (6.174) is shown in Fig. 6.14(A) versus the quantum number n. The lower order
eigenstates are well approximated but the error increases with increasing n. The size
of the matrix is increased by halving the step size and keeping the interval fixed as
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Fig. 6.14 (A) Relative accuracy = 1 − λn/(n + 1/2) for eigenvalues of the quantum harmonic
oscillator versus the vibrational quantum number n obtained with the diagonalization of the Hi j
matrix (Eq. (6.174)) of dimension N ; x ∈ [−7, 7]. (B) The eigenfunction, ψ11(x), with the 10
Hermite quadrature points shown as the solid circles; N = 112
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shown in the figure and there is not much change for N = 56 to N = 224. Of interest
is the variation of ψ11(x) in Fig. 6.14(B) with N = 112. The filled circles are the
10 Hermite quadrature points which coincide rather well with the nodes of the wave
function. In order to get a good result for the higher eigenstates the interval has to
be made larger.

The optimal basis functions are the Hermite polynomials which are the eigen-
functions of the harmonic oscillator Hamiltonian and the matrix representation of
the Hamiltonian in this basis set is diagonal, 〈n|H |m〉 = (n +1/2)δnm , and provides
the exact result. This result can be derived with the recurrence relations for the Her-
mite polynomials. This is the spectral solution of this elementary problem.

Baye and Heenen (1986) use a pseudospectral method (a Lagrange mesh method)
based on the discrete physical space representation of the second derivative matrix
operator in the Hermite polynomial basis

Hi j =
⎧
⎨

⎩

(4N − 1 − 2x2
i )/12, i = j,

(−1)(i− j)
[

1
(xi −x j )

2 − 1
4

]
i �= j.

⎫
⎬

⎭ + x2
i

2
δi j . (6.175)

The diagonalization of this discrete matrix representation gives the eigenvalues λn =
n+1/2 to machine accuracy for all but one eigenvalue even though the basis functions
used are the exact eigenfunctions of the Hamiltonian. The results of this calculation
are summarized in Table 6.6. The four eigenvalues, λ0 to λ3, for N = 6 to 9 are
determined to machine accuracy, although only shown to three significant figures.
For each N there is a nonphysical eigenvalue referred to as a“ghost” level (Wei 1997;
Willner et al. 2004; Kallush and Kosloff 2006) that are framed in the table. For the
harmonic oscillator problem, λghost = (3N − 2)/4, and for N = 8 this coincides
with an eigenvalue so there are two degenerate eigenvalues. This pattern repeats for
N = 10 to 13, 14 to 18, etc.

Table 6.6 Ghost levels of the quantum harmonic oscillator determined with Eq. (6.175)

n λn = n + 1
2 N = 6 N = 7 N = 8 N = 9

01 0.50 0.50 0.50 0.50 0.50

1 1.50 1.50 1.50 1.50 1.50

2 2.50 2.50 2.50 2.50 2.50

3 3.50 3.50 3.50 3.50 3.50

4 4.50 4.00 4.50 4.50 4.50

5 5.50 4.50 4.75 5.50 5.50

6 6.50 5.50 5.50 6.25

7 7.50 6.50 6.50

8 8.70 7.50

The last eigenvalue is replaced with a nonphysical state highlighted by the framed numbers. For
N = 8, there is a degenerate pair of eigenvalues. λ5 = λ6 = 5.50
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The reason for the appearance of nonphysical eigenvalues is often attributed to
the inexact calculation of the matrix elements of the harmonic potential with the
quadrature of order N represented by the diagonal physical space matrix V (xi ) =
(x2

i /2)δi j . The potential energy matrix elements

Vnm = 1

2

∞∫

−∞
e−x2

Hn(x)x2 Hm(x)dx, (6.176)

evaluated with an N th order quadrature

V (N )
nm ≈ 1

2

N∑

i=1

wi Hn(xi )x2
i Hm(xi ), (6.177)

is not exact. For the element n = m = N , the integrand is a polynomial of degree
2N +2. The quadrature of order N is exact only for polynomials of order up to 2N +1.
We have considered this calculation in detail in Chap. 3, Sect. 3.7.2. The transfor-
mation to spectral space of the physical space representation of the multiplicative
potential operator with the diagonal matrix V (xi )δi j gives an inaccurate result for
the VN ,N matrix element. The result with a quadrature of order N in Eq. (6.177) is
not correct.

The physical space pseudospectral representation of the harmonic oscillator
Hamiltonian based on the Hermite polynomials is

H (ps)
i j = 1

2

N∑

k=1

Dki Dkj . (6.178)

where Dkj is given by Eq. (3.139). This representation does not have explicit ref-
erence to the harmonic potential as does Eq. (6.175). The usual concerns about the
accuracy of the quadrature evaluated matrix elements of the potential related to the
physical space representation as V (xi )δi j do not play a role (Harris et al. 1965; Dick-
inson and Certain 1968).

A short MATLAB code constructs the derivative matrix operator D for the Hermite
polynomials. The diagonalization of physical space matrix representation 1

2 Dt · D

gives exactly λn ≡ n relative to the ground state and ψn(xi ) ≡ Hn(xi )e−x2/2. The
solid curve in Fig. 6.15 shows the exact H12(x)e−x2/2. The corresponding eigenfunc-
tion, ψ12(xi ), from the diagonalization of 1

2 Dt · D with N = 12 is shown with the
symbols evaluated at the quadrature points. There is exact agreement between the
numerical and analytical result.

http://dx.doi.org/10.1007/978-94-017-9454-1_3
http://dx.doi.org/10.1007/978-94-017-9454-1_3
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Fig. 6.15 The solid curve is the exact Hermite polynomial whereas the symbols represent the
values of the 12th eigenfunction of Dt · D calculated at 12 quadrature points defined by the Hermite
weight function, w(x) = e−x2

6.7.4 The Schrödinger Equation for the Electron Relaxation
Problem

We return to the electron relaxation problem discussed in Sect. 6.3 for the hard
sphere cross section, σ̂ = 1, and zero electrostaic field, α = 0. The Fokker-Planck
equation, Eq. (6.63), leads to the eigenvalue problem Eq. (6.73) with B(x) = x and
A(x) = 2x2−3 (Shizgal 1979). The transformation to the new variable z in Sect. 6.3.2
which is y in this section is defined by

y =
x∫

1√
B(x ′)

dx ′ = 2
√

x .

The coefficients in the Fokker-Planck eigenvalue problem are in terms of y,

A(y) = y4

2
− 3,

and

B(y) = y2

4
.

The superpotential given by Eq. (6.84) is

W (y) = y3

4
− 5

y
.

The potential V−(y) in the Schrödinger equation
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− d2ψn(y)

dy2 + V−(y)ψn(y) = λnψn(y), (6.179)

is defined in terms of W (y) in Eq. (6.83) and

V−(y) = y6

64
− y2 + 15

4y2 , y ∈ [0,∞). (6.180)

The notation V−(y) refers to one of the partner potentials in supersymmetric quantum
mechanics, the other being V+(y). We refer the reader to references (Comtet et al.
1985; Cooper et al. 1995, 1987) for further details.

The potential in Eq. (6.180) is shown in Fig. 6.16. The horizontal lines indicate the
positions of the eigenvalues calculated as discussed below. At first glance one might
consider the basis set of associated Laguerre polynomials or the discrete represen-
tation based on the Laguerre quadrature points. However, the optimal polynomial
basis set is defined with the weight function equal to the known ground state wave
function, that is

w(y) =

⎧
⎪⎨

⎪⎩

exp [−
y∫ √

W (y′)dy′],

y5e−y4/16,

(6.181)

which gives V (y) = Ṽ (y) in Eq. (6.93) and the pseudospectral matrix representation
is as in Eq. (6.94) with the physical space derivative operator defined by the weight
function Eq. (6.181).

A MATLAB code provides the recurrence coefficients for the polynomials orthog-
onal with respect to this weight function and the physical space derivative operator.
The representation of the Hamitonian for this potential is H = Dt · D given by

Fig. 6.16 Supersymmetric potential V−(y), Eq. (6.180), in the Schrödinger equation corresponding
to the hard sphere Lorentz Fokker-Planck equation. The horizontal lines show the ordering of the
eigenvalues in the potential
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Table 6.7 Convergence of the eigenvalues of the Schrödinger equation with the potential,
Eq. (6.180), with the quadrature defined with the weight function w(y) = y5e−y4/16 and the
pseudospectral representation H = Dt · D, Eq. (6.94)

N λ1 λ2 λ3 λ6 λ10 λ15 λ20 λ30

4 4.68598 10.21673 16.86293

5 4.68346 10.13276 16.83567

6 4.68340 10.11291 16.48805

8 10.11257 16.43271 42.95019

10 10.11252 16.42971 40.95019

15 16.42968 40.05250 80.91828

20 40.05238 80.44866 148.9082

25 80.44794 142.5387 227.5833

30 142.4463 215.1651 453.450

40 215.1631 397.036

45 388.021

50 387.626

60 387.623

w(x) = 4.68340 10.11251 16.42968 40.05238 80.44794 142.44461 215.1631 387.623

x2e−x2

The results in the bottom row are the converged eigenvalues for the hard sphere Lorentz Fokker-
Planck equation computed with the quadrature defined by w(x) = x2e−x2

Eq. (6.94). With the use of this nonclassical basis set and associated quadrature the
matrix elements of the potential are not required as with other pseudospectral meth-
ods (Harris et al. 1965; Dickinson and Certain 1968).

The convergence of the eigenvalues calculated in this way versus the number of
quadrature points is shown in Table 6.7. The convergence is rapid and from above so
that the calculation is variational. At each order N an upper bound to the eigenvalue is
obtained. There is no occurrence of ghost levels. The bottom row of the table shows
the eigenvalues obtained with the solution of the Fokker-Planck eigenvalue prob-
lem in complete agreement with the calculations based on the Schrödinger equation.
The eigenfunctions corresponding to four eigenvalues are shown in Fig. 6.17. With
N = 80, the oscillations of these converged eigenfunctions are well resolved.

6.7.5 Quantum Mechanics for the Vibrational States
of a Diatomic Molecule; Morse Potential

The Morse interatomic potential for a diatomic molecule (Morse 1929) is given by

V (r) = De

[
1 − e−α(y−ye)

]2

, (6.182)
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Fig. 6.17 Eigenfunctions of the Schrödinger equation for the potential, V (y) = y6

64 − y2 + 15
y2

that arises from the transformation of the hard sphere Lorentz Fokker-Planck equation to the
Schrödinger equation. Eigenfunctions calculated with the diagonalization H = Dt · D with the
pseudospectral derivative matrix operator based on the quadrature defined with the weight function
w(y) = y5e−y4/16, N = 80

where De is the dissociation energy and α determines the spatial variation relative
to the equilibrium position ye. The exact vibrational eigenvalues with � = 1 and
reduced mass μ = 1 are

εn =
[

2α
√

De − α2
]

n − α2n2, n = 1, 2, . . . , nmax , (6.183)

relative to the ground state. There are a finite number of bound states denoted by
nmax . Table 6.8 lists several diatomic molecules that have been studied by researchers
to benchmark numerical methods of solution of the Schrödinger equation. For most
of these studies, the interatomic potential is approximated with a Morse potential
(Morse 1929). The numerical methods include finite difference methods, pseudospec-
tral methods, methods based on B splines, the Discrete Variable Representation, the
Lagrange mesh method, the Fourier grid method, the Sinc interpolation, and the
Quadrature Discretization Method. Each method is based on the physical space rep-
resentation of the derivative operator as determined with an interpolation. The meth-
ods are all variants of a pseudospectral method (Gottlieb and Orszag 1977; Francisco
1995; Fornberg 1996; Boyd 2001; Canuto et al. 2006b).

The numerical methods differ primarily with regards to the choice of the basis
functions and the application of boundary conditions. Fourier methods are applied on
a uniform grid and the number of grid points per wavelength of the eigenfunction is an
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Table 6.8 References to numerical solutions of the Schrödinger equation for the vibrational states
of diatomic molecules

Molecule References Numerical method

HF Light et al. (1985) Discrete variable representation

Hamilton and Light (1986) Discrete variable representation

Yang and Peet (1988) Collocation

Balint-Kurti and Pulay (1995) Fourier grid method

Shizgal and Chen (1996) Quadrature discretization method

Guantes and Farantos (1999) Finite difference

I2 Braun et al. (1996) Chebyshev Lanczos

Shizgal (1997) Quadrature discretization method

Wei et al. (1997) Lagrange interpolation

Baye and Vincke (1999) Lagrange mesh method

Mazziotti (1999) Spectral difference method

Wei (2000) Discrete singular convolution (Sinc)

Chen and Shizgal (2001) Quadrature discretization method

Lo and Shizgal (2008b) Quadrature discretization method

H2 Johnson (1977) Finite difference

Marston and Balint-Kurti (1989) Fourier grid method

Baye (1995) Lagrange mesh method

H+
2 ONeil and Reinhardt (1978) B-spline

Layton (1993) Fourier

Cs2 Kokoouline et al. (1999) Discrete variable representation

Willner et al. (2004) Mapped grid methods

Lo and Shizgal (2008a) Quadrature discretization method

Derevianko et al. (2009) B-spline

He2, Ne2, Ar2,
HeAr, HeNe, etc.

Shizgal (1997) Quadrature discretization method

He2, Ne2, Ar2 Lo and Shizgal (2006) Quadrature discretization method

important parameter (Colbert and Miller 1992). Associated with some of the methods
is a variational theorem so that the N th approximation represents an upper bound.
For some methods there are nonphysical eigenvalues calculated that are referred to
as “ghost” levels (Wei 1997; Kokoouline et al. 1999; Willner et al. 2004).

The Morse potential belongs to the class of potentials in supersymmetric quantum
mechanics (Dutt et al. 1988; Cooper et al. 1995). The basis set defined with the weight
function

w(x) = exp

[
− 2

√
De(x + e−αx

α
) + αx

]
, (6.184)

for which the ground state wavefunction is ψ0(x) = √
w(x) and V (x) = Ṽ (x). The

pseudospectral representation of the Hamiltonian, Eq. (6.93), reduces to Eq. (6.94).
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Table 6.9 Convergence of the eigenvalues in cm−1 for the Morse oscillator for HF with De =
49383.407073 cm−1, β = 1.1741a−1

0 , xe = 1.7329a0 and μ = 1744.4453572532me

N ε2 ε8 ε14

4 9819.11761

6 9805.01756

8 9805.00714

10 33041.31574

12 29960.19345

14 29067.91526

16 28925.47987 62676.28749

18 28914.83536 53058.24677

20 28914.43671 48112.83259

25 28914.42738 43025.97932

30 41879.68669

35 41781.77734

40 41780.18827

45 41780.18145

Exact 9805.0714 28914.42738 41780.18143

The quadrature is defined in terms of the weight function, Eq. (6.184) and the eigenvalues determined
with the diagonalization of Dt · D, Eq. (6.94). Reprinted from (Shizgal 1997) with permission from
Elsevier

The diagonalization of Dt · D gives the eigenvalues and eigenfunctions.
The convergence of the vibrational energies ε2, ε8 and ε14 for the Morse potential

for HF calculated with the quadrature defined with w(x), Eq. (6.184), are shown in
Table 6.9 and the rapid convergence of the eigenvalues is evident. It is clear that there
is a variational theorem inherent in the method as the convergence of the eigenvalues
is from above. For each N , an upper bound to the vibrational state is obtained.

The convergence demonstrated here is faster than reported by other researchers
(Balint-Kurti and Pulay 1995; Braun et al. 1996; Hoffman et al. 1998; Baye and
Vincke 1999) with different numerical methods. The spectral convergence of the
eigenvalues is shown in Fig. 6.18 and several eigenfunctions are shown in Fig. 6.19.
Unlike Fourier methods, this high order pseudospectral method with the particular
basis set constructed with w(x) = ψ2

0(x), does not require a particularly dense
distribution of quadrature points to accurately calculate the higher order oscillatory
vibrational eigenfunctions (Gottlieb and Orszag 1977; Francisco 1995; Fornberg
1996; Boyd 2001; Canuto et al. 2006b).

An important aspect of these benchmark calculations is the total number of bound
states for the potential chosen. If the potential supports nmax states, the calculation of
the lower states up to vibrational quantum number n ≈ 3nmax/4 are relatively easy
to calculate in spite of the oscillatory form of the eigenfunctions. It is the vibrational
states close to the dissociation limit that are the most difficult to calculate.
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Fig. 6.18 The convergence of the lower order eigenvalues, λn , of the Morse potential with
diagonalization of Dt ·D; Morse potential for HF with De = 49383.407073 cm−1, β = 1.1741a−1
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Fig. 6.19 Eigenfunctions determined from the diagonalization of Dt · D for selected vibrational
states of HF versus x in angstroms

We illustrate this feature with the model Morse potential employed by Pryce
(1993) and Weideman (1999)

V (x) = 9(1 − e−x )2 − 9,

which supports only three bound states,

λn = −n2 + 5n − 25

4
, n = 0, 1 and 2.
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Fig. 6.20 Variational approximation to the n = 19 vibrational eigenfunction of H+
2 with the

potential from Wind (1965) with 100 B splines (Shore 1973). Reproduced from ONeil and Reinhardt
(1978) with permission of the American Physical Society

The vibrational states are determined with the quadrature based on the weight
function

w(x) = exp(−5x + 6e−x )

for which V (x) = Ṽ (x) and pseudospectral representation of the Hamiltonian is
Dt · D. The convergence of the 3 states to 14 significant figures requires 2, 20 and 55
quadrature points (Chen and Shizgal 2001). The numerical difficulty in the accurate
calculation of the highest state with only two nodes is the diffuse nature of the
eigenfunction just below the dissociation limit. This is illustrated in Fig. 6.20 for
a higher order eigenfunction for H+

2 determined with 100 B splines (ONeil and
Reinhardt 1978). The numerical challenge is to capture both the oscillatory behaviour
at small internuclear distance as well as the variation on a much larger scale for larger
(r >20 a0) distances. This behaviour was also demonstrated in Fig. 1 of Meshkov et
al. (2008) for the eigenfunctions for a Lennard–Jones potential.

The diatoms, He2 and Ne2, with 1 and 3 bound states, respectively, illustrate
the same difficulty in the accurate representation of the highest bound state. The
potentials for He2 and Ne2 were reported by Aziz and Slaman (1991) and Tang and
Toennies (2003), respectively. A Morse potential that approximates the true potential
(Lo and Shizgal 2008a) is used to define a quadrature based on the weight function,
Eq. (6.184). For this realistic potential, V (y) �= Ṽ (y) and the pseudospectral repre-
sentation of the Hamiltonian given by Eq. (6.93) is diagonalized.

In addition, a mapping, u = ρ(x), is used to redistribute the points so as to best
capture the variation of the wave function. Two such mappings are
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Fig. 6.21 (Left hand panel) Single bound state eigenfunction, ψ0(x), for He2 with the Aziz and
Slaman (1991) interatomic potential. QDM is the quadrature discretization method with a nonclas-
sical weight function with the mapping, Eq. (6.186); Lag refers to the Lagrange mesh method with
the same map. (Right hand panel) The second excited state eigenfunction, ψ2(x), for Ne2 with
the Tang and Toennies (2003) potential determined with the QDM, with and without the mapping,
Eq. (6.185). Reproduced from Lo and Shizgal (2008a) with permission of the American Institute of
Physics

ρ(x) = s1 ln

(
x − b2

s2

)
(6.185)

ρ(x) = s1 sinh−1
(

x − b2

s2

)
+ b1, (6.186)

where s1, s2, b1 and b2 are adjustable parameters chosen empirically.
The single ground vibrational state for He2 and the second excited vibrational state

for Ne2 are shown in Fig. 6.21. The variation of the wave function of the one bound
state for He2 occurs on two different spatial scales. There is a rapid variation near
the origin and a very slow decay over a very large distance. The collocation points
shown in the figure are distributed nonuniformly on the large interval of interest.
The curves labelled QDM are calculated with the quadrature discretization method
(Lo and Shizgal 2008a) and the two mappings above. The curves labelled by “Lag”
refer to the Lagrange mesh method (Baye 2006).

Pseudospectral methods applied to the entire interval or in subdomains of
interest in which case it is referred to as a spectral element method (Deville et al.
2002; Pasquetti and Rapetti 2004) belong to that class of spectral and higher order
numerical methods (Azaez et al. 2012). In every application in chemistry, physics
and engineering, there are important applications to three and multidimensional prob-
lems. The extension from one-dimension to several dimensions generally involves
a direct product of several one-dimensional polynomial basis sets. The size of the
matrices for such problems increases dramatically with an increase with the num-
ber of degrees of freedom especially for the calculation of the rotational–vibrational
states of polyatomic molecules (Friesner et al. 1993; Littlejohn et al. 2002; Dawes
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and Carrington 2004, 2005; Cassam-Chenaï and Liévin 2012). The numerics is then
a problem in linear algebra to find the eigenvalues of a very large matrix.

A reduction in the dimensionality of the problem can be achieved by making use
of available symmetries and with other techniques. Also, with a judicious choice
of basis functions and/or grid points the number for each vibrational mode can
be significantly decreased so as to achieve computational economy. In their case
study of the vibrational states of methane, Mielke et al. (2013) introduce the use of
optimized vibrational quadratures for the efficient computation of one-dimensional
matrix elements. Any reduction in the number of grid points for each degree of free-
dom could dramatically decrease the dimension of the matrices resulting from the
direct product of the different spaces for multidimensional problems. There are ongo-
ing efforts to develop more efficient schemes for the development of sparse grids with
algorithms related to cubatures discussed in Chap. 2, Sect. 2.8 (Avila and Carrington
2013; Lauvergnat and Nauts 2014).

6.7.6 Pseudospectral Solution of the Two Dimensional
Schrödinger Equation for the Henon-Heles Potential;
Nonclassical Basis Sets

Quantum problems in two and higher dimensions are often solved with a direct prod-
uct of the basis sets for each one dimensional variable (Parrish and Hohenstein 2013)
(and references therein). The resulting matrix representation of the Hamiltonian for
a multidimensional system in either the spectral space or the physical space is the
product of matrix representations for each dimension. Consequently the size of the
matrices involved can increase very quickly if many basis functions or grid points
are required in each dimension. This becomes a computationally challenging prob-
lem in order to reduce the dimensionality of the matrices by applying symmetries
or particular numerical algorithms to reduce memory requirements and computa-
tional speed. The Milne problem (Lindenfeld and Shizgal 1983) and the associated
planetary escape problem (Shizgal and Blackmore 1986) discussed in Chap. 5 are
examples of problems in kinetic theory in three dimensions.

In this section, we consider the calculation of the eigenvalues of the two dimen-
sional Hamiltonian

− 1

2

[
∂2ψnm(x, y)

∂x2 + ∂2ψnm(x, y)

∂y2

]
+ V (x, y)ψnm(x, y) = λnmψnm(x, y),

(6.187)
where the potential is the Henon-Heles potential

V (x, y) = x2 + y2

2
− λx(

x3

3
− y2). (6.188)

http://dx.doi.org/10.1007/978-94-017-9454-1_2
http://dx.doi.org/10.1007/978-94-017-9454-1_5
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This potential was introduced by Henon and Heiles (1964) in their study of the
motion of a star in the potential of the galaxy and the determination of a third
conserved integral of the classical two dimensional motion with this Hamiltonian.
The potential, Eq. (6.188), was chosen for its analytic simplicity so as to make the
trajectory computations easy and to obtain interesting dynamical results. This system
has received considerable attention as a model for classical and quantum chaotic
behaviour. For λ = 0, the problem reduces to two uncoupled harmonic oscillators.

For the two dimensional Schrödinger equation, we choose basis functions

Xn(x) = √
u(x)Gn(x),

Yn(y) = √
v(y)Hm(y), (6.189)

where u(x) and v(y) are the weight functions and we denote the logarithmic deriv-
atives of the weight functions by

U (x) = −u′(x)

u(x)
,

V (x) = −v′(x)

v(x)
, (6.190)

We extend the pseudospectral analysis of the one-dimensional applications presented
in Sect. 6.3.3 to two dimensions by defining the spectral space representation of the
Hamiltonian as

Hn′m′,nm = δm′m

∫
u(x)G ′

n′(x)G ′
n(x)dx + δn′n

∫
v(y)H ′

m′(y)H ′
m(y)dy + (Vn′m′,nm − Ṽn′m′,nm). (6.191)

The potential matrix elements are Vn′m′,nm = 〈Xn′Ym′ |V (x, y)|XnYm〉 and the matrix
elements of the reference potential are

Ṽn′m′,nm = δm′m

∫ (
U 2(x)

4
− U ′(x)

2

)
u(x)Gn′(x)Gn(x)dx

+ δn′n

∫ (
V 2(y)

4
− V ′(y)

2

)
v(y)Hm′(y)Hm(y)dy. (6.192)

We transform this spectral space representation with the appropriate transformation
matrices, Eq. (1.24), and obtain the discrete physical space representation

Hi j,k� = δk�

Nx∑

k′=0

Dk′i Dk′ j + δi j

Ny∑

k′=0

Dk′k Dk′� +
[

V (xi , y j )− Ṽ (xi , yk)

]
, (6.193)
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where

Ṽ (x, y) =
(

U 2(x)

4
− U ′(x)

2

)
+

(
V 2(y)

4
− V ′(y)

2

)
. (6.194)

is the usual reference potential in two-dimensions. The pseudospectral representa-
tion, Eq. (6.193) is the two-dimensional analog of the one-dimensional representa-
tion, Eq. (6.93). The details are similar to the transformations for the Fokker-Planck
operator in Sect. 6.2.2.

Two sets of quadratures were used; (1) Hermite quadratures for both dimensions
and (2) a quadrature in x based on a nonclassical weight function, u(x) = exp[−x2+
2λx3/9], chosen empirically and Hermite quadratures in y. With the Hermite quadra-
ture in both dimensions, the lowest order eigenvalues required as few as 8 quadrature

Table 6.10 Eigenvalues of the Henon-Heles potential with λ = √
0.0125 with u(x) = exp[−x2 +

2λx3/9] and v(y) = exp(−y2); Nx = Ny = 32

n � Feit et al. (1982) Shizgal and Chen (1996) Echave and Clary (1992)

3 3 3.9825 3.982417

−3 3.9859 3.985761

5 3 5.8672 5.867 015

−3 5.8816 5.881 446

6 6 6.9991 6.998 932

−6 6.9996 6.999 387

7 3 7.6979 7.697 721

−3 7.7371 7.736 885

8 6 8.8116 8.811 327

−6 8.8154 8.815 188

9 3 9.4670 9.466 773

−3 9.5526 9.552 382

9 9 10.0356 10.035 413

−9 10.0359 10.035 592

10 6 10.5727 10.572 480

−6 10.5907 10.590 470

11 3 11.1603 11.160 259 11.160 258

−3 11.3253 11.325 231 11.325 231

11 9 11.7497 11.749 519 11.749 518

−9 11.7525 11.752 297 11.752 297

12 6 12.3335 12.333 786 12.333 780

−6 12.2771 12.277 192 12.277 192

12 12 12.7474 12.748 520 12.748 183

−12 13.0310 13.032 065 13.032 060

13 3 13.0868 13.086 873 13.086 873

−3 13.0800 13.081 199 13.081 191
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(A) (B)

(C) (D)

Fig. 6.22 Contour plots of the eigenfunctions of the Schrödinger equation for the Henon-Heles
potential with n and � equal to (A) 2, 0 (B) 6, 0 (C) 9, −9 and (D) 10, 6; Hermite quadratures were
used, Nx = Ny = 32; the vertical scale is y and the horizontal scale is x , both in the interval [−7,
7]. Reproduced from Shizgal and Chen (1997) with permission of the American Institute of Physics

points in each variable to get convergence to 5 significant figures and up to 50
quadrature points for the higher states to the same accuracy. The nonclassical weight
function provides faster convergence giving 8 significant figure accuracy with 32
quadrature points in each dimension.

The eigenvalues calculated in this way are listed in Table 6.10 in comparison with
the previous calculations. Echave and Clary (1992) used Fourier basis functions to
solve two one-dimensional reference problems and used the eigenfunctions of these
hamiltonians as basis functions for the two-dimensional Henon-Heiles potential.
They refer to this method that follows on the earlier work by Hamilton and Light
(1986) as the potential optimized discrete variable representation. The results listed
in the table are also in agreement with the results by Wei (1999) who used a col-
location method referred to as a discrete singular convolution analogous to a Sinc
interpolation as used by Amore (2006) and Amore et al. (2009). We discussed the
Sinc interpolation in Chap. 2. We list the eigenvalues in the same manner as done by
Noid and Marcus (1977). The results are in agreement to the accuracy in the table
except for the (12,12) state for which Wei (1999) reports the value of 12.748431.
The reason for this discrepancy is not known.

The contour plots of several eigenfunctions are shown in Fig. 6.22 and converged
with 50 Hermite basis functions in each variable. The C3v symmetry is evident from
the figure and several fine details of the eigenfunctions are recovered. It should be
mentioned that this model system with the small value of λ = √

0.0125 is very close
to two uncoupled harmonic oscillators in each variable. The convergence of the Her-
mite polynomial basis set for each dimension for the lower states works as well as it
does owing to the small value of λ. It would be of interest to consider larger values
and experiment with nonclassical basis sets that might provide faster convergence.

http://dx.doi.org/10.1007/978-94-017-9454-1_2
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