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Preface

Spectral and pseudospectral methods have become increasingly popular as higher
order methods for the solution of partial differential and integral equations (Azaiez
et al. 2013). A spectral method refers to the representation of the solution of some
problem in a basis set of orthogonal functions, whereas a pseudospectral approach,
sometimes referred to as a collocation, is based on the representation of the solution
with the function values at a set of discrete points. For the smooth solutions of
particular problems, these methods can provide exponential convergence of the
solutions versus the number of basis functions or the number of grid points retained.

Books devoted to these methods include the monographs by Shen et al. (2011),
Kopriva (2009), Hesthaven et al. (2007) and the new edition of the book by Canuto
et al. (2006). Other textbooks include those by Peyret (2002), Deville et al. (2002),
Boyd (2001), Trefethen (2000), Shu (2000), Fornberg (1996), Funaro (1992), Guo
(1998) and Gottlieb and Orszag (1977).

In view of the availability of texts on spectral/pseudospectral methods, it might
be appropriate to question whether another book on this subject is justfied. The
aforementioned books are devoted primarily to problems in fluid mechanics and to
the solutions of the Navier-Stokes, Helmholtz, Poisson equations and related
problems most often for bounded intervals. At the present time, a textbook that
covers the fundamental aspects of spectral and pseudospectral methods with
applications to problems in chemistry and physics does not exist.

The main objective is to provide the basic concepts of spectral and pseudo-
spectral methods to the solution of problems in diverse fields of interest to a wide
audience, and to demonstrate the improved convergence obtained with nonclassical
basis functions for certain problems. Perhaps the first application of a collocation
method in physics was the solution of the integro-differential radiative transfer
equation by Chandrasekhar (1944, 1960) based on Gauss-Legendre quadrature
points. There are many applied problems in chemistry, physics, astrophysics,
engineering, biology, economics and other fields for which spectral/pseudospectral
methods can be used to advantage.

The basic mathematics and numerical methods used in the book are presented in
Chaps. 1-4, whereas Chaps. 5 and 6 summarize the applications of spectral and
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pseudospectral methods to several specialized topics in nonequilibrium statistical
mechanics and quantum mechanics. A brief overview of the background physics is
provided for some of the topics.

Chapter 1 presents the basic concepts of spectral space and physical space for the
representations of functions and the unitary transformation between the two spaces.
A Hilbert space is defined as are hermitian operators, Sturm-Liouville eigenvalue
problems and the Rayleigh-Ritz variational theorem, which might also be referred
to as a method of weighted residuals or a Galerkin method. A personal historical
summary of the development of pseudospectral methods in chemistry and physics is
also presented with an overview of the topics in the book.

Chapter 2 provides the fundamental mathematics used throughout the book. The
construction of orthogonal polynomials in terms of the three term recurrence
relation is discussed. The numerical instability inherent in the Gram-Schmidt
orthogonalization to construct basis sets is demonstrated with applications to
Legendre, Hermite and the nonclassical Rys polynomials. Numerical round-off
errors in scientific computations can sometimes be very subtle as is demonstrated in
several applications. Lagrange interpolation is introduced as the basis for Newton-
Cotes integration algorithms and Gaussian quadrature. The Gaussian quadrature
points are the eigenvalues of the Jacobi matrix, the matrix representation of the
continuous multiplicative coordinate operator and defined in terms of the recurrence
coefficients in the three term recurrence relation. From a quantum mechanical
perspective, the Jacobi matrix is the discrete approximation to the continuous
eigenvalues of the coordinate operator. The quadrature weights are determined from
the eigenvectors of the Jacobi matrix.

In addition to a summary of the properties of the classical polynomials, several
nonclassical basis sets such as the Maxwell polynomials orthogonal with respect to

X

weight function w(x) = e * on the semi-infinite axis, the Rys polynomials with

w(x) = e on the interval [-1, 1] and bimodal polynomials with w(x) =
exp(—(x*/(4€) — x2/(2¢))) for both the infinite and semi-infinite axes are presented.
These polynomial basis sets and associated quadratures are used in kinetic theory,
quantum mechanics and chemical kinetics. Alternate interpolation algorithms such as
the sinc function, B-splines and radial basis functions are also discussed.

In Chap. 3, the convergence of the integration algorithms of Chap. 2 versus the
number of quadrature points is compared for integrals that occur for several
physical systems. The systems include chemical and nuclear reaction rates, the
integral over the “cusp” in the Boltzmann integral collision operator as well as for
quantum mechanical scattering phase shifts. The calculation of matrix elements of
multiplicative operators, namely the collision frequency in the Boltzmann equation
and the interaction potential in the Schrodinger equation are compared. Several
challenging integrals such as integrals with oscillating integrands and electron
repulsion integrals in quantum chemistry are reviewed. The last section describes
the discrete matrix representation of derivative operators employed in pseudo-
spectral methods. The exact pseudospectral solutions of Sturm-Liouville eigenvalue
equations for the classical polynomials is demonstrated.
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Chapter 4 illustrates spectral convergence in the expansion of selected functions
in different basis sets. The expansions of simple Gaussians, as well as the Kappa
distribution of space physics, in Hermite and Laguerre polynomials are presented
with an analysis of the spectral convergence. Fourier series expansions are included
and applied to the construction of wave packets in quantum mechanics and the
resolution of a free induction decay curve typical in Fourier Transform spectros-
copy. Also presented is the resolution of the oscillations at a jump discontinuity,
known as the Gibbs phenomenon, that arise in the Fourier series representation of a
piecewise continuous function. A brief description of the Runge phenomenon is
also discussed.

In Chap. 5, the applications to the solution of integral equations with particular
emphasis on the Boltzmann equation of kinetic theory are presented. The use of
spectral and pseudospectral methods in the determination of the eigenvalue spectra
of the linearized (one component) and linear (two component) integral collision
operators is presented. The spectra of both operators consist of discrete and con-
tinuous eigenvalues as can also occur for the eigenvalue spectrum of the Hamil-
tonian in the Schrodinger equation for particular potentials. A brief summary is
provided of the Chapman-Enskog method of solution of the Boltzmann equation
that yields the integral equations that define the transport coefficients in a dilute gas.
The relaxation of initial nonequilibrium distributions, including anisotropic initial
distributions, is studied versus the mass ratio of the two components in a binary
gaseous mixture. The classic Milne problem of astrophysics and kinetic theory is
presented and applied to a study of the nonequilibrium effects associated with the
escape of light atoms from planetary atmospheres. As can be ascertained from this
overview, there are several different applications included and the presentation
shifts quickly from topic to topic.

Chapter 6 consists of applications of spectral and pseudospectral methods for the
solution of the Fokker-Planck equation (Risken and Till 1996) in nonequilibrium
statistical mechanics and the Schrdédinger equation (Liboff 2002) in quantum
mechanics. Fokker-Planck equations can be transformed to Schrodinger equations
and the potentials that result belong to supersymmetric quantum mechanics (Comtet
et al. 1985; Dutt et al. 1988; Cooper et al. 1995). The nonclassical basis sets and
quadrature points are chosen based on the equilibrium probability density functions
for the Fokker-Planck equations. Fokker-Planck equations for Brownian motion, for
relaxation in the disparate mass limits of the linear Boltzmann equation known as the
Rayleigh and Lorentz limits and for models of cis-trans isomerization reactions are
solved with both spectral and pseudospectral methods. Pseudospectral methods are
used for the solution of Sturm-Liouville eigenvalue problems for simple systems.
With the appropriate choice of weight function, a quadrature can be constructed for
which the pseudospectral representation of the Hamiltonian in the Schrodinger
equation does not include an explicit reference to the potential. As is the case for
Chap. 5, the topics in this chapter also change quickly from topic to topic.

I have deliberately limited the use of acronyms as they are often not unique. A
good example is DFT which can be either Density Functional Theory or Discrete
Fourier Transform. In kinetic theory, BGK refers to the Bhatnager-Gross-Krook
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model of the Boltzmann collision operator, whereas in plasma physics it signifies
Bernstein-Green-Kruskal solitary waves. The subject matter of the book spans
several disciplines and the use of acronyms would defeat the purpose of reaching a
broad audience.

I have provided in footnotes very brief biographies of the scientists and math-
ematicians who have provided the mathematical and physical concepts upon which
much of the current research is based. As an example, Josiah Willard Gibbs (1839—
1903) is familiar to mathematicians for his contributions to the understanding of the
slow convergence of the Fourier series for functions with jump discontinuities
leading to oscillations referred to as the Gibbs phenomenon. Gibbs is very well
known to chemists and physicists as a thermodynamicist and his name is associated
with the Gibbs free energy and for his contributions to entropy concepts in physical
systems. The biography of Gibbs at aps.org mentions that, “When his publications
were read, they were considered too mathematically complex for most chemists and
too scientific for many mathematicians”. Much of the current applied work by
chemists and physicists could not be done without the mathematics developed by
mathematicians and scientists. More detailed and interesting discourses of the
contributions of many people and their personal careers can be found on the Internet
and published biographies.

MATLAB® codes are provided for many of the numerical results reported in the
book. These were developed on a 64 bit personal computer with an Intel i5 CPU at
2.50 GHz and 8 GB RAM. The computational time in most cases was of the order
of several seconds and usually less than one minute. The codes in some instances
are not completely vectorized and a few “for” loops remain. As a consequence, the
codes are hopefully more transparent to the user for a very small cost in the
computational time. Although several short MATLAB codes are listed in the text,
the vast majority of the codes were finalized after submission of the manuscript.
The codes and accompanying documentation are available at www.springer.com
and at spectralmethods.chem.ubc.ca.

The book is intended for use by upper year undergraduates, graduate students as
well as established researchers working on applied problems in chemistry, physics,
astrophysics, space science, plasma physics, biology, engineering and in other
related fields. The large bibliography provided is to current research in these diverse
fields. Although many mathematical results are proved and the fundamental prin-
ciples are illustrated with numerical examples, the presentation is utilitarian and not
meant to be mathematically rigorous. I provide references to textbooks and review
papers where more rigorous mathematical approaches are presented. I have also
included very brief derivations of the integral and/or differential equations defining
the physical problems considered with references to more detailed discussions. The
large bibliography provided is the evidence of the wide applicability of spectral/
pseudospectral methods in science and engineering.

This book is the result of 30 years of research employing spectral and
pseudospectral methods for the solution of a wide range of different physical
problems. I have not benefited from the opportunity to teach this material to several
cohorts of undergraduate and/or graduate students. However, I am indebted to
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numerous graduate students, postdoctoral fellows and other collaborators, who are
cited in the references provided, for their contributions to this research. I am also
very grateful to several colleagues who proofread portions of a preliminary version
of the book. The people involved are Patrick Casasm-Chenai, Daniel Hubert,
Joseph Lemaire, Joseph Lo, Norman McCormick, Gren Patey, Viviane Pierrard,
Bob Snider and Larry Viehland. My heartfelt thanks are extended especially to
Daniel Baye, Livio Gibelli, Jae-Hun Jung, Konstantin Kabin and Mark Thachuk for
their conscientious reading of several chapters. The many constructive comments
of these people are very much appreciated and their contributions to the book
cannot be underestimated. However, I am solely responsible for any errors that
remain and I encourage readers of the book to report any further corrections to me
at shizgal@chem.ubc.ca. A list of errata and MATLAB codes will be posted
periodically at the websites provided. I thank Maria Bellantone and Mieke van der
Fluit at Springer for their advice and their extreme patience with this project. Very
special thanks to my wife, Judy, for putting up with my preoccupation with this
effort for several years.

Vancouver, Canada Bernard Shizgal
October 2014
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Chapter 1

Introduction to Spectral/Pseudospectral
Methods

Abstract This chapter introduces the basic principles of spectral/pseudospectral
methods for the solution of partial differential and/or integral equations that serve
to model a large number of physical processes in chemistry and physics. The first
part of the chapter defines the spectral space representation of functions and the
transformation to the physical space representation. A Hilbert space is defined as
well as the definition of self-adjoint operators that occur in quantum mechanics and
kinetic theory. The Rayleigh-Ritz variational principle and the method of weighted
residuals are discussed. An historical summary of the development of pseudospectral
methods in chemistry and physics is presented together with an outline of the book.
The science, the mathematical models and the computer algorithms are interrelated.

1.1 Introduction

This book describes current spectral and pseudospectral methods for the solution of
partial differential and/or integral equations that model a large number of systems and
processes in chemistry and physics with many applications to biology, engineering,
astrophysics and space science. We consider physical systems and processes that
are modeled theoretically with the principles of quantum mechanics and kinetic
theory. This introduction provides an overview of several physical systems for which
spectral and pseudospectral methods are used to solve the differential and/or integral
equations that define the problems.

The basic mathematical tools are briefly presented in Sects. 1.2 and 1.3. A more
detailed presentation of the mathematics and numerical algorithms is presented in
Chap. 2. There are also many comprehensive discussions of this material in the bib-
liography provided.

A personal historical summary of the development of pseudospectral methods
with applications to physical problems in chemistry, physics, biology and engineer-
ing is presented in Sect.1.4. This is a very broad subject that cannot be covered
in detail in a single volume. The many references provided form a very impor-
tant additional resource to the material presented here. This large bibliography also
demonstrates the widespread use of the mathematical/numerical methods that are
described.

© Springer Science+Business Media Dordrecht 2015 1
B. Shizgal, Spectral Methods in Chemistry and Physics, Scientific Computation,
DOI 10.1007/978-94-017-9454-1_1
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2 1 Introduction to Spectral/Pseudospectral Methods

Quantum theory (Messiah 1961; Liboff 2002) based on the Schrodinger ! equation
provides the theoretical description of numerous systems in chemistry and physics.
An important problem in quantum chemistry is the calculation of the electronic
energy states for a molecule taking into account the electron-nuclei and electron-
electron Coulombic interactions for fixed positions of the nuclei (Sherrill 2010).
This is referred to as electronic structure theory (Szabo and Ostlund 1996; Friesner
1991; Helgaker et al. 2000; Levine 2009) and includes density functional theory
(Jones and Gunnarsson 1989; Morgan 1996; Tsuneda 2014).

The potential from the solution of the electronic problem is used in the Schrédinger
equation for the motion of the nuclei and provides the rotational and vibrational states
of the molecule (Friesner et al. 1993; Light and Carrington 2000; Koput et al. 2001).
A complementary problem concerns the quantum description for the continuum or
scattered states that are of concern in collision theory (Child 1996; Taylor 2012) espe-
cially as applied to theoretical chemical kinetics and photochemistry (Cassam-Chenai
and Liévin 2012; Balint-Kurti 2008; Burke 2011). These applications and many oth-
ers (Hu et al. 2002; Baye et al. 2008; Amore et al. 2009; Heyl and Thirumalai 2010)
are active areas of research in chemistry and physics requiring efficient computational
algorithms.

Statistical mechanics can be divided into equilibrium and non-equilibrium sta-
tistical mechanics which includes kinetic theory. Kinetic theory is based on the
Boltzmann? equation (Liboff 2003; Kremer 2010) or the Fokker>-Planck* equation
(Chandrasekhar 1949; Risken and Till 1996) for the particle distribution functions
that define, for example, the transport coefficients in a dilute gas as well as chemical
reaction rates including nuclear reactions. For collision dominated gaseous systems,
the Chapman’-Enksog® method (Chapman and Cowling 1970) of solution of the
Boltzmann equation yields the macroscopic equations of fluid mechanics and in

! Erwin Schrodinger (1887-1961) was an Austrian physicist who worked on fundamental aspects
of quantum theory and developed the equation that bears his name. He also made important contri-
butions to statistical mechanics and thermodynamics and had an interest in biology and philosophy.
He was awarded the 1933 Nobel Prize for his development of wave mechanics in quantum theory.
2 Ludwig Eduard Boltzmann (1844—1906) was an Austrian physicist who made significant contribu-
tions to statistical mechanics and proposed the kinetic equation that bears his name. The equilibrium
particle distribution is the Maxwell-Boltzmann distribution.

3 Adrian Fokker (1887-1972) was a Dutch physicist and made contributions to relativity in addition
to statistical mechanics. The Fokker-Planck equation used to model numerous processes in physics,
astrophysics, chemistry, finance and biology bears his name. He also made numerous contributions
to music theory.

4 Max Planck (1858—1947) was a German physicist and was awarded the 1918 Nobel Physics Prize
for his contributions to quantum theory. Planck and Fokker independently derived the Fokker-Planck
equation of statistical physics.

5 Sydney Chapman (1888-1970) was a British mathematician and geophysicist developed the
Chapman-Enksog method of solution of the Boltzmann equation and contributed to the theory of
stochastic processes. He also made many fundamental contributions to geophysics.

6 David Enskog (1884-1947) was a Swedish mathematical physicist who contributed to the kinetic
theory of gases with the method of solution developed with Chapman.
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particular the Navier’-Stokes® equation. This complements the usual derivation of
the equations of fluid mechanics in terms of mass, momentum and energy conser-
vation (Kundu et al. 2012; Durran 2010). Spectral and pseudospectral methods have
been extensively applied to problems in fluid mechanics (Gottlieb and Orszag 1977;
Peyret 2002; Canuto et al. 2006b).

We consider a large number of systems that includes radiative and neutron trans-
port, astrophysics, plasma physics and space science that can be described with
kinetic theory. We do not consider applications of equilibrium statistical mechan-
ics to liquids and electrochemistry that are currently studied primarily with Monte
Carlo simulations (Car and Parrinello 1985; Landau and Binder 2009). The direct
simulation Monte Carlo method (Bird 1994) used for many rarefied gas dynamical
problems is not discussed.

The vast number of applications of kinetic theory in many different fields is truly
remarkable. If the particles of interest are photons, the Boltzmann equation is replaced
with a radiative transfer equation and we find applications to the transport of radia-
tion in atmospheric science (Liou 2002; Thomas and Stamnes 2002), radio therapy
(Gifford et al. 2006) and astrophysics (Chandrasekhar 1949). The evolution of stars
in globular clusters can be studied with the Fokker-Planck equation with the interstel-
lar gravitational Coulomb interactions (Lightman and Shapiro 1978; Chavanis 2006;
Binney and Tremaine 2008) analogous to the use in plasma physics (Birdsall and
Langdon 2005; Anderson et al. 2004; Peeters and Strintzi 2008). The development of
nuclear reactors (Hebert 2009) requires kinetic theory to understand the thermaliza-
tion and transport of neutrons (Davison 1957; Williams 1966), and nuclear reaction
rates (Atenzi and Meyer-Ter-Vehn 2004).

There are also important applications to the escape of atoms from planetary
atmospheres (Fahr and Shizgal 1983; Shizgal and Arkos 1996) as well as the loss of
charged particles from the earth (Lie-Svendsen and Rees 1996; Pierrard and Lemaire
1998) and the sun (Echim et al. 2011). A complementary problem is the escape of
stars from a globular cluster (Spitzer and Hdarm 1958; Lemou and Chavanis 2010)
and relativistic astrophysics (Bonazzola et al. 1999; Grandclément and Novak 2009).
We will not be able to consider all of these applications. However, we will provide
some of the basic concepts with concern to the numerical modeling of particular
systems with spectral and pseudospectral methods.

In each application, the physical problem is approximated with a mathematical
model which for most applications requires a numerical solution of partial differential
or integral equations. The objectives can be summarized in the flow chart in Fig. 1.1.
We consider a mathematical model which provides an approximate description of
the physical system. A numerical algorithm is developed to solve the differential
or integral equations for the model. The results are compared with observations

7 Claude Louis Navier (1785-1836) was a French mathematician who worked in engineering science
with emphasis on bridge building and also made basic contributions to fluid mechanics. He was a
student and colleague of Fourier.

8 Sir George Gabriel Stokes (1819-1903) was a Irish/English mathematical physicist and made
fundamental contributions to fluid dynamics including Stokes’ law and Navier-Stokes equation.
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| Physical System or Process |

4’| Mathematical Model }—'| Rigorous Theory |

| Numerical Algorithm Numerical Analysis ‘

Results

Fig. 1.1 Flow diagram of the modelling of physical systems or processes

and revisions to the mathematical model are made as required. There are often more
rigorous mathematical treatments for much simplified models of the physical system.
There are many discussions with concern to the numerical analysis of the algorithms
used. We will not consider in detail these theoretical aspects but we will provide
references to research papers that complement the presentation. The objective is to
provide a utilitarian approach for the use of spectral and pseudospectral methods.
Computer power has become readily available and inexpensive and fairly large
complex systems can be modeled numerically with ease. The advances made in this
area parallels advances made in the development of numerical methods and algo-
rithms for the numerical solution for a large number of applied problems. Our main
objective in this book is to demonstrate the ease of use of spectral and pseudospectral
methods in the efficient numerical modeling of many systems and processes.

1.2 Spectral and Pseudospectral Methods

We provide in this section a brief overview of spectral and pseudospectral meth-
ods. The origin of the terminology, “spectral” is not entirely clear but probably
arises from the original use of Fourier” sines and cosines as basis functions (Gottlieb
and Orszag 1977; Brown and Churchill 1993) especially in connection with a time

series analysis and the fundamental frequencies of a process, namely the “spectrum”
(Shen et al. 2011).

9 Jean Baptiste Joseph Fourier (1768—1830) was a French mathematician and physicist best known
for the development of Fourier series and the solution of differential equations notably heat transfer.
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Spectral methods are generally based on the representation of a real, continuous,
“well-behaved” function, f(x), on some interval not necessarily bounded as an expan-
sion in an orthonormal set of functions, P, (x), that is,

fx) = ZanPn(x), x € [a, b] (1.1)

n=0
where the polynomials are orthonormal

b
/W(X)Pn(x)Pm(x)dx = Opms (1.2)

a

with respect to some appropriate weight function, w(x), and the Kronecker'? delta

is defined by
1, m=n

5nm = (13)
0, m#m.

Examples of such polynomial basis sets are the well-known classical polynomi-
als listed in Chap.2, Table2.1 and several nonclassical polynomials in Table2.2.
Whereas the non-classical polynomials are constructed to be orthonormal as in
Eq. (1.2), the classical polynomials are generally not normalized to unity.

The term “pseudospectral” refers to the solution of the defining equations on a grid
of discrete points, {x;}, and the solution, f'(x;), as determined at the grid points. This
is often referred to as a collocation. Pseudospectral methods are discussed further in
Sect. 1.4.

1.2.1 The Spectral Space Representation

We approximate the function of interest, f (x), with the finite sum

N—-1
fM@ =" aPu(x), x€la,b] (1.4)

n=0

where with the orthonormality condition, Eq.(1.2), the expansion coefficients are

iven b
g y )

%=/mmmwmw, (1.5)

a

10 L eopold Kronecker (1823—1891) was a German mathematician who specialized in algebra and
number theory. His studies of mathematics was originally a hobby and he did not hold a university
position untill 1883 at the University of Berlin.
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and occasionally referred to as the generalized Fourier coefficients. The a,
coefficients, Eq.(1.5), represent the “spectral space representation” of f(x). We
choose an appropriate basis set so that the series Eq.(1.1) provides an accurate
approximation of f(x) with a small number of terms. If the method is efficient, the
absolute values of the coefficients, |a,|, should decrease rapidly with increasing n as
will be demonstrated for particular functions and basis sets in Chap. 4.

An alternate choice of basis functions are the functions p,(x) = WP, (x),

orthonormal according to
b

/ Pn()pm(X)dx = Opp. (1.6)

a

We have the alternate expansion

N—1
fM@ =" bupu(), (1.7)
n=0

with the expansion coefficients,

b
by = /f(X)pn(X)dX- (1.8)

We can also choose the expansion

N—1

V@) =w) D P, (1.9)

n=0

for which the expansion coefficients are

b
Cn = /f(X)Pn(X)dX-

The convergence of the expansions Egs. (1.4), (1.7) and (1.9) (each designated with
the same f ™) (x)!) can be very different as dependent on the behaviour of f (x). Several
examples are presented in Chap. 4. For basis sets with unit weight function such as
Legendre polynomials and Fourier sines and cosines, these expansions are identical.

The main concern regarding the approximations Egs.(1.4), (1.7) and (1.9) is
whether the series converges and how quickly. Often these two concerns are unrelated
except when the series does not converge and then the rapidity of the convergence is
irrelevant. The knowledge that the series expansion is convergent does not provide the
practical information as to how many terms, N, are required for the approximation,
F™ (x), to be a good approximation to the function, f (x).
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There are many discussions of the mathematics concerning the convergence of
such expansions. The interested reader can consult several references (Cheney 1966;
Rivlin 1969; Trefethen 2013) for a more detailed mathematical treatment of this sub-
ject. A discussion of approximation theory from an historical perspective is provided
by Steffens (20006).

A very important aspect of approximation theory (Pinkus 2000) is how to measure
the difference between f (x) and f V) (x). We measure the error of the series expansion,
Eq. (1.4), with the least squares norm, that is,

b

EN) = / w(x)[f(x) f(N>(x)]2dx. (1.10)

a

We write out the square in Eq. (1.10) and use Eq. (1.4) that is

b
E)(N) = / w)f?(x)dx — 2 Z an / W) Py (X)f (x)dx
a n=0 p
N—1N-—1
+>) Zanam/w(x)P P,dx. (1.11)
n=0 m=0

With the orthonormality of the basis functions in the last term and the minimization
of E5(N) with respect to all a,, that is

oEM)
Oay,

=0, (1.12)
give the same expansion coefficients as obtained using orthogonality, Eq. (1.5). With

Eq.(1.5)in (1.11)
N—-1
ESY = IfIP = D a, (1.13)

where the norm of the function is defined as

b

If1I> = /w(x)fz(x)dx < 00, (1.14)

a

and which must be finite. Since EéN) > 0, Bessel’s inequality follows as

N-1
> ay < IIfI. (1.15)

n=0



8 1 Introduction to Spectral/Pseudospectral Methods

For N — o0, we have Parseval’s theorem

N—

> a=IrI* (1.16)

n=

—_

A more detailed mathematical proof of the results, Egs.(1.15) and (1.16), can be
found in the book by Brown and Churchill (1993) on Fourier series expansions.

Another important result is obtained with Eq. (1.8) substituted into Eq. (1.7) which
gives

b o0
fx) = / f&xh Z Pn(O)pp(x')dx’, (1.17)
a n=0
where -
> Pn@pax) = 6(x — X, (1.18)
n=0

and 6 (x — x’) is the Dirac delta function defined in terms of the integral
o
/f(x’)d(x —xNdx' = f(x). (1.19)
0

The basis set {p,} is then considered to be “complete” and Eq. (1.18) is referred to
as the completeness relation.

1.2.2 The Physical Space Representation

We have referred to the set of expansion coefficients {a,} in the expansion, Eq. (1.1),
as the spectral space representation of the function. The expansion coefficients
are determined from orthogonality, Eq.(1.5). In Chap. 2, we introduce Gaussian'!
quadratures for the efficient evaluation of integrals. This is the algorithm

b

N
/ w(x)F (x)dx ~ ZwiF(xi), (1.20)

p i=1

1 Carl Friedrich Gauss (1777-1855) was a German mathematician and physical scientist. He was
a child prodigy and made many fundamental contributions to geometry, number theory and algebra
at a very young age. He is also well known for his work on planetary science, geomagnetism and
Gaussian probability distributions.


http://dx.doi.org/10.1007/978-94-017-9454-1_2

1.2 Spectral and Pseudospectral Methods 9

where the set of “quadrature points” {x;} are the roots Py (x;) = 0 and {w;} are the
corresponding set of “quadrature weights”. The polynomials that define the quadra-
ture are orthogonal with respect to w(x) as given by Eq.(1.2). With Eq.(1.20), in
(1.5), the Gaussian quadrature approximation of the {a,} coefficients is

N
an = D wiPy(x)fxi). (1.21)

i=1

The set of function values, f; = f(x;), is the representation of f(x) in the “physical
space representation” and can be written as

N—1
fi=D ] anPu(x). (1.22)
n=0

We label the first grid point and the first expansion coefficient as x1 and ag, respec-
tively. Equations (1.21) and (1.22) are the transformations from physical space to
spectral space and from spectral space to physical space, respectively.

This transformation can by symmetrized with the definition f‘, = /wifi and gives

N—1
fi=D " an/wiPy(x)). i=1.2,....N, (1.23)
n=0

N
anzz./ijn(xj)f?, n=0,1,...,N—1.

j=1

The transformation matrix between the spectral space representation a,, and the phys-
ical space representation f; is defined by

Tin = \/Wipn(xi)s (1.24)

and we rewrite Eq.(1.23) as
N—1
fi= Z Tinay,
n=0
N
an = > Tuf;. (1.25)
i=1
With the second of these equations for a, substituted in the first, gives

R N N—1 R
fi= Z(Z Tanj)ﬁ. (1.26)

j=1 \n=0
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The transformation matrix T is unitary, that is,
N-1
z TinTyj = 0j (1.27)
n=0

which is equivalent to

N-1
wi Yy Prta) =1, i=j,
n=0

N-1

D Pu()Pu(xi) =0, i #], (1.28)

n=0

valid for all N.
With the substitution of Eq. (1.21) into (1.4) and interchange of the summations,
we obtain the basic interpolation result

N
fM @ =D L (), (1.29)
i=1

where the interpolation function is given by

N—1

I @) = wi > Pa(x)Pa(xi), (1.30)
n=0
which satisfies, N
1™ () = 65, (1.31)

referred to as the “Cardinality” condition. What is remarkable is that this result is
satisfied for any N, consistent with Eq.(1.27). These interpolation functions play a
central role in pseudospectral methods of solution.

Itis of interest to notice that the interpolation functions, Eq. (1.30), are orthogonal,
that is,

b N—1
/W(X)Ii(x)lj(x)dx = wiw; Z Py (xi) Pn(xj), (1.32)
p n=0
= 6,:1"

where the orthonormality of the basis functions, P, (x), has been used. The use of sim-
ilar basis function interpolants has been employed by Baye (2006) and co-workers
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(Baye and Heenen 1986; Baye and Vincke 1999; Baye et al. 2002) in the development
of the Lagrange mesh method for the solution of differential equations, notably the
Schrodinger equation. A more detailed discussion is presented in Chap. 6 with com-
parisons made with other pseudospectral methods.

1.2.3 A Hilbert Space

In this section, we present a few elementary principles associated with the use of a
Hilbert space. We first make comparison with a real vector space defined by the set of
three mutually perpendicular unit cartesian vectors ey, e, and e,. We define a scalar
or dot product between these unit vectors as e, - eg = dn3, (o, ) = (x,y,2). An
arbitrary vector can be represented by v = vye, +vye, +v,e, where vy, vy and v; are
the cartesian components of v, givenby vy = e,-v,by v, =e,-vandbyv, =e;-v.
The scalar or dot product of two different vectors is u - v = u,vy + uyvy + u, v, and
is zero if the vectors are orthogonal. The length of a vector or the norm is defined in
terms of the scalar product ||v]| = +/V- v = /v + 12 + 12 > 0 with the equality if
and only if v = 0. The distance between two vectors is simply the norm ||v — ul|.
This cartesian space is said to be linear since u - (avy + bvy) = au - vi + bu - vs.
Moreover, we can define a linear operator R which transforms or maps one vector
into another, that is u = R - v. In the (e,, e,, ;) representation, the operator R is
the familiar three-dimensional rotation matrix. We consider this space as complete
as we can express any vector as a linear combination of the three unit vectors.

We consider a Hilbert!? space with the orthogonal basis functions p,(x), n =
0, 1, ..., coasunit vectors that are in general complex. We introduce the Dirac!3 bra,
(n|, and ket, |n) notation (Messiah 1961) to make the connection with a vector space
clearer by associating the basis function, p, (x), with the symbolic vector |n). The
basis functions, p, (x), are in fact the components of the vector |n) in the coordinate
representation of basis vectors |x), such that

Iny = / Pa() X}, (133)

There is also the dual space of complex vectors written as (m| and the scalar product
satisfies, (m|n) = (n|m)*, where the asterisk denotes the complex conjugate. Thus we

12 David Hilbert (1862-1943) was a German mathematician who worked on many fundamental
problems including functional analysis and integral equations with a deep interest in mathematical
physics.

13 Paul Adrien Maurice Dirac (1902—1984) was an English mathematical physicist who shared the
1933 Nobel Physics Prize with Irwin Schrodinger for their contributions to atomic theory. He made
seminal contributions to quantum mechanics and relativity.
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consider the representation of the function f (x) or the vector |f) in terms of the basis
functions or unit vectors. We include N basis functions and obtain the approximation
[f™)y given by,

N—-1
™) =" ealn), (1.34)
n=0

where the expansion coefficients are obtained from the projection of |n) onto |f),

that is
b

e = (nlf) = / PEC (). (1.35)

a

Although we have written p: (x) in Eq. (1.35), for most of the applications considered
the basis functions are real. We include linear differential operators denoted by L
and the eigenvalue problem of the form

Litbn) = Anlthn), (1.36)

where )\, is the eigenvalue, assumed to be discrete. We will find it useful to also
denote the scalar product as

b

flg) = / wE)f*(x)g(x)dx, (1.37)

a
with the weight function w(x). The matrix element of some operator, L, is denoted by

b

{fILg) =/W(X)f*(X)Lg(X)dX- (1.38)

a

For the scalar products, (f|g) and (f|Lg), the weight function is not shown explicitly
to simplify the notation. We summarize the properties of a Hilbert space for our
purposes as

. (flag + bh) = a(flg) + b(f|h), a and b are numbers,
- Aflg) = (glN*,

=0,

Il = (fIf) = Oifandonlyiff = 0.

. LU+ 1g9) = LIf) + L|g), L is alinear operator.

DN B W N =

More detailed discriptions of a Hilbert space are in the book by Helmberg (2008)
and especially Chap. 6 in the book by Hunter and Nachtergaele (2001).
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1.2.4 Hermitian and Self-adjoint Operators:
The Sturm-Liouville Problem

Consider the eigenvalue problem

Lipy(x) = A\ptn(x), (1.39)

where L is a linear operator which includes the Hamiltonian for a quantum problem
or the linear integral operator in the Boltzmann equation or the differential Fokker-
Planck operator. The eigenfunction, 1/, (x), defined on the interval [a, b] is subject to
two homogeneous boundary conditions which are linear combinations of the value
of the function and derivative at the two interval end points and are of the form

Arn(a) + B, (a) = 0.
Agthn(b) + B, (b) = 0. (1.40)

where for Ay = 0 we have a Neumann boundary condition and if By = 0 we have a
Dirichlet boundary condition.
The Hermitian conjugate or the adjoint of L denoted by L' is defined by the

eigenvalue problem
Ly (0) = A (0). (1.41)

The Hermitian conjugate of the matrix representative of an operator with elements
Ly, is the complex conjugate of each element of the transpose matrix, thatis L .
We now show that for a self-adjoint operator, the eigenvalues, ), are real and the
eigenfunctions, ¥, (x), of different eigenvalues are orthogonal. Multiply Eq.(1.41)
by 1, (x) and Eq. (1.39) by % (x), subtract the two equations and integrate to get

b

b
/ [wn(x)LW;Z(X) - ¢§1(X)L¢W(X)] dx = Ay — ) / Ui ()Y (X)dx  (1.42)

a

If L, is self-adjoint or Hermitian, the left hand side of Eq. (1.42) is zero. Thus the
right hand side of Eq. (1.42) is also zero. If m = n we have that \} = )\, since the
integral is not zero. The eigenvalues of a self-adjoint operator are real. For n # m
we have the orthogonality of the eigenfunctions, that is,

b
/¢Z(x)¢n(x)dx = VnOnm, (1.43)

where the norm is

b
%ﬂ%ﬁ=/%®w (1.44)
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The Sturm'“-Liouville!> problem (Pryce 1993; Al-Gwaiz 2008) is the eigenvalue
problem defined by the differential equation

dipy (x)
dx

d
Lipn(x) = — [P(X) ] + g0 (x) = Xw () Py (x), (1.45)

where p(x), g(x) are real and w(x) > 0 is a real weight function. The interval may be
bounded, x € [a, b], semi-infinite x € [0, 00), or infinite x € (—00, 00). Any linear
second order differential equation can be written in this form. The classical polyno-
mials such as the Legendre, Hermite and Laguerre polynomials defined in Chap.2
satisfy Sturm-Liouville eigenvalue equations. These polynomials are often chosen
as the basis functions in spectral solutions of particular problems. Alternatively, the
quadrature weights and points associated with these classical polynomials are used
in pseudospectral solutions.

To show that L defined by Eq. (1.45) is self-adjoint, we consider the matrix element

b

b
(PIL1Y) =/¢(X) [p(X)z//(X)]/dx+/q(X)¢(x)w(x)dx, (1.46)

a

and perform an integration by parts for the first integral on the right hand side. The
result is

b

b
- / )Y ()¢ (x)dx + / qg()P(xX)P(x)dx. (1.47)

a a

b

(BILIY) = p()Y' ()¢ (x)

a
The boundary term is zero owing to the chosen boundary conditions, Egs. (1.40), and

(PILIY) = (YIL|P).

Thus the Sturm-Liouville operator, L, is self-adjoint, and the importance of the
specified boundary conditions is clear. The Schrodinger and the Fokker-Planck eigen-
value equations are Sturm-Liouville problems and considered in Chap. 6. In Chap. 5,
we consider the eigenvalues of the integral collision operator of the Boltzmann
equation.

14 Jacques Charles Frangois Sturm (1803—1855) was a French mathematician who made important
contributions to algebra and the numerical evaluation of the roots of polynomials. The differential
eigenvalue equation that bears his name defines the classical polynomials.

157 oseph Liouville (1809-1882) was a French mathematician who made fundamental contributions
to complex analysis, algebra, mechanics, and many other topics. He is well known for Liouville’s
theorem in classical Hamiltonian mechanics.
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1.2.5 Rayleigh-Ritz Variational Theorem

We are interested in solving the operator eigenvalue problem

Lltn) = Anltbn), (1.48)

where L is a self-adjoint positive definite operator in a square integrable Hilbert
space of real functions. The Rayleigh!-Ritz!” variational approach is based on the
representation of the eigenvectors |v,) in terms of N orthogonal vectors |k) each
weighted linearly with a variational parameter, ax. Thus we write,

N—-1
n) = D alk), (1.49)
k=0

where (k|€) = di¢. A functional dependent on the set of variational parameters, ay,
is defined by

F({ar}) = (¥nlLltn) — Athnlthn),

—1N-1

-3 |:aka4Lkg - /\a,%}, (1.50)

k=0 ¢=0

where Ly, = (k|L|€) are the matrix elements of the operator in the chosen basis
set. We determine the extremum of F({ax}) with respect to the set of expansion
coefficients {ay} by setting

OF (ar)

0. 1.51
Bar (1.51)
The result is the set of linear equations for the variational parameters, ay, that is,

N-1

Z ag [Lke - Mu} =0, (1.52)

k=0

and the eigenvalues are the roots of the “secular’” equation resulting from the require-
ment that the solution of homogeneous linear equations, Eq. (1.52), exists, that is

det [L(m - A] =0, (1.53)

16 John William Strutt, third Baron Rayleigh (1842-1919) was an English physicist who discovered
argon for which he was awarded 1904 Nobel Physics Prize. His named is associated with kinetic
theory, electrodynamics, light scattering, sound propagation and other subjects.

17 Walther Ritz (1878-1909) was a Swiss theoretical physicist. His name is associated with the
Rydberg Ritz combination principle for atomic spectral lines and the Rayleigh-Ritz variational
method.
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where the matrix A is diagonal, Axy = A\;Sg¢. Equation (1.53) is the secular equation,
a polynomial of degree N in A and the roots are .

A good overall discussion of the different approximation methods for applications
in physics and engineering can be found in the book by Finlayson (1972). The review
paper by Finlayson and Scriven (1966) with 187 references provides an overview
of the development of these methods. A more rigrous mathematical discussion has
been presented by Hill (1985).

The Rayleigh-Ritz variational theorem has been applied extensively in numerous
fields including quantum mechanics (Bhattacharyya 2009), kinetic theory (Cuperman
et al. 1982; Driessler 1981; Present and Morris 1969; Snider 1964; Shizgal and
Karplus 1971; Bobylev and Cercignani 1999), radio science (Sarkar 1983) and other
fields. The common aspect of all these applications is the approximate representation
of the solution of a differential equation in a set of orthogonal basis functions.

1.3 An Overview of Spectral Methods

In Chap.2, we develop the basic concepts of spectral and pseudospectral methods
with application to physical problems. In this section, we provide an overview of the
development of these methods which are discussed in greater detail in the chapters
that follow.

We consider the time dependent differential equation,

of (x, 1)
ot

=Lf(x,1)+Sx) x € [a,b], (1.54)

where L is a linear operator and S(x) is a source term. We impose Dirichlet boundary
conditions, f(a, t) = 0, f(b, t) = 0 and provide an initial condition f (x, 0) = g(x).
The operator L could be the operator in the linear Boltzmann equation, Eq. (5.41), or
in a Fokker-Planck equation, Eq. (6.7). The eigenvalue problem L, (x) = A, ¥, (x)
is of interest for the time dependent solution of Eq.(1.54). We are also interested in
a similar eigenvalue problem for the Schrodinger equation, Eq. (6.78), defined with
a linear self-adjoint Hamiltonian operator H.

For these problems, we approximate the solution in terms of the finite expansion
in a set of orthonormal functions, p,(x) = /w(x)P,(x), Eq.(1.7), involving N terms
and we have the Nth approximation to f (x, t), that is

N—-1

fM @0 =D bat)pa(x). (1.55)

n=0

We discuss the choice of basis set from the large set of classical and nonclassical poly-
nomials in Chap. 2. This choice determines the rate of convergence of the expansion,
Eq. (1.55).
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The initial values of the expansion coefficients are provided from the expansion
of the initial condition, that is,

N-1

9() = > bu(0)pu (). (1.56)

n=0

With the substitution of Eq. (1.56) into (1.54), we have that

N—1 N—1
db,
ZO: () _dt(t) _ ZO b (D Lpn () + S(x). (1.57)

The departure of the approximate solution from the actual solution is measured by
the “residue” defined by

— L™ (x, 1) — S, (1.58)

(N)
Rute 1 = X0

0
1

_ o
- ;pn(x)@ _ ZO bu(DLpa(x) — S(x).

The method of weighted residuals (Finlayson and Scriven 1966; Finlayson 1972)
is a procedure to calculate b, (¢) so as to minimize the residual Ry (x, ) in some
average way. We impose the condition that the residue is minimized subject to

b
/t(x)RN(x, Hdx =0, (1.59)

a

where there are several different choices for the “test” function #(x) and each
choice gives rise to a different approximation. If we choose #(x) = p,(x), n =
0,1,..., N — 1, the partial differential equation is converted to a set of N coupled
ordinary differential equations, that is,

N—-1
db (1)
%:;Lmnbn(t)+sm m=0,1,...,N —1, (1.60)

where the matrix representation of L in this basis set is,

b
Ly = /Pm(x)LPn(X)dX, (1.61)

a

and
b

S :/pn(x)S(x)dx, (1.62)

a
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are the expansion coefficients for the source term, S(x). This approach is referred to
as a spectral or a “Galerkin”!® solution.

The set of coupled ordinary differential equations, Eq. (1.60), can be advanced in
time from the initial values, ¢, (0), with the appropriate time integration algorithm.
An important aspect regarding the stability of the direct time integration of the set of
equations, Eq. (1.60), is the eigenvalue spectrum of the matrix, L,,;,, and the condition
number, K(L) = A\pax/Amin-

The condition number is also very important with regards to the inversion of the
steady state matrix equations

> LinCn=—sy m=0.1,....N—1, (1.63)

for the time independent coefficients denoted by Cp,. If the condition number of the
matrix L is large, the inversion of Eq.(1.63) can be contaminated with numerical
errors. We can also consider the related eigenvalue problem

N—1
Zandm =Mdy, n=0,1,...,N, (1.64)
n=0

for the eigenvalues, \,, and eigenvector coefficients d with the proviso that the
eigenvalue spectrum of the operator L is discrete.

For the Boltzmann, Fokker-Planck and Schrodinger equations, the linear operators
involved can have discrete spectra, or a combination of a discrete spectrum plus a
continuum or just a continuum. We discuss these properties of eigenvalue problems
with specific applications in Chaps. 5 and 6 (Reinhardt 1979).

1.4 The Development of Pseudospectral Methods
in Chemistry and Physics: An Overview of the Book

A preliminary introduction to pseudospectral methods is provided by the eigenvalue

problem
b

/ K Y)n )y = Aaton (), (165)

a

where the integral operator on the left hand side is defined by the kernel, k(x, y),
which is assumed to be well behaved in both arguments. The integral equation

18 Boris Galerkin (1871-1945) was a Russian mathematician and developed the Galerkin method
for solving partial differential equations associated with problems in mechanical engineering.
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is reduced to a set of linear equations with the use of the appropriate quadrature.
Equation (1.20), defined with the quadrature points, {x;}. The result is

N
D Wik, xi)n(x0) = Atha(x;).

i=1

(1.66)

where W; = w;/w(x;) and w(x) is the weight function that defines the polynomi-
als, Eq. (1.2). The eigenfunctions are evaluated at the set of quadrature points and
are represented by the physical space representation, 1, (x;). Extensive use of this
pseudospectral method is discussed in Chap.5 for the solution of the Boltzmann
equation.

For differential equations, a derivative matrix operator is derived in Chap.2 in
terms of the interpolation function, Eq. (2.32),

™)
AV )

= , (1.67)

X=X;

as well as an analogous matrix operator for the second derivative. Second order
differential equations such as the Fokker-Planck and Schrodinger equations can be
reduced to linear algebraic equations or time dependent ordinary differential equa-
tions. Pseudospectral methods are used extensively in Chaps. 5 and 6. The history of
the development of pseudospectral methods in chemistry, physics and other fields is
outlined in Table 1.1. This chronology of events is a personal view and people with
different backgrounds may well have other interpretations.

As discussed in Chap.5, the first use of a pseudospectral method appears
to be the work of Wick (1943) and Chandrasekhar (1944) in the solution of

Table 1.1 The development of pseudospectral methods in chemistry and physics

1943 | Gaussian quadrature solution for Radiative Transfer Wick (1943)
1944 | Gaussian quadrature solution for Radiative Transfer Chandrasekhar (1944)
1953 | The Discrete Ordinate Method (DOM) in Neutron Carlson (1955)

Transport
1972 | Differential Quadrature (DQ) Bellman et al. (1972)
1973 | Spline methods for the Schrodinger equation Shore (1973, 1975)
1977 | Numerical Analysis of Spectral Methods Gottlieb and Orszag (1977)
1982 | Nonclassical basis functions for the Boltzmann Shizgal (1981a)

equation
1984 | A DOM for the solution of differential equations Shizgal and Blackmore (1984)
1985 | Pseudospectral methods for electronic structure Friesner (1985)
1985 | Discrete Variable Representation (DVR) Light et al. (1985)
1985 | Fourier techniques Schwartz (1985)
1986 | Lagrange mesh method Baye and Heenen (1986)
1987 | Spectral methods in fluid mechanics Canuto et al. (1998)
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the integro-differential radiative transfer equation (Chandrasekhar 1960). They
introduced Gauss-Legendre quadratures to reduce the radiative transfer equation
to a set of linear ordinary differential equations. The problem was originally consid-
ered by Milne'? (Milne 1930) as a problem in astrophysics as well as in rarefied gas
dynamics where it is referred to as a half-space problem (Williams 1971; Cercignani
1988). A spectral solution of the Milne problem based on the Boltzmann equation
is discussed in Chap. 5 (Lindenfeld and Shizgal 1983) and a pseudospectral method
of solution for an electron Fokker-Planck equation was presented by Vasenkov and
Shizgal (2000).

The radiative transfer and neutron transport community exploited the pseudospec-
tral approach (Chandrasekhar 1960; Rybicki 1996) and it was referred to as the
Discrete Ordinate Method (DOM) (Carlson 1955). Other designations are the Sy
(Lathrop 1992) and Py methods (Liou 2002; Thomas and Stamnes 2002). The Sy
method appears to refer to the “segmentation” of the interval of interest with N
quadrature points and can be considered as a spectral element method (Deville et al.
2002) or a discontinuous Galerkin method (Cockburn et al. 2000) originally devel-
oped in neutron transport theory (Reed and Hill 1973). The Py method refers to a
spectral method with the expansion of the angular dependence of the velocity distri-
bution functions in Legendre polynomials (Liou 2002; Thomas and Stamnes 2002).
Similar Laguerre and Hermite expansions of functions that occur in kinetic theory
are presented in Chap. 4.

The pseudospectral solution of differential equations is based on the global
approximation of the derivative operator in terms of the function values on a grid.
Interpolation, Eq. (1.30), and the discrete matrix derivative operator, Eq.(1.67), are
the basis for the development of these collocation type solutions of differential equa-
tions. Bellman et al. (1972) developed the differential quadrature (DQ) method for
the solution of differential equations. This appears to be the first introduction of
pseudospectral methods applied primarily to problems in engineering (Shu 2000).
Pseudospectral methods based on the discrete physical space representation of deriv-
ative operators is presented in Chap. 3, Sect.3.9.2 and defined with the Lagrange
interpolation in Chap. 2, Sect.2.3.1.

The numerical methods of solution based on B-Splines (Shore 1973) also belong
to the class of collocation Galerkin type solutions for quantum problems (Bachau
etal. 2001) as well as for the Boltzmann equation (Pitchford and Phelps 1982; Siewert
2002; Khurana and Thachuk 2012) and many other applications. The introduction
of spectral methods with Fourier and Chebyshev basis functions for fluid mechanics
problems was developed by Gottlieb and Orszag (1977).

Shizgal and Blackmore (1984) applied a combination of the Gaussian quadratures
for integrals, Eq. (1.20), and 