
115© Springer Science+Business Media Dordrecht 2015
P. Griffi n, E. Care (eds.), Assessment and Teaching of 21st
Century Skills, Educational Assessment in an Information Age,
DOI 10.1007/978-94-017-9395-7_6

 Chapter 6
 Automatic Coding Procedures
for Collaborative Problem Solving

 Raymond Adams , Alvin Vista , Claire Scoular , Nafi sa Awwal ,
 Patrick Griffi n , and Esther Care

 Abstract This chapter examines the procedure followed in defi ning a scoring
process to enable the reporting of individual student results for teachers to use in
the classroom. The procedure begins with the identifi cation of task features that
match elements of the skills frameworks, and is followed by the generation of
simple rules to collect data points to represent these elements. The data points are
extracted from log fi les generated by students engaged in the assessment tasks and
consist of the documentation of each event, chat and action from each student.
The chapter includes examples of the process for defi ning and generating global
and local (task specifi c) indicators, and examples of how the indicators are coded,
scored and interpreted.

 The development of coding and scoring of data generated when students engage in
collaborative problem solving tasks is described. The data generated are captured
in a process stream data fi le. Patterns of these data are coded as indicators of ele-
ments defi ned in the conceptual framework outlined in Hesse et al. (2015 ; Chap. 2)
and the relative complexity of indicators is used in a scoring process. The scored
data are then used to calibrate the tasks. The calibrations form the basis of interpre-
tation and these are used in forming reports for students and teachers. Figure 6.1
summarises the entire process from task development to the reporting of student
ability based on a developmental framework.

 R. Adams (*) • A. Vista • C. Scoular • N. Awwal • P. Griffi n • E. Care
 Assessment Research Centre, Melbourne Graduate School of Education , University
of Melbourne , Parkville , VIC , Australia
 e-mail: r.adams@unimelb.edu.au

http://dx.doi.org/10.1007/978-94-017-9395-7_2
mailto:r.adams@unimelb.edu.au

116

 Existing Approaches to Autoscoring

 There is currently very little research regarding a scoring approach for collaborative
problem solving. Our project has therefore focused on and adapted existing scoring
processes for problem solving. The literature suggests that current processes mainly
use a dichotomous success-failure scoring system which records whether the prob-
lem has been solved and ignores the cognitive procedures involved (Greiff et al.
 2012). This type of system is simple to implement and works well for tasks which
are designed to tap into specifi c problem solving skills. For example, a task where
deductive reasoning is imperative for success can be scored dichotomously. An
example of this style of dichotomous scoring can be observed in a project by Greiff
et al. (2012) who have determined three measures which represent dynamic prob-
lem solving (DPS): Model Building, Forecasting and Information Retrieval. Each of
these measures is scored across 11 DPS tasks and students are awarded a false (0)
or true (1) score determined by their success or failure on the task. In contrast, the
focus in the ATC21S TM project 1 is not only to determine whether students are
succeeding at solving the tasks but to draw inferences about how students solve
problems. While the assumption in traditional test design is that the attainment of
the solution is the sole criterion, here the focus is on the process and quality of prob-
lem solving. A distinction needs to be made between what might be called simple
problem solving tasks, using a dichotomous scoring process, dynamic problem
solving, using a series of dichotomous scores, and complex problem solving, using
rubrics and partial credit approaches.

 The procedural aspects of problem solving (PS) have been considered important
for some time (Polya 1945 , 1957 ; Schoenfeld 1985). The framework proposed in
the ATC21S project outlines fi ve broad components that represent collaborative

1 The acronym ATC21S TM has been globally trademarked. For purposes of simplicity the acronym
is presented throughout this chapter as ATC21S.

 Fig. 6.1 Process overview from task development to interpretation of scores

R. Adams et al.

117

problem solving (CPS) within social skills (participation, perspective taking, social
regulation) and cognitive skills (task regulation and knowledge building). Within
these fi ve components, students are assessed on three tiered levels of ability across
19 specifi c elements. A set of assessment tasks, each tapping into different and
overlapping skills, was developed in order to provide teachers with suffi cient infor-
mation to interpret students’ capacity in CPS subskills, so that a profi le of each
student’s performance can be developed for formative instructional purposes. In
order to provide this interpretive feedback, there was a need to develop a robust
automated scoring system which highlighted the procedural and developmental
thinking processes that take place in CPS.

 Design of Process Data Stream – Capturing
and Identifying the Data

 Many recent computer based PS tasks have been able to assess and record detailed
interactions between the problem solver and the task environment, and thereby
capture salient solution processes in an unobtrusive way (Zoanetti 2010 ; Bennett
et al. 2003). Their recorded input can be linked to the cognitive skill level and
development of students and used to evaluate the process and effi ciency with
which problem solvers complete tasks (Pelligrino et al. 2001 ; Williamson et al.
 2006). Within the current CPS framework, actions and chat, and the placement of
these, can be scored.

 In order to record descriptive, purposeful actions, the CPS assessment tasks were
designed to capture detailed interactions between problem solvers working as a
dyad as well as between the individual problem solver and the task. In the context
of computer based assessments, the fi les generated for the automatic records of
these types of student–task interactions are referred to as a ‘session log fi le.’ They
contain free-form data referred to as ‘process stream data.’ The log fi les were stored
as free-form text fi les with delimited strings of text or in database architecture. In
this instance, MySQL database architecture was used for recording the interactions
with the task environment thereby describing relevant solution processes in an
unobtrusive way (Bennett et al. 2003).

 In the context of these assessment tasks, process stream data describe distinct
key strokes and mouse events such as typing, clicking, dragging, cursor movements,
hovering time, action sequences and so on. In the database, each discrete action is
recorded with a corresponding timestamp. A timestamp refers to the time at which
an event was recorded by the system into a log fi le and refl ects, or is close to, the
time of the event itself. To ensure that the data captured can be presented in a con-
sistent format, allowing relatively easy comparison of two different records and
tracking progress over time, a sequential numbering of events is used in a consistent
manner. In this way, timestamps enable detailed analysis of action sequences and
inactivity. This ensures further transparency for data storage and the sequential
logging of events for data processing. These forms of time-stamped data have been

6 Automatic Coding Procedures for Collaborative Problem Solving

118

referred to variously as “log-fi le data” (Arroyo and Woolf 2005), “discrete action
protocols” (Fu 2001), “click-stream data” (Chung et al. 2002) and “process data”
(Zoanetti 2010). For our purpose, we use the term ‘process stream.’

 Each task has a variety of events that can occur, categorised into two types: common
and unique events. As the name suggests, ‘common’ classifi es the universal nature of
the process stream events and applies to all collaborative assessment tasks. Examples
of these events can been seen in Table 6.1 . They include indications of the beginning
and end of a task, system confi rmation messages of user actions, navigational system
messages for multiple page assessment tasks, free-form chat messages for communica-
tion with partners, or variations of these.

 Unique events within the process stream data are not common across assessment
tasks. They are unique to specifi c tasks due to the nature of the behaviours and inter-
actions those tasks elicit. These data are defi ned using event types to match specifi c
requirements that may arise only in a particular interactive problem space. Examples
of such events for the Laughing Clowns task, illustrated in Fig. 6.2 , are presented in
Table 6.2 (for a detailed explanation of this task see Care et al. 2015 ; Chap. 4).

 The accumulation of the different types of process and click stream data collec-
tively forms the process data stream, accumulated and stored in fi les commonly
referred to as session logs . An excerpt of a session log for the Laughing Clowns task
can be seen in Fig. 6.3 , which represents the events that occurred for one team (two
students) while playing the task. Both common and unique event types of process
stream data were captured in string format as shown in Tables 6.1 and 6.2 . Process
stream string data were recorded in the MySQL database as a single row and tagged
with corresponding student identifi er, task identifi er, page identifi er and role alloca-
tion of the acting student in the collaborative session with time-stamping and appro-
priate indexing.

 To facilitate collaboration, a chat box tool was used (see Care et al. 2015) as the
messaging interface for communication between respective partners during the col-
laborative sessions. This enabled the students to explore and learn about their
respective resources and share or report information to each other. The chat box tool

 Table 6.1 Examples of common events defi ned from the process stream data

 Event type Process stream data format Explanation of data captured

 Session
start

 Student student_id has
commenced task task_id

 Records the start of a task with student and task
unique identifi cation

 Session
fi nish

 Student student_id has
completed task task_id

 Records the end of a task with student and task
unique identifi cation

 Chat text Message: “ free form of
message using the chat box ”

 Captures the contents of the chat message the
students used to communicate with their partner

 Ready To
progress

 Requested to move to page:
 page_id

 Indicates whether the student is ready to progress
or not, and records the navigation endpoint which
they are ready to progress to for multipage tasks

 Other click Screen x coords: x_
coordinate ; Screen y coords:
 y_coordinate ;

 Captures the coordinates of the task screen if the
student has clicked anywhere outside the domain
of the problem

R. Adams et al.

http://dx.doi.org/10.1007/978-94-017-9395-7_4

119

captures text exchanged between students and was captured in string data format.
All chat messages generated by users and the system appeared in the tool and were
recorded with a corresponding timestamp.

 Defi ning the Indicators

 Each task was examined for indicative behaviours of identifi able cognitive and
social skills that can be captured algorithmically. These skills were identifi ed
through actions, chats or a combination within the process stream. The behav-
iours that were observed in the process stream data were used as indicators of

 Fig. 6.2 Screenshots from the Laughing Clowns task

 Table 6.2 Examples of unique events defi ned from the Laughing Clowns task within the process
stream data

 Event type Process stream data format Explanation of data captured

 StartDrag startDrag: ball_id ; x,y coordinates of the ball
at the start of the drag

 Records the identifi er of the ball
which is being dragged by the
student, and its coordinates

 StopDrag stopDrag: ball_id ; x,y coordinates of the ball
at the end of the drag

 Records the identifi er of the ball
which is being dragged by the
student and its coordinates at the
end of the drag

 DropShute dropShute PosofShuteId : ball_id ; x,y
coordinates of the ball when it was dropped

 Records the identifi er of the ball,
its coordinates and the value of
the clown head shute when it was
dropped by the student

 Check box Selection Value: option_value Captures data if students agree or
disagree on how their machines
work

6 Automatic Coding Procedures for Collaborative Problem Solving

120

cognitive and social skills as defi ned in Hesse et al. (2015). These indicative
behaviours were then coded into rule-based indicators that can be extracted from
the task process streams through an automated algorithmic process similar to that
described by Zoanetti (2010). Zoanetti showed how process data (e.g., counts of
actions) could be interpreted as an indicator of a behavioural variable (e.g., error
avoidance or learning from a mistake) (see Table 3 in Zoanetti 2010). For exam-
ple, in the Laughing Clowns task, a count of the ‘dropShute’ actions (dropping
the balls into the clown’s mouth) can indicate how well the student managed their
resources (the balls).

 Coding

 The coded indicators became the primary source of data for the scoring process.
The indicators were classifi ed into two main types: those that occur only in spe-
cifi c tasks and those that can be observed in all tasks. Indicators that can be cap-
tured in all tasks are labelled ‘global’. They included total response time, response
time to partner questions, action counts, and other behaviours that were observed
regardless of the task. Indicators that were task-specifi c were labelled ‘local’.
There were two categories of local indicators: direct and inferred. Direct indica-
tors represented those that can be identifi ed clearly, such as a student performing
a particular action. Inferred indicators related to such things as sequences of
action/chat within the data. Patterns of indicators were used to infer the presence
of behaviour which is indicative of elements in the conceptual framework (see
Hesse et al. 2015 ; Chap. 2). Within these indicators there were differences in
intensity or patterns that provided additional information about the relative com-
plexity of the indicated behaviour.

 Fig. 6.3 Excerpt from a process stream log fi le for the Laughing Clowns task

R. Adams et al.

http://dx.doi.org/10.1007/978-94-017-9395-7_2

121

 Each indicator was coded with a unique ID code. Using the example of the
unique ID code ‘U2L004A’, ‘U2’ represents the Laughing Clowns task, ‘L’ indi-
cates that it is a ‘local’ indicator specifi c to that task (‘G’ would represent that it was
a global indicator that could be applied to all tasks), ‘004’ is a numerical code spe-
cifi c to this indicator which is provided for ease of referencing and is sequential
within each task (in this case 004 it was the fourth indicator created for the task) and
‘A’ indicates that this indicator is applicable to student A.

 To capture the required data, once the indicators are identifi ed they need to be
defi ned in the process stream through programming algorithms. Each of the scoring
algorithms takes process stream data (produced by the events of the participants in
different tasks) as input and produces relevant output defi ned by the rule for the cor-
responding indicator. For example, if capturing the quantity of interaction within a
task, the algorithm would count the occurrences of the event ‘chat’ in the process
stream. The output for this indicator would be the numerical value representing the
frequency of the chat. Table 6.3 outlines some exemplar algorithms. The fi rst col-
umn in the table represents the indicator name. Details of the scoring rule for each
indicator are described in column two. The third and fourth columns elaborate the
algorithm and its output respectively.

 The outputs from each of the indicators based on the algorithms are saved in a ‘coded
fi le’. The coded fi le presents the output values relevant to the algorithm. For example, if
the indicator observes a count of actions, the raw numerical value will be present in this
fi le. Indicators highlighted in yellow in Fig. 6.4 are still in raw counts (or frequencies).
These indicators are later converted into either a dichotomy or partial credit.

 Mapping

 Each indicator was mapped onto an element of the conceptual framework (outlined
in Hesse et al. 2015 ; Chap. 2). which consists of fi ve strands – three comprising the
social aspect and two comprising the cognitive aspect. The main purpose of this
mapping process was to identify an underlying skill. To reduce judgment error in
the mapping process, it was undertaken several times by different teams. An itera-
tive process was used. Several panels of researchers reviewed the indicators and
mapped them onto the conceptual framework. The process was repeated for each set
of indicators within each task until a stable allocation was agreed upon. When the
changes and revisions to the allocation of indicators to elements fell to a minimum,
the element mapping was then considered to be stable and the interpretation process
proceeded to the next step. As an example, the indicator U2L004A records whether
a student covers all positions with their balls. This is assessed by the presence of
three ‘dropShute’ actions in the process stream for student A – one for each of the
three positions L (left), M (middle), and R (right). This indicator was mapped onto
systematicity in the framework, suggesting that the student had explored the task
through a strategic sequence of actions. An excerpt from a session log on how this
is captured can be seen in Fig. 6.5 .

6 Automatic Coding Procedures for Collaborative Problem Solving

http://dx.doi.org/10.1007/978-94-017-9395-7_2

122

 Table 6.3 Example of algorithms to the corresponding indicator

 Indicator name Details Algorithm Output

 U2L004A Systematic approach. All positions
have been covered.

 Step 1: Find all drop ball
occurrences captured as
dropShute and their
corresponding positions as
dropShuteL, dropShuteR,
dropShuteM.

 Count
values

 U2L004B Scoring rule: threshold value. Step 2: Then count all the
occurrences of the action
recorded under ‘dropShute’
and their unique positions
from the log.

 Task name: Laughing Clowns. Step 3: Increase the value of
the indicator by one if one or
more ‘dropShute’ occurs in the
form of dropShuteR,
dropShuteL, or dropShuteM.
 Step 4: If the total number of
unique dropShutes
(dropShuteR, dropShuteL, and
dropShuteM) from the log is
less than three then the value
of the indicator is defi ned as
−1 to indicate missing data.

 Global001A Acceptable time to fi rst action
given reading load.

 Step 1: Find the starting time
when a student joins a
collaborative session.

 Time

 Global001B Time (in seconds) spent on the
task before fi rst action (interpreted
as reading time)

 Step 2: Find the previous
record of the fi rst action.

 Scoring rule: Threshold time. Step 3: Find the time of that
previous record (from step 2).
 Step 4: Calculate the time
difference obtained (from step
1 and step 3), indicating the
time before fi rst action.

 Global005A Interactive chat blocks: Count the
number of chat blocks (A, B) with
no intervening actions.
Consecutive chats from the same
player counts as one (e.g.,
A,B,A,B = 2 chat blocks;
A,B,A,B,A,B = 3 chat blocks;
AA,B,A,BB = 2 chat blocks)

 Step 1: Find all the
consecutive chat from student
A and B without any
intervening action from A or
B. Treat two or more
consecutive chats from a
single student as one chat.

 Count
values

 Global005B Scoring rule: threshold number. Step 2: Increase the value of
the indicator by one if one
block is found.

R. Adams et al.

123

 Fig. 6.4 Excerpt from a coded data fi le

 Fig. 6.5 Excerpt from a process stream log fi le for the Laughing Clowns task

6 Automatic Coding Procedures for Collaborative Problem Solving

124

 Scoring

 Indicators can be thought of as the equivalent of items in a conventional test. In
order to obtain an estimate of student ability from the scored indicators it is neces-
sary that the status of one indicator does not affect or depend on the status of others.
Requiring indicators to be stochastically independent also avoids the complexity of
scoring the absence of an indicative behaviour when it is dependent on another
event. For instance, if indicator 002 is dependent on indicator 001, and both are
dichotomous, the assessment of indicator 002 = 0 will differ depending on whether
indicator 001 = 0 or 1.

 Dichotomously Scored Indicators

 Most indicators of behaviours in the AC21S tasks are designed to be indicative only
of the presence or absence of an observable behaviour. This would provide for each
student a coded value of ‘1’ to the indicator if it is present and a coded value of ‘0’ to
the indicator if it is absent. Through the forcing of most of the indicators into a
dichotomy, the interpretation of indicators becomes simpler than is necessary for
partial credit coding and scoring. In the Laughing Clowns task, for example, a player
needs to leave a minimum number of balls for his/her partner in order for the task to
be completed successfully. If the process data shows that this minimum number was
satisfi ed, the indicator can be scored as 1. If it is not satisfi ed, it is scored as 0.

 Frequency-Based Indicators – Partial Credit Scoring

 In cases where a particular indicative behaviour is monitored for frequency of
occurrence, recording the frequency counts is useful (as indicated in Table 6.3),
especially when the cut-off for a qualitatively differentiable interpretation of the
behaviour is not clear. For example, the total time taken on a task and the time
taken for a player to respond to a partner query can range from a few seconds to
several minutes. A dichotomy-based score cannot capture the subtlety of differ-
ences in such a case. In the Laughing Clowns example given above, the cut-off
value is well- defi ned because success on this task is impossible beyond the mini-
mum number of balls retained. However, in other tasks this situation may not be
recordable in such clear-cut values. There will be an intuitive interpretation that
more errors mean less problem solving ability, but it might not be clear where to
place a cut-off point for scoring purposes. In these situations, the counts of indic-
ative behaviour are recorded and used to construct a frequency distribution of
values for later scoring.

 Frequency-based indicators need to be converted into polytomous score values
by setting cut-off or threshold values. The distribution typically takes the form similar

R. Adams et al.

125

to an exponentially decreasing function or a unimodal function with a positive skew.
An example of a decreasing function is shown in Fig. 6.6 , where the distribution of
inferred interactive chat blocks (chat A-chat B-chat A) for four tasks is illustrated. It
shows a similar pattern of decreasing numbers of blocks, although the rate of
decrease differs among the tasks to some degree. This type of distribution is scored
by deciding where to put a cut-off point that divides the values into a dichotomy
(high-low performance levels). If the cut-off value is set at 2, students who have
interactive chat blocks of 0–1 get a score of 0, while those who have more chat
blocks (n ≥ 2) get a score of 1. The dichotomous scores can then be interpreted
similarly to the presence-absence type of indicators where chat blocks ≥ 2 are taken
as evidence of interaction (conversely, less than 2 chat blocks would be taken as
insuffi cient evidence of interaction).

 A second example, illustrated in Fig. 6.7 , shows the distribution of response time
on a question for the Hot Chocolate task. In this example, the mode is around 12 s,
with the majority of elapsed time measures falling between 6 and 20 s. Deciding
which range of values is qualitatively better is more diffi cult than in the previous
example. Unlike the fi rst example, where the scores were dichotomous, a unimodal
distribution can have partial credit assigned to more than two different value ranges.
Deciding the various value ranges and their score conversion equivalents can be
done using empirical distributions and information obtained from relevant litera-
ture. For example, the period that elapses between chat and a following action could
be regarded as ‘wait time’ and, although the concept of wait time in collaboration
differs in intention and meaning to the ‘wait time’ in the literature, it can be used as
a guide. The original concept of ‘wait time’ in a classroom setting refers to the time
between a teacher-initiated question and a response from students (Rowe 1972). In

 Fig. 6.6 Frequencies of inferred interactive chat blocks across four tasks for setting dichotomous
categories

6 Automatic Coding Procedures for Collaborative Problem Solving

126

that fi eld of study, Tobin (1987) and Stahl (1990) suggested a minimum of three
seconds wait as a threshold for positive student outcomes, such as increased chances
of correct responses and higher cognitive levels of response. The context of their
‘wait time’ is different from the online setting, and their method of measurement
was different from that of the collaborative tasks in ATC21S, but their concept pro-
vides a possible lower threshold for a reasonable score bracket (e.g., 0−3 s = 0,
3−20 s = 2, >20 s = 1).

 Due to the unique nature of the ATC21S scoring approach, there was very little
existing literature that could be used as a guide in setting the cut-off values for most
of the process stream data. Since the empirical data for this variable were being
captured for the fi rst time in this project, setting the threshold cut-off values and
assigning the partial credit scores was necessarily exploratory, and adjustments
were made iteratively after calibration and interpretation. Setting the initial cut-off
values was a precursor to calibration. The values were regarded as tentative descrip-
tions of (qualitative) levels which were then checked for model fi t and meaning
during the calibration and scaling process.

 Evidence of Collaboration Within Indicators

 The evidence of collaboration in a task is primarily based on communication
between the players. But it is more than simple communication. Student communi-
cation is not necessarily collaborative, or even cooperative. Such an interpretation at

 Fig. 6.7 Example histogram of a response time indicator for polytomous categories in indicator
U3G24

R. Adams et al.

127

best would be simplistic and at worst incorrect. The ATC21S (Hesse et al. 2015 ;
Chap. 2), and the PISA (OECD 2013) defi nitions of collaborative problem solving
are clearly more nuanced than this. Using such simplistic defi nitions cannot help
teachers develop their students’ skills. Collaboration involves sharing, perspective
taking, joint planning, decision making and shared goals. This cannot be sum-
marised by a single indicator – ‘students communicated’. It will involve both direct
and indirect communication.

 Indirect communication is inferred through actions that can be observed by
collaborative partners. With this in mind, a specifi c approach to capturing chat
was adopted. In the problem solving context, portions of the messages were
recorded using a series of identifi able keywords. For collaboration, the presence
of chat was recorded and the content of the chat was not taken into account. Chat
linked to action – pre and post a chat event – was used to infer collaboration. This
approach had the advantage of simplifying the data collection directly from the
process stream while recognising the complexity of the collaboration itself. The
presence/absence of chat, coupled with response time and action sequence data
(i.e., when the chat occurred with respect to other actions or events), allowed a
process to be used to infer collaboration. It was cross-checked by a separate panel
of approximately 20 graduate students directly interpreting patterns of chat and
action. This process made it clear that a simplistic APP approach which merely
identifi es the presence of communication is unlikely to enable collaboration to be
accurately inferred.

 There were several combinations of chat and action that could be interpreted as
evidence of collaboration. Communication was inferred from patterns of chat or a
combination of chat and action. If there was a presence of chat in the Laughing
Clowns task after the last ball had been used and before the question had been
answered then it was inferred that the students were discussing the potential answer.
This was supported by the analyses of chat content.

 The pattern of player-partner (A-B) interaction was also important to capture.
For every pattern of chat-action possibility, player-partner combinations were
also captured. The length (and hence the number of combinations) of player-partner
interaction is unlimited (i.e., A, B, A, B, B, etc.). Hence, a limit of three sequences
was adopted. With this limit in place, only the following player-partner combina-
tions were possible: (1) A, B, A; (2) A, B, B; and (3) A, A, B. These combinations
apply only to the action of the initiating student (A). Each student was coded
separately in the data fi le, so the perspective changed when the other student
(B) was scored. Only an interaction that was initiated by a student was scored for
each student (i.e., we only scored for A the player-partner combinations that
began with A, and vice-versa). Examples of combinations of interactions that can
be captured are summarised in Table 6.4 . In this table, the type of interaction
(column 1) refers to all possible combinations of chat and action in a three-event
block; the perspective (columns 4 and 5) refers to the sequence of player interac-
tion (column 3) for these blocks from the perspective of the scored player (thus, it
always begins with the scored player).

6 Automatic Coding Procedures for Collaborative Problem Solving

http://dx.doi.org/10.1007/978-94-017-9395-7_2

128

 Defi ning the Skills Progression

 After the rule-based indicative behaviours were identifi ed, coded, and scored, the
empirical data were examined to determine whether the mapping was consistent
with the relevant skill in the conceptual framework (Hesse et al. 2015). This pre-
liminary empirical analysis was undertaken to check if the relative diffi culty of each
indicator was consistent with the skill levels in the conceptual framework (Hesse
et al. 2015). For example, an indicator that was interpreted and mapped to a simple
level of participation in a task was expected to be less diffi cult (i.e., have a higher
probability of being observed) than an indicator matched to systematic and exhaus-
tive participation in optional activity in the problem space (a lower probability of
being observed). Indicators were also reviewed by a panel to check the mapping of
each indicator was relevant to the skill it was intended to measure. This panelling
process also refi ned the defi nition of each indicator so that there is a clear link
between the algorithm and the measurement construct. For example, an indicator
algorithmically defi ned as “number (count) of resets (for the game)” can be refi ned
and specifi ed by extending the defi nition with “exploration activity and initial
understanding of problem space”. The refi ned conceptual descriptors were com-
pleted for all indicators independent of the empirical quantifi cation of the item’s
relative position along the construct continuum (i.e., before they were placed into a
hierarchical order of item diffi culty [delta] based on a scaling under the Rasch

 Table 6.4 Examples of inferred interactive chat-action combinations

 Type Measurement Combination
 Perspective
from student A

 Perspective from
student B

 Interactive chat-
action- chat blocks

 count player + player +
partner

 AAB BBA

 count player + partner +
partner

 ABB BAA

 count player + partner +
player

 ABA BAB

 count player + player +
player

 AAA BBB

 Interactive chat-
action- action blocks

 count player + player +
partner

 AAB BBA

 count player + partner +
player

 ABA BAB

 Interactive chat-
chat- action blocks

 count player + partner +
partner

 ABB BAA

 count player + partner +
player

 ABA BAB

 Interactive action-
action- chat blocks
AAC

 count player + partner +
partner

 ABB BAA

 count player + partner +
player

 ABA BAB

R. Adams et al.

129

Model). After the indicators were ordered, based on empirical parameter estimates
of their deltas, the hierarchy of the descriptors was again assessed to check that they
make sense within a broader collaborative problem solving framework. This review
process was completed several times to ensure that the conceptual descriptors are
supported by empirical item location, which in turn informs the construct contin-
uum. In the same process, the review clarifi es which items have deltas that do not fi t
the theoretical model, and thus are not informative or meaningful within the overall
structure of the construct.

 After the skills progression was developed, levels of progression were identifi ed
in order to help teachers to cluster students more effectively and aid their instruction
of CPS skills. The indicators were split into their two dimensions – social or cogni-
tive – based on their previous mapping. Cognitive and social dimensions were each
assessed independently to defi ne a continuum and levels within each. Skills within
each dimension were identifi ed to represent the progression from novice to expert.

 At this point, indicators which proved to have little value or infl uence on the
interpretation were removed. The deletions were based on extensive item review,
psychometric characteristics, and mapping to the theoretical continuum. The prun-
ing is due to some indicators not matching the conceptual framework vis-a-vis their
placement as expected from the theoretical progression. Also pruned were some
indicators with coding issues which couldn’t be resolved after extensive review.

 Multiple calibrations allowed for comparison and analysis of item parameters.
The stability of these parameters remained, even if the number of indicators was
reduced considerably. As a result of the refi nement process, the number of indica-
tors was reduced from over 450 to fewer than 200. The removal of poorly ‘fi tting’
indicators reduced the standard errors of the item parameters, while maintaining the
reliability of the overall set.

 Challenges and Future Directions

 Even the most successful projects have lessons from which we can learn. The
purpose of this section is to describe some of the lessons learned during develop-
ment and deployment of the collaborative problem solving task design and deliv-
ery. What follows are descriptions of measures that are recommended as good
practice to improve the design and implementation of such assessment tasks and
data structure.

 Design of the session log is crucial. The importance of leveraging complex and
interactive assessment tasks not only to implement assessment delivery but also to
establish automated scoring has been highlighted by many researchers (Mills
et al. 2002 ; Williamson et al. 2006). The format in which data points are captured
ensures effi cient interpretation of user responses for establishing reliable scoring
rules based on the evidence of interactive patterns from the logs. To validate the
scoring rules, log fi les should be structured to allow human interpretation without
obscuring their understanding. For example, each user action or response should

6 Automatic Coding Procedures for Collaborative Problem Solving

130

be recorded as separate attributes in human readable format and as single instances
with corresponding user identifi cation, task and present state, timestamp, record
index and other data as required for the task. In addition, it is imperative to ensure
the optimum level of detail capture for both analysis and processing of data for
automating the scoring process. Through the delivery of logs from one developer
for ATC21S, it was apparent that the contents of the responses captured should be
recorded under several attributes in a well-structured database to optimise the
processing time for scoring complex data and to ensure uninterrupted traffi c load
on the system. Timestamping was found to be essential for logging response data
from the assessment tasks. Timed data, along with database indexing, proved to
be useful in sequencing user interactions with the task environment. In the current
case, database design allowed the capture of user responses only in corresponding
seconds. From the accumulated data it was observed that more precise times (i.e.
milliseconds) when users respond may often be required to differentiate sequences
of actions that occur almost simultaneously. Multiple actions can be recorded as
occurring at the same time (in seconds), but actions do occur consecutively and
this should be more accurately refl ected in the way they are captured and arranged
in the database.

 Event types described across different tasks should be defi ned in a uniform
method. Consistency in event defi nition is important for future developers of similar
tasks and for understanding the events they represent. In the present context, the
assessment tasks were initially designed by different developers. As a result, the
language and format used to defi ne the same event – for instance ‘chat’ – were quite
different and had different naming conventions across the various tasks (e.g. ‘Send
message’, ‘Type message’, ‘Enter text’ etc.).

 Development of interactive tasks and the capacity to automatically score
responses is a resource intensive undertaking, even in traditional and well-defi ned
educational domains (Masters 2010). Due consideration should be given to future
analysis needs while designing complex assessments of this nature. Emphasis
should be given to understanding the intended use of the data to support inferences
to the diagnostic richness that can be pertained through interpretation and analysis.
This is important, since extension towards more complex data accumulation in less
concisely defi ned educational domains, such as interactive problem solving, may
challenge conventional approaches to scaling educational assessment data and may
be inadequately handled (Rupp 2002).

 While the content of actions can be assessed, assessing the content of chat is
currently beyond the limitations of this project. There are some robust automated
text analysis programs that analyse large-volume texts – for example, essays,
formal open-ended items and reports. One application of these is the Coh-Metrix
(Graesser et al. 2004), a computational linguistics tool, which can analyse text
for cohesion, language/discourse, and readability. However, the challenges posed
to ATC21S by the use of such a tool were too great. To begin with, as the project
is international, there are several different language translations involved, which
could lead to translation issues within automated text analysis programs. The
automated text analysis software would also need to be quite sophisticated to

R. Adams et al.

131

classify the text blocks into the predefi ned activity type – for example, chat/
action/chat. A further diffi culty is the quantity and quality of text that may be
present within a task’s chat box. Students may provide single word answers or
low volumes of text, and the type of software available is designed for large
quantities of text. The quality of chat is likely to present problems, including
grammatical errors, non-standard syntax, abbreviations, and synonyms or ‘text-
speak’ – all of which involve non-standard spelling that would not be recognised
by current software designed for more formal language. A key consideration for
future deployment is the identifi cation of ways to capture these text data in an
understandable coded form or to translate them into a uniform language (such as
English) before they are recorded.

 References

 Arroyo, I., & Woolf, B. P. (2005). Inferring learning and attitudes from a Bayesian Network of log
fi le data. Conference paper presented at the Artifi cial Intelligence in Education: Supporting
learning through intelligent and socially informed technology. Amsterdam, The Netherlands.

 Bennett, R. E., Jenkins, F., Persky, H., & Weiss, A. (2003). Assessing complex problem solving
performances. Assessment in Education, 10 (3), 347–359.

 Care, E., Griffi n, P., Scoular, C., Awwal, N., & Zoanetti, N. (2015). Collaborative problem solving
tasks. In P. Griffi n & E. Care (Eds.), Assessment and teaching of 21st century skills: Methods
and approach (pp. 85–104). Dordrecht: Springer.

 Chung, G. K., de Vries, L. F., Cheak, A. M., Stevens, R. H., & Bewley, W. L. (2002). Cognitive
process validation of an online problem solving assessment. Computers in Human Behaviour,
18 , 669–684.

 Fu, W. T. (2001). ACT-PRO action protocol analyzer: A tool for analyzing discrete action proto-
cols. Behavior Research Methods, Instruments, and Computers, 33 (2), 149–158.

 Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-metrix: Analysis of
text on cohesion and language. Behavior Research Methods, Instruments, and Computers,
36 (2), 193–202.

 Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic problem solving: A new assessment per-
spective. Applied Psychological Measurement, 36 (3), 189–213.

 Hesse, F., Care, E., Buder, J., Sassenberg, K., & Griffi n, P. (2015). A framework for teachable col-
laborative problem solving skills. In P. Griffi n & E. Care (Eds.), Assessment and teaching of
21st century skills: Methods and approach (pp. 37–56). Dordrecht: Springer.

 Masters, J. (2010). Automated scoring of an interactive geometry item: A proof-of-concept.
 Journal of Technology, Learning, and Assessment, 8 (7). Retrieved April 12, 2013, from http://
escholarship.bc.edu/jtla/ , http://www.jtla.org

 Mills, C. N., Potenza, M. T., Fremer, J. J., & Ward, W. C. (2002). Computer-based testing: Building
the foundation for future assessments . Mahwah: Lawrence Erlbaum Associates.

 OECD. (2013). PISA 2015: Draft collaborative problem solving framework . http://www.oecd.org/
pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20
Framework%20.pdf . Accessed 7 July 2014

 Pelligrino, J., Chudowsky, N., & Glaser, R. (2001). Knowing what students know: The science and
design of educational assessment . Washington, DC: National Academy Press.

 Polya, G. (1945). How to solve it (1st ed.). Princeton: Princeton University Press.
 Polya, G. (1957). How to solve it (2nd ed.). Princeton: Princeton University Press.

6 Automatic Coding Procedures for Collaborative Problem Solving

http://escholarship.bc.edu/jtla/
http://escholarship.bc.edu/jtla/
http://www.jtla.org/
http://www.oecd.org/pisa/pisaproducts/Draft PISA 2015 Collaborative Problem Solving Framework .pdf
http://www.oecd.org/pisa/pisaproducts/Draft PISA 2015 Collaborative Problem Solving Framework .pdf
http://www.oecd.org/pisa/pisaproducts/Draft PISA 2015 Collaborative Problem Solving Framework .pdf

132

 Rowe, M. (1972). Wait time and rewards as instructional variables, their infl uence in language,
logic, and fate control . Paper presented at the National Association for Research in Science
Teaching, Chicago, IL.

 Rupp, A. (2002). Feature selection for choosing and assembling measurement models: A
building-block- based organisation. International Journal of Testing, 2 (3/4), 311–360.

 Schoenfeld, A. H. (1985). Mathematical problem solving . New York: Academic.
 Stahl, R. (1990). Using “think-time” behaviors to promote students’ information processing,

learning, and on-task participation. An instructional module . Tempe: Arizona State University.
 Tobin, K. (1987). The role of wait time in higher cognitive level learning. Review of Education

Research, 57 (1), 69–95.
 Williamson, D. M., Mislevy, R. J., & Bejar, I. I. (2006). Automated scoring of complex tasks in

computer-based testing . Mahwah: Lawrence Erlbaum Associates.
 Zoanetti, N. P. (2010). Interactive computer based assessment tasks: How problem-solving process

data can inform instruction. Australasian Journal of Educational Technology, 26 (5), 585–606.

R. Adams et al.

	Chapter 6: Automatic Coding Procedures for Collaborative Problem Solving
	Existing Approaches to Autoscoring
	 Design of Process Data Stream – Capturing and Identifying the Data
	 Defining the Indicators
	 Coding
	 Mapping
	 Scoring
	Dichotomously Scored Indicators
	 Frequency-Based Indicators – Partial Credit Scoring

	 Evidence of Collaboration Within Indicators
	 Defining the Skills Progression
	 Challenges and Future Directions
	References

