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    Chapter 6   
 Automatic    Coding Procedures 
for Collaborative Problem Solving 

                Raymond     Adams     ,     Alvin     Vista    ,     Claire     Scoular    ,     Nafi sa     Awwal    , 
    Patrick     Griffi n    , and     Esther     Care   

    Abstract     This    chapter examines the procedure followed in defi ning a scoring 
process to enable the reporting of individual student results for teachers to use in 
the classroom. The procedure begins with the identifi cation of task features that 
match elements of the skills frameworks, and is followed by the generation of 
simple rules to collect data points to represent these elements. The data points are 
extracted from log fi les generated by students engaged in the assessment tasks and 
consist of the documentation of each event, chat and action from each student. 
The chapter includes examples of the process for defi ning and generating global 
and local (task specifi c) indicators, and examples of how the indicators are coded, 
scored and interpreted.  

     The development of coding and scoring of data generated when students engage in 
collaborative problem solving tasks is described. The data generated are captured 
in a process stream data fi le. Patterns of these data are coded as indicators of ele-
ments defi ned in the conceptual framework outlined in Hesse et al. ( 2015 ; Chap.   2    ) 
and the relative complexity of indicators is used in a scoring process. The scored 
data are then used to calibrate the tasks. The calibrations form the basis of interpre-
tation and these are used in forming reports for students and teachers. Figure  6.1  
summarises the entire process from task development to the reporting of student 
ability based on a developmental framework.
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      Existing Approaches to Autoscoring 

    There is currently very little research regarding a scoring approach for collaborative 
problem solving. Our project has therefore focused on and adapted existing scoring 
processes for problem solving. The literature suggests that current processes mainly 
use a dichotomous success-failure scoring system which records whether the prob-
lem has been solved and ignores the cognitive procedures involved (Greiff et al. 
 2012 ). This type of system is simple to implement and works well for tasks which 
are designed to tap into specifi c problem solving skills. For example, a task where 
deductive reasoning is imperative for success can be scored dichotomously. An 
example of this style of dichotomous scoring can be observed in a project by Greiff 
et al. ( 2012 ) who have determined three measures which represent dynamic prob-
lem solving (DPS): Model Building, Forecasting and Information Retrieval. Each of 
these measures is scored across 11 DPS tasks and students are awarded a false (0) 
or true (1) score determined by their success or failure on the task. In contrast, the 
focus in the ATC21S TM  project 1  is not only to determine whether students are 
succeeding at solving the tasks but to draw inferences about  how  students solve 
problems. While the assumption in traditional test design is that the attainment of 
the solution is the sole criterion, here the focus is on the process and quality of prob-
lem solving. A distinction needs to be made between what might be called simple 
problem solving tasks, using a dichotomous scoring process, dynamic problem 
solving, using a series of dichotomous scores, and complex problem solving, using 
rubrics and partial credit approaches. 

 The procedural aspects of problem solving (PS) have been considered important 
for some time (Polya  1945 ,  1957 ; Schoenfeld  1985 ). The framework proposed in 
the ATC21S project outlines fi ve broad components that represent collaborative 

1   The acronym ATC21S TM  has been globally trademarked. For purposes of simplicity the acronym 
is presented throughout this chapter as ATC21S. 

  Fig. 6.1    Process overview from task development to interpretation of scores       
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problem solving (CPS) within social skills (participation, perspective taking, social 
regulation) and cognitive skills (task regulation and knowledge building). Within 
these fi ve components, students are assessed on three tiered levels of ability across 
19 specifi c elements. A set of assessment tasks, each tapping into different and 
overlapping skills, was developed in order to provide teachers with suffi cient infor-
mation to interpret students’ capacity in CPS subskills, so that a profi le of each 
student’s performance can be developed for formative instructional purposes. In 
order to provide this interpretive feedback, there was a need to develop a robust 
automated scoring system which highlighted the procedural and developmental 
thinking processes that take place in CPS.  

    Design of Process Data Stream – Capturing 
and Identifying the Data 

 Many recent computer based PS tasks have been able to assess and record detailed 
interactions between the problem solver and the task environment, and thereby 
capture salient solution processes in an unobtrusive way (Zoanetti  2010 ; Bennett 
et al.  2003 ). Their recorded input can be linked to the cognitive skill level and 
development of students and used to evaluate the process and effi ciency with 
which problem solvers complete tasks (Pelligrino et al.  2001 ; Williamson et al. 
 2006 ). Within the current CPS framework, actions and chat, and the placement of 
these, can be scored. 

 In order to record descriptive, purposeful actions, the CPS assessment tasks were 
designed to capture detailed interactions between problem solvers working as a 
dyad as well as between the individual problem solver and the task. In the context 
of computer based assessments, the fi les generated for the automatic records of 
these types of student–task interactions are referred to as a ‘session log fi le.’ They 
contain free-form data referred to as ‘process stream data.’ The log fi les were stored 
as free-form text fi les with delimited strings of text or in database architecture. In 
this instance, MySQL database architecture was used for recording the interactions 
with the task environment thereby describing relevant solution processes in an 
unobtrusive way (Bennett et al.  2003 ). 

 In the context of these assessment tasks, process stream data describe distinct 
key strokes and mouse events such as typing, clicking, dragging, cursor movements, 
hovering time, action sequences and so on. In the database, each discrete action is 
recorded with a corresponding timestamp. A timestamp refers to the time at which 
an event was recorded by the system into a log fi le and refl ects, or is close to, the 
time of the event itself. To ensure that the data captured can be presented in a con-
sistent format, allowing relatively easy comparison of two different records and 
tracking progress over time, a sequential numbering of events is used in a consistent 
manner. In this way, timestamps enable detailed analysis of action sequences and 
inactivity. This ensures further transparency for data storage and the sequential 
logging of events for data processing. These forms of time-stamped data have been 

6 Automatic Coding Procedures for Collaborative Problem Solving



118

referred to variously as “log-fi le data” (Arroyo and Woolf  2005 ), “discrete action 
protocols” (Fu  2001 ), “click-stream data” (Chung et al.  2002 ) and “process data” 
(Zoanetti  2010 ). For our purpose, we use the term ‘process stream.’ 

 Each task has a variety of events that can occur, categorised into two types: common 
and unique events. As the name suggests, ‘common’ classifi es the universal nature of 
the process stream events and applies to all collaborative assessment tasks. Examples 
of these events can been seen in Table  6.1 . They include indications of the beginning 
and end of a task, system confi rmation messages of user actions, navigational system 
messages for multiple page assessment tasks, free-form chat messages for communica-
tion with partners, or variations of these.

   Unique events within the process stream data are not common across assessment 
tasks. They are unique to specifi c tasks due to the nature of the behaviours and inter-
actions those tasks elicit. These data are defi ned using event types to match specifi c 
requirements that may arise only in a particular interactive problem space. Examples 
of such events for the Laughing Clowns task, illustrated in Fig.  6.2 , are presented in 
Table  6.2  (for a detailed explanation of this task see Care et al.  2015 ; Chap.   4    ).

    The accumulation of the different types of process and click stream data collec-
tively forms the process data stream, accumulated and stored in fi les commonly 
referred to as  session logs . An excerpt of a session log for the Laughing Clowns task 
can be seen in Fig.  6.3 , which represents the events that occurred for one team (two 
students) while playing the task. Both common and unique event types of process 
stream data were captured in string format as shown in Tables  6.1  and  6.2 . Process 
stream string data were recorded in the MySQL database as a single row and tagged 
with corresponding student identifi er, task identifi er, page identifi er and role alloca-
tion of the acting student in the collaborative session with time-stamping and appro-
priate indexing.

   To facilitate collaboration, a chat box tool was used (see Care et al.  2015 ) as the 
messaging interface for communication between respective partners during the col-
laborative sessions. This enabled the students to explore and learn about their 
respective resources and share or report information to each other. The chat box tool 

    Table 6.1    Examples of common events defi ned from the process stream data   

 Event type  Process stream data format  Explanation of data captured 

 Session 
start 

 Student  student_id  has 
commenced task  task_id  

 Records the start of a task with student and task 
unique identifi cation 

 Session 
fi nish 

 Student  student_id  has 
completed task  task_id  

 Records the end of a task with student and task 
unique identifi cation 

 Chat text  Message: “ free form of 
message using the chat box ” 

 Captures the contents of the chat message the 
students used to communicate with their partner 

 Ready To 
progress 

 Requested to move to page: 
 page_id  

 Indicates whether the student is ready to progress 
or not, and records the navigation endpoint which 
they are ready to progress to for multipage tasks 

 Other click  Screen x coords:  x_
coordinate ; Screen y coords: 
 y_coordinate ; 

 Captures the coordinates of the task screen if the 
student has clicked anywhere outside the domain 
of the problem 
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captures text exchanged between students and was captured in string data format. 
All chat messages generated by users and the system appeared in the tool and were 
recorded with a corresponding timestamp.  

    Defi ning the Indicators 

 Each task was examined for indicative behaviours of identifi able cognitive and 
social skills that can be captured algorithmically. These skills were identifi ed 
through actions, chats or a combination within the process stream. The behav-
iours that were observed in the process stream data were used as indicators of 

  Fig. 6.2    Screenshots from the Laughing Clowns task       

    Table 6.2    Examples of unique events defi ned from the Laughing Clowns task within the process 
stream data   

 Event type  Process stream data format  Explanation of data captured 

 StartDrag  startDrag:  ball_id ;  x,y coordinates of the ball 
at the start of the drag  

 Records the identifi er of the ball 
which is being dragged by the 
student, and its coordinates 

 StopDrag  stopDrag:  ball_id ;  x,y coordinates of the ball 
at the end of the drag  

 Records the identifi er of the ball 
which is being dragged by the 
student and its coordinates at the 
end of the drag 

 DropShute  dropShute PosofShuteId :  ball_id ;  x,y 
coordinates of the ball when it was dropped  

 Records the identifi er of the ball, 
its coordinates and the value of 
the clown head shute when it was 
dropped by the student 

 Check box  Selection Value:  option_value   Captures data if students agree or 
disagree on how their machines 
work 
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cognitive and social skills as defi ned in Hesse et al. ( 2015 ). These indicative 
behaviours were then coded into rule-based indicators that can be extracted from 
the task process streams through an automated algorithmic process similar to that 
described by Zoanetti ( 2010 ). Zoanetti showed how process data (e.g., counts of 
actions) could be interpreted as an indicator of a behavioural variable (e.g., error 
avoidance or learning from a mistake) (see Table 3 in Zoanetti  2010 ). For exam-
ple, in the Laughing Clowns task, a count of the ‘dropShute’ actions (dropping 
the balls into the clown’s mouth) can indicate how well the student managed their 
resources (the balls).  

    Coding 

 The coded indicators became the primary source of data for the scoring process. 
The indicators were classifi ed into two main types: those that occur only in spe-
cifi c tasks and those that can be observed in all tasks. Indicators that can be cap-
tured in all tasks are labelled ‘global’. They included total response time, response 
time to partner questions, action counts, and other behaviours that were observed 
regardless of the task. Indicators that were task-specifi c were labelled ‘local’. 
There were two categories of local indicators: direct and inferred. Direct indica-
tors represented those that can be identifi ed clearly, such as a student performing 
a particular action. Inferred indicators related to such things as sequences of 
action/chat within the data. Patterns of indicators were used to infer the presence 
of behaviour which is indicative of elements in the conceptual framework (see 
Hesse et al.  2015 ; Chap.   2    ). Within these indicators there were differences in 
intensity or patterns that provided additional information about the relative com-
plexity of the indicated behaviour. 

  Fig. 6.3    Excerpt from a process stream log fi le for the Laughing Clowns task       
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 Each indicator was coded with a unique ID code. Using the example of the 
unique ID code ‘U2L004A’, ‘U2’ represents the Laughing Clowns task, ‘L’ indi-
cates that it is a ‘local’ indicator specifi c to that task (‘G’ would represent that it was 
a global indicator that could be applied to all tasks), ‘004’ is a numerical code spe-
cifi c to this indicator which is provided for ease of referencing and is sequential 
within each task (in this case 004 it was the fourth indicator created for the task) and 
‘A’ indicates that this indicator is applicable to student A. 

 To capture the required data, once the indicators are identifi ed they need to be 
defi ned in the process stream through programming algorithms. Each of the scoring 
algorithms takes process stream data (produced by the events of the participants in 
different tasks) as input and produces relevant output defi ned by the rule for the cor-
responding indicator. For example, if capturing the quantity of interaction within a 
task, the algorithm would count the occurrences of the event ‘chat’ in the process 
stream. The output for this indicator would be the numerical value representing the 
frequency of the chat. Table  6.3  outlines some exemplar algorithms. The fi rst col-
umn in the table represents the indicator name. Details of the scoring rule for each 
indicator are described in column two. The third and fourth columns elaborate the 
algorithm and its output respectively.

   The outputs from each of the indicators based on the algorithms are saved in a ‘coded 
fi le’. The coded fi le presents the output values relevant to the algorithm. For example, if 
the indicator observes a count of actions, the raw numerical value will be present in this 
fi le. Indicators highlighted in yellow in Fig.  6.4  are still in raw counts (or frequencies). 
These indicators are later converted into either a dichotomy or partial credit.

       Mapping 

 Each indicator was mapped onto an element of the conceptual framework (outlined 
in Hesse et al.  2015 ; Chap.   2    ). which consists of fi ve strands – three comprising the 
social aspect and two comprising the cognitive aspect. The main purpose of this 
mapping process was to identify an underlying skill. To reduce judgment error in 
the mapping process, it was undertaken several times by different teams. An itera-
tive process was used. Several panels of researchers reviewed the indicators and 
mapped them onto the conceptual framework. The process was repeated for each set 
of indicators within each task until a stable allocation was agreed upon. When the 
changes and revisions to the allocation of indicators to elements fell to a minimum, 
the element mapping was then considered to be stable and the interpretation process 
proceeded to the next step. As an example, the indicator U2L004A records whether 
a student covers all positions with their balls. This is assessed by the presence of 
three ‘dropShute’ actions in the process stream for student A – one for each of the 
three positions L (left), M (middle), and R (right). This indicator was mapped onto 
systematicity in the framework, suggesting that the student had explored the task 
through a strategic sequence of actions. An excerpt from a session log on how this 
is captured can be seen in Fig.  6.5 .
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    Table 6.3    Example of algorithms to the corresponding indicator   

 Indicator name  Details  Algorithm  Output 

 U2L004A  Systematic approach. All positions 
have been covered. 

 Step 1: Find all drop ball 
occurrences captured as 
dropShute and their 
corresponding positions as 
dropShuteL, dropShuteR, 
dropShuteM. 

 Count 
values 

 U2L004B  Scoring rule: threshold value.  Step 2: Then count all the 
occurrences of the action 
recorded under ‘dropShute’ 
and their unique positions 
from the log. 

 Task name: Laughing Clowns.  Step 3: Increase the value of 
the indicator by one if one or 
more ‘dropShute’ occurs in the 
form of dropShuteR, 
dropShuteL, or dropShuteM. 
 Step 4: If the total number of 
unique dropShutes 
(dropShuteR, dropShuteL, and 
dropShuteM) from the log is 
less than three then the value 
of the indicator is defi ned as 
−1 to indicate missing data. 

 Global001A  Acceptable time to fi rst action 
given reading load. 

 Step 1: Find the starting time 
when a student joins a 
collaborative session. 

 Time 

 Global001B  Time (in seconds) spent on the 
task before fi rst action (interpreted 
as reading time) 

 Step 2: Find the previous 
record of the fi rst action. 

 Scoring rule: Threshold time.  Step 3: Find the time of that 
previous record (from step 2). 
 Step 4: Calculate the time 
difference obtained (from step 
1 and step 3), indicating the 
time before fi rst action. 

 Global005A  Interactive chat blocks: Count the 
number of chat blocks (A, B) with 
no intervening actions. 
Consecutive chats from the same 
player counts as one (e.g., 
A,B,A,B = 2 chat blocks; 
A,B,A,B,A,B = 3 chat blocks; 
AA,B,A,BB = 2 chat blocks) 

 Step 1: Find all the 
consecutive chat from student 
A and B without any 
intervening action from A or 
B. Treat two or more 
consecutive chats from a 
single student as one chat. 

 Count 
values 

 Global005B  Scoring rule: threshold number.  Step 2: Increase the value of 
the indicator by one if one 
block is found. 
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  Fig. 6.4    Excerpt from a coded data fi le       

  Fig. 6.5    Excerpt from a process stream log fi le for the Laughing Clowns task       
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       Scoring 

 Indicators can be thought of as the equivalent of items in a conventional test. In 
order to obtain an estimate of student ability from the scored indicators it is neces-
sary that the status of one indicator does not affect or depend on the status of others. 
Requiring indicators to be stochastically independent also avoids the complexity of 
scoring the absence of an indicative behaviour when it is dependent on another 
event. For instance, if indicator 002 is dependent on indicator 001, and both are 
dichotomous, the assessment of indicator 002 = 0 will differ depending on whether 
indicator 001 = 0 or 1. 

    Dichotomously Scored Indicators 

 Most indicators of behaviours in the AC21S tasks are designed to be indicative only 
of the presence or absence of an observable behaviour. This would provide for each 
student a coded value of ‘1’ to the indicator if it is present and a coded value of ‘0’ to 
the indicator if it is absent. Through the forcing of most of the indicators into a 
dichotomy, the interpretation of indicators becomes simpler than is necessary for 
partial credit coding and scoring. In the Laughing Clowns task, for example, a player 
needs to leave a minimum number of balls for his/her partner in order for the task to 
be completed successfully. If the process data shows that this minimum number was 
satisfi ed, the indicator can be scored as 1. If it is not satisfi ed, it is scored as 0.  

    Frequency-Based Indicators – Partial Credit Scoring 

 In cases where a particular indicative behaviour is monitored for frequency of 
occurrence, recording the frequency counts is useful (as indicated in Table  6.3 ), 
especially when the cut-off for a qualitatively differentiable interpretation of the 
behaviour is not clear. For example, the total time taken on a task and the time 
taken for a player to respond to a partner query can range from a few seconds to 
several minutes. A dichotomy-based score cannot capture the subtlety of differ-
ences in such a case. In the Laughing Clowns example given above, the cut-off 
value is well- defi ned because success on this task is impossible beyond the mini-
mum number of balls retained. However, in other tasks this situation may not be 
recordable in such clear-cut values. There will be an intuitive interpretation that 
more errors mean less problem solving ability, but it might not be clear where to 
place a cut-off point for scoring purposes. In these situations, the counts of indic-
ative behaviour are recorded and used to construct a frequency distribution of 
values for later scoring. 

 Frequency-based indicators need to be converted into polytomous score values 
by setting cut-off or threshold values. The distribution typically takes the form similar 
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to an exponentially decreasing function or a unimodal function with a positive skew. 
An example of a decreasing function is shown in Fig.  6.6 , where the distribution of 
inferred interactive chat blocks (chat A-chat B-chat A) for four tasks is illustrated. It 
shows a similar pattern of decreasing numbers of blocks, although the rate of 
decrease differs among the tasks to some degree. This type of distribution is scored 
by deciding where to put a cut-off point that divides the values into a dichotomy 
(high-low performance levels). If the cut-off value is set at 2, students who have 
interactive chat blocks of 0–1 get a score of 0, while those who have more chat 
blocks ( n  ≥ 2) get a score of 1. The dichotomous scores can then be interpreted 
similarly to the presence-absence type of indicators where chat blocks ≥ 2 are taken 
as evidence of interaction (conversely, less than 2 chat blocks would be taken as 
insuffi cient evidence of interaction).

   A second example, illustrated in Fig.  6.7 , shows the distribution of response time 
on a question for the Hot Chocolate task. In this example, the mode is around 12 s, 
with the majority of elapsed time measures falling between 6 and 20 s. Deciding 
which range of values is qualitatively better is more diffi cult than in the previous 
example. Unlike the fi rst example, where the scores were dichotomous, a unimodal 
distribution can have partial credit assigned to more than two different value ranges. 
Deciding the various value ranges and their score conversion equivalents can be 
done using empirical distributions and information obtained from relevant litera-
ture. For example, the period that elapses between chat and a following action could 
be regarded as ‘wait time’ and, although the concept of wait time in collaboration 
differs in intention and meaning to the ‘wait time’ in the literature, it can be used as 
a guide. The original concept of ‘wait time’ in a classroom setting refers to the time 
between a teacher-initiated question and a response from students (Rowe  1972 ). In 

  Fig. 6.6    Frequencies of inferred interactive chat blocks across four tasks for setting dichotomous 
categories       
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that fi eld of study, Tobin ( 1987 ) and Stahl ( 1990 ) suggested a minimum of three 
seconds wait as a threshold for positive student outcomes, such as increased chances 
of correct responses and higher cognitive levels of response. The context of their 
‘wait time’ is different from the online setting, and their method of measurement 
was different from that of the collaborative tasks in ATC21S, but their concept pro-
vides a possible lower threshold for a reasonable score bracket (e.g., 0−3 s = 0, 
3−20 s = 2, >20 s = 1).

   Due to the unique nature of the ATC21S scoring approach, there was very little 
existing literature that could be used as a guide in setting the cut-off values for most 
of the process stream data. Since the empirical data for this variable were being 
captured for the fi rst time in this project, setting the threshold cut-off values and 
assigning the partial credit scores was necessarily exploratory, and adjustments 
were made iteratively after calibration and interpretation. Setting the initial cut-off 
values was a precursor to calibration. The values were regarded as tentative descrip-
tions of (qualitative) levels which were then checked for model fi t and meaning 
during the calibration and scaling process.   

    Evidence of Collaboration Within Indicators 

 The evidence of collaboration in a task is primarily based on communication 
between the players. But it is more than simple communication. Student communi-
cation is not necessarily collaborative, or even cooperative. Such an interpretation at 

  Fig. 6.7    Example histogram of a response time indicator for polytomous categories in indicator 
U3G24       
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best would be simplistic and at worst incorrect. The ATC21S (Hesse et al.  2015 ; 
Chap.   2    ), and the PISA (OECD  2013 ) defi nitions of collaborative problem solving 
are clearly more nuanced than this. Using such simplistic defi nitions cannot help 
teachers develop their students’ skills. Collaboration involves sharing, perspective 
taking, joint planning, decision making and shared goals. This cannot be sum-
marised by a single indicator – ‘students communicated’. It will involve both direct 
and indirect communication. 

 Indirect communication is inferred through actions that can be observed by 
collaborative partners. With this in mind, a specifi c approach to capturing chat 
was adopted. In the problem solving context, portions of the messages were 
recorded using a series of identifi able keywords. For collaboration, the  presence  
of chat was recorded and the content of the chat was not taken into account. Chat 
linked to action – pre and post a chat event – was used to infer collaboration. This 
approach had the advantage of simplifying the data collection directly from the 
process stream while recognising the complexity of the collaboration itself. The 
presence/absence of chat, coupled with response time and action sequence data 
(i.e., when the chat occurred with respect to other actions or events), allowed a 
process to be used to infer collaboration. It was cross-checked by a separate panel 
of approximately 20 graduate students directly interpreting patterns of chat and 
action. This process made it clear that a simplistic APP approach which merely 
identifi es the presence of communication is unlikely to enable collaboration to be 
accurately inferred. 

 There were several combinations of chat and action that could be interpreted as 
evidence of collaboration. Communication was inferred from patterns of chat or a 
combination of chat and action. If there was a presence of chat in the Laughing 
Clowns task after the last ball had been used and before the question had been 
answered then it was inferred that the students were discussing the potential answer. 
This was supported by the analyses of chat content. 

 The pattern of player-partner (A-B) interaction was also important to capture. 
For every pattern of chat-action possibility, player-partner combinations were 
also captured. The length (and hence the number of combinations) of  player-partner 
interaction is unlimited (i.e., A, B, A, B, B, etc.). Hence, a limit of three sequences 
was adopted. With this limit in place, only the following player-partner combina-
tions were possible: (1) A, B, A; (2) A, B, B; and (3) A, A, B. These combinations 
apply only to the action of the initiating student (A). Each student was coded 
separately in the data fi le, so the perspective changed when the other student 
(B) was scored. Only an interaction that was initiated by a student was scored for 
each  student (i.e., we only scored for A the player-partner combinations that 
began with A, and vice-versa). Examples of combinations of interactions that can 
be captured are summarised in Table  6.4 . In this table, the type of interaction 
(column 1) refers to all possible combinations of chat and action in a three-event 
block; the perspective (columns 4 and 5) refers to the sequence of player interac-
tion (column 3) for these blocks from the perspective of the scored player (thus, it 
always begins with the scored player).
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       Defi ning the Skills Progression 

 After the rule-based indicative behaviours were identifi ed, coded, and scored, the 
empirical data were examined to determine whether the mapping was consistent 
with the relevant skill in the conceptual framework (Hesse et al.  2015 ). This pre-
liminary empirical analysis was undertaken to check if the relative diffi culty of each 
indicator was consistent with the skill levels in the conceptual framework (Hesse 
et al.  2015 ). For example, an indicator that was interpreted and mapped to a simple 
level of participation in a task was expected to be less diffi cult (i.e., have a higher 
probability of being observed) than an indicator matched to systematic and exhaus-
tive participation in optional activity in the problem space (a lower probability of 
being observed). Indicators were also reviewed by a panel to check the mapping of 
each indicator was relevant to the skill it was intended to measure. This panelling 
process also refi ned the defi nition of each indicator so that there is a clear link 
between the algorithm and the measurement construct. For example, an indicator 
algorithmically defi ned as “number (count) of resets (for the game)” can be refi ned 
and specifi ed by extending the defi nition with “exploration activity and initial 
understanding of problem space”. The refi ned conceptual descriptors were com-
pleted for all indicators independent of the empirical quantifi cation of the item’s 
relative position along the construct continuum (i.e., before they were placed into a 
hierarchical order of item diffi culty [delta] based on a scaling under the Rasch 

   Table 6.4    Examples of inferred interactive chat-action combinations   

 Type  Measurement  Combination 
 Perspective 
from student A 

 Perspective from 
student B 

 Interactive  chat-
action- chat   blocks 

 count  player + player + 
partner 

 AAB  BBA 

 count  player + partner + 
partner 

 ABB  BAA 

 count  player + partner + 
player 

 ABA  BAB 

 count  player + player + 
player 

 AAA  BBB 

 Interactive  chat-
action- action   blocks 

 count  player + player + 
partner 

 AAB  BBA 

 count  player + partner + 
player 

 ABA  BAB 

 Interactive  chat-
chat- action   blocks 

 count  player + partner + 
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Model). After the indicators were ordered, based on empirical parameter estimates 
of their deltas, the hierarchy of the descriptors was again assessed to check that they 
make sense within a broader collaborative problem solving framework. This review 
process was completed several times to ensure that the conceptual descriptors are 
supported by empirical item location, which in turn informs the construct contin-
uum. In the same process, the review clarifi es which items have deltas that do not fi t 
the theoretical model, and thus are not informative or meaningful within the overall 
structure of the construct. 

 After the skills progression was developed, levels of progression were identifi ed 
in order to help teachers to cluster students more effectively and aid their instruction 
of CPS skills. The indicators were split into their two dimensions – social or cogni-
tive – based on their previous mapping. Cognitive and social dimensions were each 
assessed independently to defi ne a continuum and levels within each. Skills within 
each dimension were identifi ed to represent the progression from novice to expert. 

 At this point, indicators which proved to have little value or infl uence on the 
interpretation were removed. The deletions were based on extensive item review, 
psychometric characteristics, and mapping to the theoretical continuum. The prun-
ing is due to some indicators not matching the conceptual framework vis-a-vis their 
placement as expected from the theoretical progression. Also pruned were some 
indicators with coding issues which couldn’t be resolved after extensive review. 

 Multiple calibrations allowed for comparison and analysis of item parameters. 
The stability of these parameters remained, even if the number of indicators was 
reduced considerably. As a result of the refi nement process, the number of indica-
tors was reduced from over 450 to fewer than 200. The removal of poorly ‘fi tting’ 
indicators reduced the standard errors of the item parameters, while maintaining the 
reliability of the overall set.  

    Challenges and Future Directions 

 Even the most successful projects have lessons from which we can learn. The 
purpose of this section is to describe some of the lessons learned during develop-
ment and deployment of the collaborative problem solving task design and deliv-
ery. What follows are descriptions of measures that are recommended as good 
practice to improve the design and implementation of such assessment tasks and 
data structure. 

 Design of the session log is crucial. The importance of leveraging complex and 
interactive assessment tasks not only to implement assessment delivery but also to 
establish automated scoring has been highlighted by many researchers (Mills 
et al.  2002 ; Williamson et al.  2006 ). The format in which data points are captured 
ensures effi cient interpretation of user responses for establishing reliable scoring 
rules based on the evidence of interactive patterns from the logs. To validate the 
scoring rules, log fi les should be structured to allow human interpretation without 
obscuring their understanding. For example, each user action or response should 
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be recorded as separate attributes in human readable format and as single instances 
with corresponding user identifi cation, task and present state, timestamp, record 
index and other data as required for the task. In addition, it is imperative to ensure 
the optimum level of detail capture for both analysis and processing of data for 
automating the scoring process. Through the delivery of logs from one developer 
for ATC21S, it was apparent that the contents of the responses captured should be 
recorded under several attributes in a well-structured database to optimise the 
processing time for scoring complex data and to ensure uninterrupted traffi c load 
on the system. Timestamping was found to be essential for logging response data 
from the assessment tasks. Timed data, along with database indexing, proved to 
be useful in sequencing user interactions with the task environment. In the current 
case, database design allowed the capture of user responses only in corresponding 
seconds. From the accumulated data it was observed that more precise times (i.e. 
milliseconds) when users respond may often be required to differentiate sequences 
of actions that occur almost simultaneously. Multiple actions can be recorded as 
occurring at the same time (in seconds), but actions do occur consecutively and 
this should be more accurately refl ected in the way they are captured and arranged 
in the database. 

 Event types described across different tasks should be defi ned in a uniform 
method. Consistency in event defi nition is important for future developers of similar 
tasks and for understanding the events they represent. In the present context, the 
assessment tasks were initially designed by different developers. As a result, the 
language and format used to defi ne the same event – for instance ‘chat’ – were quite 
different and had different naming conventions across the various tasks (e.g. ‘Send 
message’, ‘Type message’, ‘Enter text’ etc.). 

 Development of interactive tasks and the capacity to automatically score 
responses is a resource intensive undertaking, even in traditional and well-defi ned 
educational domains (Masters  2010 ). Due consideration should be given to future 
analysis needs while designing complex assessments of this nature. Emphasis 
should be given to understanding the intended use of the data to support inferences 
to the diagnostic richness that can be pertained through interpretation and analysis. 
This is important, since extension towards more complex data accumulation in less 
concisely defi ned educational domains, such as interactive problem solving, may 
challenge conventional approaches to scaling educational assessment data and may 
be inadequately handled (Rupp  2002 ). 

 While the content of actions can be assessed, assessing the content of chat is 
currently beyond the limitations of this project. There are some robust automated 
text analysis programs that analyse large-volume texts – for example, essays, 
formal open-ended items and reports. One application of these is the Coh-Metrix 
(Graesser et al.  2004 ), a computational linguistics tool, which can analyse text 
for cohesion, language/discourse, and readability. However, the challenges posed 
to ATC21S by the use of such a tool were too great. To begin with, as the project 
is international, there are several different language translations involved, which 
could lead to translation issues within automated text analysis programs. The 
automated text analysis software would also need to be quite sophisticated to 
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classify the text blocks into the predefi ned activity type – for example, chat/
action/chat. A further diffi culty is the quantity and quality of text that may be 
present within a task’s chat box. Students may provide single word answers or 
low volumes of text, and the type of software available is designed for large 
quantities of text. The quality of chat is likely to present problems, including 
grammatical errors, non-standard syntax, abbreviations, and synonyms or ‘text-
speak’ – all of which involve non-standard spelling that would not be recognised 
by current software designed for more formal language. A key consideration for 
future deployment is the identifi cation of ways to capture these text data in an 
understandable coded form or to translate them into a uniform language (such as 
English) before they are recorded.     
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